CHAPTER 9
Java

Many Java developers like Integrated Development Environments (IDEs) such as
Eclipse. Given such well-known alternatives as Java IDEs and Ant, readers could well
ask why they should even think of using make on Java projects. This chapter explores
the value of make in these situations; in particular, it presents a generalized makefile
that can be dropped into just about any Java project with minimal modification and
carry out all the standard rebuilding tasks.

Using make with Java raises several issues and introduces some opportunities. This is
primarily due to three factors: the Java compiler, javac, is extremely fast; the stan-
dard Java compiler supports the @filename syntax for reading “command-line param-
eters” from a file; and if a Java package is specified, the Java language specifies a path
to the .class file.

Standard Java compilers are very fast. This is primarily due to the way the import
directive works. Similar to a #include in C, this directive is used to allow access to
externally defined symbols. However, rather than rereading source code, which then
needs to be reparsed and analyzed, Java reads the class files directly. Because the
symbols in a class file cannot change during the compilation process, the class files
are cached by the compiler. In even medium-sized projects, this means the Java com-
piler can avoid rereading, parsing, and analyzing literally millions of lines of code
compared with C. A more modest performance improvement is due to the bare mini-
mum of optimization performed by most Java compilers. Instead, Java relies on

sophisticated just-in-time (JIT) optimizations performed by the Java virtual machine
(JVM) itself.

Most large Java projects make extensive use of Java’s package feature. A class is declared
to be encapsulated in a package that forms a scope around the symbols defined by the
file. Package names are hierarchical and implicitly define a file structure. For instance,
the package a.b.c would implicitly define a directory structure a/b/c. Code declared to
be within the a.b.c package would be compiled to class files in the a/b/c directory. This
means that make’s normal algorithm for associating a binary file with its source fails. But
it also means that there is no need to specify a -0 option to indicate where output files

159

should be placed. Indicating the root of the output tree, which is the same for all files, is
sufficient. This, in turn, means that source files from different directories can be com-
piled with the same command-line invocation.

The standard Java compilers all support the @filename syntax that allows command-
line parameters to be read from a file. This is significant in conjunction with the
package feature because it means that the entire Java source for a project can be
compiled with a single execution of the Java compiler. This is a major performance
improvement because the time it takes to load and execute the compiler is a major
contributor to build times.

In summary, by composing the proper command line, compiling 400,000 lines of
Java takes about three minutes on a 2.5-GHz Pentium 4 processor. Compiling an
equivalent C++ application would require hours.

Alternatives to make

As previously mentioned, the Java developer community enthusiastically adopts new
technologies. Let’s see how two of these, Ant and IDEs, relate to make.

Ant

The Java community is very active, producing new tools and APIs at an impressive
rate. One of these new tools is Ant, a build tool intended to replace make in the Java
development process. Like make, Ant uses a description file to indicate the targets and
prerequisites of a project. Unlike make, Ant is written in Java and Ant build files are
written in XML.

To give you a feel for the XML build file, here is an excerpt from the Ant build file:

<target name="build"
depends="prepare, check for optional packages"
description="--> compiles the source code">
<mkdir dir="${build.dir}"/>
<mkdir dir="¢{build.classes}"/>
<mkdir dir="${build.lib}"/>

<javac srcdir="${java.dir}"
destdir="¢${build.classes}"
debug="${debug}"
deprecation="${deprecation}"
target="¢{javac.target}"
optimize="${optimize}" >
<classpath refid="classpath"/>
</javac>

<copy todir="${build.classes}">
<fileset dir="${java.dir}">

160 | Chapter9: Java

<include name="**/* properties"/>
<include name="**/*.dtd"/>
</fileset>
</copy>
</target>

As you can see, a target is introduced with an XML <target> tag. Each target has a
name and dependency list specified with <name> and <depends> attributes, respec-
tively. Actions are performed by Ant tasks. A task is written in Java and bound to an
XML tag. For instance, the task of creating a directory is specified with the <mkdir>
tag and triggers the execution of the Java method Mkdir.execute, which eventually
calls File.mkdir. As far as possible, all tasks are implemented using the Java APL

An equivalent build file using make syntax would be:

compiles the source code
build: $(all_javas) prepare check_for_optional packages
$(MKDIR) -p $(build.dir) $(build.classes) $(build.lib)
$(JAVAC) -sourcepath $(java.dir)
-d $(build.classes)
$(debug)
$(deprecation)
-target $(javac.target)
$(optimize)
-classpath $(classpath)
@3<

P g

$(FIND) . \(-name '*.properties' -o -name '*.dtd' \) | \

$(TAR) -c -f - -T - | $(TAR) -C $(build.classes) -x -f -
This snippet of make uses techniques that this book hasn’t discussed yet. Suffice to
say that the prerequisite all.javas contains a list of all java files to be compiled. The
Ant tasks <mkdir>, <javac>, and <copy> also perform dependency checking. That is, if
the directory already exists, mkdir is not executed. Likewise, if the Java class files are
newer than the source files, the source files are not compiled. Nevertheless, the make
command script performs essentially the same functions. Ant includes a generic task,
called <exec>, to run a local program.

Ant is a clever and fresh approach to build tools; however, it presents some issues
worth considering:

* Although Ant has found wide acceptance in the Java community, it is still rela-
tively unknown elsewhere. Also, it seems doubtful that its popularity will spread
much beyond Java (for the reasons listed here). make, on the other hand, has con-
sistently been applied to a broad range of fields including software develop-
ment, document processing and typesetting, and web site and workstation
maintenance, to name a few. Understanding make is important for anyone who
needs to work on a variety of software systems.

