
This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

141

Chapter 8 CHAPTER 8

C and C++

The issues and techniques shown in Chapter 6 are enhanced and applied in this
chapter to C and C++ projects. We’ll continue with the mp3 player example build-
ing on our nonrecursive makefile.

Separating Source and Binary
If we want to support a single source tree with multiple platforms and multiple
builds per platform, separating the source and binary trees is necessary, so how do
we do it? The make program was originally written to work well for files in a single
directory. Although it has changed dramatically since then, it hasn’t forgotten its
roots. make works with multiple directories best when the files it is updating live in
the current directory (or its subdirectories).

The Easy Way
The easiest way to get make to place binaries in a separate directory from sources is to
start the make program from the binary directory. The output files are accessed using
relative paths, as shown in the previous chapter, while the input files must be found
either through explicit paths or through searching through vpath. In either case, we’ll
need to refer to the source directory in several places, so we start with a variable to
hold it:

SOURCE_DIR := ../mp3_player

Building on our previous makefile, the source-to-object function is unchanged, but
the subdirectory function now needs to take into account the relative path to the
source.

$(call source-to-object, source-file-list)
source-to-object = $(subst .c,.o,$(filter %.c,$1)) \
 $(subst .y,.o,$(filter %.y,$1)) \
 $(subst .l,.o,$(filter %.l,$1))

,ch08.6184 Page 141 Friday, March 25, 2005 2:44 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

142 | Chapter 8: C and C++

$(subdirectory)
subdirectory = $(patsubst $(SOURCE_DIR)/%/module.mk,%, \
 $(word \
 $(words $(MAKEFILE_LIST)),$(MAKEFILE_LIST)))

In our new makefile, the files listed in the MAKEFILE_LIST will include the relative path
to the source. So to extract the relative path to the module’s directory, we must strip
off the prefix as well as the module.mk suffix.

Next, to help make find the sources, we use the vpath feature:

vpath %.y $(SOURCE_DIR)
vpath %.l $(SOURCE_DIR)
vpath %.c $(SOURCE_DIR)

This allows us to use simple relative paths for our source files as well as our output
files. When make needs a source file, it will search SOURCE_DIR if it cannot find the file
in the current directory of the output tree. Next, we must update the include_dirs
variable:

include_dirs := lib $(SOURCE_DIR)/lib $(SOURCE_DIR)/include

In addition to the source directories, this variable now includes the lib directory from
the binary tree because the generated yacc and lex header files will be placed there.

The make include directive must be updated to access the module.mk files from their
source directories since make does not use the vpath to find include files:

include $(patsubst %,$(SOURCE_DIR)/%/module.mk,$(modules))

Finally, we create the output directories themselves:

create-output-directories := \
 $(shell for f in $(modules); \
 do \
 $(TEST) -d $$f || $(MKDIR) $$f; \
 done)

This assignment creates a dummy variable whose value is never used, but because of
the simple variable assignment we are guaranteed that the directories will be created
before make performs any other work. We must create the directories “by hand”
because yacc, lex, and the dependency file generation will not create the output
directories themselves.

Another way to ensure these directories are created is to add the directories as pre-
requisites to the dependency files (the .d files). This is a bad idea because the direc-
tory is not really a prerequisite. The yacc, lex, or dependency files do not depend on
the contents of the directory, nor should they be regenerated just because the direc-
tory timestamp is updated. In fact, this would be a source of great inefficiency if the
project were remade when a file was added or removed from an output directory.

,ch08.6184 Page 142 Friday, March 25, 2005 2:44 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Separating Source and Binary | 143

The modifications to the module.mk file are even simpler:

local_src := $(addprefix $(subdirectory)/,playlist.y scanner.l)

$(eval $(call make-library, $(subdirectory)/libdb.a, $(local_src)))

.SECONDARY: $(call generated-source, $(local_src))

$(subdirectory)/scanner.d: $(subdirectory)/playlist.d

This version omits the wildcard to find the source. It is a straightforward matter to
restore this feature and is left as an exercise for the reader. There is one glitch that
appears to be a bug in the original makefile. When this example was run, I discov-
ered that the scanner.d dependency file was being generated before playlist.h, which
it depends upon. This dependency was missing from the original makefile, but it
worked anyway purely by accident. Getting all the dependencies right is a difficult
task, even in small projects.

