Making Apps with
Moqui

Holistic Enterprise Applications Made Easy

by David E. Jones

Sponsored by:

HotWax Media, Inc. Mogqui Ecosystem

http://www.moqui.org

http://www.hotwaxmedia.com
Sponsor this book to see your logo and a

HotWax Media designs, implements, and supports o .
8 P PP description of your offerings here!

custom ERP applications and systems of

innovation that help businesses run faster, leaner, Contact author at dej@dejc.com for details.
and better.

Leapfrogging the inflexible legacy ERP suites of
years past, HotWax Media leverages flexible open
source software to create business systems for
today’s innovators and tomorrow’s industry
leaders.

If you are running an old fashioned ERP mega
suite, the time has come to think different. If you
have a new vision for system innovation in your
industry, open source ERP is the way to make it
happen, and Moqui is a great option to consider.

HotWax Media is proud to sponsor this book, and
we actively cheer on Moqui’s long-term success!

http://www.hotwaxmedia.com
http://www.moqui.org
http://www.hotwaxmedia.com
http://www.moqui.org

Copyright © 2014 David E. Jones
All Rights Reserved

Version 1.0 - First Edition

Based on Moqui Framework version 1.4.1 and Mantle Business Artifacts version 0.5.2.
These open source projects are public domain licensed and are available for download
through http:/ /www.moqui.org.

The PDF version of this work (available for free download from http:/ /www.moqui.org) is
licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License.
To view a copy of this license, visit http:/ / creativecommons.org/licenses /by-nd /4.0/.

A special thanks to the sponsors who helped make this book what it is, keep the price low on
the printed book, and make the PDF download version available for free.

For permission to use any part of this work, please send an email to the author at
dej@dejc.com. For more details about the author see his web site at http:/ /www.dejc.com.

Designed for a full color 8x10" bound book. With this format the PDF version can also be
printed on A4 or US Letter paper.

For the CreateSpace print edition:
ISBN-13: 978-0692267059
ISBN-10: 0692267050

http://www.moqui.org
http://www.moqui.org
http://creativecommons.org/licenses/by-nd/4.0/
mailto:dej@dejc.com
http://www.dejc.com

Table of Contents

Foreword

1. Introduction to Moqui

What is the Moqui Ecosystem?
What is Moqui Framework?

Moqui Concepts
Application Artifacts
The Execution Context
The Artifact Stack
Peeking Under the Covers
Development Process
Development Tools

A Top to Bottom Tour

Web Browser Request
Web Service Call
Incoming and Outgoing Email

. Running Moqui

Download Moqui and Required Software

The Runtime Directory and Moqui Conf XML File
The Executable WAR File

Embedding the Runtime Directory in the WAR File
Building Moqui Framework

Database Configuration

. Framework Tools and Configuration

Execution Context and Web Facade
Web Parameters Map

Factory, Servlet & Listeners
Resource and Cache Facades

O N NN GV A W W =

_ o o ==
NN = =

O
N O V1T A W w W

—
=)

o=
[—=JN =]

NN
NN

Screen Facade
Screen Definition
Screen/Form Render Templates

Service Facade
Service Naming
Parameter Cleaning, Conversion and Validation
Quartz Scheduler
Web Services

Entity Facade
Multi-Tenant
Connection Pool and Database
Database Meta-Data

Transaction Facade
Transaction Manager (JTA)

Artifact Execution Facade
Artifact Authorization
Artifact Hit Tracking

User, L10n, Message, and Logger Facades

Extensions and Add-ons
The Compelling Component
Component Directory Structure
Installing a Component
Load the Component
Mounting Screen(s)
Moqui Conf XML File Settings

4. Create Your First Component

Summary
Part 1

Download Moqui Framework
Create a Component

Add a Screen

Mount as a Subscreen

Try Included Content

Try Sub-Content

Part 2
My First Entity
Add Some Data

23
23
23

24
24
25
25
25

26
27
27
27

27
28

28
28
29

29

30
30
30
30
30
31
31

33
33

33
33
34
34
34
35
36

37
37
38

Automatic Find Form 38

An Explicit Field 40
Add a Create Form 41
Part 3 42
Custom Create Service 42
Groovy Service 43

5. Data and Resources 45
Resources, Content, Templates, and Scripts 45
Resource Locations 45
Using Resources 45
Rendering Templates and Running Scripts 46
Data Model Definition 47
Entity Definition XML 47
Entity Extension - XML 50
Entity Extension - DB 50
Data Model Patterns 51
Master Entities 51
Detail Entities 51
Join Entities 51
Dependent Entities 52
Enumerations 53
Status, Flow, Transition and History 53
Units of Measure 54
Geographic Boundaries and Points 54
The Entity Facade 55
Basic CrUD Operations 55
Finding Entity Records 56
Flexible Finding with View Entities 59
Static View Entity 59

View Entity Auto Minimize on Find 60
Database Defined View Entity 61
Dynamic View Entity 62

Entity ECA Rules 62
Entity Data Import and Export 64
Loading Entity XML and CSV 64
Writing Entity XML 65

Views and Forms for Easy View and Export 66

Data Document 68

Data Feed 72
Data Search 73
6. Logic and Services 77
Service Definition 77
Service Implementation 81
Service Scripts 81
Inline Actions 82

Java Methods 82
Entity Auto Services 83
Add Your Own Service Runner 84
Calling Services and Scheduling Jobs 84
Service ECA Rules 86
Overview of XML Actions 88
7. User Interface 91
XML Screen 91
Subscreens 91
Standalone Screen 93
Transition 94
Parameters and Web Settings 97
Screen Actions, Pre-Actions, and Always Actions 97
XML Screen Widgets 98
Section, Condition and Fail-Widgets 99
Macro Templates and Custom Elements 99
CSV, XML, PDF and Other Screen Output 100
XML Form 101
Form Field 101
Field Widgets 102
Single Form 106
Single Form Example 107

List Form 112
List Form View/Export Example 113

List Form Edit Example 116
Templates 119

Sending and Receiving Email 121

8. System Interfaces

Data and Logic Level Interfaces
XML, CSV and Plain Text Handling

Web Service
XML-RPC and JSON-RPC
Sending and Receiving Simple JSON
RESTful Interface

Enterprise Integration with Apache Camel

9. Security
Authentication
Simple Permissions

Artifact-Aware Authorization

Artifact Execution Stack and History
Artifact Authz

Artifact Tarpit

10. Performance

Performance Metrics
Artifact Hit Statistics
Artifact Execution Runtime Profiling

Improving Performance

11. The Tools Application

Auto Screen
Entity List
Find Entity
Edit Entity
Edit Related

Data Document
Search
Index
Export

Data View
Find DB View
Edit DB View
View DB View

125
125
125

127
127
128
129

130

133
133
134

135
135
136

137

139

139
139
141

144

147

147
147
148
149
150

150
150
151
151

152
152
152
153

Entity Tools
Data Edit
Data Export
Data Import
SQL Runner
Speed Test

Localization
Messages
Entity Fields

Service

Service Reference
Service List
Service Detail

Service Run

Scheduler
Scheduler Status
Jobs
Triggers
History

System Info

Artifact Statistics
Hit Bins
Artifact Summary

Audit Log

Cache Statistics
Cache List
Cache Elements

Server Visits
Visit List
Visit Detail

12. Mantle Business Artifacts
Mantle Structure and UDM

Accounting
Account - Billing (mantle.account.billing)
Account - Financial (mantle.account.financial)
Account - Invoice (mantle.account.invoice)
Account - Method (mantle.account.method)
Account - Payment (mantle.account.payment)
Ledger - Account (mantle.ledger.account)

154
154
154
155
155
156

156
156
157

157
157
157
158
158
159
159
159
160
160

161
161
161
161
162
162
162
163
163
163
164

165

166
167
167
167
168
170
171
173

Ledger - Config (mantle.ledger.config)
Ledger - Reconciliation (mantle.ledger.reconciliation)
Ledger - Transaction (mantle.ledger.transaction)
Other - Budget (mantle.other.budget)
Other - Tax (mantle.other.tax)
Facility
Facility (mantle.facility)
Human Resources
Ability (mantle.humanres.ability)
Employment (mantle.humanres.employment)
Position (mantle.humanres.position)
Rate (mantle.humanres.rate)
Recruitment (mantle.humanres.recruitment)
Marketing
Campaign (mantle.marketing.campaign)
Contact (mantle.marketing.contact)
Segment (mantle.marketing.segment)
Tracking (mantle.marketing.tracking)
Order
Order (mantle.order)
Return (mantle.order.return)
Party
Party (mantle.party)
Agreement (mantle.party.agreement)
Communication Event (mantle.party.communication)
Contact Mechanism (mantle.party.contact)
Time Period (mantle.party.time)
Product
Definition - Product (mantle.product)
Definition - Category (mantle.product.category)
Definition - Config (mantle.product.config)
Definition - Cost (mantle.product.cost)
Definition - Feature (mantle.product.feature)
Definition - Subscription (mantle.product.subscription)
Asset - Asset (mantle.product.asset)
Asset - Issuance (mantle.product.issuance)
Asset - Receipt (mantle.product.receipt)
Asset - Maintenance (mantle.product.maintenance)
Store (mantle.product.store)
Request
Request (mantle.request)
Requirement (mantle.request.requirement)

176
177
177
178
178
179
179
181

181
181
182
182
183
183
183
183
184
184
185
185
187
188
188
190
191
192
193
194
194
196
197
197
197
199
199
201
203
203
204
205
205
207

Sales
Opportunity (mantle.sales.opportunity)
Forecast (mantle.sales.forecast)
Need (mantle.sales.need)
Shipment
Shipment (mantle.shipment)
Carrier (mantle.shipment.carrier)
Picklist (mantle.shipment.picklist)
Work Effort
Work Effort (mantle.work.effort)
Time Entry (mantle.work.time)

USL Business Processes
Procure to Pay
Supplier Product Pricing
Place and Approve Purchase Order
Create Incoming Shipment and Purchase Invoice
Receive Shipment
Approve Purchase Invoice and Send Payment
Order to Cash
Place a Sales Order as a Customer
Ship Sales Order
Work Plan to Cash
Vendor
Worker and Rates
Client
Project and Milestone
Tasks and Time Entries
Request and Task for Request
Worker Invoice and Payment
Client Invoice and Payment

208
208
209
209
209
209
212
212
214
214
217

219
219
220
221
223
225
228
231
231
235
240
240
244
245
247
249
252
253
256

Also sponsored by:

Sharan Foga

ERP Project Manager and
Functional Consultant

David E. Jones Consulting Jimmy Shen http://cz.linkedin.com/in/sfoga/

hitp://www.dejc.com http://jimmyshen.info Author of "Getting Started with
I help organizations build custom Apache OFBiz A 8 ting" and
ERP, CRM, and eCommerce systems " pache Iz Accounting: anc,
based on open source software Getting Started with Apache OFBiz
’ Manufacturing & MRP". | enjo
| am the founder of various open workinug wi?h]pgople to show ihgm
S%JIEE? prf\?\fgts' Iprzlr;(:mgrﬁp;rﬁze how Apache OFBiz works and how
1z, Moqui IEWOTK, it can be configured to fit their
M?nttl'e BEJ)SII%G.SS.AF;I(E%?SI. hSlnce existing business processes. | also
startin izin ave ; ;
worked or% over 100 custom systems scalability, high availability and focus on producing practical and
and commercial products based on OPENNESS, such as Moqui, Angular]s, good quality End User
these onen Source broects OpenStack, Docker, etc. docum'er']tatlon and other'speuflc
P projects. training related materials.

I have 12 years experienced in
enterprise application development
and operation as well as
infrastructure operation. Since 2012,
| have been moving to open source
solutions to build enterprise-class
applications and infrastructure with

Moqui Ecosystem

http://www.moqui.org

Sponsor this book to see your
logo and a short description of
your offerings here!

See the full page ad for Ant Websystems (http://www.antwebsystems.com/) on page 18.

See the full page ad for HotWax Media (http:/www.hotwaxmedia.com/) on page 32.

http://www.dejc.com
http://jimmyshen.info
http://cz.linkedin.com/in/sfoga/
http://www.moqui.org
http://jimmyshen.info
http://www.moqui.org
http://www.antwebsystems.com/
http://www.hotwaxmedia.com/
http://www.dejc.com

Foreword

I am not a professional framework developer. I am, just like you, a professional application
developer. My career is oriented around building and customizing applications for a wide
variety of organizations to manage processes and automate information management.

Like any craftsman an application developer needs a good set of tools, and my quest for the
best tools possible started in 1999 when I got into this business. At the time Enterprise Java
was maturing and going through a period of standardization to help consolidate and
organize the many different tools and technologies that were available in the marketplace.

There was only one problem: for building large-scale systems like an ERP application these
tools and technologies were painful to develop with, required massive hardware to run
satisfactorily, and were plagued by inadequate standards that practically guaranteed lock-in
to application servers that featured enterprise-grade price tags. These applications were also
difficult and expensive to customize and maintain after initial implementation. It was, in a
word, horrible.

Various open source alternatives were starting to emerge to compete with the commercial
players that drove much of the standardization, and this helped with the licensing cost but
did little for the inefficiencies in both development and production performance.

There was much room for improvement. In 2001 I started an open source project called The
Open For Business Project (OFBiz) with the wide ranging goal of acting as a foundation for
all manner of information automation applications. This was meant to enable consolidated
systems and include eCommerce, ERP, CRM, MRP, and so on. Based on my experience with
enterprise Java tools and exposure to some novel ideas and patterns people were starting to
develop, I designed a very different sort of tool set. This tool set was not plagued by object
mapping to organize data and encapsulate logic, and embraced the service-oriented design
patterns for internal use that have become the standard for interoperation between
applications.

Along with technical development tools, a good application developer also needs a flexible
and comprehensive data model to give structure and consistency to applications developed.
Fortunately in early March 2001, just two months before I started The Open For Business
Project, Len Silverston published The Data Model Resource Book, Revised Edition, Volume 1

1 Foreword

and Volume 2. This was a huge expansion and rewrite of an earlier book with a similar name
by Silverston, Inmon, and Graziano in 1997.

The data model ideas and patterns presented in these two volumes became the foundation
for the data model in OFBiz. They have gracefully acted as a foundation for that system
during the growth of the project from a simple eCommerce application to a full-featured ERP
and CRM system that is used by thousands of organizations and is the basis for over a dozen
commercial and open source extensions.

Over years of working on a wide variety of projects based on OFBiz the framework was
expanded along with the higher level business artifacts in the project. The ideas for
improvements to the framework flowed in steadily, and some extensions and competitors to
it outside of OFBiz emerged as well. Many of the ideas were incorporated, but as the project
grew and as the community of users and contributors exploded it became increasingly
difficult to change fundamental aspects of the system.

For years I kept a list of dozens of great ideas that constituted major changes to improve and
expand the framework. As the list got longer I knew a different approach would be necessary
to enter the next phase of my aforementioned quest for the best toolset possible. The result
was the birth of the Moqui Framework as an independent project, and the Mantle Business
Artifacts to provide a generic foundation for an ecosystem of open source projects, internal
applications, and commercial products that go way beyond what one community could do
with a single generic open source project.

This book will help you get started with the Moqui Framework and Mantle Business
Artifacts, and provide a reference during months and years of building excellent
applications.

1. Introduction to Moqui

What is the Moqui Ecosystem?

The Moqui Ecosystem is a set of software packages centered on a common framework and
universal business artifacts. The central packages (in the Core and Mantle) are organized as
separate open source projects to keep their purpose, management, and dependencies focused
and clean. Both are managed with a moderated community model, much like the Linux
Kernel.

