CHAPTER 4
Functions

GNU make supports both built-in and user-defined functions. A function invocation
looks much like a variable reference, but includes one or more parameters separated
by commas. Most built-in functions expand to some value that is then assigned to a
variable or passed to a subshell. A user-defined function is stored in a variable or
macro and expects one or more parameters to be passed by the caller.

User-Defined Functions

Storing command sequences in variables opens the door to a wide range of applica-
tions. For instance, here’s a nice little macro to kill a process:*

AWK := awk
KILL := kill

# $(kill-acroread)
define kill-acroread

@ps -W | \
$(AWK) 'BEGIN { FIELDWIDTHS = "9 47 100" } \
/AcroRd32/ { \
print "Killing " $$3; \
system( "$(KILL) -f " $$1 ) \

endef

* “Why would you want to do this in a makefile?” you ask. Well, on Windows, opening a file locks it against
writing by other processes. While I was writing this book, the PDF file would often be locked by the Acrobat
Reader and prevent my makefile from updating the PDF. So I added this command to several targets to ter-
minate Acrobat Reader before attempting to update the locked file.

61



(This macro was written explicitly to use the Cygwin tools,” so the program name we
search for and the options to ps and kill are not standard Unix.) To kill a process we
pipe the output of ps to awk. The awk script looks for the Acrobat Reader by its Win-
dows program name and kills the process if it is running. We use the FIELDWIDTHS
feature to treat the program name and all its arguments as a single field. This cor-
rectly prints the complete program name and arguments even when it contains
embedded blanks. Field references in awk are written as $1, $2, etc. These would be
treated as make variables if we did not quote them in some way. We can tell make to
pass the $n reference to awk instead of expanding it itself by escaping the dollar sign
in $n with an additional dollar sign, $$n. make will see the double dollar sign, collapse
it to a single dollar sign and pass it to the subshell.

Nice macro. And the define directive saves us from duplicating the code if we want
to use it often. But it isn’t perfect. What if we want to kill processes other than the
Acrobat Reader? Do we have to define another macro and duplicate the script? No!

Variables and macros can be passed arguments so that each expansion can be differ-
ent. The parameters of the macro are referenced within the body of the macro defini-
tion with $1, $2, etc. To parameterize our kill-acroread function, we only need to
add a search parameter:

AWK := awk

KILL 1= kill
KILL_FLAGS := -f

PS i= ps

PS FLAGS  := -W
PS_FIELDS := "9 47 100"

# $(call kill-program,awk-pattern)
define kill-program
@ $(PS) $(PS_FLAGS) | \
$(AWK) 'BEGIN { FIELDWIDTHS = $(PS_FIELDS) } \
/$1/ Ao \
print "Killing " $$3; \
system( "$(KILL) $(KILL FLAGS) " $$1 ) \
3
endef

We’ve replaced the awk search pattern, /AcroRd32/, with a parameter reference, $1.
Note the subtle distinction between the macro parameter, $1, and the awk field refer-
ence, $$1. It is very important to remember which program is the intended recipient
for a variable reference. As long as we’re improving the function, we have also

* The Cygwin tools are a port of many of the standard GNU and Linux programs to Windows. It includes the
compiler suite, X11R6, ssh, and even inetd. The port relies on a compatibility library that implements Unix
system calls in terms of Win32 API functions. It is an incredible feat of engineering and I highly recommend
it. Download it from http://www.cygwin.com.

62 | Chapter4: Functions



renamed it appropriately and replaced the Cygwin-specific, hardcoded values with
variables. Now we have a reasonably portable macro for terminating processes.

So let’s see it in action:

FOP 1= org.apache.fop.apps.Fop
FOP_FLAGS := -q
FOP_OUTPUT := > /dev/null
%.pdf: %.fo
$(call kill-program,AcroRd32)
$(JAVA) $(FOP) $(FOP_FLAGS) $< $@ $(FOP_OUTPUT)

This pattern rule kills the Acrobat process, if one is running, and then converts an fo
(Formatting Objects) file into a pdf file by invoking the Fop processor (http://xml.
apache.org/fop). The syntax for expanding a variable or macro is:

$(call macro-name[, parami...])

call is a built-in make function that expands its first argument and replaces occur-
rences of $1, $2, etc., with the remaining arguments it is given. (In fact, it doesn’t
really “call” its macro argument at all in the sense of transfer of control, rather it per-
forms a special kind of macro expansion.) The macro-name is the name of any macro
or variable (remember that macros are just variables where embedded newlines are
allowed). The macro or variable value doesn’t even have to contain a $n reference,
but then there isn’t much point in using call at all. Arguments to the macro follow-
ing macro-name are separated by commas.

Notice that the first argument to call is an unexpanded variable name (that is, it
does not begin with a dollar sign). That is fairly unusual. Only one other built-in
function, origin, accepts unexpanded variables. If you enclose the first argument to
call in a dollar sign and parentheses, that argument is expanded as a variable and its
value is passed to call.

There is very little in the way of argument checking with call. Any number of argu-
ments can be given to call. If a macro references a parameter $n and there is no cor-
responding argument in the call instance, the variable collapses to nothing. If there
are more arguments in the call instance than there are $n references, the extra argu-
ments are never expanded in the macro.

If you invoke one macro from another, you should be aware of a somewhat strange
behavior in make 3.80. The call function defines the arguments as normal make vari-
ables for the duration of the expansion. So if one macro invokes another, it is possi-
ble that the parent’s arguments will be visible in the child macro’s expansion:
define parent
echo "parent has two parameters: $1, $2"

$(call child,$1)
endef

define child
echo "child has one parameter: $1"

User-Defined Functions | 63



echo "but child can also see parent's second parameter: $2!"
endef

scoping_issue:
@$(call parent,one,two)

When run, we see that the macro implementation has a scoping issue.

$ make

parent has two parameters: one, two

child has one parameter: one

but child can also see parent's second parameter: two!

This has been resolved in 3.81 so that $2 in child collapses to nothing.

We'll spend a lot more time with user-defined functions throughout the rest of the
book, but we need more background before we can get into the really fun stuff!

Built-in Functions

Once you start down the road of using make variables for more than just simple con-
stants you’ll find that you want to manipulate the variables and their contents in
more and more complex ways. Well, you can. GNU make has a couple dozen built-in
functions for working with variables and their contents. The functions fall into sev-
eral broad categories: string manipulation, filename manipulation, flow control,
user-defined functions, and some (important) miscellaneous functions.