Assuming the source is in the subdirectory mp3_player, here is how we build our
project with the new makefile:

$ mkdir mp3_player_out
$ cd mp3_player_out
$ make --file=../mp3_player/makefile

The makefile is correct and works well, but it is rather annoying to be forced to
change directories to the output directory and then be forced to add the --file (-f)
option. This can be cured with a simple shell script:

#! /bin/bash
if [[! -d $OUTPUT_DIR]]
then
 if ! mkdir -p $OUTPUT_DIR
 then
 echo "Cannot create output directory" > /dev/stderr
 exit 1
 fi
fi

cd $OUTPUT_DIR
make --file=$SOURCE_DIR/makefile "$@"

This script assumes the source and output directories are stored in the environment
variables SOURCE_DIR and OUTPUT_DIR, respectively. This is a standard practice that
allows developers to switch trees easily but still avoid typing paths too frequently.

One last caution. There is nothing in make or our makefile to prevent a developer
from executing the makefile from the source tree, even though it should be executed
from the binary tree. This is a common mistake and some command scripts might
behave badly. For instance, the clean target:

.PHONY: clean
clean:
 $(RM) -r *

,ch08.6184 Page 143 Friday, March 25, 2005 2:44 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

144 | Chapter 8: C and C++

would delete the user’s entire source tree! Oops. It seems prudent to add a check for
this eventuality in the makefile at the highest level. Here is a reasonable check:

$(if $(filter $(notdir $(SOURCE_DIR)),$(notdir $(CURDIR))),\
 $(error Please run the makefile from the binary tree.))

This code tests if the name of the current working directory ($(notdir $(CURDIR))) is
the same as the source directory ($(notdir $(SOURCE_DIR))). If so, print the error and
exit. Since the if and error functions expand to nothing, we can place these two
lines immediately after the definition of SOURCE_DIR.

The Hard Way
Some developers find having to cd into the binary tree so annoying that they will go
to great lengths to avoid it, or maybe the makefile maintainer is working in an envi-
ronment where shell script wrappers or aliases are unsuitable. In any case, the
makefile can be modified to allow running make from the source tree and placing
binary files in a separate output tree by prefixing all the output filenames with a
path. At this point I usually go with absolute paths since this provides more flexibil-
ity, although it does exacerbate problems with command-line length limits. The
input files continue to use simple relative paths from the makefile directory.

Example 8-1 shows the makefile modified to allow executing make from the source
tree and writing binary files to a binary tree.

Example 8-1. A makefile separating source and binary that can be executed from the source
tree

SOURCE_DIR := /test/book/examples/ch07-separate-binaries-1
BINARY_DIR := /test/book/out/mp3_player_out

$(call source-dir-to-binary-dir, directory-list)
source-dir-to-binary-dir = $(addprefix $(BINARY_DIR)/, $1)

$(call source-to-object, source-file-list)
source-to-object = $(call source-dir-to-binary-dir, \
 $(subst .c,.o,$(filter %.c,$1)) \
 $(subst .y,.o,$(filter %.y,$1)) \
 $(subst .l,.o,$(filter %.l,$1)))

$(subdirectory)
subdirectory = $(patsubst %/module.mk,%, \
 $(word \
 $(words $(MAKEFILE_LIST)),$(MAKEFILE_LIST)))

$(call make-library, library-name, source-file-list)
define make-library
 libraries += $(BINARY_DIR)/$1
 sources += $2

 $(BINARY_DIR)/$1: $(call source-dir-to-binary-dir, \
 $(subst .c,.o,$(filter %.c,$2)) \

,ch08.6184 Page 144 Friday, March 25, 2005 2:44 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Separating Source and Binary | 145

 $(subst .y,.o,$(filter %.y,$2)) \
 $(subst .l,.o,$(filter %.l,$2)))
 $(AR) $(ARFLAGS) $$@ $$^
endef

$(call generated-source, source-file-list)
generated-source = $(call source-dir-to-binary-dir, \
 $(subst .y,.c,$(filter %.y,$1)) \
 $(subst .y,.h,$(filter %.y,$1)) \
 $(subst .l,.c,$(filter %.l,$1))) \
 $(filter %.c,$1)

$(compile-rules)
define compile-rules
 $(foreach f, $(local_src),\
 $(call one-compile-rule,$(call source-to-object,$f),$f))
endef

$(call one-compile-rule, binary-file, source-files)
define one-compile-rule
 $1: $(call generated-source,$2)
 $(COMPILE.c) -o $$@ $$<