* The choice of XML as the description language is appropriate for a Java-based
tool. But XML is not particularly pleasant to write or to read (for many). Good

Alternatives tomake | 161

XML editors can be difficult to find and often do not integrate well with existing
tools (either my integrated development environment includes a good XML edi-
tor or I must leave my IDE and find a separate tool). As you can see from the
previous example, XML and the Ant dialect, in particular, are verbose compared
with make and shell syntax. And the XML is filled with its own idiosyncrasies.

When writing Ant build files you must contend with another layer of indirec-
tion. The Ant <mkdir> task does not invoke the underlying mkdir program for
your system. Instead, it executes the Java mkdir() method of the java.io.File
class. This may or may not do what you expect. Essentially, any knowledge a
programmer brings to Ant about the behavior of common tools is suspect and
must be checked against the Ant documentation, Java documentation, or the Ant
source. In addition, to invoke the Java compiler, for instance, I may be forced to
navigate through a dozen or more unfamiliar XML attributes, such as <srcdir>,
<debug>, etc., that are not documented in the compiler manual. In contrast, the
make script is completely transparent, that is, I can typically type the commands
directly into a shell to see how they behave.

Although Ant is certainly portable, so is make. As shown in Chapter 7, writing
portable makefiles, like writing portable Ant files, requires experience and knowl-
edge. Programmers have been writing portable makefiles for two decades. Fur-
thermore, the Ant documentation notes that there are portability issues with
symbolic links on Unix and long filenames on Windows, that MacOS X is the
only supported Apple operating system, and that support for other platforms is
not guaranteed. Also, basic operations like setting the execution bit on a file can-
not be performed from the Java API. An external program must be used. Porta-
bility is never easy or complete.

The Ant tool does not explain precisely what it is doing. Since Ant tasks are not
generally implemented by executing shell commands, the Ant tool has a difficult
time displaying its actions. Typically, the display consists of natural language
prose from print statements added by the task author. These print statements
cannot be executed by a user from a shell. In contrast, the lines echoed by make
are usually command lines that a user can copy and paste into a shell for reexe-
cution. This means the Ant build is less useful to developers trying to under-
stand the build process and tools. Also, it is not possible for a developer to reuse
parts of a task, impromptu, at the keyboard.

Last and most importantly, Ant shifts the build paradigm from a scripted to a
nonscripted programming language. Ant tasks are written in Java. If a task does
not exist or does not do what you want, you must either write your own task in
Java or use the <exec> task. (Of course, if you use the <exec> task often, you
would do far better to simply use make with its macros, functions, and more
compact syntax.)

162

| Chapter9: Java

Scripting languages, on the other hand, were invented and flourish precisely to
address this type of issue. make has existed for nearly 30 years and can be used in
the most complex situations without extending its implementation. Of course,
there have been a handful of extensions in those 30 years. Many of them con-
ceived and implemented in GNU make.

Ant is a marvelous tool that is widely accepted in the Java community. However,
before embarking on a new project, consider carefully if Ant is appropriate for your
development environment. This chapter will hopefully prove to you that make can
powerfully meet your Java build needs.

IDEs

Many Java developers use Integrated Development Environments (IDEs) that bun-
dle an editor, compiler, debugger, and code browser in a single (typically) graphical
environment. Examples include the open source Eclipse (http://www.eclipse.org) and
Emacs JDEE (http://jdee.sunsite.dk), and, from commercial vendors, Sun Java Studio
(http://wwws.sun.com/software/sundev/jde) and JBuilder (http://www.borland.com/
jbuilder). These environments typically have the notion of a project-build process
that compiles the necessary files and enables the application execution.

If the IDEs support all this, why should we consider using make? The most obvious
reason is portability. If there is ever a need to build the project on another platform,
the build may fail when ported to the new target. Although Java itself is portable
across platforms, the support tools are often not. For instance, if the configuration
files for your project include Unix- or Windows-style paths, these may generate
errors when the build is run on the other operating system. A second reason to use
make is to support unattended builds. Some IDEs support batch building and some
do not. The quality of support for this feature also varies. Finally, the build support
included is often limited. If you hope to implement customized release directory
structures, integrate help files from external applications, support automated test-
ing, and handle branching and parallel lines of development, you may find the inte-
grated build support inadequate.

In my own experience, [have found the IDEs to be fine for small scale or localized
development, but production builds require the more comprehensive support that
make can provide. I typically use an IDE to write and debug code, and write a
makefile for production builds and releases. During development I use the IDE to
compile the project to a state suitable for debugging. But if I change many files or
modify files that are input to code generators, then I run the makefile. The IDEs I've
used do not have good support for external source code generation tools. Usually the
result of an IDE build is not suitable for release to internal or external customers. For
that task I use make.

Alternatives to make | 163

A Generic Java Makefile

Example 9-1 shows a generic makefile for Java; I'll explain each of its parts later in
the chapter.

Example 9-1. Generic makefile for Java

A generic makefile for a Java project.
VERSION_NUMBER := 1.0

Location of trees.