But first, a little more about function syntax. All functions have the form:
$(function-name argi[, argn])

The $( is followed by built-in function name and then followed by the arguments to
the function. Leading whitespace is trimmed from the first argument, but all subse-
quent arguments include any leading (and, of course, embedded and following)
whitespace.

Function arguments are separated by commas, so a function with one argument uses
no commas, a function with two arguments uses one comma, etc. Many functions
accept a single argument, treating it as a list of space-separated words. For these
functions, the whitespace between words is treated as a single-word separator and is
otherwise ignored.

[ like whitespace. It makes the code more readable and easier to maintain. So I'll be
using whitespace wherever I can “get away” with it. Sometimes, however, the
whitespace in an argument list or variable definition can interfere with the proper
functioning of the code. When this happens, you have little choice but to remove the
problematic whitespace. We already saw one example earlier in the chapter where
trailing whitespace was accidentally inserted into the search pattern of a grep com-
mand. As we proceed with more examples, we’ll point out where whitespace issues
arise.

64 | Chapter4: Functions



Many make functions accept a pattern as an argument. This pattern uses the same
syntax as the patterns used in pattern rules (see the section “Pattern Rules” in
Chapter 2). A pattern contains a single % with leading or trailing characters (or both).
The % character represents zero or more characters of any kind. To match a target
string, the pattern must match the entire string, not just a subset of characters within
the string. We'll illustrate this with an example shortly. The % character is optional in
a pattern and is commonly omitted when appropriate.

String Functions

Most of make’s built-in functions manipulate text in one form or another, but certain
functions are particularly strong at string manipulation, and these will be discussed
here.

A common string operation in make is to select a set of files from a list. This is what
grep is typically used for in shell scripts. In make we have the filter, filter-out, and
findstring functions.

$(filter pattern...,text)
The filter function treats text as a sequence of space separated words and
returns a list of those words matching pattern. For instance, to build an archive
of user-interface code, we might want to select only the object files in the ui sub-
directory. In the following example, we extract the filenames starting with ui/
and ending in .o from a list of filenames. The % character matches any number of
characters in between:
$(ui_library): $(filter ui/%.o,$(objects))
$(AR) $(ARFLAGS) $@ $"
It is also possible for filter to accept multiple patterns, separated by spaces. As
noted above, the pattern must match an entire word for the word to be included
in the output list. So, for instance:
words := he the hen other the%
get-the:
@echo he matches: $(filter he, $(words))
@echo %he matches: $(filter %he, $(words))

@echo he% matches: $(filter he%, $(words))
@echo %he% matches: $(filter %he%, $(words))

When executed the makefile generates the output:

$ make

he matches: he

%he matches: he the

he% matches: he hen

%he% matches: the%
As you can see, the first pattern matches only the word he, because the pattern
must match the entire word, not just a part of it. The other patterns match he
plus words that contain he in the right position.

Built-in Functions | 65



A pattern can contain only one %. If additional % characters are included in the
pattern, all but the first are treated as literal characters.

It may seem odd that filter cannot match substrings within words or accept
more than one wildcard character. You will find times when this functionality is
sorely missed. However, you can implement something similar using looping
and conditional testing. We’ll show you how later.

$(filter-out pattern. .. text)

The filter-out function does the opposite of filter, selecting every word that
does not match the pattern. Here we select all files that are not C headers.

all source := count_words.c counter.c lexer.l counter.h lexer.h
to compile := $(filter-out %.h, $(all source))

$(findstring string,text)

This function looks for string in text. If the string is found, the function returns
string; otherwise, it returns nothing.

At first, this function might seem like the substring searching grep function we
thought filter might be, but not so. First, and most important, this function
returns just the search string, not the word it finds that contains the search
string. Second, the search string cannot contain wildcard characters (putting it
another way, % characters in the search string are matched literally).

This function is mostly useful in conjunction with the if function discussed
later. There is, however, one situation where I've found findstring to be useful
in its own right.

Suppose you have several trees with parallel structure such as reference source,
sandbox source, debugging binary, and optimized binary. You’d like to be able
to find out which tree you are in from your current directory (without the cur-
rent relative path from the root). Here is some skeleton code to determine this:
find-tree:

# PWD = $(PWD)

# $(findstring /test/book/admin,$(PWD))

# $(findstring /test/book/bin,$(PWD))

# $(findstring /test/book/dblite 0.5,$(PWD))

# $(findstring /test/book/examples,$(PWD))

# $(findstring /test/book/out,$(PWD))

# $(findstring /test/book/text,$(PWD))
(Each line begins with a tab and a shell comment character so each is “exe-
cuted” in its own subshell just like other commands. The Bourne Again Shell,
bash, and many other Bourne-like shells simply ignore these lines. This is a more
convenient way to print out the expansion of simple make constructs than typing
@echo. You can achieve almost the same effect using the more portable : shell
operator, but the : operator performs redirections. Thus, a command line con-
taining > word creates the file word as a side effect.) When run, it produces:

$ make
# PWD = /test/book/out/cho3-findstring-1

66

| Chapter4: Functions



H o HF R

# /test/book/out

#
As you can see, each test against $(PWD) returns null until we test our parent
directory. Then the parent directory itself is returned. As shown, the code is
merely as a demonstration of findstring. This can be used to write a function
returning the current tree’s root directory.

There are two search and replace functions:

$(subst search-string,replace-string,text)
This is a simple, nonwildcard, search and replace. One of its most common uses
is to replace one suffix with another in a list of filenames:

sources := count words.c counter.c lexer.c

objects := $(subst .c,.o0,$(sources))
This replaces all occurrences of “.c” with “.0” anywhere in $(sources), or, more
generally, all occurrences of the search string with the replacement string.

