
Chapter 8

Advertising on the Web

One of the big surprises of the 21st century has been the ability of all sorts of
interesting Web applications to support themselves through advertising, rather
than subscription. While radio and television have managed to use advertising
as their primary revenue source, most media – newspapers and magazines,
for example – have had to use a hybrid approach, combining revenue from
advertising and subscriptions.

By far the most lucrative venue for on-line advertising has been search, and
much of the effectiveness of search advertising comes from the “adwords” model
of matching search queries to advertisements. We shall therefore devote much
of this chapter to algorithms for optimizing the way this assignment is done.
The algorithms used are of an unusual type; they are greedy and they are “on-
line” in a particular technical sense to be discussed. We shall therefore digress
to discuss these two algorithmic issues – greediness and on-line algorithms – in
general, before tackling the adwords problem.

A second interesting on-line advertising problem involves selecting items to
advertise at an on-line store. This problem involves “collaborative filtering,”
where we try to find customers with similar behavior in order to suggest they
buy things that similar customers have bought. This subject will be treated in
Section 9.3.

8.1 Issues in On-Line Advertising

In this section, we summarize the technical problems that are presented by the
opportunities for on-line advertising. We begin by surveying the types of ads
found on the Web.

8.1.1 Advertising Opportunities

The Web offers many ways for an advertiser to show their ads to potential
customers. Here are the principal venues.

261

262 CHAPTER 8. ADVERTISING ON THE WEB

1. Some sites, such as eBay, Craig’s List or auto trading sites allow adver-
tisers to post their ads directly, either for free, for a fee, or a commission.

2. Display ads are placed on many Web sites. Advertisers pay for the display
at a fixed rate per impression (one display of the ad with the download of
the page by some user). Normally, a second download of the page, even
by the same user, will result in the display of a different ad and is a second
impression.

3. On-line stores such as Amazon show ads in many contexts. The ads
are not paid for by the manufacturers of the product advertised, but are
selected by the store to maximize the probability that the customer will
be interested in the product. We consider this kind of advertising in
Chapter 9.

4. Search ads are placed among the results of a search query. Advertisers
bid for the right to have their ad shown in response to certain queries, but
they pay only if the ad is clicked on. The particular ads to be shown are
selected by a complex process, to be discussed in this chapter, involving
the search terms that the advertiser has bid for, the amount of their bid,
the observed probability that the ad will be clicked on, and the total
budget that the advertiser has offered for the service.

8.1.2 Direct Placement of Ads

When advertisers can place ads directly, such as a free ad on Craig’s List or
the “buy it now” feature at eBay, there are several problems that the site must
deal with. Ads are displayed in response to query terms, e.g., “apartment Palo
Alto.” The Web site can use an inverted index of words, just as a search engine
does (see Section 5.1.1) and return those ads that contain all the words in the
query. Alternatively, one can ask the advertiser to specify parameters of the ad,
which are stored in a database. For instance, an ad for a used car could specify
the manufacturer, model, color, and year from pull-down menus, so only clearly
understood terms can be used. Queryers can use the same menus of terms in
their queries.

Ranking ads is a bit more problematic, since there is nothing like the links
on the Web to tell us which ads are more “important.” One strategy used is
“most-recent first.” That strategy, while equitable, is subject to abuse, where
advertisers post small variations of their ads at frequent intervals. The tech-
nology for discovering ads that are too similar has already been covered, in
Section 3.4.

An alternative approach is to try to measure the attractiveness of an ad.
Each time it is displayed, record whether or not the queryer clicked on it.
Presumably, attractive ads will be clicked on more frequently than those that
are not. However, there are several factors that must be considered in evaluating
ads:

8.1. ISSUES IN ON-LINE ADVERTISING 263

1. The position of the ad in a list has great influence on whether or not it
is clicked. The first on the list has by far the highest probability, and the
probability drops off exponentially as the position increases.

2. The ad may have attractiveness that depends on the query terms. For
example, an ad for a used convertible would be more attractive if the
search query includes the term “convertible,” even though it might be a
valid response to queries that look for that make of car, without specifying
whether or not a convertible is wanted.

3. All ads deserve the opportunity to be shown until their click probability
can be approximated closely. If we start all ads out with a click probability
of 0, we shall never show them and thus never learn whether or not they
are attractive ads.

8.1.3 Issues for Display Ads

This form of advertising on the Web most resembles advertising in traditional
media. An ad for a Chevrolet run in the pages of the New York Times is a
display ad, and its effectiveness is limited. It may be seen by many people, but
most of them are not interested in buying a car, just bought a car, don’t drive,
or have another good reason to ignore the ad. Yet the cost of printing the ad
was still borne by the newspaper and hence by the advertiser. An impression
of a similar ad on the Yahoo! home page is going to be relatively ineffective
for essentially the same reason. The fee for placing such an ad is typically a
fraction of a cent per impression.

The response of traditional media to this lack of focus was to create newspa-
pers or magazines for special interests. If you are a manufacturer of golf clubs,
running your ad in Golf Digest would give you an order-of-magnitude increase
in the probability that the person seeing your ad would be interested in it. This
phenomenon explains the existence of many specialized, low-circulation maga-
zines. They are able to charge much more per impression for an ad than is a
general-purpose outlet such as a daily newspaper. The same phenomenon ap-
pears on the Web. An ad for golf clubs on sports.yahoo.com/golf has much
more value per impression than does the same ad on the Yahoo! home page or
an ad for Chevrolets on the Yahoo! golf page.

However, the Web offers an opportunity to tailor display ads in a way that
hardcopy media cannot: it is possible to use information about the user to
determine which ad they should be shown, regardless of what page they are
looking at. If it is known that Sally likes golf, then it makes sense to show
her an ad for golf clubs, regardless of what page she is looking at. We could
determine Sally’s love for golf in various ways:

1. She may belong to a golf-related group on Facebook.

2. She may mention “golf” frequently in emails posted on her gmail account.

264 CHAPTER 8. ADVERTISING ON THE WEB

3. She may spend a lot of time on the Yahoo! golf page.

4. She may issue search queries with golf-related terms frequently.

5. She may bookmark the Web sites of one or more golf courses.

Each of these methods, and many others like these, raise enormous privacy
issues. It is not the purpose of this book to try to resolve those issues, which
in practice probably have no solution that will satisfy all concerns. On the
one hand, people like the free services that have recently become advertising-
supported, and these services depend on advertising being much more effective
than conventional ads. There is a general agreement that, if there must be ads,
it is better to see things you might actually use than to have what pages you
view cluttered with irrelevancies. On the other hand, there is great potential
for misuse if the information leaves the realm of the machines that execute
advertising algorithms and get into the hands of real people.

