CHAPTER 2
Rules

In the last chapter, we wrote some rules to compile and link our word-counting pro-
gram. Each of those rules defines a target, that is, a file to be updated. Each target file
depends on a set of prerequisites, which are also files. When asked to update a tar-
get, make will execute the command script of the rule if any of the prerequisite files
has been modified more recently than the target. Since the target of one rule can be
referenced as a prerequisite in another rule, the set of targets and prerequisites form a
chain or graph of dependencies (short for “dependency graph”). Building and pro-
cessing this dependency graph to update the requested target is what make is all
about.

Since rules are so important in make, there are a number of different kinds of rules.
Explicit rules, like the ones in the previous chapter, indicate a specific target to be
updated if it is out of date with respect to any of its prerequisites. This is the most
common type of rule you will be writing. Pattern rules use wildcards instead of
explicit filenames. This allows make to apply the rule any time a target file matching
the pattern needs to updated. Implicit rules are either pattern rules or suffix rules
found in the rules database built-in to make. Having a built-in database of rules makes
writing makefiles easier since for many common tasks make already knows the file
types, suffixes, and programs for updating targets. Static pattern rules are like regular
pattern rules except they apply only to a specific list of target files.

GNU make can be used as a “drop in” replacement for many other versions of make
and includes several features specifically for compatibility. Suffix rules were make’s
original means for writing general rules. GNU make includes support for suffix rules,
but they are considered obsolete having been replaced by pattern rules that are
clearer and more general.

Explicit Rules

Most rules you will write are explicit rules that specify particular files as targets and
prerequisites. A rule can have more than one target. This means that each target has

10

the same set of prerequisites as the others. If the targets are out of date, the same set
of actions will be performed to update each one. For instance:

vpath.o variable.o: make.h config.h getopt.h gettext.h dep.h

This indicates that both vpath.o and variable.o depend on the same set of C header
files. This line has the same effect as:

vpath.o: make.h config.h getopt.h gettext.h dep.h

variable.o: make.h config.h getopt.h gettext.h dep.h
The two targets are handled independently. If either object file is out of date with
respect to any of its prerequisites (that is, any header file has a newer modification
time than the object file), make will update the object file by executing the com-
mands associated with the rule.

A rule does not have to be defined “all at once.” Each time make sees a target file it
adds the target and prerequisites to the dependency graph. If a target has already
been seen and exists in the graph, any additional prerequisites are appended to the
target file entry in make’s dependency graph. In the simple case, this is useful for
breaking long lines naturally to improve the readability of the makefile:

vpath.o: vpath.c make.h config.h getopt.h gettext.h dep.h

vpath.o: filedef.h hash.h job.h commands.h variable.h vpath.h
In more complex cases, the prerequisite list can be composed of files that are man-
aged very differently:

Make sure lexer.c is created before vpath.c is compiled.
vpath.o: lexer.c

Compile vpath.c with special flags.
vpath.o: vpath.c
$(COMPILE.c) $(RULE_FLAGS) $(OUTPUT_OPTION) $<

Include dependencies generated by a program.

include auto-generated-dependencies.d
The first rule says that the vpath.o target must be updated whenever lexer.c is
updated (perhaps because generating lexer.c has other side effects). The rule also
works to ensure that a prerequisite is always updated before the target is updated.
(Notice the bidirectional nature of rules. In the “forward” direction the rule says that
if the lexer.c has been updated, perform the action to update vpath.o. In the “back-
ward” direction, the rule says that if we need to make or use vpath.o ensure that
lexer.c is up to date first.) This rule might be placed near the rules for managing
lexer.c so developers are reminded of this subtle relationship. Later, the compilation
rule for vpath.o is placed among other compilation rules. The command for this rule
uses three make variables. You’ll be seeing a lot of these, but for now you just need to
know that a variable is either a dollar sign followed by a single character or a dollar
sign followed by a word in parentheses. (I will explain more later in this chapter and

Explicit Rules | 11

a lot more in Chapter 3.) Finally, the .0/.h dependencies are included in the makefile
from a separate file managed by an external program.

Wildcards

A makefile often contains long lists of files. To simplify this process make supports
wildcards (also known as globbing). make’s wildcards are identical to the Bourne
shell’s: ~, *, 2, [...], and [*...]. For instance, *.* expands to all the files containing
a period. A question mark represents any single character, and [...] represents a
character class. To select the “opposite” (negated) character class use [*...].

In addition, the tilde (~) character can be used to represent the current user’s home
directory. A tilde followed by a user name represents that user’s home directory.

Wildcards are automatically expanded by make whenever a wildcard appears in a tar-
get, prerequisite, or command script context. In other contexts, wildcards can be
expanded explicitly by calling a function. Wildcards can be very useful for creating
more adaptable makefiles. For instance, instead of listing all the files in a program
explicitly, you can use wildcards:”
prog: *.c

$(CC) -0 %@ $"
It is important to be careful with wildcards, however. It is easy to misuse them as the
following example shows:

*.0: constants.h

The intent is clear: all object files depend on the header file constants.h, but consider
how this expands on a clean directory without any object files:

: constants.h

This is a legal make expression and will not produce an error by itself, but it will also
not provide the dependency the user wants. The proper way to implement this rule is
to perform a wildcard on the source files (since they are always present) and trans-
form that into a list of object files. We will cover this technique when we discuss make
functions in Chapter 4.

Finally, it is worth noting that wildcard expansion is performed by make when the
pattern appears as a target or prerequisite. However, when the pattern appears in a
command, the expansion is performed by the subshell. This can occasionally be
important because make will expand the wildcards immediately upon reading the
makefile, but the shell will expand the wildcards in commands much later when
the command is executed. When a lot of complex file manipulation is being done,
the two wildcard expansions can be quite different.

* In more controlled environments using wildcards to select the files in a program is considered bad practice
because a rogue source file might be accidentally linked into a program.

12 | (Chapter2: Rules

Phony Targets

Until now all targets and prerequisites have been files to be created or updated. This
is typically the case, but it is often useful for a target to be just a label representing a
command script. For instance, earlier we noted that a standard first target in many
makefiles is called all. Targets that do not represent files are known as phony tar-
gets. Another standard phony target is clean:
clean:
m -f *.0 lexer.c

Normally, phony targets will always be executed because the commands associated
with the rule do not create the target name.

It is important to note that make cannot distinguish between a file target and phony
target. If by chance the name of a phony target exists as a file, make will associate the
file with the phony target name in its dependency graph. If, for example, the file
clean happened to be created running make clean would yield the confusing message:
$ make clean
make: “clean' is up to date.
Since most phony targets do not have prerequisites, the clean target would always be
considered up to date and would never execute.

To avoid this problem, GNU make includes a special target, .PHONY, to tell make that a
target is not a real file. Any target can be declared phony by including it as a prereq-
uisite of . PHONY:

.PHONY: clean

clean:

m -f *.0 lexer.c

Now make will always execute the commands associated with clean even if a file
named clean exists. In addition to marking a target as always out of date, specifying
that a target is phony tells make that this file does not follow the normal rules for
making a target file from a source file. Therefore, make can optimize its normal rule
search to improve performance.

It rarely makes sense to use a phony target as a prerequisite of a real file since the
phony is always out of date and will always cause the target file to be remade. How-
ever, it is often useful to give phony targets prerequisites. For instance, the all target
is usually given the list of programs to be built:

.PHONY: all

all: bash bashbug
Here the all target creates the bash shell program and the bashbug error reporting
tool.