This example is a commonly found illustration of where spaces are significant in
function call arguments. Note that there are no spaces after the commas. If we
had instead written:

sources := count_words.c counter.c lexer.c

objects := $(subst .c, .o, $(sources))
(notice the space after each comma), the value of $(objects) would have been:

count_words .o counter .o lexer .o

Not at all what we want. The problem is that the space before the .0 argument is
part of the replacement text and was inserted into the output string. The space
before the .c is fine because all whitespace before the first argument is stripped
off by make. In fact, the space before $(sources) is probably benign as well since
$(objects) will most likely be used as a simple command-line argument where
leading spaces aren’t a problem. However, I would never mix different spacing
after commas in a function call even if it yields the correct results:

# Yech, the spacing in this call is too subtle.

objects := $(subst .c,.o0, $(source))
Note that subst doesn’t understand filenames or file suffixes, just strings of char-
acters. If one of my source files contains a .c internally, that too will be substi-
tuted. For instance, the filename car.cdr.c would be transformed into car.odr.o.
Probably not what we want.
In the section “Automatic Dependency Generation” in Chapter 2, we talked
about dependency generation. The last example makefile of that section used
subst like this:

VPATH = src include
CPPFLAGS = -I include

Built-in Functions | 67



SOURCES = count_words.c \
lexer.c \
counter.c
count_words: counter.o lexer.o -1fl
count_words.o: counter.h
counter.o: counter.h lexer.h
lexer.o: lexer.h
include $(subst .c,.d,$(SOURCES))

%.d: %.c
$(CC) -M $(CPPFLAGS) $< > $@.$$$%; \
sed 's,\($*\)\.o[ :]*,\1.0 $@ : ,g' < $@.$3$%% > $@; \
m - $@.$$$3$

The subst function is used to transform the source file list into a dependency file
list. Since the dependency files appear as an argument to include, they are con-
sidered prerequisites and are updated using the %.d rule.

$(patsubst search-pattern,replace-pattern,text)

This is the wildcard version of search and replace. As usual, the pattern can con-
tain a single %. A percent in the replace-pattern is expanded with the matching
text. It is important to remember that the search-pattern must match the entire
value of text. For instance, the following will delete a trailing slash in text, not
every slash in text:

strip-trailing-slash = $(patsubst %/,%,$(directory-path))
Substitution references are a portable way of performing the same substitution.
The syntax of a substitution reference is:

$(variable:search=replace)

The search text can be a simple string; in which case, the string is replaced with
replace whenever it occurs at the end of a word. That is, whenever it is followed
by whitespace or the end of the variable value. In addition, search can contain a
% representing a wildcard character; in which case, the search and replace follow
the rules of patsubst. I find this syntax to be obscure and difficult to read in
comparison to patsubst.

As we’ve seen, variables often contain lists of words. Here are functions to select
words from a list, count the length of a list, etc. As with all make functions, words are
separated by whitespace.

$(words text)

This returns the number of words in text.

CURRENT PATH := $(subst /, ,$(HOME))
words:
@echo My HOME path has $(words $(CURRENT PATH)) directories.
This function has many uses, as we’ll see shortly, but we need to cover a few
more functions to use it effectively.

68

Chapter 4: Functions



$(word n,text)
This returns the nth word in text. The first word is numbered 1. If n is larger than
the number of words in text, the value of the function is empty.
version list := $(subst ., ,$(MAKE_VERSION))
minor version := $(word 2, $(version list))
The variable MAKE_VERSION is a built-in variable. (See the section “Standard make
Variables” in Chapter 3.)

You can always get the last word in a list with:
current := $(word $(words $(MAKEFILE LIST)), $(MAKEFILE LIST))
This returns the name of the most recently read makefile.

$(firstword text)
This returns the first word in text. This is equivalent to $(word 1,text).
version list := $(subst ., ,$(MAKE_VERSION))
major_version := $(firstword $(version list))
$(wordlist start,end,text)
This returns the words in text from start to end, inclusive. As with the word
function, the first word is numbered 1. If start is greater than the number of
words, the value is empty. If start is greater than end, the value is empty. If end
is greater than the number of words, all words from start on are returned.
# $(call uid _gid, user-name)
uid _gid = $(wordlist 3, 4, \

$(subst =, , \
$(shell grep "~$1:" /etc/passwd)))

Important Miscellaneous Functions

Before we push on to functions for managing filenames, let’s introduce two very use-
ful functions: sort and shell.

$(sort list)

The sort function sorts its list argument and removes duplicates. The resulting
list contains all the unique words in lexicographic order, each separated by a sin-
gle space. In addition, sort strips leading and trailing blanks.

$ make -f- <<< 'x:;@echo =$(sort d bs d t )='

=b d s t=
The sort function is, of course, implemented directly by make, so it does not sup-
port any of the options of the sort program. The function operates on its argu-
ment, typically a variable or the return value of another make function.

$(shell command)
The shell function accepts a single argument that is expanded (like all argu-
ments) and passed to a subshell for execution. The standard output of the com-
mand is then read and returned as the value of the function. Sequences of

Built-in Functions | 69



newlines in the output are collapsed to a single space. Any trailing newline is
deleted. The standard error is not returned, nor is any program exit status.
stdout := $(shell echo normal message)
stderr := $(shell echo error message 1>82)
shell-value:
# $(stdout)
# $(stderr)
As you can see, messages to stderr are sent to the terminal as usual and so are
not included in the output of the shell function:
$ make
€rror message

# normal message
#

Here is a loop to create a set of directories:

REQUIRED DIRS = ...
_MKDIRS := $(shell for d in $(REQUIRED DIRS); \
do \
[[ -d $$d 1] || mkdir -p $8d; \
done)
Often, a makefile is easier to implement if essential output directories can be
guaranteed to exist before any command scripts are executed. This variable cre-
ates the necessary directories by using a bash shell “for” loop to ensure that a set
of directories exists. The double square brackets are bash test syntax similar to
the test program except that word splitting and pathname expansion are not
performed. Therefore if the variable contains a filename with embedded spaces,
the test still works correctly (and without quoting). By placing this make variable
assignment early in the makefile, we ensure it is executed before command
scripts or other variables use the output directories. The actual value of MKDIRS
is irrelevant and _MKDIRS itself would never be used.

Since the shell function can be used to invoke any external program, you should be
careful how you use it. In particular, you should consider the distinction between
simple variables and recursive variables.

START TIME  := $(shell date)

CURRENT TIME = $(shell date)
The START TIME variable causes the date command to execute once when the vari-
able is defined. The CURRENT_TIME variable will reexecute date each time the variable
is used in the makefile.

