CHAPTER 12

Debugging Makefiles

Debugging makefiles is somewhat of a black art. Unfortunately, there is no such
thing as a makefile debugger to examine how a particular rule is being evaluated or a
variable expanded. Instead, most debugging is performed with simple print state-
ments and by inspection of the makefile. GNU make provides some help with various
built-in functions and command-line options.

One of the best ways to debug a makefile is to add debugging hooks and use defen-
sive programming techniques that you can fall back on when things go awry. T’ll
present a few basic debugging techniques and defensive coding practices I've found
most helpful.

Debugging Features of make

The warning function is very useful for debugging wayward makefiles. Because the
warning function expands to the empty string, it can be placed anywhere in a
makefile: at the top-level, in target or prerequisite lists, and in command scripts. This
allows you to print the value of variables wherever it is most convenient to inspect
them. For example:

$(warning A top-level warning)

FOO := $(warning Right-hand side of a simple variable)bar
BAZ = $(warning Right-hand side of a recursive variable)boo

$(warning A target)target: $(warning In a prerequisite list)makefile $(BAZ)
$(warning In a command script)
1s

$(BAZ):

yields the output:

$ make

makefile:1: A top-level warning

makefile:2: Right-hand side of a simple variable
makefile:5: A target

229

makefile:5: In a prerequisite list

makefile:5: Right-hand side of a recursive variable
makefile:8: Right-hand side of a recursive variable
makefile:6: In a command script

1s

makefile

Notice that the evaluation of the warning function follows the normal make algorithm
for immediate and deferred evaluation. Although the assignment to BAZ contains a
warning, the message does not print until BAZ is evaluated in the prerequisites list.

The ability to inject a warning call anywhere makes it an essential debugging tool.

Command-Line Options

There are three command-line options I find most useful for debugging: --just-
print (-n), --print-data-base (-p), and --warn-undefined-variables.

--just-print
The first test I perform on a new makefile target is to invoke make with the --just-
print (-n) option. This causes make to read the makefile and print every command it

would normally execute to update the target but without executing them. As a con-
venience, GNU make will also echo commands marked with the silent modifier (@).

The option is supposed to suppress all command execution. While this may be true
in one sense, practically speaking, you must take care. While make will not execute
command scripts, it will evaluate shell function calls that occur within an immedi-
ate context. For instance:
REQUIRED DIRS = ...
_MKDIRS := $(shell for d in $(REQUIRED DIRS); \
do \

[[-d $$d]] || mkdir -p $$d;
done)

$(objects) : $(sources)

As we’ve seen before, the purpose of the MKDIRS simple variable is to trigger the cre-
ation of essential directories. When this is executed with --just-print, the shell
command will be executed as usual when the makefile is read. Then make will echo
(without executing) each compilation command required to update the $(objects)
file list.

--print-data-base

The --print-data-base (-p) option is another one you’ll use often. It executes the
makefile, displaying the GNU copyright followed by the commands as they are run
by make, then it will dump its internal database. The data is collected into groups of

230 | Chapter12: Debugging Makefiles

values: variables, directories, implicit rules, pattern-specific variables, files (explicit
rules), and the vpath search path:

GNU Make 3.80

Copyright (C) 2002 Free Software Foundation, Inc.

This is free software; see the source for copying conditions.

There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE.

normal command execution occurs here

Make data base, printed on Thu Apr 29 20:58:13 2004
Variables

; Directories

; Implicit Rules

; Pattern-specific variable values

; Files

; VPATH Search Paths

Let’s examine these sections in more detail.

The variables section lists each variable along with a descriptive comment:

automatic
<D = $(patsubst %/,%,$(dir $<))
environment
EMACS_DIR = C:/usr/emacs-21.3.50.7
default
CWEAVE = cweave
makefile (from ~../mp3_player/makefile', line 35)
CPPFLAGS = $(addprefix -I ,$(include dirs))
makefile (from ~../ch07-separate-binaries/makefile', line 44)
RM := rm -f
makefile (from ~../mp3_player/makefile', line 14)
define make-library
libraries += $1
sources += $2

$1: $(call source-to-object,$2)
$(AR) $(ARFLAGS) $$@ $$"
endef

Automatic variables are not printed, but convenience variables derived from them
like $(<D) are. The comment indicates the type of the variable as returned by the
origin function (see the section “Less Important Miscellaneous Functions” in
Chapter 4). If the variable is defined in a file, the filename and line number of the
definition is given. Simple and recursive variables are distinguished by the

Debugging Features of make | 231

assignment operator. The value of a simple variable will be displayed as the evalu-
ated form of the righthand side.

