CHAPTER 11
Example Makefiles

The makefiles shown throughout this book are industrial strength and quite suitable
for adapting to your most advanced needs. But it’s still worthwhile looking at some
makefiles from real-life projects to see what people have done with make under the
stress of providing deliverables. Here, we discuss several example makefiles in detail.
The first example is the makefile to build this book. The second is the makefile used
to build the 2.6.7 Linux kernel.

The Book Makefile

Writing a book on programming is in itself an interesting exercise in building sys-
tems. The text of the book consists of many files, each of which needs various pre-
processing steps. The examples are real programs that should be run and their
output collected, post-processed, and included in the main text (so that they don’t
have to be cut and pasted, with the risk of introducing errors). During composition,
it is useful to be able to view the text in different formats. Finally, delivering the
material requires packaging. Of course, all of this must be repeatable and relatively
easy to maintain.

Sounds like a job for make! This is one of the great beauties of make. It can be applied
to an amazing variety of problems. This book was written in DocBook format (i.e.,
XML). Applying make to TpX, L, TgX, or troff is standard procedure when using
those tools.

Example 11-1 shows the entire makefile for the book. It is about 440 lines long. The
makefile is divided into these basic tasks:

* Managing the examples

* Preprocessing the XML

* Generating various output formats

* Validating the source

* Basic maintenance

196

Example 11-1. The makefile to build the book

Build the book!

#

The primary targets in this file are:

#

show pdf Generate the pdf and start a viewer
pdf Generate the pdf

print Print the pdf

show_html Generate the html and start a viewer
html Generate the html

xml Generate the xml

release Make a release tarball

clean Clean up generated files

#

BOOK_DIR 1= /test/book

SOURCE_DIR := text

OUTPUT DIR := out

EXAMPLES DIR := examples

QUIET =@

SHELL = bash

AWK 1= awk

Cp i=Cp

EGREP 1= egrep
HTML_VIEWER 1= cygstart

KILL 1= /bin/kill

M4 = m4

MV = mv

PDF_VIEWER 1= cygstart

RM = m -f

MKDIR 1= mkdir -p

LNDIR := Indir

SED 1= sed

SORT 1= sort

TOUCH := touch

XMLTO 1= xmlto
XMLTO_FLAGS = -0 $(OUTPUT_DIR) $(XML_VERBOSE)
process-pgm := bin/process-includes
make-depend := bin/make-depend
m4-macros 1= text/macros.m4

$(call process-includes, input-file, output-file)
Remove tabs, expand macros, and process include directives.
define process-includes

expand $1 | \
$(M4) --prefix-builtins --include=text $(m4-macros) - | \
$(process-pgm) > $2

endef

$(call file-exists, file-name)
Return non-null if a file exists.

The Book Makefile | 197

Example 11-1. The makefile to build the book (continued)
file-exists = $(wildcard $1)

$(call maybe-mkdir, directory-name-opt)
Create a directory if it doesn't exist.
If directory-name-opt is omitted use $@ for the directory-name.
maybe-mkdir = $(if $(call file-exists, \
$(MKDIR) $(if $1,$1,$(dir $@)))

$(kill-acroread)
Terminate the acrobat reader.
define kill-acroread
$(QUIET) ps -W |
$(AWK) 'BEGIN { FIELDWIDTHS = "9 47 100" }
/AcroRd32/ {
print "Killing " $3$3;
system("$(KILL) -f " $$1)

P

endef

$(call source-to-output, file-name)

Transform a source tree reference to an output tree reference.
define source-to-output

$(subst $(SOURCE_DIR),$(OUTPUT DIR),$1)

endef

$(call run-script-example, script-name, output-file)
Run an example makefile.
define run-script-example
(cd $(dir $1);
$(notdir $1) 2>&1
if $(ECREP) --silent "\$$\(MAKE\)' [mM]akefile;
then
$(SED) -e 's/”++*/$$/";
else
$(SED) -e 's/M++%/$$/"
-e '/ing directory /d'
-e 's/\[[0-9]\]//";

P A s S

fi)
> $(TMP)/out.$$$$ & \
$(MV) $(TMP)/out.$$$$ $2
endef

$(call generic-program-example,example-directory)
Create the rules to build a generic example.
define generic-program-example

$(eval $1 dir := $(OUTPUT DIR)/$1)

$(eval $1 _make out := $($1_dir)/make.out)

$(eval $1 run out := $($1 dir)/run.out)

$(eval $1 clean 1= $($1_dir)/clean)
$(eval $1 run make := $($1_dir)/run-make)
$(eval $1 run run := $($1_dir)/run-run)

$(eval $1 sources := $(filter-out %/CVS, $(wildcard $(EXAMPLES DIR)/$1/*)))

198 | Chapter11: Example Makefiles

Example 11-1. The makefile to build the book (continued)

$($1 run out): $($1_make out) $($1_run_run)
$$(call run-script-example, $($1_run_run), $$@)

$($1 _make out): $($1 clean) $($1_run_make)
$$(call run-script-example, $($1 _run make), $$@)

$($1 clean): $($1_sources) Makefile
$(RM) -1 $($1_dir)
$(MKDIR) $($1_dir)
$(LNDIR) -silent ../../$(EXAMPLES DIR)/$1 $($1_dir)
$(TOUCH) $3@

$($1_run_make):

printf "#! /bin/bash -x\nmake\n" > $$@
endef

Book output formats.

BOOK_XML_oUT 1= $(OUTPUT DIR)/book.xml

BOOK_HTML OUT := $(subst xml,html,$(BOOK XML OUT))
BOOK_FO_ouT = $(subst xml,fo,$(BOOK XML OUT))
BOOK_PDF_OUT := $(subst xml,pdf,$(BOOK XML OUT))
ALL_XML_SRC = $(wildcard $(SOURCE_DIR)/*.xml)
ALL_XML_ouT = $(call source-to-output,$(ALL XML SRC))

DEPENDENCY_FILES := $(call source-to-output,$(subst .xml,.d,$(ALL XML SRC)))

xml/html/pdf - Produce the desired output format for the book.
.PHONY: xml html pdf

xml: $(OUTPUT DIR)/validate

html: $(BOOK_HTML_OUT)

pdf: $(BOOK_PDF_OUT)

show pdf - Generate a pdf file and display it.
.PHONY: show_pdf show_html print
show_pdf: $(BOOK _PDF_OUT)

$(kill-acroread)

$(PDF_VIEWER) $(BOOK_PDF_OUT)

show _html - Generate an html file and display it.
show_html: $(BOOK_HTML OUT)
$(HTML_VIEWER) $(BOOK_HTML_OUT)

print - Print specified pages from the book.
print: $(BOOK FO OUT)
$(kill-acroread)
java -Dstart=15 -Dend=15 $(FOP) $< -print > /dev/null

$(BOOK_PDF_OUT) - Generate the pdf file.
$(BOOK_PDF_OUT): $(BOOK_FO _OUT) Makefile

$(BOOK_HTML OUT) - Generate the html file.
$(BOOK_HTML_OUT): $(ALL_XML_OUT) $(OUTPUT DIR)/validate Makefile

The Book Makefile | 199

Example 11-1. The makefile to build the book (continued)

$(BOOK_FO _OUT) - Generate the fo intermediate output file.
.INTERMEDIATE: $(BOOK_FO OUT)
$(BOOK_FO _OUT): $(ALL XML OUT) $(OUTPUT DIR)/validate Makefile

$(BOOK_XML_OUT) - Process all the xml input files.
$(BOOK_XML_OUT): Makefile

AU R HHU GRS HBHHEE SR HBHHS BB
FOP Support

#

FOP := org.apache.fop.apps.Fop

DEBUG_FOP - Define this to see fop processor output.
ifndef DEBUG_FOP

FOP_FLAGS := -q
FOP_OUTPUT := | $(SED) -e '/not implemented/d’ \
-e '/relative-align/d’ \
-e '/xsl-footnote-separator/d’
endif

CLASSPATH - Compute the appropriate CLASSPATH for fop.
export CLASSPATH
CLASSPATH = $(patsubst %;,%,
$(subst ; ,;,
$(addprefix c:/usr/xslt-process-2.2/java/,
$(addsuffix .jar;,

xalan

xercesImpl

batik

fop

jimi-1.0

avalon-framework-cvs-20020315))))

P

%.pdf - Pattern rule to produce pdf output from fo input.
%.pdf: %.fo

$(kill-acroread)

java -Xmx128M $(FOP) $(FOP_FLAGS) $< $@ $(FOP_OUTPUT)

%.fo - Pattern rule to produce fo output from xml input.
PAPER_SIZE := letter
%.fo: %.xml
XSLT_FLAGS="--stringparam paper.type $(PAPER_SIZE)" \
$(XMLTO) $(XMLTO_FLAGS) fo $<

%.html - Pattern rule to produce html output from xml input.
%.html: %.xml
$(XMLTO) $(XMLTO_FLAGS) html-nochunks $<

fop_help - Display fop processor help text.
.PHONY: fop_help
fop_help:

-java org.apache.fop.apps.Fop -help

-java org.apache.fop.apps.Fop -print help

200 | Chapter11: Example Makefiles

Example 11-1. The makefile to build the book (continued)

T
release - Produce a release of the book.