Custom Apps

[ust]

~
)
(0%
%
2
Z
V)]
2
e
>

Moqui C
Framework)

Core

Mantle
Business Artifacts

&OQ
X

<
Crust Q
Add-ons

3 1. Introduction to Moqui

The goal of the ecosystem is to provide a number of interoperating and yet competing
enterprise applications (in the Crust), all based on a common framework for flexibility and
easy customization, and a common set of business artifacts (data model and services) so they
are implicitly integrated.

The ecosystem includes:

e Moqui Framework: Synergistic tools for efficient and flexible application building
¢ Mantle Business Artifacts: Universal business artifacts to make your applications
easier to build and implicitly integrated with other apps built on Moqui and Mantle
e Universal Business Process Library (UBPL)
e Universal Data Model (UDM)
e Universal Service Library (USL)
e Moqui Crust: themes, tool integrations, and applications for different industries,
company sizes, business areas, etc

The focus of this book is Moqui Framework, and the last chapter is a summary of Mantle
Business Artifacts.

What is Moqui Framework?

Moqui Framework is an all-in-one, enterprise-ready application framework based on Groovy
and Java. The framework includes tools for screens, services, entities, and advanced
functionality based on them such as declarative artifact-aware security and multi-tenancy.

The Framework is well suited for a wide variety of applications from simple web sites (like
moqui.org) and small form-based applications to complex ERP systems. Applications built
with Moqui are easy to deploy on a wide variety of highly scalable infrastructure software
such as Java Servlet containers (or app servers) and both traditional relational and more
modern NoSQL databases.

Moqui Framework is based on a decade of experience with The Open For Business Project
(now Apache OFBiz, see http:/ /ofbiz.apache.org) and designed and written by the person
who founded that project. Many of the ideas and approaches, including the pure relational
data layer (no object-relational mapping) and the service-oriented logic layer, stem from this
legacy and are present in Moqui in a more refined and organized form.

With a cleaner design, more straightforward implementation, and better use of other
excellent open source libraries that did not exist when OFBiz was started in 2001, the Moqui
Framework code is about 20% of the size of the OFBiz Framework while offering
significantly more functionality and more advanced tools.

The result is a framework that helps you build applications that automatically handles many
concerns that would otherwise require a significant percentage of overall effort for every
application you build.

http://ofbiz.apache.org

Moqui Concepts

Application Artifacts

The Moqui Framework toolset is structured around artifacts that you can create to represent
common parts of applications. In Moqui the term artifact refers to anything you create as a
developer and includes various XML files as well as scripts and other code. The framework
supports artifacts for things like:

o entities for the relational data model used throughout applications (used directly, no
redundant object-relational mapping)

e screens and forms for web-based and other user interfaces (base artifacts in XML files
with general or user-specific extensions in the database)

¢ screen transitions to configure flow from screen to screen and process input as needed
along the way

¢ services for logic run internally or exposed for remote execution

e ECA (event-condition-action) rules triggered on system events like entity and service
operations and received email messages

Here is a table of common parts of an application and the artifact or part of an artifact that
handles each:

screen XML Screen (rendered as various types of text, or can be used to
generate other Uls; OOTB support for html, xml, xsl-fo, csv, and
plain text)

form XML Form (defined within a screen; various OOTB widgets and

easy to add custom ones or customize existing ones)

prepare data for screen actions (defined within a screen, can call external logic)
display

flow from one screen transition with conditional and default responses (defined
screen to another within the originating screen, response points to destination screen

or external resource)

process input transition actions (either a single service defined to match the form
and share validations/ etc, or actions embedded in the screen
definition or call external logic)

menu automatic based on sub-screen hierarchy and configured menu title
and order for each screen, or define explicitly

5 1. Introduction to Moqui

internal service

XML-RPC and
JSON-RPC services

RESTful web
services

remote service calls

send email

receive email

use scripts,
templates, and JCR
content

XML service definition and various options for embedded or
external service implementations

internal service with allow-remote=true and called through
generic interfaces using the natural List and Map structure
mappings

internal service called through simple transition definition
supporting path, form body, and JSON body requests and JSON or
XML responses

define an internal service as a proxy with automatic XML-RPC,
JSON-RPC, and other mappings, or use simple tools for RESTful
and other service types

screen designed to be rendered directly as html and plain text and
configured along with subject, etc in an EmailTemplate record

define an Email ECA rule to call an internal service that processes
the email

access and execute/render through the Resource Facade

The Execution Context

The ExecutionContext is the central application-facing interface in the Moqui API. An
instance is created specifically for executing edge artifacts such as a screen or service. The
ExecutionContext, or "ec" for short, has various facade interfaces that expose
functionality for the various tools in the framework.

The ec also keeps a context map that represents the variable space that each artifact runs in.
This context map is a stack of maps and as each artifact is executed a fresh map is pushed
onto the stack, then popped off it once the artifact is done executing. When reading from the
map stack it starts at the top and goes down until it finds a matching map entry. When
writing to the map stack it always writes to the map at the top of the stack (unless to
explicitly reference the root map, i.e., at the bottom of the stack).

With this approach each artifact can run without concern of interfering with other artifacts,
but still able to easily access data from parent artifacts (the chain of artifacts that called or
included down to the current artifact). Because the ec is created for the execution of each

edge artifact it has detailed information about every aspect of what is happening, including
the user, messages from artifacts, and much more.

The Artifact Stack

As each artifact is executed and includes or calls other artifacts the artifact is pushed onto a
stack that keeps track of the active artifacts, and is added to an artifact history list tracking
each artifact used.

As artifacts are pushed onto the stack authorization for each artifact is checked, and security
information related to the artifact is tracked. With this approach authz settings can be
simplified so that artifacts that include or call or artifacts can allow those artifacts to inherit
authorization. With inherited authorization configurations are only needed for key screens
and services that are accessed directly.

Peeking Under the Covers

When working with Moqui Framework you’ll often be using higher-level artifacts such as
XML files. These are designed to support most common needs and have the flexibility to
drop down to lower level tools such as templates and scripts at any point. At some point
though you’ll probably either get curious about what the framework is doing, or you'll run
into a problem that will be much easier to solve if you know exactly what is going on under
the covers.

While service and entity definitions are handled through code other artifacts like XML
Actions and the XML Screens and Forms are just transformed into other text using macros in
FreeMarker template files. XML Actions are converted into a plain old Groovy script and
then compiled into a class which is cached and executed. The visual (widget) parts of XML
Screens and Forms are also just transformed into the specified output type (html, xml, xsl-fo,
csv, text, etc) using a template for each type.

With this approach you can easily see the text that is generated along with the templates that
produced the text, and through simple configuration you can even point to your own
templates to modify or extent the OOTB functionality.

Development Process

Moqui Framework is designed to facilitate implementation with natural concept mappings
from design elements such as screen outlines and wireframes, screen flow diagrams, data
statements, and automated process descriptions. Each of these sorts of design artifacts can be
turned into a specific implementation artifact using the Moqui tools.

These design artifacts are usually best when based on requirements that define and structure
specific activities that the system should support to interact with other actors including

7 1. Introduction to Moqui

people and systems. These requirements should be distinct and separate from the designs to
help drive design decisions and make sure that all important aspects of the system are
considered and covered in the designs.

With this approach implementation artifacts can reference the designs they are based on, and
in turn designs can reference the requirements they are based on. With implementation
artifacts that naturally map to design artifacts both tasking and testing are straightforward.

When implementing artifacts based on such designs the order that artifacts are created is not
so important. Different people can even work simultaneously on things like defining entities
and building screens.

For web-based applications, especially public-facing ones that require custom artwork and
design, the static artifacts such as images and CSS can be in separate files stored along with
screen XML files using the same directory structure that is used for subscreens using a
directory with the same name as the screen. Resources shared among many screens live
naturally under screens higher up in the subscreen hierarchy.

The actual HTML generated from XML Screens and Forms can be customized by overriding
or adding to the FreeMarker macros that are used to generate output for each XML element.
Custom HTML can also be included as needed. This allows for easy visual customization of
the generic HTML using CSS and JavaScript, or when needed totally custom HTML, CSS,
and JavaScript to get any effect desired.

Web designers who work with HTML and CSS can look at the actual HTML generated and
style using separate CSS and other static files. When more custom HTML is needed the web
designers can produce the HTML that a developer can put in a template and parameterize as
needed for dynamic elements.

Another option that sometimes works well is to have more advanced web designers build
the entire client side as custom HTML, CSS, and JavaScript that interacts with the server
through a service interface using some form of JSON over HTTP. This approach also works
well with client applications for mobile or desktop devices that will interact with the
application server using web services. The web services can use the automatic JSON-RPC or
XML-RPC or other custom automatic mappings, or can use custom wrapper services that call
internal services to support any sort of web service architecture.

However your team is structured and however work is to be divided on a given project, with
artifacts designed to handle defined parts of applications it is easier to split up work and
allow people to work in parallel based on defined interfaces.

Development Tools

For requirements and designs you need a group content collaboration tool that will be used
by users and domain experts, analysts, designers, and developers. The collaboration tool
should support:

e hierarchical documents

o links between documents and parts of documents (usually to headers within the target
document)

e attachments to documents for images and other supporting documents

e full revision history for each document

o threaded comments on each document

¢ email notification for document updates

e online access with a central repository for easy collaboration

There are various options for this sort of tool, though many do not support all the above and
collaboration suffers because of it. One good commercial option is Atlassian Confluence.
Atlassian offers a very affordable hosted solution for small groups along with various
options for larger organizations. There are various open source options, including the wiki
built into HiveMind PM which is based on Moqui Framework and Mantle Business Artifacts.

Note that this content collaboration tool is generally separate from your code repository,
though putting requirement and design content in your code repository can work if
everyone involved is able to use it effectively. Because Moqui itself can render wiki pages
and pass through binary attachments you might even consider keeping this in a Moqui
component. The main problem with this is that until there is a good wiki application built on
Moqui to allow changing the content, this is very difficult for less technical people involved.

For the actual code repository there are various good options and this often depends on
personal and organizational preferences. Moqui itself is hosted on GitHub and hosted
private repositories on GitHub are very affordable (especially for a small number of
repositories). If you do use GitHub it is easy to fork the moqui/moqui repository to maintain
your own runtime directory in your private repository while keeping up to date with the
changes in the main project code base.

Even if you don’t use GitHub a local or hosted git repository is a great way to manage source
code for a development project. If you prefer other tools such as Subversion or Mercurial
then there is no reason not to use them.

For actual coding purposes you’ll need an editor or IDE that supports the following types of
files:

e XML (with autocompletion, validation, annotation display, etc)
Groovy (for script files and scripts embedded in XML files)
HTML, CSS, and JavaScript

FreeMarker (FTL)

Java (optional)

My preferred IDE these days is Intelli] IDEA from JetBrains. The free Community Edition has
excellent XML and Groovy support. For HTML, CSS, JavaScript, and FreeMarker to go
beyond a simple text editor you'll have to pay for the Ultimate Edition. I implemented most
of Moqui, including the complex FreeMarker macro templates, using the Community

9 1. Introduction to Moqui

Edition. After breaking down and buying a personal license for the Ultimate Edition I am
happy with it, but the Community Edition is impressively capable.

Other popular Java IDEs like Eclipse and NetBeans are also great options and have built-in
or plugin functionality to support all of these types of files. I personally prefer having
autocomplete and other advanced IDE functionality around, but if you prefer a more simple
text editor then of course use what makes you happy and productive.

The Moqui Framework itself is built using Gradle. While I prefer the command line version
of Gradle (and Git), most IDEs (including Intelli] IDEA) include decent user interfaces for
these tools that help simplify common tasks.

10

A Top to Bottom Tour

Web Browser Request -
Browser

A request from a Web Browser will find its way to the
framework by way of the Servlet Container (the default is

the embedded Winstone Servlet Container, also works well Web
with Apache Tomcat or any Java Servlet implementation). Client
The Servlet Container finds the requested path on the ¢
server in the standard way using the web . xm1 file and will
find the MoquiServlet mounted there. The MoquiServlet is Servlet

Container

quite simple and just sets up an ExecutionContext, then
renders the requested Screen.

The screen is rendered based on the configured "root"
screen for the webapp, and the subscreens path to get down
to the desired target screen. Beyond the path to the target
screen there may be a transition name for a transition of
that screen.
o . . Email
A transition is part of a screen definition and is used to go
one from screen to another (or back to the same).

Transitions are used to process input (not to prepare data
for presentation), which is separated from the screen Service
actions which are used to prepare data for presentation (not
to process input).

F

If there is a transition name in the URL path the service or Entity
actions of the transition will be run, a response to the
transition selected (based on conditions and whether there
was an error), and then the response will be followed,

usually to another screen. Database

i

When a service is called (often from a transition or screen

action) the Service Facade validates and cleans up the input

parameters to the service call using the defined input parameters on the service definition,
and then calls the defined inline or external script, Java method, auto or implicit entity
operation, or remote service.

Entity operations, which interact with the database, should only be called from services for
write operations and can be called from actions anywhere for read operations (transition or
screen actions, service scripts/methods, etc).

11 1. Introduction to Moqui

Web Service Call

Web Service requests generally follow the same path as a form submission request from a
web browser that is handled by a Screen Transition. The incoming data will be handled by
the transition actions, and typically the response will be handled by an action that sends back
the encoded response (in XML, JSON, etc) and the default-response for the transition will be
of type "none" so that no screen is rendered and no redirecting to a screen is done.

Incoming and Outgoing Email

Incoming email is handled through Email ECA rules which are called by the
pollEmailServer service (configured using the Emailserver entity). These rules have
information about the email received parsed and available to them in structured Maps. If the
condition of a rule passes, then the actions of the rule will be run. Rules can be written to do
anything you would like, typically saving the message somewhere, adding it to a queue for
review based on content, generating an automated response, and so on.

Outgoing email is most easily done with a call to the sendEmailTemplate service. This
service uses the passed in emailTemplateId to lookup an EmailTemplate record that has
settings for the email to render, including the subject, the from address, the XML Screen to
render and use for the email body, screens or templates to render and attach, and various
other options. This is meant to be used for all sorts of emails, especially notification messages
and system-managed communication like customer service replies and such.

12

2. Running Moqui

Download Moqui and Required Software

The only required software for the default configuration of Moqui Framework is the Java SE
JDK version 7 or later. The Oracle Java SE downloads are generally the best option:

http: / /www.oracle.com/technetwork /java/javase /downloads

To build the framework from source you'll need Gradle (http:/ /www.gradle.org) version 1.6
or later. Note that Gradle often has non-backward compatible changes so much more recent
versions may not work.

You can download Moqui Framework releases from GitHub at:

https://github.com/moqui/moqui/releases

The most recent version is first one on the page. You may choose either the binary or source
distribution archive. The binary release of the framework is named "moqui-<version>.zip"
and there are links to download source archives.

The Moqui Framework source is available on GitHub for download and online browsing
here:

https://github.com/moqui/moqui

Similarly the Mantle Business Artifacts are available on GitHub here:

https://github.com/moqui/mantle

There is also a releases page for Mantle on GitHub.

The Runtime Directory and Moqui Conf XML File

The Moqui Framework has three main parts to deploy:

e Executable WAR File (see below)
e Runtime Directory
¢ Moqui Configuration XML File

13 2. Running Moqui

http://www.oracle.com/technetwork/java/javase/downloads
http://www.gradle.org
https://github.com/moqui/moqui/releases
https://github.com/moqui/moqui
https://github.com/moqui/mantle

However you use the executable WAR file, you must have a runtime directory and you may
override default settings (in the MoquiDefaultConf .xml file) with a Moqui Conf XML file,
such as the MoquiProductionConf .xml file in the runtime/conf directory.

The runtime directory is the main place to put components you want to load, the root files
(root screen) for the web application, and general configuration files. It is also where the
framework will put log files, Derby db files (if you are using Derby), etc. You will eventually
want to create your own runtime directory and keep it in your own source repository. You
can use the default project runtime directory as a starting point for your own project’s
runtime resources.