The next section, labeled Directories, is more useful to make developers than to make
users. It lists the directories being examined by make, including SCCS and RCS subdi-
rectories that might exist, but usually do not. For each directory, make displays imple-
mentation details, such as the device number, inode, and statistics on file pattern
matches.

The Implicit Rules section follows. This contains all the built-in and user-defined
pattern rules in make’s database. Again, for those rules defined in a file, a comment
indicates the file and line number:

%.c %.h: %y

commands to execute (from ~../mp3_player/makefile’, line 73):
$(YACC.y) --defines $<
$(MV) y.tab.c $*.c
$(MV) y.tab.h $*.h

% %.cC
commands to execute (built-in):
$(LINK.c) $* $(LOADLIBES) $(LDLIBS) -0 $@

%.0: %.c
commands to execute (built-in):
$(COMPILE.c) $(OUTPUT_OPTION) $<
Examining this section is a great way to become familiar with the variety and struc-
ture of make’s built-in rules. Of course, not all built-in rules are implemented as pat-
tern rules. If you don’t find the rule you’re looking for, check in the Files section
where the old-style suffix rules are listed.

The next section catalogs the pattern-specific variables defined in the makefile. Recall
that pattern-specific variables are variable definitions whose scope is precisely the
execution time of their associated pattern rule. For example, the pattern variable
YYLEXFLAG, defined as:

%.C %.h: YYLEXFLAG := -d
%.c k.he %y
$(YACC.y) --defines $<
$(MV) y.tab.c $*.c
$(MV) y.tab.h $*.h
would be displayed as:

Pattern-specific variable values

%.C :

makefile (from “Makefile', line 1)

YYLEXFLAG := -d

variable set hash-table stats:

Load=1/16=6%, Rehash=0, Collisions=0/1=0%

232 | Chapter12: Debugging Makefiles

%.h

makefile (from ~Makefile', line 1)

YYLEXFLAG := -d

variable set hash-table stats:

Load=1/16=6%, Rehash=0, Collisions=0/1=0%

2 pattern-specific variable values

The Files section follows and lists all the explicit and suffix rules that relate to
specific files:

Not a target:

.p.o:

Implicit rule search has not been done.

Modification time never checked.

File has not been updated.

commands to execute (built-in):
$(COMPILE.p) $(OUTPUT_OPTION) $<

H o H R

lib/ui/libui.a: lib/ui/ui.o

Implicit rule search has not been done.

Last modified 2004-04-01 22:04:09.515625

File has been updated.

Successfully updated.

commands to execute (from "../mp3 player/lib/ui/module.mk', line 3):
ar rv $@ $°

ErE T

lib/codec/codec.o: ../mp3_player/lib/codec/codec.c ../mp3_player/lib/codec/codec.c ..
/mp3_player/include/codec/codec.h
Implicit rule search has been done.
Implicit/static pattern stem: "lib/codec/codec’
Last modified 2004-04-01 22:04:08.40625
File has been updated.
Successfully updated.
commands to execute (built-in):
$(COMPILE.c) $(OUTPUT_OPTION) $<

H o H H H

Intermediate files and suffix rules are labeled “Not a target”; the remainder are tar-
gets. Each file includes comments indicating how make has processed the rule. Files
that are found through the normal vpath search have their resolved path displayed.

The last section is labeled VPATH Search Paths and lists the value of VPATH and all
the vpath patterns.

For makefiles that make extensive use of user-defined functions and eval to create
complex variables and rules, examining this output is often the only way to verify
that macro expansion has generated the expected values.