#
RELEASE
RELEASE

.PHONY:
release:

T
Rules for Chapter 1 examples.

#

Here are all the example directories.
EXAMPLES :

TAR := mpwm-$(shell date +%F).tar.gz
FILES := README Makefile *.pdf bin examples out text

release
$(BOOK_PDF_OUT)

In -sf $(BOOK_PDF OUT) .

tar --create
--gzip

--file=$(RELEASE_TAR)

--exclude=CVS

--exclude=semantic.cache

--exclude=*~
$(RELEASE_FILES)
1s -1 $(RELEASE_TAR)

cho1-bogus-tab

cho1-cw1
cho1-hello
cho1-cw2
cho1l-cw2a
ch02-cw3
ch02-cw4
ch02-cw4a
ch02-cw5
ch02-cw5a
ch02-cw5b
ch02-cw6

cho2-make-clean
cho3-assert-not-null
cho3-debug-trace
cho3-debug-trace-1
cho3-debug-trace-2
cho3-filter-failure
cho3-find-program-1
cho3-find-program-2
cho3-findstring-1

cho3-grep
cho3-include

cho3-invalid-variable
cho3-kill-acroread
cho3-kill-program

cho3-letters

cho3-program-variables-1

P g

P i G gl S O i i i S g

The Book Makefile

201

Example 11-1. The makefile to build the book (continued)

cho3-program-variables-2
cho3-program-variables-3
cho3-program-variables-5
cho3-scoping-issue
cho3-shell
cho3-trailing-space
cho4-extent
cho4-for-loop-1
cho4-for-loop-2
cho4-for-loop-3
cho6-simple
appb-defstruct
appb-arithmetic

P i G O e

I would really like to use this foreach loop, but a bug in 3.80
generates a fatal error.
#$(foreach e, $(EXAMPLES),$(eval $(call generic-program-example,$e)))

Instead I expand the foreach by hand here.

$(eval $(call generic-program-example,ch01l-bogus-tab))
$(eval $(call generic-program-example,ch0ol-cwl))

$(eval $(call generic-program-example,choi-hello))

$(eval $(call generic-program-example,choi-cw2))

$(eval $(call generic-program-example,ch01l-cw2a))

$(eval $(call generic-program-example,ch02-cw3))

$(eval $(call generic-program-example,ch02-cwa))

$(eval $(call generic-program-example,ch02-cw4a))

$(eval $(call generic-program-example,ch02-cw5))

$(eval $(call generic-program-example,ch02-cw5a))

$(eval $(call generic-program-example,ch02-cw5b))

$(eval $(call generic-program-example,ch02-cw6))

$(eval $(call generic-program-example,cho2-make-clean))
$(eval $(call generic-program-example,ch03-assert-not-null))
$(eval $(call generic-program-example,cho3-debug-trace))
$(eval $(call generic-program-example,ch03-debug-trace-1))
$(eval $(call generic-program-example,ch03-debug-trace-2))
$(eval $(call generic-program-example,cho3-filter-failure)
$(eval $(call generic-program-example,cho3-find-program-1)
$(eval $(call generic-program-example,cho3-find-program-2)
$(eval $(call generic-program-example,ch03-findstring-1))
$(eval $(call generic-program-example,ch03-grep))

$(eval $(call generic-program-example,ch03-include))
$(eval $(call generic-program-example,cho3-invalid-variable))
$(eval $(call generic-program-example,cho3-kill-acroread))
$(eval $(call generic-program-example,ch03-kill-program))
$(eval $(call generic-program-example,cho3-letters))

$(eval $(call generic-program-example,ch03-program-variables-1)
$(eval $(call generic-program-example,ch03-program-variables-2)
$(eval $(call generic-program-example,ch03-program-variables-3)
$(eval $(call generic-program-example,ch03-program-variables-5)
$(eval $(call generic-program-example,ch03-scoping-issue))
$(eval $(call generic-program-example,cho3-shell))

)
)
)

)
)
)
)

202 | Chapter11: Example Makefiles

Example 11-1. The makefile to build the book (continued)

$(eval $(call generic-program-example,ch03-trailing-space))
$(eval $(call generic-program-example,cho4-extent))

$(eval $(call generic-program-example,cho4-for-loop-1))
$(eval $(call generic-program-example,cho4-for-loop-2))
$(eval $(call generic-program-example,cho4-for-loop-3))
$(eval $(call generic-program-example,cho6-simple))

$(eval $(call generic-program-example,ch10-echo-bash))
$(eval $(call generic-program-example,appb-defstruct))
$(eval $(call generic-program-example,appb-arithmetic))

HHHHHHH

validate

#

Check for 1) unexpanded m4 macros; b) tabs; c) FIXME comments; d)
RM: responses to Andy; e) duplicate m4 macros

#

validation_checks := $(OUTPUT_DIR)/chk macros_tabs \
$(OUTPUT_DIR)/chk_fixme \
$(OUTPUT DIR)/chk_duplicate macros \
$(OUTPUT_DIR)/chk_orphaned_examples

.PHONY: validate-only

validate-only: $(OUTPUT_DIR)/validate

$(OUTPUT DIR)/validate: $(validation checks)
$(TOUCH) $@

$(OUTPUT_DIR)/chk_macros_tabs: $(ALL_XML_OUT)
Looking for macros and tabs...

$(QUIET)! $(EGREP) --ignore-case \
--line-number \
--regexp="\b(m4_|mp_)" \
--regexp="\011' \
$/\
$(TOUCH) $@
$(OUTPUT_DIR)/chk_fixme: $(ALL_XML_OUT)
Looking for RM: and FIXME...
$(QUIET)$(AWK) \
"/FIXME/ { printf "%s:%s: %s\n", FILENAME, NR, $$0 } \
/N M/ \
if ($$0 !~ /RM: Done/) \
printf "%s:%s: %s\n", FILENAME, NR, $$0 \

}' $(subst $(OUTPUT DIR)/,$(SOURCE DIR)/,$")
$(TOUCH) $@

$(OUTPUT DIR)/chk_duplicate macros: $(SOURCE_DIR)/macros.m4
Looking for duplicate macros...

