CHAPTER 5
Commands

We've already covered many of the basic elements of make commands, but just to
make sure we’re all on the same page, let’s review a little.

Commands are essentially one-line shell scripts. In effect, make grabs each line and
passes it to a subshell for execution. In fact, make can optimize this (relatively) expen-
sive fork/exec algorithm if it can guarantee that omitting the shell will not change the
behavior of the program. It checks this by scanning each command line for shell spe-
cial characters, such as wildcard characters and i/o redirection. If none are found,
make directly executes the command without passing it to a subshell.

By default, /bin/sh is used for the shell. This shell is controlled by the make variable
SHELL but it is not inherited from the environment. When make starts, it imports all
the variables from the user’s environment as make variables, except SHELL. This is
because the user’s choice of shell should not cause a makefile (possibly included in
some downloaded software package) to fail. If a user really wants to change the
default shell used by make, he can set the SHELL variable explicitly in the makefile. We
will discuss this issue in the section “Which Shell to Use” later in this chapter.

Parsing Commands

Following a make target, lines whose first character is a tab are assumed to be com-
mands (unless the previous line was continued with a backslash). GNU make tries to
be as smart as possible when handling tabs in other contexts. For instance, when
there is no possible ambiguity, comments, variable assignments, and include direc-
tives may all use a tab as their first character. If make reads a command line that does
not immediately follow a target, an error message is displayed:

makefile:20: *** commands commence before first target. Stop.

The wording of this message is a bit odd because it often occurs in the middle of a
makefile long after the “first” target was specified, but we can now understand it

88

without too much trouble. A better wording for this message might be, “encoun-
tered a command outside the context of a target.”

When the parser sees a command in a legal context, it switches to “command pars-
ing” mode, building the script one line at a time. It stops appending to the script
when it encounters a line that cannot possibly be part of the command script. There
the script ends. The following may appear in a command script:

* Lines beginning with a tab character are commands that will be executed by a
subshell. Even lines that would normally be interpreted as make constructs (e.g.,
ifdef, comments, include directives) are treated as commands while in “com-
mand parsing” mode.

* Blank lines are ignored. They are not “executed” by a subshell.

* Lines beginning with a #, possibly with leading spaces (not tabs!), are makefile
comments and are ignored.

* Conditional processing directives, such as ifdef and ifeg, are recognized and
processed normally within command scripts.

Built-in make functions terminate command parsing mode unless preceded by a tab
character. This means they must expand to valid shell commands or to nothing. The
functions warning and eval expand to no characters.

The fact that blank lines and make comments are allowed in command scripts can be
surprising at first. The following lines show how it is carried out:

long-command:
@echo Line 2: A blank line follows

@echo Line 4: A shell comment follows
A shell comment (leading tab)
@echo Line 6: A make comment follows
A make comment, at the beginning of a line
@echo Line 8: Indented make comments follow
A make comment, indented with leading spaces
Another make comment, indented with leading spaces
@echo Line 11: A conditional follows
ifdef COMSPEC
@echo Running Windows
endif
@echo Line 15: A warning "command" follows
$(warning A warning)
@echo Line 17: An eval "command" follows
$(eval $(shell echo Shell echo 1>82))

Notice that lines 5 and 10 appear identical, but are quite different. Line 5 is a shell
comment, indicated by a leading tab, while line 10 is a make comment indented eight

spaces. Obviously, we do not recommend formatting make comments this way
(unless you intend entering an obfuscated makefile contest). As you can see in the

Parsing Commands | 89

following output, make comments are not executed and are not echoed to the output
even though they occur within the context of a command script:

$ make

makefile:2: A warning

Shell echo

Line 2: A blank line follows

Line 4: A shell comment follows

A shell comment (leading tab)

