CHAPTER 3
Variables and Macros

We’ve been looking at makefile variables for a while now and we’ve seen many
examples of how they’re used in both the built-in and user-defined rules. But the
examples we’ve seen have only scratched the surface. Variables and macros get much
more complicated and give GNU make much of its incredible power.

Before we go any further, it is important to understand that make is sort of two lan-
guages in one. The first language describes dependency graphs consisting of targets
and prerequisites. (This language was covered in Chapter 2.) The second language is
a macro language for performing textual substitution. Other macro languages you
may be familiar with are the C preprocessor, m4, TgX, and macro assemblers. Like
these other macro languages, make allows you to define a shorthand term for a longer
sequence of characters and use the shorthand in your program. The macro processor
will recognize your shorthand terms and replace them with their expanded form.
Although it is easy to think of makefile variables as traditional programming lan-
guage variables, there is a distinction between a macro “variable” and a “traditional”
variable. A macro variable is expanded “in place” to yield a text string that may then
be expanded further. This distinction will become more clear as we proceed.

A variable name can contain almost any characters including most punctuation.
Even spaces are allowed, but if you value your sanity you should avoid them. The
only characters actually disallowed in a variable name are :, #, and =.

Variables are case-sensitive, so cc and CC refer to different variables. To get the value
of a variable, enclose the variable name in $(). As a special case, single-letter vari-
able names can omit the parentheses and simply use $letter. This is why the auto-
matic variables can be written without the parentheses. As a general rule you should
use the parenthetical form and avoid single letter variable names.

Variables can also be expanded using curly braces as in ${CC} and you will often see
this form, particularly in older makefiles. There is seldom an advantage to using one
over the other, so just pick one and stick with it. Some people use curly braces for
variable reference and parentheses for function call, similar to the way the shell uses

4

them. Most modern makefiles use parentheses and that’s what we’ll use throughout
this book.

Variables representing constants a user might want to customize on the command
line or in the environment are written in all uppercase, by convention. Words are
separated by underscores. Variables that appear only in the makefile are all lower-
case with words separated by underscores. Finally, in this book, user-defined func-
tions in variables and macros use lowercase words separated by dashes. Other
naming conventions will be explained where they occur. (The following example
uses features we haven’t discussed yet. I'm using them to illustrate the variable nam-
ing conventions, don’t be too concerned about the righthand side for now.)
Some simple constants.

cc 1= gce
MKDIR := mkdir -p

Internal variables.
sources = *.c
objects = $(subst .c,.o0,$(sources))

A function or two.
maybe-make-dir = $(if $(wildcard $1),,$(MKDIR) $1)
assert-not-null = $(if $1,,$(error Illegal null value.))
The value of a variable consists of all the words to the right of the assignment sym-
bol with leading space trimmed. Trailing spaces are not trimmed. This can occasion-
ally cause trouble, for instance, if the trailing whitespace is included in the variable
and subsequently used in a command script:
LIBRARY = libio.a # LIBRARY has a trailing space.
missing_file:
touch $(LIBRARY)
1s -1 | grep "$(LIBRARY)'
The variable assignment contains a trailing space that is made more apparent by the
comment (but a trailing space can also be present without a trailing comment).
When this makefile is run, we get:
$ make
touch libio.a
1s -1 | grep 'libio.a
make: *** [missing file] Error 1

Oops, the grep search string also included the trailing space and failed to find the file
in 1s’s output. We'll discuss whitespace issues in more detail later. For now, let’s
look more closely at variables.

What Variables Are Used For

In general it is a good idea to use variables to represent external programs. This allows
users of the makefile to more easily adapt the makefile to their specific environment.

42 | Chapter3: Variables and Macros

For instance, there are often several versions of awk on a system: awk, nawk, gawk. By
creating a variable, AWK, to hold the name of the awk program you make it easier for
other users of your makefile. Also, if security is an issue in your environment, a good
practice is to access external programs with absolute paths to avoid problems with
user’s paths. Absolute paths also reduce the likelihood of issues if trojan horse ver-
sions of system programs have been installed somewhere in a user’s path. Of course,
absolute paths also make makefiles less portable to other systems. Your own require-
ments should guide your choice.

Though your first use of variables should be to hold simple constants, they can also
store user-defined command sequences such as:”

DF = df

AWK = awk

free-space := $(DF) . | $(AWK) 'NR == 2 { print $$4 }'
for reporting on free disk space. Variables are used for both these purposes and
more, as we will see.