--warn-undefined-variables

This option causes make to display a warning whenever an undefined variable is
expanded. Since undefined variables expand to the empty string, it is common for
typographical errors in variable names to go undetected for long periods. The problem

Debugging Features of make | 233

with this option, and why I use it only rarely, is that many built-in rules include unde-
fined variables as hooks for user-defined values. So running make with this option will
inevitably produce many warnings that are not errors and have no useful relationship
to the user’s makefile. For example:

$ make --warn-undefined-variables -n

makefile:35: warning: undefined variable MAKECMDGOALS

makefile:45: warning: undefined variable CFLAGS
makefile:45: warning: undefined variable TARGET_ARCH

makefile:35: warning: undefined variable MAKECMDGOALS
make: warning: undefined variable CFLAGS

make: warning: undefined variable TARGET_ARCH

make: warning: undefined variable CFLAGS

make: warning: undefined variable TARGET_ARCH

make: warning: undefined variable LDFLAGS

make: warning: undefined variable TARGET_ARCH

make: warning: undefined variable LOADLIBES

make: warning: undefined variable LDLIBS
Nevertheless, this command can be extremely valuable on occasion in catching these
kinds of errors.

The --debug Option

When you need to know how make analyzes your dependency graph, use the --debug
option. This provides the most detailed information available other than by running
a debugger. There are five debugging options and one modifier: basic, verbose,
implicit, jobs, all, and makefile, respectively.

If the debugging option is specified as --debug, basic debugging is used. If the debug-
ging option is given as -d, all is used. To select other combinations of options, use a
comma separated list --debug=optioni,option2 where the option can be one of the
following words (actually, make looks only at the first letter):

basic
Basic debugging is the least detailed. When enabled, make prints each target that
is found to be out-of-date and the status of the update action. Sample output
looks like:

File all does not exist.
File app/player/play mp3 does not exist.
File app/player/play mp3.o does not exist.
Must remake target app/player/play mp3.o.
gcc /mp3_player/app/player/play mp3.c
Successfully remade target file app/player/play mp3.o.

verbose
This option sets the basic option and includes additional information about
which files where parsed, prerequisites that did not need to be rebuilt, etc.:

234 | Chapter12: Debugging Makefiles

File all does not exist.
Considering target file app/player/play mp3.
File app/player/play mp3 does not exist.
Considering target file app/player/play mp3.o.
File app/player/play mp3.o does not exist.
Pruning file ../mp3_player/app/player/play mp3.c.
Pruning file ../mp3_player/app/player/play mp3.c.
Pruning file ../mp3_player/include/player/play mp3.h.
Finished prerequisites of target file app/player/play mp3.o.
Must remake target app/player/play mp3.o.
gCC vun .. /mp3_player/app/player/play_mp3.c
Successfully remade target file app/player/play_mp3.o.
Pruning file app/player/play mp3.o.
implicit
This option sets the basic option and includes additional information about
implicit rule searches for each target:

File all does not exist.
File app/player/play mp3 does not exist.
Looking for an implicit rule for app/player/play mp3.
Trying pattern rule with stem play mp3.
Trying implicit prerequisite app/player/play mp3.o.
Found an implicit rule for app/player/play mp3.
File app/player/play mp3.o does not exist.
Looking for an implicit rule for app/player/play mp3.o.
Trying pattern rule with stem play mp3.
Trying implicit prerequisite app/player/play mp3.c.
Found prerequisite app/player/play mp3.c as VPATH ../mp3 player/app/player/
play mp3.c
Found an implicit rule for app/player/play mp3.o.
Must remake target app/player/play mp3.o.
gcc v .. /mp3_player/app/player/play mp3.c
Successfully remade target file app/player/play mp3.o.

jobs
This options prints the details of subprocesses invoked by make. It does not
enable the basic option.

Got a SIGCHLD; 1 unreaped children.

gcC v .. /mp3_player/app/player/play mp3.c

Putting child 0x10033800 (app/player/play mp3.o) PID 576 on the chain.
Live child 0x10033800 (app/player/play mp3.o) PID 576

Got a SIGCHLD; 1 unreaped children.

Reaping winning child 0x10033800 PID 576

Removing child 0x10033800 PID 576 from chain.

all
This enables all the previous options and is the default when using the -d option.

makefile
Normally, debugging information is not enabled until after the makefiles have
been updated. This includes updating any included files, such as lists of depen-
dencies. When you use this modifier, make will print the selected information

Debugging Features of make | 235

while rebuilding makefiles and include files. This option enables the basic
option and is also enabled by the all option.