Our toolbox is now full enough to write some fairly interesting functions. Here is a
function for testing whether a value contains duplicates:

# $(call has-duplicates, word-list)

has-duplicates = $(filter \
$(words $1) \
$(words $(sort $1))))

70 | Chapter4: Functions



We count the words in the list and the unique list, then “compare” the two num-
bers. There are no make functions that understand numbers, only strings. To com-
pare two numbers, we must compare them as strings. The easiest way to do that is
with filter. We search for one number in the other number. The has-duplicates
function will be non-null if there are duplicates.

Here is a simple way to generate a filename with a timestamp:
RELEASE_TAR := mpwm-$(shell date +%F).tar.gz

This produces:
mpwm-2003-11-11.tar.gz

We could produce the same filename and have date do more of the work with:
RELEASE_TAR := $(shell date +mpwm-%F.tar.gz)

The next function can be used to convert relative paths (possibly from a com direc-
tory) into a fully qualified Java class name:

# $(call file-to-class-name, file-name)
file-to-class-name := $(subst /,.,$(patsubst %.java,%,$1))

This particular pattern can be accomplished with two substs as well:

# $(call file-to-class-name, file-name)
file-to-class-name := $(subst /,.,$(subst .java,,$1))

We can then use this function to invoke the Java class like this:

CALIBRATE_ELEVATOR := com/wonka/CalibrateElevator.java
calibrate:
$(JAVA) $(call file-to-class-name,$(CALIBRATE ELEVATOR))

If there are more parent directory components in $(sources) above com, they can be
removed with the following function by passing the root of the directory tree as the
first argument:”

# $(call file-to-class-name, root-dir, file-name)

file-to-class-name := $(subst /,., \

$(subst .java,, \
$(subst $1/,,%$2)))

When reading functions such as this, it is typically easiest to try to understand them
inside out. Beginning at the inner-most subst, the function removes the string $1/,
then removes the string .java, and finally converts all slashes to periods.

* In Java, it is suggested that all classes be declared within a package containing the developer’s complete Inter-
net domain name, reversed. Also, the directory structure typically mirrors the package structure. Therefore,
many source trees look like root-dir/com/company-name/dir.

Built-in Functions | 71



Filename Functions

Makefile writers spend a lot of time handling files. So it isn’t surprising there are a lot
of make functions to help with this task.

$wildcard pattern...)

Wildcards were covered in Chapter 2, in the context of targets, prerequisites,
and command scripts. But what if we want this functionality in another context,
say a variable definition? With the shell function, we could simply use the sub-
shell to expand the pattern, but that would be terribly slow if we needed to do
this very often. Instead, we can use the wildcard function:

sources := $(wildcard *.c *.h)

The wildcard function accepts a list of patterns and performs expansion on each
one.” If a pattern does not match any files, the empty string is returned. As with
wildcard expansion in targets and prerequisites, the normal shell globbing char-
acters are supported: ~, *, 2, [...],and [*...].
Another use of wildcard is to test for the existence of a file in conditionals. When
used in conjunction with the if function (described shortly) you often see
wildcard function calls whose argument contains no wildcard characters at all.
For instance,

dot-emacs-exists := $(wildcard ~/.emacs)
will return the empty string if the user’s home directory does not contain a
.emacs file.

$(dir list...)

The dir function returns the directory portion of each word in list. Here is an
expression to return every subdirectory that contains C files:
source-dirs := $(sort \
$(dir \
$(shell find . -name '*.c')))
The find returns all the source files, then the dir function strips off the file por-
tion leaving the directory, and the sort removes duplicate directories. Notice that
this variable definition uses a simple variable to avoid reexecuting the find each
time the variable is used (since we assume source files will not spontaneously
appear and disappear during the execution of the makefile). Here’s a function
implementation that requires a recursive variable:
# $(call source-dirs, dir-list)
source-dirs = $(sort \
$(dir \
$(shell find $1 -name '*.c'))))

* The make 3.80 manual fails to mention that more than one pattern is allowed.

72

Chapter 4: Functions



This version accepts a space-separated directory list to search as its first parame-
ter. The first arguments to find are one or more directories to search. The end of
the directory list is recognized by the first dash argument. (A find feature I didn’t
know about for several decades!)

$(notdir name...)
The notdir function returns the filename portion of a file path. Here is an
expression to return the Java class name from a Java source file:
# $(call get-java-class-name, file-name)
get-java-class-name = $(notdir $(subst .java,,$1))
There are many instances where dir and notdir can be used together to produce
the desired output. For instance, suppose a custom shell script must be exe-
cuted in the same directory as the output file it generates.
$(0UT) /myfile.out: $(SRC)/sourcel.in $(SRC)/source2.in
cd $(dir $@); \
generate-myfile $" > $(notdir $@)
The automatic variable, $@, representing the target, can be decomposed to yield
the target directory and file as separate values. In fact, if OUT is an absolute path,
it isn’t necessary to use the notdir function here, but doing so will make the out-
put more readable.

In command scripts, another way to decompose a filename is through the use of
$(@D) and $(@F) as mentioned in the section “Automatic Variables” in Chapter 2.

Here are functions for adding and removing file suffixes, etc.

$(suffix name...)
The suffix function returns the suffix of each word in its argument. Here is a
function to test whether all the words in a list have the same suffix:
# $(call same-suffix, file-list)
same-suffix = $(filter 1 $(words $(sort $(suffix $1))))
A more common use of the suffix function is within conditionals in conjunc-
tion with findstring.

$(basename name. . .)

The basename function is the complement of suffix. It returns the filename with-
out its suffix. Any leading path components remain intact after the basename call.
Here are the earlier file-to-class-name and get-java-class-name functions re-
written with basename:

# $(call file-to-class-name, root-directory, file-name)

file-to-class-name := $(subst /,., \

$(basename \
$(subst $1/,,$2)))
# $(call get-java-class-name, file-name)
get-java-class-name = $(notdir $(basename $1))

Built-in Functions | 73



$(addsuffix suffix,name...)
The addsuffix function appends the given suffix text to each word in name. The
suffix text can be anything. Here is a function to find all the files in the PATH that
match an expression:

# $(call find-program, filter-pattern)

find-program = $(filter $1,
$(wildcard

$(addsuffix /*,
$(sort

$(subst :, ,

$(subst ::,:.:,
$(patsubst :%,.:%,
$(patsubst %:,%:.,$

~ s s s s s -

PATH)))))))
find:
@echo $(words $(call find-program, %))

The inner-most three substitutions account for a special case in shell syntax. An
empty path component is taken to mean the current directory. To normalize this
special syntax we search for an empty trailing path component, an empty lead-
ing path component, and an empty interior path component, in that order. Any
matching components are replaced with “.”. Next, the path separator is replaced
with a space to create separate words. The sort function is used to remove
repeated path components. Then the globbing suffix /*is appended to each word
and wildcard is invoked to expand the globbing expressions. Finally, the desired
patterns are extracted by filter.

