CHAPTER 10
Improving the Performance of make

make plays a critical role in the development process. It combines the elements of a
project to create an application while allowing the developer to avoid the subtle
errors caused by accidentally omitting steps of the build. However, if developers
avoid using make, because they feel the makefile is too slow, all the benefits of make
are lost. It is important, therefore, to ensure that the makefile be crafted to be as effi-
cient as possible.

Performance issues are always tricky, but become even more so when the perception
of users and different paths through the code are considered. Not every target of a
makefile is worth optimizing. Even radical optimizations might not be worth the
effort depending on your environment. For instance, reducing the time of an opera-
tion from 90 minutes to 45 minutes may be immaterial since even the faster time is a
“go get lunch” operation. On the other hand, reducing a task from 2 minutes to 1
might be received with cheers if developers are twiddling their thumbs during that
time.

When writing a makefile for efficient execution, it is important to know the costs of
various operations and to know what operations are being performed. In the follow-
ing sections, we will perform some simple benchmarking to quantify these general
comments and present techniques to help identify bottlenecks.

A complementary approach to improving performance is to take advantage of paral-
lelism and local network topology. By running more than one command script at a
time (even on a uniprocessor), build times can be reduced.

Benchmarking

Here we measure the performance of some basic operations in make. Table 10-1
shows the results of these measurements. We’ll explain each test and suggest how
they might affect makefiles you write.

182

Table 10-1. Cost of operations

Seconds per
execution Executions persecond Seconds per Executions per
Operation Executions (Windows) (Windows) execution (Linux) second (Linux)
make (bash) 1000 0.0436 22 0.0162 61
make (ash) 1000 0.0413 24 0.0151 66
make (sh) 1000 0.0452 2 0.0159 62
assignment 10,000 0.0001 8130 0.0001 10,989
subst (short) 10,000 0.0003 3891 0.0003 3846
subst (long) 10,000 0.0018 547 0.0014 704
sed (bash) 1000 0.0910 10 0.0342 29
sed (ash) 1000 0.0699 14 0.0069 144
sed (sh) 1000 0.0911 10 0.0139 A
shell (bash) 1000 0.0398 25 0.0261 38
shell (ash) 1000 0.0253 39 0.0018 555
shell (sh) 1000 0.0399 25 0.0050 198

The Windows tests were run on a 1.9-GHz Pentium 4 (approximately 3578 Bogo-
Mips)” with 512 MB RAM running Windows XP. The Cygwin version of make 3.80
was used, started from an rxvt window. The Linux tests were run on a 450-MHz
Pentium 2 (891 BogoMips) with 256 MB of RAM running Linux RedHat 9.

The subshell used by make can have a significant effect on the overall performance of
the makefile. The bash shell is a complex, fully featured shell, and therefore large.
The ash shell is a much smaller, with fewer features but adequate for most tasks. To
complicate matters, if bash is invoked from the filename /bin/sh, it alters its behavior
significantly to conform more closely to the standard shell. On most Linux systems
the file /bin/sh is a symbolic link to bash, while in Cygwin /bin/sh is really ash. To
account for these differences, some of the tests were run three times, each time using
a different shell. The shell used is indicated in parentheses. When “(sh)” appears, it
means that bash was linked to the file named /bin/sh.

The first three tests, labeled make, give an indication of how expensive it is to run
make if there is nothing to do. The makefile contains:
SHELL := /bin/bash
.PHONY: x
X

$(MAKE) --no-print-directory --silent --question make-bash.mk; \
..this command repeated 99 more times..

The word “bash” is replaced with the appropriate shell name as required.

* See http://www.clifton.nl/bogomips.html for an explanation of BogoMips.