$(QUIET)! $(EGREP) --only-matching \

u\«[,\|]+|)u $< | \
$(SORT) | \
uniq -c | \

The Book Makefile | 203

Example 11-1. The makefile to build the book (continued)

$(AWK) "$$1 > 1 { printf "$<:0: %s\n", $$0 }' | \
$(EGREP) "~"
$(TOUCH) $@

ALL_EXAMPLES := $(TMP)/all examples

$(OUTPUT_DIR)/chk_orphaned_examples: $(ALL_EXAMPLES) $(DEPENDENCY FILES)

$(QUIET)$(AWK) -F/ '/(EXAMPLES|OUTPUT) DIR/ { print $$3 }' \
$(filter %.d,$") | \
$(SORT) -u | \

comm -13 - $(filter-out %.d,$")
$(TOUCH) $@

.INTERMEDIATE: $(ALL_EXAMPLES)
$(ALL_EXAMPLES):
Looking for unused examples...
$(QUIET) 1s -p $(EXAMPLES DIR) | \
$(AWK) '/CVS/ { next } \
/N// { print substr($$0, 1, length - 1) }' > $@

HHHHHHH
clean
#
clean:
$(kill-acroread)
$(RM) -1 $(OUTPUT DIR)
$(RM) $(SOURCE_DIR)/*~ $(SOURCE_DIR)/*.log semantic.cache
$(RM) book.pdf

HHHHHHHHH A
Dependency Management
#
Don't read or remake includes if we are doing a clean.
#
ifneq "$(MAKECMDGOALS)" "clean"
-include $(DEPENDENCY FILES)
endif

vpath %.xml $(SOURCE DIR)
vpath %.tif $(SOURCE_DIR)
vpath %.eps $(SOURCE_DIR)

$(OUTPUT DIR)/%.xml: %.xml $(process-pgm) $(m4-macros)
$(call process-includes, $<, $@)

$(OUTPUT DIR)/%.tif: %.tif
$(CP) $< %@

$(OUTPUT_DIR)/%.eps: %.eps
$(CP) $< $@

$(OUTPUT DIR)/%.d: %.xml $(make-depend)
$(make-depend) $< > $@

204 | Chapter11: Example Makefiles

Example 11-1. The makefile to build the book (continued)

T
Create Output Directory

#

Create the output directory if necessary.

#

DOCBOOK_IMAGES := $(OUTPUT DIR)/release/images

DRAFT_PNG /usr/share/docbook-xsl/images/draft.png

ifneq "$(MAKECMDGOALS)" "clean"

_CREATE_OUTPUT DIR := \
$(shell \
$(MKDIR) $(DOCBOOK_IMAGES) & \
$(CP) $(DRAFT_PNG) $(DOCBOOK IMAGES); \

if | [[$(foreach d, \
$(notdir \

$(wildcard $(EXAMPLES DIR)/ch*)), \

-e $(OUTPUT DIR)/$d &) -e . 11; \

then \
echo Linking examples... > /dev/stderr; \

$(LNDIR) $(BOOK_DIR)/$(EXAMPLES DIR) $(BOOK DIR)/$(OUTPUT DIR); \
fi)
endif
The makefile is written to run under Cygwin with no serious attempt at portability to
Unix. Nevertheless, I believe there are few, if any, incompatibilities with Unix that
cannot be resolved by redefining a variable or possibly introducing an additional
variable.

The global variables section first defines the location of the root directory and the rel-
ative locations of the text, examples, and output directories. Each nontrivial pro-
gram used by the makefile is defined as a variable.

Managing Examples

The first task, managing the examples, is the most complex. Each example is stored
in its own directory under book/examples/chn-<title>. Examples consist of a makefile
along with any supporting files and directories. To process an example we first create
a directory of symbolic links to the output tree and work there so that no artifacts of
running the makefile are left in the source tree. Furthermore, most of the examples
require setting the current working directory to that of the makefile, in order to gen-
erate the expected output. After symlinking the source, we execute a shell script,
run-make, to invoke the makefile with the appropriate arguments. If no shell script is
present in the source tree, we can generate a default version. The output of the run-
make script is saved in make.out. Some examples produce an executable, which must
also be run. This is accomplished by running the script run-run and saving its output
in the file run.out.

The Book Makefile | 205

Creating the tree of symbolic links is performed by this code at the end of the
makefile:

ifneq "$(MAKECMDGOALS)" "clean"

_CREATE_OUTPUT_DIR := \
$(shell \
if I [[$(foreach d, \
$(notdir \

$(wildcard $(EXAMPLES DIR)/ch*)), \

-e $(OUTPUT_DIR)/$d &&) -e . 1]; \

then \
echo Linking examples... > /dev/stderr; \
$(LNDIR) $(BOOK_DIR)/$(EXAMPLES_DIR) $(BOOK_DIR)/$(OUTPUT_DIR); \

f1)
endif
The code consists of a single, simple variable assignment wrapped in an ifneq condi-
tional. The conditional is there to prevent make from creating the output directory
structure during a make clean. The actual variable is a dummy whose value is never
used. However, the shell function on the right-hand side is executed immediately
when make reads the makefile. The shell function checks if each example directory
exists in the output tree. If any is missing, the Indir command is invoked to update
the tree of symbolic links.

The test used by the if is worth examining more closely. The test itself consists of
one -e test (i.e., does the file exist?) for each example directory. The actual code goes
something like this: use wildcard to determine all the examples and strip their direc-
tory part with notdir, then for each example directory produce the text -e $(OUTPUT
DIR)/dir &&. Now, concatenate all these pieces, and embed them in a bash [[...]]
test. Finally, negate the result. One extra test, -e ., is included to allow the foreach
loop to simply add 8& to every clause.

This is sufficient to ensure that new directories are always added to the build when
they are discovered.

The next step is to create rules that will update the two output files, make.out and
run.out. This is done for each example .out file with a user-defined function:

$(call generic-program-example,example-directory)
Create the rules to build a generic example.
define generic-program-example

$(eval $1 dir := $(OUTPUT DIR)/$1)

$(eval $1 _make out := $($1_dir)/make.out)

$(eval $1 run out := $($1 dir)/run.out)

$(eval $1 clean 1= $($1_dir)/clean)
$(eval $1_run make := $($1_dir)/run-make)
$(eval $1 run run := $($1_dir)/run-run)

$(eval $1 sources := $(filter-out %/CVS, $(wildcard $(EXAMPLES DIR)/$1/*)))

$($1 run out): $($1_make out) $($1_run_run)
$$(call run-script-example, $($1_run_run), $$@)

206 | Chapter11: Example Makefiles

$($1 _make out): $($1 clean) $($1_run_make)
$$(call run-script-example, $($1_run_make), $$@)

$($1 clean): $($1 sources) Makefile
$(RM) -r $($1_dir)
$(MKDIR) $($1_dir)
$(LNDIR) -silent ../../$(EXAMPLES DIR)/$1 $($1 dir)
$(TOUCH) $$@

$($1_run_make):
printf "#! /bin/bash -x\nmake\n" > $$@
endef

This function is intended to be invoked once for each example directory:

$(eval $(call generic-program-example,cho1-bogus-tab))

$(eval $(call generic-program-example,ch0l-cwl))

$(eval $(call generic-program-example,choi-hello))

$(eval $(call generic-program-example,chol-cw2))
The variable definitions at the beginning of the function are mostly for convenience
and to improve readability. Further improvement comes from performing the assign-
ments inside eval so their value can be used immediately by the macro without extra
quoting.

The heart of the function is the first two targets: $($1_run_out) and $($1_make_out).
These update the run.out and make.out targets for each example, respectively. The
variable names are composed from the example directory name and the indicated
suffix, _run_out or _make_out.

The first rule says that run.out depends upon make.out and the run-run script. That
is, rerun the example program if make has been run or the run-run control script has
been updated. The target is updated with the run-script-example function:

$(call run-script-example, script-name, output-file)

Run an example makefile.
define run-script-example

(cd $(dir $1);
$(notdir $1) 2>&1
if $(EGREP) --silent "\$$\(MAKE\)' [mM]akefile;
then
$(SED) -e "s/"++*/$$/";
else

$(SED) -e 's/M++%/$%/"
-e '/ing directory /d'
-e 's/\[[0-9]\]//";
fi)
> $(TMP)/out.$$$$ &&
S(MV) $(TMP)/out.$5%$ $2
endef

PP S o o

The Book Makefile | 207

This function requires the path to the script and the output filename. It changes to
the script’s directory and runs the script, piping both the standard output and error
output through a filter to clean them up.’

The make.out target is similar but has an added complication. If new files are
added to an example, we would like to detect the situation and rebuild the example.
The CREATE_OUTPUT DIR code rebuilds symlinks only if a new directory is discovered,
not when new files are added. To detect this situation, we drop a timestamp file in
each example directory indicating when the last Indir was performed. The $($1_
clean) target updates this timestamp file and depends upon the actual source files in
the examples directory (not the symlinks in the output directory). If make’s depen-
dency analysis discovers a newer file in the examples directory than the clean times-
tamp file, the command script will delete the symlinked output directory, recreate it,
and drop a new clean timestamp file. This action is also performed when the makefile
itself is modified.