Variable Types

There are two types of variables in make: simply expanded variables and recursively
expanded variables. A simply expanded variable (or a simple variable) is defined using
the := assignment operator:

MAKE_DEPEND := $(CC) -M

It is called “simply expanded” because its righthand side is expanded immediately
upon reading the line from the makefile. Any make variable references in the right-
hand side are expanded and the resulting text saved as the value of the variable. This
behavior is identical to most programming and scripting languages. For instance, the
normal expansion of this variable would yield:

gec -M

However, if CC above had not yet been set, then the value of the above assignment
would be:

<space>-M

$(CC) is expanded to its value (which contains no characters), and collapses to noth-
ing. It is not an error for a variable to have no definition. In fact, this is extremely
useful. Most of the implicit commands include undefined variables that serve as
place holders for user customizations. If the user does not customize a variable it

* The df command returns a list of each mounted filesystem and statistics on the filesystem’s capacity and
usage. With an argument, it prints statistics for the specified filesystem. The first line of the output is a list
of column titles. This output is read by awk which examines the second line and ignores all others. Column
four of df’s output is the remaining free space in blocks.

Variable Types | 43

collapses to nothing. Now notice the leading space. The righthand side is first parsed
by make to yield the string $(CC) -M. When the variable reference is collapsed to noth-
ing, make does not rescan the value and trim blanks. The blanks are left intact.

The second type of variable is called a recursively expanded variable. A recursively
expanded variable (or a recursive variable) is defined using the = assignment operator:

MAKE_DEPEND = $(CC) -M

It is called “recursively expanded” because its righthand side is simply slurped up by
make and stored as the value of the variable without evaluating or expanding it in any
way. Instead, the expansion is performed when the variable is used. A better term for
this variable might be lazily expanded variable, since the evaluation is deferred until it
is actually used. One surprising effect of this style of expansion is that assignments
can be performed “out of order”:

MAKE_DEPEND = $(CC) -M

Some time later

CC = gcc
Here the value of MAKE_DEPEND within a command script is gcc -M even though CC was
undefined when MAKE_DEPEND was assigned.

In fact, recursive variables aren’t really just a lazy assignment (at least not a normal
lazy assignment). Each time the recursive variable is used, its righthand side is re-
evaluated. For variables that are defined in terms of simple constants such as MAKE_
DEPEND above, this distinction is pointless since all the variables on the righthand side
are also simple constants. But imagine if a variable in the righthand side represented
the execution of a program, say date. Each time the recursive variable was expanded
the date program would be executed and each variable expansion would have a dif-
ferent value (assuming they were executed at least one second apart). At times this is
very useful. At other times it is very annoying!

Other Types of Assignment

From previous examples we’ve seen two types of assignment: = for creating recursive
variables and := for creating simple variables. There are two other assignment opera-
tors provided by make.

The ?= operator is called the conditional variable assignment operator. That’s quite a
mouth-full so we’ll just call it conditional assignment. This operator will perform the
requested variable assignment only if the variable does not yet have a value.

Put all generated files in the directory $(PROJECT DIR)/out.

OUTPUT DIR ?= $(PROJECT DIR)/out
Here we set the output directory variable, OUTPUT DIR, only if it hasn’t been set ear-
lier. This feature interacts nicely with environment variables. We’ll discuss this in the
section “Where Variables Come From” later in this chapter.

44 | Chapter3: Variables and Macros

The other assignment operator, +=, is usually referred to as append. As its name sug-
gests, this operator appends text to a variable. This may seem unremarkable, but it is
an important feature when recursive variables are used. Specifically, values on the
righthand side of the assignment are appended to the variable without changing the
original values in the variable. “Big deal, isn’t that what append always does?” I hear
you say. Yes, but hold on, this is a little tricky.

Appending to a simple variable is pretty obvious. The += operator might be imple-
mented like this:

simple := $(simple) new stuff

Since the value in the simple variable has already undergone expansion, make can
expand $(simple), append the text, and finish the assignment. But recursive vari-
ables pose a problem. An implementation like the following isn’t allowed.

recursive = $(recursive) new stuff

This is an error because there’s no good way for make to handle it. If make stores the
current definition of recursive plus new stuff, make can’t expand it again at runtime.
Furthermore, attempting to expand a recursive variable containing a reference to
itself yields an infinite loop.

$ make

makefile:2: *** Recursive variable “recursive' references itself (eventually). Stop.
So, += was implemented specifically to allow adding text to a recursive variable and
does the Right Thing™. This operator is particularly useful for collecting values into
a variable incrementally.

Macros

Variables are fine for storing values as a single line of text, but what if we have a
multiline value such as a command script we would like to execute in several places?
For instance, the following sequence of commands might be used to create a Java
archive (or jar) from Java class files:

echo Creating $@...