Line 6: A make comment follows

Line 8: Indented make comments follow

Line 11: A conditional follows

Running Windows

Line 15: A warning command follows

Line 17: An eval command follows

The output of the warning and eval functions appears to be out of order, but don’t
worry, it isn’t. (We’'ll discuss the order of evaluation later this chapter in the section
“Evaluating Commands.”) The fact that command scripts can contain any number of
blank lines and comments can be a frustrating source of errors. Suppose you acciden-
tally introduce a line with a leading tab. If a previous target (with or without com-
mands) exists and you have only comments or blank lines intervening, make will treat
your accidental tabbed line as a command associated with the preceding target. As
you’ve seen, this is perfectly legal and will not generate a warning or error unless the
same target has a rule somewhere else in the makefile (or one of its include files).

If you’re lucky, your makefile will include a nonblank, noncomment between your
accidental tabbed line and the previous command script. In that case, you’ll get the
“commands commence before first target” message.

Now is a good time to briefly mention software tools. I think everyone agrees, now,
that using a leading tab to indicate a command line was an unfortunate decision, but
it’s a little late to change. Using a modern, syntax-aware editor can help head off
potential problems by visibly marking dubious constructs. GNU emacs has a very
nice mode for editing makefiles. This mode performs syntax highlighting and looks
for simple syntactic errors, such as spaces after continuation lines and mixing lead-
ing spaces and tabs. I'll talk more about using emacs and make later on.

Continuing Long Commands

Since each command is executed in its own shell (or at least appears to be),
sequences of shell commands that need to be run together must be handled spe-
cially. For instance, suppose I need to generate a file containing a list of files. The
Java compiler accepts such a file for compiling many source files. I might write a
command script like this:

.INTERMEDIATE: file_list

file list:

for d in logic ui

90 | Chapter5: Commands

do
echo $d/*.java
done > $@

By now it should be clear that this won’t work. It generates the error:

$ make

for d in logic ui

/bin/sh: -c: line 2: syntax error: unexpected end of file
make: *** [file list] Error 2

Our first fix is to add continuation characters to each line:

.INTERMEDIATE: file list

file list:
for d in logic ui \
do \
echo $d/*.java \
done > $@

which generates the error:

$ make
for d in logic ui \
do \

echo /*.java \
done > file list
/bin/sh: -c: line 1: syntax error near unexpected token ">
/bin/sh: -c: line 1: “for d in logic ui do echo /*.java
make: *** [file list] Error 2

What happened? Two problems. First, the reference to the loop control variable, d,
needs to be escaped. Second, since the for loop is passed to the subshell as a single
line, we must add semicolon separators after the file list and for-loop statement:

.INTERMEDIATE: file list

file list:
for d in logic ui; \
do \
echo $$d/*.java; \
done > $@

Now we get the file we expect. The target is declared .INTERMEDIATE so that make will
delete this temporary target after the compile is complete.

In a more realistic example, the list of directories would be stored in a make variable.
If we are sure that the number of files is relatively small, we can perform this same
operation without a for loop by using make functions:

.INTERMEDIATE: file list

file list:

echo $(addsuffix /*.java,$(COMPILATION DIRS)) > $@

But the for-loop version is less likely to run up against command-line length issues if
we expect the list of directories to grow with time.

Parsing Commands | 91

Another common problem in make command scripts is how to switch directories.
Again, it should be clear that a simple command script like:
TAGS:

cd src
ctags --recurse

will not execute the ctags program in the src subdirectory. To get the effect we want,
we must either place both commands on a single line or escape the newline with a
backslash (and separate the commands with a semicolon):
TAGS:
cd src; \
ctags --recurse
An even better version would check the status of the cd before executing the ctags
program:
TAGS:
cd src & \
ctags --recurse
Notice that in some circumstances omitting the semicolon might not produce a make
or shell error:
disk-free = echo "Checking free disk space..." \
df . | awk '{ print $$4 }'
This example prints a simple message followed by the number of free blocks on the
current device. Or does it? We have accidentally omitted the semicolon after the echo
command, so we never actually run the df program. Instead, we echo:

Checking free disk space... df .
into awk which dutifully prints the fourth field, space....