Finally, the run-make shell script invoked to run the makefile is typically a two-line
script.

#! /bin/bash -x
make

It quickly became tedious to produce these boilerplate scripts, so the $($1_run_make)
target was added as a prerequisite to $($1_make_out) to create it. If the prerequisite is
missing, the makefile generates it in the output tree.

The generic-program-example function, when executed for each example directory,
creates all the rules for running examples and preparing the output for inclusion in
the XML files. These rules are triggered by computed dependencies included in the
makefile. For example, the dependency file for Chapter 1 is:

out/chol.xml: $(EXAMPLES_DIR)/choi-hello/Makefile
out/choil.xml: $(OUTPUT DIR)/cho1l-hello/make.out
out/cho1l.xml: $(EXAMPLES DIR)/ch01-cwil/count words.c
out/chol.xml: $(EXAMPLES_DIR)/cho1-cwl/lexer.1
out/choil.xml: $(EXAMPLES DIR)/ch01-cwl/Makefile
out/cho1l.xml: $(OUTPUT DIR)/cho1l-cwl/make.out
out/chol.xml: $(EXAMPLES_DIR)/cho1-cw2/lexer.1
out/choil.xml: $(OUTPUT DIR)/cho1-cw2/make.out
out/cho1l.xml: $(OUTPUT DIR)/cho1-cw2/run.out

(

$
$
$
$
$
$
$
out/chol.xml: $(OUTPUT DIR)/cho1-bogus-tab/make.out

* The cleaning process gets complex. The run-run and run-make scripts often use bash -x to allow the actual
make command line to be echoed. The -x option puts ++ before each command in the output, which the clean-
ing script transforms into a simple $ representing the shell prompt. However, commands are not the only
information to appear in the output. Because make is running the example and eventually starts another make,
simple makefiles include extra, unwanted output such as the messages Entering directory... and Leaving
directory... as well as displaying a make level number in messages. For simple makefiles that do not recur-
sively invoke make, we strip this inappropriate output to present the output of make as if it were run from a
top-level shell.

208 | Chapter11: Example Makefiles

These dependencies are generated by a simple awk script, imaginatively named make-
depend:

#! /bin/awk -f

function generate dependency(prereq)

{
filename = FILENAME

sub(/text/, "out", filename)
print filename ": " prereq

}

/™ *include-program/ {
generate_dependency("$(EXAMPLES DIR)/" $2)
}

/™ *mp_program\(/ {
match($0, /\((.*)\)/, names)
generate_dependency("$(EXAMPLES DIR)/" names[1])
}

/™ *include-output/ {
generate_dependency("$(OUTPUT_DIR)/" $2)
}

/™ *mp_output\(/ {
match($0, /\((.*)\)/, names)
generate_dependency("$(OUTPUT DIR)/" names[1])
}

/graphic fileref/ {
match($0, /"(.*)"/, out file)
generate_dependency(out file[1]);
}

The script searches for patterns like:

mp_program(choi-hello/Makefile)

mp_output(cho1-hello/make.out)
(The mp_program macro uses the program listing format, while the mp_output macro
uses the program output format.) The script generates the dependency from the
source filename and the filename parameter.

Finally, the generation of dependency files is triggered by a make include statement, in
the usual fashion:

$(call source-to-output, file-name)

Transform a source tree reference to an output tree reference.
define source-to-output

$(subst $(SOURCE_DIR),$(OUTPUT DIR),$1)

endef

ALL_XML_SRC := $(wildcard $(SOURCE_DIR)/*.xml)
DEPENDENCY _FILES := $(call source-to-output,$(subst .xml,.d,$(ALL XML SRC)))

The Book Makefile | 209

ifneq "$(MAKECMDGOALS)" "clean"
-include $(DEPENDENCY FILES)
endif

vpath %.xml $(SOURCE_DIR)

$(OUTPUT DIR)/%.d: %.xml $(make-depend)
$(make-depend) $< > $@
This completes the code for handling examples. Most of the complexity stems from
the desire to include the actual source of the makefiles as well as the actual output
from make and the example programs. I suspect there is also a little bit of the “put up
or shut up” syndrome here. If T believe make is so great, it should be able to handle
this complex task and, by golly, it can.

XML Preprocessing

At the risk of branding myself as a philistine for all posterity, I must admit I don’t
like XML very much. I find it awkward and verbose. So, when I discovered that the
manuscript must be written in DocBook, I looked for more traditional tools that
would help ease the pain. The m4 macro processor and awk were two tools that
helped immensely.

There were two problems with DocBook and XML that m4 was perfect for: avoiding
the verbose syntax of XML and managing the XML identifiers used in cross-referenc-
ing. For instance, to emphasize a word in DocBook, you must write:

<emphasis>not</emphasis>
Using m4, I wrote a simple macro that allowed me to instead write:

mp_em(not)
Ahh, that feels better. In addition, I introduced many symbolic formatting styles
appropriate for the material, such as mp_variable and mp_target. This allowed me to

select a trivial format, such as literal, and change it later to whatever the production
department preferred without having to perform a global search and replace.

I'm sure the XML aficionados will probably send me boat loads of email telling me
how to do this with entities or some such, but remember Unix is about getting the
job done now with the tools at hand, and as Larry Wall loves to say, “there’s more
than one way to do it.” Besides, I'm afraid learning too much XML will rot my brain.

The second task for m4 was handling the XML identifiers used for cross-referencing.
Each chapter, section, example, and table is labeled with an identifier:

<sectl id="MPWM-CH-7-SECT-1">

References to a chapter must use this identifier. This is clearly an issue from a pro-
gramming standpoint. The identifiers are complex constants sprinkled throughout

210 | Chapter11: Example Makefiles

the “code.” Furthermore, the symbols themselves have no meaning. I have no idea
what section 1 of Chapter 7 might have been about. By using m4, I could avoid dupli-
cating complex literals, and provide a more meaningful name:

<sect1 id="mp_se_makedepend">

Most importantly, if chapters or sections shift, as they did many times, the text could
be updated by changing a few constants in a single file. The advantage was most
noticeable when sections were renumbered in a chapter. Such an operation might
require a half dozen global search and replace operations across all files if T hadn’t
used symbolic references.

Here is an example of several m4 macros":

m4_define(mp_tag', T<P1>T2"</$1> ")
m4_define(“mp lit', “mp_tag(literal, “$1')")

m4_define("mp_cmd', “mp_tag(command, $1')")
m4_define(“mp_target', “mp 1lit($1)")

m4_define("mp_all', “mp_target(all)')
m4_define("mp_bash', “mp_cmd(bash)")

m4_define(“mp_ch_examples', “MPWM-CH-11")

m4_define(mp_se_book", “MPWM-CH-11.1")

m4_define(mp_ex_book_makefile', MPWM-CH-11-EX-1")
The other preprocessing task was to implement an include feature for slurping in the
example text previously discussed. This text needed to have its tabs converted to
spaces (since O’Reilly’s DocBook converter cannot handle tabs and makefiles have
lots of tabs!), must be wrapped in a [CDATA[...]] to protect special characters, and
finally, has to trim the extra newlines at the beginning and end of examples. I accom-
plished this with another little awk program called process-includes:

#! /usr/bin/awk -f

function expand cdata(dir)

{

start _place = match($1, "include-")
if (start_place » 0)

prefix = substr($1, 1, start place - 1)

}

else

{

print "Bogus include '" $0 "'" > "/dev/stderr"

}

end_place = match($2, "(</(programlisting|screen)>.*)$", tag)

* The mp prefix stands for Managing Projects (the book’s title), macro processor, or make pretty. Take your
pick.