 $(subst .o,.d,$1): $(call generated-source,$2)
 $(CC) $(CFLAGS) $(CPPFLAGS) $(TARGET_ARCH) -M $$< | \
 $(SED) 's,\($$(notdir $$*)\.o\) *:,$$(dir $$@)\1 $$@: ,' > $$@.tmp
 $(MV) $$@.tmp $$@

endef

modules := lib/codec lib/db lib/ui app/player
programs :=
libraries :=
sources :=

objects = $(call source-to-object,$(sources))
dependencies = $(subst .o,.d,$(objects))

include_dirs := $(BINARY_DIR)/lib lib include
CPPFLAGS += $(addprefix -I ,$(include_dirs))
vpath %.h $(include_dirs)

MKDIR := mkdir -p
MV := mv -f
RM := rm -f
SED := sed
TEST := test

create-output-directories := \
 $(shell for f in $(call source-dir-to-binary-dir,$(modules)); \
 do \

Example 8-1. A makefile separating source and binary that can be executed from the source
tree (continued)

,ch08.6184 Page 145 Friday, March 25, 2005 2:44 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

146 | Chapter 8: C and C++

In this version the source-to-object function is modified to prepend the path to the
binary tree. This prefixing operation is performed several times, so write it as a function:

SOURCE_DIR := /test/book/examples/ch07-separate-binaries-1
BINARY_DIR := /test/book/out/mp3_player_out

$(call source-dir-to-binary-dir, directory-list)
source-dir-to-binary-dir = $(addprefix $(BINARY_DIR)/, $1)

$(call source-to-object, source-file-list)
source-to-object = $(call source-dir-to-binary-dir, \
 $(subst .c,.o,$(filter %.c,$1)) \
 $(subst .y,.o,$(filter %.y,$1)) \
 $(subst .l,.o,$(filter %.l,$1)))

The make-library function is similarly altered to prefix the output file with BINARY_DIR.
The subdirectory function is restored to its previous version since the include path is
again a simple relative path. One small snag; a bug in make 3.80 prevents calling source-
to-object within the new version of make-library. This bug has been fixed in 3.81. We
can work around the bug by hand expanding the source-to-object function.

Now we get to the truly ugly part. When the output file is not directly accessible
from a path relative to the makefile, the implicit rules no longer fire. For instance, the
basic compile rule %.o: %.c works well when the two files live in the same directory,
or even if the C file is in a subdirectory, say lib/codec/codec.c. When the source file
lives in a remote directory, we can instruct make to search for the source with the
vpath feature. But when the object file lives in a remote directory, make has no way of
determining where the object file resides and the target/prerequisite chain is broken.

 $(TEST) -d $$f || $(MKDIR) $$f; \
 done)

all:

include $(addsuffix /module.mk,$(modules))

.PHONY: all
all: $(programs)

.PHONY: libraries
libraries: $(libraries)

.PHONY: clean
clean:
 $(RM) -r $(BINARY_DIR)

ifneq "$(MAKECMDGOALS)" "clean"
 include $(dependencies)
endif

Example 8-1. A makefile separating source and binary that can be executed from the source
tree (continued)

,ch08.6184 Page 146 Friday, March 25, 2005 2:44 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Separating Source and Binary | 147

The only way to inform make of the location of the output file is to provide an explicit
rule linking the source and object files:

$(BINARY_DIR)/lib/codec/codec.o: lib/codec/codec.c

This must be done for every single object file.

Worse, this target/prerequisite pair is not matched against the implicit rule, %.o: %.c.
That means we must also provide the command script, duplicating whatever is in the
implicit database and possibly repeating this script many times. The problem also
applies to the automatic dependency generation rule we’ve been using. Adding two
explicit rules for every object file in a makefile is a maintenance nightmare, if done by
hand. However, we can minimize the code duplication and maintenance by writing a
function to generate these rules:

$(call one-compile-rule, binary-file, source-files)
define one-compile-rule
 $1: $(call generated-source,$2)
 $(COMPILE.c) $$@ $$<

 $(subst .o,.d,$1): $(call generated-source,$2)
 $(CC) $(CFLAGS) $(CPPFLAGS) $(TARGET_ARCH) -M $$< | \
 $(SED) 's,\($$(notdir $$*)\.o\) *:,$$(dir $$@)\1 $$@: ,' > $$@.tmp
 $(MV) $$@.tmp $$@

endef

The first two lines of the function are the explicit rule for the object-to-source depen-
dency. The prerequisites for the rule must be computed using the generated-source
function we wrote in Chapter 6 because some of the source files are yacc and lex files
that will cause compilation failures when they appear in the command script
(expanded with $^, for instance). The automatic variables are quoted so they are
expanded later when the command script is executed rather than when the user-
defined function is evaluated by eval. The generated-source function has been modi-
fied to return C files unaltered as well as the generated source for yacc and lex:

$(call generated-source, source-file-list)
generated-source = $(call source-dir-to-binary-dir, \
 $(subst .y,.c,$(filter %.y,$1)) \
 $(subst .y,.h,$(filter %.y,$1)) \
 $(subst .l,.c,$(filter %.l,$1))) \
 $(filter %.c,$1)

With this change, the function now produces this output:

Argument Result
lib/db/playlist.y /c/mp3_player_out/lib/db/playlist.c
 /c/mp3_player_out/lib/db/playlist.h
lib/db/scanner.l /c/mp3_player_out/lib/db/scanner.c
app/player/play_mp3.c app/player/play_mp3.c

The explicit rule for dependency generation is similar. Again, note the extra quoting
(double dollar signs) required by the dependency script.