Benchmarking | 183

We use the --no-print-directory and --silent commands to eliminate unnecessary
computation that might skew the timing test and to avoid cluttering the timing out-
put values with irrelevant text. The --question option tells make to simply check the
dependencies without executing any commands and return an exit status of zero if
the files are up to date. This allows make to do as little work as possible. No com-
mands will be executed by this makefile and dependencies exist for only one .PHONY
target. The command script executes make 100 times. This makefile, called make-
bash.mk, is executed 10 times by a parent makefile with this code:

define ten-times

TESTS += $1
.PHONY: $1
$1:

@echo $(MAKE) --no-print-directory --silent $2; \
time $(MAKE) --no-print-directory --silent $2; \
time $(MAKE) --no-print-directory --silent $2;
time $(MAKE) --no-print-directory --silent $2;
time $(MAKE) --no-print-directory --silent $2;
time $(MAKE) --no-print-directory --silent $2;
time $(MAKE) --no-print-directory --silent $2;
time $(MAKE) --no-print-directory --silent $2;
time $(MAKE) --no-print-directory --silent $2;
time $(MAKE) --no-print-directory --silent $2;
time $(MAKE) --no-print-directory --silent $2

P e

endef

.PHONY: all
all:

$(eval $(call ten-times, make-bash, -f make-bash.mk))

all: $(TESTS)
The time for these 1,000 executions is then averaged.

As you can see from the table, the Cygwin make ran at roughly 22 executions per sec-
ond or 0.044 seconds per run, while the Linux version (even on a drastically slower
CPU) performed roughly 61 executions per second or 0.016 seconds per run. To ver-
ify these results, the native Windows version of make was also tested and did not yield
any dramatic speed up. Conclusion: while process creation in Cygwin make is slightly
slower than a native Windows make, both are dramatically slower than Linux. It also
suggests that use of recursive make on a Windows platform may perform significantly
slower than the same build run on Linux.

As you would expect, the shell used in this test had no effect on execution time.
Because the command script contained no shell special characters, the shell was not
invoked at all. Rather, make executed the commands directly. This can be verified by
setting the SHELL variable to a completely bogus value and noting that the test still
runs correctly. The difference in performance between the three shells must be attrib-
uted to normal system variance.

184 | Chapter10: Improving the Performance of make

The next benchmark measures the speed of variable assignment. This calibrates the
most elementary make operation. The makefile, called assign.mk, contains:

10000 assignments

z := 10

.repeated 10000 times..

.PHONY: x

X:

This makefile is then run using our ten-times function in the parent makefile.

The assignment is obviously very fast. Cygwin make will execute 8130 assignments
per second while the Linux system can do 10,989. I believe the performance of Win-
dows for most of these operations is actually better than the benchmark indicates
because the cost of creating the make process 10 times cannot be reliably factored out
of the time. Conclusion: because it is unlikely that the average makefile would per-
form 10,000 assignments, the cost of variable assignment in an average makefile is
negligible.

The next two benchmarks measure the cost of a subst function call. The first uses a
short 10-character string with three substitutions:

10000 subst on a 10 char string

dir := ab/cd/ef/g

x 1= $(subst /, ,$(dir))

.repeated 10000 times..

.PHONY: x

X: ;
This operation takes roughly twice as long as a simple assignment, or 3891 opera-
tions per second on Windows. Again, the Linux system appears to outperform the
Windows system by a wide margin. (Remember, the Linux system is running at less
than one quarter the clock speed of the Windows system.)

The longer substitution operates on a 1000-character string with roughly 100 substi-
tutions:

Ten character file

dir := ab/cd/ef/g

1000 character path

p100 := $(dir);$(dir);$(dir);$(dir);$(dir);..
p1000 := $(p100)$(p100)$(p100)$(p100)$(p100)..

10000 subst on a 1000 char string

x = $(subst ;, ,$(p1000))

..repeated 10000 times..

.PHONY: x

X:
The next three benchmarks measure the speed of the same substitution using sed.
The benchmark contains:

100 sed using bash
SHELL := /bin/bash

Benchmarking | 185

-PHONY: sed-bash
sed-bash:
echo '$(p1000)" | sed 's/;/ /g' > /dev/null
..repeated 100 times..
As usual, this makefile is executed using the ten-times function. On Windows, sed
execution takes about 50 times longer than the subst function. On our Linux sys-
tem, sed is only 24 times slower.

When we factor in the cost of the shell, we see that ash on Windows does provide a
useful speed-up. With ash, the sed is only 39 times slower than subst! (wink) On
Linux, the shell used has a much more profound effect. Using ash, the sed is only five
times slower than subst. Here we also notice the curious effect of renaming bash to
sh. On Cygwin, there is no difference between a bash named /bin/bash and one
named /bin/sh, but on Linux, a bash linked to /bin/sh performs significantly better.

