
This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

107

Chapter 6 CHAPTER 6

Managing Large Projects

What do you call a large project? For our purposes, it is one that requires a team of
developers, may run on multiple architectures, and may have several field releases
that require maintenance. Of course, not all of these are required to call a project
large. A million lines of prerelease C++ on a single platform is still large. But soft-
ware rarely stays prerelease forever. And if it is successful, someone will eventually
ask for it on another platform. So most large software systems wind up looking very
similar after awhile.

Large software projects are usually simplified by dividing them into major compo-
nents, often collected into distinct programs, libraries, or both. These components
are often stored under their own directories and managed by their own makefiles.
One way to build an entire system of components employs a top-level makefile that
invokes the makefile for each component in the proper order. This approach is called
recursive make because the top-level makefile invokes make recursively on each com-
ponent’s makefile. Recursive make is a common technique for handling component-
wise builds. An alternative suggested by Peter Miller in 1998 avoids many issues with
recursive make by using a single makefile that includes information from each compo-
nent directory.*

Once a project gets beyond building its components, it eventually finds that there are
larger organizational issues in managing builds. These include handling develop-
ment on multiple versions of a project, supporting several platforms, providing effi-
cient access to source and binaries, and performing automated builds. We will
discuss these problems in the second half of this chapter.

* Miller, P.A., Recursive Make Considered Harmful, AUUGN Journal of AUUG Inc., 19(1), pp. 14–25 (1998).
Also available from http://aegis.sourceforge.net/auug97.pdf.

,ch06.3710 Page 107 Friday, March 25, 2005 2:29 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

108 | Chapter 6: Managing Large Projects

Recursive make
The motivation behind recursive make is simple: make works very well within a sin-
gle directory (or small set of directories) but becomes more complex when the num-
ber of directories grows. So, we can use make to build a large project by writing a
simple, self-contained makefile for each directory, then executing them all individu-
ally. We could use a scripting tool to perform this execution, but it is more effective
to use make itself since there are also dependencies involved at the higher level.

For example, suppose I have an mp3 player application. It can logically be divided
into several components: the user interface, codecs, and database management.
These might be represented by three libraries: libui.a, libcodec.a, and libdb.a. The
application itself consists of glue holding these pieces together. A straightforward
mapping of these components onto a file structure might look like Figure 6-1.

A more traditional layout would place the application’s main function and glue in
the top directory rather than in the subdirectory app/player. I prefer to put applica-
tion code in its own directory to create a cleaner layout at the top level and allow for

Figure 6-1. File layout for an MP3 player

makefile

include

db

codec

ui

lib

db

codec

ui

app

player

doc

,ch06.3710 Page 108 Friday, March 25, 2005 2:29 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Recursive make | 109

growth of the system with additional modules. For instance, if we choose to add a
separate cataloging application later it can neatly fit under app/catalog.

If each of the directories lib/db, lib/codec, lib/ui, and app/player contains a makefile,
then it is the job of the top-level makefile to invoke them.

lib_codec := lib/codec
lib_db := lib/db
lib_ui := lib/ui
libraries := $(lib_ui) $(lib_db) $(lib_codec)
player := app/player

.PHONY: all $(player) $(libraries)
all: $(player)

$(player) $(libraries):
 $(MAKE) --directory=$@

$(player): $(libraries)
$(lib_ui): $(lib_db) $(lib_codec)

The top-level makefile invokes make on each subdirectory through a rule that lists the
subdirectories as targets and whose action is to invoke make:

$(player) $(libraries):
 $(MAKE) --directory=$@

The variable MAKE should always be used to invoke make within a makefile. The
MAKE variable is recognized by make and is set to the actual path of make so recursive
invocations all use the same executable. Also, lines containing the variable MAKE are
handled specially when the command-line options --touch (-t), --just-print (-n),
and --question (-q) are used. We’ll discuss this in detail in the section “Command-
Line Options” later in this chapter.

The target directories are marked with .PHONY so the rule fires even though the target
may be up to date. The --directory (-C) option is used to cause make to change to the
target directory before reading a makefile.

This rule, although a bit subtle, overcomes several problems associated with a more
straightforward command script:

all:
 for d in $(player) $(libraries); \
 do \
 $(MAKE) --directory=$$d; \
 done

This command script fails to properly transmit errors to the parent make. It also does
not allow make to execute any subdirectory builds in parallel. We’ll discuss this fea-
ture of make in Chapter 10.

As make is planning the execution of the dependency graph, the prerequisites of a tar-
get are independent of one another. In addition, separate targets with no dependency

,ch06.3710 Page 109 Friday, March 25, 2005 2:29 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

110 | Chapter 6: Managing Large Projects

relationships to one another are also independent. For example, the libraries have no
inherent relationship to the app/player target or to each other. This means make is free
to execute the app/player makefile before building any of the libraries. Clearly, this
would cause the build to fail since linking the application requires the libraries. To
solve this problem, we provide additional dependency information.

$(player): $(libraries)
$(lib_ui): $(lib_db) $(lib_codec)

Here we state that the makefiles in the library subdirectories must be executed before
the makefile in the player directory. Similarly, the lib/ui code requires the lib/db and
lib/codec libraries to be compiled. This ensures that any generated code (such as
yacc/lex files) have been generated before the ui code is compiled.