Although this may seem like an extremely slow function to run (and it may well
be on many systems), on my 1.9 GHz P4 with 512 MB this function executes in
0.20 seconds and finds 4,335 programs. This performance can be improved by
moving the $1 argument inside the call to wildcard. The following version elimi-
nates the call to filter and changes addsuffix to use the caller’s argument.

# $(call find-program,wildcard-pattern)
find-program = $(wildcard
$(addsuffix /%1,
$(sort
$(subst :, ,
$(subst ::,:.:,
$(patsubst :%,.:%, \
$(patsubst %:,%:.,$(PATH))))))))

P

find:
@echo $(words $(call find-program,*))
This version runs in 0.17 seconds. It runs faster because wildcard no longer
returns every file only to make the function discard them later with filter. A
similar example occurs in the GNU make manual. Notice also that the first ver-
sion uses filter-style globbing patterns (using % only) while the second version
uses wildcard-style globbing patterns (~, *, 2, [...], and [*...]).

74 | Chapter4: Functions



$(addprefix prefix,name. .. )
The addprefix function is the complement of addsuffix. Here is an expression to
test whether a set of files exists and is nonempty:
# $(call valid-files, file-list)
valid-files = test -s . $(addprefix -a -s ,$1)
This function is different from most of the previous examples in that it is
intended to be executed in a command script. It uses the shell’s test program
with the -s option (“true if the file exists and is not empty”) to perform the test.
Since the test command requires a -a (and) option between multiple filenames,
addprefix prepends the -a before each filename. The first file used to start the
“and” chain is dot, which always yields true.
$(join prefix-list,suffix-1ist)
The join function is the complement of dir and notdir. It accepts two lists and
concatenates the first element from prefix-list with the first element from
suffix-list, then the second element from prefix-list with the second ele-
ment from suffix-list and so on. It can be used to reconstruct lists decom-
posed with dir and notdir.

Flow Control

Because many of the functions we have seen so far are implemented to perform their
operations on lists, they work well even without a looping construct. But without a
true looping operator and conditional processing of some kind the make macro lan-
guage would be very limited, indeed. Fortunately, make provides both of these
language features. I have also thrown into this section the fatal error function, clearly
a very extreme form of flow control!

$(if condition,then-part,else-part)
The if function (not to be confused with the conditional directives ifeq, ifneq,
ifdef, and ifndef discussed in Chapter 3) selects one of two macro expansions
depending on the “value” of the conditional expression. The condition is true if
its expansion contains any characters (even space). In this case, the then-part is
expanded. Otherwise, if the expansion of condition is empty, it is false and the
else-part is expanded.”

Here is an easy way to test whether the makefile is running on Windows. Look
for the COMSPEC environment variable defined only on Windows:
PATH_SEP := $(if $(COMSPEC),;,:)

* In Chapter 3, I made a distinction between macro languages and other programming languages. Macro lan-
guages work by transforming source text into output text through defining and expanding macros. This dis-
tinction becomes clearer as we see how the if function works.

Built-in Functions | 75



make evaluates the condition by first removing leading and trailing whitespace,
then expanding the expression. If the expansion yields any characters (including
whitespace), the expression is true. Now PATH_SEP contains the proper character
to use in paths, whether the makefile is running on Windows or Unix.

In the last chapter, we mentioned checking the version of make if you use some of
the newest features (like eval). The if and filter functions are often used
together to test the value of a string:
$(if $(filter $(MAKE VERSION),3.80),,\
$(error This makefile requires GNU make version 3.80.))
Now, as subsequent versions of make are released, the expression can be
extended with more acceptable versions:
$(if $(filter $(MAKE_VERSION),3.80 3.81 3.90 3.92),,\
$(error This makefile requires one of CNU make version ...))
This technique has the disadvantage that the code must be updated when a new
version of make is installed. But that doesn’t happen very often. (For instance, 3.80
has been the release version since October 2002.) The above test can be added to
a makefile as a top-level expression since the if collapses to nothing if true and
error terminates the make otherwise.

$(error text)

The error function is used for printing fatal error messages. After the function
prints its message, make terminates with an exit status of 2. The output is pre-
fixed with the name of the current makefile, the current line number, and the
message text. Here is an implementation of the common assert programming
construct for make:
# $(call assert,condition,message)
define assert
$(if $1,,$(error Assertion failed: $2))
endef
# $(call assert-file-exists,wildcard-pattern)
define assert-file-exists
$(call assert,$(wildcard $1),$1 does not exist)
endef
# $(call assert-not-null,make-variable)
define assert-not-null
$(call assert,$($1),The variable "$1" is null)
endef
error-exit:
$(call assert-not-null,NON_EXISTENT)
The first function, assert, just tests its first argument and prints the user’s error
message if it is empty. The second function builds on the first and tests that a
wildcard pattern yields an existing file. Note that the argument can include any
number of globbing patterns.

The third function is a very useful assert that relies on computed variables. A make
variable can contain anything, including the name of another make variable. But

76

Chapter 4: Functions



if a variable contains the name of another variable how can you access the value
of that other variable? Well, very simply by expanding the variable twice:

NO_SPACE_MSG := No space left on device.
NO_FILE MSG := File not found.

STATUS_MSG  := NO_SPACE_MSG

$(error $($(STATUS_MSC)))
This example is slightly contrived to keep it simple, but here STATUS MSG is set to
one of several error messages by storing the error message variable name. When
it comes time to print the message, STATUS_MSG is first expanded to access the
error message variable name, $(STATUS_MSG), then expanded again to access the
message text, $($(STATUS MSG)). In our assert-not-null function we assume
the argument to the function is the name of a make variable. We first expand the
argument, $1, to access the variable name, then expand again, $($1), to deter-
mine if it has a value. If it is null, then we have the variable name right in $1 to
use in the error message.

make
;akefile:14: *** Assertion failed: The variable "NON EXISTENT" is null. Stop.
There is also a warning function (see the section “Less Important Miscellaneous
Functions” later in this chapter) that prints a message in the same format as
error, but does not terminate make.