It might have occurred to you to use the define directive, which is intended for creat-
ing multiline command sequences, rather than continuation lines. Unfortunately,
this isn’t quite the same problem. When a multiline macro is expanded, each line is
inserted into the command script with a leading tab and make treats each line inde-
pendently. The lines of the macro are not executed in a single subshell. So you will
need to pay attention to command-line continuation in macros as well.

Command Modifiers

A command can be modified by several prefixes. We’ve already seen the “silent” pre-
fix, @ used many times before. The complete list of prefixes, along with some gory
details, are:

@ Do not echo the command. For historical compatibility, you can make your tar-
get a prerequisite of the special target .SILENT if you want all of its commands to
be hidden. Using @ is preferred, however, because it can be applied to individual
commands within a command script. If you want to apply this modifier to all

92 | Chapter5: Commands

targets (although it is hard to imagine why), you can use the --silent (or -s)
option.
Hiding commands can make the output of make easier on the eyes, but it can also
make debugging the commands more difficult. If you find yourself removing the
@ modifiers and restoring them frequently, you might create a variable, say QUIET,
containing the @ modifier and use that on commands:

QUIET - @

hairy script:

$(QUIET) complex script ..

Then, if you need to see the complex script as make runs it, just reset the QUIET
variable from the command line:

$ make QUIET= hairy script

complex script ..

- The dash prefix indicates that errors in the command should be ignored by make.
By default, when make executes a command, it examines the exit status of the
program or pipeline, and if a nonzero (failure) exit status is returned, make termi-
nates execution of the remainder of the command script and exits. This modi-
fier directs make to ignore the exit status of the modified line and continue as if
no error occurred. We’ll discuss this topic in more depth in the next section.

For historical compatibility, you can ignore errors in any part of a command
script by making the target a prerequisite of the .IGNORE special target. If you
want to ignore all errors in the entire makefile, you can use the --ignore-errors
(or -i) option. Again, this doesn’t seem too useful.

+ The plus modifier tells make to execute the command even if the --just-print (or
-n) command-line option is given to make. It is used when writing recursive
makefiles. We’ll discuss this topic in more detail in the section “Recursive make”
in Chapter 6.

Any or all of these modifiers are allowed on a single line. Obviously, the modifiers
are stripped before the commands are executed.

Errors and Interrupts

Every command that make executes returns a status code. A status of zero indicates
that the command succeeded. A status of nonzero indicates some kind of failure.
Some programs use the return status code to indicate something more meaningful
than simply “error.” For instance, grep returns O (success) if a match is found, 1 if no
match is found, and 2 if some kind of error occurred.

Normally, when a program fails (i.e., returns a nonzero exit status), make stops exe-
cuting commands and exits with an error status. Sometimes you want make to con-
tinue, trying to complete as many targets as possible. For instance, you might want
to compile as many files as possible to see all the compilation errors in a single run.
You can do this with the --keep-going (or -k) option.

Parsing Commands | 93

Although the - modifier causes make to ignore errors in individual commands, I try to
avoid its use whenever possible. This is because it complicates automated error pro-
cessing and is visually jarring.

When make ignores an error it prints a warning along with the name of the target in
square brackets. For example, here is the output when rm tries to delete a nonexist-
ent file:

Im non-existent-file

rm: cannot remove “non-existent-file': No such file or directory
make: [clean] Error 1 (ignored)

Some commands, like rm, have options that suppress their error exit status. The -f
option will force rm to return success while also suppressing error messages. Using
such options is better than depending on a preceding dash.

Occasionally, you want a command to fail and would like to get an error if the pro-
gram succeeds. For these situations, you should be able to simply negate the exit sta-
tus of the program:

Verify there are no debug statements left in the code.