The Book Makefile | 211

if (end_place » 0)

file = dir substr($2, 1, end place - 1)

}

else

{

print "Bogus include '" $0 "'" > "/dev/stderr"

command = "expand " file

printf "%s>833;8&91;CDATA[", prefix
tail = 0

previous line =
while ((command | getline line) > 0)

if (tail)
print previous_line;
tail = 1
previous_line = line
}

printf "%s&93;893;8&62;%s\n", previous line, tag[1]
close(command)

}

/include-program/ {
expand_cdata("examples/")
next;

}

/include-output/ {
expand_cdata("out/")
next;

}

/<(programlisting|screen)> *$/ {
Find the current indentation.
offset = match($0, "<(programlisting|screen)>")

Strip newline from tag.
printf $0

Read the program...
tail = 0

previous line =
while ((getline line) > 0)

if (line ~ "</(programlisting|screen)>")
{

gsub(/~ */, "", line)

break

}

212 | Chapter11: Example Makefiles

if (tail)
print previous line

tail = 1
previous line = substr(line, offset + 1)

}
printf "%s%s\n", previous line, line

next

}
{

print
}
In the makefile, we copy the XML files from the source tree to the output tree, trans-
forming tabs, macros, and include files in the process:

process-pgm := bin/process-includes
m4-macros := text/macros.m4

$(call process-includes, input-file, output-file)

Remove tabs, expand macros, and process include directives.

define process-includes
expand $1 | \
$(M4) --prefix-builtins --include=text $(m4-macros) - | \
$(process-pgm) > $2

endef

vpath %.xml $(SOURCE_DIR)

$(OUTPUT DIR)/%.xml: %.xml $(process-pgm) $(m4-macros)
$(call process-includes, $<, $@)
The pattern rule indicates how to get an XML file from the source tree into the out-
put tree. It also says that all the output XML files should be regenerated if the mac-
ros or the include processor change.

Generating Output

So far, nothing we’ve covered has actually formatted any text or created anything
that can be printed or displayed. Obviously, a very important feature if the makefile
is to format a book. There were two formats that I was interested in: HTML and
PDF.

[figured out how to format to HTML first. There’s a great little program, xsltproc,
and its helper script, xmlto, that I used to do the job. Using these tools, the process
was fairly simple:

Book output formats.

BOOK_XML_OUT := $(OUTPUT DIR)/book.xmnl
BOOK HTML OUT := $(subst xml,html,$(BOOK XML OUT))

The Book Makefile | 213

ALL_XML_SRC $(wildcard $(SOURCE DIR)/*.xml)
ALL_XML_OUT 1= $(call source-to-output,$(ALL_XML_SRC))

html - Produce the desired output format for the book.
.PHONY: html
html: $(BOOK_HTML OUT)

show _html - Generate an html file and display it.
.PHONY: show_html
show_html: $(BOOK HTML OUT)

$(HTML_VIEWER) $(BOOK_HTML_OUT)

$(BOOK_HTML OUT) - Generate the html file.
$(BOOK_HTML_OUT): $(ALL_XML_OUT) $(OUTPUT DIR)/validate Makefile

%.html - Pattern rule to produce html output from xml input.
%.html: %.xml
$(XMLTO) $(XMLTO_FLAGS) html-nochunks $<

The pattern rule does most of the work of converting an XML file into an HTML file.
The book is organized as a single top-level file, book.xml, that includes each chapter.
The top-level file is represented by BOOK XML OUT. The HTML counterpart is BOOK_
HTML_OUT, which is a target. The BOOK_HTML_OUT file has its included XML files a pre-
requisites. For convenience, there are two phony targets, html and show_html, that
create the HTML file and display it in the local browser, respectively.

Although easy in principle, generating PDF was considerably more complex. The
xsltproc program is able to produce PDF directly, but I was unable to get it to work.
All this work was done on Windows with Cygwin and the Cygwin version of
xsltproc wanted POSIX paths. The custom version of DocBook I was using and the
manuscript itself contained Windows-specific paths. This difference, I believe, gave
xsltproc fits that I could not quell. Instead, I chose to use xsltproc to generate XML
formatting objects and the Java program FOP (http://xml.apache.org/fop) for generat-
ing the PDF.

Thus, the code to generate PDF is somewhat longer:

Book output formats.

BOOK_XML_OUT := $(OUTPUT_DIR)/book.xml

BOOK_FO_OUT := $(subst xml,fo,$(BOOK XML OUT))
BOOK_PDF_OUT := $(subst xml,pdf,$(BOOK XML OUT))
ALL_XML_SRC := $(wildcard $(SOURCE_DIR)/*.xml)
ALL_XML_ouT 1= $(call source-to-output,$(ALL XML SRC))

pdf - Produce the desired output format for the book.
.PHONY: pdf
pdf: $(BOOK_PDF_OUT)

show pdf - Generate a pdf file and display it.
.PHONY: show _pdf
show_pdf: $(BOOK_PDF_OUT)

$(kill-acroread)

$(PDF_VIEWER) $(BOOK_PDF_OUT)

214 | Chapter11: Example Makefiles

$(BOOK_PDF OUT) - Generate the pdf file.
$(BOOK_PDF_OUT): $(BOOK_FO_OUT) Makefile

$(BOOK_FO _OUT) - Generate the fo intermediate output file.
.INTERMEDIATE: $(BOOK_FO_OUT)
$(BOOK_FO_OUT): $(ALL_XML_OUT) $(OUTPUT DIR)/validate Makefile

FOP Support
FOP := org.apache.fop.apps.Fop

DEBUG_FOP - Define this to see fop processor output.
ifndef DEBUG_FOP

FOP_FLAGS := -q
FOP_OUTPUT := | $(SED) -e '/not implemented/d’ \
-e '/relative-align/d’ \
-e '/xsl-footnote-separator/d’
endif

CLASSPATH - Compute the appropriate CLASSPATH for fop.
export CLASSPATH
CLASSPATH = $(patsubst %;,%,
$(subst ; ,;,
$(addprefix c:/usr/xslt-process-2.2/java/,
$(addsuffix .jar;,

xalan

xercesImpl

batik

fop

jimi-1.0

avalon-framework-cvs-20020315))))

P

%.pdf - Pattern rule to produce pdf output from fo input.
%.pdf: %.fo

$(kill-acroread)

java -Xmx128M $(FOP) $(FOP_FLAGS) $< $@ $(FOP_OUTPUT)

%.fo - Pattern rule to produce fo output from xml input.
PAPER_SIZE := letter
%.fo: %.xml
XSLT_FLAGS="--stringparam paper.type $(PAPER_SIZE)" \
$(XMLTO) $(XMLTO_FLAGS) fo $<

fop_help - Display fop processor help text.
.PHONY: fop help
fop_help:

-java org.apache.fop.apps.Fop -help

-java org.apache.fop.apps.Fop -print help

As you can see, there are now two pattern rules reflecting the two-stage process I
used. The .xml to .fo rule invokes xmlto. The .fo to .pdf rule first kills any running
Acrobat reader (because the program locks the PDF file, preventing FOP from writ-

ing the file), then runs FOP. FOP is a very chatty program, and scrolling through
hundreds of lines of pointless warnings got old fast, so I added a simple sed filter,

The Book Makefile | 215

FOP_OUTPUT, to remove the irritating warnings. Occasionally, however, those warn-
ings had some real data in them, so I added a debugging feature, DEBUG_FOP, to dis-
able my filter. Finally, like the HTML version, I added two convenience targets, pdf
and show_pdf, to kick the whole thing off.

Validating the Source

What with DocBook’s allergy to tabs, macro processors, include files and comments
from editors, making sure the source text is correct and complete is not easy. To help,
[implemented four validation targets that check for various forms of correctness.

validation checks := $(OUTPUT DIR)/chk macros_tabs \
$(OUTPUT DIR)/chk_fixme \
$(OUTPUT_DIR)/chk_duplicate_macros \
$(OUTPUT DIR)/chk_orphaned examples

.PHONY: validate-only

validate-only: $(OUTPUT DIR)/validate

$(OUTPUT_DIR)/validate: $(validation_checks)
$(TOUCH) $@

Each target generates a timestamp file, and they are all prerequisites of a top-level
timestamp file, validate.

$(OUTPUT_DIR)/chk _macros_tabs: $(ALL_XML OUT)
Looking for macros and tabs...
$(QUIET)! $(ECREP) --ignore-case
--line-number
--regexp="\b(m4_|mp_)'
--regexp="\011"
$/\

- s

$(TOUCH) $@

This first check looks for m4 macros that were not expanded during preprocessing.
This indicates either a misspelled macro or a macro that has never been defined. The
check also scans for tab characters. Of course, neither of these situations should ever
happen, but they did! One interesting bit in the command script is the exclamation
point after $(QUIET). The purpose is to negate the exit status of egrep. That is, make
should consider the command a failure if egrep does find one of the patterns.