$(RM) $(TMP_JAR_DIR)

$(MKDIR) $(TMP_JAR DIR)

$(CP) -r $* $(TMP_JAR DIR)

cd $(TMP_JAR DIR) 8& $(JAR) $(JARFLAGS) $@ .

$(IAR) -ufm $@ $(MANIFEST)

$(RM) $(TMP_JAR DIR)
At the beginning of long sequences such as this, I like to print a brief message. It can
make reading make’s output much easier. After the message, we collect our class files
into a clean temporary directory. So we delete the temporary jar directory in case an

Macros | 45

old one is left lying about,” then we create a fresh temporary directory. Next we copy
our prerequisite files (and all their subdirectories) into the temporary directory. Then
we switch to our temporary directory and create the jar with the target filename. We
add the manifest file to the jar and finally clean up. Clearly, we do not want to dupli-
cate this sequence of commands in our makefile since that would be a maintenance
problem in the future. We might consider packing all these commands into a recur-
sive variable, but that is ugly to maintain and difficult to read when make echoes the
command line (the whole sequence is echoed as one enormous line of text).

Instead, we can use a GNU make “canned sequence” as created by the define direc-
tive. The term “canned sequence” is a bit awkward, so we’ll call this a macro. A
macro is just another way of defining a variable in make, and one that can contain
embedded newlines! The GNU make manual seems to use the words variable and
macro interchangeably. In this book, we’ll use the word macro specifically to mean
variables defined using the define directive and variable only when assignment is
used.
define create-jar
@echo Creating $@...
$(RM) $(TMP_JAR_DIR)
$(MKDIR) $(TMP_JAR DIR)
$(CP) -1 $" $(TMP_IAR DIR)
cd $(TMP_JAR_DIR) 8& $(JAR) $(JARFLAGS) $@ .
$(JAR) -ufm $@ $(MANIFEST)
$(RM) $(TMP_JAR DIR)
endef
The define directive is followed by the variable name and a newline. The body of the
variable includes all the text up to the endef keyword, which must appear on a line
by itself. A variable created with define is expanded pretty much like any other vari-
able, except that when it is used in the context of a command script, each line of the
macro has a tab prepended to the line. An example use is:
$(UI_JAR): $(UI_CLASSES)
$(create-jar)
Notice we’ve added an @ character in front of our echo command. Command lines
prefixed with an @ character are not echoed by make when the command is executed.
When we run make, therefore, it doesn’t print the echo command, just the output of
that command. If the @ prefix is used within a macro, the prefix character applies to
the individual lines on which it is used. However, if the prefix character is used on
the macro reference, the entire macro body is hidden:

$(UI_JAR): $(UI_CLASSES)
@$(create-jar)

* For best effect here, the RM variable should be defined to hold rm -rf. In fact, its default value is rm -f, safer
but not quite as useful. Further, MKDIR should be defined as mkdir -p, and so on.

46 | Chapter3: Variables and Macros

This displays only:

$ make

Creating ui.jar...
The use of @ is covered in more detail in the section “Command Modifiers” in
Chapter 5.

When Variables Are Expanded

In the previous sections, we began to get a taste of some of the subtleties of variable
expansion. Results depend a lot on what was previously defined, and where. You
could easily get results you don’t want, even if make fails to find any error. So what
are the rules for expanding variables? How does this really work?

When make runs, it performs its job in two phases. In the first phase, make reads the
makefile and any included makefiles. At this time, variables and rules are loaded into
make’s internal database and the dependency graph is created. In the second phase,
make analyzes the dependency graph and determines the targets that need to be
updated, then executes command scripts to perform the required updates.

When a recursive variable or define directive is processed by make, the lines in the
variable or body of the macro are stored, including the newlines without being
expanded. The very last newline of a macro definition is not stored as part of the
macro. Otherwise, when the macro was expanded an extra newline would be read by
make.

When a macro is expanded, the expanded text is then immediately scanned for fur-
ther macro or variable references and those are expanded and so on, recursively. If
the macro is expanded in the context of an action, each line of the macro is inserted
with a leading tab character.

To summarize, here are the rules for when elements of a makefile are expanded:
* For variable assignments, the lefthand side of the assignment is always expanded
immediately when make reads the line during its first phase.

* The righthand side of = and ?= are deferred until they are used in the second
phase.

* The righthand side of := is expanded immediately.

* The righthand side of += is expanded immediately if the lefthand side was origi-
nally defined as a simple variable. Otherwise, its evaluation is deferred.

* For macro definitions (those using define), the macro variable name is immedi-
ately expanded and the body of the macro is deferred until used.

* For rules, the targets and prerequisites are always immediately expanded while
the commands are always deferred.

Table 3-1 summarizes what occurs when variables are expanded.