.PHONY: no_debug_printf

no_debug printf: $(sources)

! grep --line-number '"debug:' $

Unfortunately, there is a bug in make 3.80 that prevents this straightforward use. make
does not recognize the ! character as requiring shell processing and executes the
command line itself, resulting in an error. In this case, a simple work around is to
add a shell special character as a clue to make:

Verify there are no debug statement left in the code

.PHONY: no_debug printf

no_debug_printf: $(sources)
| grep --line-number '"debug:' $" < /dev/null

Another common source of unexpected command errors is using the shell’s if con-
struct without an else.

$(config): $(config template)
if [! -d $(dir $@) 1; \
then \
$(MKDIR) $(dir $@); \
fi
$(M4) $° > 3@
The first command tests if the output directory exists and calls mkdir to create it if it
does not. Unfortunately, if the directory does exist, the if command returns a failure
exit status (the exit status of the test), which terminates the script. One solution is to
add an else clause:
$(config): $(config template)
if [! -d $(dir $@) 1; \
then \
$(MKDIR) $(dir $@); \

94 | Chapter5: Commands

else \
true; \

fi

$(M4) $~ > %@
In the shell, the colon (:) is a no-op command that always returns true, and can be
used instead of true. An alternative implementation that works well here is:

$(config): $(config_template)

[[-d $(dir $@) 1] || $(MKDIR) $(dir $@)

$(M4) $~ > %@
Now the first statement is true when the directory exists or when the mkdir suc-
ceeds. Another alternative is to use mkdir -p. This allows mkdir to succeed even when
the directory already exists. All these implementations execute something in a sub-
shell even when the directory exists. By using wildcard, we can omit the execution
entirely if the directory is present.

$(call make-dir, directory)
make-dir = $(if $(wildcard $1),,$(MKDIR) -p $1)

$(config): $(config template)
$(call make-dir, $(dir $@))
$(M4) $~ > %@
Because each command is executed in its own shell, it is common to have multiline
commands with each component separated by semicolons. Be aware that errors
within these scripts may not terminate the script:
target:
m rm-fails; echo But the next command executes anyway
It is best to minimize the length of command scripts and give make a chance to man-
age exit status and termination for you. For instance:

path-fixup = -e "s;[a-zA-Z:/]*/src/;$(SOURCE DIR)/;g" \
-e "s;[a-zA-Z:/]*/bin/;$(OUTPUT DIR)/;g"

A good version.

define fix-project-paths
sed $(path-fixup) $1 > $2.fixed 8& \
mv $2.fixed $2

endef

A better version.
define fix-project-paths
sed $(path-fixup) $1 > $2.fixed
mv $2.fixed $2
endef
This macro transforms DOS-style paths (with forward slashes) into destination paths
for a particular source and output tree. The macro accepts two filenames, the input
and output files. It is careful to overwrite the output file only if the sed command
completes correctly. The “good” version does this by connecting the sed and mv with

Parsing Commands | 95

88& so they execute in a single shell. The “better” version executes them as two sepa-
rate commands, letting make terminate the script if the sed fails. The “better” version
is no more expensive (the mv doesn’t need a shell and is executed directly), is easier to
read, and provides more information when errors occur (because make will indicate
which command failed).

Note that this is a different issue than the common problem with cd:

TAGS:
cd src & \
ctags --recurse
In this case, the two statements must be executed within the same subshell. There-
fore, the commands must be separated by some kind of statement connector, such as
; or &8&.

Deleting and preserving target files

If an error occurs, make assumes that the target cannot be remade. Any other targets
that have the current target as a prerequisite also cannot be remade, so make will not
attempt them nor execute any part of their command scripts. If the --keep-going (or
-k) option is used, the next goal will be attempted; otherwise, make exits. If the cur-
rent target is a file, it may be corrupt if the command exits before finishing its work.
Unfortunately, for reasons of historical compatibility, make will leave this potentially
corrupt file on disk. Because the file’s timestamp has been updated, subsequent exe-
cutions of make may not update the file with correct data. You can avoid this prob-
lem and cause make to delete these questionable files when an error occurs by making
the target file a prerequisite of .DELETE_ON_ERROR. If .DELETE_ON_ERROR is used with no
prerequisites, errors in any target file build will cause make to delete the target.