,ch08.6184 Page 147 Friday, March 25, 2005 2:44 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

148 | Chapter 8: C and C++

Our new function must now be expanded for each source file in a module:

$(compile-rules)
define compile-rules
 $(foreach f, $(local_src),\
 $(call one-compile-rule,$(call source-to-object,$f),$f))
endef

This function relies on the global variable local_src used by the module.mk files. A
more general approach would pass this file list as an argument, but in this project it
seems unnecessary. These functions are easily added to our module.mk files:

local_src := $(subdirectory)/codec.c

$(eval $(call make-library,$(subdirectory)/libcodec.a,$(local_src)))

$(eval $(compile-rules))

We must use eval because the compile-rules function expands to more than one line
of make code.

There is one last complication. If the standard C compilation pattern rule fails to
match with binary output paths, the implicit rule for lex and our pattern rule for
yacc will also fail. We can update these by hand easily. Since they are no longer
applicable to other lex or yacc files, we can move them into lib/db/module.mk:

local_dir := $(BINARY_DIR)/$(subdirectory)
local_src := $(addprefix $(subdirectory)/,playlist.y scanner.l)

$(eval $(call make-library,$(subdirectory)/libdb.a,$(local_src)))

$(eval $(compile-rules))

.SECONDARY: $(call generated-source, $(local_src))

$(local_dir)/scanner.d: $(local_dir)/playlist.d

$(local_dir)/%.c $(local_dir)/%.h: $(subdirectory)/%.y
 $(YACC.y) --defines $<
 $(MV) y.tab.c $(dir $@)$*.c
 $(MV) y.tab.h $(dir $@)$*.h

$(local_dir)/scanner.c: $(subdirectory)/scanner.l
 @$(RM) $@
 $(LEX.l) $< > $@

The lex rule has been implemented as a normal explicit rule, but the yacc rule is a
pattern rule. Why? Because the yacc rule is used to build two targets, a C file and a
header file. If we used a normal explicit rule, make would execute the command script
twice, once for the C file to be created and once for the header. But make assumes
that a pattern rule with multiple targets updates both targets with a single execution.

,ch08.6184 Page 148 Friday, March 25, 2005 2:44 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Dependency Generation | 149

If possible, instead of the makefiles shown in this section, I would use the simpler
approach of compiling from the binary tree. As you can see, complications arise
immediately (and seem to get worse and worse) when trying to compile from the
source tree.

Read-Only Source
Once the source and binary trees are separate, the ability to make a reference source
tree read-only often comes for free if the only files generated by the build are the
binary files placed in the output tree. However, if source files are generated, then we
must take care that they are placed in the binary tree.

In the simpler “compile from binary tree” approach, the generated files are written
into the binary tree automatically because the yacc and lex programs are executed
from the binary tree. In the “compile from source tree” approach, we are forced to
provide explicit paths for our source and target files, so specifying the path to a
binary tree file is no extra work, except that we must remember to do it.

The other obstacles to making the reference source tree read only are usually self-
imposed. Often a legacy build system will include actions that create files in the
source tree because the original author had not considered the advantages to a read-
only source tree. Examples include generated documentation, log files, and tempo-
rary files. Moving these files to the output tree can sometimes be arduous, but if
building multiple binary trees from a single source is necessary, the alternative is to
maintain multiple, identical source trees and keep them in sync.

Dependency Generation
We gave a brief introduction to dependency generation in the section “Automatic
Dependency Generation” in Chapter 2, but it left several problems unaddressed.
Therefore, this section offers some alternatives to the simple solution already
described.* In particular, the simple approach described earlier and in the GNU make
manual suffer from these failings:

• It is inefficient. When make discovers that a dependency file is missing or out of
date, it updates the .d file and restarts itself. Rereading the makefile can be ineffi-
cient if it performs many tasks during the reading of the makefile and the analy-
sis of the dependency graph.