When running specify these two properties:

"nn

moqui.runtime | Runtime directory (defaults to "./runtime" if exists or just "." if there is
no runtime sub-directory)

moqui.conf Moqui Conf XML file (URL or path relative to moqui.runtime)

There are two ways to specify these two properties:

e MoquiInit.properties file on the classpath
e System properties specified on the command line (with java -D arguments)

The Executable WAR File

Yep, that's right: an executable WAR file. The main things you can do with this (with
example commands to demonstrate, modify as needed):

Load Data $ java -jar moqui-<version>.war -load
Run embedded $ java -jar moqui-<version>.war
web server

Deploy as WAR (in | $ cp moqui-<version>.war ../tomcat/webapps
Tomcat, etc)

Display settings $ java -jar moqui-<version>.war -help

and help

When running the data loader (with the -load argument), the following options are available
as additional parameters:

-types=<type>[,<type>] | Data types to load, matches the entity-facade-
xml.type attribute (can be anything, common are: seed,
seed-initial, demo, ...)

14

-location=<location> Location of a single data file to load

-timeout=<seconds> Transaction timeout for each file, defaults to 600 seconds (10
minutes)

-dummy-fks Use dummy foreign-keys to avoid referential integrity
errors

-use-try-insert Try insert and update on error instead of checking for

record first

-tenantId=<tenantId> ID for the Tenant to load the data into

Note that If no -~types or -location argument is used all known data files of all types will
be loaded.

The examples above show running with the moqui.runtime and moqui.conf values
coming from the MoquiInit.properties file on the classpath. To specify these
parameters on the command line, use something like:

$ java -Dmoqui.conf=conf/MoquiStagingConf.xml -jar moqui-<version>.war

Note that the moqui.conf path is relative to the moqui.runtime directory, or in other
words the file lives under the runtime directory.

When running the embedded web server (without the -1oad or ~help parameters) the
Winstone Servlet Container is used. For a full list of arguments available in Winstone, see:

http://winstone.sourceforge.net/#commandLine

For your convenience here are some of the more common Winstone arguments to use:

--httpPort set the http listening port. -1 to disable, Default is 8080

--httpListenAddress | set the http listening address. Default is all interfaces

--httpsPort set the https listening port. -1 to disable, Default is disabled
--ajpl3Port set the ajp13 listening port. -1 to disable, Default is 8009
--controlPort set the shutdown/ control port. -1 to disable, Default disabled

Embedding the Runtime Directory in the WAR File

Moqui can run with an external runtime directory (independent of the WAR file), or with the
runtime directory embedded in the WAR file. The embedded approach is especially helpful

15 2. Running Moqui

http://winstone.sourceforge.net/#commandLine

when deploying to WAR hosting providers like Amazon ElasticBeanstalk. To create a WAR
file with an embedded runtime directory:

Add components and other resources as needed to the runtime directory
Change ${moqui.home}/Moquilnit.properties with desired settings

Change Moqui conf file (runtime / conf/Moqui*Conf.xml) as needed

Create a derived WAR file based on the moqui.war file and with your runtime
directory contents and Moquilnit.properties file with one of:

a. $ gradle addRuntime

b. $ ant add-runtime

5. Copy the created WAR file (moqui-plus-runtime.war) to deployment target

6. Run server (or restart/refresh to deploy live WAR)

Ll .

The resulting WAR file will have the runtime directory under its root directory (a sibling to
the standard WEB-INF directory) and all JAR files under the WEB-INF/1ib directory.

Building Moqui Framework

Moqui Framework uses the build automation tool Gradle (http:/ /www.gradle.org) for
building from source. There are various custom tasks to automate frequent things, but most
work is done with the built-in tasks from Gradle. There is also an Ant build file for a few
common tasks, but not for building from source.

Build JAR, WAR $ gradle build

Load All Data $ gradle load $ ant load
Run Server in dev mode $ gradle run $ ant run
Clean up JARs, WAR $ gradle clean

Clean up ALL built and runtime | $ gradle cleanAll

files (logs, DBs, etc)

Note that in Gradle the load and run tasks depend on the build task. With this dependency
the easiest to get a new development system running with a populated database is:

$ gradle load run

This will build the WAR file, run the data loader, then run the server. To stop it just press
<ctrl-c> (or your preferred alternative).

16

http://www.gradle.org

Database Configuration

Database (or datasource) setup is done in the Moqui Conf XML file with moqui-
conf.entity-facade.datasource elements. There is one element for each entity group and
the datasource.group-name attribute matches against entity.group-name attribute. By
default in Moqui there are 4 entity groups: transactional, analytical, nosgl, and
tenantcommon. If you only configure a datasource for the transactional group it will also
be used for the other groups. One exception to this: if you want to use multiple tenants in
your deployment you must also define a datasource for tenantcommon.

Here is the default configuration for the Apache Derby database:

<datasource group-name="transactional" database-conf-name="derby"
schema-name="MOQUI">
<inline-jdbc pool-minsize="5" pool-maxsize="50">
<xa-properties databaseName="S${moqui.runtime}/db/derby/MoquiDEFAULT"
createDatabase="create" />
</inline-jdbc>
</datasource>

The database-conf-name attribute points to a database configuration and matches against a
database-list.database.name attribute to identify which. Database configurations specify
things like SQL types to use, SQL syntax options, and JDBC driver details.

This example uses a xa-properties element to use the XA (transaction aware) interfaces in
the JDBC driver. The attributes on the element are specific to each JDBC driver. Some
examples for reference are included in the MoquiDefaultConf.xml file, but for a full list of
options look at the documentation for the JDBC driver.

Here is an example of a non-XA configuration for MySQL.:

<datasource group-name="transactional" database-conf-name="mysqgl"
schema-name="">
<inline-jdbc jdbc-uri="jdbc:mysqgl://127.0.0.1:3306/MoquiDEFAULT?
autoReconnect=true&useUnicode=true&characterEncoding=UTF-8"
jdbc-username="moqui" jdbc-password="moqui"
pool-minsize="2" pool-maxsize="50"/>
</datasource>

For non-XA configurations the various jdbc-* attributes are on the inline-jdbc element as
opposed to a subelement. This example shows the main ones needed: the JDBC UR],
username, and password. To use something like this put the datasource element under the
entity-facade element in the runtime Moqui Conf XML file (like the
MoquiProductionConf .xml file).

17 2. Running Moqui

This book sponsored by Ant Websystems (http://www.antwebsystems.com/)

Yes, we now support the successor of OFBiz, Moqui too!

o
f S

""3’“""’ — More info at http://antwebsystems.com

Business Syst. OFBiz/GrowERP OFBiz/GrowERP 24/7 Support &
Consulting Implementation Customization. System Mngmt.

When you need help with how If you or we together, have Customizing OFBiz/GrowERP We have several support

NERP

to implement and/or integrate the created an OFBiz/Gro tem to your needs, either contractsets and system host

OFBiz/GrowERP system into implementation plan we can hen implementing a new facilities available provided by a
your company and/or train your either lead or support the actual system or changing an existing team of system administrators

IT development department in implementation using our system, let us help you where we can help you in keeping
OFBiz software development documented implementation transparent development w your OFBiz/GrowERP system
ask us, it is our core business! method working running 24/7

18

http://www.antwebsystems.com/

3. Framework Tools and
Configuration

What follows is a summary of the various tools in the Moqui Framework and corresponding
configuration elements in the Moqui Conf XML file. The default settings are in the
MoquiDefaultConf.xml file, which is included in the executable WAR file in a binary
distribution of Moqui Framework. This is a great file to look at to see some of the settings
that are available and what they are set to by default. If you downloaded a binary
distribution of Moqui Framework you can view this file online at (note that this is from the
master branch on GitHub and may differ slightly from the one you downloaded):

https://github.com/moqui/moqui/blob/master/framework/src/main/resources/
MoguiDefaultConf.xml

Any setting in this file can be overridden in the Moqui Conf XML file that is specified at
runtime along with the runtime directory (and generally in the conf directory under the
runtime directory). The two files are merged before any settings are used, with the runtime
file overriding the default one. Because of this, one easy way to change settings is simply
copy from the default conf file and paste into the runtime one, and then make changes as
desired.

Execution Context and Web Facade

The Execution Context is the central object in the Moqui Framework API. This object
maintains state within the context of a single server interaction such as a web screen request
or remote service call. Through the ExecutionContext object you have access to a number of
"facades" that are used to access the functionality of different parts of the framework. There is
detail below about each of these facades.

The main state tracked by the Execution Context is the variable space, or "context", used for
screens, actions, services, scripts, and even entity and other operations. This context is a hash
or map with name/value entries. It is implemented with the contextstack class and
supports protected variable spaces with push () and pop () methods that turn it into a stack

19 3. Framework Tools and Configuration

https://github.com/moqui/moqui/blob/master/framework/src/main/resources/MoquiDefaultConf.xml

of maps. As different artifacts are executed they automatically push () the context before
writing to it, and then pop () the context to restore its state before finishing. Writing to the
context always puts the values into the top of the stack, but when reading the named value is
searched for at each level on the stack starting at the top so that fields in deeper levels are
visible.

In some cases, such as calling a service, we want a fresh context to better isolate the artifact
from whatever called it. For this we use the pushcontext () method to get a fresh context,
then the popcontext () method after the artifact is run to restore the original context.

The context is the literal variable space for the executing artifact wherever possible. In
screens when XML actions are executed the results go in the local context. Even Groovy
scripts embedded in service and screen actions share a variable space and so variables
declared exist in the context for subsequent artifacts.

Some common expressions you'll see in Moqui-based code (using Groovy syntax) include:

o refer to the current variable context: ec.context

o refer to the "exampleld" field from the context: ec.context.exampleId
e set the exampleld to "foo": ec.context.exampleId = "foo"

e for inline scripts you can also just do: exampleId = "foo"

For an ExecutionContext instance created as part of a web request (HttpServletRequest)
there will be a special facade called the Web Facade. This facade is used to access information
about the servlet environment for the context including request, response, session, and
application (servletContext). Itis also used to access the state (attributes) of these various
parts of the servlet environment including request parameters, request attributes, session
attributes, and application attributes.

Web Parameters Map

The request parameters "map" (ec.web.requestParameters) is a special map that contains
parameters from the URL parameter string, inline URL parameters (using the "/
~name=value/" format), and multi-part form submission parameters (when applicable).
There is also a special parameters map (ec.web.parameters) that combines all the other
maps in the following order (with later overriding earlier): request parameters, application
attributes, session attributes, and request attributes. That parameters map is a stack of maps
just like the context so if you write to it the values will go in the top of the stack which is the
request attributes.

For security reasons the request parameters map is canonicalized and filtered using the
OWASP ESAPI library. This and the Service Facade validation help to protect agains XSS and
injection attacks.

20

{

Execution Context

Factory

—

Moqui Servlet,

|

Scripts
(Groovy)

Templates
(FreeMarker)
_/—

Wiki Text
\—/——

R

JCR
(Jackrabbit)

Resource
Facade

Execution
Context

L10n Facade

Logger

Facade

R
Message

Facade

R

Entity
Facade

Listeners
ehcache / Serv!et /
\/I/_ Container
Cache
Facade
Web OWASP
Facade ESAPI
Screen jQuery,
Facade Bootstrap
NoSQL N Quartz
Database Scheduler
| Service
Facade

User Facade

Facade

Artifact Execution)

Elastic-

Search

JSON-RPC
& REST

(JTA/DBCP)—(

Transaction
Facade

)

Apache
XML-RPC

21

3. Framework Tools and Configuration

Database

SR

Apache
Camel

NN

Factory, Servlet & Listeners

Execution Context instances are created by the Execution Context Factory. This can be done
directly by your code when needed, but is usually done by a container that Moqui
Framework is running in.

The most common way to run Moqui Framework is as a webapp through either a WAR file
deployed in a servlet container or app server, or by running the executable WAR file and
using the embedded Winstone Servlet Container. In either case the Moqui root webapp is
loaded and the WEB-INF/web.xml file tells the servlet container to load the MoquisServilet,
the MoquiSessionListener, and the MoquiContextListener. These are default classes
included in the framework, and you can certainly create your own if you want to change the
lifecycle of the ExecutionContextFactory and ExecutionContext.

With these default classes the ExecutionContextFactory is created by the
MogquiContextListener on the contextInitialized() event, and is destroyed by the same
class on the contextDestroyed () event. The ExecutionContext is created using the factory
by the Moguiservlet for each request in the doGet () and doPost () methods, and is
destroyed by the Moquiservilet at the end of each request by the same method.

Resource and Cache Facades

The Resource Facade is used to access and execute resource such as scripts, templates, and
content. The Cache Facade is used to do general operations on caches, and to get a reference
to a cache as an implementation of the cache interface. Along with supporting basic get/
put/remove/etc operations you can get statistics for each cache, and modify cache
properties such as timeouts, size limit, and eviction algorithm. The default Cache Facade
implementation is just a wrapper around ehcache, and beyond the cache-facade
configuration in the Moqui Conf XML file you can configure additional options using the
ehcache.xml file.

The Resource Facade uses the Cache Facade to cache plain text by its source location (for
getLocationText () method), compiled Groovy and XML Actions scripts by their locations
(for the runScriptInCurrentContext method), and compiled FreeMarker (FTL) templates also
by location (for the renderTemplateInCurrentContext () method).

There is also a cache used for the small Groovy expressions that are scattered throughout
XML Screen and Form definitions, and that cache is keyed by the actual text of the expression
instead of by a location that it came from (for the evaluateCondition(),
evaluateContextField (), and evaluateStringExpand () methods).

For more generic access to resources the getLocationReference () method returns an
implementation of the ResourceReference interface. This can be used to read resource
contents (for files and directories), and get information about them such as content/ MIME
type, last modified time, and whether it exists. These resource references are used by the rest

22

of the framework to access resources in a generic and extensible way. Implementations of the
ResourceReference interface can be implemented as needed and default implementations
exist for the following protocols/schemes: http, https, file, ftp, jar, classpath, component, and
content (JCR, i.e., Apache Jackrabbit).

Screen Facade

The API of the Screen Facade is deceptively simple, mostly just acting as a factory for the
ScreenRender interface implementation. Through the ScreenRender interface you can render
screens in a variety of contexts, the most common being in a service with no dependence on a
servlet container, or in response to a HttpServletRequest using the

ScreenRender.render (request, response) convenience method.

Generally when rendering and a screen you will specify the root screen location, and
optionally a subscreen path to specify which subscreens should be rendered (if the root
screen has subscreens, and instead of the default-item for each screen with subscreens). For
web requests this sub-screen path is simply the request "pathInfo" (the remainder of the URL
path after the location where the webapp/servlet are mounted).

Screen Definition

The real magic of the Screen Facade is in the screen definition XML files. Each screen
definition can specify web-settings, parameters, transitions with responses, subscreens, pre-
render actions, render-time actions, and widgets. Widgets include subscreens menu/active/
panel, sections, container, container-panel, render-mode-specific content (i.e. html, xml, csv,
text, xsl-fo, etc), and forms.

There are two types of forms: form-single and form-list. They both have a variety of layout
options and support a wide variety of field types. While Screen Forms are primarily defined
in Screen XML files, they can also be extended for groups of users with the DbForm and
related entities.

One important note about forms based on a service (using the auto-fields-service
element) is that various client-side validations will be added automatically based on the
validations defined for the service the form field corresponds to.

Screen/Form Render Templates

The output of the ScreenRender is created by running a template with macros for the various
XML elements in screen and form definitions. If a template is specified through the
ScreenRender .macroTemplate () method then it will be used, otherwise a template will be
determined with the renderMode and the configuration in the screen-facade.screen-
text-output element of the Moqui Conf XML file. You can create your own templates that

23 3. Framework Tools and Configuration

override the default macros, or simply ignore them altogether, and configure them in the
Moqui Conf XML file to get any output you want. There is an example of one such template
in the runtime/template/screen-macro/ScreenHtmlMacros. ftl file, with the override
configuration in the runtime/conf/development/MoquiDevConf .xml file.

