CHAPTER 1
How to Write a Simple Makefile

The mechanics of programming usually follow a fairly simple routine of editing
source files, compiling the source into an executable form, and debugging the result.
Although transforming the source into an executable is considered routine, if done
incorrectly a programmer can waste immense amounts of time tracking down the
problem. Most developers have experienced the frustration of modifying a function
and running the new code only to find that their change did not fix the bug. Later
they discover that they were never executing their modified function because of some
procedural error such as failing to recompile the source, relink the executable, or
rebuild a jar. Moreover, as the program’s complexity grows these mundane tasks can
become increasingly error-prone as different versions of the program are developed,
perhaps for other platforms or other versions of support libraries, etc.

The make program is intended to automate the mundane aspects of transforming
source code into an executable. The advantages of make over scripts is that you can
specify the relationships between the elements of your program to make, and it knows
through these relationships and timestamps exactly what steps need to be redone to
produce the desired program each time. Using this information, make can also opti-
mize the build process avoiding unnecessary steps.

GNU make (and other variants of make) do precisely this. make defines a language for
describing the relationships between source code, intermediate files, and executa-
bles. It also provides features to manage alternate configurations, implement reus-
able libraries of specifications, and parameterize processes with user-defined macros.
In short, make can be considered the center of the development process by providing
a roadmap of an application’s components and how they fit together.

The specification that make uses is generally saved in a file named makefile. Here is a
makefile to build the traditional “Hello, World” program:

hello: hello.c
gcc hello.c -o hello

To build the program execute make by typing:

$ make

at the command prompt of your favorite shell. This will cause the make program to
read the makefile and build the first target it finds there:

$ make

gcc hello.c -o hello
If a target is included as a command-line argument, that target is updated. If no com-
mand-line targets are given, then the first target in the file is used, called the default
goal.

Typically the default goal in most makefiles is to build a program. This usually
involves many steps. Often the source code for the program is incomplete and the
source must be generated using utilities such as flex or bison. Next the source is
compiled into binary object files (.o files for C/C++, .class files for Java, etc.). Then,
for C/C++, the object files are bound together by a linker (usually invoked through
the compiler, gcc) to form an executable program.

Modifying any of the source files and reinvoking make will cause some, but usually
not all, of these commands to be repeated so the source code changes are properly
incorporated into the executable. The specification file, or makefile, describes the
relationship between the source, intermediate, and executable program files so that
make can perform the minimum amount of work necessary to update the executable.

So the principle value of make comes from its ability to perform the complex series of
commands necessary to build an application and to optimize these operations when
possible to reduce the time taken by the edit-compile-debug cycle. Furthermore, make
is flexible enough to be used anywhere one kind of file depends on another from tra-
ditional programming in C/C++ to Java, TgX, database management, and more.

Targets and Prerequisites

Essentially a makefile contains a set of rules used to build an application. The first
rule seen by make is used as the default rule. A rule consists of three parts: the target,
its prerequisites, and the command(s) to perform:
target: prereq, prereq,
commands

The target is the file or thing that must be made. The prerequisites or dependents are
those files that must exist before the target can be successfully created. And the com-
mands are those shell commands that will create the target from the prerequisites.

Here is a rule for compiling a C file, foo.c, into an object file, foo.o:

foo.o0: foo.c foo.h
gcc -c foo.c
The target file foo.o appears before the colon. The prerequisites foo.c and foo.h
appear after the colon. The command script usually appears on the following lines
and is preceded by a tab character.

4 | Chapter1: How toWrite a Simple Makefile

When make is asked to evaluate a rule, it begins by finding the files indicated by the
prerequisites and target. If any of the prerequisites has an associated rule, make
attempts to update those first. Next, the target file is considered. If any prerequisite
is newer than the target, the target is remade by executing the commands. Each com-
mand line is passed to the shell and is executed in its own subshell. If any of the
commands generates an error, the building of the target is terminated and make exits.
One file is considered newer than another if it has been modified more recently.