• make generates a warning when you build a target for the first time and each time
you add new source files. At these times the dependency file associated with a

* Much of the material in this section was invented by Tom Tromey (tromey@cygnus.com) for the GNU
automake utility and is taken from the excellent summary article by Paul Smith (the maintainer of GNU make)
from his web site http://make.paulandlesley.org.

,ch08.6184 Page 149 Friday, March 25, 2005 2:44 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

150 | Chapter 8: C and C++

new source file does not yet exist, so when make attempts to read the depen-
dency file it will produce a warning message before generating the dependency
file. This is not fatal, merely irritating.

• If you remove a source file, make stops with a fatal error during subsequent
builds. In this situation, there exists a dependency file containing the removed
file as a prerequisite. Since make cannot find the removed file and doesn’t know
how to make it, make prints the message:

make: *** No rule to make target foo.h, needed by foo.d. Stop.

Furthermore, make cannot rebuild the dependency file because of this error. The
only recourse is to remove the dependency file by hand, but since these files are
often hard to find, users typically delete all the dependency files and perform a
clean build. This error also occurs when files are renamed.

Note that this problem is most noticeable with removed or renamed header files
rather than .c files. This is because .c files will be removed from the list of depen-
dency files automatically and will not trouble the build.

Tromey’s Way
Let’s address these problems individually.

How can we avoid restarting make?

On careful consideration, we can see that restarting make is unnecessary. If a depen-
dency file is updated, it means that at least one of its prerequisites has changed,
which means we must update the target. Knowing more than that isn’t necessary in
this execution of make because more dependency information won’t change make’s
behavior. But we want the dependency file updated so that the next run of make will
have complete dependency information.

Since we don’t need the dependency file in this execution of make, we could generate
the file at the same time as we update the target. We can do this by rewriting the
compilation rule to also update the dependency file.

$(call make-depend,source-file,object-file,depend-file)
define make-depend
 $(CC) $(CFLAGS) $(CPPFLAGS) $(TARGET_ARCH) -M $1 | \
 $(SED) 's,\($$(notdir $2)\) *:,$$(dir $2) $3: ,' > $3.tmp
 $(MV) $3.tmp $3
endef

%.o: %.c
 $(call make-depend,$<,$@,$(subst .o,.d,$@))
 $(COMPILE.c) -o $@ $<

We implement the dependency generation feature with the function make-depend that
accepts the source, object, and dependency filenames. This provides maximum flexi-
bility if we need to reuse the function later in a different context. When we modify

,ch08.6184 Page 150 Friday, March 25, 2005 2:44 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Dependency Generation | 151

our compilation rule this way, we must delete the %.d: %.c pattern rule we wrote to
avoid generating the dependency files twice.

Now, the object file and dependency file are logically linked: if one exists the other
must exist. Therefore, we don’t really care if a dependency file is missing. If it is, the
object file is also missing and both will be updated by the next build. So we can now
ignore any warnings that result from missing .d files.

In the section “Include and Dependencies” in Chapter 3, I introduced an alternate
form of include directive, -include (or sinclude), that ignores errors and does not
generate warnings:

ifneq "$(MAKECMDGOALS)" "clean"
 -include $(dependencies)
endif

This solves the second problem, that of an annoying message when a dependency file
does not yet exist.

Finally, we can avoid the warning when missing prerequisites are discovered with a
little trickery. The trick is to create a target for the missing file that has no prerequi-
sites and no commands. For example, suppose our dependency file generator has
created this dependency:

target.o target.d: header.h

Now suppose that, due to code refactoring, header.h no longer exists. The next time
we run the makefile we’ll get the error:

make: *** No rule to make target header.h, needed by target.d. Stop.

But if we add a target with no command for header.h to the dependency file, the
error does not occur:

target.o target.d: header.h
header.h:

This is because, if header.h does not exist, it will simply be considered out of date
and any targets that use it as a prerequisite will be updated. So the dependency file
will be regenerated without header.h because it is no longer referenced. If header.h
does exist, make considers it up to date and continues. So, all we need to do is ensure
that every prerequisite has an associated empty rule. You may recall that we first
encountered this kind of rule in the section “Phony Targets” in Chapter 2. Here is a
version of make-depend that adds the new targets:

$(call make-depend,source-file,object-file,depend-file)
define make-depend
 $(CC) $(CFLAGS) $(CPPFLAGS) $(TARGET_ARCH) -M $1 | \
 $(SED) 's,\($$(notdir $2)\) *:,$$(dir $2) $3: ,' > $3.tmp
 $(SED) -e 's/#.*//' \
 -e 's/^[^:]*: *//' \
 -e 's/ *\\$$$$//' \
 -e '/^$$$$/ d' \