When Variables Are Expanded | 47

Table 3-1. Rules for immediate and deferred expansion

Definition Expansion of a Expansion of b
a=b Immediate Deferred

a?=b Immediate Deferred

a:=b Immediate Immediate

a+=b Immediate Deferred orimmediate
define a Immediate Deferred

b

b...

endef

As a general rule, always define variables and macros before they are used. In partic-
ular, it is required that a variable used in a target or prerequisite be defined before its
use.

An example will make all this clearer. Suppose we reimplement our free-space
macro. We'll go over the example a piece at a time, then put them all together at the
end.

BIN 1= /usr/bin
PRINTF := $(BIN)/printf
DF := $(BIN)/df
AWK 1= $(BIN)/awk

We define three variables to hold the names of the programs we use in our macro.
To avoid code duplication we factor out the bin directory into a fourth variable. The
four variable definitions are read and their righthand sides are immediately expanded
because they are simple variables. Because BIN is defined before the others, its value
can be plugged into their values.

Next, we define the free-space macro.

define free-space
$(PRINTF) "Free disk space "
$(DF) . | $(AWK) 'NR == 2 { print $$4 }'
endef
The define directive is followed by a variable name that is immediately expanded. In
this case, no expansion is necessary. The body of the macro is read and stored unex-
panded.

Finally, we use our macro in a rule.
OUTPUT DIR := /tmp
$(OUTPUT_DIR)/very big file:

$(free-space)

When $(OUTPUT_DIR)/very_big_file is read, any variables used in the targets and
prerequisites are immediately expanded. Here, $(OUTPUT DIR) is expanded to /tmp to

48 | Chapter3: Variables and Macros

form the /tmp/very_big_file target. Next, the command script for this target is read.
Command lines are recognized by the leading tab character and are read and stored,
but not expanded.

Here is the entire example makefile. The order of elements in the file has been scram-
bled intentionally to illustrate make’s evaluation algorithm.

OUTPUT DIR := /tmp

$(OUTPUT DIR)/very big file:
$(free-space)

define free-space
$(PRINTF) "Free disk space "
$(DF) . | $(AWK) 'NR == 2 { print $$4 }'

endef

BIN 1= /usr/bin
PRINTF := $(BIN)/printf
DF = $(BIN)/df
AWK 1= $(BIN)/awk

Notice that although the order of lines in the makefile seems backward, it executes
just fine. This is one of the surprising effects of recursive variables. It can be
immensely useful and confusing at the same time. The reason this makefile works is
that expansion of the command script and the body of the macro are deferred until
they are actually used. Therefore, the relative order in which they occur is immate-
rial to the execution of the makefile.

In the second phase of processing, after the makefile is read, make identifies the tar-
gets, performs dependency analysis, and executes the actions for each rule. Here the
only target, $(OUTPUT DIR)/very big file, has no prerequisites, so make will simply
execute the actions (assuming the file doesn’t exist). The command is $(free-space).
So make expands this as if the programmer had written:

/tmp/very big file:

/usr/bin/printf "Free disk space
/usr/bin/df . | /usr/bin/awk 'NR == 2 { print $$4 }'

Once all variables are expanded, it begins executing commands one at a time.

Let’s look at the two parts of the makefile where the order is important. As explained
earlier, the target $(OUTPUT_DIR)/very_big_file is expanded immediately. If the
definition of the variable OUTPUT DIR had followed the rule, the expansion of the tar-
get would have yielded /very_big_file. Probably not what the user wanted. Similarly,
if the definition of BIN had been moved after AWK, those three variables would have
expanded to /printf, /df, and /awk because the use of := causes immediate evaluation
of the righthand side of the assignment. However, in this case, we could avoid the
problem for PRINTF, DF, and AWK by changing := to =, making them recursive variables.

When Variables Are Expanded | 49

One last detail. Notice that changing the definitions of OUTPUT DIR and BIN to recur-
sive variables would not change the effect of the previous ordering problems. The
important issue is that when $(OUTPUT_DIR)/very_big_file and the righthand sides
of PRINTF, DF, and AWK are expanded, their expansion happens immediately, so the
variables they refer to must be already defined.

Target- and Pattern-Specific Variables

Variables usually have only one value during the execution of a makefile. This is
ensured by the two-phase nature of makefile processing. In phase one, the makefile is
read, variables are assigned and expanded, and the dependency graph is built. In
phase two, the dependency graph is analyzed and traversed. So when command
scripts are being executed, all variable processing has already completed. But sup-
pose we wanted to redefine a variable for just a single rule or pattern.