8.2 On-Line Algorithms

Before addressing the question of matching advertisements to search queries, we
shall digress slightly by examining the general class to which such algorithms
belong. This class is referred to as “on-line,” and they generally involve an ap-
proach called “greedy.” We also give, in the next section, a preliminary example
of an on-line greedy algorithm for a simpler problem: maximal matching.

8.2.1 On-Line and Off-Line Algorithms

Typical algorithms work as follows. All the data needed by the algorithm is
presented initially. The algorithm can access the data in any order. At the end,
the algorithm produces its answer. Such an algorithm is called off-line.

However, there are times when we cannot see all the data before our al-
gorithm must make some decisions. Chapter 4 covered stream mining, where
we could store only a limited amount of the stream, and had to answer queries
about the entire stream when called upon to do so. There is an extreme form of
stream processing, where we must respond with an output after each stream ele-
ment arrives. We thus must decide about each stream element knowing nothing
at all of the future. Algorithms of this class are called on-line algorithms.1

As the case in point, selecting ads to show with search queries would be
relatively simple if we could do it off-line. We would see a month’s worth of
search queries, and look at the bids advertisers made on search terms, as well
as their advertising budgets for the month, and we could then assign ads to

1Unfortunately, we are faced with another case of dual meanings, like the coincidence

involving the term “cluster” that we noted in Section 7.6.6, where we needed to interpret

properly phrases such as “algorithms for computing clusters on computer clusters.” Here, the

term “on-line” refers to the nature of the algorithm, and should not be confused with “on-line”

meaning “on the Internet” in phrases such as “on-line algorithms for on-line advertising.”

8.2. ON-LINE ALGORITHMS 265

the queries in a way that maximized both the revenue to the search engine and
the number of impressions that each advertiser got. The problem with off-line
algorithms is that most queryers don’t want to wait a month to get their search
results.

Thus, we must use an on-line algorithm to assign ads to search queries.
That is, when a search query arrives, we must select the ads to show with that
query immediately. We can use information about the past, e.g., we do not
have to show an ad if the advertiser’s budget has already been spent, and we
can examine the click-through rate (fraction of the time the ad is clicked on
when it is displayed) that an ad has obtained so far. However, we cannot use
anything about future search queries. For instance, we cannot know whether
there will be lots of queries arriving later and using search terms on which this
advertiser has made higher bids.

Example 8.1 : Let us take a very simple example of why knowing the future
could help. A manufacturer A of replica antique furniture has bid 10 cents
on the search term “chesterfield”.2 A more conventional manufacturer B has
bid 20 cents on both the terms “chesterfield” and “sofa.” Both have monthly
budgets of $100, and there are no other bidders on either of these terms. It is
the beginning of the month, and a search query “chesterfield” has just arrived.
We are allowed to display only one ad with the query.

The obvious thing to do is to display B’s ad, because they bid more. How-
ever, suppose there will be lots of search queries this month for “sofa,” but very
few for “chesterfield.” Then A will never spend its $100 budget, while B will
spend its full budget even if we give the query to A. Specifically, if there will
be at least 500 more queries for either “sofa” or “chesterfield,” then there is
no harm, and potentially a benefit, in giving the query to A. It will still be
possible for B to spend its entire budget, while we are increasing the amount of
A’s budget that will be spent. Note that this argument makes sense both from
the point of view of the search engine, which wants to maximize total revenue,
and from the point of view of both A and B, who presumably want to get all
the impressions that their budgets allow.

If we could know the future, then we would know how many more “sofa”
queries and how many more “chesterfield” queries were going to arrive this
month. If that number is below 500, then we want to give the query to B to
maximize revenue, but if it is 500 or more, then we want to give it to A. Since
we don’t know the future, an on-line algorithm cannot always do as well as an
off-line algorithm. 2

8.2.2 Greedy Algorithms

Many on-line algorithms are of the greedy algorithm type. These algorithms
make their decision in response to each input element by maximizing some
function of the input element and the past.

2A chesterfield is a type of sofa. See, for example, www.chesterfields.info.

266 CHAPTER 8. ADVERTISING ON THE WEB

Example 8.2 : The obvious greedy algorithm for the situation described in
Example 8.1 is to assign a query to the highest bidder who still has budget left.
For the data of that example, what will happen is that the first 500 “sofa” or
“chesterfield” queries will be assigned to B. At that time, B runs out of budget
and is assigned no more queries. After that, the next 1000 “chesterfield” queries
are assigned to A, and “sofa” queries get no ad and therefore earn the search
engine no money.

The worst thing that can happen is that 500 “chesterfield” queries arrive,
followed by 500 “sofa” queries. An off-line algorithm could optimally assign the
first 500 to A, earning $50, and the next 500 to B, earning $100, or a total
of $150. However, the greedy algorithm will assign the first 500 to B, earning
$100, and then has no ad for the next 500, earning nothing. 2

8.2.3 The Competitive Ratio

As we see from Example 8.2, an on-line algorithm need not give as good a result
as the best off-line algorithm for the same problem. The most we can expect is
that there will be some constant c less than 1, such that on any input, the result
of a particular on-line algorithm is at least c times the result of the optimum
off-line algorithm. The constant c, if it exists, is called the competitive ratio for
the on-line algorithm.

Example 8.3 : The greedy algorithm, on the particular data of Example 8.2,
gives a result that is 2/3 as good as that of the optimum algorithm: $100 versus
$150. That proves that the competitive ratio is no greater than 2/3. But it
could be less. The competitive ratio for an algorithm may depend on what kind
of data is allowed to be input to the algorithm. Even if we restrict inputs to
the situation described in Example 8.2, but with the bids allowed to vary, then
we can show the greedy algorithm has a competitive ratio no greater than 1/2.
Just raise the bid by A to ǫ less than 20 cents. As ǫ approaches 0, the greedy
algorithm still produces only $100, but the return from the optimum algorithm
approaches $200. We can show that it is impossible to do worse than half the
optimum in this simple case, so the competitive ratio is indeed 1/2. However,
we’ll leave this sort of proof for later sections. 2

8.2.4 Exercises for Section 8.2

! Exercise 8.2.1 : A popular example of the design of an on-line algorithm to
minimize the competitive ratio is the ski-buying problem.3 Suppose you can buy
skis for $100, or you can rent skis for $10 per day. You decide to take up skiing,
but you don’t know if you will like it. You may try skiing for any number of
days and then give it up. The merit of an algorithm is the cost per day of skis,
and we must try to minimize this cost.