There is a further subtle ordering issue when updating prerequisites. As with all
dependencies, the order of updating is determined by the analysis of the dependency
graph, but when the prerequisites of a target are listed on a single line, GNU make
happens to update them from left to right. For example:

all: a b c
all: d e f

If there are no other dependency relationships to be considered, the six prerequisites
can be updated in any order (e.g., “d b a c e f”), but GNU make uses left to right
within a single target line, yielding the update order: “a b c d e f” or “d e f a b c.”
Although this ordering is an accident of the implementation, the order of execution
appears correct. It is easy to forget that the correct order is a happy accident and fail
to provide full dependency information. Eventually, the dependency analysis will
yield a different order and cause problems. So, if a set of targets must be updated in a
specific order, enforce the proper order with appropriate prerequisites.

When the top-level makefile is run, we see:

$ make
make --directory=lib/db
make[1]: Entering directory `/test/book/out/ch06-simple/lib/db'
Update db library...
make[1]: Leaving directory `/test/book/out/ch06-simple/lib/db'
make --directory=lib/codec
make[1]: Entering directory `/test/book/out/ch06-simple/lib/codec'
Update codec library...
make[1]: Leaving directory `/test/book/out/ch06-simple/lib/codec'
make --directory=lib/ui
make[1]: Entering directory `/test/book/out/ch06-simple/lib/ui'
Update ui library...
make[1]: Leaving directory `/test/book/out/ch06-simple/lib/ui'
make --directory=app/player
make[1]: Entering directory `/test/book/out/ch06-simple/app/player'
Update player application...
make[1]: Leaving directory `/test/book/out/ch06-simple/app/player'

,ch06.3710 Page 110 Friday, March 25, 2005 2:29 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Recursive make | 111

When make detects that it is invoking another make recursively, it enables the --print-
directory (-w) option, which causes make to print the Entering directory and Leaving
directory messages. This option is also enabled when the --directory (-C) option is
used. The value of the make variable MAKELEVEL is printed in square brackets in each
line as well. In this simple example, each component makefile prints a simple mes-
sage about updating the component.

Command-Line Options
Recursive make is a simple idea that quickly becomes complicated. The perfect recur-
sive make implementation would behave as if the many makefiles in the system are a
single makefile. Achieving this level of coordination is virtually impossible, so com-
promises must be made. The subtle issues become more clear when we look at how
command-line options must be handled.

Suppose we have added comments to a header file in our mp3 player. Rather than
recompiling all the source that depends on the modified header, we realize we can
instead perform a make --touch to bring the timestamps of the files up to date. By
executing the make --touch with the top-level makefile, we would like make to touch
all the appropriate files managed by sub-makes. Let’s see how this works.

Usually, when --touch is provided on the command line, the normal processing of
rules is suspended. Instead, the dependency graph is traversed and the selected tar-
gets and those prerequisites that are not marked .PHONY are brought up to date by
executing touch on the target. Since our subdirectories are marked .PHONY, they
would normally be ignored (touching them like normal files would be pointless). But
we don’t want those targets ignored, we want their command script executed. To do
the right thing, make automatically labels any line containing MAKE with the + modi-
fier, meaning make runs the sub-make regardless of the --touch option.

When make runs the sub-make it must also arrange for the --touch flag to be passed to
the sub-process. It does this through the MAKEFLAGS variable. When make starts, it
automatically appends most command-line options to MAKEFLAGS. The only
exceptions are the options --directory (-C), --file (-f), --old-file (-o), and --new-
file (-W). The MAKEFLAGS variable is then exported to the environment and read by
the sub-make as it starts.

With this special support, sub-makes behave mostly the way you want. The recursive
execution of $(MAKE) and the special handling of MAKEFLAGS that is applied to --touch
(-t) is also applied to the options --just-print (-n) and --question (-q).

Passing Variables
As we have already mentioned, variables are passed to sub-makes through the envi-
ronment and controlled using the export and unexport directives. Variables passed
through the environment are taken as default values, but are overridden by any

,ch06.3710 Page 111 Friday, March 25, 2005 2:29 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

112 | Chapter 6: Managing Large Projects

assignment to the variable. Use the --environment-overrides (-e) option to allow
environment variables to override the local assignment. You can explicitly override
the environment for a specific assignment (even when the --environment-overrides
option is used) with the override directive:

override TMPDIR = ~/tmp

Variables defined on the command line are automatically exported to the environ-
ment if they use legal shell syntax. A variable is considered legal if it uses only let-
ters, numbers, and underscores. Variable assignments from the command line are
stored in the MAKEFLAGS variable along with command-line options.

Error Handling
What happens when a recursive make gets an error? Nothing very unusual, actually.
The make receiving the error status terminates its processing with an exit status of 2.
The parent make then exits, propagating the error status up the recursive make process
tree. If the --keep-going (-k) option is used on the top-level make, it is passed to sub-
makes as usual. The sub-make does what it normally does, skips the current target and
proceeds to the next goal that does not use the erroneous target as a prerequisite.

For example, if our mp3 player program encountered a compilation error in the lib/db
component, the lib/db make would exit, returning a status of 2 to the top-level
makefile. If we used the --keep-going (-k) option, the top-level makefile would pro-
ceed to the next unrelated target, lib/codec. When it had completed that target,
regardless of its exit status, the make would exit with a status of 2 since there are no fur-
ther targets that can be processed due to the failure of lib/db.