In this example, the particular file we are compiling needs an extra command-line
option, -DUSE_NEW_MALLOC=1, that should not be provided to other compiles:
gui.o: gui.h
$(COMPILE.c) -DUSE_NEW_MALLOC=1 $(OUTPUT_OPTION) $<

Here, we’ve solved the problem by duplicating the compilation command script and
adding the new required option. This approach is unsatisfactory in several respects.
First, we are duplicating code. If the rule ever changes or if we choose to replace the
built-in rule with a custom pattern rule, this code would need to be updated and we
might forget. Second, if many files require special treatment, the task of pasting in
this code will quickly become very tedious and error-prone (imagine a hundred files

like this).

To address this issue and others, make provides target-specific variables. These are
variable definitions attached to a target that are valid only during the processing of
that target and any of its prerequisites. We can rewrite our previous example using
this feature like this:

gui.o: CPPFLAGS += -DUSE_NEW MALLOC=1

gui.o: gui.h

$(COMPILE.c) $(OUTPUT OPTION) $<

The variable CPPFLAGS is built in to the default C compilation rule and is meant to
contain options for the C preprocessor. By using the += form of assignment, we
append our new option to any existing value already present. Now the compile com-
mand script can be removed entirely:

gui.o: CPPFLAGS += -DUSE_NEW MALLOC=1

gui.o: gui.h
While the gui.o target is being processed, the value of CPPFLAGS will contain -DUSE_
NEW_MALLOC=1 in addition to its original contents. When the gui.o target is finished,
CPPFLAGS will revert to its original value.

50 | Chapter3: Variables and Macros

The general syntax for target-specific variables is:

target...: variable = value
target...: variable := value
target...: variable += value
target...: variable ?= value

As you can see, all the various forms of assignment are valid for a target-specific vari-
able. The variable does not need to exist before the assignment.

Furthermore, the variable assignment is not actually performed until the processing
of the target begins. So the righthand side of the assignment can itself be a value set
in another target-specific variable. The variable is valid during the processing of all
prerequisites as well.

Where Variables Come From

So far, most variables have been defined explicitly in our own makefiles, but vari-
ables can have a more complex ancestry. For instance, we have seen that variables
can be defined on the make command line. In fact, make variables can come from these
sources:

File
Of course, variables can be defined in the makefile or a file included by the
makefile (we’ll cover the include directive shortly).

Command line
Variables can be defined or redefined directly from the make command line:

$ make CFLAGS=-g CPPFLAGS='-DBSD -DDEBUG'

A command-line argument containing an = is a variable assignment. Each vari-
able assignment on the command line must be a single-shell argument. If the
value of the variable (or heaven forbid, the variable itself) contains spaces, the
argument must be surrounded by quotes or the spaces must be escaped.

An assignment of a variable on the command line overrides any value from the
environment and any assignment in the makefile. Command-line assignments
can set either simple or recursive variables by using := or =, respectively. It is
possible using the override directive to allow a makefile assignment to be used
instead of a command-line assignment.

Use big-endian objects or the program crashes!

override LDFLAGS = -EB
Of course, you should ignore a user’s explicit assignment request only under the
most urgent circumstances (unless you just want to irritate your users).

Environment
All the variables from your environment are automatically defined as make vari-
ables when make starts. These variables have very low precedence, so assign-
ments within the makefile or command-line arguments will override the value of

Where Variables Come From | 51

an environment variable. You can cause environment variables to override
makefile variables using the --environment-overrides (or -e) command-line
option.

When make is invoked recursively, some variables from the parent make are
passed through the environment to the child make. By default, only those vari-
ables that originally came from the environment are exported to the child’s envi-
ronment, but any variable can be exported to the environment by using the
export directive:

export CLASSPATH := $(HOME)/classes:$(PROJECT)/classes

SHELLOPTS = -x
export SHELLOPTS

You can cause all variables to be exported with:
export

Note that make will export even those variables whose names contain invalid
shell variable characters. For example:
export valid-variable-in-make = Neat!
show-vars:
env | grep '“valid-'
valid variable in shell=Great
invalid-variable-in-shell=Sorry

$ make

env | grep '“valid-'

valid-variable-in-make=Neat!

valid variable in_shell=Great

invalid-variable-in-shell=Sorry

/bin/sh: line 1: invalid-variable-in-shell=Sorry: command not found

make: *** [show-vars] Error 127
An “invalid” shell variable was created by exporting valid-variable-in-make.
This variable is not accessible through normal shell syntax, only through trick-
ery such as running grep over the environment. Nevertheless, this variable is
inherited by any sub-make where it is valid and accessible. We will cover use of
“recursive” make in Part IL.
You can also prevent an environment variable from being exported to the sub-
process:

unexport DISPLAY
The export and unexport directives work the same way their counterparts in sh
work.