$(OUTPUT_DIR)/chk_fixme: $(ALL_XML_OUT)
Looking for RM: and FIXME...

$(QUIET)$ (AWK) \
"/FIXME/ { printf "%s:%s: %s\n", FILENAME, NR, $$0 } \

/™ *RM:/ { \

if ($$0 !~ /RM: Done/) \

printf "%s:%s: %s\n", FILENAME, NR, $$0 \

}' $(subst $(OUTPUT DIR)/,$(SOURCE DIR)/,$")
$(TOUCH) $@

This check is for unresolved notes to myself. Obviously, any text labeled FIXME
should be fixed and the label removed. In addition, any occurrence of RM: that is not

216 | Chapter11: Example Makefiles

followed immediately by Done should be flagged. Notice how the format of the
printf function follows the standard format for compiler errors. This way, standard
tools that recognize compiler errors will properly process these warnings.

$(OUTPUT_DIR)/chk_duplicate_macros: $(SOURCE_DIR)/macros.m4
Looking for duplicate macros...

$(QUIET)! $(EGREP) --only-matching \

QeEREY \
$(SORT) | \
uniq -c | \
$(AWK) "$$1 > 1 { printf "$>:0: %s\n", $$0 }' | \
$(EGREP) "A"

$(TOUCH) $@

This checks for duplicate macro definitions in the m4 macro file. The m4 processor
does not consider redefinition to be an error, so I added a special check. The pipe-
line goes like this: grab the defined symbol in each macro, sort, count duplicates, fil-
ter out all lines with a count of one, then use egrep one last time purely for its exit
status. Again, note the negation of the exit status to produce a make error only when
something is found.

ALL_EXAMPLES := $(TMP)/all examples

$(OUTPUT_DIR)/chk_orphaned_examples: $(ALL_EXAMPLES) $(DEPENDENCY_FILES)
$(QUIET)$(AWK) -F/ '/(EXAMPLES|OUTPUT) DIR/ { print $$3 }' \
$(filter %.d,$") | \
$(SORT) -u | \
comm -13 - $(filter-out %.d,$")
$(TOUCH) $@

.INTERMEDIATE: $(ALL_EXAMPLES)
$(ALL_EXAMPLES):
Looking for unused examples...
$(QUIET) 1s -p $(EXAMPLES DIR) | \
$(AWK) '/CVS/ { next } \
/N// { print substr($$0, 1, length - 1) }' > $@
The final check looks for examples that are not referenced in the text. This target
uses a funny trick. It requires two sets of input files: all the example directories, and
all the XML dependency files. The prerequisites list is separated into these two sets
using filter and filter-out. The list of example directories is generated by using 1s
-p (this appends a slash to each directory) and scanning for slashes. The pipeline first
grabs the XML dependency files from the prerequisite list, outputs the example
directories it finds in them, and removes any duplicates. These are the examples
actually referenced in the text. This list is fed to comm’s standard input, while the list
of all known example directories is fed as the second file. The -13 option indicates
that comm should print only lines found in column two (that is, directories that are
not referenced from a dependency file).

The Book Makefile | 217

The Linux Kernel Makefile

The Linux kernel makefile is an excellent example of using make in a complex build
environment. While it is beyond the scope of this book to explain how the Linux ker-
nel is structured and built, we can examine several interesting uses of make employed
by the kernel build system. See http://macarchive.linuxsymposium.org/ols2003/
Proceedings/All-Reprints/Reprint-Germaschewski-OLS2003.pdf for a more complete
discussion of the 2.5/2.6 kernel build process and its evolution from the 2.4 approach.

Since the makefile has so many facets, we will discuss just a few features that are
applicable to a variety of applications. First, we’ll look at how single-letter make vari-
ables are used to simulate single-letter command-line options. We’ll see how the
source and binary trees are separated in a way that allows users to invoke make from
the source tree. Next, we’ll examine the way the makefile controls the verboseness of
the output. Then we’ll review the most interesting user-defined functions and see
how they reduce code duplication, improve readability, and provide encapsulation.
Finally, we’ll look at the way the makefile implements a simple help facility.

The Linux kernel build follows the familiar configure, build, install pattern used by
my most free software. While many free and open software packages use a separate
configure script (typically built by autoconf), the Linux kernel makefile implements
configuration with make, invoking scripts and helper programs indirectly.

When the configuration phase is complete, a simple make or make all will build the
bare kernel, all the modules, and produce a compressed kernel image (these are the
vmlinux, modules, and bzImage targets, respectively). Each kernel build is given a
unique version number in the file version.o linked into the kernel. This number (and
the version.o file) are updated by the makefile itself.

Some makefile features you might want to adapt to your own makefile are: the han-
dling of command line options, analyzing command-line goals, saving build status
between builds, and managing the output of make.

Command-Line Options

The first part of the makefile contains code for setting common build options from
the command line. Here is an excerpt that controls the verbose flag:

To put more focus on warnings, be less verbose as default
Use 'make V=1' to see the full commands
ifdef v

ifeq ("$(origin V)", "command line")

KBUILD VERBOSE = $(V)

endif
endif
ifndef KBUILD_ VERBOSE

KBUILD VERBOSE = 0
endif

218 | Chapter11: Example Makefiles

The nested ifdef/ifeq pair ensures that the KBUILD VERBOSE variable is set only if V is
set on the command line. Setting V in the environment or makefile has no effect. The
following ifndef conditional will then turn off the verbose option if KBUILD VERBOSE
has not yet been set. To set the verbose option from either the environment or
makefile, you must set KBUILD_VERBOSE and not V.

Notice, however, that setting KBUILD VERBOSE directly on the command line is
allowed and works as expected. This can be useful when writing shell scripts (or
aliases) to invoke the makefile. These scripts would then be more self-documenting,
similar to using GNU long options.

The other command-line options, sparse checking (C) and external modules (M), both
use the same careful checking to avoid accidentally setting them from within the
makefile.

The next section of the makefile handles the output directory option (0). This is a
fairly involved piece of code. To highlight its structure, we’ve replaced some parts of
this excerpt with ellipses:

E

kbuild supports saving output files in a separate directory.

To locate output files in a separate directory two syntax'es are supported.
In both cases the working directory must be the root of the kernel src.

1) 0=

Use "make O=dir/to/store/output/files/"

2) Set KBUILD_OUTPUT

Set the environment variable KBUILD OUTPUT to point to the directory
where the output files shall be placed.

export KBUILD OUTPUT=dir/to/store/output/files/

make

The 0= assigment takes precedence over the KBUILD OUTPUT environment variable.
KBUILD_SRC is set on invocation of make in OBJ directory

KBUILD SRC is not intended to be used by the regular user (for now)

ifeq ($(KBUILD SRC),)

HOoHE HF H R H H HE H O HE R

OK, Make called in directory where kernel src resides
Do we want to locate output files in a separate directory?
ifdef 0
ifeq ("$(origin 0)", "command line")
KBUILD OUTPUT := $(0)
endif
endif

ifneq ($(KBUILD OUTPUT),)
.PHONY: $(MAKECMDGOALS)
$(filter-out all,$(MAKECMDGOALS)) all:
$(if $(KBUILD VERBOSE:1=),@)$(MAKE) -C $(KBUILD OUTPUT) \

KBUILD SRC=$(CURDIR) KBUILD VERBOSE=$(KBUILD VERBOSE) \
KBUILD CHECK=$(KBUILD CHECK) KBUILD EXTMOD="$(KBUILD EXTMOD)" \

The Linux Kernel Makefile | 219

-f $(CURDIR)/Makefile $@
Leave processing to above invocation of make
skip-makefile := 1
endif # ifneq ($(KBUILD OUTPUT),)
endif # ifeq ($(KBUILD_SRC),)

We process the rest of the Makefile if this is the final invocation of make
ifeq ($(skip-makefile),)

.the rest of the makefile here..
endif # skip-makefile

Essentially, this says that if KBUILD OUTPUT is set, invoke make recursively in the out-
put directory defined by KBUILD OUTPUT. Set KBUILD SRC to the directory where make
was originally executed, and grab the makefile from there as well. The rest of the
makefile will not be seen by make, since skip-makefile will be set. The recursive make
will reread this same makefile again, only this time KBUILD SRC will be set, so skip-
makefile will be undefined, and the rest of the makefile will be read and processed.