$(foreach variable,list,body)
The foreach function provides a way to expand text repeatedly while substitut-
ing different values into each expansion. Notice that this is different from exe-
cuting a function repeatedly with different arguments (although it can do that,
too). For example:

letters := $(foreach letter,a b c d,$(letter))
show-words:
# letters has $(words $(letters)) words: '$(letters)’
$ make
# letters has 4 words: 'a b c d'
When this foreach is executed, it sets the loop control variable, letter, to each
value in a b ¢ d and expands the body of the loop, $(letter), once for each

value. The expanded text is accumulated with a space separating each expansion.

Here is a function to test if a set of variables is set:

VARIABLE_LIST := SOURCES OBJECTS HOME
$(foreach i,$(VARIABLE_LIST), \
$(if $(%$1),, \
$(shell echo $i has no value > /dev/stderr)))
(The pseudo file /dev/stderr in the shell function requires setting SHELL to bash.)
This loop sets i to each word of VARIABLE_LIST. The test expression inside the if
first evaluates $i to get the variable name, then evaluates this again in a com-
puted expression $($i) to see if it is non-null. If the expression has a value, the
then part does nothing; otherwise, the else part prints a warning. Note that if we

Built-in Functions | 77



omit the redirection from the echo, the output of the shell command will be
substituted into the makefile, yielding a syntax error. As shown, the entire
foreach loop expands to nothing.

As promised earlier, here is a function that gathers all the words that contain a
substring from a list:

# $(call grep-string, search-string, word-list)
define grep-string

$(strip \
$(foreach w, $2, \
$(if $(findstring $1, $w), \
w)))
endef
words := count_words.c counter.c lexer.l lexer.h counter.h
find-words:

@echo $(call grep-string,un,$(words))
Unfortunately, this function does not accept patterns, but it does find simple
substrings:

$ make
count_words.c counter.c counter.h

Style note concerning variables and parentheses

As noted earlier, parentheses are not required for make variables of one character. For
instance, all of the basic automatic variables are one character. Automatic variables
are universally written without parentheses even in the GNU make manual. How-
ever, the make manual uses parentheses for virtually all other variables, even single
character variables, and strongly urges users to follow suit. This highlights the spe-
cial nature of make variables since almost all other programs that have “dollar vari-
ables” (such as shells, perl, awk, yacc, etc.) don’t require parentheses. One of the
more common make programming errors is forgetting parentheses. Here is a com-
mon use of foreach containing the error:
INCLUDE_DIRS := ..

INCLUDES := $(foreach i,$INCLUDE_DIRS,-I $i)
# INCLUDES now has the value "-I NCLUDE DIRS"

However, I find that reading macros can be much easier through the judicious use of
single-character variables and omitting unnecessary parentheses. For instance, I
think the has-duplicates function is easier to read without full parentheses:

# $(call has-duplicates, word-list)

has-duplicates = $(filter \
$(words $1) \
$(words $(sort $1))))

VErsus:

# $(call has-duplicates, word-list)

has-duplicates = $(filter \
$(words $(1)) \
$(words $(sort $(1)))))

78 | Chapter4: Functions



However, the kill-program function might be more readable with full parentheses
since it would help distinguish make variables from shell variables or variables used in
other programs:
define kill-program
@ $(PS) $(PS_FLAGS) | \
$(AWK) 'BEGIN { FIELDWIDTHS = $(PS_FIELDS) } \
/$(1)/{ \
print "Killing " $$3; \
system( "$(KILL) $(KILLFLAGS) " $$1 ) \
b
endef
The search string contains the first parameter to the macro, $(1). $$3 and $$1 refer to
awk variables.

[ use single-character variables and omit the parentheses only when it seems to make
the code more readable. I typically do this for the parameters to macros and the con-
trol variable in foreach loops. You should follow a style that suits your situation. If
you have any doubts about the maintainability of your makefiles, follow the make
manual’s suggestion and use full parentheses. Remember, the make program is all
about easing the problems associated with maintaining software. If you keep that in
mind as you write your makefiles, you will most likely stay clear of trouble.

Less Important Miscellaneous Functions

Finally, we have some miscellaneous (but important) string functions. Although
minor in comparison with foreach or call, you’ll find yourself using these very often.

$(strip text)
The strip function removes all leading and trailing whitespace from text and
replaces all internal whitespace with a single space. A common use for this func-
tion is to clean up variables used in conditional expressions.

[ most often use this function to remove unwanted whitespace from variable and
macro definitions I've formatted across multiple lines. But it can also be a good
idea to wrap the function parameters $1, $2, etc., with strip if the function is
sensitive to leading blanks. Often programmers unaware of the subtleties of make
will add a space after commas in a call argument list.

$(origin variable)
The origin function returns a string describing the origin of a variable. This can
be very useful in deciding how to use the value of a variable. For instance, you
might want to ignore the value of a variable if it came from the environment, but
not if it was set from the command line. For a more concrete example, here is a
new assert function that tests if a variable is defined:

# $(call assert-defined,variable-name)
define assert-defined
$(call assert, \

Built-in Functions | 79



$(filter-out undefined,$(origin $1)), \
'$1' is undefined)
endef

The possible return values of origin are:

undefined
The variable has never been defined.

default
The variable’s definition came from make’s built-in database. If you alter the
value of a built-in variable, origin returns the origin of the most recent
definition.

environment
The variable’s definition came from the environment (and the --environment-
overrides option is not turned on).

environment override
The variable’s definition came from the environment (and the --environment-
overrides option is turned on).
file
The variable’s definition came from the makefile.
command line
The variable’s definition came from the command line.

override
The variable’s definition came from an override directive.

automatic
The variable is an automatic variable defined by make.

$(warning text)
The warning function is similar to the error function except that it does not
cause make to exit. Like the error function, the output is prefixed with the name
of the current makefile and the current line number followed by the message
text. The warning function expands to the empty string so it can be used almost
anywhere.
$(if $(wildcard $(JAVAC)),, \

$(warning The java compiler variable, JAVAC ($(JAVAC)), \
is not properly set.))