The conditional assignment operator interacts very nicely with environment vari-
ables. Suppose you have a default output directory set in your makefile, but you

52

Chapter 3: Variables and Macros

want users to be able to override the default easily. Conditional assignment is
perfect for this situation:

Assume the output directory $(PROJECT DIR)/out.

OUTPUT DIR ?= $(PROJECT DIR)/out
Here the assignment is performed only if OUTPUT DIR has never been set. We can
get nearly the same effect more verbosely with:

ifndef OUTPUT DIR
Assume the output directory $(PROJECT DIR)/out.
OUTPUT DIR = $(PROJECT DIR)/out
endif
The difference is that the conditional assignment operator will skip the assign-
ment if the variable has been set in any way, even to the empty value, while the
ifdef and ifndef operators test for a nonempty value. Thus, OUTPUT DIR= is con-
sidered set by the conditional operator but not defined by ifdef.

It is important to note that excessive use of environment variables makes your
makefiles much less portable, since other users are not likely to have the same set
of environment variables. In fact, I rarely use this feature for precisely that rea-
son.

Automatic
Finally, make creates automatic variables immediately before executing the com-
mand script of a rule.

Traditionally, environment variables are used to help manage the differences
between developer machines. For instance, it is common to create a development
environment (source code, compiled output tree, and tools) based on environment
variables referenced in the makefile. The makefile would refer to one environment
variable for the root of each tree. If the source file tree is referenced from a variable
PROJECT SRC, binary output files from PROJECT BIN, and libraries from PROJECT LIB,
then developers are free to place these trees wherever is appropriate.

A potential problem with this approach (and with the use of environment variables
in general) occurs when these “root” variables are not set. One solution is to provide
default values in the makefile using the $? form of assignment:

PROJECT SRC ?= /dev/$(USER)/sxc

PROJECT BIN ?= $(patsubst %/src,%/bin,$(PROJECT_SRC))

PROJECT_LIB ?= /net/server/project/lib
By using these variables to access project components, you can create a development
environment that is adaptable to varying machine layouts. (We will see more com-
prehensive examples of this in Part II.) Beware of overreliance on environment vari-
ables, however. Generally, a makefile should be able to run with a minimum of
support from the developer’s environment so be sure to provide reasonable defaults
and check for the existence of critical components.

Where Variables Come From | 53

Conditional and include Processing

Parts of a makefile can be omitted or selected while the makefile is being read using
conditional processing directives. The condition that controls the selection can have
several forms such as “is defined” or “is equal to.” For example:

COMSPEC is defined only on Windows.
ifdef COMSPEC
PATH_SEP := ;
EXE_EXT := .exe
else
PATH_SEP := :
EXE_EXT :=
endif

This selects the first branch of the conditional if the variable COMSPEC is defined.

The basic syntax of the conditional directive is:

if-condition
text if the condition is true
endif

or:

if-condition

text if the condition is true
else

text if the condition is false
endif

The if-condition can be one of:

ifdef variable-name

ifndef variable-name

ifeq test

ifneq test
The variable-name should not be surrounded by $() for the ifdef/ifndef test.
Finally, the test can be expressed as either of:

ngt
(a,b)

in which single or double quotes can be used interchangeably (but the quotes you

use must match).

The conditional processing directives can be used within macro definitions and com-
mand scripts as well as at the top level of makefiles:

libGui.a: $(gui_objects)
$(AR) $(ARFLAGS) $@ $<
ifdef RANLIB
$(RANLIB) $@
endif

54 | Chapter3: Variables and Macros

[like to indent my conditionals, but careless indentation can lead to errors. In the
preceding lines, the conditional directives are indented four spaces while the
enclosed commands have a leading tab. If the enclosed commands didn’t begin with
a tab, they would not be recognized as commands by make. If the conditional direc-
tives had a leading tab, they would be misidentified as commands and passed to the

subshell.

The ifeq and ifneq conditionals test if their arguments are equal or not equal.
Whitespace in conditional processing can be tricky to handle. For instance, when
using the parenthesis form of the test, whitespace after the comma is ignored, but all
other whitespace is significant:

ifeq (a, a)

These are equal
endif

ifeq (b, b))
These are not equal - " b' !='b
endif

Personally, I stick with the quoted forms of equality:

ifeq "a" "a"

These are equal
endif
ifeq 'b" 'b'

So are these
endif

Even so, it often occurs that a variable expansion contains unexpected whitespace.
This can cause problems since the comparison includes all characters. To create
more robust makefiles, use the strip function:

ifeq "$(strip $(OPTIONS)) "-d"

COMPILATION FLAGS += -DDEBUG
endif

The include Directive

We first saw the include directive in Chapter 2, in the section “Automatic Depen-
dency Generation.” Now let’s go over it in more detail.