The final benchmark simply invokes the make shell command to evaluate the cost of
running a subshell. The makefile contains:

100 $(shell) using bash

SHELL := /bin/bash

x = $(shell :)

..repeated 100 times..

.PHONY: x

X: ;
There are no surprises here. The Windows system is slower than Linux, with ash
having an edge over bash. The performance gain of ash is more pronounced—about
50% faster. The Linux system performs best with ash and slowest with bash (when
named “bash”).

Benchmarking is a never-ending task, however, the measurements we’ve made can
provide some useful insight. Create as many variables as you like if they help clarify
the structure of the makefile because they are essentially free. Built-in make functions
are preferred over running commands even if you are required by the structure of
your code to reexecute the make function repeatedly. Avoid recursive make or unnec-
essary process creation on Windows. While on Linux, use ash if you are creating
many processes.

Finally, remember that in most makefiles, the time a makefile takes to run is due
almost entirely to the cost of the programs run, not make or the structure of the
makefile. Usually, reducing the number of programs run will be most helpful in
reducing the execution time of a makefile.

Identifying and Handling Bottlenecks

Unnecessary delays in makefiles come from several sources: poor structuring of the
makefile, poor dependency analysis, and poor use of make functions and variables.

186 | Chapter10: Improving the Performance of make

These problems can be masked by make functions such as shell that invoke com-
mands without echoing them, making it difficult to find the source of the delay.

Dependency analysis is a two-edged sword. On the one hand, if complete depen-
dency analysis is performed, the analysis itself may incur significant delays. Without
special compiler support, such as supplied by gcc or jikes, creating a dependency file
requires running another program, nearly doubling compilation time.” The advan-
tage of complete dependency analysis is that it allows make to perform fewer com-
piles. Unfortunately, developers may not believe this benefit is realized and write
makefiles with less complete dependency information. This compromise almost
always leads to an increase in development problems, leading other developers to
overcompensate by compiling more code than would be required with the original,
complete dependency information.

To formulate a dependency analysis strategy, begin by understanding the dependen-
cies inherent in the project. Once complete dependency information is understood,
you can choose how much to represent in the makefile (computed or hardcoded) and
what shortcuts can be taken during the build. Although none of this is exactly sim-
ple, it is straightforward.

Once you’ve determined your makefile structure and necessary dependencies, imple-
menting an efficient makefile is usually a matter of avoiding some simple pitfalls.

Simple Variables Versus Recursive

One of the most common performance-related problems is using recursive variables
instead of simple variables. For example, because the following code uses the = oper-
ator instead of :=, it will execute the date command every time the DATE variable is
used:

DATE = $(shell date +%F)

The +%F option instructs date to return the date in “yyyy-mm-dd” format, so for most
users the repeated execution of date would never be noticed. Of course, developers
working around midnight might get a surprise!

Because make doesn’t echo commands executed from the shell function, it can
be difficult to determine what is actually being run. By resetting the SHELL variable to
/bin/sh -x, you can trick make into revealing all the commands it executes.

* In practice, compilation time grows linearly with the size of the input text and this time is almost always
dominated by disk I/O. Similarly, the time to compute dependencies using the simple -M option is linear and
bound by disk I/O.

Identifying and Handling Bottlenecks | 187

This makefile creates its output directory before performing any actions. The name of
the output directory is composed of the word “out” and the date:

DATE = $(shell date +%F)
OUTPUT DIR = out-$(DATE)

make-directories := $(shell [-d $(OUTPUT DIR)] || mkdir -p $(OUTPUT DIR))

all: ;
When run with a debugging shell, we can see:

$ make SHELL='/bin/sh -x'

+ date +%F

+ date +%F

+'[" -d out-2004-03-30 ']"

+ mkdir -p out-2004-03-30

make: all is up to date.
This clearly shows us that the date command was executed twice. If you need to per-
form this kind of shell trace often, you can make it easier to access with:

ifdef DEBUG_SHELL

SHELL = /bin/sh -x
endif

Disabling @

Another way commands are hidden is through the use of the silent command modifier,
@. It can be useful at times to be able to disable this feature. You can make this easy by
defining a variable, QUIET, to hold the @ sign and use the variable in commands:

ifndef VERBOSE

QUIET := @
endif

target:
$(QUIET) echo Building target...
When it becomes necessary to see commands hidden by the silent modifier, simply
define VERBOSE on the command line:
$ make VERBOSE=1

echo Building target...
Building target...