Advanced User-Defined Functions

We'll spend a lot of time writing macro functions. Unfortunately, there aren’t many
features in make for helping to debug them. Let’s begin by trying to write a simple
debugging trace function to help us out.

As we’ve mentioned, call will bind each of its parameters to the numbered variables
$1, $2, etc. Any number of arguments can be given to call. As a special case, the

80 | Chapter4: Functions



name of the currently executing function (i.e., the variable name) is accessible
through $0. Using this information, we can write a pair of debugging functions for
tracing through macro expansion:

# $(debug-enter)

debug-enter = $(if $(debug_trace),\
$(warning Entering $0($(echo-args))))

# $(debug-leave)
debug-leave = $(if $(debug trace),$(warning Leaving $0))

comma := ,
echo-args = $(subst ' ','$(comma) ',\
$(foreach a,1 234567 89,'$(%a)"))

If we want to watch how functions a and b are invoked, we can use these trace func-
tions like this:

debug trace = 1

define a
$(debug-enter)
@echo $1 $2 $3
$(debug-1leave)

endef

define b
$(debug-enter)
$(call a,$1,%$2,hi)
$(debug-1leave)

endef

trace-macro:
$(call b,5,$(MAKE))

By placing debug-enter and debug-leave variables at the start and end of your func-
tions, you can trace the expansions of your own functions. These functions are far
from perfect. The echo-args function will echo only the first nine arguments and,
worse, it cannot determine the number of actual arguments in the call (of course,
neither can make!). Nevertheless, I've used these macros “as is” in my own debug-
ging. When executed, the makefile generates this trace output:

$ make

makefile:14: Entering b( 's', 'make', "', "', "', "', t, U,

makefile:14: Entering a( 's', 'make', ‘hi', "', "', ',y )

makefile:14: Leaving a

makefile:14: Leaving b

5 make hi
As a friend said to me recently, “I never thought of make as a programming language
before.” GNU make isn’t your grandmother’s make!

Advanced User-Defined Functions | 81



eval and value

The eval function is completely different from the rest of the built-in functions. Its
purpose is to feed text directly to the make parser. For instance,

$(eval sources := foo.c bar.c)

The argument to eval is first scanned for variables and expanded (as all arguments to
all functions are), then the text is parsed and evaluated as if it had come from an
input file. This example is so simple you might be wondering why you would bother
with this function. Let’s try a more interesting example. Suppose you have a makefile
to compile a dozen programs and you want to define several variables for each pro-
gram, say sources, headers, and objects. Instead of repeating these variable assign-
ments over and over with each set of variables:
1s sources := Is.c glob.c

1s_headers := 1s.h glob.h
1s objects := 1s.o glob.o

We might try to define a macro to do the job:

# $(call program-variables, variable-prefix, file-list)
define program-variables

$1 sources = $(filter %.c,$2)

$1 _headers = $(filter %.h,$2)

$1 objects = $(subst .c,.o0,$(filter %.c,$2))
endef

$(call program-variables, 1s, 1s.c 1ls.h glob.c glob.h)

show-variables:
# $(1s_sources)
# $(1s_headers)
# $(1s_objects)
The program-variables macro accepts two arguments: a prefix for the three variables
and a file list from which the macro selects files to set in each variable. But, when we
try to use this macro, we get the error:
$ make
Makefile:7: *** missing separator. Stop.
This doesn’t work as expected because of the way the make parser works. A macro (at
the top parsing level) that expands to multiple lines is illegal and results in syntax
errors. In this case, the parser believes this line is a rule or part of a command script
but is missing a separator token. Quite a confusing error message. The eval function
was introduced to handle this issue. If we change our call line to:

$(eval $(call program-variables, 1s, ls.c ls.h glob.c glob.h))
we get what we expect:

$ make
# 1s.c glob.c

82 | Chapter4: Functions



# 1s.h glob.h

# 1s.0 glob.o
Using eval resolves the parsing issue because eval handles the multiline macro
expansion and itself expands to zero lines.

Now we have a macro that defines three variables very concisely. Notice how the
assignments in the macro compose variable names from a prefix passed in to the
function and a fixed suffix, $1_sources. These aren’t precisely computed variables as
described previously, but they have much the same flavor.

Continuing this example, we realize we can also include our rules in the macro:

# $(call program-variables,variable-prefix,file-1list)
define program-variables

$1_sources = $(filter %.c,$2)

$1_headers = $(filter %.h,$2)

$1 objects = $(subst .c,.o0,$(filter %.c,$2))

$($1_objects): $($1_headers)
endef

1s: $(1s_objects)

$(eval $(call program-variables,ls,ls.c 1s.h glob.c glob.h))

Notice how these two versions of program-variables illustrate a problem with spaces
in function arguments. In the previous version, the simple uses of the two function
parameters were immune to leading spaces on the arguments. That is, the code
behaved the same regardless of any leading spaces in $1 or $2. The new version, how-
ever, introduced the computed variables $($1 objects) and $($1 headers). Now
adding a leading space to the first argument to our function (1s) causes the com-
puted variable to begin with a leading space, which expands to nothing because no
variable we’ve defined begins with a leading space. This can be quite an insidious
problem to diagnose.

When we run this makefile, we discover that somehow the .h prerequisites are being
ignored by make. To diagnose this problem, we examine make’s internal database by
running make with its --print-data-base option and we see something strange:

$ make --print-database | grep *ls

1s headers = 1s.h glob.h

1s_sources = 1s.c glob.c
1s objects = 1s.0 glob.o

Is.c:
Is.0: 1s.c
1s: 1s.o

The .h prerequisites for [s.o are missing! There is something wrong with the rule
using computed variables.

Advanced User-Defined Functions | 83



When make parses the eval function call, it first expands the user-defined function,
program-variables. The first line of the macro expands to:

1s_sources = 1s.c glob.c
Notice that each line of the macro is expanded immediately as expected. The other
variable assignments are handled similarly. Then we get to the rule:

$($1_objects): $($1_headers)
The computed variables first have their variable name expanded:

$(1s_objects): $(1s_headers)

Then the outer variable expansion is performed, yielding:

Wait! Where did our variables go? The answer is that the previous three assignment
statements were expanded but not evaluated by make. Let’s keep going to see how this

works. Once the call to program-variables has been expanded, make sees something
like:

$(eval 1s_sources = ls.c glob.c
1s headers = 1s.h glob.h
1s objects = 1s.o0 glob.o

)
The eval function then executes and defines the three variables. So, the answer is
that the variables in the rule are being expanded before they have actually been

defined.