SOURCE_DIR := src

OUTPUT DIR := classes

Unix tools

AWK 1= awk

FIND := /bin/find
MKDIR 1= mkdir -p
RM = 1m -rf
SHELL := /bin/bash

Path to support tools

JAVA HOME := /opt/j2sdk1.4.2_03
AXIS_HOME := /opt/axis-1_1

TOMCAT HOME := /opt/jakarta-tomcat-5.0.18
XERCES_HOME := /opt/xerces-1_4 4
JUNIT_HOME := /opt/junit3.8.1

Java tools

JAVA := $(JAVA_HOME)/bin/java
JAVAC 1= $(JAVA _HOME)/bin/javac
JFLAGS := -sourcepath $(SOURCE_DIR) \
-d $(OUTPUT DIR) \
-source 1.4
JVMFLAGS = -ea \
-esa \
-Xfuture
IVM 1= $(JAVA) $(IVMFLAGS)
IAR := $(JAVA_HOME)/bin/jar
JARFLAGS 1= cf
JAVADOC := $(JAVA _HOME)/bin/javadoc
JDFLAGS 1= -sourcepath $(SOURCE_DIR) \
-d $(OUTPUT DIR) \
-link http://java.sun.com/products/jdk/1.4/docs/api
Jars
COMMONS_LOGGING JAR := $(AXIS_HOME)/1ib/commons-logging.jar

164 | Chapter9: Java

Example 9-1. Generic makefile for Java (continued)

L0G4]_JAR $(AXIS_HOME)/1ib/log4j-1.2.8.jar
XERCES_JAR := $(XERCES_HOME)/xerces. jar
JUNIT JAR $(JUNIT_HOME)/junit.jar

Set the Java classpath
class_path := OUTPUT DIR
XERCES_JAR
COMMONS_LOGGING JAR
L0G4]_JAR
JUNIT_JAR

— s s

space - A blank space
space := $(empty) $(empty)

$(call build-classpath, variable-list)
define build-classpath
$(strip
$(patsubst :%,%,
$(subst : ,:,
$(strip
$(foreach j,$1,%$(call get-file,$j):)))))

— s

endef

$(call get-file, variable-name)
define get-file
$(strip
$(%1)
$(if $(call file-exists-eval,$1),,
$(warning The file referenced by variable \
"$1' ($($1)) cannot be found)))

- -

endef

$(call file-exists-eval, variable-name)
define file-exists-eval
$(strip \
$(if $($1),,$(warning '$1' has no value)) \
$(wildcard $($1)))

$(call brief-help, makefile)
define brief-help
$(AWK) "$$1 ~ /~[*.][-A-Za-z0-9]*:/ \
{ print substr($$1, 1, length($$1)-1) }' $1 | \
sort | \
pr -T -w 80 -4
endef

$(call file-exists, wildcard-pattern)
file-exists = $(wildcard $1)

$(call check-file, file-list)
define check-file
$(foreach f, $1, \

A Generic Java Makefile | 165

Example 9-1. Generic makefile for Java (continued)

$(if $(call file-exists, $($f)),, \
$(warning $f ($($f)) is missing)))
endef

#(call make-temp-dir, root-opt)
define make-temp-dir

mktemp -t $(if $1,$1,make) . XXXXXXXXXX
endef

MANIFEST TEMPLATE - Manifest input to m4 macro processor
MANIFEST_TEMPLATE := src/manifest/manifest.mf

TMP_JAR DIR 1= $(call make-temp-dir)

TMP_MANIFEST := $(TMP_JAR_DIR)/manifest.mf

$(call add-manifest, jar, jar-name, manifest-file-opt)
define add-manifest
$(RM) $(dir $(TMP_MANIFEST))
$(MKDIR) $(dir $(TMP_MANIFEST))
m4 --define=NAME="$(notdir $2)"
——define:IMPL_VERSION:$(VERSION_NUMBER)
--define=SPEC_VERSION=$(VERSION NUMBER)
$(if $3,$3,$(MANIFEST TEMPLATE))
> $(TMP_MANIFEST)
$(JAR) -ufm $1 $(TMP_MANIFEST)
$(RM) $(dir $(TMP_MANIFEST))
endef

P

$(call make-jar,jar-variable-prefix)
define make-jar
.PHONY: $1 $$($1 _name)
$1: $($1_name)
$$($1_name):
cd $(OUTPUT DIR); \
$(JAR) $(JARFLAGS) $$(notdir $$@) $$($1_packages)
$$(call add-manifest, $$@, $$($1 name), $$($1 manifest))
endef

Set the CLASSPATH
export CLASSPATH := $(call build-classpath, $(class path))

make-directories - Ensure output directory exists.
make-directories := $(shell $(MKDIR) $(OUTPUT DIR))

help - The default goal
.PHONY: help
help:
@$(call brief-help, $(CURDIR)/Makefile)

all - Perform all tasks for a complete build
.PHONY: all
all: compile jars javadoc

166 | Chapter9: Java

Example 9-1. Generic makefile for Java (continued)

all javas - Temp file for holding source file list
all javas := $(OUTPUT DIR)/all.javas

compile - Compile the source
.PHONY: compile
compile: $(all javas)

$(JAVAC) $(IFLAGS) @%<

all_javas - Gather source file list
.INTERMEDIATE: $(all javas)
$(all javas):

$(FIND) $(SOURCE_DIR) -name '*.java' > $@

jar_list - List of all jars to create
jar_list := server jar ui_jar

jars - Create all jars
.PHONY: jars
jars: $(jar_list)

server_jar - Create the $(server_ jar)

server _jar name := $(OUTPUT_DIR)/1ib/a.jar
server_jar manifest := src/com/company/manifest/foo.mf
server_jar_packages := com/company/m com/company/n

ui_jar - create the $(ui_jar)

ui_jar_name := $(OUTPUT DIR)/1ib/b.jar
ui_jar_manifest := src/com/company/manifest/bar.mf
ui_jar_packages := com/company/o com/company/p

Create an explicit rule for each jar

$(foreach j, $(jar_list), $(eval $(call make-jar,$j)))
$(eval $(call make-jar,server jar))

$(eval $(call make-jar,ui jar))

javadoc - Generate the Java doc from sources
.PHONY: javadoc
javadoc: $(all javas)

$(JAVADOC) $(IDFLAGS) @%<

.PHONY: clean
clean:
$(RM) $(OUTPUT DIR)

.PHONY: classpath
classpath:
@echo CLASSPATH="$(CLASSPATH)"

.PHONY: check-config
check-config:
@echo Checking configuration...
$(call check-file, $(class path) JAVA HOME)

A Generic Java Makefile

167

Example 9-1. Generic makefile for Java (continued)

.PHONY: print

print:
$(foreach v, $(V), \
$(warning $v = $($v)))
Compiling Java

Java can be compiled with make in two ways: the traditional approach, one javac exe-
cution per source file; or the fast approach outlined previously using the @filename
syntax.