Writing Code for Debugging

As you can see, there aren’t too many tools for debugging makefiles, just a few ways
to dump make’s internal data structures and a couple of print statements. When it
comes right down to it, it is up to you to write your makefiles in ways that either
minimize the chance of errors or provide your own scaffolding to help debug them.

The suggestions in this section are laid out somewhat arbitrarily as coding practices,
defensive coding, and debugging techniques. While specific items, such as checking
the exit status of commands, could be placed in either the good coding practice sec-
tion or the defensive coding section, the three categories reflect the proper bias.
Focus on coding your makefiles well without cutting too many corners. Include
plenty of defensive coding to protect the makefile against unexpected events and
environmental conditions. Finally, when bugs do arise, use every trick you can find
to squash them.

The “Keep It Simple” Principle (http://www.catb.org/~esr/jargon/html/K/KISS-
Principle.html) is at the heart of all good design. As you’ve seen in previous chapters,
makefiles can quickly become complex, even for mundane tasks, such as depen-
dency generation. Fight the tendency to include more and more features in your
build system. You’ll fail, but not as badly as you would if you simply include every
feature that occurs to you.

Good Coding Practices

In my experience, most programmers do not see writing makefiles as programming
and, therefore, do not take the same care as they do when writing in C++ or Java.
But the make language is a complete nonprocedural language. If the reliability and
maintainability of your build system is important, write it with care and use the best
coding practices you can.

One of the most important aspects of programming robust makefiles is to check the
return status of commands. Of course, make will check simple commands automati-
cally, but makefiles often include compound commands that can fail quietly:
do:
cd i-dont-exist; \
echo *.c
When run, this makefile does not terminate with an error status, although an error
most definitely occurs:
$ make

cd i-dont-exist; \
echo *.c

236 | Chapter12: Debugging Makefiles

/bin/sh: line 1: cd: i-dont-exist: No such file or directory

*.c
Furthermore, the globbing expression fails to find any .c files, so it quietly returns the
globbing expression. Oops. A better way to code this command script is to use the
shell’s features for checking and preventing errors:

SHELL = /bin/bash

do:

cd i-dont-exist && \

shopt -s nullglob &&
echo *.c

Now the cd error is properly transmitted to make, the echo command never executes,
and make terminates with an error status. In addition, setting the nullglob option of
bash causes the globbing pattern to return the empty string if no files are found. (Of
course, your particular application may prefer the globbing pattern.)

$ make

cd i-dont-exist && \

echo *.c

/bin/sh: line 1: cd: i-dont-exist: No such file or directory

make: *** [do] Error 1
Another good coding practice is formatting your code for maximum readability.
Most makefiles I see are poorly formatted and, consequently, difficult to read. Which
do you find easier to read?

_MKDIRS := $(shell for d in $(REQUIRED DIRS); do [[-d $$d \
11 || mkdir -p $$d; done)

or:

_MKDIRS := $(shell \
for d in $(REQUIRED DIRS); \
do \

[[-d $$d 1] || mkdir -p $$d; \
done)

If you’re like most people, you’ll find the first more difficult to parse, the semicolons
harder to find, and the number of statements more difficult to count. These are not
trivial concerns. A significant percentage of the syntax errors you will encounter in
command scripts will be due to missing semicolons, backslashes, or other separa-
tors, such as pipe and logical operators.

Also, note that not all missing separators will generate an error. For instance, neither
of the following errors will produce a shell syntax error:

TAGS:

cd src \

ctags --recurse
disk free:

echo "Checking free disk space..." \
df . | awk '{ print $$4 }'

Writing Code for Debugging | 237

Formatting commands for readability will make these kinds of errors easier to catch.
When formatting user-defined functions, indent the code. Occasionally, the extra
spaces in the resulting macro expansion cause problems. If so, wrap the formatting
in a strip function call. When formatting long lists of values, separate each value on
its own line. Add a comment before each target, give a brief explanation, and docu-
ment the parameter list.