This concludes the processing of command-line options. The bulk of the makefile
follows in the ifeq ($(skip-makefile),) section.

Configuration Versus Building

The makefile contains configuration targets and build targets. The configuration tar-
gets have the form menuconfig, defconfig, etc. Maintenance targets like clean are
treated as configuration targets as well. Other targets such as all, vmlinux, and
modules are build targets. The primary result of invoking a configuration target is two
files: .config and .config.cmd. These two files are included by the makefile for build
targets but are not included for configuration targets (since the configuration target
creates them). It is also possible to mix both configuration targets and build targets
on a single make invocation, such as:

$ make oldconfig all

In this case, the makefile invokes itself recursively handling each target individually,
thus handling configuration targets separately from build targets.

The code controlling configuration, build, and mixed targets begins with:

To make sure we do not include .config for any of the *config targets
catch them early, and hand them over to scripts/kconfig/Makefile
It is allowed to specify more targets when calling make, including
mixing *config targets and build targets.
For example 'make oldconfig all'.
Detect when mixed targets is specified, and make a second invocation
of make so .config is not included in this case either (for *config).
no-dot-config-targets := clean mrproper distclean \

cscope TAGS tags help %docs check’%

Hod o oH H R

config-targets := 0
mixed-targets := 0
dot-config =1

220 | Chapter11: Example Makefiles

The variable no-dot-config-targets lists additional targets that do not require a
.config file. The code then initializes the config-targets, mixed-targets, and dot-
config variables. The config-targets variable is 1 if there are any configuration tar-
gets on the command line. The dot-config variable is 1 if there are build targets on
the command line. Finally, mixed-targets is 1 if there are both configuration and
build targets.

The code to set dot-config is:

ifneq ($(filter $(no-dot-config-targets), $(MAKECMDGOALS)),)
ifeq ($(filter-out $(no-dot-config-targets), $(MAKECMDGOALS)),)
dot-config := 0
endif
endif

The filter expression is non-empty if there are configuration targets in
MAKECMDGOALS. The ifneq part is true if the filter expression is not empty. The code
is hard to follow partly because it contains a double negative. The ifeq expression is
true if MAKECMDGOALS contains only configuration targets. So, dot-config will be set to
0 if there are configuration targets and only configuration targets in MAKECMDGOALS. A
more verbose implementation might make the meaning of these two conditionals
more clear:

config-target-list := clean mrproper distclean \
cscope TAGS tags help %docs check%

config-target-goal := $(filter $(config-target-list), $(MAKECMDGOALS))
build-target-goal := $(filter-out $(config-target-list), $(MAKECMDGOALS))

ifdef config-target-goal
ifndef build-target-goal
dot-config := 0
endif
endif

The ifdef form can be used instead of ifneq, because empty variables are treated as
undefined, but care must be taken to ensure a variable does not contain merely a
string of blanks (which would cause it to be defined).

The config-targets and mixed-targets variables are set in the next code block:

ifeq ($(KBUILD EXTMOD),)
ifneq ($(filter config %config,$(MAKECMDGOALS)),)
config-targets := 1
ifneq ($(filter-out config %config,$(MAKECMDGOALS)),)
mixed-targets := 1
endif
endif
endif

KBUILD_EXTMOD will be non-empty when external modules are being built, but not
during normal builds. The first ifneq will be true when MAKECMDGOALS contains a goal

The Linux Kernel Makefile | 221

with the config suffix. The second ifneq will be true when MAKECMDGOALS contains
nonconfig targets, too.

Once the variables are set, they are used in an if-else chain with four branches. The
code has been condensed and indented to highlight its structure:

ifeq ($(mixed-targets),1)
We're called with mixed targets (*config and build targets).
Handle them one by one.
%:: FORCE
(Q)(MAKE) -C $(srctree) KBUILD SRC= $@
else
ifeq ($(config-targets),1)
*config targets only - make sure prerequisites are updated, and descend
in scripts/kconfig to make the *config target
%config: scripts basic FORCE
(Q)(MAKE) $(build)=scripts/kconfig $@
else
Build targets only - this includes vmlinux, arch specific targets, clean
targets and others. In general all targets except *config targets.

ifeq ($(dot-config),1)
In this section, we need .config
Read in dependencies to all Kconfig* files, make sure to run
oldconfig if changes are detected.
-include .config.cmd
include .config

If .config needs to be updated, it will be done via the dependency
that autoconf has on .config.

To avoid any implicit rule to kick in, define an empty command
.config: ;

If .config is newer than include/linux/autoconf.h, someone tinkered
with it and forgot to run make oldconfig
include/linux/autoconf.h: .config
(0)(MAKE) -f $(srctree)/Makefile silentoldconfig
else
Dummy target needed, because used as prerequisite
include/linux/autoconf.h: ;
endif

include $(srctree)/arch/$(ARCH)/Makefile
.. lots more make code ..
endif #ifeq ($(config-targets),1)
endif #ifeq ($(mixed-targets),1)

The first branch, ifeq ($(mixed-targets),1), handles mixed command-line argu-
ments. The only target in this branch is a completely generic pattern rule. Since there
are no specific rules to handle targets (those rules are in another conditional branch),
each target invokes the pattern rule once. This is how a command line with both
configuration targets and build targets is separated into a simpler command line. The
command script for the generic pattern rule invokes make recursively for each target,

222 | Chapter11: Example Makefiles

causing this same logic to be applied, only this time with no mixed command-line
targets. The FORCE prerequisite is used instead of .PHONY, because pattern rules like:

%:: FORCE

cannot be declared .PHONY. So it seems reasonable to use FORCE consistently every-
where.

The second branch of the if-else chain, ifeq ($(config-targets),1), is invoked
when there are only configuration targets on the command line. Here the primary
target in the branch is the pattern rule %config (other targets have been omitted). The
command script invokes make recursively in the scripts/kconfig subdirectory and
passes along the target. The curious $(build) construct is defined at the end of the
makefile:

Shorthand for (Q)(MAKE) -f scripts/Makefile.build obj=dir

Usage:

(0)(MAKE) $(build)=dir

build := -f $(if $(KBUILD_SRC),$(srctree)/)scripts/Makefile.build obj
If KBUILD_SRC is set, the -f option is given a full path to the scripts makefile, other-
wise a simple relative path is used. Next, the obj variable is set to the righthand side
of the equals sign.

The third branch, ifeq ($(dot-config),1), handles build targets that require includ-
ing the two generated configuration files, .config and .config.cmd. The final branch
merely includes a dummy target for autoconf.h to allow it to be used as a prerequi-
site, even if it doesn’t exist.

Most of the remainder of the makefile follows the third and fourth branches. It con-
tains the code for building the kernel and modules.

Managing Command Echo

The kernel makefiles use a novel technique for managing the level of detail echoed by
commands. Each significant task is represented in both a verbose and a quiet ver-
sion. The verbose version is simply the command to be executed in its natural form
and is stored in a variable named cmd_action. The brief version is a short message
describing the action and is stored in a variable named quiet _cmd_action. For exam-
ple, the command to produce emacs tags is:

quiet_cmd TAGS = MAKE $@
cmd_TAGS = $(all-sources) | etags -

A command is executed by calling the cmd function:

If quiet is set, only print short version of command
cmd = @$(if $($(quiet)emd $(1)),\
echo ' $($(quiet)cemd $(1))" 8&) $(cmd_$(1))

The Linux Kernel Makefile | 223

To invoke the code for building emacs tags, the makefile would contain:

TAGS:
$(call cmd,TAGS)

Notice the cmd function begins with an @, so the only text echoed by the function is

text from the echo command. In normal mode, the variable quiet is empty, and the

test in the if, $($(quiet)cmd $(1)), expands to $(cmd TAGS). Since this variable is not

empty, the entire function expands to:

echo $(all-sources) | etags -' 8& $(all-sources) | etags -

If the quiet version is desired, the variable quiet contains the value quiet_ and the
function expands to:

echo ' MAKE $@' 8& $(all-sources) | etags -

The variable can also be set to silent . Since there is no command silent_cmd TAGS,
this value causes the cmd function to echo nothing at all.