The Fast Approach: All-in-One Compile

Let’s start with the fast approach. As you can see in the generic makefile:

all javas - Temp file for holding source file list
all javas := $(OUTPUT_DIR)/all.javas

compile - Compile the source
.PHONY: compile
compile: $(all javas)

$(JAVAC) $(IFLAGS) @$<

all javas - Gather source file list
.INTERMEDIATE: $(all javas)
$(all javas):

$(FIND) $(SOURCE _DIR) -name '*.java' > $@

The phony target compile invokes javac once to compile all the source of the project.

The $(all javas) prerequisite is a file, all.javas, containing a list of Java files, one
filename per line. It is not necessary for each file to be on its own line, but this way it
is much easier to filter files with grep -v if the need ever arises. The rule to create all.
javas is marked .INTERMEDIATE so that make will remove the file after each run and
thus create a new one before each compile. The command script to create the file is
straightforward. For maximum maintainability we use the find command to retrieve
all the java files in the source tree. This command can be a bit slow, but is guaran-
teed to work correctly with virtually no modification as the source tree changes.

If you have a list of source directories readily available in the makefile, you can use
faster command scripts to build all.javas. If the list of source directories is of medium
length so that the length of the command line does not exceed the operating sys-
tem’s limits, this simple script will do:
$(all_javas):
shopt -s nullglob; \
printf "%s\n" $(addsuffix /*.java,$(PACKAGE_DIRS)) > $@

168 | Chapter9: Java

This script uses shell wildcards to determine the list of Java files in each directory. If,
however, a directory contains no Java files, we want the wildcard to yield the empty
string, not the original globbing pattern (the default behavior of many shells). To
achieve this effect, we use the bash option shopt -s nullglob. Most other shells have
similar options. Finally, we use globbing and printf rather than 1s -1 because these
are built-in to bash, so our command script executes only a single program regard-
less of the number of package directories.

Alternately, we can avoid shell globbing by using wildcard:

$(all javas):
print "%s\n" $(wildcard \
$(addsuffix /*.java,$(PACKAGE DIRS))) > $@
If you have very many source directories (or very long paths), the above script may
exceed the command-line length limit of the operating system. In that case, the fol-
lowing script may be preferable:

.INTERMEDIATE: $(all_javas)
$(all _javas):

shopt -s nullglob; \
for f in $(PACKAGE DIRS); \
do \

printf "%s\n" $$f/*.java; \
done > $@

Notice that the compile target and the supporting rule follow the nonrecursive make
approach. No matter how many subdirectories there are, we still have one makefile
and one execution of the compiler. If you want to compile all of the source, this is as
fast as it gets.

Also, we completely discarded all dependency information. With these rules, make
neither knows nor cares about which file is newer than which. It simply compiles
everything on every invocation. As an added benefit, we can execute the makefile
from the source tree, instead of the binary tree. This may seem like a silly way to
organize the makefile considering make’s abilities to manage dependencies, but con-
sider this:

* The alternative (which we will explore shortly) uses the standard dependency
approach. This invokes a new javac process for each file, adding a lot of over-
head. But, if the project is small, compiling all the source files will not take sig-
nificantly longer than compiling a few files because the javac compiler is so fast
and process creation is typically slow. Any build that takes less than 15 seconds
is basically equivalent regardless of how much work it does. For instance, com-
piling approximately 500 source files (from the Ant distribution) takes 14 sec-
onds on my 1.8-GHz Pentium 4 with 512 MB of RAM. Compiling one file takes
five seconds.

* Most developers will be using some kind of development environment that pro-
vides fast compilation for individual files. The makefile will most likely be used

CompilingJava | 169

when changes are more extensive, complete rebuilds are required, or unat-
tended builds are necessary.

* As we shall see, the effort involved in implementing and maintaining dependen-
cies is equal to the separate source and binary tree builds for C/C++ (described
in Chapter 8). Not a task to be underestimated.

As we will see in later examples, the PACKAGE_DIRS variable has uses other than sim-
ply building the all.javas file. But maintaining this variables can be a labor-intensive,
and potentially difficult, step. For smaller projects, the list of directories can be main-
tained by hand in the makefile, but when the number grows beyond a hundred direc-
tories, hand editing becomes error-prone and irksome. At this point, it might be
prudent to use find to scan for these directories:

$(call find-compilation-dirs, root-directory)

find-compilation-dirs = \
$(patsubst %/,%, \
$(sort \
$(dir \

$(shell $(FIND) $1 -name '*.java'))))

PACKAGE_DIRS := $(call find-compilation-dirs, $(SOURCE_DIR))

The find command returns a list of files, dir discards the file leaving only the direc-
tory, sort removes duplicates from the list, and patsubst strips the trailing slash.
Notice that find-compilation-dirs finds the list of files to compile, only to discard
the filenames, then the all.javas rule uses wildcards to restore the filenames. This
seems wasteful, but I have often found that a list of the packages containing source
code is very useful in other parts of the build, for instance to scan for EJB configura-
tion files. If your situation does not require a list of packages, then by all means use
one of the simpler methods previously mentioned to build all.javas.