The --question (-q) option behaves very similarly. This option causes make to return
an exit status of 1 if some target is not up to date, 0 otherwise. When applied to a
tree of makefiles, make begins recursively executing makefiles until it can determine if
the project is up to date. As soon as an out-of-date file is found, make terminates the
currently active make and unwinds the recursion.

Building Other Targets
The basic build target is essential for any build system, but we also need the other
support targets we’ve come to depend upon, such as clean, install, print, etc.
Because these are .PHONY targets, the technique described earlier doesn’t work very
well.

For instance, there are several broken approaches, such as:

clean: $(player) $(libraries)
 $(MAKE) --directory=$@ clean

or:

$(player) $(libraries):
 $(MAKE) --directory=$@ clean

,ch06.3710 Page 112 Friday, March 25, 2005 2:29 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Recursive make | 113

The first is broken because the prerequisites would trigger a build of the default tar-
get in the $(player) and $(libraries) makefiles, not a build of the clean target. The
second is illegal because these targets already exist with a different command script.

One approach that works relies on a shell for loop:

clean:
 for d in $(player) $(libraries); \
 do \
 $(MAKE) --directory=$$f clean; \
 done

A for loop is not very satisfying for all the reasons described earlier, but it (and the
preceding illegal example) points us to this solution:

$(player) $(libraries):
 $(MAKE) --directory=$@ $(TARGET)

By adding the variable $(TARGET) to the recursive make line and setting the TARGET
variable on the make command line, we can add arbitrary goals to the sub-make:

$ make TARGET=clean

Unfortunately, this does not invoke the $(TARGET) on the top-level makefile. Often
this is not necessary because the top-level makefile has nothing to do, but, if neces-
sary, we can add another invocation of make protected by an if:

$(player) $(libraries):
 $(MAKE) --directory=$@ $(TARGET)
 $(if $(TARGET), $(MAKE) $(TARGET))

Now we can invoke the clean target (or any other target) by simply setting TARGET on
the command line.

Cross-Makefile Dependencies
The special support in make for command-line options and communication through
environment variables suggests that recursive make has been tuned to work well. So
what are the serious complications alluded to earlier?

Separate makefiles linked by recursive $(MAKE) commands record only the most
superficial top-level links. Unfortunately, there are often subtle dependencies buried
in some directories.

For example, suppose a db module includes a yacc-based parser for importing and
exporting music data. If the ui module, ui.c, includes the generated yacc header, we
have a dependency between these two modules. If the dependencies are properly
modeled, make should know to recompile our ui module whenever the grammar
header is updated. This is not difficult to arrange using the automatic dependency
generation technique described earlier. But what if the yacc file itself is modified? In
this case, when the ui makefile is run, a correct makefile would recognize that yacc
must first be run to generate the parser and header before compiling ui.c. In our

,ch06.3710 Page 113 Friday, March 25, 2005 2:29 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

114 | Chapter 6: Managing Large Projects

recursive make decomposition, this does not occur, because the rule and dependen-
cies for running yacc are in the db makefile, not the ui makefile.

In this case, the best we can do is to ensure that the db makefile is always executed
before executing the ui makefile. This higher-level dependency must be encoded by
hand. We were astute enough in the first version of our makefile to recognize this, but,
in general, this is a very difficult maintenance problem. As code is written and modi-
fied, the top-level makefile will fail to properly record the intermodule dependencies.

To continue the example, if the yacc grammar in db is updated and the ui makefile is
run before the db makefile (by executing it directly instead of through the top-level
makefile), the ui makefile does not know there is an unsatisfied dependency in the db
makefile and that yacc must be run to update the header file. Instead, the ui makefile
compiles its program with the old yacc header. If new symbols have been defined
and are now being referenced, then a compilation error is reported. Thus, the recur-
sive make approach is inherently more fragile than a single makefile.

The problem worsens when code generators are used more extensively. Suppose that
the use of an RPC stub generator is added to ui and the headers are referenced in db.
Now we have mutual reference to contend with. To resolve this, it may be required
to visit db to generate the yacc header, then visit ui to generate the RPC stubs, then
visit db to compile the files, and finally visit ui to complete the compilation process.
The number of passes required to create and compile the source for a project is
dependent on the structure of the code and the tools used to create it. This kind of
mutual reference is common in complex systems.

The standard solution in real-world makefiles is usually a hack. To ensure that all
files are up to date, every makefile is executed when a command is given to the top-
level makefile. Notice that this is precisely what our mp3 player makefile does. When
the top-level makefile is run, each of the four sub-makefiles is unconditionally run. In
complex cases, makefiles are run repeatedly to ensure that all code is first generated
then compiled. Often this iterative execution is a complete waste of time, but occa-
sionally it is required.

Avoiding Duplicate Code
The directory layout of our application includes three libraries. The makefiles for
these libraries are very similar. This makes sense because the three libraries serve dif-
ferent purposes in the final application but are all built with similar commands. This
kind of decomposition is typical of large projects and leads to many similar makefiles
and lots of (makefile) code duplication.

Code duplication is bad, even makefile code duplication. It increases the mainte-
nance costs of the software and leads to more bugs. It also makes it more difficult to
understand algorithms and identify minor variations in them. So we would like to
avoid code duplication in our makefiles as much as possible. This is most easily

,ch06.3710 Page 114 Friday, March 25, 2005 2:29 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Recursive make | 115

accomplished by moving the common pieces of a makefile into a common include
file.