Lazy Initialization

When simple variables are used in conjunction with the shell function, make evalu-
ates all the shell function calls as it reads the makefile. If there are many of these, or
if they perform expensive computations, make can feel sluggish. The responsiveness
of make can be measured by timing make when invoked with a nonexistent target:

$ time make no-such-target
make: *** No rule to make target no-such-target. Stop.

188 | Chapter10: Improving the Performance of make

real 0mo0.058s

user 0mo0.062s

sys 0m0.015s
This code times the overhead that make will add to any command executed, even triv-
ial or erroneous commands.

Because recursive variables reevaluate their righthand side every time they are
expanded, there is a tendency to express complex calculations as simple variables.
However, this decreases the responsiveness of make for all targets. It seems that there
is a need for another kind of variable, one whose righthand side is evaluated only
once the first time the variable is evaluated, but not before.

An example illustrating the need for this type of initialization is the find-
compilation-dirs function introduced in the section “The Fast Approach: All-in-One
Compile” in Chapter 9:

$(call find-compilation-dirs, root-directory)

find-compilation-dirs = \
$(patsubst %/,%, \
$(sort \
$(dir \

$(shell $(FIND) $1 -name '*.java'))))

PACKAGE DIRS := $(call find-compilation-dirs, $(SOURCE_DIR))

Ideally, we would like to perform this find operation only once per execution, but
only when the PACKAGE_DIRS variable is actually used. This might be called lazy ini-
tialization. We can build such a variable using eval like this:

PACKAGE DIRS = $(redefine-package-dirs) $(PACKAGE DIRS)

redefine-package-dirs = \

$(eval PACKAGE DIRS := $(call find-compilation-dirs, $(SOURCE_DIR)))

The basic approach is to define PACKAGE DIRS first as a recursive variable. When
expanded, the variable evaluates the expensive function, here find-compilation-
dirs, and redefines itself as a simple variable. Finally, the (now simple) variable value
is returned from the original recursive variable definition.

Let’s go over this in detail:
1. When make reads these variables, it simply records their righthand side because
the variables are recursive.

2. The first time the PACKAGE_DIRS variable is used, make retrieves the righthand side
and expands the first variable, redefine-package-dirs.

3. The value of redefine-package-dirs is a single function call, eval.

4. The body of the eval redefines the recursive variable, PACKAGE_DIRS, as a simple

variable whose value is the set of directories returned by find-compilation-dirs.
Now PACKAGE_DIRS has been initialized with the directory list.

Identifying and Handling Bottlenecks | 189

5. The redefine-package-dirs variable is expanded to the empty string (because
eval expands to the empty string).

6. Now make continues to expand the original righthand side of PACKAGE_DIRS. The
only thing left to do is expand the variable PACKAGE_DIRS. make looks up the value
of the variable, sees a simple variable, and returns its value.

The only really tricky part of this code is relying on make to evaluate the righthand
side of a recursive variable from left to right. If, for instance, make decided to evalu-
ate $(PACKAGE_DIRS) before $(redefine-package-dirs), the code would fail.

The procedure I just described can be refactored into a function, lazy-init:

$(call lazy-init,variable-name,value)
define lazy-init
$1 = $$(redefine-$1) $$($1)
redefine-$1 = $$(eval $1 := $2)
endef

PACKAGE DIRS - a lazy list of directories
$(eval \
$(call lazy-init,PACKAGE_DIRS, \
$$(call find-compilation-dirs,$(SOURCE_DIRS))))

Parallel make

Another way to improve the performance of a build is to take advantage of the
parallelism inherent in the problem the makefile is solving. Most makefiles perform
many tasks that are easily carried out in parallel, such as compiling C source to
object files or creating libraries out of object files. Furthermore, the very structure of
a well-written makefile provides all the information necessary to automatically con-
trol the concurrent processes.