The default HTML screen and form template uses jQuery Core and Ul for dynamic client-
side interactions. Other JS libraries could be used by modifying the screen HTML macros as
described above, and by changing the theme data (defaults in runtime/component/
webroot/data/WebrootThemeData.xml file) to point to the desired JavaScript and CSS files.

Service Facade

The Service Facade is used to call services through a number of service call interfaces for
synchronous, asynchronous, scheduled and special (TX commit/rollback) service calls. Each
interface has different methods to build up information about the call you want to do, and
they have methods for the name and parameters of the service.

When a service is called the caller doesn’t need to know how it is implemented or where it is
located. The service definition abstracts that out to the service definition so that those details
are part of the implementation of the service, and not the calling of the service.

Service Naming

Service names are composed of 3 parts: path, verb, and noun. When referring to a service
these are combined as: "${path}.${verb}#${noun}", where the hash/pound sign is
optional but can be used to make sure the verb and noun match exactly. The path should be a
Java package-style path such as org.moqui. impl.UsersServices for the file at
classpath://service/org/moqui/impl/UserServices.xml. While it is somewhat
inconvenient to specify a path this makes it easier to organize services, find definitions based
on a call to the service, and improve performance and caching since the framework can lazy-
load service definitions as they are needed.

That service definition file will be found based on that path with location patterns:
"classpath://service/$1" and "component://.*/service/$1" where $1 is the path with
*” changed to */” and ".xml" appended to the end.

The verb (required) and noun (optional) parts of a service name are separate to better to
describe what a service does and what it is acting on. When the service operates on a specific
entity the noun should be the name of that entity.

The Service Facade supports CrUD operations based solely on entity definitions. To use these
entity-implicit services use a service name with no path, a noun of create, update, or delete, a
hash/pound sign, and the name of the entity. For example to update a UserAccount use the
service name update#UserAccount. When defining entity-auto services the noun must
also be the name of the entity, and the Service Facade will use the in- and out-parameters

24

along with the entity definition to determine what to do (most helpful for create operations
with primary /secondary sequenced IDs, etc).

The full service name combined from the examples in the paragraphs above would look like
this:

org.moqui.impl.UserServices.update#UserAccount
Parameter Cleaning, Conversion and Validation

When calling a service you can pass in any parameters you want, and the service caller will
clean up the parameters based on the service definition (remove unknown parameters,
convert types, etc) and validate parameters based on validation rules in the service definition
before putting those parameters in the context for the service to run. When a service runs the
parameters will be in the ec.context map along with other inherited context values, and
will be in a map in the context called parameters to access the parameters segregated from
the rest of the context.

One important validation is configured with the parameter.allow-html attribute in the
service definition. By default no HTML is allowed, and you can use that attribute to allow
any HTML or just safe HTML for the service parameter. Safe HTML is determined using the
OWASP ESAPI and Antisamy libraries, and configuration for what is considered safe is done
in the antisamy-esapi .xml file.

Quartz Scheduler

The Service Facade uses Quartz Scheduler for asynchronous and scheduled service calls.
Some options are available when calling the services and configuration in the Moqui Conf
XML file, but to configure Quartz itself use the quartz.properties file (there is a default in
the framework/src/main/resources/ directory that may be overridden on the classpath).

Web Services

For web services the Service Facade uses Apache XML-RPC for incoming and outgoing
XML-RPC service calls, and custom code using Moqui JSON and web request tools for
incoming and outgoing JSON-RPC 2.0 calls. The outgoing calls are handled by the
RemoteXmlRpcServiceRunner and RemoteJsonRpcServiceRunner classes, which are
configured in the service-facade.service-type element in the Moqui Conf XML file. To
add support for other outgoing service calls through the Service Facade implement the
ServiceRunner interface (as those two classes do) and add a service-facade.service-
type element for it.

Incoming web services are handled using default transitions defined in the runtime/
component /webroot/screen/webroot/rpc.xml screen. The remote URL for these, if

25 3. Framework Tools and Configuration

webroot.xml is mounted on the root ("/") of the server, would be something like: "http://
hostname/rpc/xml" or "http://hostname/rpc/json". To handle other types of incoming
services similar screen transitions can be added to the rpc.xml screen, or to any other screen.

For REST style services a screen transition can be declared with a HTTP request method (get,
put, etc) as well as a name to match against the incoming URL. For more flexible support of
parameters in the URL beyond the transition’s place in the URL path values following the
transition can be configured to be treated the same as named parameters. To make things
easier for JSON payloads they are also automatically mapped to parameters and can be
treated just like parameters from any other source, allowing for easily reusable server-side
code. To handle these REST service transitions an internal service can be called with very
little configuration, providing for an efficient mapping between exposed REST services and
internal services.

Entity Facade

The Entity Facade is used for common database interactions including create /update/ delete
and find operations, and for more specialized operations such as loading and creating entity
XML data files. While these operations are versatile and cover most of the database
interactions needed in typical applications, sometimes you need lower-level access, and you
can get a JDBC Connection object from the Entity Facade that is based on the entity-facade
datasource configuration in the Moqui Conf XML file.

Entities correspond to tables in a database and are defined primarily in XML files. These
definitions include list the fields on the entity, relationships betweens entities, special
indexes, and so on. Entities can be extended using database record with the userField and
related entities.

Each individual record is represented by an instance of the Entityvalue interface. This
interface extends the Map interface for convenience, and has additional methods for getting
special sets of values such as the primary key values. It also has methods for database
interactions for that specific record including create, update, delete, and refresh, and for
getting setting primary /secondary sequenced IDs, and for finding related records based on
relationships in the entity definition. To create a new EntityValue object use the
EntityFacade.makeValue () method, though most often you'll get Entityvalue instances
through a find operation.

To find entity records use the EntityFind interface. To get an instance of this interface use
the EntityFacade.makeFind () method. This find interface allows you to set various
conditions for the find (both where and having, more convenience methods for where),
specify fields to select and order by, set offset and limit values, and flags including use cache,
for update, and distinct. Once options are set you can call methods to do the actual find
including: one (), list (), iterator(), count (), updateAll(), and deleteAll().

26

Multi-Tenant

When getting an EntityFacade instance from the ExecutionContext the instance retrieved
will be for the active tenantld on the ExecutionContext (which is set before authentication
either specified by the user, or set by the servlet or a listener before the request is processed).
If there is no tenantId the EntityFacade will be for the "DEFAULT" tenant and use the
settings from the Moqui Conf XML file. Otherwise it will use the active tenant1d to look up
settings on the Tenant* entities that will override the defaults in the Moqui Conf XML file
for the datasource.

Connection Pool and Database

The Entity Facade uses Atomikos TransactionsEssentials or Bitronix BTM (default) for XA-
aware database connection pooling. To configure Atomikos use the jta.properties file. To
configure Bitronix use the bitronix-default-config.properties file. With configuration
in the entity-facade element of the Moqui Conf XML file you can change this to use any
DataSource or XADataSource in JNDI instead.

The default database included with Moqui Framework is Apache Derby. This is easy to
change with configuration in the entity-facade element of the Moqui Conf XML file. To
add a database not yet supported in the MoquiDefaultConf.xml file, add a new database-
list.database element. Currently databases supported by default include Apache Derby,
DB2, HSQL, MySQL, Postgres, Oracle, and MS SQL Server.

Database Meta-Data

The first time (in each run of Moqui) the Entity Facade does a database operation on an
entity it will check to see if the table for that entity exists (unless configured not to). You can
also configure it to check the tables for all entities on startup. If a table does not exist it will
create the table, indexes, and foreign keys (for related tables that already exist) based on the
entity definition. If a table for the entity does exist it will check the columns and add any that
are missing, and can do the same for indexes and foreign keys.

Transaction Facade

Transactions are used mostly for services and screens. Service definitions have transaction
settings, based on those the service callers will pause/resume and begin/commit/rollback
transactions as needed. For screens a transaction is always begun for transitions (if one is not
already in place), and for rendering actual screens a transaction is only begun if the screen is
setup to do so (mostly for performance reasons).

27 3. Framework Tools and Configuration

You can also use the TransactionFacade for manual transaction demarcation. The JavaDoc
comments have some code examples with recommended patterns for begin/commit/
rollback and for pause/begin/ commit/rollback/resume to use try/catch/finally clauses to
make sure the transaction is managed properly.

When debugging transaction problems, such as tracking down where a rollback-only was
set, the TransactionFacade can also be use as it keeps a stack trace when
setRollbackOnly () is called. It will automatically log this on later errors, and you can
manually get those values at other times too.

Transaction Manager (JTA)

By default the Transaction Facade uses the Bitronix TM library (also used for a connection
pool by the Entity Facade). To configure Bitronix use the bitronix-default-
config.properties file. Moqui also supports Atomikos OOTB. To configure Atomikos use
the jta.properties file.

Any JTA transaction manager, such as one from an application server, can be used instead
through JNDI by configuring the locations of the UserTransaction and
TransactionManager implementations in the entity-facade element of the Moqui Conf
XML file.

Artifact Execution Facade

The Artifact Execution Facade is called by other facades to keep track of which artifacts are
"run" in the life of the ExecutionContext. It keeps both a history of all artifacts, and a stack
of the current artifacts being run. For example if a screen calls a subscreen and that calls a
service which does a find on an entity the stack will have (bottom to top) the first screen,
then the second screen, then the service and then the entity.

Artifact Authorization

While useful for debugging and satisfying curiosity, the main purpose for keeping track of
the stack of artifacts is for authorization and permissions. There are implicit permissions for
screens, transitions, services and entities in Moqui Framework. Others may be added later,
but these are the most important and the one supported for version 1.0 (see the
"ArtifactType" Enumeration records in the SecurityTypeData.xml file for details).

The Artifactauthz* and ArtifactGroup* entities are used to configure authorization for
users (or groups of users) to access specific artifacts. To simplify configuration authorization
can be "inheritable" meaning that not only is the specific artifact authorized but also
everything that it uses.

28

There are various examples of setting up different authorization patterns in the
ExampleSecurityData.xml file. One common authorization pattern is to allow access to a
screen and all of its subscreens where the screen is a higher-level screen such as the
ExampleApp.xml screen that is the root screen for the example app. Another common pattern
is that only a certain screen within an application is authorized but the rest of it is not. If a
subscreen is authorized, even if its parent screen is not, the user will be able to use that
subscreen.

Artifact Hit Tracking

There is also functionality to track performance data for artifact "hits". This is done by the
Execution Context Factory instead of the Artifact Execution Facade because the Artifact
Execution Facade is created for each Execution Context, and the artifact hit performance data
needs to be tracked across a large number of artifact hits both concurrent and over a period
of time. The data for artifact hits is persisted in the ArtifactHit and ArtifactHitBin
entities. The ArtifactHit records are associated with the visit record (one visit for each
web session) so you can see a history of hits within a visit for auditing, user experience
review, and various other purposes.

User, L10n, Message, and Logger Facades

The User Facade is used to manage information about the current user and visit, and for
login, authentication, and logout. User information includes locale, time zone, and currency.
There is also the option to set an effective date/time for the user that the system will treat as
the current date/time (through ec.user.nowTimestamp) instead of using the current system
date/time.

The L10n (Localization) Facade uses the locale from the User Facade and localizes the
message it receives using cached data from the LocalizedMessage entity. The
EntityFacade also does localization of entity fields using the LocalizedEntityField
entity. The L10n Facade also has methods for formatting currency amounts, and for parsing
and formatting for Number, Timestamp, Date, Time, and Calendar objects using the Locale
and TimeZone from the User Facade as needed.

The Message Facade is used to track messages and error messages for the user. The error
message list (ec.message.errors) is also used to determine if there was an error in a service
call or other action.

The Logger Facade is used to log information to the system log. This is meant for use in
scripts and other generic logging. For more accurate and trackable logging code should use
the SLF4] Logger class (org.s1£47.Logger) directly. The JavaDoc comments in the
LoggerFacade interface include example code for doing this.

29 3. Framework Tools and Configuration

Extensions and Add-ons

The Compelling Component

A Moqui Framework component is a set of artifacts that make up an application built on
Moqui, or reusable artifacts meant to be used by other components such as the mantle-udm
and mantle-usl components, a theme component, or a component that integrates some
other tool or library with Moqui Framework to extend the potential range of applications
based on Moqui.

Component Directory Structure

The structure of a component is driven by convention as opposed to configuration. This
means that you must use these particular directory names, and that all Moqui components
you look at will be structured in the same way.

e data - Entity XML data files with root element entity-facade-xml, loaded by type
attribute matching types specified on command line (executable WAR with -1oad), or
all types if no type specified

e entity - All Entity Definition and Entity ECA XML files in this directory will be loaded;
Entity ECA files must be in this directory and have the dual extension ".eecas .xml"

e 1ib - JAR files in this directory will be added to the classpath when the webapp is
deployed

e screen - Screens are referenced explicitly (usually by "component: //*" URL), so this
is a convention

e script - Scripts are referenced explicitly (usually by "component: //+*" URL), so this is
a convention; Groovy, XML Action, and any other scripts should go under this directory

e service - Services are loaded by path to the Service Definition XML file they are
defined in, and those paths are found either under these component service directories or
under "classpath://service/"; Service ECA files must be in this directory and have
the dual extension ". secas .xml"; Email ECA files must be in this directory and have
the extension ".emecas .xml"

Installing a Component
Load the Component

There are two ways to tell Moqui about a component:

e put the component directory in the runtime /component directory
e add a component-list.component element in the Moqui Conf XML file

30

Mounting Screen(s)

Each webapp in Moqui (including the default webroot webapp) must have a root screen
specified in the moqui-conf.webapp-list.webapp.root-screen-location attribute. The
default root screen is called webroot which is located at runtime/component/webroot/
screen/webroot.xml.

For screens from your component to be available in a screen path under the webroot screen
you need to make each top-level screen in your component (i.e. each screen in the
component’s screen directory) a subscreen of another screen that is an ancestor of the
webroot screen. There are two ways to do this (this does not include putting it in the
webroot directory as an implicit subscreen since that is not an option for screens defined
elsewhere):

e add a screen.subscreens.subscreen-item element to the parent screen (what the
subscreen will be under); for example see the apps screen (runtime/component/
webroot/screen/WebRoot/apps .xml) where the example and tools root screens are
"mounted”

e add a record in the subscreensItem entity, specifying the parent screen in the
screenLocation field, the subscreen in the subscreenLocation field, the "mount point"
in the subscreenName field (equivalent to the subscreens-item.name attribute), and
either ALL_USERS in the userGroup1d field for it to apply to all users, or an actual
userGroupId for it to apply to just that user group

If you want your screen to use its own decoration and be independent from other screens,
put it under the webroot screen directly. To have your screen part of the default apps menu
structure and be decorated with the default apps decoration, put it under the apps screen.

Moqui Conf XML File Settings

You may want have things in your component add to or modify various things that come by
default with Moqui Framework, including;:

e Resource Reference: see the moqui-conf.resource-facade.resource-reference
element

° Template Renderer: see the moqui-conf.resource-facade.template-renderer
element

e Screen Text Output Template: see the moqui-conf.screen-facade.screen-text-
output element

e Service Type Runner: see the moqui-conf.service-facade.service-type element

o Explicit Entity Data and Definition files: see the moqui-conf.entity-facade.load-
entity and moqui-conf.entity-facade.load-data elements

There are examples of all of these in the MoquiDefaultConf . xml file since the framework
uses the Moqui Conf XML file for its own default configuration.

31 3. Framework Tools and Configuration

This book sponsored by HotWax Media (http:/www.hotwaxmedia.com/)

'/

your custom ERP project.