A complementary problem occurs when make is interrupted by a signal, such as a
Ctrl-C. In this case, make deletes the current target file if the file has been modified.
Sometimes deleting the file is the wrong thing to do. Perhaps the file is very expen-
sive to create and partial contents are better than none, or perhaps the file must exist
for other parts of the build to proceed. In these cases, you can protect the file by
making it a prerequisite of the special target .PRECIOUS.

Which Shell to Use

When make needs to pass a command line to a subshell, it uses /bin/sh. You can
change the shell by setting the make variable SHELL. Think carefully before doing this.
Usually, the purpose of using make is to provide a tool for a community of developers

96 | Chapter5: Commands

to build a system from its source components. It is quite easy to create a makefile
that fails in this goal by using tools that are not available or assumptions that are not
true for other developers in the community. It is considered very bad form to use any
shell other than /bin/sh in any widely distributed application (one distributed via
anonymous ftp or open cvs). We'll discuss portability in more detail in Chapter 7.

There is another context for using make, however. Often, in closed development envi-
ronments, the developers are working on a limited set of machines and operating sys-
tems with an approved group of developers. In fact, this is the environment I've most
often found myself in. In this situation, it can make perfect sense to customize the
environment make is expected to run under. Developers are instructed in how to set
up their environment to work properly with the build and life goes on.

In environments such as this, I prefer to make some portability sacrifices “up front.”
[believe this can make the entire development process go much more smoothly. One
such sacrifice is to explicitly set the SHELL variable to /usr/bin/bash. The bash shell is a
portable, POSIX-compliant shell (and, therefore, a superset of sh) and is the stan-
dard shell on GNU/Linux. Many portability problems in makefiles are due to using
nonportable constructs in command scripts. This can be solved by explicitly using
one standard shell rather than writing to the portable subset of sh. Paul Smith, the
maintainer of GNU make, has a web page “Paul’s Rules of Makefiles” (http://make.
paulandlesley.org/rules.html) on which he states, “Don’t hassle with writing portable
makefiles, use a portable make instead!” T would also say, “Where possible, don’t
hassle with writing portable command scripts, use a portable shell (bash) instead.”
The bash shell runs on most operating systems including virtually all variants of
Unix, Windows, BeOS, Amiga, and OS/2.

For the remainder of this book, I will note when a command script uses bash-specific
features.

Empty Commands

An empty command is one that does nothing.
header.h: ;

Recall that the prerequisites list for a target can be followed by a semicolon and the
command. Here a semicolon with nothing after it indicates that there are no com-
mands. You could instead follow the target with a line containing only a tab, but that
would be impossible to read. Empty commands are most often used to prevent a pat-
tern rule from matching the target and executing commands you don’t want.

Note that in other versions of make, empty targets are sometimes used as phony tar-
gets. In GNU make, use the .PHONY special target instead; it’s safer and clearer.

Empty Commands | 97

Command Environment

Commands executed by make inherit their processing environment from make itself.
This environment includes the current working directory, file descriptors, and the
environment variables passed by make.

When a subshell is created, make adds a few variables to the environment:

MAKEFLAGS

MFLAGS

MAKELEVEL
The MAKEFLAGS variable includes the command-line options passed to make. The
MFLAGS variable mirrors MAKEFLAGS and exists for historical reasons. The MAKELEVEL
variable indicates the number of nested make invocations. That is, when make recur-
sively invokes make, the MAKELEVEL variable increases by one. Subprocesses of a single
parent make will have a MAKELEVEL of one. These variables are typically used for man-
aging recursive make. We’ll discuss them in the section “Recursive make” in
Chapter 6.