Phony targets can also be thought of as shell scripts embedded in a makefile. Making
a phony target a prerequisite of another target will invoke the phony target script

ExplicitRules | 13

before making the actual target. Suppose we are tight on disk space and before exe-
cuting a disk-intensive task we want to display available disk space. We could write:
.PHONY: make-documentation
make-documentation:

df -k . | awk 'NR == 2 { printf("%d available\n", $$4) }'
Jjavadoc ...

The problem here is that we may end up specifying the df and awk commands many
times under different targets, which is a maintenance problem since we’ll have to
change every instance if we encounter a df on another system with a different for-
mat. Instead, we can place the df line in its own phony target:

.PHONY: make-documentation

make-documentation: df
Jjavadoc ...

.PHONY: df
df:
df -k . | awk 'NR == 2 { printf("%d available\n", $$4) }'

We can cause make to invoke our df target before generating the documentation by

making df a prerequisite of make-documentation. This works well because make-
documentation is also a phony target. Now I can easily reuse df in other targets.

There are a number of other good uses for phony targets.

The output of make can be confusing to read and debug. There are several reasons for
this: makefiles are written top-down but the commands are executed by make bot-
tom-up; also, there is no indication which rule is currently being evaluated. The out-
put of make can be made much easier to read if major targets are commented in the
make output. Phony targets are a useful way to accomplish this. Here is an example
taken from the bash makefile:

$(Program): build msg $(OBJECTS) $(BUILTINS DEP) $(LIBDEP)
$(RM) $@
$(CC) $(LDFLAGS) -0 $(Program) $(OBIECTS) $(LIBS)
1s -1 $(Program)
size $(Program)

.PHONY: build msg
build_msg:
@rintf "#\n# Building $(Program)\n#\n"

Because the printf is in a phony target, the message is printed immediately before
any prerequisites are updated. If the build message were instead placed as the first
command of the $(Program) command script, then it would be executed after all
compilation and dependency generation. It is important to note that because phony
targets are always out of date, the phony build_msg target causes $(Program) to be
regenerated even when it is not out of date. In this case, it seems a reasonable choice
since most of the computation is performed while compiling the object files so only
the final link will always be performed.

14 | Chapter2: Rules

Phony targets can also be used to improve the “user interface” of a makefile. Often
targets are complex strings containing directory path elements, additional filename
components (such as version numbers) and standard suffixes. This can make specify-
ing a target filename on the command line a challenge. The problem can be avoided
by adding a simple phony target whose prerequisite is the actual target file.

By convention there are a set of more or less standard phony targets that many
makefiles include. Table 2-1 lists these standard targets.

Table 2-1. Standard phony targets

Target Function

all Perform all tasks to build the application

install (reate an installation of the application from the compiled binaries

clean Delete the binary files generated from sources

distclean Delete all the generated files that were not in the original source distribution
TAGS (reate a tags table for use by editors

info Create GNU info files from their Texinfo sources

check Run any tests associated with this application

The target TAGS is not really a phony since the output of the ctags and etags pro-
grams is a file named TAGS. It is included here because it is the only standard non-
phony target we know of.

Empty Targets

Empty targets are similar to phony targets in that the target itself is used as a device
to leverage the capabilities of make. Phony targets are always out of date, so they
always execute and they always cause their dependent (the target associated with the
prerequisite) to be remade. But suppose we have some command, with no output
file, that needs to be performed only occasionally and we don’t want our dependents
updated? For this, we can make a rule whose target is an empty file (sometimes
referred to as a cookie):

prog: size prog.o
$(CC) $(LDFLAGS) -o $@ $"

size: prog.o
size $”
touch size
Notice that the size rule uses touch to create an empty file named size after it com-
pletes. This empty file is used for its timestamp so that make will execute the size rule
only when prog.o has been updated. Furthermore, the size prerequisite to prog will
not force an update of prog unless its object file is also newer.

ExplicitRules | 15

Empty files are particularly useful when combined with the automatic variable $?2.
We discuss automatic variables in the section “Automatic Variables,” but a preview
of this variable won’t hurt. Within the command script part of a rule, make defines
the variable $? to be the set of prerequisites that are newer than the target. Here is
arule to print all the files that have changed since the last time make print was
executed:
print: *.[hc]

lpr $?

touch $@
Generally, empty files can be used to mark the last time a particular event has taken
place.

Variables

Let’s look at some of the variables we have been using in our examples. The simplest
ones have the syntax:

$(variable-name)

This indicates that we want to expand the variable whose name is variable-name.
Variables can contain almost any text, and variable names can contain most charac-
ters including punctuation. The variable containing the C compile command is
COMPILE.c, for example. In general, a variable name must be surrounded by $() to be
recognized by make. As a special case, a single character variable name does not
require the parentheses.

A makefile will typically define many variables, but there are also many special vari-
ables defined automatically by make. Some can be set by the user to control make’s
behavior while others are set by make to communicate with the user’s makefile.

Automatic Variables

Automatic variables are set by make after a rule is matched. They provide access to
elements from the target and prerequisite lists so you don’t have to explicitly specify
any filenames. They are very useful for avoiding code duplication, but are critical
when defining more general pattern rules (discussed later).

There are six “core” automatic variables:

$@ The filename representing the target.
$% The filename element of an archive member specification.
$< The filename of the first prerequisite.

$? The names of all prerequisites that are newer than the target, separated by
spaces.

16 | Chapter2: Rules

$" The filenames of all the prerequisites, separated by spaces. This list has dupli-
cate filenames removed since for most uses, such as compiling, copying, etc.,
duplicates are not wanted.

$+ Similar to $7, this is the names of all the prerequisites separated by spaces,
except that $+ includes duplicates. This variable was created for specific situa-
tions such as arguments to linkers where duplicate values have meaning.

$* The stem of the target filename. A stem is typically a filename without its suffix.
(We'll discuss how stems are computed later in the section “Pattern Rules.”) Its
use outside of pattern rules is discouraged.

In addition, each of the above variables has two variants for compatibility with other
makes. One variant returns only the directory portion of the value. This is indicated
by appending a “D” to the symbol, $(@D), $(<D), etc. The other variant returns only
the file portion of the value. This is indicated by appending an F to the symbol,
$(@F), $(<F), etc. Note that these variant names are more than one character long
and so must be enclosed in parentheses. GNU make provides a more readable alterna-
tive with the dir and notdir functions. We will discuss functions in Chapter 4.

Automatic variables are set by make after a rule has been matched with its target and
prerequisites so the variables are only available in the command script of a rule.

Here is our makefile with explicit filenames replaced by the appropriate automatic
variable.

count_words: count words.o counter.o lexer.o -1fl
gce $" -0 %@

count_words.o: count_words.c
gcc - $<

counter.o: counter.c
gcc - $<

lexer.o: lexer.c
gcc - $<

lexer.c: lexer.l
flex -t $< > $@

Finding Files with VPATH and vpath

Our examples so far have been simple enough that the makefile and sources all lived
in a single directory. Real world programs are more complex (when’s the last time
you worked on a single directory project?). Let’s refactor our example and create a
more realistic file layout. We can modify our word counting program by refactoring
main into a function called counter.

#include <lexer.h>
#include <counter.h>

Finding Files with VPATHand vpath | 17

void counter(int counts[4])

while (yylex())

)

counts[0] = fee_count;
counts[1] = fie_count;
counts[2] = foe_count;
counts[3] = fum_count;

}

A reusable library function should have a declaration in a header file, so let’s create
counter.h containing our declaration:

#ifdef COUNTER H_

#idefine COUNTER H_

extern void
counter(int counts[4]);

#endif
We can also place the declarations for our lexer.l symbols in lexer.h:

#ifndef LEXER H_
#define LEXER H_

extern int fee count, fie count, foe count, fum count;
extern int yylex(void);

#endif

In a traditional source tree layout the header files are placed in an include directory
and the source is placed in a src directory. We'll do this and put our makefile in the
parent directory. Our example program now has the layout shown in Figure 2-1.