HotWax Media

open source ERP experts

e-Commerce
mobileDevices
warenouseSolutions
orderManagment
customerService

CALL US TODAY 877.736.4080
VISIT US ONLINE hotwaxmedia.com

Since 1997, delivering open source e-commerce, ERP, and custom solutions.

32

http://www.hotwaxmedia.com/

4. Create Your First Component

Summary

This chapter is a step-by-step guide to creating and running your own Moqui component
with a user interface, logic, and database interaction.

e Part 1: To get started you'll be creating your own component and a simple "Hello
world!" screen.

e Part 2: Continuing from there you'll define your own entity (database table) and add
forms to your screen to find and create records for that entity.

e Part 3: To finish off the fun you will create some custom logic instead of using the
default CrUD logic performed by the framework based on the entity definition.

The running approach used in this document is a simple one using the embedded servlet
container and database.

The tutorial code from this chapter is available on moqui.org at:

http:/ /www.moqui.org/tutorial.zip

Part 1
Download Moqui Framework

If you haven't already downloaded Moqui Framework, do that now. You should have a
moqui-<version> directory with at least the moqui-<version>.war file and the default
runtime directory that comes with Moqui. Start out in that moqui root directory.

If you have a clean download, do a data load and try running it real quick:

$ gradle load
$ gradle run

In your browser go to http://localhost:8080/, log in as John Doe with the button in the
lower-left corner of the screen, and look around a bit.

Now quit (<ctrl>-c in the command line) and you're ready for the next step.
33 4. Create Your First Component

http://www.moqui.org/tutorial.zip
http://localhost:8080/

Create a Component

Moqui follows the "convention over code" principle for components, so all you really have to
do to create a Moqui component is create a directory:

$ cd runtime/component
$ mkdir tutorial

Now go into the directory and create some of the standard directories that you'll use later in
this tutorial:

cd tutorial
mkdir data
mkdir entity
mkdir screen
mkdir script
mkdir service

wv»n »n»nn n

With your component in place just start up Moqui (with "$ gradle run"or similar).
Add a Screen

Using your preferred IDE or text editor add a screen XML file in:
runtime/component/tutorial/screen/tutorial.xml

For now let this be a super simple screen with just a "Hello world!" label in it. The contents
should look something like:

<screen require-authentication="false">
<widgets><label type="hl" text="Hello world!"/></widgets>
</screen>

Note that the require-authentication attribute is set to false. By default this is true and
the screen will require authentication and authorization. We'll discuss the artifact-aware
configurable authorization later in the Security chapter.

Mount as a Subscreen

To make your screen available it needs to be added as a subscreen to a screen that is already
under the root screen somewhere. In Moqui screens the URL path to the screen and the menu
structure are both driven by the subscreen hierarchy, so this will setup the URL for the screen
and add a menu tab for it.

For the purposes of this tutorial we'll use the existing root screen and header/footer/etc that
are in the included runtime directory. This runtime directory has a webroot component with
the root screen at:

runtime/component/webroot/screen/webroot.xml

34

On a side note, the root screen is specified in the Moqui Conf XML file using the webapp-
list.webapp.root-screen element, and you can use multiple elements to have different
root screens for different host names.

To make the subscreen hierarchy more flexible this root screen only has a basic HTML head
and body, with no header and footer content, so let's put our screen under the "apps" screen
which adds a header menu and will give our screen some context. Modify the apps screen by
changing:

runtime/component/webroot/screen/webroot/apps.xml

Add a subscreens-item element under the subscreens element in the apps.xml file like:

<subscreens-item name="tutorial" menu-title="Tutorial"
location="component://tutorial/screen/tutorial.xml"/>

The name attribute specifies the value for the path in the URL to the screen, so your screen is
now available in your browser at:

http://localhost:8080/apps/tutorial

If you don't want to modify an existing screen file and still want to mount your screen as a
subscreen of another you can do so with a record in the database that looks like this (in the

entity-facade-xml format with elements representing entities and attributes representing
fields):

<SubscreensItem subscreenName="tutorial" userGroupId="ALL USERS"
screenLocation="component://webroot/screen/webroot/apps.xml"
subscreenLocation="component://tutorial/screen/tutorial .xml"
menuTitle="Tutorial" menuIndex="1" menuInclude="Y"/>

Once it’s all wired up this is what your screen should look like:

< # | #| | + | @ localhost:8080 ¢ Ol MmO

Hello world!

Try Included Content

Instead of using the label element we can get the HTML from a file that is "under" the screen.
First create a simple HTML file located at:

runtime/component/tutorial/screen/tutorial/hello.html

35 4. Create Your First Component

http://localhost:8080/apps/tutorial

The HTML file can contain any HTML, and since this will be included in a screen whose
parent screens take care of header/footer/etc we can keep it very simple:

<hl>Hello world! (from the hello.html file)</hl>

Now just explicitly include the HTML file in the tutorial.xml screen definition using the
render-mode.text element:

<screen>
<widgets>
<label type="hl" text="Hello world!"/>
<render-mode>
<text type="html"
location="component://tutorial/screen/tutorial/hello.html" />
</render-mode>
</widgets>
</screen>

So what is this render-mode thingy? Moqui XML Screens are meant to platform agnostic and
may be rendered in various environments. Because of this we don't want anything in the
screen that is specific to a certain mode of rendering the screen without making it clear that it
is. Under the render-mode element you can have various sub-elements for different render
modes, even for different text modes such as HTML, XML, XSL-FO, CSV, and so on so that a
single screen definition can be rendered in different modes and produce output as needed for
each mode.

The screen is available at the same URL, but now includes the content from the HTML file
instead of having it inline as a label in the screen definition.

Try Sub-Content

Another way to show the contents of the hello.html file is to treat it as screen sub-content.

To do this the hello.html file must by in a subdirectory with the same name as the screen,
i.e.in a tutorial directory as a sibling of the tutorial.xml file.

Now all we have to do is:

o tell the tutorial.xml screen to include child content by setting the screen.include-
child-content attribute to true

o tell the screen where to include subscreens and child content by adding a
widgets.subscreens-active element

» specify the default subscreens item as the hello.html sub-content with the
subscreens.default-item attribute

With those done your screen XML file should look like:

36

<screen require-authentication="false" include-child-content="true">
<subscreens default-item="hello.html"/>
<widgets>
<label type="hl" text="Hello world!"/>
<subscreens-active/>
</widgets>
</screen>

To see the content go to a URL that tells Moqui that you want the hello.html file that is
under the tutorial screen:

http://localhost:8080/apps/tutorial/hello.html
With the default subscreens item specified you can also just go to the tutorial screen's URL:

http://localhost:8080/apps/tutorial

With this in place this is how your screen should look, with both hello world lines:

0

< 2| | A | + | @ localhost:8080 ¢ oM e

Hello world!

Hello world! (from the hello.html file)

Part 2
My First Entity

An entity is a basic tabular data structure, and usually just a table in a database. An entity
value is equivalent to a row or record in the database. Moqui does not do object-relational
mapping, so all we have to do is define an entity, and then start writing code using the Entity
Facade (or other higher level tools) to use it.

To create a simple entity called Tutorial with fields tutorialid and description create an
entity XML file at:

runtime/component/tutorial/entity/TutorialEntities.xml

That contains:

37 4. Create Your First Component

http://localhost:8080/apps/tutorial/hello.html
localhost:8080/apps/tutorial

<entities>
<entity entity-name="Tutorial" package-name="tutorial">
<field name="tutorialId" type="id" is-pk="true"/>
<field name="description" type="text-long"/>
</entity>
</entities>

If you're running Moqui in dev mode the entity definition cache clears automatically so you
don't have to restart, and for production mode or if you don't want to wait (since Moqui does
start very fast) you can just stop and start the JVM.

How do you create the table? Unless you turn the feature off (in the Moqui Conf XML file)
the Entity Facade will create the table the first time the entity is used if it doesn't already
exist.

Add Some Data

The Entity Facade has functionality to load data from, and write data to, XML files where
elements map to entity names and attributes map to field names.

We'll create a Ul to enter data later on, and you can use the Auto Screen or Entity Data Ul in
the Tools application to work with records in your new entity. Data files are useful for seed
data that code depends on, data for testing, and data to demonstrate how a data model
should be used. So, let's try it.

Create an entity facade XML file at:
runtime/component/tutorial/data/TutorialData.xml
That contains:

<entity-facade-xml type="seed">
<tutorial.Tutorial tutorialId="TestOne"
description="Test one description."/>
<tutorial.Tutorial tutorialId="TestTwo"
description="Test two description."/>
</entity-facade-xml>

To load this just run "$ gradle load" or one of the other load variations described in the
Running Moqui chapter.

Automatic Find Form

Add the XML screen definition below as a subscreen for the tutorial screen by putting it in
the file:

runtime/component/tutorial/screen/tutorial/FindTutorial.xml

38

<screen require-authentication="anonymous-all">
<transition name="findTutorial">
<default-response url="."/></transition>
<actions>

<entity-find entity-name="tutorial.Tutorial" list="tutorialList">
<search-form-inputs/></entity-find>
</actions>
<widgets>
<form-list name="ListTutorials" list="tutorialList"
transition="findTutorial">
<auto-fields-entity entity-name="tutorial.Tutorial"
field-type="find-display"/>
</form-list>
</widgets>
</screen>

This screen has a few key parts:

e transition Think of links between screens as an ordered graph where each screen is a
node and the transitions defined in each screen are how you go from that screen to
another (or back to the same), and as part of that transition possibly run actions or a
service.

e Asingle transition can have multiple responses with conditions and for errors
resulting in transition to various screens as needed by your Ul design.

e This particular transition refers to the current screen.

e actions.entity-find There is just one action run when this screen is rendered: an
entity-find.

e Normally with an entity-find element (or in the Java API an EntityFind object) you
would specify conditions, fields to order by, and other details about the find to run.

e In this case we are doing a find on an entity using standard parameters from a XML
Form, so we can use the search-form-inputs sub-element to handle these
automatically.

e To get an idea of what the parameters should be like just view the HTML source in
your browser that is generated by the XML Form.

e widgets.form-1list This is the actual form definition, specifically for a "list" form for
multiple records/rows (as opposed to a "single" form).

e The name here can be anything as long as it is unique within the XML Screen.

o Note that the 1ist refers to the result of the entity-find in the actions block, and
the transition attribute refers to the transition element defined at the top of the
screen.

« Since the goal was to have a form automatically defined based on an entity we use the
auto-fields-entity element with the name of our Tutorial entity, and "find-
display' option for the field-type attribute which creates find fields in the header
and display fields for each record in the table body.

39 4. Create Your First Component

To view this screen use this URL:

http://localhost:8080/apps/tutorial/FindTutorial

An Explicit Field

Instead of the default for the description field, what if you wanted to specify how it should
look and what type of field it should be?

To do this just add a field element inside the form-1ist element, and just after the auto-
fields-entity element, like this:

<form-list name="ListTutorials" list="tutorialList"
transition="findTutorial">
<auto-fields-entity entity-name="tutorial.Tutorial"
field-type="display"/>
<field name="description">
<header-field show-order-by="true">
<text-find hide-options="true"/></header-field>
<default-field><display/></default-field>
</field>
<field name="find">
<header-field><submit/></header-field>
</field>
</form-list>

Because the field name attribute is the same as a field already created by the auto-fields-
entity element it will override that field. If the name was different an additional field would
be created. The result of this is mostly the same as what was automatically generated using
the auto-fields-entity element, and this is how you would do it explicitly.

With your screen and form defined like this the FindTutorial screen should look something
like this:

My Company - FindTutorial

< < | A + @ localhost:8080 ¢ Om e O

Hello world!

< <1=-2/2>>|

Tutorial ID +~- Last Updated Stamp +- Description +-

TestOne 2014-08-05 13:45:53.506 Test one description.
TestTwo 2014-08-05 13:45:53.506 Test two description.

40

http://localhost:8080/apps/tutorial/FindTutorial

Add a Create Form

Let's add a button that will pop up a Create Tutorial form, and a transition to process the
input.

First add the transition to the FindTutorial.xml screen you created before, right next to the
findTutorial transition:

<transition name="createTutorial">
<service-call name="create#tutorial.Tutorial"/>
<default-response url="."/>

</transition>

This transition just calls the create#tutorial.Tutorial service, and then goes back to the
current screen.

Where did the create#tutorial.Tutorial service come from? We haven't defined
anything like that yet. The Moqui Service Facade supports a special kind of service for entity
CrUD operations that don't need to be defined, let alone implemented. This service name
consists of two parts, a verb and a noun, separated by a hash (#).

As long as the verb is create, update, store, or delete and the noun is a valid entity name
the Service Facade will treat it as an implicit entity-auto service and do the desired operation.
It does so based on the entity definition and the parameters passed to the service call. For
example, with the create verb and an entity with a single primary key field if you pass in a
value for that field it will use it, otherwise it will automatically sequence a value using the
entity name as the sequence key.

Next let's add the create form, in a hidden container that will expand when a button is
clicked. Put this inside the widget element, just above the form-1ist element in the original
FindTutorial screen you created before so that it appears above the list form in the screen:

<container-dialog id="CreateTutorialDialog" button-text="Create Tutorial">
<form-single name="CreateTutorial" transition="createTutorial">
<auto-fields-entity entity-name="tutorial.Tutorial"
field-type="edit"/>
<field name="submitButton">
<default-field title="Create"><submit/></default-field>
</field>
</form-single>
</container-dialog>

The form definition refers to the transition you just added to the screen, and uses the
auto-fields-entity element with edit for the field-type attribute to generate edit
fields. The last little detail is to declare a button to submit the form, and it is ready to go. Try
it out and see the records appear in the list form that was part of the original screen.

41 4. Create Your First Component

Here is a screen shot of the create form, and you can see the button added to the find screen
in the background:

My Company - FindTutorial
< 2 | A + @ localhost:8080 ¢ [N JRE<IRE)

Create Tutorial

Tutorial ID

Description

Part 3
Custom Create Service

The createTutorial transition from our screen above used the implicit entity-auto service
create#tutorial.Tutorial. Let's see what it would look like to define and implement a
service manually.

First lets define a service and use the automatic entity CrUD implementation. Put the
services XML text below in a file in this location:

runtime/component/tutorial/service/tutorial/TutorialServices.xml

<services>
<service verb="create" noun="Tutorial" type="entity-auto">
<in-parameters><auto-parameters include="all"/></in-parameters>
<out-parameters>
<auto-parameters include="pk" required="true"/>
</out-parameters>
</service>
</services>

This will allow all fields of the Tutorial entity to be passed in, and will always return the
PK field (tutorialid). Note that with the auto-parameters element we are defining the
service based on the entity, and if we added fields to the entity they would be automatically
represented in the service.

Now change that service definition to add an inline implementation as well. Notice that the
service.type attribute has changed, and the actions element has been added.

42

<service verb="create" noun="Tutorial" type="inline">
<in-parameters><auto-parameters include="all"/></in-parameters>
<out-parameters>
<auto-parameters include="pk" required="true"/>
</out-parameters>
<actions>
<entity-make-value entity-name="tutorial.Tutorial"
value-field="tutorial"/>
<entity-set value-field="tutorial" include="all"/>
<if condition="!tutorial.tutorialId">
<entity-sequenced-id-primary value-field="tutorial"/>
</if>
<entity-create value-field="tutorial"/>
</actions>
</service>

Now to call the service instead of the implicit entity-auto one just change the transition to
refer to this service:

<transition name="createTutorial">
<service-call name="tutorial.TutorialServices.create#Tutorial"/>
<default-response url="."/>

</transition>

Note that the service name for a defined service like this is like a fully qualified Java class
name. It has a "package", in this case tutorial which is the directory (possibly multiple
directories separated by dots) under the component/service directory. Then there is a dot
and the equivalent of the class name, in this case "TutorialServices" which is the name of
the XML file the service is in, but without the .xml extension. After that is another dot, and
then the service name with the verb and noun optionally separated by a hash (#).