Compiling with Dependencies

To compile with full dependency checking, you first need a tool to extract
dependency information from the Java source files, something similar to cc -M. Jikes
(http://www.ibm.com/developerworks/opensourceljikes) is an open source Java com-
piler that supports this feature with the -makefile or +M option. Jikes is not ideal for
separate source and binary compilation because it always writes the dependency file
in the same directory as the source file, but it is freely available and it works. On the
plus side, it generates the dependency file while compiling, avoiding a separate pass.

Here is a dependency processing function and a rule to use it:

%.class: %.java
$(JAVAC) $(IFLAGS) +M $<
$(call java-process-depend,$<,$@)

$(call java-process-depend, source-file, object-file)
define java-process-depend

170 | Chapter9: Java

$(SED) -e 's/~.*\.class *:/$2 $(subst .class,.d,$2):/" \
$(subst .java,.u,$1) > $(subst .class,.tmp,$2)
$(SED) -e "s/#.*//
-e 's/A[ri]x *//!
-e "s/ *\\$$$%$//"
-e "/"$$%%/ d'
-e "s/$$$$/ :/' $(subst .class,.tmp,$2)
>> $(subst .class,.tmp,$2)
$(MV) $(subst .class,.tmp,$2).tmp $(subst .class,.d,$2)
endef

P

This requires that the makefile be executed from the binary tree and that the vpath be
set to find the source. If you want to use the Jikes compiler only for dependency gen-
eration, resorting to a different compiler for actual code generation, you can use the
+B option to prevent Jikes from generating bytecodes.

In a simple timing test compiling 223 Java files, the single line compile described pre-
viously as the fast approach required 9.9 seconds on my machine. The same 223 files
compiled with individual compilation lines required 411.6 seconds or 41.5 times
longer. Furthermore, with separate compilation, any build that required compiling
more than four files was slower than compiling all the source files with a single com-
pile line. If the dependency generation and compilation were performed by separate
programs, the discrepancy would increase.

Of course, development environments vary, but it is important to carefully consider
your goals. Minimizing the number of files compiled will not always minimize the
time it takes to build a system. For Java in particular, full dependency checking and
minimizing the number of files compiled does not appear to be necessary for normal
program development.

Setting CLASSPATH

One of the most important issues when developing software with Java is setting the
CLASSPATH variable correctly. This variable determines which code is loaded when a
class reference is resolved. To compile a Java application correctly, the makefile must
include the proper CLASSPATH. The CLASSPATH can quickly become long and complex
as Java packages, APIs, and support tools are added to a system. If the CLASSPATH can
be difficult to set properly, it makes sense to set it in one place.

A technique I've found useful is to use the makefile to set the CLASSPATH for itself and
other programs. For instance, a target classpath can return the CLASSPATH to the shell
invoking the makefile:

.PHONY: classpath
classpath:
@echo "export CLASSPATH='$(CLASSPATH)""

Developers can set their CLASSPATH with this (if they use bash):
$ eval $(make classpath)

CompilingJava | 171

The CLASSPATH in the Windows environment can be set with this invocation:

.PHONY: windows_classpath

windows classpath:
regtool set /user/Environment/CLASSPATH "$(subst /,\\,$(CLASSPATH))"
control sysdm.cpl,@1,3 &
@echo "Now click Environment Variables, then OK, then OK again.”

The program regtool is a utility in the Cygwin development system that manipu-
lates the Windows Registry. Simply setting the Registry doesn’t cause the new values
to be read by Windows, however. One way to do this is to visit the Environment
Variable dialog box and simply exit by clicking OK.

The second line of the command script causes Windows to display the System Prop-
erties dialog box with the Advanced tab active. Unfortunately, the command cannot
display the Environment Variables dialog box or activate the OK button, so the last
line prompts the user to complete the task.

Exporting the CLASSPATH to other programs, such as Emacs JDEE or JBuilder project
files, is not difficult.

Setting the CLASSPATH itself can also be managed by make. It is certainly reasonable to
set the CLASSPATH variable in the obvious way with:

CLASSPATH = /third party/toplink-2.5/TopLink.jar:/third party/..
For maintainability, using variables is preferred:
CLASSPATH = $(TOPLINK_ 25 JAR):$(TOPLINKX 25 JAR):..

But we can do better than this. As you can see in the generic makefile, we can build
the CLASSPATH in two stages: first list the elements in the path as make variables, then
transform those variables into the string value of the environment variable:

Set the Java classpath
class_path := OUTPUT_DIR
XERCES_JAR
COMMONS_LOGGING JAR
L0G4J_JAR
JUNIT_JAR

— s s

Set the CLASSPATH

export CLASSPATH := $(call build-classpath, $(class_path))
(The CLASSPATH in Example 9-1 is meant to be more illustrative than useful.) A well-
written build-classpath function solves several irritating problems:

* It is very easy to compose a CLASSPATH in pieces. For instance, if different applica-
tions servers are used, the CLASSPATH might need to change. The different ver-
sions of the CLASSPATH could then be enclosed in ifdef sections and selected by
setting a make variable.

* Casual maintainers of the makefile do not have to worry about embedded

blanks, newlines, or line continuation, because the build-classpath function
handles them.

172 | Chapter9: Java

* The path separator can be selected automatically by the build-classpath func-
tion. Thus, it is correct whether run on Unix or Windows.

* The validity of path elements can be verified by the build-classpath function. In
particular, one irritating problem with make is that undefined variables collapse
to the empty string without an error. In most cases this is very useful, but occa-
sionally it gets in the way. In this case, it quietly yields a bogus value for the
CLASSPATH variable.” We can solve this problem by having the build-classpath
function check for the empty valued elements and warn us. The function can
also check that each file or directory exists.

* Finally, having a hook to process the CLASSPATH can be useful for more advanced
features, such as help accommodating embedded spaces in path names and
search paths.