~—

—— makefile
iy
include

|: counter.h
lexer.h

I
sIc

count_words.c
counter.c
lexer.l

Figure 2-1. Example source tree layout

18 | Chapter2: Rules

Since our source files now include header files, these new dependencies should be
recorded in our makefile so that when a header file is modified, the corresponding
object file will be updated.

count_words: count_words.o counter.o lexer.o -1f1
gce $" -0 %@

count_words.o: count_words.c include/counter.h
gcc -c $<

counter.o: counter.c include/counter.h include/lexer.h
gcc -c $<

lexer.o: lexer.c include/lexer.h
gcc -c $<

lexer.c: lexer.l
flex -t $< > $@

Now when we run our makefile, we get:

make
iake: **+* No rule to make target "count_words.c', needed by “count words.o'. Stop.

Oops, what happened? The makefile is trying to update count_words.c, but that’s a
source file! Let’s “play make.” Our first prerequisite is count_words.o. We see the file
is missing and look for a rule to create it. The explicit rule for creating count_words.o
references count_words.c. But why can’t make find the source file? Because the source
file is in the src directory not the current directory. Unless you direct it otherwise,
make will look in the current directory for its targets and prerequisites. How do we
get make to look in the src directory for source files? Or, more generally, how do we
tell make where our source code is?

You can tell make to look in different directories for its source files using the VPATH
and vpath features. To fix our immediate problem, we can add a VPATH assignment to
the makefile:

VPATH = src

This indicates that make should look in the directory src if the files it wants are not in
the current directory. Now when we run our makefile, we get:

$ make

gcc -c src/count_words.c -o count_words.o

src/count_words.c:2:21: counter.h: No such file or directory

make: *** [count words.o] Error 1
Notice that make now successfully tries to compile the first file, filling in correctly the
relative path to the source. This is another reason to use automatic variables: make
cannot use the appropriate path to the source if you hardcode the filename. Unfortu-
nately, the compilation dies because gcc can’t find the include file. We can fix this

Finding Files with VPATHand vpath | 19

latest problem by “customizing” the implicit compilation rule with the appropriate -1
option:

CPPFLAGS = -I include
Now the build succeeds:

$ make

gcc -I include -c src/count_words.c -o count_words.o

gcc -I include -c src/counter.c -o counter.o

flex -t src/lexer.l > lexer.c

gcc -I include -c lexer.c -o lexer.o

gcc count_words.o counter.o lexer.o /lib/libfl.a -o count_words
The VPATH variable consists of a list of directories to search when make needs a file.
The list will be searched for targets as well as prerequisites, but not for files men-
tioned in command scripts. The list of directories can be separated by spaces or
colons on Unix and separated by spaces or semicolons on Windows. 1 prefer to use
spaces since that works on all systems and we can avoid the whole colon/semicolon
imbroglio. Also, the directories are easier to read when separated by spaces.

The VPATH variable is good because it solved our searching problem above, but it is a
rather large hammer. make will search each directory for any file it needs. If a file of
the same name exists in multiple places in the VPATH list, make grabs the first one.
Sometimes this can be a problem.

The vpath directive is a more precise way to achieve our goals. The syntax of this
directive is:

vpath pattern directory-list
So our previous VPATH use can be rewritten as:

vpath %.c src

vpath %.h include
Now we’ve told make that it should search for .c files in the src directory and we’ve
also added a line to search for .h files in the include directory (so we can remove the
include/ from our header file prerequisites). In more complex applications, this con-
trol can save a lot of headache and debugging time.

Here we used vpath to handle the problem of finding source that is distributed
among several directories. There is a related but different problem of how to build an
application so that the object files are written into a “binary tree” while the source
files live in a separate “source tree.” Proper use of vpath can also help to solve this
new problem, but the task quickly becomes complex and vpath alone is not suffi-
cient. We’ll discuss this problem in detail in later sections.

20 | Chapter2: Rules

Pattern Rules

The makefile examples we’ve been looking at are a bit verbose. For a small program
of a dozen files or less we may not care, but for programs with hundreds or thou-
sands of files, specifying each target, prerequisite, and command script becomes
unworkable. Furthermore, the commands themselves represent duplicate code in our
makefile. If the commands contain a bug or ever change, we would have to update all
these rules. This can be a major maintenance problem and source of bugs.

Many programs that read one file type and output another conform to standard con-
ventions. For instance, all C compilers assume that files that have a .c suffix contain
C source code and that the object filename can be derived by replacing the .c suffix
with .o (or .obj for some Windows compilers). In the previous chapter, we noticed
that flex input files use the .I suffix and that flex generates .c files.

These conventions allow make to simplify rule creation by recognizing common file-
name patterns and providing built-in rules for processing them. For example, by
using these built-in rules our 17-line makefile can be reduced to:

VPATH = src include
CPPFLAGS = -I include

count_words: counter.o lexer.o -1f1

count_words.o: counter.h

counter.o: counter.h lexer.h

lexer.o: lexer.h
The built-in rules are all instances of pattern rules. A pattern rule looks like the nor-
mal rules you have already seen except the stem of the file (the portion before the suf-
fix) is represented by a % character. This makefile works because of three built-in
rules. The first specifies how to compile a .o file from a .c file:

%.0: %.C
$(COMPILE.c) $(OUTPUT_OPTION) $<

The second specifies how to make a .c file from a .[file:

%.ct %1
@5(RM) $@
$(LEX.1) $< > %@

Finally, there is a special rule to generate a file with no suffix (always an executable)
from a .c file:

% %.C
$(LINK.c) $* $(LOADLIBES) $(LDLIBS) -0 $@

We'll go into the details of this syntax in a bit, but first let’s go over make’s output
carefully and see how make applies these built-in rules.

When we run make on our two-line makefile, the output is:

$ make
gcc -I include -c -o count_words.o src/count words.c

PatternRules | 21

gcc -I include -c -o counter.o src/counter.c

flex -t src/lexer.l > lexer.c

gcc -I include -c -o lexer.o lexer.c

gcc count_words.o counter.o lexer.o /lib/libfl.a -o count_words

1m lexer.c
First, make reads the makefile and sets the default goal to count_words since there are
no command-line targets specified. Looking at the default goal, make identifies four
prerequisites: count_words.o (this prerequisite is missing from the makefile, but is
provided by the implicit rule), counter.o, lexer.o, and -1fl. It then tries to update
each prerequisite in turn.

When make examines the first prerequisite, count_words.o, make finds no explicit rule
for it but discovers the implicit rule. Looking in the local directory, make cannot find
the source, so it begins searching the VPATH and finds a matching source file in src.
Since src/count_words.c has no prerequisites, make is free to update count_words.o so
it runs the commands for the implicit rule. counter.o is similar. When make considers
lexer.o, it cannot find a corresponding source file (even in src) so it assumes this
(nonexistent source) is an intermediate file and looks for a way to make lexer.c from
some other source file. It discovers a rule to create a .c file from a .[file and notices
that lexer.l exists. There is no action required to update lexer.l, so it moves on to the
command for updating lexer.c, which yields the flex command line. Next make
updates the object file from the C source. Using sequences of rules like this to update
a target is called rule chaining.

Next, make examines the library specification -1fl. It searches the standard library
directories for the system and discovers /lib/libfl.a.

Now make has all the prerequisites for updating count_words, so it executes the final
gcc command. Lastly, make realizes it created an intermediate file that is not neces-
sary to keep so it cleans it up.