For example, the codec makefile contains:

lib_codec := libcodec.a
sources := codec.c
objects := $(subst .c,.o,$(sources))
dependencies := $(subst .c,.d,$(sources))

include_dirs :=/../include
CPPFLAGS += $(addprefix -I ,$(include_dirs))
vpath %.h $(include_dirs)

all: $(lib_codec)

$(lib_codec): $(objects)
 $(AR) $(ARFLAGS) $@ $^

.PHONY: clean
clean:
 $(RM) $(lib_codec) $(objects) $(dependencies)

ifneq "$(MAKECMDGOALS)" "clean"
 include $(dependencies)
endif

%.d: %.c
 $(CC) $(CFLAGS) $(CPPFLAGS) $(TARGET_ARCH) -M $< | \
 sed 's,\($*\.o\) *:,\1 $@: ,' > $@.tmp
 mv $@.tmp $@

Almost all of this code is duplicated in the db and ui makefiles. The only lines that
change for each library are the name of the library itself and the source files the
library contains. When duplicate code is moved into common.mk, we can pare this
makefile down to:

library := libcodec.a
sources := codec.c

include ../../common.mk

See what we have moved into the single, shared include file:

MV := mv -f
RM := rm -f
SED := sed

objects := $(subst .c,.o,$(sources))
dependencies := $(subst .c,.d,$(sources))
include_dirs :=/../include
CPPFLAGS += $(addprefix -I ,$(include_dirs))

vpath %.h $(include_dirs)

,ch06.3710 Page 115 Friday, March 25, 2005 2:29 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

116 | Chapter 6: Managing Large Projects

.PHONY: library
library: $(library)

$(library): $(objects)
 $(AR) $(ARFLAGS) $@ $^

.PHONY: clean
clean:
 $(RM) $(objects) $(program) $(library) $(dependencies) $(extra_clean)

ifneq "$(MAKECMDGOALS)" "clean"
 -include $(dependencies)
endif

%.c %.h: %.y
 $(YACC.y) --defines $<
 $(MV) y.tab.c $*.c
 $(MV) y.tab.h $*.h

%.d: %.c
 $(CC) $(CFLAGS) $(CPPFLAGS) $(TARGET_ARCH) -M $< | \
 $(SED) 's,\($*\.o\) *:,\1 $@: ,' > $@.tmp
 $(MV) $@.tmp $@

The variable include_dirs, which was different for each makefile, is now identical in
all makefiles because we reworked the path source files use for included headers to
make all libraries use the same include path.

The common.mk file even includes the default goal for the library include files. The
original makefiles used the default target all. That would cause problems with nonli-
brary makefiles that need to specify a different set of prerequisites for their default
goal. So the shared code version uses a default target of library.

Notice that because this common file contains targets it must be included after the
default target for nonlibrary makefiles. Also notice that the clean command script
references the variables program, library, and extra_clean. For library makefiles, the
program variable is empty; for program makefiles, the library variable is empty. The
extra_clean variable was added specifically for the db makefile. This makefile uses
the variable to denote code generated by yacc. The makefile is:

library := libdb.a
sources := scanner.c playlist.c
extra_clean := $(sources) playlist.h

.SECONDARY: playlist.c playlist.h scanner.c

include ../../common.mk

Using these techniques, code duplication can be kept to a minimum. As more
makefile code is moved into the common makefile, it evolves into a generic makefile
for the entire project. make variables and user-defined functions are used as customi-
zation points, allowing the generic makefile to be modified for each directory.

,ch06.3710 Page 116 Friday, March 25, 2005 2:29 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Nonrecursive make | 117

Nonrecursive make
Multidirectory projects can also be managed without recursive makes. The difference
here is that the source manipulated by the makefile lives in more than one directory.
To accommodate this, references to files in subdirectories must include the path to
the file—either absolute or relative.

Often, the makefile managing a large project has many targets, one for each module
in the project. For our mp3 player example, we would need targets for each of the
libraries and each of the applications. It can also be useful to add phony targets for
collections of modules such as the collection of all libraries. The default goal would
typically build all of these targets. Often the default goal builds documentation and
runs a testing procedure as well.

The most straightforward use of nonrecursive make includes targets, object file refer-
ences, and dependencies in a single makefile. This is often unsatisfying to developers
familiar with recursive make because information about the files in a directory is cen-
tralized in a single file while the source files themselves are distributed in the filesys-
tem. To address this issue, the Miller paper on nonrecursive make suggests using one
make include file for each directory containing file lists and module-specific rules. The
top-level makefile includes these sub-makefiles.

Example 6-1 shows a makefile for our mp3 player that includes a module-level
makefile from each subdirectory. Example 6-2 shows one of the module-level include
files.

Example 6-1. A nonrecursive makefile

Collect information from each module in these four variables.
Initialize them here as simple variables.
programs :=
sources :=
libraries :=
extra_clean :=

objects = $(subst .c,.o,$(sources))
dependencies = $(subst .c,.d,$(sources))

include_dirs := lib include
CPPFLAGS += $(addprefix -I ,$(include_dirs))
vpath %.h $(include_dirs)

MV := mv -f
RM := rm -f
SED := sed

all:

include lib/codec/module.mk
include lib/db/module.mk

,ch06.3710 Page 117 Friday, March 25, 2005 2:29 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

118 | Chapter 6: Managing Large Projects

Thus, all the information specific to a module is contained in an include file in the
module directory itself. The top-level makefile contains only a list of modules and
include directives. Let’s examine the makefile and module.mk in detail.