Here is an implementation of build-classpath that handles the first three issues:

$(call build-classpath, variable-list)
define build-classpath
$(strip
$(patsubst %:,%,
$(subst : ,:,
$(strip
$(foreach c,$1,$(call get-file,$c):)))))

— s s

endef

$(call get-file, variable-name)
define get-file
$(strip \
$($1) \
$(if $(call file-exists-eval,$1),, \
$(warning The file referenced by variable \
"$1' ($($1)) cannot be found)))
endef

$(call file-exists-eval, variable-name)
define file-exists-eval
$(strip \
$(if $($1),,$(warning '$1' has no value)) \
$(wildcard $($1)))
endef

The build-classpath function iterates through the words in its argument, verifying
each element and concatenating them with the path separator (: in this case). Select-
ing the path separator automatically is easy now. The function then strips spaces
added by the get-file function and foreach loop. Next, it strips the final separator

* We could try using the --warn-undefined-variables option to identify this situation, but this also flags many
other empty variables that are desirable.

CompilingJava | 173

added by the foreach loop. Finally, the whole thing is wrapped in a strip so errant
spaces introduced by line continuation are removed.

The get-file function returns its filename argument, then tests whether the variable
refers to an existing file. If it does not, it generates a warning. It returns the value of
the variable regardless of the existence of the file because the value may be useful to
the caller. On occasion, get-file may be used with a file that will be generated, but
does not yet exist.

The last function, file-exists-eval, accepts a variable name containing a file refer-
ence. If the variable is empty, a warning is issued; otherwise, the wildcard function is
used to resolve the value into a file (or a list of files for that matter).

When the build-classpath function is used with some suitable bogus values, we see
these errors:

Makefile:37: The file referenced by variable 'TOPLINKX 25 JAR'
(/usr/java/toplink-2.5/TopLinkX.jar) cannot be found

Makefile:37: 'XERCES_142_JAR' has no value
Makefile:37: The file referenced by variable
'XERCES 142 JAR' () cannot be found

This represents a great improvement over the silence we would get from the simple
approach.

The existence of the get-file function suggests that we could generalize the search
for input files.

$(call get-jar, variable-name)
define get-jar
$(strip
$(if $($1),,$(warning '$1' is empty))
$(if $(IAR_PATH),,$(warning JAR_PATH is empty))
$(foreach d, $(dir $($1)) $(JAR_PATH),
$(if $(wildcard $d/$(notdir $(51))),
$(if $(get-jar-return),,
$(eval get-jar-return := $d/$(notdir $($1))))))
$(if $(get-jar-return),
$(get-jar-return)
$(eval get-jar-return :=),
$($1)
$(warning get-jar: File not found '$1' in $(JAR_PATH))))
endef

P G S

Here we define the variable JAR_PATH to contain a search path for files. The first file
found is returned. The parameter to the function is a variable name containing the
path to a jar. We want to look for the jar file first in the path given by the variable,
then in the JAR PATH. To accomplish this, the directory list in the foreach loop is
composed of the directory from the variable, followed by the JAR_PATH. The two
other uses of the parameter are enclosed in notdir calls so the jar name can be com-
posed from a path from this list. Notice that we cannot exit from a foreach loop.

174 | Chapter9: Java

Instead, therefore, we use eval to set a variable, get-jar-return, to remember the
first file we found. After the loop, we return the value of our temporary variable or
issue a warning if nothing was found. We must remember to reset our return value
variable before terminating the macro.

This is essentially reimplementing the vpath feature in the context of setting the
CLASSPATH. To understand this, recall that the vpath is a search path used implicitly
by make to find prerequisites that cannot be found from the current directory by a rel-
ative path. In these cases, make searches the vpath for the prerequisite file and inserts
the completed path into the $7, $2, and $+ automatic variables. To set the CLASSPATH,
we want make to search a path for each jar file and insert the completed path into the
CLASSPATH variable. Since make has no built-in support for this, we’ve added our own.
You could, of course, simply expand the jar path variable with the appropriate jar
filenames and let Java do the searching, but CLASSPATHs already get long quickly. On
some operating systems, environment variable space is limited and long CLASSPATHs
are in danger of being truncated. On Windows XP, there is a limit of 1023 charac-
ters for a single environment variable. In addition, even if the CLASSPATH is not trun-
cated, the Java virtual machine must search the CLASSPATH when loading classes, thus
slowing down the application.

Managing Jars

Building and managing jars in Java presents different issues from C/C++ libraries.
There are three reasons for this. First, the members of a jar include a relative path, so
the precise filenames passed to the jar program must be carefully controlled. Sec-
ond, in Java there is a tendency to merge jars so that a single jar can be released to
represent a program. Finally, jars include other files than classes, such as manifests,
property files, and XML.

The basic command to create a jar in GNU make is:

JAR 1= jar
JARFLAGS := -cf

$(FOO_JAR): prerequisites..
$(JAR) $(JARFLAGS) $@ $°
The jar program can accept directories instead of filenames, in which case, all the
files in the directory trees are included in the jar. This can be very convenient, espe-
cially when used with the -C option for changing directories:

JAR 1= jar
JARFLAGS := -cf

.PHONY: $(FO0_JAR)
$(FOO_JAR):
$(JAR) $(JIARFLAGS) $@ -C $(OUTPUT DIR) com

ManagingJars | 175

Here the jar itself is declared .PHONY. Otherwise subsequent runs of the makefile
would not recreate the file, because it has no prerequisites. As with the ar command
described in an earlier chapter, there seems little point in using the update flag, -u,
since it takes the same amount of time or longer as recreating the jar from scratch, at
least for most updates.