Example 10-1 shows our mp3_player program executed with the jobs option, --
jobs=2 (or -j 2). Figure 10-1 shows the same make run in a pseudo UML sequence
diagram. Using --jobs=2 tells make to update two targets in parallel when that is pos-
sible. When make updates targets in parallel, it echos commands in the order in
which they are executed, interleaving them in the output. This can make reading the
output from parallel make more difficult. Let’s look at this output more carefully.

Example 10-1. Output of make when --jobs = 2

$ make -f ../ch07-separate-binaries/makefile --jobs=2
1 bison -y --defines ../cho7-separate-binaries/lib/db/playlist.y
2 flex -t ../cho7-separate-binaries/lib/db/scanner.l > lib/db/scanner.c

3 gcc -I1ib -I ../cho7-separate-binaries/lib -I ../ch07-separate-binaries/include -M
../ch07-separate-binaries/app/player/play mp3.c | \

190 | Chapter10: Improving the Performance of make

Example 10-1. Output of make when --jobs = 2 (continued)

sed 's,\(play_mp3\.o\) *:,app/player/\1 app/player/play mp3.d: ,"' > app/player/play_

mp3.d.tmp
4 mv -f y.tab.c 1ib/db/playlist.c
5 mv -f y.tab.h 1ib/db/playlist.h
6 gcc -I1ib -I ../cho7-separate-binaries/lib -I ../ch07-separate-binaries/include -M
../ch07-separate-binaries/1ib/codec/codec.c | \
sed 's,\(codec\.o\) *:,lib/codec/\1 lib/codec/codec.d: ,"' > lib/codec/codec.d.tmp
7 mv -f app/player/play mp3.d.tmp app/player/play mp3.d
8 gcc -I1ib -I ../cho7-separate-binaries/lib -I ../ch07-separate-binaries/include -M
lib/db/playlist.c | \
sed 's,\(playlist\.o\) *:,1ib/db/\1 lib/db/playlist.d: ,' > lib/db/playlist.d.tmp
9 mv -f lib/codec/codec.d.tmp lib/codec/codec.d
10 gcc -I 1lib -I ../cho7-separate-binaries/lib -I ../ch07-separate-binaries/include -M
../ch07-separate-binaries/lib/ui/ui.c | \
sed 's,\(ui\.o\) *:,1ib/ui/\1 1lib/ui/ui.d: ,' > lib/ui/ui.d.tmp
11 mv -f lib/db/playlist.d.tmp 1ib/db/playlist.d
12 gcc -I 1lib -TI ../cho7-separate-binaries/lib -I ../ch07-separate-binaries/include -M
lib/db/scanner.c | \
sed 's,\(scanner\.o\) *:,1ib/db/\1 1lib/db/scanner.d: ,' > lib/db/scanner.d.tmp
13 mv -f lib/ui/ui.d.tmp lib/ui/ui.d
14 mv -f lib/db/scanner.d.tmp lib/db/scanner.d
15 gcc -I 1ib -I ../ch07-separate-binaries/lib -I ../ch07-separate-binaries/include -c
-0 app/player/play mp3.o ../ch07-separate-binaries/app/player/play mp3.c
16 gcc -I 1ib -I ../ch07-separate-binaries/lib -I ../ch07-separate-binaries/include -c
-0 lib/codec/codec.o ../ch07-separate-binaries/lib/codec/codec.c
177 gcc -I 1ib -I ../ch07-separate-binaries/lib -I ../ch07-separate-binaries/include -c
-o lib/db/playlist.o lib/db/playlist.c
18 gcc -I 1ib -I ../ch07-separate-binaries/lib -I ../ch07-separate-binaries/include -c
-0 lib/db/scanner.o lib/db/scanner.c
../cho7-separate-binaries/lib/db/scanner.l: In function yylex:
../cho7-separate-binaries/lib/db/scanner.1:9: warning: return makes integer from
pointer without a cast
19 gcc -I 1ib -I ../ch07-separate-binaries/lib -I ../ch07-separate-binaries/include -c
-0 lib/ui/ui.o ../ch07-separate-binaries/lib/ui/ui.c
20 ar rv lib/codec/libcodec.a lib/codec/codec.o
Parallel make | 191