Of course, the user can add whatever variables they like to the subprocess environ-
ment with the use of the export directive.

The current working directory for an executed command is the working directory of
the parent make. This is typically the same as the directory the make program was exe-
cuted from, but can be changed with the the --directory=<replaceable>directory</
replaceable> (or -C) command-line option. Note that simply specifying a different
makefile using --file does not change the current directory, only the makefile read.

Each subprocess make spawns inherits the three standard file descriptors: stdin,
stdout, and stderr. This is not particularly noteworthy except to observe that it is pos-
sible for a command script to read its stdin. This is “reasonable” and works. Once
the script completes its read, the remaining commands are executed as expected. But
makefiles are generally expected to run without this kind of interaction. Users often
expect to be able to start a make and “walk away” from the process, returning later to
examine the results. Of course, reading the stdin will also tend to interact poorly with
cron-based automated builds.

A common error in makefiles is to read the stdin accidentally:

$(DATA_FILE): $(RAW_DATA)
grep pattern $(RAW_DATA_FILES) > $@
Here the input file to grep is specified with a variable (misspelled in this example). If
the variable expands to nothing, the grep is left to read the stdin with no prompt or
indication of why the make is “hanging.” A simple way around this issue is to always
include /dev/null on the command line as an additional “file”:

$(DATA_FILE): $(RAW_DATA)
grep pattern $(RAW_DATA FILES) /dev/null > $@

98 | Chapter5: Commands

This grep command will never attempt to read stdin. Of course, debugging the
makefile is also appropriate!

Evaluating Commands

Command script processing occurs in four steps: read the code, expand variables,
evaluate make expressions, and execute commands. Let’s see how these steps apply to
a complex command script. Consider this (somewhat contrived) makefile. An appli-
cation is linked, then optionally stripped of symbols and compressed using the upx
executable packer:

$(call strip-program, file)

define strip-program

strip $1
endef

complex_script:
$(CC) $" -0 %@
ifdef STRIP
$(call strip-program, $@)
endif
$(if $(PACK), upx --best $@)
$(warning Final size: $(shell 1ls -s $@))
The evaluation of command scripts is deferred until they are executed, but ifdef
directives are processed immediately wherever they occur. Therefore, make reads the
command script, ignoring the content and storing each line until it gets to the line
ifdef STRIP. It evaluates the test and, if STRIP is not defined, make reads and discards
all the text up to and including the closing endif. make then continues reading and
storing the rest of the script.

When a command script is to be executed, make first scans the script for make con-
structs that need to be expanded or evaluated. When macros are expanded, a lead-
ing tab is prepended to each line. Expanding and evaluating before any commands
are executed can lead to an unexpected execution order if you aren’t prepared for it.
In our example, the last line of the script is wrong. The shell and warning com-
mands are executed before linking the application. Therefore, the 1s command will
be executed before the file it is examining has been updated. This explains the “out
of order” output seen earlier in the section “Parsing Commands.”

Also, notice that the ifdef STRIP line is evaluated while reading the file, but the $(if...)
line is evaluated immediately before the commands for complex script are executed.
Using the if function is more flexible since there are more opportunities to control
when the variable is defined, but it is not very well suited for managing large blocks of
text.

As this example shows, it is important to always attend to what program is evaluat-
ing an expression (e.g., make or the shell) and when the evaluation is performed:

$(LINK.c) $(shell find $(if $(ALL),$(wildcard core ext*),core) -name '*.0")

Evaluating Commands | 99

This convoluted command script attempts to link a set of object files. The sequence
of evaluation and the program performing the operation (in parentheses) is:

1. Expand $ALL (make).

. Evaluate if (make).

. Evaluate the wildcard, assuming ALL is not empty (make).
. Evaluate the shell (make).