Each module.mk include file appends the local library name to the variable libraries
and the local sources to sources. The local_ variables are used to hold constant val-
ues or to avoid duplicating a computed value. Note that each include file reuses
these same local_ variable names. Therefore, it uses simple variables (those assigned
with :=) rather than recursive ones so that builds combining multiple makefiles hold
no risk of infecting the variables in each makefile. The library name and source file

include lib/ui/module.mk
include app/player/module.mk

.PHONY: all
all: $(programs)

.PHONY: libraries
libraries: $(libraries)

.PHONY: clean
clean:
 $(RM) $(objects) $(programs) $(libraries) \
 $(dependencies) $(extra_clean)

ifneq "$(MAKECMDGOALS)" "clean"
 include $(dependencies)
endif

%.c %.h: %.y
 $(YACC.y) --defines $<
 $(MV) y.tab.c $*.c
 $(MV) y.tab.h $*.h

%.d: %.c
 $(CC) $(CFLAGS) $(CPPFLAGS) $(TARGET_ARCH) -M $< | \
 $(SED) 's,\($(notdir $*)\.o\) *:,$(dir $@)\1 $@: ,' > $@.tmp
 $(MV) $@.tmp $@

Example 6-2. The lib/codec include file for a nonrecursive makefile

local_dir := lib/codec
local_lib := $(local_dir)/libcodec.a
local_src := $(addprefix $(local_dir)/,codec.c)
local_objs := $(subst .c,.o,$(local_src))

libraries += $(local_lib)
sources += $(local_src)

$(local_lib): $(local_objs)
 $(AR) $(ARFLAGS) $@ $^

Example 6-1. A nonrecursive makefile (continued)

,ch06.3710 Page 118 Friday, March 25, 2005 2:29 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Nonrecursive make | 119

lists use a relative path as discussed earlier. Finally, the include file defines a rule for
updating the local library. There is no problem with using the local_ variables in this
rule because the target and prerequisite parts of a rule are immediately evaluated.

In the top-level makefile, the first four lines define the variables that accumulate each
module’s specific file information. These variables must be simple variables because
each module will append to them using the same local variable name:

local_src := $(addprefix $(local_dir)/,codec.c)
…
sources += $(local_src)

If a recursive variable were used for sources, for instance, the final value would sim-
ply be the last value of local_src repeated over and over. An explicit assignment is
required to initialize these simple variables, even though they are assigned null val-
ues, since variables are recursive by default.

The next section computes the object file list, objects, and dependency file list from
the sources variable. These variables are recursive because at this point in the
makefile the sources variable is empty. It will not be populated until later when the
include files are read. In this makefile, it is perfectly reasonable to move the defini-
tion of these variables after the includes and change their type to simple variables,
but keeping the basic file lists (e.g., sources, libraries, objects) together simplifies
understanding the makefile and is generally good practice. Also, in other makefile sit-
uations, mutual references between variables require the use of recursive variables.

Next, we handle C language include files by setting CPPFLAGS. This allows the com-
piler to find the headers. We append to the CPPFLAGS variable because we don’t know
if the variable is really empty; command-line options, environment variables, or
other make constructs may have set it. The vpath directive allows make to find the
headers stored in other directories. The include_dirs variable is used to avoid dupli-
cating the include directory list.

Variables for mv, rm, and sed are defined to avoid hard coding programs into the
makefile. Notice the case of variables. We are following the conventions suggested in
the make manual. Variables that are internal to the makefile are lowercased; variables
that might be set from the command line are uppercased.

In the next section of the makefile, things get more interesting. We would like to
begin the explicit rules with the default target, all. Unfortunately, the prerequisite
for all is the variable programs. This variable is evaluated immediately, but is set by
reading the module include files. So, we must read the include files before the all
target is defined. Unfortunately again, the include modules contain targets, the first
of which will be considered the default goal. To work through this dilemma, we can
specify the all target with no prerequisites, source the include files, then add the pre-
requisites to all later.

,ch06.3710 Page 119 Friday, March 25, 2005 2:29 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

120 | Chapter 6: Managing Large Projects

The remainder of the makefile is already familiar from previous examples, but how
make applies implicit rules is worth noting. Our source files now reside in subdirecto-
ries. When make tries to apply the standard %.o: %.c rule, the prerequisite will be a
file with a relative path, say lib/ui/ui.c. make will automatically propagate that relative
path to the target file and attempt to update lib/ui/ui.o. Thus, make automagically
does the Right Thing.

There is one final glitch. Although make is handling paths correctly, not all the tools
used by the makefile are. In particular, when using gcc, the generated dependency
file does not include the relative path to the target object file. That is, the output of
gcc -M is:

ui.o: lib/ui/ui.c include/ui/ui.h lib/db/playlist.h

rather than what we expect:

lib/ui/ui.o: lib/ui/ui.c include/ui/ui.h lib/db/playlist.h

This disrupts the handling of header file prerequisites. To fix this problem we can
alter the sed command to add relative path information:

$(SED) 's,\($(notdir $*)\.o\) *:,$(dir $@)\1 $@: ,'

Tweaking the makefile to handle the quirks of various tools is a normal part of using
make. Portable makefiles are often very complex due to vagarities of the diverse set of
tools they are forced to rely upon.