Groovy Service

What if you want to implement the service in Groovy (or some other supported scripting
language) instead of the inline XML Actions? In that case the service definition would look
like this:

<service verb="create" noun="Tutorial" type="script"
location="component://tutorial/script/tutorial/createTutorial.groovy">
<in-parameters><auto-parameters include="all"/></in-parameters>
<out-parameters>
<auto-parameters include="pk" required="true"/>
</out-parameters>
</service>

Notice that the service.type attribute has changed to "script", and there is now a
service.location attribute which specifies the location of the script.

43 4. Create Your First Component

Here is what the script would look like in that location:

def tutorial = ec.entity.makeValue("tutorial.Tutorial")
tutorial.setAll (context)

if (!tutorial.tutoriallId) tutorial.setSequencedIdPrimary ()
tutorial.create()

When in Groovy, or other languages, you'll be using the Moqui Java API which is based on
the ExecutionContext class which is available in the script with the variable name "ec". For
more details on the API see the API JavaDocs (http://www.moqui.org/javadoc/
index.html)andspecﬁkaﬂythedocfortheExecutionContext(http://www.moqui.orq/
javadoc/org/moqui/context/ExecutionContext.html) class which has links to the other
major APl interface pages.

44

http://www.moqui.org/javadoc/index.html
http://www.moqui.org/javadoc/index.html
http://www.moqui.org/javadoc/org/moqui/context/ExecutionContext.html
http://www.moqui.org/javadoc/org/moqui/context/ExecutionContext.html

5. Data and Resources

Resources, Content, Templates, and Scripts

Resource Locations

A Resource Facade location string is structured like a URL with a protocol, host, optional
port, and filename. It supports the standard Java URL protocols (http, https, ftp, jar, and file).
It also supports some additional useful protocols:

e classpath:// for resources on the Java classpath

e content:// for resources in a content repository (JCR, via Jackrabbit client); the first
path element after the protocol prefix is the name of the content repository as specified
in the repository.name attribute in the Moqui Conf XML file

e component:// for locations relative to a component base location, no matter where
the component is located (file system, content repository, etc)

e dbresource:// for a virtual filesystem persisted with the Entity Facade in a database
using the moqui.resource.DbResource and DbResourceFile entities

Additional protocols can be added by implementing the
org.moqui.context.ResourceReference interface and adding a resource-
facade.resource-reference element to the Moqui Conf XML file. The supported protocols
listed above are configured this way in the MoquiDefaultConf.xml file.

Using Resources

The simplest way to use a resource, and supported by all location protocols, is to read the
text or binary content. To get the text from a resource location use the
ec.resource.getLocationText (String location, boolean cache) method. To get an
InputStream for binary or large text resources use the
ec.resource.getLocationStream(String location) method.

For a wider variety of operations beyond just reading resource data use the
ec.resource.getLocationReference(String location) method to get an instance of the
org.moqui.context.ResourceReference interface. This interface has methods to get text

45 5. Data and Resources

or binary stream data from the resource like the Resource Facade methods. It also has
methods for directory resources to get child resources, find child files and/ or directories
recursively by name, write text or binary stream data, and move the resource to another
location.

Rendering Templates and Running Scripts

There is a single method for rendering a template in a resource at a location:
ec.resource.renderTemplateInCurrentContext (String location, Writer writer).
This method returns nothing and simply writes the template output to the writer. By default
FTL (Freemarker Template Language) and GString (Groovy String) are supported.

Additional template renderers can be supported by implementing the
org.moqui.context.TemplateRenderer interface and adding a resource-
facade.template-renderer element to the Moqui Conf XML file.

To run a script through the Resource Facade use the object
ec.resource.runScriptInCurrentContext(String location, String method)
method. Specify the location and optionally the method within the script at the location
and this method will run the script and return the object that the script returns or evaluates
to. There is a variation on this method in the Resource Facade that also accepts a Map
additionalContext parameter for convenience (it just pushes the Map onto the context
stack, runs the script, then pops from the context stack). By default Moqui supports Groovy,
XML Actions, JavaScript, and any scripting engine available through the
javax.script.ScriptEngineManager.

To add a script runner you have two options. You can use the javax.script approach for
any scripting language that implements the javax.script.ScriptEngine interface and is
discoverable through the javax.script.ScriptEngineManager. Moqui uses this to
discover the script engine using the extension on the script’s filename and execute the script.
If the script engine implements the javax.script.Compilable interface then Moqui will
compile the script and cache it in compiled form for the faster repeat execution of a script at a
given location.

The other option is to implement the org.moqui.context.ScriptRunner interface and add
a resource-facade.script-runner element to the Moqui Conf XML file. Moqui uses
Groovy the XML Actions through this interface as it provides additional flexibility not
available through the javax.script interfaces.

Because Groovy is the default expression language in Moqui there are a few Resource Facade
methods to easily evaluate expressions for different purposes:

e boolean evaluateCondition(String expression, String debugLocation) is
used to evaluate a Groovy condition expression and return the boolean result

46

e Object evaluateContextField(String expression, String debugLocation) is
used to evaluate the expression to return a field within the context, and more
generally to evaluate any Groovy expression and return the result

e String evaluateStringExpand(String inputString, String debugLocation) is
used to expand the inputString, treating it as a GString (Groovy String) and returns
the expanded value

These methods accept a debugLocation parameter that is used in error messages. For faster
evaluation these expressions are all cached, using the expression itself as the key for maximal
reuse.

Data Model Definition

Entity Definition XML

Let’s start with a simple entity definition that shows the most common elements. This is an
actual entity that is part of Moqui Framework:

<entity entity-name="DataSource" package-name="moqui.basic" cache="true">
<field name="dataSourceId" type="id" is-pk="true"/>
<field name="dataSourceTypeEnumId" type="id"/>
<field name="description" type="text-medium"/>
<relationship type="one" title="DataSourceType"
related-entity-name="Enumeration">
<key-map field-name="dataSourceTypeEnumId"/>
</relationship>
<seed-data>
<moqui.basic.EnumerationType description="Data Source Type"
enumTypeId="DataSourceType" />
<moqui.basic.Enumeration description="Purchased Data"
enumId="DST PURCHASED DATA" enumTypeld="DataSourceType"/>
</seed-data>
</entity>

Just like a Java class an entity has a package name and the full name of the entity is the
package name plus the entity name, in the format:

${package-name}.${entity-name}
Based on that pattern the full name of this entity is:
moqui.basic.DataSource

This example also has the entity.cache attribute set to true, meaning that it will be cached
unless the code doing the find says otherwise.

The first field (datasourceId) has the is-pk attribute set to true, meaning it is one of the
primary key fields on this entity. In this case it is the only primary key field, but any number
of fields can have this attribute set to true to make them part of the primary key.

47 5. Data and Resources

The third field (description) is a simple field to hold data. It is not part of the primary key,
and it is not a foreign key to another entity.

The field.type attribute is used to specify the data type for the field. The default options
are defined in the MoquiDefaultConf.xml file with the database-1list.dictionary-
type element. These elements specify the default type settings for each dictionary type and
there can be an override to this setting for each database using the database.database-
type element.

You can use these elements to add your own types in the data type dictionary. Those custom
types won't appear in autocomplete for the field.type attribute in your XML editor unless
you change the XSD file to add them there as well, but they will still function just fine.

The second field (datasourceTypeEnumId) is a foreign key to the Enumeration entity, as
denoted by the relationship element in this entity definition. The two records in under the
seed-data element define the EnumerationType to group the Enumeration options, and
one of the Enumeration options for the datasourceTypeEnumid field. The records under the
seed-data element are loaded with the command-line -1oad option (or the corresponding
API call) along with the seed type.

There is an important pattern here that allows the framework to know which enumType1d to
use to filter Enumeration options for a field in automatically generated form fields and such.
Notice that the value in the relationship.title attribute matches the enumTypeId. In
other words, for enumerations anyway, there is a convention that the relationship.title
value is the type ID to use to filter the list.

This is a pattern used a lot in Moqui and in the Mantle Business Artifacts because the
Enumeration entity is used to manage types available for many different entities.

In this example there is a key-map element under the relationship element, but that is only
necessary if the field name(s) on this entity does not match the corresponding field name(s)
on the related entity. In other words, because the foreign key field is called
dataSourceTypeEnumId instead of simply enumid we need to tell the framework which field
to use. It knows which field is the primary key of the related entity (Enumeration in this
case), but unless the field names match it does not know which fields on this entity
correspond to those fields.

In most cases you can use something more simple without key-map elements like:
<relationship type="one" related-entity-name="Enumeration"/>

The seed-data element allows you to define basic data that is necessary for the use of the
entity and that is an aspect of defining the data model. These records get loaded into the
database along with the entity-facade-xml files where the type attribute is set to seed.

With this introduction to the most common elements of an entity definition, lets now look at
some of the other elements and attributes available in an entity definition.

e other entity attributes

48

49

e group-name: Each datasource available through the Entity Facade is used by putting
an entity in the group for that datasource. The value here should match a value on the
moqui-conf.entity-facade.datasource.group-name attribute in the Moqui Conf
XML file. If no value is specified will default to the value of the mogqui-conf.entity-
facade.default-group-name attribute. By default configuration the valid values
include transactional (default), analytical, tenantcommon, and nosql.

e sequence-bank-size: The size of the sequence bank to keep in memory. Each time
the in-memory bank runs out the seqNum in the sequencevalueItem record will be
incremented by this amount.

e sequence-primary-stagger: The maximum amount to stagger the sequenced ID.
If 1 the sequence will be incremented by 1, otherwise the current sequence ID will be
incremented by a random value between 1 and staggerMax.

e sequence-secondary-padded-length: If specified front-pads the secondary

sequenced value with zeroes until it is this length. Defaults to 2.

optimistic-1lock: Set to true to have the Entity Facade compare the

lastUpdatedStamp field in memory to the one in the database before doing an

update on the record. If the timestamps don’t match an error will be generated.

Defaults to "false" (no timestamp locking).

e no-update-stamp: By default the Entity Facade adds a single field
(LastUpdatedStamp) to each entity for use in optimistic locking and data
synchronization. If you do not want it to create that stamp field for this entity then set
this to "false".

e cache: can be set to these values (defaults to false):

e true: use cache for finds (code may override this)
e false: no cache for finds (code may override this)
e never: no cache for finds (code may NOT override this)
e authorize-skip: can be set to these values (defaults to false):
e true: skip all authz checks for this entity
e false: do not skip authz checks
e create: skip authz checks for create operations
e view: skip authz checks for finds or read-only operations
e view-create: skip authz checks for find and create ops

e other field attributes

e encrypt: Set to true to encrypt this field in the database. Defaults to false (not
encrypted).

e enable-audit-1log: Set to true to log all changes to the field along with when it
was changed and the user who changes. The data is stored using the
EntityAuditLog entity. Defaults to false (no audit logging).

e enable-localization:If set to true gets on this field will be looked up with the
LocalizedEntityField entity and if there is a matching record the localized value
will be returned instead of the original record's value. Defaults to false for
performance reasons, only set to true for fields that will have translations.

5. Data and Resources

While some database optimizations must be done in the database itself because so many
such features vary between databases, you can declare indexes along with the entity
definition using the index element. As an element under the entity element it would look
something like this:

<index name="EX NAME IDX1" unique="true">
<index-field name="exampleName"/>
</index>

Entity Extension - XML

An entity can be extended without modifying the XML file where the original is defined.
This is especially useful when you want to extend an entity that is part of a different
component such as the Mantle Universal Data Model (mantle-udm) or even part of the
Moqui Framework and you want to keep your extensions separate.

This is done with the extend-entity element which can mixed in with the entity elements
in an entity definition XML file. This element has most of the same attributes and sub-
elements as the entity element used to define the original entity. Simply make sure the
entity-name and package-name match the same attributes on the original entity element
and anything else you specify will add to or override the original entity.

Here is an example if a XML snippet to extend the moqui.example.Example entity:

<extend-entity entity-name="Example" package-name="moqui.example">
<field name="auditedField" type="text-medium" enable-audit-log="true"/>
<field name="encryptedField" type="text-medium" encrypt="true"/>
</extend-entity>

Entity Extension - DB

You can also extend an entity with a database record using the userField entity. This is a bit
different from extending an entity with the extend-entity XML element because it is a
virtual extension and the data goes in a separate data structure using the userFieldvalue
entity.

The main reason for this difference is that User Fields are generally added for a group of
users or a single user, and are not visible outside the group they are associated with. You can
use the ALL_UsERs User Group to have a User Field applies to all users.

Even though it operates this way under the covers, from the perspective of the
EntityValue object it is treated the same way as any other field on the entity.

Here is an example element from the ExampleTypeData.xml file showing how you would
add a testUserField field accessible by all users to the moqui.example.Example entity:

<moqui.entity.UserField entityName="moqui.example.Example"
fieldName="testUserField" userGroupId="ALL USERS" fieldType="text-long"

50

enableAuditLog="Y" enableLocalization="N" encrypt="N"/>

Data Model Patterns

There are various useful data model patterns that Moqui Framework has conventions and
functionality to help support. These data model patterns are also used extensively in the
Moqui and Mantle data models.

Master Entities

A Master Entity is one whose records exist independent of other entities, and generally has a
single field primary key. Examples of this include the moqui.example.Example,
moqui.security.UserAccount, mantle.party.Party, mantle.product.Product, and
mantle.order.OrderHeader entities.

To set a primary sequenced ID, which is the sequenced value for the primary key of a master
entity, use the Entityvalue.setSequencedIdPrimary () method. You can also manually set
the primary key field to any value, as long as it is unique.

Detail Entities

A Detail Entity adds detail to a Master Entity for fields that have a one-to-many relationship
with the Master. The primary key is usually two fields and one of the fields is the single
primary key field of the master entity. The second field is a special sort of sequenced ID that
instead of having an absolute sequence value its value is in the context of the master entity’s
primary key.

An example of a detail entity is ExampleItem, which is a detail to the master entity Example.
ExampleItem has two primary keys: example1d (the primary key field of the master entity)
and exampleItemSeqId which is a sub-sequence to distinguish the detail records within the
context of a master record.

To populate the secondary sequenced ID first set the master’s primary key (example1d for
ExampleItem), then use the Entityvalue.setSequencedIdSecondary () method to
automatically populate it (for ExampleItem the exampleItemSeqId).

A single master entity can have multiple detail entities associated with it to structure distinct
data as needed.

Join Entities

A Join Entity is used to associate Master Entities, usually two. A Join Entity is a physical
representation of a many-to-many relationship between entities in a logical model.

51 5. Data and Resources

Ajoin entity is useful for tracking associated records among the master entities, and for any
data that is associated with both master entities as opposed to just one of them. For example
if you want to specify a sequence number for one master entity record in the context of a
record of the other master entity, the sequence number field should go on the join entity and
not on either of the master entities.

The join entity may have a single generated primary key, or a natural composite primary key
consisting of the single primary key field of each of the master entities and optionally a
fromDate field with a corresponding thrupate field that is not part of the join entity’s
primary key.

One example of this is the ExampleFeatureappl entity which joins the Example and
ExampleFeature master entities. The ExampleFeaturenppl entity has three primary key
fields: exampleld (the PK of the Example entity), exampleFeature1d (the PK of the
ExampleFeature entity), and a fromDate. It also has a thrubpate field to accompany the
frombate PK field.

To better describe the relationship between an Example and an ExampleFeature, the
ExampleFeatureAppl entity also has a sequenceNum field for ordering features within and
example, and a exampleFeatureApplEnumId field to describe how the feature applies to the
example (Required, Desired, or Not Allowed).

To see the actual entity definition and seed data for the ExampleFeatureappl entity see the
ExampleEntities.xml file (in the example component that comes with Moqui Framework).