Example 10-1. Output of make when --jobs = 2 (continued)

ar: creating lib/codec/libcodec.a
a - lib/codec/codec.o

21 ar rv lib/db/libdb.a 1ib/db/playlist.o lib/db/scanner.o
ar: creating lib/db/libdb.a
a - lib/db/playlist.o
a - lib/db/scanner.o

22 ar rv lib/ui/libui.a lib/ui/ui.o
ar: creating lib/ui/libui.a
a - lib/ui/ui.o

23 gcc app/player/play mp3.o lib/codec/libcodec.a lib/db/libdb.a 1lib/ui/libui.a -0
app/player/play mp3

Job1 Job 2 Job3
- ST oo T,
1
- 2 3 Time
4 - ||
— L _'.----T2
> 6 7
= EECEEEEES [EEEEE --- T,
—r ——
8 —— -
|| 9 10
e
|| 12 13
| — -
| u s
AT == IR oo
15 16 17
— _—
. T
18]
|| 19 2
2_1 by, ;
R e,
23 ' '

Figure 10-1. Diagram of make when --jobs = 2

First, make must build the generated source and dependency files. The two generated
source files are the output of yacc and lex. This accounts for commands 1 and 2. The
third command generates the dependency file for play_mp3.c and is clearly begun
before the dependency files for either playlist.c or scanner.c are completed (by com-
mands 4, 5, 8, 9, 12, and 14). Therefore, this make is running three jobs in parallel,
even though the command-line option requests two jobs.

192 | Chapter10: Improving the Performance of make

The mv commands, 4 and 5, complete the playlist.c source code generation started
with command 1. Command 6 begins another dependency file. Each command
script is always executed by a single make, but each target and prerequisite forms a
separate job. Therefore, command 7, which is the second command of the depen-
dency generation script, is being executed by the same make process as command 3.
While command 6 is probably being executed by a make spawned immediately fol-
lowing the completion of the make that executed commands 1-4-5 (processing the
yacc grammar), but before the generation of the dependency file in command 8.

The dependency generation continues in this fashion until command 14. All depen-
dency files must be complete before make can move on to the next phase of process-
ing, re-reading the makefile. This forms a natural synchronization point that make
automatically obeys.

Once the makefile is reread with the dependency information, make can continue the
build process in parallel again. This time make chooses to compile all the object files
before building each of the archive libraries. This order is nondeterministic. That is,
if the makefile is run again, it may be that the libcodec.a library might be built before
the playlist.c is compiled, since that library doesn’t require any objects other than
codec.o. Thus, the example represents one possible execution order amongst many.

Finally, the program is linked. For this makefile, the link phase is also a natural syn-
chronization point and will always occur last. If, however, the goal was not a single
program but many programs or libraries, the last command executed might also
vary.

Running multiple jobs on a multiprocessor obviously makes sense, but running more
than one job on a uniprocessor can also be very useful. This is because of the latency
of disk I/O and the large amount of cache on most systems. For instance, if a pro-
cess, such as gcc, is idle waiting for disk I/O it may be that data for another task such
as mv, yacc, or ar is currently in memory. In this case, it would be good to allow the
task with available data to proceed. In general, running make with two jobs on a uni-
processor is almost always faster than running one job, and it is not uncommon for
three or even four tasks to be faster than two.

The --jobs option can be used without a number. If so, make will spawn as many
jobs as there are targets to be updated. This is usually a bad idea, because a large
number of jobs will usually swamp a processor and can run much slower than even a
single job.

Another way to manage multiple jobs is to use the system load average as a guide.
The load average is the number of runnable processes averaged over some period of
time, typically 1 minute, 5 minutes, and 15 minutes. The load average is expressed as
a floating point number. The --load-average (or -1) option gives make a threshold
above which new jobs cannot be spawned. For example, the command:

$ make --load-average=3.5

Parallel make | 193

tells make to spawn new jobs only when the load average is less than or equal to 3.5.
If the load average is greater, make waits until the average drops below this number,
or until all the other jobs finish.