As you can see, using rules in makefiles allows you to omit a lot of detail. Rules can
have complex interactions that yield very powerful behaviors. In particular, having a
built-in database of common rules makes many types of makefile specifications very
simple.

The built-in rules can be customized by changing the values of the variables in the
command scripts. A typical rule has a host of variables, beginning with the program
to execute, and including variables to set major groupings of command-line options,
such as the output file, optimization, debugging, etc. You can look at make’s default
set of rules (and variables) by running make --print-data-base.

The Patterns

The percent character in a pattern rule is roughly equivalent to * in a Unix shell. It
represents any number of any characters. The percent character can be placed

22 | Chapter2: Rules

anywhere within the pattern but can occur only once. Here are some valid uses of
percent:

%,V

s%.0

wrapper %
Characters other than percent match literally within a filename. A pattern can con-
tain a prefix or a suffix or both. When make searches for a pattern rule to apply, it
first looks for a matching pattern rule target. The pattern rule target must start with
the prefix and end with the suffix (if they exist). If a match is found, the characters
between the prefix and suffix are taken as the stem of the name. Next make looks at
the prerequisites of the pattern rule by substituting the stem into the prerequisite
pattern. If the resulting filename exists or can be made by applying another rule,
a match is made and the rule is applied. The stem word must contain at least one
character.

It is also possible to have a pattern containing only a percent character. The most
common use of this pattern is to build a Unix executable program. For instance, here
are several pattern rules GNU make includes for building programs:

%: %.mod
$(COMPILE.mod) -0 $@ -e $@ $°

%: %.cpp
$(LINK.cpp) $”" $(LOADLIBES) $(LDLIBS) -0 $@

%: %.sh
cat $< >3%@
chmod a+x $@
These patterns will be used to generate an executable from a Modula source file, a
preprocessed C source file, and a Bourne shell script, respectively. We will see many
more implicit rules in the section “The Implicit Rules Database.”

Static Pattern Rules

A static pattern rule is one that applies only to a specific list of targets.

$(OBJECTS): %.0: %c
$(CC) -c $(CFLAGS) $< -0 $@
The only difference between this rule and an ordinary pattern rule is the initial
$(0BIECTS): specification. This limits the rule to the files listed in the $(0BIJECTS) vari-
able.

This is very similar to a pattern rule. Each object file in $(0BJECTS) is matched against
the pattern %.0 and its stem is extracted. The stem is then substituted into the pat-
tern %.c to yield the target’s prerequisite. If the target pattern does not exist, make
issues a warning.

PatternRules | 23

Use static pattern rules whenever it is easier to list the target files explicitly than to
identify them by a suffix or other pattern.

Suffix Rules

Suffix rules are the original (and obsolete) way of defining implicit rules. Because
other versions of make may not support GNU make’s pattern rule syntax, you will still
see suffix rules in makefiles intended for a wide distribution so it is important to be
able to read and understand the syntax. So, although compiling GNU make for the
target system is the preferred method for makefile portability, you may still need to
write suffix rules in rare circumstances.

Suffix rules consist of one or two suffixes concatenated and used as a target:

.C.0:
$(COMPILE.c) $(OUTPUT OPTION) $<

This is a little confusing because the prerequisite suffix comes first and the target suf-
fix second. This rule matches the same set of targets and prerequisites as:

%.0: %.C
$(COMPILE.c) $(OUTPUT OPTION) $<

The suffix rule forms the stem of the file by removing the target suffix. It forms the
prerequisite by replacing the target suffix with the prerequisite suffix. The suffix rule
is recognized by make only if the two suffixes are in a list of known suffixes.

The above suffix rule is known as a double-suffix rule since it contains two suffixes.
There are also single-suffix rules. As you might imagine a single-suffix rule contains
only one suffix, the suffix of the source file. These rules are used to create executa-
bles since Unix executables do not have a suffix:

.p:
$(LINK.p) $~ $(LOADLIBES) $(LDLIBS) -0 $@

This rule produces an executable image from a Pascal source file. This is completely
analogous to the pattern rule:

% %.p
$(LINK.p) $* $(LOADLIBES) $(LDLIBS) -0 $@

The known suffix list is the strangest part of the syntax. A special target, .SUFFIXES,
is used to set the list of known suffixes. Here is the first part of the default . SUFFIXES
definition:
.SUFFIXES: .out .a .1n .0 .c .cc .C .cpp .p .T .F .r .y .1
You can add your own suffixes by simply adding a . SUFFIXES rule to your makefile:
.SUFFIXES: .pdf .fo .html .xml
If you want to delete all the known suffixes (because they are interfering with your
special suffixes) simply specify no prerequisites:

.SUFFIXES:

24 | Chapter2: Rules

You can also use the command-line option --no-builtin-rules (or -1).

We will not use this old syntax in the rest of this book because GNU make’s pattern
rules are clearer and more general.

The Implicit Rules Database

GNU make 3.80 has about 90 built-in implicit rules. An implicit rule is either a pat-
tern rule or a suffix rule (which we will discuss briefly later). There are built-in pat-
tern rules for C, C++, Pascal, FORTRAN, ratfor, Modula, Texinfo, TgX (including
Tangle and Weave), Emacs Lisp, RCS, and SCCS. In addition, there are rules for sup-
porting programs for these languages, such as cpp, as, yacc, lex, tangle, weave and
dvi tools.

If you are using any of these tools, you’ll probably find most of what you need in the
built-in rules. If you’re using some unsupported languages such as Java or XML, you
will have to write rules of your own. But don’t worry, you typically need only a few
rules to support a language and they are quite easy to write.

To examine the rules database built into make, use the --print-data-base command-
line option (-p for short). This will generate about a thousand lines of output. After
version and copyright information, make prints its variable definitions each one pre-
ceded by a comment indicating the “origin” of the definition. For instance, variables
can be environment variables, default values, automatic variables, etc. After the vari-
ables, come the rules. The actual format used by GNU make is:

% %.C

commands to execute (built-in):

$(LINK.C) $" $(LOADLIBES) $(LDLIBS) -0 $@

For rules defined by the makefile, the comment will include the file and line where
the rule was defined:

%.html: %.xml

commands to execute (from “Makefile', line 168):
$(XMLTO) $(XMLTO FLAGS) html-nochunks $<

Working with Implicit Rules

The built-in implicit rules are applied whenever a target is being considered and there
is no explicit rule to update it. So using an implicit rule is easy: simply do not specify
a command script when adding your target to the makefile. This causes make to
search its built-in database to satisfy the target. Usually this does just what you want,
but in rare cases your development environment can cause problems. For instance,
suppose you have a mixed language environment consisting of Lisp and C source
code. If the file editor.l and editor.c both exist in the same directory (say one is a low-
level implementation accessed by the other) make will believe that the Lisp file is
really a flex file (recall flex files use the .l suffix) and that the C source is the output

The Implicit Rules Database | 25

of the flex command. If editor.o is a target and editor.l is newer than editor.c, make

will attempt to “update” the C file with the output of flex overwriting your source
code. Gack.

To work around this particular problem you can delete the two rules concerning
flex from the built-in rule base like this:

3R

.00 %.1
cr %1

3R

A pattern with no command script will remove the rule from make’s database. In
practice, situations such as this are very rare. However, it is important to remember
the built-in rules database contains rules that will interact with your own makefiles in
ways you may not have anticipated.