A jar often includes a manifest that identifies the vendor, API and version number
the jar implements. A simple manifest might look like:

Name: JAR_NAME

Specification-Title: SPEC_NAME

Implementation-Version: IMPL VERSION

Specification-Vendor: Generic Innovative Company, Inc.
This manifest includes three placeholders, JAR_NAME, SPEC_NAME, and IMPL_VERSION,
that can be replaced at jar creation time by make using sed, m4, or your favorite stream
editor. Here is a function to process a manifest:

MANIFEST TEMPLATE := src/manifests/default.mf

TMP_JAR DIR $(call make-temp-dir)
TMP_MANIFEST $(TMP_JAR DIR)/manifest.mf

$(call add-manifest, jar, jar-name, manifest-file-opt)
define add-manifest
$(RM) $(dir $(TMP_MANIFEST))
$(MKDIR) $(dir $(TMP_MANIFEST))
m4 --define=NAME="$(notdir $2)"
--define=IMPL VERSION=$(VERSION NUMBER)
--define=SPEC_VERSION=$(VERSION NUMBER)
$(if $3,$3,$(MANIFEST TEMPLATE))
> $(TMP_MANIFEST)
$(IAR) -ufm $1 $(TMP_MANIFEST)
$(RM) $(dir $(TMP_MANIFEST))
endef

P

The add-manifest function operates on a manifest file similar to the one shown previ-
ously. The function first creates a temporary directory, then expands the sample
manifest. Next, it updates the jar, and finally deletes the temporary directory. Notice
that the last parameter to the function is optional. If the manifest file path is empty,
the function uses the value from MANIFEST TEMPLATE.

The generic makefile bundles these operations into a generic function to write an
explicit rule for creating a jar:

$(call make-jar,jar-variable-prefix)
define make-jar
.PHONY: $1 $$($1 name)
$1: $($1_name)
$$($1_name):
cd $(OUTPUT DIR); \
$(JAR) $(JIARFLAGS) $$(notdir $$@) $$($1_packages)
$$(call add-manifest, $$@, $$($1_name), $$($1 _manifest))
endef

176 | Chapter9: Java

It accepts a single argument, the prefix of a make variable, that identifies a set of vari-
ables describing four jar parameters: the target name, the jar name, the packages in
the jar, and the jar’s manifest file. For example, for a jar named ui.jar, we would
write:

ui_jar name := $(OUTPUT DIR)/1ib/ui.jar

ui_jar_manifest := src/com/company/ui/manifest.mf

ui_jar packages := src/com/company/ui \
src/com/company/lib

$(eval $(call make-jar,ui jar))

By using variable name composition, we can shorten the calling sequence of our
function and allow for a very flexible implementation of the function.

If we have many jar files to create, we can automate this further by placing the jar
names in a variable:

jar_list := server jar ui_jar

.PHONY: jars $(jar list)
jars: $(jar_list)

$(foreach j, $(jar list),\
$(eval $(call make-jar,$j)))
Occasionally, we need to expand a jar file into a temporary directory. Here is a sim-
ple function to do that:
$(call burst-jar, jar-file, target-directory)
define burst-jar
$(call make-dir,$2)

cd $2; $(IAR) -xf $1
endef

Reference Trees and Third-Party Jars

To use a single, shared reference tree to support partial source trees for developers,
simply have the nightly build create jars for the project and include those jars in the
CLASSPATH of the Java compiler. The developer can check out the parts of the source
tree he needs and run the compile (assuming the source file list is dynamically cre-
ated by something like find). When the Java compiler requires symbols from a miss-
ing source file, it will search the CLASSPATH and discover the .class file in the jar.

Selecting third-party jars from a reference tree is also simple. Just place the path to
the jar in the CLASSPATH. The makefile can be a valuable tool for managing this pro-
cess as previously noted. Of course, the get-file function can be used to automati-
cally select beta or stable, local or remote jars by simply setting the JAR_PATH variable.

Reference Trees and Third-Party Jars | 177

Enterprise JavaBeans

Enterprise JavaBeans™ is a powerful technique to encapsulate and reuse business
logic in the framework of remote method invocation. EJB sets up Java classes used to
implement server APIs that are ultimately used by remote clients. These objects and
services are configured using XML-based control files. Once the Java classes and
XML control files are written, they must be bundled together in a jar. Then a special
EJB compiler builds stubs and ties to implement the RPC support code.

The following code can be plugged into Example 9-1 to provide generic EJB support:

EJB_TMP_JAR = $(EJB_TMP_DIR)/temp.jar
META_INF = $(EJB_TMP_DIR)/META-INF

$(call compile-bean, jar-name,

bean-files-wildcard, manifest-name-opt)

define compile-bean
$(eval EIB_TMP DIR := $(shell mktemp -d $(TMPDIR)/compile-bean.XXXXXXXX))
$(MKDIR) $(META_INF)
$(if $(filter %.xml, $2),cp $(filter %.xml, $2) $(META_INF))

cd $(OUTPUT DIR) 8&& \
$(IAR) -cfo $(EIB_TMP_JAR) \
$(call jar-file-arg,$(META_INF)) \

$(filter-out %.xml, $2)
$(IVM) weblogic.ejbc $(EJB_TMP_JAR) $1
$(call add-manifest,$(if $3,$3,%$1),,)
$(RM) $(EJB_TMP_DIR)
endef

$(call jar-file-arg, jar-file)

jar-file-arg = -C "$(patsubst %/,%,$(dir $1))" $(notdir $1)
The compile-bean function comaccepts three parameters: the name of the jar to cre-
ate, the list of files in the jar, and an optional manifest file. The function first creates
a clean temporary directory using the mktemp program and saves the directory name
in the variable EJB_TMP_DIR. By embedding the assignment in an eval, we ensure that
EJB_TMP DIR is reset to a new temporary directory once for each expansion of
compile-bean. Since compile-bean is used in the command script part of a rule, the
function is expanded only when the command script is executed. Next, it copies any
XML files in the bean file list into the META-INF directory. This is where EJB config-
uration files live. Then, the function builds a temporary jar that is used as input to
the EJB compiler. The jar-file-arg function converts filenames of the form dirl/
dir2/dir3 into -C dir1/dir2 dir3 so the relative path to the file in the jar is correct.
This is the appropriate format for indicating the META-INF directory to the jar com-
mand. The bean file list contains .xml files that have already been placed in the
META-INF directory, so we filter these files out. After building the temporary jar, the
WebLogic EJB compiler is invoked, generating the output jar. A manifest is then
added to the compiled jar. Finally, our temporary directory is removed.