Dependent Entities

A few parts of the API and Tools app support the concept of "dependent" entities. Dependent
entities can be found for any entity, but the concept is most useful for dependents of Master
Entities. The general idea is that things like the items of an order
(mantle.order.OrderItem) are dependent on the header (mantle.order.OrderHeader). It
is useful to do operations such as data export including the master entity and all of its
dependents.

Conceptually this is pretty simple, but the implementation is more complex because the
information we have to work with for this is the entity relationships. The general idea is that
each type one relationship points from a dependent entity to its master, and by this definition
many dependent entities have more than one master entity and an entity can be both a
dependent and a master entity so what an entity is depends on how you are treating it. When
defining entities there is an automatic reverse type relationship for each type one
relationship, and while it is generally a type many reverse relationship if the two entities
have the same PK field(s) then it is a type one automatic reverse relationship.

For example, orderItem has a type one relationship to orderHeader so there is an automatic
reverse relationship of type many from orderHeader to OrderItem. This establishes
OrderItem as a dependent of OrderHeader.

52

When getting dependents for an entity the method (which is part of the internal Entity
Facade implementation: EntityDefinition.getDependentsTree()) runs recursively to get
the dependents of dependents as well. The general idea is that for entities like OrderHeader
you can get all records that define the order.

Enumerations

An Enumeration is simply a pre-configured set of possible values. Enumerations are used to
describe single records or relationships between records. An entity may have multiple fields
enumerated values.

The entity in Moqui where all enumerations are stored is named Enumeration, and values in
it are split by type with a record in the EnumerationType entity.

When a field is to have a constrained set of possible enumerated values it should have the
suffix "Enumld", like the exampleTypeEnumid field on the Example entity. For each field
there should also be a relationship element to describe the relationship from the current
entity to the Enumeration entity. The title attribute on the relationship element should
have the same value as the enumType1d that is used for the Enumeration records that are
possible values for that field. Generally the title attribute should be the same as the enum
field’s name up to the "EnumlId" suffix. For example the relationship title for the
exampleTypeEnumId field is ExampleType.

Status, Flow, Transition and History

Another useful data concept is tracking the status of a record. Various business concepts
have a lifecycle of some sort that is easily tracked with a set of possible status values. The
possible status values are tracked using the statusItem entity and exist in sets distinguished
by a statusTypeId pointing to a record in the statusType entity.

A set of status values are kind of like nodes in a graph and the transitions between those
nodes represent possible changes from one status to another. The possible transitions from
one status to another are configured using records in the statusFlowTransition entity.

There can be multiple status flows for a set of status items with a given statusTypeId, each
represented by a statusFlow record. The statusItem records are associated with a
StatusFlow using StatusFlowItem records. For example the workEffort entity has a
statusFlowId field to specify which status flow should be used for a project or task.

If an entity has only a single status associated with it the field to track the status can simply
be named status1d. If an entity needs to have multiple status values then the field name
should have a distinguishing prefix and end with "StatusId".

53 5. Data and Resources

There should be a relationship defined for each status field to tie the current entity to the
StatusItem entity. Similar to the pattern with the Enumeration entity, the title attribute on
the relationship element should match the statusTypeId on each statusItem record.

The audit log feature of the Entity Facade is the easiest way to keep a history of status
changes including who made the change, when it was made, and the old and new status
values. To turn this on just use set the enable-audit-1log attribute to true on the
entity.field element. With this the field definition would look something like:

<field name="statusId" type="id" enable-audit-log="true"/>
Units of Measure

A unit of measure is a standardized or custom unit for measures such as length, weight,
temperature, data size, and even currency. These are the types of UOM. A moqui.basic.Uom
record, identified by uom1d, has type (uomTypeEnumid), description, and abbreviation
fields. The OOTB data for units of measure is in the UnitData.xml file.

Most UOM types have a conversion between different units of the same type. These
conversions are modeled in the UomConversion entity. For example there are 1000 meters in
a kilometer, and that is recorded this way:

<moqui.basic.UomConversion uomConversionId="LEN km m" uomId="LEN km"
toUomId="LEN m" conversionFactor="1000"/>

The conversionFactor is multiplied by the value with the uomId unit to get a value in the
toUomId unit. You can also divide to go in the other direction. For example 1km = 1000m so a
1 value with the LEN_km unit is multiplied by the conversionFactor of 1000 to get a value
of 1000 for the LEN m unit.

There is also a conversionOffset field for cases such as Celsius and Fahrenheit
temperatures where a value must be added (or subtracted) to go from one unit to the other.
The conversionFactor is multiplied first, then the conversionoffset is added to the
result. When converting in the reverse direction the conversionoffset is subtracted first,
then the result is divided by the conversionFactor.

Some UOM types, such as currency, have conversion factors that change over time. To handle
this the uomConversion entity has optional effective date (frombate, thruDate) fields.

Geographic Boundaries and Points

A geographic boundary can be a political division, business region, or any other geographic
area. Each moqui.basic.Geo record, identified by a geo1d, has a type (geoTypeEnumid) such
as city, country, or sales region. Each Geo has a name (geoName) and may have 2 letter
(geoCodeAlpha2), 3 letter (geoCodeAlpha3), and numeric (geoCodeNumeric) codes

54

following the ISO 3166 pattern for country code (see the GeoCountryData.xml file for the
country data that comes with Moqui).

The Geo entity also has a wel1knownText field for machine-readable detail about the
geometry of the geographic boundary. It is meant to contain text following the ISO/IEC
13249-3:2011 specification which is supported by various databases and tools (including Java
libraries). For a good introduction to WKT see:

http://en.wikipedia.org/wiki/Well-known text

Use the Geoassoc entity to associate Geo records. This has different types
(geoAssocTypeEnumId) and can be used for regions of larger geographic boundaries

(caT REGIONS; like cities within states, states within countries), for Geo records that are more
general groups to associate them with the Geo records in the group (GAT GROUP MEMBER; like
the lower 48 states in the USA), or other types you might define. The geo1d field should
point to the group or larger area, and the toGeoId to the group member or region within the
area. See the GeoUsaData.xml file for examples of both.

A GeoPoint is a specific geographic point, i.e. a point on the Earth’s surface. It has latitude,
longitude, and elevation fields and a elevationuomId field to specify the unit for the
elevation (such as feet, which is LEN_ft). There is also a dataSourceId to specify where
the data came from and an information field for general text about the point.

The Entity Facade

Basic CrUD Operations

The basic CrUD operations for an entity record are available through the Entityvalue
interface. There are two main ways to get an EntityValue object:

e Make a Value (use ec.entity.makeValue(entityName))
¢ Find a Value (more details on this below)

Once you have an EntityValue object you can call the create(), update(), or delete()
methods to perform the desired operation. There is also a createorupdate () method that
will create a record if it doesn’t exist, or update it if it does.

Note that all of these methods, like many methods on the Entityvalue interface, return a
self-reference for convenience so that you can chain operations. For example:

ec.entity.makeValue("Example").setAll(fields)
.setSequencedIdPrimary().create()

While this example is interesting, only in rare cases should you create a record directly using
the Entity Facade API (accessed as ec.entity). You should generally do CrUD operations
through services, and there are automatic CrUD services for all entities available through the
Service Facade. These services have no definition, they exist implicitly and are driven only
the entity definition.

55 5. Data and Resources

http://en.wikipedia.org/wiki/Well-known_text

We'll discuss the Service Facade more below in the context of the logic layer, but here is an
example of what that operation would look like using an implicit automatic entity service:

ec.service.sync() .name("create#Example").parameters(fields).call()

Most of the Moqui Framework API methods return a self-reference for convenient chaining
of method calls like this. The main difference between the two is that one goes through the
Service Facade and the other doesn’t. There are some advantages of going through the
Service Facade (such as transaction management, flow control, security options, and so much
more), but many things are the same between the two calls including automatic cleanup and
type conversion of the fields passed in before performing the underlying operation.

Also note that with the implicit automatic entity service you don’t have to explicitly set the
sequenced primary ID as it automatically determines that there is a single primary and if it is
not present in the parameters passed into the service then it will generate one.

However you do the operation, only the entity fields that are modified or passed in are
updated. The Entityvalue object will keep track of which fields have been modified and
only create or update those when the operation is done in the database. You can ask an
EntityValue object if it is modified using the isModified() method, and you can restore it
to its state in the database (populating all fields, not just the modified ones) using the
refresh () method.

If you want to find all the differences between the field values currently in the Entityvalue
and the corresponding column values in the database, use the checkAgainstDatabase(List
messages) method. This method is used when asserting (as opposed to loading) an entity-
facade-xml file and can also be used manually if you want to write Java or Groovy code
check the state of data.

Finding Entity Records

Finding entity records is done using the EntityFind interface. Rather than using a number
of different methods with different optional parameters through the EntityFind interface
you can call methods for the aspects of the find that you care about, and ignore the rest. You
can get a find object from the EntityFacade with something like:

ec.getEntity().makeFind("moqui.example.Example")

Most of the methods on the EntityFind interface return a reference to the object so that you
can chain method calls instead of putting them in separate statements. For example a find by
the primary on the Example entity would look like this:

EntityValue example = ec.entity.makeFind("moqui.example.Example")
.condition("exampleId", exampleId).useCache(true).one()

The EntityFind interface has methods on it for:

e conditions (both where and having)

56

e condition(String fieldName, Object value): Simple condition, named field
equals value.

e condition(String fieldName, EntityCondition.ComparisonOperator
operator, Object value): Compare the named field to the value using the
operator which can be EQUALS, NOT_EQUAL, LESS_THAN, GREATER_THAN,
LESS_THAN_EQUAL_TO, GREATER_THAN_EQUAL_TO, IN, NOT_IN, BETWEEN,
LIKE, or NOT_LIKE.

e conditionToField(String fieldName, EntityCondition.ComparisonOperator
operator, String toFieldName): Compare a field to another field using the
operator.

e condition(Map<String, ?> fields): Constrain by each entry in the Map whose key
matches a field name on the entity. If a field has been set with the same name and any
of the Map keys, this will replace that field's value. Fields set in this way will be
combined with other conditions (if applicable) just before doing the query. This will do
conversions if needed from Strings to field types as needed, and will only get keys that
match entity fields. In other words, it does the same thing as:
EntityValue.setFields(fields, true, null, null).

e condition(EntityCondition condition): Add a condition created through the
EntityConditionFactory.

e conditionDate(String fromFieldName, String thruFieldName, Timestamp
compareStamp): Add conditions for the standard effective date query pattern
including from field is null or earlier than or equal to compareStamp and thru field is
null or later than or equal to compareStamp.

e havingCondition(EntityCondition condition): Add a condition created through
the EntityConditionFactory to the having conditions. Having is the standard SQL
concept and used for conditions applied after the grouping and functions.

e searchFormInputs(String inputFieldsMapName, String defaultOrderBy,
boolean alwaysPaginate): Adds conditions for the fields found in the
inputFieldsMapName Map. The fields and special fields with suffixes supported are the
same as the *-find fields in the XML Forms. This means that you can use this to process
the data from the various inputs generated by XML Forms. The suffixes include things
like *_op for operators and *_ic for ignore case. If inputFieldsMapName is empty will
look at the ec.web.parameters map if the web facade is available, otherwise the
current context (ec.context). If there is not an orderByField parameter (one of the
standard parameters for search XML Forms) defaultOrderBy is used instead. If
alwaysPaginate is true pagination offset/limit will be set even if there is no
pageIndex parameter.

o fields to select with selectField(String fieldToSelect) and/or
selectFields(Collection<String> fieldsToSelect)
« fields to order the results by

e orderBy (String orderByFieldName): A field of the find entity to order the query by.
Optionally add a " asc" to the end or "+" to the beginning for ascending, or " DEsC"
to the end of "-" to the beginning for descending. If any other order by fields have

5. Data and Resources

already been specified this will be added to the end of the list. The string may be a
comma-separated list of field names. Only fields that actually exist on the entity will be
added to the order by list.

e orderBy (List<String> orderByFieldNames): Each List entry is passed to the
orderBy (String orderByFieldName) method.

e whether or not to cache the results with useCache (Boolean useCache), defaults to the
value on the entity definition
o the offset and limit to pass to the datasource to limit results

e offset (Integer offset): The offset, i.e. the starting row to return. Default (null)
means start from the first actual row. Only applicable for 1ist () and iterator()
finds.

e offset(int pageIndex, int pageSize):Specify the offset in terms of page index
and size. Actual offset is pageIndex * pageSize.

e limit (Integer limit): The limit, i.e. max number of rows to return. Default (null)
means all rows. Only applicable for 1ist () and iterator() finds.

e database options including distinct with the distinct (boolean distinct) method
and for update with the forupdate (boolean forUpdate) method
¢ JDBC options

e resultSetType(int resultSetType): Specifies how the Resultset will be

traversed. Available values are ResultSet.TYPE_FORWARD ONLY,

ResultSet.TYPE SCROLL_ INSENSITIVE (default) or

ResultSet.TYPE SCROLL_SENSITIVE. See the java.sql.ResultSet JavaDoc for
more information. If you want it to be fast, use the common option
ResultSet.TYPE_FORWARD_ONLY. For partial results where you want to jump to an
index make sure to use ResultSet.TYPE SCROLL_INSENSITIVE, which is the default.

e resultSetConcurrency(int resultSetConcurrency): Speciﬁes whether or not the
ResultSet can be updated. Available values are ResultSet.CONCUR_READ_ONLY
(default) or ResultSet.CONCUR_UPDATABLE. Should pretty much always be
ResultSet.CONCUR_READ_ONLY with the Entity Facade since updates are generally
done as separate operations.

o fetchSize(Integer fetchsSize): The JDBC fetch size for this query. Default (null)
will fall back to datasource settings. This is not the fetch as in the OFFSET /FETCH
SQL clause (use the offset/limit methods for that), and is rather the JDBC fetch to
determine how many rows to get back on each round-trip to the database. Only
applicable for 1ist () and iterator() finds.

e maxRows (Integer maxRows): The JDBC max rows for this query. Default (null) will
fall back to datasource settings. This is the maximum number of rows the Resultset
will keep in memory at any given time before releasing them and if requested they are
retrieved from the database again. Only applicable for 1ist () and iterator() finds.

There are various options for conditions, some on the EntityFind interface itself and a more
extensive set available through the EntityConditionFactory interface. To get an instance of
this interface use the ec.entity.getConditionFactory() method, something like:

58

EntityConditionFactory ecf = ec.entity.getConditionFactory();
ef.condition(ecf.makeCondition(...));

For find forms that follow the standard Moqui pattern (used in XML Form find fields and
can be used in templates or JSON or XML parameter bodies too), just use the
EntityFind.searchFormInputs () method.

Once all of these options have been specified you can do any of these actual operations to get
results or make changes:

e get a single Entityvalue (one() method)

e get an EntityValueList with multiple value objects (1ist () method)

e getan EntityListIterator to handle a larger set of results in smaller batches (with the
iterator () method)

e get a count of matching results (count () method)

e update all matching records with specified fields (updateall () method)

e delete all matching records (delete () method)

Flexible Finding with View Entities

You probably noticed that the EntityFind interface operates on a single entity. To do a query
across multiple entities joined together and represented by a single entity name you can
create a static view entity using a XML definition that lives along side normal entity
definitions.

A view entity can also be defined in database records (in the DbviewEntity and related
entities) or with dynamic view entities built with code using the EntityDynamicview
interface (get an instance using the EntityFind.makeEntityDynamicView() method).

Static View Entity

A view entity consists of one or more member entities joined together with key mappings
and a set of fields aliased from the member entities with optional functions associated with
them. The view entity can also have conditions associated with it to encapsulate some sort of
constraint on the data to be included in the view.