We can resolve this problem by explicitly deferring the expansion of the computed
variables until the three variables are defined. We can do this by quoting the dollar
signs in front of the computed variables:

$$($1_objects): $$($1_headers)
This time the make database shows the prerequisites we expect:

$ make -p | grep *ls

1s headers = 1s.h glob.h
1s_sources = 1s.c glob.c
1s objects = 1s.0 glob.o

ls.c:
ls.o: 1Is.c 1s.h glob.h
1s: 1s.0

To summarize, the argument to eval is expanded twice: once when when make pre-
pares the argument list for eval, and once again by eval.

We resolved the last problem by deferring evaluation of the computed variables.
Another way of handling the problem is to force early evaluation of the variable
assignments by wrapping each one with eval:

# $(call program-variables,variable-prefix,file-list)
define program-variables

84 | Chapter4: Functions



$(eval $1 sources = $(filter %.c,$2))
$(eval $1 headers = $(filter %.h,$2))
$(eval $1 objects = $(subst .c,.o0,$(filter %.c,$2)))

$($1 objects): $($1_headers)
endef

1s: $(1s_objects)

$(eval $(call program-variables,ls,ls.c ls.h glob.c glob.h))

By wrapping the variable assignments in their own eval calls, we cause them to be
internalized by make while the program-variables macro is being expanded. They are
then available for use within the macro immediately.

As we enhance our makefile, we realize we have another rule we can add to our
macro. The program itself depends on its objects. So, to finish our parameterized
makefile, we add a top-level all target and need a variable to hold all the programs
our makefile can manage:

#$(call program-variables,variable-prefix,file-list)
define program-variables

$(eval $1 sources = $(filter %.c,$2))

$(eval $1 headers = $(filter %.h,$2))

$(eval $1 objects = $(subst .c,.o0,$(filter %.c,$2)))

programs += $1
$1: $($1_objects)

$($1 objects): $($1_headers)
endef

# Place all target here, so it is the default goal.
all:

$(eval $(call program-variables,ls,ls.c ls.h glob.c glob.h))
$(eval $(call program-variables,cp,...)
$(eval $(call program-variables,mv,...)
$(eval $(call program-variables,ln,...)
$(eval $(call program-variables,rm,...)

— — — —

# Place the programs prerequisite here where it is defined.

all: $(programs)
Notice the placement of the all target and its prerequisite. The programs variable is
not properly defined until after the five eval calls, but we would like to place the all
target first in the makefile so all is the default goal. We can satisfy all our constrains
by putting all first and adding the prerequisites later.

The program-variables function had problems because some variables were evaluated
too early. make actually offers a value function to help address this situation. The value
function returns the value of its variable argument unexpanded. This unexpanded value

Advanced User-Defined Functions | 85



can then be passed to eval for processing. By returning an unexpanded value, we can
avoid the problem of having to quote some of the variable references in our macros.

Unfortunately, this function cannot be used with the program-variables macro.
That’s because value is an all-or-nothing function. If used, value will not expand any
of the variables in the macro. Furthermore, value doesn’t accept parameters (and
wouldn’t do anything with them if it did) so our program name and file list parame-
ters wouldn’t be expanded.

Because of these limitations, you won’t see value used very often in this book.

Hooking Functions

User-defined functions are just variables holding text. The call function will expand
$1, $2, etc. references in the variable text if they exist. If the function doesn’t contain
any of these variable references, call doesn’t care. In fact, if the variable doesn’t con-
tain any text, call doesn’t care. No error or warning occurs. This can be very frus-
trating if you happen to misspell a function name. But it can also be very useful.

Functions are all about reusable code. The more often you reuse a function, the more
worthwhile it is to write it well. Functions can be made more reusable by adding
hooks to them. A hook is a function reference that can be redefined by a user to per-
form their own custom tasks during a standard operation.

Suppose you are building many libraries in your makefile. On some systems, you’d
like to run ranlib and on others you might want to run chmod. Rather than writing
explicit commands for these operations, you might choose to write a function and
add a hook:

# $(call build-library, object-files)
define build-library

$(AR) $(ARFLAGS) $@ $1

$(call build-library-hook,$@)
endef

To use the hook, define the function build-1library-hook:

$(foo_lib): build-library-hook = $(RANLIB) $1
$(foo_1ib): $(foo_objects)
$(call build-library,$”)

$(bar_1lib): build-library-hook = $(CHMOD) 444 $1
$(bar_1ib): $(bar objects)
$(call build-library,$”)
Passing Parameters

A function can get its data from four “sources”: parameters passed in using call, glo-
bal variables, automatic variables, and target-specific variables. Of these, relying on

86 | Chapter4: Functions



parameters is the most modular choice, since their use insulates the function from
any changes to global data, but sometimes that isn’t the most important criteria.

Suppose we have several projects using a common set of make functions. Each project
might be identified by a variable prefix, say PROJECT1 , and critical variables for the
project all use the prefix with cross-project suffixes. The earlier example, PROJECT_SRC,
might look like PROJECT1 SRC, PROJECT1 BIN, and PROJECT1 LIB. Rather than write a
function that requires these three variables we could instead use computed variables
and pass a single argument, the prefix:

# $(call process-xml,project-prefix,file-name)

define process-xml

$($1_LIB)/xmlto -0 $($1 BIN)/xml/$2 $($1_SRC)/xml/$2

endef
Another approach to passing arguments uses target-specific variables. This is particu-
larly useful when most invocations use a standard value but a few require special
processing. Target-specific variables also provide flexibility when the rule is defined
in an include file, but invoked from a makefile where the variable is defined.

release: MAKING RELEASE = 1
release: libraries executables

$(foo_1ib):
$(call build-library,$")

# $(call build-library, file-list)
define build-library
$(AR) $(ARFLAGS) $@ \
$(if $(MAKING RELEASE), \
$(filter-out debug/%,$1), \
$1)
endef

This code sets a target-specific variable to indicate when a release build is being exe-
cuted. In that case, the library-building function will filter out any debugging mod-
ules from the libraries.

Advanced User-Defined Functions | 87