The next good coding practice is the liberal use of variables to hold common values.
As in any program, the unrestrained use of literal values creates code duplication and
leads to maintenance problems and bugs. Another great advantage of variables is
that you can get make to display them for debugging purposes during execution. I
show a nice command line interface in the section “Debugging Techniques,” later in
this chapter.

Defensive Coding

Defensive code is code that can execute only if one of your assumptions or expecta-
tions is wrong — an if test that is never true, an assert function that never fails, or
tracing code. Of course, the value of this code that never executes is that occasion-
ally (usually when you least expect it), it does run and produce a warning or error, or
you choose to enable tracing code to allow you to view the inner workings of make.

You’ve already seen most of this code in other contexts, but for convenience it is
repeated here.

Validation checking is a great example of defensive code. This code sample verifies
that the currently executing version of make is 3.80:
NEED_VERSION := 3.80

$(if $(filter $(NEED_VERSION),$(MAKE VERSION)),, \
$(error You must be running make version $(NEED_VERSION).))

For Java applications, it is useful to include a check for files in the CLASSPATH.

Validation code can also simply ensure that something is true. The directory cre-
ation code from the previous section is of this nature.

Another great defensive coding technique is to use the assert functions defined in
the section “Flow Control” in Chapter 4. Here are several versions:

$(call assert,condition,message)
define assert

$(if $1,,$(error Assertion failed: $2))
endef

$(call assert-file-exists,wildcard-pattern)
define assert-file-exists

$(call assert,$(wildcard $1),$1 does not exist)
endef

$(call assert-not-null,make-variable)
define assert-not-null

238 | Chapter12: Debugging Makefiles

$(call assert,$($1),The variable "$1" is null)
endef
I find sprinkling assert calls around the makefile to be a cheap and effective way of
detecting missing and misspelled parameters as well as violations of other assump-
tions.

In Chapter 4, we wrote a pair of functions to trace the expansion of user-defined
functions:
$(debug-enter)

debug-enter = $(if $(debug_trace),\
$(warning Entering $0($(echo-args))))

$(debug-leave)
debug-leave = $(if $(debug trace),$(warning Leaving $0))

comma := ,
echo-args = $(subst ' ',"'$(comma) ',\
$(foreach a,1234567809,'$(%$a)"))
You can add these macro calls to your own functions and leave them disabled until
they are required for debugging. To enable them, set debug trace to any nonempty
value:

$ make debug trace=1
As noted in Chapter 4, these trace macros have a number of problems of their own
but can still be useful in tracking down bugs.
The final defensive programming technique is simply to make disabling the @ com-
mand modifier easy by using it through a make variable, rather than literally:

QUIET :- @

%arget:

$(QUIET) some command

Using this technique, you can see the execution of the silent command by redefining
QUIET on the command line:

$ make QUIET=

Debugging Techniques

This section discusses general debugging techniques and issues. Ultimately, debug-
ging is a grab-bag of whatever works for your situation. These techniques have
worked for me, and I've come to rely on them to debug even the simplest makefile
problems. Maybe they’ll help you, too.

One of the very annoying bugs in 3.80 is that when make reports problems in
makefiles and includes a line number, I usually find that the line number is wrong. 1
haven’t investigated whether the problem is due to include files, multiline variable

Writing Code for Debugging | 239

assignments, or user-defined macros, but there it is. Usually the line number make
reports is larger than the actual line number. In complex makefiles, I've had the line
number be off by as much as 20 lines.

Often the easiest way to see the value of a make variable is to print it during the exe-
cution of a target. Although adding print statements using warning is simple, the
extra effort of adding a generic debug target for printing variables can save lots of
time in the long run. Here is a sample debug target:

debug:

$(for v,$(V), \
$(warning $v = $($v)))

To use it, just set the list of variables to print on the command line, and include the
debug target:

$ make V="USERNAME SHELL" debug

makefile:2: USERNAME = Owner

makefile:2: SHELL = /bin/sh.exe

make: debug is up to date.
If you want to get really tricky, you can use the MAKECMDGOALS variable to avoid the
assignment to the variable V:

debug:

$(for v,$(V) $(MAKECMDGOALS), \
$(if $(filter debug,$v),,$(warning $v = $($v))))