We have seen several examples of how make will “chain” rules together while trying
to update a target. This can lead to some complexity, which we’ll examine here.
When make considers how to update a target, it searches the implicit rules for a tar-
get pattern that matches the target in hand. For each target pattern that matches the
target file, make will look for an existing matching prerequisite. That is, after match-
ing the target pattern, make immediately looks for the prerequisite “source” file. If
the prerequisite is found, the rule is used. For some target patterns, there are many
possible source files. For instance, a .o file can be made from .c, .cc, .cpp, .p, .f, .7, .s,
and .mod files. But what if the source is not found after searching all possible rules?
In this case, make will search the rules again, this time assuming that the matching
source file should be considered as a new target for updating. By performing this
search recursively, make can find a “chain” of rules that allows updating a target. We
saw this in our lexer.o example. make was able to update the lexer.o target from lexer.l
even though the intermediate .c file was missing by invoking the .[to .c rule, then the
.c to .o rule.

One of the more impressive sequences that make can produce automatically from its
database is shown here. First, we setup our experiment by creating an empty yacc
source file and registering with RCS using ci (that is, we want a version-controlled
yacc source file):

$ touch foo.y

$ ci foo.y
foo.y,v <-- foo.y

initial revision: 1.1

done
Now, we ask make how it would create the executable foo. The --just-print (or -n)
option tells make to report what actions it would perform without actually running
them. Notice that we have no makefile and no “source” code, only an RCS file:

$ make -n foo

co foo.y,v foo.y
foo.y,v --> foo.y

26 | Chapter2: Rules

revision 1.1

done

bison -y foo.y

mv -f y.tab.c foo.c

gcc -c -0 foo.o foo.c

gcc foo.o -0 foo

1m foo.c foo.o foo.y
Following the chain of implicit rules and prerequisites, make determined it could cre-
ate the executable, foo, if it had the object file foo.0. It could create foo.o if it had the
C source file foo.c. It could create foo.c if it had the yacc source file foo.y. Finally, it
realized it could create foo.y by checking out the file from the RCS file foo.y,v, which
it actually has. Once make has formulated this plan, it executes it by checking out foo.y
with co, transforming it into foo.c with bison, compiling it into foo.o with gcc, and
linking it to form foo again with gcc. All this from the implicit rules database. Pretty
cool.

The files generated by chaining rules are called intermediate files and are treated spe-
cially by make. First, since intermediate files do not occur in targets (otherwise they
would not be intermediate), make will never simply update an intermediate file. Sec-
ond, because make creates intermediate files itself as a side effect of updating a target,
make will delete the intermediates before exiting. You can see this in the last line of
the example.

Rule Structure

The built-in rules have a standard structure intended to make them easily customiz-
able. Let’s go over the structure briefly then talk about customization. Here is the (by
now familiar) rule for updating an object file from its C source:

%.0: %.c

$(COMPILE.c) $(OUTPUT_OPTION) $<

The customization of this rule is controlled entirely by the set of variables it uses. We
see two variables here, but COMPILE.c in particular is defined in terms of several other
variables:

COMPILE.c = $(CC) $(CFLAGS) $(CPPFLAGS) $(TARGET ARCH) -c

CC = gcc

OUTPUT_OPTION = -0 $@
The C compiler itself can be changed by altering the value of the CC variable. The
other variables are used for setting compilation options (CFLAGS), preprocessor
options (CPPFLAGS), and architecture-specific options (TARGET_ARCH).

The variables in a built-in rule are intended to make customizing the rule as easy as
possible. For that reason, it is important to be very careful when setting these vari-
ables in your makefile. If you set these variables in a naive way, you destroy the end
user’s ability to customize them. For instance, given this assignment in a makefile:

CPPFLAGS = -I project/include

The Implicit Rules Database | 27

If the user wanted to add a CPP define to the command line, they would normally
invoke make like:

$ make CPPFLAGS=-DDEBUG

But in so doing they would accidentally remove the -I option that is (presumably)
required for compiling. Variables set on the command line override all other assign-
ments to the variable. (See the section “Where Variables Come From” in Chapter 3
for more details on command-line assignments). So, setting CPPFLAGS inappropriately
in the makefile “broke” a customization feature that most users would expect to
work. Instead of using simple assignment, consider redefining the compilation vari-
able to include your own variables:

COMPILE.c = $(CC) $(CFLAGS) $(INCLUDES) $(CPPFLAGS) $(TARGET ARCH) -c

INCLUDES = -I project/include
Or you can use append-style assignment, which is discussed in the section “Other
Types of Assignment” in Chapter 3.

Implicit Rules for Source Control

make knows about two source code control systems, RCS and SCCS, and supports
their use with built-in implicit rules. Unfortunately, it seems the state of the art in
source code control and modern software engineering have left make behind. T've
never found a use for the source control support in make, nor have I seen it used in
other production software. I do not recommend the use of this feature. There are a
number of reasons for this.

First, the source control tools supported by make, RCS and SCCS, although valuable
and venerable tools in their day, have largely been supplanted by CVS, the Concur-
rent Version System, or proprietary tools. In fact, CVS uses RCS to manage individ-
ual files internally. However, using RCS directly proved to be a considerable problem
when a project spanned more than one directory or more than one developer. CVS,
in particular, was implemented to fill the gaps in RCS’s functionality in precisely
these areas. Support for CVS has never been added to make, which is probably a good
thing.’

It is now well recognized that the life cycle of software becomes complex. Applica-
tions rarely move smoothly from one release to the next. More typically, one or more
distinct releases of an application are being used in the field (and require bug fix sup-
port), while one or more versions are in active development. CVS provides powerful
features to help manage these parallel versions of the software. But it also means that
a developer must be very aware of the specific version of the code she is working on.
Having the makefile automatically check out source during a compilation begs the

* CVS s, in turn, becoming supplanted by newer tools. While it is currently the most ubiquitous source con-
trol system, subversion (http://subversion.tigris.org) looks to be the new wave.

28 | Chapter2: Rules

question of what source is being checked out and whether the newly checked out
source is compatible with the source already existing in the developer’s working
directories. In many production environments, developers are working on three or
more distinct versions of the same application in a single day. Keeping this complex-
ity in check is hard enough without having software quietly updating your source
tree for you.

Also, one of the more powerful features of CVS is that it allows access to remote
repositories. In most production environments, the CVS repository (the database of
controlled files) is not located on the developer’s own machine, but on a server.
Although network access is now quite fast (particularly on a local area network) it is
not a good idea to have make probing the network server in search of source files. The
performance impact would be disastrous.

So, although it is possible to use the built-in implicit rules to interface more or less
cleanly with RCS and SCCS, there are no rules to access CVS for gathering source
files or makefile. Nor do I think it makes much sense to do so. On the other hand, it
is quite reasonable to use CVS in makefiles. For instance, to ensure that the current
source is properly checked in, that the release number information is managed prop-
erly, or that test results are correct. These are uses of CVS by makefile authors rather
than issues of CVS integration with make.

A Simple Help Command

Large makefiles can have many targets that are difficult for users to remember. One
way to reduce this problem is to make the default target a brief help command.
However, maintaining the help text by hand is always a problem. To avoid this, you
can gather the available commands directly from make’s rules database. The follow-
ing target will present a sorted four column listing of the available make targets:

help - The default goal
.PHONY: help
help:
$(MAKE) --print-data-base --question
$(AWK) /A~ %][-A-Za-20-9]*:/
{ print substr($$1, 1, length($$1)-1) }' |
$(SORT) |
$(PR) --omit-pagination --width=80 --columns=4

P

The command script consists of a single pipeline. The make rule database is dumped
using the --print-data-base command. Using the --question option prevents make
from running any actual commands. The database is then passed through a simple
awk filter that grabs every line representing a target that does not begin with percent
or period (pattern rules and suffix rules, respectively) and discards extra information
on the line. Finally, the target list is sorted and printed in a simple four-column
listing.