Here is a program to count the number of occurrences of the words “fee,” “fie,”
“foe,” and “fum” in its input. It uses a flex scanner driven by a simple main:

#include <stdio.h>

extern int fee count, fie count, foe count, fum count;
extern int yylex(void);

int main(int argc, char ** argv)

{
yylex();
printf("%d %d %d %d\n", fee count, fie count, foe count, fum count);
exit(0);

}

The scanner is very simple:

int fee count = 0;
int fie count = 0;
int foe _count = 0;
int fum_count = 0;

%%

fee fee _count++;

fie fie count++;

foe foe_count++;

fum fum_count++;

The makefile for this program is also quite simple:

count_words: count_words.o lexer.o -1fl
gcc count_words.o lexer.o -1f1 -ocount_words

count_words.o: count_words.c
gcc -c count_words.c

lexer.o: lexer.c
gcc -c lexer.c

lexer.c: lexer.l
flex -t lexer.l > lexer.c

When this makefile is executed for the first time, we see:

$ make

gcc -c count_words.c

flex -t lexer.l > lexer.c

gcc -c lexer.c

gcc count_words.o lexer.o -1fl -ocount_words

Targets and Prerequisites | 5

We now have an executable program. Of course, real programs typically consist of
more modules than this. Also, as you will see later, this makefile does not use most of
the features of make so it’s more verbose than necessary. Nevertheless, this is a func-
tional and useful makefile. For instance, during the writing of this example, I exe-
cuted the makefile several dozen times while experimenting with the program.

As you look at the makefile and sample execution, you may notice that the order in
which commands are executed by make are nearly the opposite to the order they
occur in the makefile. This top-down style is common in makefiles. Usually the most
general form of target is specified first in the makefile and the details are left for later.
The make program supports this style in many ways. Chief among these is make’s two-
phase execution model and recursive variables. We will discuss these in great detail
in later chapters.

Dependency Checking

How did make decide what to do? Let’s go over the previous execution in more detail
to find out.

First make notices that the command line contains no targets so it decides to make the
default goal, count_words. It checks for prerequisites and sees three: count_words.o,
lexer.o, and -1f1. make now considers how to build count_words.o and sees a rule for
it. Again, it checks the prerequisites, notices that count_words.c has no rules but that
the file exists, so make executes the commands to transform count_words.c into
count_words.o by executing the command:

gcc -c count_words.c

This “chaining” of targets to prerequisites to targets to prerequisites is typical of how
make analyzes a makefile to decide the commands to be performed.

The next prerequisite make considers is lexer.o. Again the chain of rules leads to lexer.
¢ but this time the file does not exist. make finds the rule for generating lexer.c from
lexer.l so it runs the flex program. Now that lexer.c exists it can run the gcc
command.

Finally, make examines -1f1. The -1 option to gcc indicates a system library that must
be linked into the application. The actual library name indicated by “fI” is libfl.a.
GNU make includes special support for this syntax. When a prerequisite of the form-
1<NAME> is seen, make searches for a file of the form libNAME.so; if no match is found,
it then searches for libNAME.a. Here make finds /ust/lib/libfl.a and proceeds with the
final action, linking.

6 | Chapter1: How to Write a Simple Makefile

Minimizing Rebuilds

When we run our program, we discover that aside from printing fees, fies, foes, and
fums, it also prints text from the input file. This is not what we want. The problem is
that we have forgotten some rules in our lexical analyzer and flex is passing this
unrecognized text to its output. To solve this problem we simply add an “any charac-
ter” rule and a newline rule:

int fee count = 0;
int fie_count = 0;
int foe_count = 0;
int fum _count = 0;

%%

fee fee _count++;

fie fie count++;

foe foe_count++;

fum fum_count++;

\n

After editing this file we need to rebuild the application to test our fix:

$ make

flex -t lexer.l > lexer.c

gcc -c lexer.c

gcc count _words.o lexer.o -1fl -ocount words
Notice this time the file count_words.c was not recompiled. When make analyzed the
rule, it discovered that count_words.o existed and was newer than its prerequisite
count_words.c so no action was necessary to bring the file up to date. While analyz-
ing lexer.c, however, make saw that the prerequisite lexer.l was newer than its target
lexer.c so make must update lexer.c. This, in turn, caused the update of lexer.o and
then count_words. Now our word counting program is fixed:

$ count_words < lexer.l
3333

Invoking make

The previous examples assume that:
* All the project source code and the make description file are stored in a single
directory.
* The make description file is called makefile, Makefile, or GNUMakefile.

* The makefile resides in the user’s current directory when executing the make
command.

Invokingmake | 7

When make is invoked under these conditions, it automatically creates the first target
it sees. To update a different target (or to update more than one target) include the
target name on the command line:

$ make lexer.c

When make is executed, it will read the description file and identify the target to be
updated. If the target or any of its prerequisite files are out of date (or missing) the
shell commands in the rule’s command script will be executed one at a time. After
the commands are run make assumes the target is up to date and moves on to the
next target or exits.

If the target you specify is already up to date, make will say so and immediately exit,
doing nothing else:

$ make lexer.c

make: “lexer.c' is up to date.
If you specify a target that is not in the makefile and for which there is no implicit
rule (discussed in Chapter 2), make will respond with:

$ make non-existent-target

make: *** No rule to make target “non-existent-target'. Stop.
make has many command-line options. One of the most useful is --just-print (or -n)
which tells make to display the commands it would execute for a particular target
without actually executing them. This is particularly valuable while writing
makefiles. It is also possible to set almost any makefile variable on the command line
to override the default value or the value set in the makefile.

Basic Makefile Syntax

Now that you have a basic understanding of make you can almost write your own
makefiles. Here we’ll cover enough of the syntax and structure of a makefile for you
to start using make.

Makefiles are usually structured top-down so that the most general target, often
called all, is updated by default. More and more detailed targets follow with targets
for program maintenance, such as a clean target to delete unwanted temporary files,
coming last. As you can guess from these target names, targets do not have to be
actual files, any name will do.

In the example above we saw a simplified form of a rule. The more complete (but
still not quite complete) form of a rule is:

target, target, targetg : prerequisite, prerequisite,
command
command
commandg

8 | Chapter1: How to Write a Simple Makefile

One or more targets appear to the left of the colon and zero or more prerequisites
can appear to the right of the colon. If no prerequisites are listed to the right, then
only the target(s) that do not exist are updated. The set of commands executed to
update a target are sometimes called the command script, but most often just the
commands.

Each command must begin with a tab character. This (obscure) syntax tells make that
the characters that follow the tab are to be passed to a subshell for execution. If you
accidentally insert a tab as the first character of a noncommand line, make will inter-
pret the following text as a command under most circumstances. If you’re lucky and
your errant tab character is recognized as a syntax error you will receive the message:

$ make
Makefile:6: *** commands commence before first target. Stop.

We'll discuss the complexities of the tab character in Chapter 2.

The comment character for make is the hash or pound sign, #. All text from the
pound sign to the end of line is ignored. Comments can be indented and leading
whitespace is ignored. The comment character # does not introduce a make comment
in the text of commands. The entire line, including the # and subsequent characters,
is passed to the shell for execution. How it is handled there depends on your shell.

Long lines can be continued using the standard Unix escape character backslash (\). It
is common for commands to be continued in this way. It is also common for lists of
prerequisites to be continued with backslash. Later we’ll cover other ways of handling
long prerequisite lists.

You now have enough background to write simple makefiles. Chapter 2 will cover
rules in detail, followed by make variables in Chapter 3 and commands in Chapter 5.
For now you should avoid the use of variables, macros, and multiline command
sequences.

Basic Makefile Syntax | 9