3Thanks to Anna Karlin for this example.

8.3. THE MATCHING PROBLEM 267

One on-line algorithm for making the rent/buy decision is “buy skis im-
mediately.” If you try skiing once, fall down and give it up, then this on-line
algorithm costs you $100 per day, while the optimum off-line algorithm would
have you rent skis for $10 for the one day you used them. Thus, the competitive
ratio of the algorithm “buy skis immediately” is at most 1/10th, and that is
in fact the exact competitive ratio, since using the skis one day is the worst
possible outcome for this algorithm. On the other hand, the on-line algorithm
“always rent skis” has an arbitrarily small competitive ratio. If you turn out to
really like skiing and go regularly, then after n days, you will have paid $10n or
$10/day, while the optimum off-line algorithm would have bought skis at once,
and paid only $100, or $100/n per day.

Your question: design an on-line algorithm for the ski-buying problem that
has the best possible competitive ratio. What is that competitive ratio? Hint :
Since you could, at any time, have a fall and decide to give up skiing, the only
thing the on-line algorithm can use in making its decision is how many times
previously you have gone skiing.

8.3 The Matching Problem

We shall now take up a problem that is a simplified version of the problem of
matching ads to search queries. This problem, called “maximal matching,” is
an abstract problem involving bipartite graphs (graphs with two sets of nodes –
left and right – with all edges connecting a node in the left set to a node in the
right set. Figure 8.1 is an example of a bipartite graph. Nodes 1, 2, 3, and 4
form the left set, while nodes a, b, c, and d form the right set.

8.3.1 Matches and Perfect Matches

Suppose we are given a bipartite graph. A matching is a subset of the edges
such that no node is an end of two or more edges. A matching is said to be
perfect if every node appears in the matching. Note that a matching can only
be perfect if the left and right sets are of the same size. A matching that is as
large as any other matching for the graph in question is said to be maximal.

Example 8.4 : The set of edges {(1, a), (2, b), (3, d)} is a matching for the
bipartite graph of Fig. 8.1. Each member of the set is an edge of the bipartite
graph, and no node appears more than once. The set of edges

{(1, c), (2, b), (3, d), (4, a)}

is a perfect matching, represented by heavy lines in Fig. 8.2. Every node appears
exactly once. It is, in fact, the sole perfect matching for this graph, although
some bipartite graphs have more than one perfect matching. The matching of
Fig. 8.2 is also maximal, since every perfect matching is maximal. 2

268 CHAPTER 8. ADVERTISING ON THE WEB

4

1 a

b

c

d

2

3

Figure 8.1: A bipartite graph

8.3.2 The Greedy Algorithm for Maximal Matching

Off-line algorithms for finding a maximal matching have been studied for dec-
ades, and one can get very close to O(n2) for an n-node graph. On-line algo-
rithms for the problem have also been studied, and it is this class of algorithms
we shall consider here. In particular, the greedy algorithm for maximal match-
ing works as follows. We consider the edges in whatever order they are given.
When we consider (x, y), add this edge to the matching if neither x nor y are
ends of any edge selected for the matching so far. Otherwise, skip (x, y).

Example 8.5 : Let us consider a greedy match for the graph of Fig. 8.1. Sup-
pose we order the nodes lexicographically, that is, by order of their left node,
breaking ties by the right node. Then we consider the edges in the order (1, a),
(1, c), (2, b), (3, b), (3, d), (4, a). The first edge, (1, a), surely becomes part of the
matching. The second edge, (1, c), cannot be chosen, because node 1 already
appears in the matching. The third edge, (2, b), is selected, because neither
node 2 nor node b appears in the matching so far. Edge (3, b) is rejected for
the match because b is already matched, but then (3, d) is added to the match
because neither 3 nor d has been matched so far. Finally, (4, a) is rejected
because a appears in the match. Thus, the matching produced by the greedy
algorithm for this ordering of the edges is {(1, a), (2, b), (3, d)}. As we saw,
this matching is not maximal. 2

Example 8.6 : A greedy match can be even worse than that of Example 8.5.
On the graph of Fig. 8.1, any ordering that begins with the two edges (1, a)
and (3, b), in either order, will match those two pairs but then will be unable
to match nodes 2 or 4. Thus, the size of the resulting match is only 2. 2

8.3. THE MATCHING PROBLEM 269

4

1 a

b

c

d

2

3

Figure 8.2: The only perfect matching for the graph of Fig. 8.1

8.3.3 Competitive Ratio for Greedy Matching

We can show a competitive ratio of 1/2 for the greedy matching algorithm of
Section 8.3.2. First, the ratio cannot be more than 1/2. We already saw that
for the graph of Fig. 8.1, there is a perfect matching of size 4. However, if
the edges are presented in any of the orders discussed in Example 8.6, the size
of the match is only 2, or half the optimum. Since the competitive ratio for
an algorithm is the minimum over all possible inputs of the ratio of what that
algorithm achieves to the optimum result, we see that 1/2 is an upper bound
on the competitive ratio.

Suppose Mo is a maximal matching, and Mg is the matching that the greedy
algorithm produces. Let L be the set of left nodes that are matched in Mo but
not in Mg. Let R be the set of right nodes that are connected by edges to any
node in L. We claim that every node in R is matched in Mg. Suppose not;
in particular, suppose node r in R is not matched in Mg. Then the greedy
algorithm will eventually consider some edge (ℓ, r), where ℓ is in L. At that
time, neither end of this edge is matched, because we have supposed that neither
ℓ nor r is ever matched by the greedy algorithm. That observation contradicts
the definition of how the greedy algorithm works; that is, the greedy algorithm
would indeed match (ℓ, r). We conclude that every node in R is matched in
Mg.

Now, we know several things about the sizes of sets and matchings.

1. |Mo| ≤ |Mg|+ |L|, since among the nodes on the left, only nodes in L can
be matched in Mo but not Mg.

2. |L| ≤ |R|, because in Mo, all the nodes in L were matched.

270 CHAPTER 8. ADVERTISING ON THE WEB

3. |R| ≤ |Mg|, because every node in R is matched in Mg.

Now, (2) and (3) give us |L| ≤ |Mg|. That, together with (1), gives us
|Mo| ≤ 2|Mg|, or |Mg| ≥

1

2
|Mo|. The latter inequality says that the competitive

ratio is at least 1/2. Since we already observed that the competitive ratio is no
more than 1/2, we now conclude the ratio is exactly 1/2.