The Implicit Rules Database | 29

Another approach to the same command (my first attempt), used the awk command
on the makefile itself. This required special handling for included makefiles (covered
in the section “The include Directive” in Chapter 3) and could not handle generated
rules at all. The version presented here handles all that automatically by allowing
make to process these elements and report the resulting rule set.

Special Targets

A special target is a built-in phony target used to change make’s default behavior. For
instance, .PHONY, a special target, which we’ve already seen, declares that its prereq-
uisite does not refer to an actual file and should always be considered out of date.
The .PHONY target is the most common special target you will see, but there are oth-
ers as well.

These special targets follow the syntax of normal targets, that is target:
prerequisite, but the target is not a file or even a normal phony. They are really
more like directives for modifying make’s internal algorithms.

There are twelve special targets. They fall into three categories: as we’ve just said
many are used to alter the behavior of make when updating a target, another set act
simply as global flags to make and ignore their targets, finally the .SUFFIXES special
target is used when specifying old-fashioned suffix rules (discussed in the section
“Suffix Rules” earlier in this chapter).

The most useful target modifiers (aside from .PHONY) are:

. INTERMEDIATE
Prerequisites of this special target are treated as intermediate files. If make creates
the file while updating another target, the file will be deleted automatically when
make exits. If the file already exists when make considers updating the file, the file
will not be deleted.

This can be very useful when building custom rule chains. For instance, most
Java tools accept Windows-like file lists. Creating rules to build the file lists and
marking their output files as intermediate allows make to clean up many tempo-
rary files.

. SECONDARY
Prerequisites of this special target are treated as intermediate files but are never
automatically deleted. The most common use of .SECONDARY is to mark object
files stored in libraries. Normally these object files will be deleted as soon as they
are added to an archive. Sometimes it is more convenient during development to
keep these object files, but still use the make support for updating archives.

.PRECIOUS
When make is interrupted during execution, it may delete the target file it is
updating if the file was modified since make started. This is so make doesn’t leave

30 | Chapter2: Rules

a partially constructed (possibly corrupt) file laying around in the build tree.
There are times when you don’t want this behavior, particularly if the file is large
and computationally expensive to create. If you mark the file as precious, make
will never delete the file if interrupted.

Use of .PRECIOUS is relatively rare, but when it is needed it is often a life saver.
Note that make will not perform an automatic delete if the commands of a rule
generate an error. It does so only when interrupted by a signal.

.DELETE_ON_ERROR
This is sort of the opposite of .PRECIOUS. Marking a target as .DELETE_ON_ERROR
says that make should delete the target if any of the commands associated with
the rule generates an error. make normally only deletes the target if it is inter-
rupted by a signal.

The other special targets will be covered later when their use is more relevant. We’ll
discuss .EXPORT_ALL_VARIABLES in Chapter 3 and the targets relating to parallel execu-
tion in Chapter 10.

Automatic Dependency Generation

When we refactored our word counting program to use header files, a thorny little
problem snuck up on us. We added the dependency between the object files and the
C header files to the makefile by hand. It was easy to do in this case, but in normal
programs (not toy examples) this can be tedious and error-prone. In fact, in most
programs it is virtually impossible because most header files include other header
files forming a complex tree. For instance, on my system, the single header file stdio.h
(the most commonly referenced header file in C) expands to include 15 other header
files. Resolving these relationships by hand is a hopeless task. But failing to recom-
pile files can lead to hours of debugging headaches or worse, bugs in the resulting
program. So what do we do?

Well, computers are pretty good at searching and pattern matching. Let’s use a pro-
gram to identify the relationships between files and maybe even have this program
write out these dependencies in makefile syntax. As you have probably guessed, such
a program already exists—at least for C/C++. There is a option to gcc and many
other C/C++ compilers that will read the source and write makefile dependencies.
For instance, here is how I found the dependencies for stdio.h:

$ echo "#include <stdio.h>" > stdio.c

$ gcc -M stdio.c

stdio.o: stdio.c /usr/include/stdio.h /usr/include/_ansi.h \
/usr/include/newlib.h /usr/include/sys/config.h \
/usr/include/machine/ieeefp.h /usr/include/cygwin/config.h \
/usr/1lib/gcc-1ib/i686-pc-cygwin/3.2/include/stddef.h \
/usr/1ib/gcc-1ib/i686-pc-cygwin/3.2/include/stdarg.h \
/usr/include/sys/reent.h /usr/include/sys/ types.h \
/usr/include/sys/types.h /usr/include/machine/types.h \

Automatic Dependency Generation | 31

/usr/include/sys/features.h /usr/include/cygwin/types.h \

/usr/include/sys/sysmacros.h /usr/include/stdint.h \

/usr/include/sys/stdio.h
“Fine.” I hear you cry, “Now I need to run gcc and use an editor to paste the results
of -M into my makefiles. What a pain.” And you’d be right if this was the whole
answer. There are two traditional methods for including automatically generated
dependencies into makefiles. The first and oldest is to add a line such as:

Automatically generated dependencies follow - Do Not Edit

to the end of the makefile and then write a shell script to update these generated
lines. This is certainly better than updating them by hand, but it’s also very ugly. The
second method is to add an include directive to the make program. By now most ver-
sions of make have the include directive and GNU make most certainly does.

So, the trick is to write a makefile target whose action runs gcc over all your source
with the -M option, saves the results in a dependency file, and then re-runs make
including the generated dependency file in the makefile so it can trigger the updates
we need. Before GNU make, this is exactly what was done and the rule looked like:

depend: count_words.c lexer.c counter.c
$(CC) -M $(CPPFLAGS) $~ > %@

include depend

Before running make to build the program, you would first execute make depend to
generate the dependencies. This was good as far as it went, but often people would
add or remove dependencies from their source without regenerating the depend file.
Then source wouldn’t get recompiled and the whole mess started again.

GNU make solved this last niggling problem with a cool feature and a simple algo-
rithm. First, the algorithm. If we generated each source file’s dependencies into its
own dependency file with, say, a .d suffix and added the .d file itself as a target to this
dependency rule, then make could know that the .d needed to be updated (along with
the object file) when the source file changed:

counter.o counter.d: src/counter.c include/counter.h include/lexer.h

Generating this rule can be accomplished with a pattern rule and a (fairly ugly) com-
mand script (this is taken directly from the GNU make manual):*

* This is an impressive little command script, but I think it requires some explanation. First, we use the C com-
piler with the -M option to create a temporary file containing the dependencies for this target. The temporary
filename is created from the target, $@, with a unique numeric suffix added, $$$$. In the shell, the variable $$
returns the process number of the currently running shell. Since process numbers are unique, this produces
a unique filename. We then use sed to add the .d file as a target to the rule. The sed expression consists of a
search part, \($*\)\.o[:]*, and a replacement part, \1.0 $@ :, separated by commas. The search expression
begins with the target stem, $*, enclosed in a regular expression (RE) group, \(\), followed by the file suffix,
\.o0. After the target filename, there come zero or more spaces or colons, [:]*. The replacement portion
restores the original target by referencing the first RE group and appending the suffix, \1.0, then adding the
dependency file target, $@.