,ch08.6184 Page 151 Friday, March 25, 2005 2:44 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

152 | Chapter 8: C and C++

 -e 's/$$$$/ :/' $3.tmp >> $3.tmp
 $(MV) $3.tmp $3
endef

We execute a new sed command on the dependency file to generate the additional
rules. This chunk of sed code performs five transformations:

1. Deletes comments

2. Deletes the target file(s) and subsequent spaces

3. Deletes trailing spaces

4. Deletes blank lines

5. Adds a colon to the end of every line

(GNU sed is able to read from a file and append to it in a single command line, sav-
ing us from having to use a second temporary file. This feature may not work on
other systems.) The new sed command will take input that looks like:

any comments
target.o target.d: prereq1 prereq2 prereq3 \
 prereq4

and transform it into:

prereq1 prereq2 prereq3:
prereq4:

So make-depend appends this new output to the original dependency file. This solves
the “No rule to make target” error.

makedepend Programs
Up to now we have been content to use the -M option provided by most compilers,
but what if this option doesn’t exist? Alternatively, are there better options than our
simple -M?

These days most C compilers have some support for generating make dependencies
from the source, but not long ago this wasn’t true. In the early days of the X Win-
dow System project, they implemented a tool, makedepend, that computes the depen-
dencies from a set of C or C++ sources. This tool is freely available over the Internet.
Using makedepend is a little awkward because it is written to append its output to the
makefile, which we do not want to do. The output of makedepend assumes the object
files reside in the same directory as the source. This means that, again, our sed
expression must change:

$(call make-depend,source-file,object-file,depend-file)
define make-depend
 $(MAKEDEPEND) -f- $(CFLAGS) $(CPPFLAGS) $(TARGET_ARCH) $1 | \
 $(SED) 's,^.*/\([^/]*\.o\) *:,$(dir $2)\1 $3: ,' > $3.tmp
 $(SED) -e 's/#.*//' \
 -e 's/^[^:]*: *//' \

,ch08.6184 Page 152 Friday, March 25, 2005 2:44 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Dependency Generation | 153

 -e 's/ *\\$$$$//' \
 -e '/^$$$$/ d' \
 -e 's/$$$$/ :/' $3.tmp >> $3.tmp
 $(MV) $3.tmp $3
endef

The -f- option tells makedepend to write its dependency information to the standard
output.

An alternative to using makedepend or your native compiler is to use gcc. It sports a
bewildering set of options for generating dependency information. The ones that
seem most apropos for our current requirements are:

ifneq "$(MAKECMDGOALS)" "clean"
 -include $(dependencies)
endif

$(call make-depend,source-file,object-file,depend-file)
define make-depend
 $(GCC) -MM \
 -MF $3 \
 -MP \
 -MT $2 \
 $(CFLAGS) \
 $(CPPFLAGS) \
 $(TARGET_ARCH) \
 $1
endef

%.o: %.c
 $(call make-depend,$<,$@,$(subst .o,.d,$@))
 $(COMPILE.c) $(OUTPUT_OPTION) $<

The -MM option causes gcc to omit “system” headers from the prerequisites list. This is
useful because these files rarely, if ever, change and, as the build system gets more com-
plex, reducing the clutter helps. Originally, this may have been done for performance
reasons. With today’s processors, the performance difference is barely measurable.

The -MF option specifies the dependency filename. This will be the object filename
with the .d suffix substituted for .o. There is another gcc option, -MD or -MMD, that
automatically generates the output filename using a similar substitution. Ideally we
would prefer to use this option, but the substitution fails to include the proper rela-
tive path to the object file directory and instead places the .d file in the current direc-
tory. So, we are forced to do the job ourselves using -MF.

The -MP option instructs gcc to include phony targets for each prerequisite. This
completely eliminates the messy five-part sed expression in our make-depend func-
tion. It seems that the automake developers who invented the phony target technique
caused this option to be added to gcc.

,ch08.6184 Page 153 Friday, March 25, 2005 2:44 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

154 | Chapter 8: C and C++

Finally, the -MT option specifies the string to use for the target in the dependency file.
Again, without this option, gcc fails to include the relative path to the object file out-
put directory.

By using gcc, we can reduce the four commands previously required for dependency
generation to a single command. Even when proprietary compilers are used it may be
possible to use gcc for dependency management.

Supporting Multiple Binary Trees
Once the makefile is modified to write binary files into a separate tree, supporting
many trees becomes quite simple. For interactive or developer-invoked builds, where
a developer initiates a build from the keyboard, there is little or no preparation
required. The developer creates the output directory, cd’s to it and invokes make on
the makefile.