8.3.4 Exercises for Section 8.3

Exercise 8.3.1 : Define the graph Gn to have the 2n nodes

a0, a1, . . . , an−1, b0, b1, . . . , bn−1

and the following edges. Each node ai, for i = 0, 1, . . . , n − 1, is connected to
the nodes bj and bk, where

j = 2i mod n and k = (2i + 1) mod n

For instance, the graph G4 has the following edges: (a0, b0), (a0, b1), (a1, b2),
(a1, b3), (a2, b0), (a2, b1), (a3, b2), and (a3, b3).

(a) Find a perfect matching for G4.

(b) Find a perfect matching for G5.

!! (c) Prove that for every n, Gn has a perfect matching.

! Exercise 8.3.2 : How many perfect matchings do the graphs G4 and G5 of
Exercise 8.3.1 have?

! Exercise 8.3.3 : Whether or not the greedy algorithm gives us a perfect match-
ing for the graph of Fig. 8.1 depends on the order in which we consider the edges.
Of the 6! possible orders of the six edges, how many give us a perfect match-
ing? Give a simple test for distinguishing those orders that do give the perfect
matching from those that do not.

8.4 The Adwords Problem

We now consider the fundamental problem of search advertising, which we term
the “adwords problem,” because it was first encountered in the Google Adwords
system. We then discuss a greedy algorithm called “Balance” that offers a good
competitive ratio. We analyze this algorithm for a simplified case of the adwords
problem.

8.4. THE ADWORDS PROBLEM 271

8.4.1 History of Search Advertising

Around the year 2000, a company called Overture (later bought by Yahoo!)
introduced a new kind of search. Advertisers bid on keywords (words in a
search query), and when a user searched for that keyword, the links to all the
advertisers who bid on that keyword are displayed in the order highest-bid-first.
If the advertiser’s link was clicked on, they paid what they had bid.

That sort of search was very useful for the case where the search queryer
really was looking for advertisements, but it was rather useless for the queryer
who was just looking for information. Recall our discussion in Section 5.1.1
about the point that unless a search engine can provide reliable responses to
queries that are for general information, no one will want to use the search
engine when they are looking to buy something.

Several years later, Google adapted the idea in a system called Adwords. By
that time, the reliability of Google was well established, so people were willing
to trust the ads they were shown. Google kept the list of responses based on
PageRank and other objective criteria separate from the list of ads, so the same
system was useful for the queryer who just wanted information as well as the
queryer looking to buy something.

The Adwords system went beyond the earlier system in several ways that
made the selection of ads more complex.

1. Google would show only a limited number of ads with each query. Thus,
while Overture simply ordered all ads for a given keyword, Google had to
decide which ads to show, as well as the order in which to show them.

2. Users of the Adwords system specified a budget: the amount they were
willing to pay for all clicks on their ads in a month. These constraints
make the problem of assigning ads to search queries more complex, as we
hinted at in Example 8.1.

3. Google did not simply order ads by the amount of the bid, but by the
amount they expected to receive for display of each ad. That is, the click-
through rate was observed for each ad, based on the history of displays of
that ad. The value of an ad was taken to be the product of the bid and
the click-through rate.

8.4.2 Definition of the Adwords Problem

Of course, the decision regarding which ads to show must be made on-line.
Thus, we are only going to consider on-line algorithms for solving the adwords

problem, which is as follows.

• Given:

1. A set of bids by advertisers for search queries.

2. A click-through rate for each advertiser-query pair.

272 CHAPTER 8. ADVERTISING ON THE WEB

3. A budget for each advertiser. We shall assume budgets are for a
month, although any unit of time could be used.

4. A limit on the number of ads to be displayed with each search query.

• Respond to each search query with a set of advertisers such that:

1. The size of the set is no larger than the limit on the number of ads
per query.

2. Each advertiser has bid on the search query.

3. Each advertiser has enough budget left to pay for the ad if it is
clicked upon.

The revenue of a selection of ads is the total value of the ads selected, where
the value of an ad is the product of the bid and the click-through rate for the
ad and query. The merit of an on-line algorithm is the total revenue obtained
over a month (the time unit over which budgets are assumed to apply). We
shall try to measure the competitive ratio for algorithms, that is, the minimum
total revenue for that algorithm, on any sequence of search queries, divided by
the revenue of the optimum off-line algorithm for the same sequence of search
queries.

8.4.3 The Greedy Approach to the Adwords Problem

Since only an on-line algorithm is suitable for the adwords problem, we should
first examine the performance of the obvious greedy algorithm. We shall make
a number of simplifications to the environment; our purpose is to show even-
tually that there is a better algorithm than the obvious greedy algorithm. The
simplifications:

(a) There is one ad shown for each query.

(b) All advertisers have the same budget.

(c) All click-through rates are the same.

(d) All bids are either 0 or 1. Alternatively, we may assume that the value of
each ad (product of bid and click-through rate) is the same.

The greedy algorithm picks, for each search query, any advertiser who has
bid 1 for that query. The competitive ratio for this algorithm is 1/2, as the
following example shows.

Example 8.7 : Suppose there are two advertisers A and B, and only two
possible queries, x and y. Advertiser A bids only on x, while B bids on both
x and y. The budget for each advertiser is 2. Notice the similarity to the
situation in Example 8.1; the only differences are the fact that the bids by each
advertiser are the same and the budgets are smaller here.

8.4. THE ADWORDS PROBLEM 273

Adwords Aspects not in Our Model

There are several ways in which the real AdWords system differs from the
simplified model of this section.

Matching Bids and Search Queries : In our simplified model, advertis-
ers bid on sets of words, and an advertiser’s bid is eligible to be shown for
search queries that have exactly the same set of words as the advertiser’s
bid. In reality, Google, Yahoo!, and Microsoft all offer advertisers a feature
known as broad matching, where an ad is eligible to be shown for search
queries that are inexact matches of the bid keywords. Examples include
queries that include a subset or superset of keywords, and also queries
that use words with very similar meanings to the words the advertiser bid
on. For such broad matches, search engines charge the advertiser based on
complicated formulas taking into account how closely related the search
query is to the advertiser’s bid. These formulas vary across search engines
and are not made public.

Charging Advertisers for Clicks: In our simplified model, when a user
clicks on an advertiser’s ad, the advertiser is charged the amount they
bid. This policy is known as a first-price auction. In reality, search
engines use a more complicated system known as a second-price auction,
where each advertiser pays approximately the bid of the advertiser who
placed immediately behind them in the auction. For example, the first-
place advertiser for a search might pay the bid of the advertiser in second
place, plus one cent. It has been shown that second-price auctions are less
susceptible to being gamed by advertisers than first-price auctions and
lead to higher revenues for the search engine.