Now you can print variables by simply listing them on the command line. I don’t rec-
ommend this technique, though, because you’ll also get confusing make warnings
indicating it doesn’t know how to update the variables (since they are listed as tar-
gets):

$ make debug PATH SHELL

makefile:2: USERNAME = Owner

makefile:2: SHELL = /bin/sh.exe

make: debug is up to date.

make: *** No rule to make target USERNAME. Stop.
In Chapter 10, I briefly mentioned using a debugging shell to help understand some
of the activities make performs behind the scenes. While make echos commands in
command scripts before they are executed, it does not echo the commands executed
in shell functions. Often these commands are subtle and complex, particularly since
they may be executed immediately or in a deferred fashion, if they occur in a recur-
sive variable assignment. One way to see these commands execute is to request that
the subshell enable debug printing:

DATE := $(shell date +%F)
OUTPUT DIR = out-$(DATE)

make-directories := $(shell [-d $(OUTPUT DIR)] || mkdir -p $(OUTPUT DIR))

all: ;

240 | Chapter12: Debugging Makefiles

When run with sh’s debugging option, we see:

$ make SHELL="sh -x"

+ date +%F

+ '[" -d out-2004-05-11 ']'
+ mkdir -p out-2004-05-11

This even provides additional debugging information beyond make warning state-

ments, since with this option the shell also displays the value of variables and expres-
sions.

Many of the examples in this book are written as deeply nested expressions, such as
this one that checks the PATH variable on a Windows/Cygwin system:

$(if $(findstring /bin/, \
$(firstword
$(wildcard
$(addsuffix /sort$(if $(COMSPEC),.exe),
$(subst :, ,$(PATH)))))),,
$(error Your PATH is wrong, c:/usr/cygwin/bin should
precede c:/WINDOWS/system32))

- s s s

There is no good way to debug these expressions. One reasonable approach is to
unroll them, and print each subexpression:
$(warning $(subst :, ,$(PATH)))
$(warning /sort$(if $(COMSPEC),.exe))
$(warning $(addsuffix /sort$(if $(COMSPEC),.exe), \
$(subst :, ,$(PATH))))
$(warning $(wildcard \
$(addsuffix /sort$(if $(COMSPEC),.exe), \
$(subst :, ,$(PATH)))))
Although a bit tedious, without a real debugger, this is the best way (and sometimes
the only way) to determine the value of various subexpressions.

Common Error Messages

The 3.81 GNU make manual includes an excellent section listing make error messages
and their causes. We review a few of the most common ones here. Some of the issues
described are not strictly make errors, such as syntax errors in command scripts, but
are nonetheless common problems for developers. For a complete list of make errors,
see the make manual.

Error messages printed by make have a standard format:
makefile:n: *** message. Stop.
or:

make:n: *** message. Stop.

Common Error Messages | 241

The makefile part is the name of the makefile or include file in which the error
occurred. The next part is the line number where the error occurred, followed by
three asterisks and, finally, the error message.

Note that it is make’s job to run other programs and that, if errors occur, it is very
likely that problems in your makefile will manifest themselves as errors in these other
programs. For instance, shell errors may result from badly formed command scripts,
or compiler errors from incorrect command-line arguments. Figuring out what pro-
gram produced the error message is your first task in solving the problem. Fortu-
nately, make’s error messages are fairly self-evident.

Syntax Errors

These are usually typographical errors: missing parentheses, using spaces instead of
tabs, etc.

One of the most common errors for new make users is omitting parentheses around
variable names:

foo:
for f in $SOURCES; \
do \
. \
done

This will likely result in make expanding $S to nothing, and the shell executing the
loop only once with f having a value of OURCES. Depending on what you do with f,
you may get a nice shell error message like:

OURCES: No such file or directory

but you might just as easily get no message at all. Remember to surround your make
variables with parentheses.

missing separator
The message:
makefile:2:missing separator. Stop.
or:
makefile:2:missing separator (did you mean TAB instead of 8 spaces?). Stop.
usually means you have a command script that is using spaces instead of tabs.

The more literal interpretation is that make was looking for a make separator such as :,
=, or a tab, and didn’t find one. Instead, it found something it didn’t understand.

commands commence before first target

The tab character strikes again!