Echoing the command sometimes becomes more complex, particularly if commands
contain single quotes. In these cases, the makefile contains this code:

$(if $($(quiet)emd $(1)),echo ' $(subst ',"\"",$($(quiet)cemd $(1)))";)

Here the echo command contains a substitution that replaces single quotes with
escaped single quotes to allow them to be properly echoed.

Minor commands that do not warrant the trouble of writing cmd_ and quiet_cmd_
variables are prefixed with $(Q), which contains either nothing or @:

ifeq ($(KBUILD_VERBOSE),1)
quiet =
0=
else
quiet=quiet_
0=e
endif

If the user is running make -s (silent mode), suppress echoing of
commands

ifneq ($(findstring s,$(MAKEFLAGS)),)
quiet=silent
endif

User-Defined Functions

The kernel makefile defines a number of functions. Here we cover the most interest-
ing ones. The code has been reformatted to improve readability.

The check_gcc function is used to select a gcc command-line option.

$(call check_gcc,preferred-option,alternate-option)
check_gcc = \

224 | Chapter11: Example Makefiles

$(shell if $(CC) $(CFLAGS) $(1) -S -o /dev/null
-xc /dev/null > /dev/null 2>81;
then
echo "$(1)";
else
echo "$(2)";
fi;)

P g

The function works by invoking gcc on a null input file with the preferred command-
line option. The output file, standard output, and standard error files are discarded.
If the gcc command succeeds, it means the preferred command-line option is valid
for this architecture and is returned by the function. Otherwise, the option is invalid
and the alternate option is returned. An example use can be found in arch/i386/
Makefile:

prevent gcc from keeping the stack 16 byte aligned
CFLAGS += $(call check_gcc, -mpreferred-stack-boundary=2,)

The if changed dep function generates dependency information using a remarkable
technique.

execute the command and also postprocess generated
.d dependencies file
if changed dep =
$(if
$(strip $?
$(filter-out FORCE $(wildcard $~),$")
$(filter-out $(cmd $(1)),$(cmd_$@))
$(filter-out $(cmd $@),$(cmd $(1)))),
@set -e;
$(if $($(quiet)cmd_$(1)),
echo ' $(subst ',"\"'",$($(quiet)cmd $(2)))";
$(cmd_$(1));
scripts/basic/fixdep
$(depfile)
$@
"$(subst $$,$$$%,$(subst ', "\"",$(cmd_$(1))))"
> $(@D)/.$(@F).tmp;
m -f $(depfile);
mv -f $(@D)/.$(@F).tmp $(@D)/.$(@F).cmd)
The function consists of a single if clause. The details of the test are pretty obscure,
but it is clear the intent is to be non-empty if the dependency file should be regener-
ated. Normal dependency information is concerned with the modification
timestamps on files. The kernel build system adds another wrinkle to this task. The
kernel build uses a wide variety of compiler options to control the construction and
behavior of components. To ensure that command-line options are properly
accounted for during a build, the makefile is implemented so that if command-line
options used for a particular target change, the file is recompiled. Let’s see how this
is accomplished.

P P gl G O G

The Linux Kernel Makefile | 225

In essence, the command used to compile each file in the kernel is saved in a .cmd
file. When a subsequent build is executed, make reads the .cmd files and compares the
current compile command with the last command. If they are different, the .cmd
dependency file is regenerated causing the object file to be rebuilt. The .cmd file usu-
ally contains two items: the dependencies that represent actual files for the target file
and a single variable recording the command-line options. For example, the file arch/
i386/kernel/cpu/mtrriif.c yields this (abbreviated) file:

cmd_arch/i386/kernel/cpu/mtrr/if.o := gcc -Wp,-MD ..; if.c

deps_arch/i386/kernel/cpu/mtrr/if.o := \
arch/i386/kernel/cpu/mtrr/if.c \

arch/i386/kernel/cpu/mtrr/if.o: $(deps_arch/i386/kernel/cpu/mtrr/if.o)

$(deps_arch/i386/kernel/cpu/mtrr/if.o):
Getting back to the if_changed dep function, the first argument to the strip is sim-
ply the prerequisites that are newer than the target, if any. The second argument to
strip is all the prerequisites other than files and the empty target FORCE. The really
obscure bit is the last two filter-out calls:

$(filter-out $(cmd_$(1)),$(cmd_$@))

$(filter-out $(cmd _$@),$(cmd $(1)))
One or both of these calls will expand to a non-empty string if the command-line
options have changed. The macro $(cmd_$(1)) is the current command and $(cmd
$@) will be the previous command, for instance the variable cmd_arch/i386/kernel/
cpu/mtrr/if.o just shown. If the new command contains additional options, the first
filter-out will be empty, and the second will expand to the new options. If the new
command contains fewer options, the first command will contain the deleted options
and the second will be empty. Interestingly, since filter-out accepts a list of words
(each treated as an independent pattern), the order of options can change and the
filter-out will still accurately identify added or removed options. Pretty nifty.

The first statement in the command script sets a shell option to exit immediately on
error. This prevents the multiline script from corrupting files in the event of prob-
lems. For simple scripts another way to achieve this effect is to connect statements
with 88 rather than semicolons.

The next statement is an echo command written using the techniques described in
the section “Managing Command Echo” earlier in this chapter, followed by the
dependency generating command itself. The command writes $(depfile), which is
then transformed by scripts/basic/fixdep. The nested subst function in the fixdep
command line first escapes single quotes, then escapes occurrences of $$ (the cur-
rent process number in shell syntax).

Finally, if no errors have occurred, the intermediate file $(depfile) is removed and
the generated dependency file (with its .cmd suffix) is moved into place.

226 | Chapter11: Example Makefiles

The next function, if changed rule, uses the same comparison technique as if_
changed_dep to control the execution of a command:

Usage: $(call if changed rule,foo)
will check if $(cmd_foo) changed, or any of the prequisites changed,
and if so will execute $(rule foo)

if_changed_rule = \
$(if $(strip $? \
$(filter-out $(cmd $(2)),$(cmd _$(@F))) \
$(filter-out $(cmd _$(@F)),$(cmd $(2)))), \

@$(rule $(2)))

In the topmost makefile, this function is used to link the kernel with these macros:

This is a bit tricky: If we need to relink vmlinux, we want

the version number incremented, which means recompile init/version.o
and relink init/init.o. However, we cannot do this during the

normal descending-into-subdirs phase, since at that time

we cannot yet know if we will need to relink vmlinux.

So we descend into init/ inside the rule for vmlinux again.

quiet_cmd_vmlinux__ = LD $@
define cmd_vmlinux_

$(LD) $(LDFLAGS) $(LDFLAGS_vmlinux) \
endef

set -e makes the rule exit immediately on error

define rule vmlinux__

+set -e;
$(if $(filter .tmp kallsyms%,$"),,
echo ' GEN .version';

. $(srctree)/scripts/mkversion > .tmp_version;

mv -f .tmp_version .version;

$(MAKE) $(build)=init;)
$(if $($(quiet)emd vmlinux_),

echo ' $($(quiet)cmd vmlinux__)' 8&)
$(cmd_vmlinux_);
echo 'cmd_$@ := $(cmd_vmlinux__)" > $(@D)/.$(@F).cmd

endef

P

define rule_vmlinux
$(rule_vmlinux__); \
$(NM) $@ | \
grep -v "\(compiled\)\|.." | \
sort > System.map

endef

The if_changed_rule function is used to invoke rule vmlinux, which performs the
link and builds the final System.map. As the comment in the makefile notes, the
rule vmlinux__ function must regenerate the kernel version file and relink init.o

The Linux Kernel Makefile | 227

before relinking vmlinux. This is controlled by the first if in rule vmlinux__. The
second if controls the echoing of the link command, $(cmd vmlinux_). After the
link command, the actual command executed is recorded in a .cmd file for compari-
son in the next build.

228 | Chapter11: Example Makefiles