Let the sequence of queries be xxyy. The greedy algorithm is able to allocate
the first two x’s to B, whereupon there is no one with an unexpended budget to
pay for the two y’s. The revenue for the greedy algorithm in this case is thus 2.
However, the optimum off-line algorithm will allocate the x’s to A and the y’s
to B, achieving a revenue of 4. The competitive ratio for the greedy algorithm
is thus no more than 1/2. We can argue that on any sequence of queries the
ratio of the revenues for the greedy and optimal algorithms is at least 1/2, using
essentially the same idea as in Section 8.3.3. 2

8.4.4 The Balance Algorithm

There is a simple improvement to the greedy algorithm that gives a competitive
ratio of 3/4 for the simple case of Section 8.4.3. This algorithm, called the
Balance Algorithm, assigns a query to the advertiser who bids on the query and
has the largest remaining budget. Ties may be broken arbitrarily.

274 CHAPTER 8. ADVERTISING ON THE WEB

Example 8.8 : Consider the same situation as in Example 8.7. The Balance
Algorithm can assign the first query x to either A or B, because they both bid
on x and their remaining budgets are the same. However, the second x must be
assigned to the other of A and B, because they then have the larger remaining
budget. The first y is assigned to B, since it has budget remaining and is the
only bidder on y. The last y cannot be assigned, since B is out of budget, and
A did not bid. Thus, the total revenue for the Balance Algorithm on this data
is 3. In comparison, the total revenue for the optimum off-line algorithm is
4, since it can assign the x’s to A and the y’s to B. Our conclusion is that,
for the simplified adwords problem of Section 8.4.3, the competitive ratio of
the Balance Algorithm is no more than 3/4. We shall see next that with only
two advertisers, 3/4 is exactly the competitive ratio, although as the number
of advertisers grows, the competitive ratio lowers to 0.63 (actually 1− 1/e) but
no lower. 2

8.4.5 A Lower Bound on Competitive Ratio for Balance

In this section we shall prove that in the simple case of the Balance Algorithm
that we are considering, the competitive ratio is 3/4. Given Example 8.8, we
have only to prove that the total revenue obtained by the Balance Algorithm is
at least 3/4 of the revenue for the optimum off-line algorithm. Thus, consider a
situation in which there are two advertisers, A1 and A2, each with a budget of
B. We shall assume that each query is assigned to an advertiser by the optimum
algorithm. If not, we can delete those queries without affecting the revenue of
the optimum algorithm and possibly reducing the revenue of Balance. Thus, the
lowest possible competitive ratio is achieved when the query sequence consists
only of ads assigned by the optimum algorithm.

We shall also assume that both advertisers’ budgets are consumed by the
optimum algorithm. If not, we can reduce the budgets, and again argue that
the revenue of the optimum algorithm is not reduced while that of Balance can
only shrink. That change may force us to use different budgets for the two
advertisers, but we shall continue to assume the budgets are both B. We leave
as an exercise the extension of the proof to the case where the budgets of the
two advertisers are different.

Figure 8.3 suggests how the 2B queries are assigned to advertisers by the
two algorithms. In (a) we see that B queries are assigned to each of A1 and A2

by the optimum algorithm. Now, consider how these same queries are assigned
by Balance. First, observe that Balance must exhaust the budget of at least one
of the advertisers, say A2. If not, then there would be some query assigned to
neither advertiser, even though both had budget. We know at least one of the
advertisers bids on each query, because that query is assigned in the optimum
algorithm. That situation contradicts how Balance is defined to operate; it
always assigns a query if it can.

Thus, we see in Fig. 8.3(b) that A2 is assigned B queries. These queries
could have been assigned to either A1 or A2 by the optimum algorithm. We

8.4. THE ADWORDS PROBLEM 275

A 1 A 2

A 1 A 2

B

B

x

x

y

Not
used

(a) Optimum

(b) Balance

Figure 8.3: Illustration of the assignments of queries to advertisers in the opti-
mum and Balance algorithms

also see in Fig. 8.3(b) that we use y as the number of queries assigned to A1 and
x as B − y. It is our goal to show y ≥ x. That inequality will show the revenue
of Balance is at least 3B/2, or 3/4th the revenue of the optimum algorithm.

We note that x is also the number of unassigned queries for the Balance
Algorithm, and that all the unassigned queries must have been assigned to A2

by the optimum algorithm. The reason is that A1 never runs out of budget,
so any query assigned by the optimum algorithm to A1 is surely bid on by A1.
Since A1 always has budget during the running of the Balance Algorithm, that
algorithm will surely assign this query, either to A1 or to A2.

There are two cases, depending on whether more of the queries that are
assigned to A1 by the optimum algorithm are assigned to A1 or A2 by Balance.

1. Suppose at least half of these queries are assigned by Balance to A1. Then
y ≥ B/2, so surely y ≥ x.

2. Suppose more than half of these queries are assigned by Balance to A2.
Consider the last of these queries q that is assigned to A2 by the Balance
Algorithm. At that time, A2 must have had at least as great a budget

276 CHAPTER 8. ADVERTISING ON THE WEB

available as A1, or else Balance would have assigned query q to A1, just
as the optimum algorithm did. Since more than half of the B queries that
the optimum algorithm assigns to A1 are assigned to A2 by Balance, we
know that when q was assigned, the remaining budget of A2 was less than
B/2. Therefore, at that time, the remaining budget of A1 was also less
than B/2. Since budgets only decrease, we know that x < B/2. It follows
that y > x, since x + y = B.

We conclude that y ≥ x in either case, so the competitive ratio of the Balance
Algorithm is 3/4.

8.4.6 The Balance Algorithm with Many Bidders

When there are many advertisers, the competitive ratio for the Balance Algo-
rithm can be under 3/4, but not too far below that fraction. The worst case
for Balance is as follows.

1. There are N advertisers, A1, A2, . . . , AN .

2. Each advertiser has a budget B = N !.

3. There are N queries q1, q2, . . . , qN .

4. Advertiser Ai bids on queries q1, q2, . . . , qi and no other queries.

5. The query sequence consists of N rounds. The ith round consists of B
occurrences of query qi and nothing else.

The optimum off-line algorithm assigns the B queries qi in the ith round to
Ai for all i. Thus, all queries are assigned to a bidder, and the total revenue of
the optimum algorithm is NB.

However, the Balance Algorithm assigns each of the queries in round 1 to
the N advertisers equally, because all bid on q1, and the Balance Algorithm
prefers the bidder with the greatest remaining budget. Thus, each advertiser
gets B/N of the queries q1. Now consider the queries q2 in round 2. All but A1

bid on these queries, so they are divided equally among A2 through AN , with
each of these N − 1 bidders getting B/(N − 1) queries. The pattern, suggested
by Fig. 8.4, repeats for each round i = 3, 4, . . ., with Ai through AN getting
B/(N − i) queries.