242 | Chapter12: Debugging Makefiles

This error message was first covered in the section “Parsing Commands” in
Chapter 5. This error seems to appear most often in the middle of makefiles when a
line outside of a command script begins with a tab character. make does its best to
disambiguate this situation, but if the line cannot be identified as a variable assign-
ment, conditional expression, or multiline macro definition, make considers it a mis-
placed command.

unterminated variable reference

This is a simple but common error. It means you failed to close a variable reference
or function call with the proper number of parentheses. With deeply nested function
calls and variable references, make files can begin to look like Lisp! A good editor that
does parenthesis matching, such as Emacs, is the surest way to avoid these types of
errors.

Errors in Command Scripts

There are three common types of errors in command scripts: a missing semicolon in
multiline commands, an incomplete or incorrect path variable, or a command that
simply encounters a problem when run.

We discussed missing semicolons in the section “Good Coding Practices,” so we
won’t elaborate further here.

The classic error message:
bash: foo: command not found

is displayed when the shell cannot find the command foo. That is, the shell has
searched each directory in the PATH variable for the executable and found no match.
To correct this error, you must update your PATH variable, usually in your .profile
(Bourne shell), .bashrc (bash), or .cshrc (C shell). Of course, it is also possible to set
the PATH variable in the makefile itself, and export the PATH variable from make.

Finally, when a shell command fails, it terminates with a nonzero exit status. In this
case, make reports the failure with the message:

$ make

touch /foo/bar

touch: creating /foo/bar: No such file or directory

make: *** [all] Error 1
Here the failing command is touch, which prints its own error message explaining the
failure. The next line is make’s summary of the error. The failing makefile target is
shown in square brackets followed by the exit value of the failing program. Some-
times make will print a more verbose message if the program exits due to a signal,
rather than simply a nonzero exit status.

Common Error Messages | 243

Note also that commands executed silently with the @ modifier can also fail. In these
cases, the error message presented may appear as if from nowhere.

In either of these cases, the error originates with the program make is running, rather
than make itself.

No Rule to Make Target

This message has two forms:
make: *** No rule to make target XXX. Stop.
and:
make: *** No rule to make target XXX, needed by YYY. Stop.

It means that make decided the file XXX needed to be updated, but make could not
find any rule to perform the job. make will search all the implicit and explicit rules in
its database before giving up and printing the message.

There are three possible reasons for this error:

* Your makefile is missing a rule required to update the file. In this case, you will
have to add the rule describing how to build the target.

* There is a typo in the makefile. Either make is looking for the wrong file or the
rule to update the file specifies the wrong file. Typos can be hard to find in
makefiles due to the use of make variables. Sometimes the only way to really be
sure of the value of a complex filename is to print it out either by printing the
variable directly or examining make’s internal database.

* The file should exist but make cannot find it either, because it is missing or
because make doesn’t know where to look. Of course, sometimes make is abso-
lutely correct. The file is missing—perhaps you forgot to check it out of CVS.
More often, make simply can’t find the file, because the source is placed some-
where else. Sometimes the source is in a separate source tree, or maybe the file is
generated by another program and the generated file is in the binary tree.

Overriding Commands for Target

make allows only one command script for a target (except for double-colon rules,
which are rarely used). If a target is given more than one command script, make prints
the warning:

makefile:5: warning: overriding commands for target foo
It may also display the warning:

makefile:2: warning: ignoring old commands for target foo

244 | Chapter12: Debugging Makefiles

The first warning indicates the line at which the second command script is found,
while the second warning indicates the location of the original command script that
is being overridden.

In complex makefiles, targets are often specified many times, each adding its own
prerequisites. One of these targets usually includes a command script, but during
development or debugging it is easy to add another command script without realiz-
ing you are actually overriding an existing set of commands.

For example, we might define a generic target in an include file:

Create a jar file.

$(jar_file):

$(JAR) $(JARFLAGS) -f $@ $”

and allow several separate makefiles to add their own prerequisites. Then in a
makefile we could write:

Set the target for creating the jar and add prerequisites

jar file = parser.jar

$(jar_file): $(class files)
If we were to inadvertently add a command script to this makefile text, make would
produce the overriding warning.

Common Error Messages | 245