32 | Chapter2: Rules

%.d: %.c

$(CC) -M $(CPPFLAGS) $< > $@.$$$5; \
sed "s,\($*\)\.o[:]*,\1.0 $@ : ,g' < $@.$$$$ > $@; \
m -f $@.$$$$

Now, for the cool feature. make will treat any file named in an include directive as a
target to be updated. So, when we mention the .d files we want to include, make will
automatically try to create these files as it reads the makefile. Here is our makefile
with the addition of automatic dependency generation:

VPATH = src include
CPPFLAGS = -I include

SOURCES = count_words.c \
lexer.c \
counter.c

count_words: counter.o lexer.o -1f1
count_words.o: counter.h

counter.o: counter.h lexer.h
lexer.o: lexer.h

include $(subst .c,.d,$(SOURCES))

%.d: %.c
$(CC) -M $(CPPFLAGS) $< > $@.$$$5; \
sed "s,\($*\)\.o[:]*,\1.0 $@ : ,g' < $@.$3%$ > $@; \
m -t $@.$$$%

The include directive should always be placed after the hand-written dependencies
so that the default goal is not hijacked by some dependency file. The include direc-
tive takes a list of files (whose names can include wildcards). Here we use a
make function, subst, to transform the list of source files into a list of dependency file-
names. (We'll discuss subst in detail in the section “String Functions” in Chapter 4.)
For now, just note that this use replaces the string .c with .d in each of the words in
$(SOURCES).

When we run this makefile with the --just-print option, we get:

$ make --just-print

Makefile:13: count words.d: No such file or directory
Makefile:13: lexer.d: No such file or directory

Makefile:13: counter.d: No such file or directory

gcc -M -I include src/counter.c > counter.d.$$; \
sed 's,\(counter\)\.o[:]*,\1.0 counter.d : ,g' < counter.d.$$ >
counter.d; \

m -f counter.d.$$

flex -t src/lexer.l > lexer.c

gcc -M -I include lexer.c > lexer.d.$$; \
sed 's,\(lexer\)\.o[:]*,\1.0 lexer.d : ,g' < lexer.d.$$ > lexer.d;
\

m -f lexer.d.$$
gcc -M -I include src/count words.c > count words.d.$$;

Automatic Dependency Generation | 33

\
sed 's,\(count_words\)\.o[:]*,\1.0 count words.d : ,g' < count words.d.

$$

count_words.d; \

m -f count _words.d.$$

Im lexer.c

gcc -I include -c -o count_words.o src/count_words.c

gcc -I include -c -o counter.o src/counter.c

gcc -I include -c -o lexer.o lexer.c

gcc count_words.o counter.o lexer.o /lib/libfl.a -o count_words
At first the response by make is a little alarming—it looks like a make error message.
But not to worry, this is just a warning. make looks for the include files and doesn’t
find them, so it issues the No such file or directory warning before searching for a
rule to create these files. This warning can be suppressed by preceding the include
directive with a hyphen (-). The lines following the warnings show make invoking gcc
with the -M option, then running the sed command. Notice that make must invoke
flex to create lexer.c, then it deletes the temporary lexer.c before beginning to satisfy
the default goal.

This gives you a taste of automatic dependency generation. There’s lots more to say,
such as how do you generate dependencies for other languages or build tree layouts.
We'll return to this topic in more depth in Part IT of this book.

Managing Libraries

An archive library, usually called simply a library or archive, is a special type of file
containing other files called members. Archives are used to group related object files
into more manageable units. For example, the C standard library libc.a contains low-
level C functions. Libraries are very common so make has special support for creat-
ing, maintaining, and referencing them. Archives are created and modified with the
ar program.

Let’s look at an example. We can modify our word counting program by refactoring
the reusable parts into a reusable library. Our library will consist of the two files
counter.o and lexer.o. The ar command to create this library is:

$ ar rv libcounter.a counter.o lexer.o

a - counter.o

a - lexer.o
The options rv indicate that we want to replace members of the archive with the
object files listed and that ar should verbosely echo its actions. We can use the
replace option even though the archive doesn’t exist. The first argument after the
options is the archive name followed by a list of object files. (Some versions of ar also
require the “c” option, for create, if the archive does not exist but GNU ar does not.)

34 | Chapter2: Rules

The two lines following the ar command are its verbose output indicating the object
files were added.

Using the replace option to ar allows us to create or update an archive incrementally:

$ ar rv libcounter.a counter.o
r - counter.o

$ ar rv libcounter.a lexer.o
r - lexer.o

«_»

Here ar echoed each action with “r” to indicate the file was replaced in the archive.

A library can be linked into an executable in several ways. The most straightforward
way is to simply list the library file on the command line. The compiler or linker will
use the file suffix to determine the type of a particular file on the command line and
do the Right Thing™:

cc count_words.o libcounter.a /1ib/libfl.a -o count words

Here cc will recognize the two files libcounter.a and /lib/libfl.a as libraries and search
them for undefined symbols. The other way to reference libraries on the command
line is with the -1 option:

cc count_words.o -lcounter -1fl -o count_words

As you can see, with this option you omit the prefix and suffix of the library filename.
The -1 option makes the command line more compact and easier to read, but it has a
far more useful function. When cc sees the -1 option it searches for the library in the
system’s standard library directories. This relieves the programmer from having to
know the precise location of a library and makes the command line more portable.
Also, on systems that support shared libraries (libraries with the extension .so on Unix
systems), the linker will search for a shared library first, before searching for an
archive library. This allows programs to benefit from shared libraries without specifi-
cally requiring them. This is the default behavior of GNU’s linker/compiler. Older
linker/compilers may not perform this optimization.

The search path used by the compiler can be changed by adding -L options indicat-
ing the directories to search and in what order. These directories are added before
the system libraries and are used for all -1 options on the command line. In fact, the
last example fails to link because the current directory is not in cc’s library search
path. We can fix this error by adding the current directory like this:

cc count words.o -L. -lcounter -1fl -o count words

Libraries add a bit of complication to the process of building a program. How can
make help to simplify the situation? GNU make includes special features to support
both the creation of libraries and their use in linking programs. Let’s see how they
work.

Managing Libraries | 35

Creating and Updating Libraries

Within a makefile, a library file is specified with its name just like any other file. A
simple rule to create our library is:
libcounter.a: counter.o lexer.o
$(AR) $(ARFLAGS) $@ $"
This uses the built-in definition for the ar program in AR and the standard options rv
in ARFLAGS. The archive output file is automatically set in $@ and the prerequisites are
setin $".

Now, if you make libcounter.a a prerequisite of count_words make will update our
library before linking the executable. Notice one small irritation, however. All mem-
bers of the archive are replaced even if they have not been modified. This is a waste
of time and we can do better:
libcounter.a: counter.o lexer.o
$(AR) $(ARFLGS) $@ $?

If you use $? instead of $”, make will pass only those objects files that are newer than
the target to ar.

Can we do better still? Maybe, but maybe not. make has support for updating individ-
ual files within an archive, executing one ar command for each object file member,
but before we go delving into those details there are several points worth noting
about this style of building libraries. One of the primary goals of make is to use the
processor efficiently by updating only those files that are out of date. Unfortunately,
the style of invoking ar once for each out-of-date member quickly bogs down. If the
archive contains more than a few dozen files, the expense of invoking ar for each
update begins to outweigh the “elegance” factor of using the syntax we are about to
introduce. By using the simple method above and invoking ar in an explicit rule, we
can execute ar once for all files and save ourselves many fork/exec calls. In addition,
on many systems using the r to ar is very inefficient. On my 1.9 GHz Pentium 4,
building a large archive from scratch (with 14,216 members totaling 55 MB) takes 4
minutes 24 seconds. However, updating a single object file with ar r on the result-
ing archive takes 28 seconds. So building the archive from scratch is faster if I need to
replace more than 10 files (out of 14,216!). In such situations it is probably more
prudent to perform a single update of the archive with all modified object files using
the $? automatic variable. For smaller libraries and faster processors there is no per-
formance reason to prefer the simple approach above to the more elegant one below.
In those situations, using the special library support that follows is a fine approach.