However, eventually, the budgets of the higher-numbered advertisers will be
exhausted. That will happen at the lowest round j such that

B
(1

N
+

1

N − 1
+ · · · +

1

N − j + 1

)

≥ B

that is,
1

N
+

1

N − 1
+ · · · +

1

N − j + 1
≥ 1

8.4. THE ADWORDS PROBLEM 277

A 1 A 2 A 3 A n−1
A n

B / n

B / (n −1)

B / (n −2)

. . .

Figure 8.4: Apportioning queries to N advertisers in the worst case

Euler showed that as k gets large,
∑k

i=1
1/i approaches loge k. Using this

observation, we can approximate the above sum as loge N − loge(N − j).
We are thus looking for the j such that loge N − loge(N − j) = 1, approxi-

mately. If we replace loge N − loge(N − j) by the equivalent loge

(

N/(N − j)
)

and exponentiate both sides of the equation loge

(

N/(N − j)
)

= 1, we get
N/(N − j) = e. Solving this equation for j, we get

j = N
(

1 −
1

e

)

as the approximate value of j for which all advertisers are either out of budget
or do not bid on any of the remaining queries. Thus, the approximate revenue
obtained by the Balance Algorithm is BN(1 − 1

e), that is, the queries of the
first j rounds. Therefore, the competitive ratio is 1− 1

e , or approximately 0.63.

8.4.7 The Generalized Balance Algorithm

The Balance Algorithm works well when all bids are 0 or 1. However, in practice,
bids can be arbitrary, and with arbitrary bids and budgets Balance fails to
weight the sizes of the bids properly. The following example illustrates the
point.

Example 8.9 : Suppose there are two advertisers A1 and A2, and one query
q. The bids on q and budgets are:

Bidder Bid Budget
A1 1 110
A2 10 100

If there are 10 occurrences of q, the optimum off-line algorithm will assign
them all to A2 and gain revenue 100. However, because A1’s budget is larger,
Balance will assign all ten queries to A1 for a revenue of 10. In fact, one can
extend this idea easily to show that for situations like this one, there is no
competitive ratio higher than 0 that holds for the Balance Algorithm. 2

278 CHAPTER 8. ADVERTISING ON THE WEB

In order to make Balance work in more general situations, we need to make
two modifications. First, we need to bias the choice of ad in favor of higher bids.
Second, we need to be less absolute about the remaining budget. Rather, we
consider the fraction of the budgets remaining, so we are biased toward using
some of each advertiser’s budget. The latter change will make the Balance
Algorithm more “risk averse”; it will not leave too much of any advertiser’s
budget unused. It can be shown (see the chapter references) that the following
generalization of the Balance Algorithm has a competitive ratio of 1 − 1/e =
0.63.

• Suppose that a query q arrives, advertiser Ai has bid xi for this query
(note that xi could be 0). Also, suppose that fraction fi of the budget
of Ai is currently unspent. Let Ψi = xi(1 − e−fi). Then assign q to the
advertiser Ai such that Ψi is a maximum. Break ties arbitrarily.

Example 8.10 : Consider how the generalized Balance Algorithm would work
on the data of Example 8.9. For the first occurrence of query q,

Ψ1 = 1 × (1 − e−1)

since A1 has bid 1, and fraction 1 of A1’s budget remains. That is,

Ψ1 = 1 − 1/e = 0.63

On the other hand, Ψ2 = 10 × (1 − e−1) = 6.3. Thus, the first q is awarded to
A2.

The same thing happens for each of the q’s. That is, Ψ1 stays at 0.63, while
Ψ2 decreases. However, it never goes below 0.63. Even for the 10th q, when
90% of A2’s budget has already been used, Ψ2 = 10 × (1 − e−1/10). Recall
(Section 1.3.5) the Taylor expansion for ex = 1+x+x2/2!+x3/3!+ · · · . Thus,

e−1/10 = 1 −
1

10
+

1

200
−

1

6000
+ · · ·

or approximately, e−1/10 = 0.905. Thus, Ψ2 = 10 × 0.095 = 0.95. 2

We leave unproved the assertion that the competitive ratio for this algorithm
is 1 − 1/e. We also leave unproved an additional surprising fact: no on-line
algorithm for the adwords problem as described in this section can have a
competitive ratio above 1 − 1/e.

8.4.8 Final Observations About the Adwords Problem

The Balance Algorithm, as described, does not take into account the possibility
that the click-through rate differs for different ads. It is simple to multiply
the bid by the click-through rate when computing the Ψi’s, and doing so will
maximize the expected revenue. We can even incorporate information about

8.5. ADWORDS IMPLEMENTATION 279

the click-through rate for each ad on each query for which a nonzero amount
has been bid. When faced with the problem of allocating a particular query q,
we incorporate a factor that is the click-through rate for that ad on query q,
when computing each of the Ψ’s.

Another issue we must consider in practice is the historical frequency of
queries. If, for example, we know that advertiser Ai has a budget sufficiently
small that there are sure to be enough queries coming later in the month to
satisfy Ai’s demand, then there is no point in boosting Ψi if some of Ai’s budget
has already been expended. That is, maintain Ψi = xi(1 − e−1) as long as we
can expect that there will be enough queries remaining in the month to give Ai

its full budget of ads. This change can cause Balance to perform worse if the
sequence of queries is governed by an adversary who can control the sequence
of queries. Such an adversary can cause the queries Ai bid on suddenly to
disappear. However, search engines get so many queries, and their generation
is so random, that it is not necessary in practice to imagine significant deviation
from the norm.

8.4.9 Exercises for Section 8.4

Exercise 8.4.1 : Using the simplifying assumptions of Example 8.7, suppose
that there are three advertisers, A, B, and C. There are three queries, x, y, and
z. Each advertiser has a budget of 2. Advertiser A bids only on x; B bids on x
and y, while C bids on x, y, and z. Note that on the query sequence xxyyzz,
the optimum off-line algorithm would yield a revenue of 6, since all queries can
be assigned.

! (a) Show that the greedy algorithm will assign at least 4 of these 6 queries.

!! (b) Find another sequence of queries such that the greedy algorithm can as-
sign as few as half the queries that the optimum off-line algorithm assigns
on that sequence.

!! Exercise 8.4.2 : Extend the proof of Section 8.4.5 to the case where the two
advertisers have unequal budgets.

! Exercise 8.4.3 : Show how to modify Example 8.9 by changing the bids and/or
budgets to make the competitive ratio come out as close to 0 as you like.