A makefile can include other files. This is most commonly done to place common
make definitions in a make header file or to include automatically generated depen-
dency information. The include directive is used like this:

include definitions.mk

The directive can be given any number of files and shell wildcards and make variables
are also allowed.

Conditional and include Processing | 55

include and Dependencies

When make encounters an include directive, it expands the wildcards and variable
references, then tries to read the include file. If the file exists, we continue normally.
If the file does not exist, however, make reports the problem and continues reading
the rest of the makefile. When all reading is complete, make looks in the rules data-
base for any rule to update the include files. If a match is found, make follows the nor-
mal process for updating a target. If any of the include files is updated by a rule, make
then clears its internal database and rereads the entire makefile. If, after completing
the process of reading, updating, and rereading, there are still include directives that
have failed due to missing files, make terminates with an error status.

We can see this process in action with the following two-file example. We use the
warning built-in function to print a simple message from make. (This and other func-
tions are covered in detail in Chapter 4.) Here is the makefile:

Simple makefile including a generated file.

include foo.mk
$(warning Finished include)

foo.mk: bar.mk
m4 --define=FILENAME=$@ bar.mk > $@

and here is bar.mk, the source for the included file:

bar.mk - Report when I am being read.
$(warning Reading FILENAME)

When run, we see:

$ make

Makefile:2: foo.mk: No such file or directory

Makefile:3: Finished include

m4 --define=FILENAME=foo.mk bar.mk > foo.mk

foo.mk:2: Reading foo.mk

Makefile:3: Finished include

make: ~foo.mk' is up to date.
The first line shows that make cannot find the include file, but the second line shows
that make keeps reading and executing the makefile. After completing the read, make
discovers a rule to create the include file, foo.mk, and it does so. Then make starts the
whole process again, this time without encountering any difficulty reading the
include file.

Now is a good time to mention that make will also treat the makefile itself as a possi-
ble target. After the entire makefile has been read, make will look for a rule to remake
the currently executing makefile. If it finds one, make will process the rule, then check
if the makefile has been updated. If so, make will clear its internal state and reread the

56 | Chapter3: Variables and Macros

makefile, performing the whole analysis over again. Here is a silly example of an infi-
nite loop based on this behavior:

.PHONY: dummy

makefile: dummy

touch $@

When make executes this makefile, it sees that the makefile is out of date (because the
.PHONY target, dummy, is out of date) so it executes the touch command, which
updates the timestamp of the makefile. Then make rereads the file and discovers that
the makefile is out of date.... Well, you get the idea.

Where does make look for included files? Clearly, if the argument to include is an
absolute file reference, make reads that file. If the file reference is relative, make first
looks in its current working directory. If make cannot find the file, it then proceeds
to search through any directories you have specified on the command line using the
--include-dir (or -I) option. After that, make searches a compiled search path simi-
lar to: /usr/local/include, /usr/gnu/include, /usr/include. There may be slight variations
of this path due to the way make was compiled.

If make cannot find the include file and it cannot create it using a rule, make exits with
an error. If you want make to ignore include files it cannot load, add a leading dash to
the include directive:

-include i-may-not-exist.mk

For compatibility with other makes, the word sinclude is an alias for -include.

Standard make Variables

In addition to automatic variables, make maintains variables revealing bits and pieces
of its own state as well as variables for customizing built-in rules:

MAKE_VERSION
This is the version number of GNU make. At the time of this writing, its value is
3.80, and the value in the CVS repository is 3.81rc1.

The previous version of make, 3.79.1, did not support the eval and value func-
tions (among other changes) and it is still very common. So when I write
makefiles that require these features, I use this variable to test the version of make
I'm running. We'll see an example of that in the section “Flow Control” in
Chapter 4.

CURDIR
This variable contains the current working directory (cwd) of the executing make
process. This will be the same directory the make program was executed from
(and it will be the same as the shell variable PWD), unless the --directory (-C)
option is used. The --directory option instructs make to change to a different
directory before searching for any makefile. The complete form of the option is

Standard make Variables | 57

--directory=directory-name or -C directory-name. If --directory is used, CURDIR
will contain the directory argument to --include-dir.

[typically invoke make from emacs while coding. For instance, my current project
is in Java and uses a single makefile in a top-level directory (not necessarily the
directory containing the code). In this case, using the --directory option allows
me to invoke make from any directory in the source tree and still access the
makefile. Within the makefile, all paths are relative to the makefile directory.
Absolute paths are occasionally required and these are accessed using CURDIR.