We now have a decent nonrecursive makefile, but there are maintenance problems.
The module.mk include files are largely similar. A change to one will likely involve a
change to all of them. For small projects like our mp3 player it is annoying. For large
projects with several hundred include files it can be fatal. By using consistent vari-
able names and regularizing the contents of the include files, we position ourselves
nicely to cure these ills. Here is the lib/codec include file after refactoring:

local_src := $(wildcard $(subdirectory)/*.c)

$(eval $(call make-library, $(subdirectory)/libcodec.a, $(local_src)))

Instead of specifying source files by name, we assume we want to rebuild all .c files in
the directory. The make-library function now performs the bulk of the tasks for an
include file. This function is defined at the top of our project makefile as:

$(call make-library, library-name, source-file-list)
define make-library
 libraries += $1
 sources += $2

 $1: $(call source-to-object,$2)
 $(AR) $(ARFLAGS) $$@ $$^
endef

The function appends the library and sources to their respective variables, then
defines the explicit rule to build the library. Notice how the automatic variables use

,ch06.3710 Page 120 Friday, March 25, 2005 2:29 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Nonrecursive make | 121

two dollar signs to defer actual evaluation of the $@ and $^ until the rule is fired. The
source-to-object function translates a list of source files to their corresponding
object files:

source-to-object = $(subst .c,.o,$(filter %.c,$1)) \
 $(subst .y,.o,$(filter %.y,$1)) \
 $(subst .l,.o,$(filter %.l,$1))

In our previous version of the makefile, we glossed over the fact that the actual parser
and scanner source files are playlist.y and scanner.l. Instead, we listed the source files
as the generated .c versions. This forced us to list them explicitly and to include an
extra variable, extra_clean. We’ve fixed that issue here by allowing the sources vari-
able to include .y and .l files directly and letting the source-to-object function do the
work of translating them.

In addition to modifying source-to-object, we need another function to compute the
yacc and lex output files so the clean target can perform proper clean up. The
generated-source function simply accepts a list of sources and produces a list of
intermediate files as output:

$(call generated-source, source-file-list)
generated-source = $(subst .y,.c,$(filter %.y,$1)) \
 $(subst .y,.h,$(filter %.y,$1)) \
 $(subst .l,.c,$(filter %.l,$1))

Our other helper function, subdirectory, allows us to omit the variable local_dir.

subdirectory = $(patsubst %/makefile,%, \
 $(word \
 $(words $(MAKEFILE_LIST)),$(MAKEFILE_LIST)))

As noted in the section “String Functions” in Chapter 4, we can retrieve the name of
the current makefile from MAKEFILE_LIST. Using a simple patsubst, we can extract the
relative path from the top-level makefile. This eliminates another variable and
reduces the differences between include files.

Our final optimization (at least for this example), uses wildcard to acquire the source
file list. This works well in most environments where the source tree is kept clean.
However, I have worked on projects where this is not the case. Old code was kept in
the source tree “just in case.” This entailed real costs in terms of programmer time
and anguish since old, dead code was maintained when it was found by global search
and replace and new programmers (or old ones not familiar with a module)
attempted to compile or debug code that was never used. If you are using a modern
source code control system, such as CVS, keeping dead code in the source tree is
unnecessary (since it resides in the repository) and using wildcard becomes feasible.

The include directives can also be optimzed:

modules := lib/codec lib/db lib/ui app/player
...
include $(addsuffix /module.mk,$(modules))

,ch06.3710 Page 121 Friday, March 25, 2005 2:29 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

122 | Chapter 6: Managing Large Projects

For larger projects, even this can be a maintenance problem as the list of modules
grows to the hundreds or thousands. Under these circumstances, it might be prefera-
ble to define modules as a find command:

modules := $(subst /module.mk,,$(shell find . -name module.mk))
...
include $(addsuffix /module.mk,$(modules))

We strip the filename from the find output so the modules variable is more generally
useful as the list of modules. If that isn’t necessary, then, of course, we would omit
the subst and addsuffix and simply save the output of find in modules. Example 6-3
shows the final makefile.

Example 6-3. A nonrecursive makefile, version 2

$(call source-to-object, source-file-list)
source-to-object = $(subst .c,.o,$(filter %.c,$1)) \
 $(subst .y,.o,$(filter %.y,$1)) \
 $(subst .l,.o,$(filter %.l,$1))

$(subdirectory)
subdirectory = $(patsubst %/module.mk,%, \
 $(word \
 $(words $(MAKEFILE_LIST)),$(MAKEFILE_LIST)))

$(call make-library, library-name, source-file-list)
define make-library
 libraries += $1
 sources += $2

 $1: $(call source-to-object,$2)
 $(AR) $(ARFLAGS) $$@ $$^
endef

$(call generated-source, source-file-list)
generated-source = $(subst .y,.c,$(filter %.y,$1)) \
 $(subst .y,.h,$(filter %.y,$1)) \
 $(subst .l,.c,$(filter %.l,$1))

Collect information from each module in these four variables.
Initialize them here as simple variables.
modules := lib/codec lib/db lib/ui app/player
programs :=
libraries :=
sources :=

objects = $(call source-to-object,$(sources))
dependencies = $(subst .o,.d,$(objects))

include_dirs := lib include
CPPFLAGS += $(addprefix -I ,$(include_dirs))
vpath %.h $(include_dirs)

,ch06.3710 Page 122 Friday, March 25, 2005 2:29 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Nonrecursive make | 123

Using one include file per module is quite workable and has some advantages, but
I’m not convinced it is worth doing. My own experience with a large Java project
indicates that a single top-level makefile, effectively inserting all the module.mk files
directly into the makefile, provides a reasonable solution. This project included 997
separate modules, about two dozen libraries, and half a dozen applications. There
were several makefiles for disjoint sets of code. These makefiles were roughly 2,500
lines long. A common include file containing global variables, user-defined func-
tions, and pattern rules was another 2,500 lines.