. Execute the find (sh).

AN L bW N

. After completing the expansion and evaluation of the make constructs, execute
the link command (sh).

Command-Line Limits

When working with large projects, you occasionally bump up against limitations in
the length of commands make tries to execute. Command-line limits vary widely with
the operating system. Red Hat 9 GNU/Linux appears to have a limit of about 128K
characters, while Windows XP has a limit of 32K. The error message generated also
varies. On Windows using the Cygwin port, the message is:

C:\usr\cygwin\bin\bash: /usr/bin/ls: Invalid argument
when 1s is given too long an argument list. On Red Hat 9 the message is:
/bin/1s: argument list too long

Even 32K sounds like a lot of data for a command line, but when your project con-
tains 3,000 files in 100 subdirectories and you want to manipulate them all, this limit
can be constraining.

There are two basic ways to get yourself into this mess: expand some basic value
using shell tools, or use make itself to set a variable to a very long value. For example,
suppose we want to compile all our source files in a single command line:
compile_all:
$(JAVAC) $(wildcard $(addsuffix /*.java,$(source dirs)))

The make variable source dirs may contain only a couple hundred words, but after
appending the wildcard for Java files and expanding it using wildcard, this list can
easily exceed the command-line limit of the system. By the way, make has no built-in
limits to constrain us. So long as there is virtual memory available, make will allow
any amount of data you care to create.

When you find yourself in this situation, it can feel like the old Adventure game,
“You are in a twisty maze of passages all alike.” For instance, you might try to solve
the above using xargs, since xargs will manage long command lines by parceling out
arguments up to the system-specific length:
compile_all:
echo $(wildcard $(addsuffix /*.java,$(source dirs))) | \
xargs $(JAVAC)

100 | Chapter5: Commands

Unfortunately, we’ve just moved the command-line limit problem from the javac
command line to the echo command line. Similarly, we cannot use echo or printf to
write the data to a file (assuming the compiler can read the file list from a file).

No, the way to handle this situation is to avoid creating the file list all at once in the
first place. Instead, use the shell to glob one directory at a time:

compile_all:
for d in $(source dirs); \
do \
$(JAVAC) $$d/*.java; \

done

We could also pipe the file list to xargs to perform the task with fewer executions:

compile_all:
for d in $(source dirs);
do
echo $$d/*.java;
done |
xargs $(JAVAC)

Sadly, neither of these command scripts handle errors during compilation properly. A
better approach would be to save the full file list and feed it to the compiler, if the com-
piler supports reading its arguments from a file. Java compilers support this feature:

compile all: $(FILE_LIST)
$(JAVA) @3$<

. INTERMEDIATE: $(FILE_LIST)
$(FILE_LIST):
for d in $(source dirs); \
do \
echo $$d/*.java; \
done > $@

Notice the subtle error in the for loop. If any of the directories does not contain a
Java file, the string *. java will be included in the file list and the Java compiler will
generate a “File not found” error. We can make bash collapse empty globbing pat-
terns by setting the nullglob option.

compile all: $(FILE_LIST)
$(JAVA) @3$<

.INTERMEDIATE: $(FILE_LIST)
$(FILE_LIST):
shopt -s nullglob; \
for d in $(source dirs); \
do \
echo $$d/*.java; \
done > $@

Many projects have to make lists of files. Here is a macro containing a bash script
producing file lists. The first argument is the root directory to change to. All the files

Command-Line Limits | 101

in the list will be relative to this root directory. The second argument is a list of direc-
tories to search for matching files. The third and fourth arguments are optional and
represent file suffixes.