8.5 Adwords Implementation

While we should now have an idea of how ads are selected to go with the answer
to a search query, we have not addressed the problem of finding the bids that
have been made on a given query. As long as bids are for the exact set of
words in a query, the solution is relatively easy. However, there are a number of
extensions to the query/bid matching process that are not as simple. We shall
explain the details in this section.

280 CHAPTER 8. ADVERTISING ON THE WEB

8.5.1 Matching Bids and Search Queries

As we have described the adwords problem, and as it normally appears in
practice, advertisers bid on sets of words. If a search query occurs having
exactly that set of words in some order, then the bid is said to match the
query, and it becomes a candidate for selection. We can avoid having to deal
with word order by storing all sets of words representing a bid in lexicographic
(alphabetic) order. The list of words in sorted order forms the hash-key for the
bid, and these bids may be stored in a hash table used as an index, as discussed
in Section 1.3.2.

Search queries also have their words sorted prior to lookup. When we hash
the sorted list, we find in the hash table all the bids for exactly that set of words.
They can be retrieved quickly, since we have only to look at the contents of that
bucket.

Moreover, there is a good chance that we can keep the entire hash table in
main memory. If there are a million advertisers, each bidding on 100 queries,
and the record of the bid requires 100 bytes, then we require ten gigabytes of
main memory, which is well within the limits of what is feasible for a single
machine. If more space is required, we can split the buckets of the hash table
among as many machines as we need. Search queries can be hashed and sent
to the appropriate machine.

In practice, search queries may be arriving far too rapidly for a single ma-
chine, or group of machines that collaborate on a single query at a time, to
handle them all. In that case, the stream of queries is split into as many pieces
as necessary, and each piece is handled by one group of machines. In fact, an-
swering the search query, independent of ads, will require a group of machines
working in parallel anyway, in order that the entire processing of a query can
be done in main memory.

8.5.2 More Complex Matching Problems

However, the potential for matching bids to objects is not limited to the case
where the objects are search queries and the match criterion is same-set-of-
words. For example, Google also matches adwords bids to emails. There, the
match criterion is not based on the equality of sets. Rather, a bid on a set of
words S matches an email if all the words in S appear anywhere in the email.

This matching problem is much harder. We can still maintain a hash-table
index for the bids, but the number of subsets of words in a hundred-word email
is much too large to look up all the sets, or even all the small sets of (say)
three or fewer words. There are a number of other potential applications of
this sort of matching that, at the time of this writing, are not implemented
but could be. They all involve standing queries – queries that users post to a
site, expecting the site to notify them whenever something matching the query
becomes available at the site. For example:

1. Twitter allows one to follow all the “tweets” of a given person. However,

8.5. ADWORDS IMPLEMENTATION 281

it is feasible to allow users to specify a set of words, such as

ipod free music

and see all the tweets where all these words appear, not necessarily in
order, and not necessarily adjacent.

2. On-line news sites often allow users to select from among certain key-
words or phrases, e.g., “healthcare” or “Barack Obama,” and receive
alerts whenever a new news article contains that word or consecutive
sequence of words. This problem is simpler than the email/adwords prob-
lem for several reasons. Matching single words or consecutive sequences
of words, even in a long article, is not as time-consuming as matching
small sets of words. Further, the sets of terms that one can search for
is limited, so there aren’t too many “bids.” Even if many people want
alerts about the same term, only one index entry, with the list of all those
people associated, is required. However, a more advanced system could
allow users to specify alerts for sets of words in a news article, just as the
Adwords system allows anyone to bid on a set of words in an email.

8.5.3 A Matching Algorithm for Documents and Bids

We shall offer an algorithm that will match many “bids” against many “docu-
ments.” As before, a bid is a (typically small) set of words. A document is a
larger set of words, such as an email, tweet, or news article. We assume there
may be hundreds of documents per second arriving, although if there are that
many, the document stream may be split among many machines or groups of
machines. We assume there are many bids, perhaps on the order of a hundred
million or a billion. As always, we want to do as much in main memory as we
can.

We shall, as before, represent a bid by its words listed in some order. There
are two new elements in the representation. First, we shall include a status with
each list of words. The status is an integer indicating how many of the first
words on the list have been matched by the current document. When a bid is
stored in the index, its status is always 0.

Second, while the order of words could be lexicographic, we can lower the
amount of work by ordering words rarest-first. However, since the number
of different words that can appear in emails is essentially unlimited, it is not
feasible to order all words in this manner. As a compromise, we might identify
the n most common words on the Web or in a sample of the stream of documents
we are processing. Here, n might be a hundred thousand or a million. These
n words are sorted by frequency, and they occupy the end of the list, with the
most frequent words at the very end. All words not among the n most frequent
can be assumed equally infrequent and ordered lexicographically. Then, the
words of any document can be ordered. If a word does not appear on the list
of n frequent words, place it at the front of the order, lexicographically. Those

282 CHAPTER 8. ADVERTISING ON THE WEB

words in the document that do appear on the list of most frequent words appear
after the infrequent words, in the reverse order of frequency (i.e., with the most
frequent words of the documents ordered last).

Example 8.11 : Suppose our document is

’Twas brillig, and the slithy toves

“The” is the most frequent word in English, and “and” is only slightly less
frequent. Let us suppose that “twas” makes the list of frequent words, although
its frequency is surely lower than that of “the” or “and.” The other words do
not make the list of frequent words.

Then the end of the list consists of “twas,” “and,” and “the,” in that order,
since that is the inverse order of frequency. The other three words are placed
at the front of the list in lexicographic order. Thus,

brillig slithy toves twas and the

is the sequence of words in the document, properly ordered. 2

The bids are stored in a hash-table, whose hash key is the first word of
the bid, in the order explained above. The record for the bid will also include
information about what to do when the bid is matched. The status is 0 and
need not be stored explicitly. There is another hash table, whose job is to
contain copies of those bids that have been partially matched. These bids have
a status that is at least 1, but less than the number of words in the set. If
the status is i, then the hash-key for this hash table is the (i + 1)st word. The
arrangement of hash tables is suggested by Fig. 8.5. To process a document,
do the following.

1. Sort the words of the document in the order discussed above. Eliminate
duplicate words.

2. For each word w, in the sorted order:

(i) Using w as the hash-key for the table of partially matched bids, find
those bids having w as key.

(i(i) For each such bid b, if w is the last word of b, move b to the table of
matched bids.

(ii(i) If w is not the last word of b, add 1 to b’s status, and rehash b using
the word whose position is one more than the new status, as the
hash-key.