$ mkdir -p ~/work/mp3_player_out
$ cd ~/work/mp3_player_out
$ make -f ~/work/mp3_player/makefile

If the process is more involved than this, then a shell script wrapper is usually the
best solution. This wrapper can also parse the current directory and set an environ-
ment variable like BINARY_DIR for use by the makefile.

#! /bin/bash

Assume we are in the source directory.
curr=$PWD
export SOURCE_DIR=$curr
while [[$SOURCE_DIR]]
do
 if [[-e $SOURCE_DIR/[Mm]akefile]]
 then
 break;
 fi
 SOURCE_DIR=${SOURCE_DIR%/*}
done

Print an error if we haven't found a makefile.
if [[! $SOURCE_DIR]]
then
 printf "run-make: Cannot find a makefile" > /dev/stderr
 exit 1
fi

Set the output directory to a default, if not set.
if [[! $BINARY_DIR]]
then
 BINARY_DIR=${SOURCE_DIR}_out
fi

,ch08.6184 Page 154 Friday, March 25, 2005 2:44 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Supporting Multiple Binary Trees | 155

Create the output directory
mkdir --parents $BINARY_DIR

Run the make.
make --directory="$BINARY_DIR" "$@"

This particular script is a bit fancier. It searches for the makefile first in the current
directory and then in the parent directory on up the tree until a makefile is found.
It then checks that the variable for the binary tree is set. If not, it is set by appending
“_out” to the source directory. The script then creates the output directory and exe-
cutes make.

If the build is being performed on different platforms, some method for differentiat-
ing between platforms is required. The simplest approach is to require the developer
to set an environment variable for each type of platform and add conditionals to the
makefile and source based on this variable. A better approach is to set the platform
type automatically based on the output of uname.

space := $(empty) $(empty)
export MACHINE := $(subst $(space),-,$(shell uname -smo))

If the builds are being invoked automatically from cron, I’ve found that a helper shell
script is a better approach than having cron invoke make itself. A wrapper script pro-
vides better support for setup, error recovery, and finalization of an automated build.
The script is also an appropriate place to set variables and command-line parameters.

Finally, if a project supports a fixed set of trees and platforms, you can use directory
names to automatically identify the current build. For example:

ALL_TREES := /builds/hp-386-windows-optimized \
 /builds/hp-386-windows-debug \
 /builds/sgi-irix-optimzed \
 /builds/sgi-irix-debug \
 /builds/sun-solaris8-profiled \
 /builds/sun-solaris8-debug

BINARY_DIR := $(foreach t,$(ALL_TREES),\
 $(filter $(ALL_TREES)/%,$(CURDIR)))

BUILD_TYPE := $(notdir $(subst -,/,$(BINARY_DIR)))

MACHINE_TYPE := $(strip \
 $(subst /,-, \
 $(patsubst %/,%, \
 $(dir \
 $(subst -,/, \
 $(notdir $(BINARY_DIR)))))))

The ALL_TREES variable holds a list of all valid binary trees. The foreach loop
matches the current directory against each of the valid binary trees. Only one can
match. Once the binary tree has been identified, we can extract the build type (e.g.,
optimized, debug, or profiled) from the build directory name. We retrieve the last

,ch08.6184 Page 155 Friday, March 25, 2005 2:44 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

156 | Chapter 8: C and C++

component of the directory name by transforming the dash-separated words into
slash-separated words and grabbing the last word with notdir. Similarly, we retrieve
the machine type by grabbing the last word and using the same technique to remove
the last dash component.

Partial Source Trees
On really large projects, just checking out and maintaining the source can be a bur-
den on developers. If a system consists of many modules and a particular developer
is modifying only a localized part of it, checking out and compiling the entire project
can be a large time sink. Instead, a centrally managed build, performed nightly, can
be used to fill in the holes in a developer’s source and binary trees.

Doing so requires two types of search. First, when a missing header file is required by
the compiler, it must be instructed to search in the reference source tree. Second,
when the makefile requires a missing library, it must be told to search in the refer-
ence binary tree. To help the compiler find source, we can simply add additional -I
options after the -I options specifying local directories. To help make find libraries,
we can add additional directories to the vpath.