$(call collect-names, root-dir, dir-list, suffixi-opt, suffix2-opt)

define collect-names
echo Making $@ from directory list...

cd $1; \

shopt -s nullglob; \

for f in $(foreach file,$2,'$(file)'); do \

files=($$F$(if $3,/*.{$3$(if $4,$(comma)$4)})); \

if (($${#files[@]} > 0)); \

then \

printf ""%s"\n' $${files[@]}; \

else :; fi; \
done
endef

Here is a pattern rule for creating a list of image files:

%.images:
@$(call collect-names,$(SOURCE DIR),$~,gif,jpeg) > $@
The macro execution is hidden because the script is long and there is seldom a rea-
son to cut and paste this code. The directory list is provided in the prerequisites.
After changing to the root directory, the script enables null globbing. The rest is a for
loop to process each directory we want to search. The file search expression is a list
of words passed in parameter $2. The script protects words in the file list with single
quotes because they may contain shell-special characters. In particular, filenames in
languages like Java can contain dollar signs:

for f in $(foreach file,$2,'$(file)'); do

We search a directory by filling the files array with the result of globbing. If the
files array contains any elements, we use printf to write each word followed by a
newline. Using the array allows the macro to properly handle paths with embedded
spaces. This is also the reason printf surrounds the filename with double quotes.

The file list is produced with the line:
files=($$F$(if $3,/*.{$3$(if $4,%$(comma)$4)}));

The $$f is the directory or file argument to the macro. The following expression is a
make if testing whether the third argument is nonempty. This is how you can imple-
ment optional arguments. If the third argument is empty, it is assumed the fourth is
as well. In this case, the file passed by the user should be included in the file list as is.
This allows the macro to build lists of arbitrary files for which wildcard patterns are
inappropriate. If the third argument is provided, the if appends /*.{$3} to the root
file. If the fourth argument is provided, it appends , $4 after the $3. Notice the subter-
fuge we must use to insert a comma into the wildcard pattern. By placing a comma
in a make variable we can sneak it past the parser, otherwise, the comma would be

102 | Chapter5: Commands

interpreted as separating the then part from the else part of the if. The definition of
comma is straightforward:

comma := ,

All the preceding for loops also suffer from the command-line length limit, since
they use wildcard expansion. The difference is that the wildcard is expanded with
the contents of a single directory, which is far less likely to exceed the limits.

What do we do if a make variable contains our long file list? Well, then we are in real
trouble. There are only two ways I've found to pass a very long make variable to a
subshell. The first approach is to pass only a subset of the variable contents to any
one subshell invocation by filtering the contents.
compile_all:
$(JAVAC) $(wordlist 1, 499, $(all-source-files))
$(JAVAC) $(wordlist 500, 999, $(all-source-files))
$(JAVAC) $(wordlist 1000, 1499, $(all-source-files))
The filter function can be used as well, but that can be more uncertain since the
number of files selected will depend on the distribution within the pattern space cho-
sen. Here we choose a pattern based on the alphabet:
compile_all:
$(JAVAC) $(filter a%, $(all-source-files))
$(JAVAC) $(filter b%, $(all-source-files))

Other patterns might use special characteristics of the filenames themselves.

Notice that it is difficult to automate this further. We could try to wrap the alphabet
approach in a foreach loop:
compile_all:
$(foreach l,abcde ..., \
$(if $(filter $1%, $(all-source-files)), \
$(JAVAC) $(filter $1%, $(all-source-files));))

but this doesn’t work. make expands this into a single line of text, thus compounding
the line-length problem. We can instead use eval:

compile all:

$(foreach l,abcde ..., \
$(if $(filter $1%, $(all-source-files)), \
$(eval \
$(shell \

$(JAVAC) $(filter $1%, $(all-source-files));))))

This works because eval will execute the shell command immediately, expanding to
nothing. So the foreach loop expands to nothing. The problem is that error report-
ing is meaningless in this context, so compilation errors will not be transmitted to
make correctly.

The wordlist approach is worse. Due to make’s limited numerical capabilities, there is
no way to enclose the wordlist technique in a loop. In general, there are very few sat-
isfying ways to deal with immense file lists.

Command-Line Limits | 103