Whether you choose a single makefile or break out module information into include
files, the nonrecursive make solution is a viable approach to building large projects. It
also solves many traditional problems found in the recursive make approach. The
only drawback I’m aware of is the paradigm shift required for developers used to
recursive make.

MV := mv -f
RM := rm -f
SED := sed

all:

include $(addsuffix /module.mk,$(modules))

.PHONY: all
all: $(programs)

.PHONY: libraries
libraries: $(libraries)

.PHONY: clean
clean:
 $(RM) $(objects) $(programs) $(libraries) $(dependencies) \
 $(call generated-source, $(sources))

ifneq "$(MAKECMDGOALS)" "clean"
 include $(dependencies)
endif

%.c %.h: %.y
 $(YACC.y) --defines $<
 $(MV) y.tab.c $*.c
 $(MV) y.tab.h $*.h

%.d: %.c
 $(CC) $(CFLAGS) $(CPPFLAGS) $(TARGET_ARCH) -M $< | \
 $(SED) 's,\($(notdir $*)\.o\) *:,$(dir $@)\1 $@: ,' > $@.tmp
 $(MV) $@.tmp $@

Example 6-3. A nonrecursive makefile, version 2 (continued)

,ch06.3710 Page 123 Friday, March 25, 2005 2:29 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

124 | Chapter 6: Managing Large Projects

Components of Large Systems
For the purposes of this discussion, there are two styles of development popular
today: the free software model and the commercial development model.

In the free software model, each developer is largely on his own. A project has a
makefile and a README and developers are expected to figure it out with only a
small amount of help. The principals of the project want things to work well and
want to receive contributions from a large community, but they are mostly inter-
ested in contributions from the skilled and well-motivated. This is not a criticism. In
this point of view, software should be written well, and not necessarily to a schedule.

In the commercial development model, developers come in a wide variety of skill lev-
els and all of them must be able to develop software to contribute to the bottom line.
Any developer who can’t figure out how to do their job is wasting money. If the sys-
tem doesn’t compile or run properly, the development team as a whole may be idle,
the most expensive possible scenario. To handle these issues, the development pro-
cess is managed by an engineering support team that coordinates the build process,
configuration of software tools, coordination of new development and maintenance
work, and the management of releases. In this environment, efficiency concerns
dominate the process.

It is the commercial development model that tends to create elaborate build sys-
tems. The primary reason for this is pressure to reduce the cost of software develop-
ment by increasing programmer efficiency. This, in turn, should lead to increased
profit. It is this model that requires the most support from make. Nevertheless, the
techniques we discuss here apply to the free software model as well when their
requirements demand it.

This section contains a lot of high-level information with very few specifics and no
examples. That’s because so much depends on the language and operating environ-
ment used. In Chapters 8 and 9, I will provide specific examples of how to imple-
ment many of these features.

Requirements
Of course requirements vary with every project and every work environment. Here
we cover a wide range that are often considered important in many commercial
development environments.

The most common feature desired by development teams is the separation of source
code from binary code. That is, the object files generated from a compile should be

,ch06.3710 Page 124 Friday, March 25, 2005 2:29 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Components of Large Systems | 125

placed in a separate binary tree. This, in turn, allows many other features to be
added. Separate binary trees offer many advantages:

• It is easier to manage disk resources when the location of large binary trees can
be specified.

• Many versions of a binary tree can be managed in parallel. For instance, a single
source tree may have optimized, debug, and profiling binary versions available.

• Multiple platforms can be supported simultaneously. A properly implemented
source tree can be used to compile binaries for many platforms in parallel.

• Developers can check out partial source trees and have the build system auto-
matically “fill in” the missing files from a reference source and binary trees. This
doesn’t strictly require separating source and binary, but without the separation
it is more likely that developer build systems would get confused about where
binaries should be found.

• Source trees can be protected with read-only access. This provides added assur-
ance that the builds reflect the source code in the repository.

• Some targets, such as clean, can be implemented trivially (and will execute dra-
matically faster) if a tree can be treated as a single unit rather than searching the
tree for files to operate on.

Most of the above points are themselves important build features and may be project
requirements.

Being able to maintain reference builds of a project is often an important system fea-
ture. The idea is that a clean check-out and build of the source is performed nightly,
typically by a cron job. Since the resulting source and binary trees are unmodified
with respect to the CVS source, I refer to these as reference source and binary trees.
The resulting trees have many uses.

First, a reference source tree can be used by programmers and managers who need to
look at the source. This may seem trivial, but when the number of files and releases
grows it can be unwieldy or unreasonable to expect someone to check-out the source
just to examine a single file. Also, while CVS repository browsing tools are common,
they do not typically provide for easy searching of the entire source tree. For this,
tags tables or even find/grep (or grep -R) are more appropriate.