(i(v) Using w as the hash key for the table of all bids, find those bids for
which w is their first word in the sorted order.

(v) For each such bid b, if there is only one word on its list, copy it to
the table of matched bids.

8.6. SUMMARY OF CHAPTER 8 283

Hash−table
index of

bids

bids
matched
Partially

bids
matched
List of

Word w

hash−key

(a) Look up

w
(b) Move to
output if

is the last word
w

(c) Rehash
with one higher

w

wstatus if
is not last

hash−keyw
bids with

(d) Look up

bids with

is the only word
output if w
(e) Copy to

Hash on second word
than one word

status 1 if more
(f) Copy with

Figure 8.5: Managing large numbers of bids and large numbers of documents

(v(i) If b consists of more than one word, add it, with status 1, to the
table of partially matched bids, using the second word of b as the
hash-key.

3. Produce the list of matched bids as the output.

The benefit of the rarest-first order should now be visible. A bid is only
copied to the second hash table if its rarest word appears in the document. In
comparison, if lexicographic order was used, more bids would be copied to the
second hash table. By minimizing the size of that table, we not only reduce the
amount of work in steps 2(i)–2(iii), but we make it more likely that this entire
table can be kept in main memory.

8.6 Summary of Chapter 8

✦ Targeted Advertising: The big advantage that Web-based advertising has
over advertising in conventional media such as newspapers is that Web
advertising can be selected according to the interests of each individual
user. This advantage has enabled many Web services to be supported
entirely by advertising revenue.

✦ On- and Off-Line Algorithms : Conventional algorithms that are allowed
to see all their data before producing an answer are called off-line. An on-

284 CHAPTER 8. ADVERTISING ON THE WEB

line algorithm is required to make a response to each element in a stream
immediately, with knowledge of only the past, not the future elements in
the stream.

✦ Greedy Algorithms: Many on-line algorithms are greedy, in the sense that
they select their action at every step by minimizing some objective func-
tion.

✦ Competitive Ratio: We can measure the quality of an on-line algorithm
by minimizing, over all possible inputs, the value of the result of the on-
line algorithm compared with the value of the result of the best possible
off-line algorithm.

✦ Bipartite Matching: This problem involves two sets of nodes and a set of
edges between members of the two sets. The goal is to find a maximal
matching – as large a set of edges as possible that includes no node more
than once.

✦ On-Line Solution to the Matching Problem: One greedy algorithm for
finding a match in a bipartite graph (or any graph, for that matter) is
to order the edges in some way, and for each edge in turn, add it to the
match if neither of its ends are yet part of an edge previously selected for
the match. This algorithm can be proved to have a competitive ratio of
1/2; that is, it never fails to match at least half as many nodes as the best
off-line algorithm matches.

✦ Search Ad Management : A search engine receives bids from advertisers
on certain search queries. Some ads are displayed with each search query,
and the search engine is paid the amount of the bid only if the queryer
clicks on the ad. Each advertiser can give a budget, the total amount
they are willing to pay for clicks in a month.

✦ The Adwords Problem: The data for the adwords problem is a set of bids
by advertisers on certain search queries, together with a total budget for
each advertiser and information about the historical click-through rate for
each ad for each query. Another part of the data is the stream of search
queries received by the search engine. The objective is to select on-line
a fixed-size set of ads in response to each query that will maximize the
revenue to the search engine.

✦ Simplified Adwords Problem: To see some of the nuances of ad selection,
we considered a simplified version in which all bids are either 0 or 1,
only one ad is shown with each query, and all advertisers have the same
budget. Under this model the obvious greedy algorithm of giving the ad
placement to anyone who has bid on the query and has budget remaining
can be shown to have a competitive ratio of 1/2.

8.7. REFERENCES FOR CHAPTER 8 285

✦ The Balance Algorithm: This algorithm improves on the simple greedy
algorithm. A query’s ad is given to the advertiser who has bid on the query
and has the largest remaining budget. Ties can be broken arbitrarily.

✦ Competitive Ratio of the Balance Algorithm: For the simplified adwords
model, the competitive ratio of the Balance Algorithm is 3/4 for the case
of two advertisers and 1−1/e, or about 63% for any number of advertisers.

✦ The Balance Algorithm for the Generalized Adwords Problem: When bid-
ders can make differing bids, have different budgets, and have different
click-through rates for different queries, the Balance Algorithm awards an
ad to the advertiser with the highest value of the function Ψ = x(1−e−f).
Here, x is the product of the bid and the click-through rate for that ad-
vertiser and query, and f is the fraction of the advertiser’s budget that
remains unspent.

✦ Implementing an Adwords Algorithm: The simplest version of the imple-
mentation serves in situations where the bids are on exactly the set of
words in the search query. We can represent a query by the list of its
words, in sorted order. Bids are stored in a hash table or similar struc-
ture, with a hash key equal to the sorted list of words. A search query can
then be matched against bids by a straightforward lookup in the table.

✦ Matching Word Sets Against Documents : A harder version of the ad-
words-implementation problem allows bids, which are still small sets of
words as in a search query, to be matched against larger documents, such
as emails or tweets. A bid set matches the document if all the words
appear in the document, in any order and not necessarily adjacent.

✦ Hash Storage of Word Sets : A useful data structure stores the words of
each bid set in the order rarest-first. Documents have their words sorted
in the same order. Word sets are stored in a hash table with the first
word, in the rarest-first order, as the key.

✦ Processing Documents for Bid Matches : We process the words of the
document rarest-first. Word sets whose first word is the current word
are copied to a temporary hash table, with the second word as the key.
Sets already in the temporary hash table are examined to see if the word
that is their key matches the current word, and, if so, they are rehashed
using their next word. Sets whose last word is matched are copied to the
output.

8.7 References for Chapter 8

[1] is an investigation of the way ad position influences the click-through rate.
The Balance Algorithm was developed in [2] and its application to the ad-

words problem is from [3].

286 CHAPTER 8. ADVERTISING ON THE WEB

1. N. Craswell, O. Zoeter, M. Taylor, and W. Ramsey, “An experimental
comparison of click-position bias models,” Proc. Intl. Conf. on Web Search

and Web Data Mining pp. 87–94, 2008.

2. B. Kalyanasundaram and K.R. Pruhs, “An optimal deterministic algo-
rithm for b-matching,” Theoretical Computer Science 233:1–2, pp. 319–
325, 2000.

3. A Mehta, A. Saberi, U. Vazirani, and V. Vazirani, “Adwords and general-
ized on-line matching,” IEEE Symp. on Foundations of Computer Science,
pp. 264–273, 2005.