In GNU make, a member of an archive can be referenced using the notation:

libgraphics.a(bitblt.o): bitblt.o
$(AR) $(ARFLAGS) $@ $<

Here the library name is libgraphics.a and the member name is bitblt.o (for bit block
transfer). The syntax libname.a(module.o) refers to the module contained within the

36 | Chapter2: Rules

library. The prerequisite for this target is simply the object file itself and the com-
mand adds the object file to the archive. The automatic variable $< is used in the
command to get only the first prerequisite. In fact, there is a built-in pattern rule that
does exactly this.

When we put this all together, our makefile looks like this:

VPATH = src include
CPPFLAGS = -I include

count_words: libcounter.a /lib/libfl.a
libcounter.a: libcounter.a(lexer.o) libcounter.a(counter.o)

libcounter.a(lexer.o): lexer.o
$(AR) $(ARFLAGS) $@ $<

libcounter.a(counter.o): counter.o
$(AR) $(ARFLAGS) $@ $<

count_words.o: counter.h
counter.o: counter.h lexer.h
lexer.o: lexer.h

When executed, make produces this output:

$ make

gcc -I include -c -o count_words.o src/count words.c
flex -t src/lexer.l> lexer.c

gcc -I include -c -o lexer.o lexer.c

ar rv libcounter.a lexer.o

ar: creating libcounter.a

a - lexer.o

gcc -I include -c -o counter.o src/counter.c

ar rv libcounter.a counter.o

a - counter.o

gcc count words.o libcounter.a /lib/libfl.a -0 count_words
m lexer.c

Notice the archive updating rule. The automatic variable $@ is expanded to the
library name even though the target in the makefile is libcounter.a(lexer.o).

Finally, it should be mentioned that an archive library contains an index of the sym-
bols it contains. Newer archive programs such as GNU ar manage this index auto-
matically when a new module is added to the archive. However, many older versions
of ar do not. To create or update the index of an archive another program ranlib is
used. On these systems, the built-in implicit rule for updating archives is insuffi-
cient. For these systems, a rule such as:

libcounter.a: libcounter.a(lexer.o) libcounter.a(counter.o)
$(RANLIB) $@

Managing Libraries | 37

must be used. Or if you choose to use the alternate approach for large archives:

libcounter.a: counter.o lexer.o
$(RM) $@
$(AR) $(ARFLGS) $@ $"
$(RANLIB) $@
Of course, this syntax for managing the members of an archive can be used with the
built-in implicit rules as well. GNU make comes with a built-in rule for updating an
archive. When we use this rule, our makefile becomes:

VPATH = src include
CPPFLAGS = -I include

count_words: libcounter.a -1f1

libcounter.a: libcounter.a(lexer.o) libcounter.a(counter.o)
count_words.o: counter.h

counter.o: counter.h lexer.h

lexer.o: lexer.h

Using Libraries as Prerequisites

When libraries appear as prerequisites, they can be referenced using either a stan-
dard filename or with the -1 syntax. When filename syntax is used:
xpong: $(OBIECTS) /lib/X11/1ibX11.a /1ib/X11/libXaw.a
$(LINK) $" -o $@
the linker will simply read the library files listed on the command line and process

them normally. When the -1 syntax is used, the prerequisites aren’t proper files at
all:

xpong: $(OBIECTS) -1X11 -1Xaw
$(LINK) $" -0 $@

When the -1 form is used in a prerequisite, make will search for the library (prefer-
ring a shared library) and substitute its value, as an absolute path, into the $* and $?
variables. One great advantage of the second form is that it allows you to use the
search and shared library preference feature even when the system’s linker cannot
perform these duties. Another advantage is that you can customize make’s search path
so it can find your application’s libraries as well as system libraries. In this case, the
first form would ignore the shared library and use the archive library since that is
what was specified on the link line. In the second form, make knows that shared
libraries are preferred and will search first for a shared version of X11 before settling
for the archive version. The pattern for recognizing libraries from the -1 format is
stored in .LIBPATTERNS and can be customized for other library filename formats.

38 | Chapter2: Rules

Unfortunately, there is a small wrinkle. If a makefile specifies a library file target, it
cannot use the -1 option for that file in a prerequisite. For instance, the following
makefile:

count_words: count_words.o -lcounter -1f1

$(CC) $* -0 %@

libcounter.a: libcounter.a(lexer.o) libcounter.a(counter.o)
fails with the error:
No rule to make target “-lcounter', needed by count words'

It appears that this error occurs because make does not expand -lcounter to
libcounter.a and search for a target, but instead does a straight library search. So for
libraries built within the makefile, the filename form must be used.

Getting complex programs to link without error can be somewhat of a black art. The
linker will search libraries in the order in which they are listed on the command line.
So if library A includes an undefined symbol, say open, that is defined in library B, the
link command line must list A before B (that is, A requires B). Otherwise, when the
linker reads A and sees the undefined symbol open, it’s too late to go back to B. The
linker doesn’t ever go back. As you can see, the order of libraries on the command
line is of fundamental importance.

When the prerequisites of a target are saved in the $* and $? variables, their order is
preserved. So using $" as in the previous example expands to the same files in the
same order as the prerequisites list. This is true even when the prerequisites are split
across multiple rules. In that case, the prerequisites of each rule are appended to the
target prerequisite list in the order they are seen.

A closely related problem is mutual reference between libraries, often referred to as
circular references or circularities. Suppose a change is made and library B now refer-
ences a symbol defined in library A. We know A4 must come before 8, but now 8 must
come before A. Hmm, a problem. The solution is to reference A both before and after
B: -1A -1B -1A. In large, complex programs, libraries often need to be repeated in this
way, sometimes more than twice.

This situation poses a minor problem for make because the automatic variables nor-
mally discard duplicates. For example, suppose we need to repeat a library prerequi-
site to satisfy a library circularity:

xpong: xpong.o libui.a libdynamics.a libui.a -1X11
$(CC) $* -0 %@

This prerequisite list will be processed into the following link command:

gcc xpong.o libui.a libdynamics.a /usr/1ib/X11R6/1ibX11.a -0 Xxpong

Managing Libraries | 39

Oops. To overcome this behavior of $* an additional variable is available in make, $+.
This variable is identical to $* with the exception that duplicate prerequisites are pre-
served. Using $+:

xpong: xpong.o libui.a libdynamics.a libui.a -1X11
$(CC) $+ -0 %@

This prerequisite list will be processed into the following link command:

gcc xpong.o libui.a libdynamics.a libui.a /usr/lib/X11R6/1ibX11.a -o xpong

Double-Colon Rules

Double-colon rules are an obscure feature that allows the same target to be updated
with different commands depending on which set of prerequisites are newer than the
target. Normally, when a target appears more than once all the prerequisites are
appended in a long list with only one command script to perform the update. With
double-colon rules, however, each occurrence of the target is considered a com-
pletely separate entity and is handled individually. This means that for a particular
target, all the rules must be of the same type, either they are all double-colon rules or
all single-colon rules.

Realistic, useful examples of this feature are difficult to come by (which is why it is
an obscure feature), but here is an artificial example:
file-list:: generate-list-script
chmod +x $<
generate-list-script $(files) > file-list

file-list:: $(files)
generate-list-script $(files) > file-list
We can regenerate the file-list target two ways. If the generating script has been
updated, we make the script executable, then run it. If the source files have changed,
we simply run the script. Although a bit far-fetched, this gives you a feel for how the
feature might be used.

We've covered most of the features of make rules and, along with variables and com-
mands, this is the essence of make. We’ve focused largely on the specific syntax and
behavior of the features without going much into how to apply them in more com-
plex situations. That is the subject of Part II. For now, we will continue our discus-
sion with variables and then commands.

40 | Chapter2: Rules