Second, and most importantly, a reference binary tree indicates that the source
builds cleanly. When developers begin each morning, they know if the system is bro-
ken or whole. If a batch-oriented testing framework is in place, the clean build can be
used to run automated tests. Each day developers can examine the test report to
determine the health of the system without wasting time running the tests them-
selves. The cost savings is compounded if a developer has only a modified version of
the source because he avoids spending additional time performing a clean check-out
and build. Finally, the reference build can be run by developers to test and compare
the functionality of specific components.

,ch06.3710 Page 125 Friday, March 25, 2005 2:29 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

126 | Chapter 6: Managing Large Projects

The reference build can be used in other ways as well. For projects that consist of
many libraries, the precompiled libraries from the nightly build can be used by pro-
grammers to link their own application with those libraries they are not modifying.
This allows them to shorten their develoment cycle by omiting large portions of the
source tree from their local compiles. Of course, easy access to the project source on
a local file server is convenient if developers need to examine the code and do not
have a complete checked out source tree.

With so many different uses, it becomes more important to verify the integrity of the
reference source and binary trees. One simple and effective way to improve reliabil-
ity is to make the source tree read-only. Thus, it is guaranteed that the reference
source files accurately reflect the state of the repository at the time of check out.
Doing this can require special care, because many different aspects of the build may
attempt to causally write to the source tree. Especially when generating source code
or writing temporary files. Making the source tree read-only also prevents casual
users from accidentally corrupting the source tree, a most common occurrence.

Another common requirement of the project build system is the ability to easily
handle different compilation, linking, and deployment configurations. The build
system typically must be able to manage different versions of the project (which
may be branches of the source repository).

Most large projects rely on significant third-party software, either in the form of link-
able libraries or tools. If there are no other tools to manage configurations of the soft-
ware (and often there are not), using the makefile and build system to manage this is
often a reasonable choice.

Finally, when software is released to a customer, it is often repackaged from its devel-
opment form. This can be as complex as constructing a setup.exe file for Windows or
as simple as formatting an HTML file and bundling it with a jar. Sometimes this
installer build operation is combined with the normal build process. I prefer to keep
the build and the install generation as two separate stages because they seem to use
radically different processes. In any case, it is likely that both of these operations will
have an impact on the build system.

Filesystem Layout
Once you choose to support fmultiple binary trees, the question of filesystem layout
arises. In environments that require multiple binary trees, there are often a lot of
binary trees. To keep all these trees straight requires some thought.

A common way to organize this data is to designate a large disk for a binary tree
“farm.” At (or near) the top level of this disk is one directory for each binary tree.

,ch06.3710 Page 126 Friday, March 25, 2005 2:29 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Filesystem Layout | 127

One reasonable layout for these trees is to include in each directory name the ven-
dor, hardware platform, operating system, and build parameters of the binary tree:

$ ls
hp-386-windows-optimized
hp-386-windows-debug
sgi-irix-optimzed
sgi-irix-debug
sun-solaris8-profiled
sun-solaris8-debug

When builds from many different times must be kept, it is usually best to include a
date stamp (and even a timestamp) in the directory name. The format yymmdd or
yymmddhhmm sorts well:

$ ls
hp-386-windows-optimized-040123
hp-386-windows-debug-040123
sgi-irix-optimzed-040127
sgi-irix-debug-040127
sun-solaris8-profiled-040127
sun-solaris8-debug-040127

Of course, the order of these filename components is up your site. The top-level
directory of these trees is a good place to hold the makefile and testing logs.

This layout is appropriate for storing many parallel developer builds. If a develop-
ment team makes “releases,” possibly for internal customers, you can consider add-
ing an additional release farm, structured as a set of products, each of which may
have a version number and timestamp as shown in Figure 6-2.

Here products might be libraries that are the output of a development team for use
by other developers. Of course, they may also be products in the traditional sense.

Figure 6-2. Example of a release tree layout

product1

1.0

product2

1.4

release

040101

0404124

1.0

040121

031212

,ch06.3710 Page 127 Friday, March 25, 2005 2:29 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

128 | Chapter 6: Managing Large Projects

Whatever your file layout or environment, many of the same criteria govern the
implementation. It must be easy to identify each tree. Cleanup should be fast and
obvious. It is useful to make it easy to move trees around and archive trees. In addi-
tion, the filesystem layout should closely match the process structure of the organiza-
tion. This makes it easy for nonprogrammers such as managers, quality assurance,
and technical publications to navigate the tree farm.

Automating Builds and Testing
It is typically important to be able to automate the build process as much as possi-
ble. This allows reference tree builds to be performed at night, saving developer time
during the day. It also allows developers themselves to run builds on their own
machines unattended.

For software that is “in production,” there are often many outstanding requests for
builds of different versions of different products. For the person in charge of satisfy-
ing these requests, the ability to fire off several builds and “walk away” is often criti-
cal to maintaining sanity and satisfying requests.

Automated testing presents its own issues. Many nongraphical applications can use
simple scripting to manage the testing process. The GNU tool dejaGnu can also be
used to test nongraphical utilities that require interaction. Of course, testing frame-
works like JUnit (http://www.junit.org) also provide support for nongraphical unit
testing.

Testing of graphical applications presents special problems. For X11-based systems, I
have successfully performed unattended, cron-based testing using the virtual frame
buffer, Xvfb. On Windows, I have not found a satisfactory solution to unattended
testing. All approaches rely on leaving the testing account logged in and the screen
unlocked.

,ch06.3710 Page 128 Friday, March 25, 2005 2:29 PM