SOURCE_DIR := ../mp3_player
REF_SOURCE_DIR := /reftree/src/mp3_player
REF_BINARY_DIR := /binaries/mp3_player
…
include_dirs := lib $(SOURCE_DIR)/lib $(SOURCE_DIR)/include
CPPFLAGS += $(addprefix -I ,$(include_dirs)) \
 $(addprefix -I $(REF_SOURCE_DIR)/,$(include_dirs))
vpath %.h $(include_dirs) \
 $(addprefix $(REF_SOURCE_DIR)/,$(include_dirs))

vpath %.a $(addprefix $(REF_BINARY_DIR)/lib/, codec db ui)

This approach assumes that the “granularity” of a CVS check out is a library or pro-
gram module. In this case, the make can be contrived to skip missing library and pro-
gram directories if a developer has chosen not to check them out. When it comes
time to use these libraries, the search path will automatically fill in the missing files.

In the makefile, the modules variable lists the set of subdirectories to be searched for
module.mk files. If a subdirectory is not checked out, this list must be edited to
remove the subdirectory. Alternatively, the modules variable can be set by wildcard:

modules := $(dir $(wildcard lib/*/module.mk))

This expression will find all the subdirectories containing a module.mk file and
return the directory list. Note that because of how the dir function works, each
directory will contain a trailing slash.

It is also possible for make to manage partial source trees at the individual file level,
building libraries by gathering some object files from a local developer tree and missing

,ch08.6184 Page 156 Friday, March 25, 2005 2:44 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Reference Builds, Libraries, and Installers | 157

files from a reference tree. However, this is quite messy and developers are not happy
with it, in my experience.

Reference Builds, Libraries, and Installers
At this point we’ve pretty much covered everything needed to implement reference
builds. Customizing the single top-level makefile to support the feature is straightfor-
ward. Simply replace the simple assignments to SOURCE_DIR and BINARY_DIR with ?=
assignments. The scripts you run from cron can use this basic approach:

1. Redirect output and set the names of log files

2. Clean up old builds and clean the reference source tree

3. Check out fresh source

4. Set the source and binary directory variables

5. Invoke make

6. Scan the logs for errors

7. Compute tags files, and possibly update the locate database*

8. Post information on the success or failure of the build

It is convenient, in the reference build model, to maintain a set of old builds in case a
rogue check-in corrupts the tree. I usually keep 7 or 14 nightly builds. Of course, the
nightly build script logs its output to files stored near the builds themselves and the
script purges old builds and logs. Scanning the logs for errors is usually done with an
awk script. Finally, I usually have the script maintain a latest symbolic link. To deter-
mine if the build is valid, I include a validate target in each makefile. This target per-
forms simple validation that the targets were built.

.PHONY: validate_build
validate_build:
 test $(foreach f,$(RELEASE_FILES),-s $f -a) -e .

This command script simply tests if a set of expected files exists and is not empty. Of
course, this doesn’t take the place of testing, but is a convenient sanity check for a
build. If the test returns failure, the make returns failure and the nightly build script
can leave the latest symbolic link pointing to the old build.

Third-party libraries are always a bit of a hassle to manage. I subscribe to the com-
monly held belief that it is bad to store large binary files in CVS. This is because CVS
cannot store deltas as diffs and the underlying RCS files can grow to enormous size.

* The locate database is a compilation of all the filenames present on a filesystem. It is a fast way of performing
a find by name. I have found this database invaluable for managing large source trees and like to have it
updated nightly after the build has completed.

,ch08.6184 Page 157 Friday, March 25, 2005 2:44 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

158 | Chapter 8: C and C++

Very large files in the CVS repository can slow down many common CVS opera-
tions, thus affecting all development.

If third-party libraries are not stored in CVS, they must be managed some other way.
My current preference is to create a library directory in the reference tree and record
the library version number in the directory name, as shown in Figure 8-1.

These directory names are referenced by the makefile:

ORACLE_9011_DIR ?= /reftree/third_party/oracle-9.0.1.1/Ora90
ORACLE_9011_JAR ?= $(ORACLE_9011_DIR)/jdbc/lib/classes12.jar

When the vendor updates its libraries, create a new directory in the reference tree
and declare new variables in the makefile. This way the makefile, which is properly
maintained with tags and branches, always explicitly reflects the versions being used.

Installers are also a difficult issue. I believe that separating the basic build process
from creating the installer image is a good thing. Current installer tools are complex
and fragile. Folding them into the (also often complex and fragile) build system
yields difficult-to-maintain systems. Instead, the basic build can write its results into
a “release” directory that contains all (or most of) the data required by the installer
build tool. This tool may be driven from its own makefile that ultimately yields an
executable setup image.

Figure 8-1. Directory layout for third-party libraries

third_party

oracle-8.0.7sp2

reftree

oracle-9.0.1.1

,ch08.6184 Page 158 Friday, March 25, 2005 2:44 PM