When writing a makefile for parallel execution, attention to proper prerequisites is
even more important. As mentioned previously, when --jobs is 1, a list of prerequi-
sites will usually be evaluated from left to right. When --jobs is greater than 1, these
prerequisites may be evaluated in parallel. Therefore, any dependency relationship
that was implicitly handled by the default left to right evaluation order must be made
explicit when run in parallel.

Another hazard of parallel make is the problem of shared intermediate files. For exam-
ple, if a directory contains both foo.y and bar.y, running yacc twice in parallel could
result in one of them getting the other’s instance of y.tab.c or y.tab.h or both moved
into its own .c or .h file. You face a similar hazard with any procedure that stores
temporary information in a scratch file that has a fixed name.

Another common idiom that hinders parallel execution is invoking a recursive make
from a shell for loop:

dir:
for d in $(SUBDIRS); \
do \
$(MAKE) --directory=$$d; \
done

As mentioned in the section “Recursive make” in Chapter 6, make cannot execute
these recursive invocations in parallel. To achieve parallel execution, declare the
directories .PHONY and make them targets:

.PHONY: $(SUBDIRS)

$(SUBDIRS):
$(MAKE) --directory=$@

Distributed make

GNU make supports a little known (and only slightly tested) build option for manag-
ing builds that uses multiple systems over a network. The feature relies upon the
Customs library distributed with Pmake. Pmake is an alternate version of make written
in about 1989 by Adam de Boor (and maintained ever since by Andreas Stolcke) for
the Sprite operating system. The Customs library helps to distribute a make execu-
tion across many machines in parallel. As of version 3.77, GNU make has included
support for the Customs library for distributing make.

To enable Customs library support, you must rebuild make from sources. The
instructions for this process are in the README.customs file in the make distribution.
First, you must download and build the pmake distribution (the URL is in the
README), then build make with the --with-customs option.

194 | Chapter10: Improving the Performance of make

The heart of the Customs library is the customs daemon that runs on each host par-
ticipating in the distributed make network. These hosts must all share a common view
of the filesystem, such as NFS provides. One instance of the customs daemon is des-
ignated the master. The master monitors hosts in the participating hosts list and allo-
cates jobs to each member. When make is run with the --jobs flag greater than 1, make
contacts the master and together they spawn jobs on available hosts in the network.

The Customs library supports a wide range of features. Hosts can be grouped by
architecture and rated for performance. Arbitrary attributes can be assigned to hosts
and jobs can be allocated to hosts based on combinations of attributes and boolean
operators. Additionally, host status such as idle time, free disk space, free swap
space, and current load average can also be accounted for when processing jobs.

If your project is implemented in C, C++, or Objective-C you should also consider
distcc (http://distcc.samba.org) for distributing compiles across several hosts. distcc
was written by Martin Pool and others to speedup Samba builds. It is a robust and
complete solution for projects written in C, C++, or Objective-C. The tool is used by
simply replacing the C compiler with the distcc program:

$ make --jobs=8 CC=distcc

For each compilation, distcc uses the local compiler to preprocess the output, then
ships the expanded source to an available remote machine for compilation. Finally,
the remote host returns the resulting object file to the master. This approach removes
the necessity for having a shared filesystem, greatly simplifying installation and con-
figuration.

The set of worker or volunteer hosts can be specified in several ways. The simplest is
to list the volunteer hosts in an environment variable before starting distcc:

$ export DISTCC_HOSTS='localhost wasatch oops’

distcc is very configurable with options for handling host lists, integrating with the
native compiler, managing compression, search paths, and handling failure and
recovery.

ccache is another tool for improving compilation performance, written by Samba
project leader Andrew Tridgell. The idea is simple, cache the results of previous com-
piles. Before performing a compile, check if the cache already contains the resulting
object files. This does not require multiple hosts, or even a network. The author
reports a 5 to 10 times speed up in common compilations. The easiest way to use
ccache is to prefix your compiler command with ccache:

$ make CC="ccache gcc'

ccache can be used together with distcc for even greater performance improve-
ments. In addition, both tools are available in the Cygwin tool set.

Distributed make | 195