178 | Chapter9: Java

Using the new function is straightforward:

bean_files = com/company/bean/FooInterface.class \
com/company/bean/FooHome. class \
src/com/company/bean/ejb-jar.xml \

src/com/company/bean/weblogic-ejb-jar.xml

.PHONY: ejb_jar $(EJB_JAR)
ejb_jar: $(EJB_JAR)
$(EJB_JAR):
$(call compile-bean, $@, $(bean_files), weblogic.mf)

The bean_files list is a little confusing. The .class files it references will be accessed

relative to the classes directory, while the .xml files will be accessed relative to the
directory of the makefile.

This is fine, but what if you have lots of bean files in your bean jar. Can we build the
file list automatically? Certainly:

src_dirs := $(SOURCE_DIR)/com/company/...

bean_files =
$(patsubst $(SOURCE_DIR)/%,%,
$(addsuffix /*.class,
$(sort
$(dir
$(wildcard
$(addsuffix /*Home.java,$(src_dirs)))))))

P g

.PHONY: ejb_jar $(EIB_JAR)

ejb_jar: $(EIB_IAR)

$(EJB_IAR):

$(call compile-bean, $@, $(bean_files), weblogic.mf)

This assumes that all the directories with EJB source are contained in the src_dirs
variable (there can also be directories that do not contain EJB source) and that any
file ending in Home.java identifies a package containing EJB code. The expression
for setting the bean files variable first adds the wildcard suffix to the directories,
then invokes wildcard to gather the list of Home.java files. The filenames are dis-
carded to leave the directories, which are sorted to remove duplicates. The wildcard
/*.class suffix is added so that the shell will expand the list to the actual class files.
Finally, the source directory prefix (which is not valid in the classes tree) is removed.
Shell wildcard expansion is used instead of make’s wildcard because we can’t rely on
make to perform its expansion after the class files have been compiled. If make evalu-
ated the wildcard function too early it would find no files and directory caching
would prevent it from ever looking again. The wildcard in the source tree is perfectly
safe because (we assume) no source files will be added while make is running.

The above code works when we have a small number of bean jars. Another style of
development places each EJB in its own jar. Large projects may have dozens of jars.
To handle this case automatically, we need to generate an explicit rule for each EJB

Enterprise JavaBeans | 179

jar. In this example, E]JB source code is self-contained: each EJB is located in a single
directory with its associated XML files. EJB directories can be identified by files that
end with Session.java.

The basic approach is to search the source tree for EJBs, then build an explicit rule to
create each EJB and write these rules into a file. The EJB rules file is then included in
our makefile. The creation of the EJB rules file is triggered by make’s own depen-
dency handling of include files.
session_jars - The EJB jars with their relative source path.
session_jars =
$(subst .java,.jar, \
$(wildcard \
$(addsuffix /*Session.java, $(COMPILATION DIRS))))

EJBS - A list of all EJB jars we need to build.
EJBS = $(addprefix $(TMP_DIR)/,$(notdir $(session_jars)))

ejbs - Create all EJB jar files.
.PHONY: ejbs
ejbs: $(EJIBS)
$(EJBS):
$(call compile-bean,$@,$",)

We find the Session.java files by calling a wildcard on all the compilation directories.
In this example, the jar file is the name of the Session file with the .jar suffix. The jars
themselves will be placed in a temporary binary directory. The EIBS variable con-
tains the list of jars with their binary directory path. These EJB jars are the targets we
want to update. The actual command script is our compile-bean function. The tricky
part is that the file list is recorded in the prerequisites for each jar file. Let’s see how
they are created.

-include $(OUTPUT DIR)/ejb.d

$(call ejb-rule, ejb-name)
ejb-rule = $(TMP_DIR)/$(notdir $1):
$(addprefix $(OUTPUT DIR)/,
$(subst .java,.class,
$(wildcard $(dir $1)*.java)))
$(wildcard $(dir $1)*.xml)

ejb.d - EJB dependencies file.
$(OUTPUT DIR)/ejb.d: Makefile
@echo Computing ejb dependencies...

@for f in $(session_jars); \
do \

echo "\$$(call ejb-rule,$$)"; \
done > $@

The dependencies for each EJB jar are recorded in a separate file, ejb.d, that is
included by the makefile. The first time make looks for this include file it does not

180 | Chapter9: Java

exist. So make invokes the rule for updating the include file. This rule writes one line
for each EJB, something like:

$(call ejb-rule,src/com/company/foo/FooSession.jar)

The function ejb-rule will expand to the target jar and its list of prerequisites, some-
thing like:
classes/1lib/FooSession.jar: classes/com/company/foo/FooHome.jar \
classes/com/company/foo/FooInterface.jar \
classes/com/company/foo/FooSession.jar \
\

src/com/company/foo/ejb-jar.xml
src/com/company/foo/ejb-weblogic-jar.xml

In this way, a large number of jars can be managed in make without incurring the
overhead of maintaining a set of explicit rules by hand.

Enterprise JavaBeans | 181