MAKEFILE LIST

This variable contains a list of each file make has read including the default
makefile and makefiles specified on the command line or through include direc-
tives. Just before each file is read, the name is appended to the MAKEFILE LIST
variable. So a makefile can always determine its own name by examining the last
word of the list.

MAKECMDGOALS

The MAKECMDGOALS variable contains a list of all the targets specified on the com-
mand line for the current execution of make. It does not include command-line
options or variable assignments. For instance:

$ make -f- FOO=bar -k goal <<< 'goal:;# $(MAKECMDGOALS)'

goal
The example uses the “trick” of telling make to read the makefile from the stdin
with the -f- (or --file) option. The stdin is redirected from a command-line
string using bash’s here string, “<<<”, syntax.” The makefile itself consists of the
default goal goal, while the command script is given on the same line by separat-
ing the target from the command with a semicolon. The command script con-
tains the single line:

$(MAKECMDGOALS)

MAKECMDGOALS is typically used when a target requires special handling. The pri-
mary example is the “clean” target. When invoking “clean,” make should not per-
form the usual dependency file generation triggered by include (discussed in the
section “Automatic Dependency Generation” in Chapter 2). To prevent this use
ifneq and MAKECMDGOALS:

ifneq "$(MAKECMDGOALS)" "clean"
-include $(subst .xml,.d,$(xml_src))
endif

* For those of you who want to run this type of example in another shell, use:

$ echo 'goal:;# $(MAKECMDGOALS)' | make -f- FOO=bar -k goal

58

| Chapter3: Variables and Macros

.VARIABLES

This contains a list of the names of all the variables defined in makefiles read so
far, with the exception of target-specific variables. The variable is read-only and
any assignment to it is ignored.

list:

@echo "$(.VARIABLES)" | tr ' ' '\015' | grep MAKEF
$ make
MAKEFLAGS

MAKEFILE_LIST
MAKEFILES

As you’ve seen, variables are also used to customize the implicit rules built in to make.
The rules for C/C++ are typical of the form these variables take for all programming

languages. Figure 3-1 shows the variables controlling translation from one file type to
another.

y il

YACCy LEX.I
S s S .pp C K4 y i

|

A
PREPROCESS.S (OMPILE.s COMPILE.S mMHEmp COMPILE.C COMPILE.c YACCy LEX.I

, b= \/

S S .0 cpp
| | l |
LINK.s LINK.S LINK.o UNchp LINK.C LINK.c
\\\\\\\~\\;::::::::::::::::* '112:::::::,,,,/,//,
Executable

Figure 3-1. Variables for C/C++ compilation

The variables have the basic form: ACTION.suffix. The ACTION is COMPILE for creating
an object file, LINK for creating an executable, or the “special” operations PREPROCESS,
YACC, LEX for running the C preprocessor, yacc, or lex, respectively. The suffix indi-
cates the source file type.

The standard “path” through these variables for, say, C++, uses two rules. First,
compile C++ source files to object files. Then link the object files into an executable.
%.0: %.C
$(COMPILE.C) $(OUTPUT_ OPTION) $<

%: %.0
$(LINK.0) $~ $(LOADLIBES) $(LDLIBS) -0 $@

Standard make Variables | 59

The first rule uses these variable definitions:

COMPILE.C = $(COMPILE.cc)
COMPILE.cc = $(CXX) $(CXXFLAGS) $(CPPFLAGS) $(TARGET ARCH) -c
XX = g+t

OUTPUT_OPTION = -0 $@

GNU make supports either of the suffixes .C or .cc for denoting C++ source files. The
CXX variable indicates the C++ compiler to use and defaults to g++. The variables
CXXFLAGS, CPPFLAGS, and TARGET_ARCH have no default value. They are intended for use
by end-users to customize the build process. The three variables hold the C++ com-
piler flags, C preprocessor flags, and architecture-specific compilation options,
respectively. The OUTPUT_OPTION contains the output file option.

The linking rule is a bit simpler:

LINK.o = $(CC) $(LDFLAGS) $(TARGET_ARCH)

CC = gcc
This rule uses the C compiler to combine object files into an executable. The default
for the C compiler is gcc. LDFLAGS and TARGET_ARCH have no default value. The
LDFLAGS variable holds options for linking such as -L flags. The LOADLIBES and LDLIBS
variables contain lists of libraries to link against. Two variables are included mostly
for portability.

This was a quick tour through the make variables. There are more, but this gives you
the flavor of how variables are integrated with rules. Another group of variables deals
with TEX and has its own set of rules. Recursive make is another feature supported by
variables. We’ll discuss this topic in Chapter 6.

60 | Chapter3: Variables and Macros