Here is an example of a view-entity XML snippet from the ExampleViewEntities.xml file in
the example component:

<view-entity entity-name="ExampleFeatureApplAndEnum"
package-name="moqui.example">
<member-entity entity-alias="EXFTAP" entity-name="ExampleFeatureAppl"/>
<member-entity entity-alias="ENUM"
entity-name="moqui.basic.Enumeration"
join-from-alias="EXFTAP">
<key-map field-name="exampleFeatureApplEnumId"/>
</member-entity>

59 5. Data and Resources

<alias-all entity-alias="EXFTAP"/>
<alias-all entity-alias="ENUM"/>
</view-entity>

Just like an entity a view entity has a name and exists in a package using the entity-name
and package-name attributes on the view-entity element.

Each member entity is represented by a member-entity element and is uniquely identified
by an alias in the entity-alias attribute. Part of the reason for this is that the same entity
can be a member in a view entity multiple times with a different alias for each one.

Note that the second member-entity element also has a join-from-alias attribute to
specify that it is joined to the first member entity. Only the first member entity does not have
a join-from-alias attribute. If you want the current member entity to be optional in the
join (a left outer join in SQL) then just set the join-optional attribute to true.

To describe how the two entities relate to each other use one or more key-map elements
under the member-entity element. The key-map element has two attributes: field-name
and related-field-name. Note that the related-field-name attribute is optional when
matching the primary key field on the current member entity.

Fields can be aliased in sets using the alias-all element, as in the example above, or
individually using the alias element. If you want to have a function on the field then alias
them individually with the alias element. Note for SQL databases that if any aliased field
has a function then all other fields that don’t have a function but that are selected in the
query will be added to the group by clause to avoid invalid SQL.

View Entity Auto Minimize on Find

When doing a query with the Entity Facade EntityFind you can specify fields to select and
only those fields will be selected. For view entities this does a little more to give you a big
boost in performance without much work.

A common problem with static view entities is that you want to join in a bunch of member
entities to provide a lot of options for search screens and similar flexible queries and when
you do this the temporary table for the query in the database can get HUGE. When the
common use is to only select certain fields and only have conditions and sorting on a limited
set of fields you may end up joining in a number of tables that are not actually used. In effect
you are asking the database to do a LOT more work that it really needs to for the data you
need.

One approach to solving this is to build a EntityDynamicview on the fly and only join in the
entities you need for the specific query options used. This works, but is cumbersome.

The easy approach is to just take advantage of the feature in EntityFind that automatically
minimizes the fields and entities joined in for each particular query. On a view entity just
specify the fields to select, the conditions, and the order by fields. The Entity Facade will

60

automatically go through the view entity definition and only alias the fields that are used for
one of these (select, conditions, order by), and only join in the entities with fields that are
actually used (or that are need to connect a member entity with other member entities to
complete the join).

A good example of this is the FindPartyview view entity defined in the
PartyViewEntities.xml file in Mantle Business Artifacts. This view entity has a respectable
13 member entities. Without the automatic minimize that would be 13 tables joined in to
every query on it. With millions of customer records or other similarly large party data each
query could take a few minutes. When only querying on a few fields and only joining in a
small number of member entities and a minimal number of fields, the query gets down to
sub-second times.

The actual find is done by the mantle.party.PartyServices.find#Party service. The
implementation of this service is a simple 45 line Groovy script (findParty.groovy), and
most of that script is just adding conditions to the find based on parameter being specified or
not. Doing the same thing with the EntityDynamicview approach requires hundreds of lines
of much more complex scripting, more complex to both write and maintain.

Database Defined View Entity

In addition to defining view entities in XML you can also define them in database records
using DbViewEntity and related entities. This is especially useful for building screens where
the user defines a view on the fly (like the EditDbView.xml screen in the tools component,
get to it in the menu with Tool => Data View), and then searches, views, and exports the
data using a screen based on the user-defined view (like the viewDbView.xml screen).

There aren’t quite as many options when defining a DB view entity, but the main features are
there and the same patterns apply. There is a view entity with a name (dbviewEntityName),
package (packageName), and whether to cache results. It also has member entities
(DbviewEntityMember), key maps to specify how the members join together
(DbviewEntityKeyMap), and field aliases (DbviewEntityalias). Here is an example, from
the example component:

<moqui.entity.view.DbViewEntity dbViewEntityName="StatusItemAndTypeDb"
packageName="moqui.example" cache="Y"/>

<moqui.entity.view.DbViewEntityMember
dbViewEntityName="StatusItemAndTypeDb" entityAlias="SI"
entityName="moqui.basic.StatusItem"/>

<moqui.entity.view.DbViewEntityMember
dbViewEntityName="StatusItemAndTypeDb" entityAlias="ST"
entityName="moqui.basic.StatusType" joinFromAlias="SI"/>

<moqui.entity.view.DbViewEntityKeyMap
dbViewEntityName="StatusItemAndTypeDb" joinFromAlias="SI"
entityAlias="ST" fieldName="statusTypeId"/>

<moqui.entity.view.DbViewEntityAlias dbViewEntityName="StatusItemAndTypeDb"
entityAlias="SI" fieldAlias="statusId"/>

61 5. Data and Resources

<moqui.entity.view.DbViewEntityAlias dbViewEntityName="StatusItemAndTypeDb"
entityAlias="SI" fieldAlias="description"/>

<moqui.entity.view.DbViewEntityAlias dbViewEntityName="StatusItemAndTypeDb"
entityAlias="SI" fieldAlias="sequenceNum"/>

<moqui.entity.view.DbViewEntityAlias dbViewEntityName="StatusItemAndTypeDb"
entityAlias="ST" fieldAlias="typeDescription" fieldName="description"/>

As you can see the entity and field names correlate with the XML element and attribute
names. To use these entities just refer to them by name just like any other entity.

Dynamic View Entity

Even with the automatic view entity minimize that the Entity Facade does during a find
there are still cases where you'll need or want to build a view programmatically on the fly
instead of having a statically defined view entity.

To do this get an instance of the EntityDynamicView interface using the
EntityFind.makeEntityDynamicView() method. This interface has methods on it that do
the same things as the XML elements in a static view entity. Add member entities using the
addMemberEntity(String entityAlias, String entityName, String
joinFromAlias, Boolean joinOptional, Map<String, String> entityKeyMaps)
method.

One convenient option that doesn’t exist for static (XML defined) view entities is to join in a
member entity based on a relationship definition. To do this use the
addRelationshipMember (String entityAlias, String joinFromAlias, String
relationshipName, Boolean joinOptional) method.

To alias fields use the addAlias (String entityAlias, String name, String field,
String function) method, the shortcut variation of it addAlias(String entityAlias,
String name), or the addaliasAll(String entityAlias, String prefix) method.

You can optionally specify a name for the dynamic view with the setEntityName () method,
but usually this mostly useful for debugging and the default name (Dynamicview) is usually
just fine.

Once this is done just specify conditions and doing the find operation as normal on the
EntityFind object that you used to create the EntityDynamicview object.

Entity ECA Rules

Entity ECA (EECA) rules can be used to trigger actions to run when data is modified or
searched. It is useful for maintaining entity fields (database columns) that are based on other
entity fields or for updating data in a separate system based on data in this system. EECA
rules should not generally be used for triggering business processes because the rules are
applied too widely. Service ECA rules are a better tool for triggering processes.

62

For example here is an EECA rule from the Work.eecas.xml file in Mantle Business Artifacts
that calls a service to update the total time worked on a task (WorkEffort) when a TimeEntry
is created, updated, or deleted:

<eeca entity="mantle.work.time.TimeEntry" on-create="true" on-update="true"
on-delete="true" get-entire-entity="true">
<actions><service-call in-map="context"
name="mantle.work.TaskServices.update#TaskFromTime"/></actions>
</eeca>

An ECA (event-condition-action) rule is a specialized type of rule to conditionally run actions
based on events. For Entity ECA rules the events are the various find and modify operations
you can do with a record. Set any of these attributes (of the eeca element) to true to trigger
the EECA rule on the operation: on-create, on-update, on-delete, on-find-one, on-
find-list, on-find-iterator, on-find-count.

By default the EECA rule will run after the entity operation. To have it run before set the
run-before attribute to true. There is also a run-on-error attribute which defaults to
false and if set to true the EECA rule will be triggered even if there is an error in the entity
operation.

When the actions run the context will be whatever context the service was run in, plus the
entity field values passed into the operation for convenience in using the values. There are
also special context fields added:

e entityValue: A Map with the field values passed into the entity operation. This may not
include all field values that are populated in the database for the record. To fill in the
field values that are not passed in from the database record set the eeca.get-entire-
entity attribute to true.

e originalvalue: If the eeca.get-original-value attribute is set to true and the
EECA rule runs before the entity operation (run-before=true) this will be an
EntityValue object representing the original (current) value in the database.

o eecaOperation: A String representing the operation that triggered the EECA rule,
basically the on-* attribute name without the "on-".

The condition element is the same condition as used in XML Actions and may contain
expression and compare elements, combined as needed with or, and, and not elements.

The actions element is the same as actions elements in service definitions, screens, forms,
etc. It contains a XML Actions script. See the Overview of XML Actions section for more
information.

63 5. Data and Resources

Entity Data Import and Export

Loading Entity XML and CSV

Entity records can be imported from XML and CSV files using the EntityDataLoader. This
can be done through the Entity Facade API using the ec.entity.makeDataLoader ()
method to get an object that implements the interface and using its methods to specify which
data to load and then load it (using the 1oad () method), get an EntityList of the records
(using the 1ist () method), or validate the data against the database (using the check ()
method).

There are a few options for specifying which data to load. You can specify one or more
locations using the location(String location) and locationList(List<String>
locationList) methods. You can use text directly with the xmlText (String xmlText) and
csvText (String csvText) methods. You can also load from component data directories
and the entity-facade.load-data elements in the Moqui Conf XML file by specifying the
types of data to load (only the files with a matching type will be loaded) using the
dataTypes (Set<String> dataTypes) method.

To set the transaction timeout to something different from the default, usually larger to
handle processing large files, use the transactionTimeout (int tt) method. If you expect
mostly inserts you can use pass true to the useTryInsert (boolean useTryInsert)
method to improve performance by doing an insert without a query to see if the record exists
and then if the insert fails with an error try an update.

To help with foreign keys when records are out of order, but you know all will eventually be
loaded, pass true to the dummyFks (boolean dummyFks) method and it will create empty
records for foreign keys with no existing record. When the real record for the FK is loaded it
will simply update the empty dummy record. To disable Entity ECA rules as the data is
loaded pass true to the disableEntityEca(boolean disableEeca) method.

For CSV files you can specify which characters to use when parsing the file(s) with
csvDelimiter (char delimiter) (defaults to’,’), csvCommentStart (char commentStart)
(defaults to ‘#”), and csvQuoteChar (char quoteChar) (defaults to ‘")

Note that all of these methods on the EntityDataLoader return a self reference so you can
chain calls, i.e. it is a DSL style API. For example:

ec.entity.makeDataLoader().dataTypes([‘seed’, ‘demo’]).load()

In addition to directly using the API you can load data using the Tool => Entity =>
Import screen in the tools component that comes in the default Moqui runtime. You can
also load data using the command line with the executable WAR file using the -1oad
argument. Here are the command line arguments available for the data loader:

-load --———---- Run data loader
-types=<type>[,<type>] -- Data types to load (can be anything, common

64

are: seed, seed-initial, demo, ...)

-location=<location> ---- Location of data file to load

-timeout=<seconds> —-—-—-—-- Transaction timeout for each file, defaults
to 600 seconds (10 minutes)

—dummy-fks ———————-—o—— Use dummy foreign-keys to avoid referential
integrity errors

-use-try-insert —---————-- Try insert and update on error instead of
checking for record first

-tenantId=<tenantId> ---- ID for the Tenant to load the data into

For example
$ java -jar moqui-${version}.war -load -types=seed,demo

The entity data XML file must have the entity-facade-xml root element which has a type
attribute to specify the type of data in the file, which is compared with the specified types (if
loading by specifying types) and only loaded if the type is in the set or if all types are loaded.
Under that root element each element name is an entity or service name. For entities each
attribute is a field name and for services each attribute is a input parameter.

Here is an example of a entity data XML file:

<entity-facade-xml type="seed">
<moqui.basic.LocalizedMessage original="Example" locale="es"
localized="Ejemplo"/>
<moqui.basic.LocalizedMessage original="Example" locale="zh"
localized="#£{]"/>
</entity-facade-xml>

Here is an example CSV file that calls a service (the same pattern applies for loading entity
data):

first line is ${entityName or serviceName},${dataType}
org.moqui.example.ExampleServices.create#Example, demo

second line is list of field names

exampleTypeEnumId, statusId, exampleName, exampleSize, exampleDate

each additional line has values for those fields

EXT MADE UP, EXST IN DESIGN, Test Example Name 3, 13, 2014-03-03 15:00:00

Writing Entity XML

The easiest way export entity data to an XML file is to use the EntityDatawriter, which
you can get with ec.entity.makeDataWriter (). Through this interface you can specify the
names of entities to export from and various other options, then it does the query and
exports to a file (with the int file(String filename) method), a directory with one file
per entity (with the int directory(String path) method), or to a writer object (with the
int writer(Writer writer) method). All of these methods return an int with the number
of records that were written.

65 5. Data and Resources

The methods for specifying options return a self reference to enable chaining calls. These are
the methods for the query and export options:

e entityName(String entityName): Specify the name of an entity to query and export.
Data is queried and exporting from entities in the order they are added by calling this
or entityNames () multiple times.

e entityNames(List<String> entityNames):A List of entity names to query and
export. Data is queried and exporting from entities in the order they are specified in this
list and other calls to this or entityName().

e dependentRecords (boolean dependents):If true export dependent records of each
record. This dramatically slows down the export so only use it on smaller data sets. See
the Dependent Entities section for details about what would be included.

e filterMap(Map<String, Object> filterMap): A Map of field name, value pairs to
filter the results by. Each name/ value is only used on entities that have a field matching
the name.

e orderBy(List<String> orderByList): Field names to order (sort) the results by. Each
name only used on entities with a field matching the name. May be called multiple
times. Each entry may be a comma-separated list of field names.

e fromDate(Timestamp fromDate), thruDate(Timestamp thruDate):TheiTonland
thru dates to filter the records by, compared with the 1astupdatedstamp field which
the Entity Facade automatically adds to each entity (unless turned off in the entity
definition).

Here is an example of an export of all orderHeader records within a time range plus their
dependents:

ec.entity.makeDataWriter().entityName("mantle.order.OrderHeader")
.dependentRecords (true) .orderBy (["orderId"]).fromDate(lastExportDate)
.thruDate(ec.user.nowTimestamp).file("/tmp/TestOrderExport.xml")

Another way to export entity records is to do a query and get an EntityList or
EntityListIterator objectand call the int writeXmlText(Writer writer, String
prefix, boolean dependents) method on it. This methods writes XML to the writer,
optionally adding the prefix to the beginning of each element and including dependents.

Similar to the entity data import UI you can export data using the Tool => Entity =>
Export screen in the tools component that comes in the default Moqui runtime.

Views and Forms for Easy View and Export

A number of tools come together to make it very easy to view and export database data that
comes from a number of different tables. We have explored the options for static (XML),
dynamic, and database defined entities. In the User Interface chapter there is detail about
XML Forms, and in particular list forms.

66

When a form-1ist has dynamic=true and a ${} string expansion in the auto-fields-
entity.entity-name attribute then it will be expanded on the fly as the screen is rendered,
meaning a single form can be used to generate tabular HTML or CSV output for any entity
given an entity name as a screen parameter.

To make things more interesting results viewed can be filtered generically using a dynamic
form-single with an auto-fields-entity element to generate a search form based on the
entity, and an entity-find with search-form-inputs to do the query based on the entity
name parameter and the search parameters from the search form.

Below is an example of these features along with a transition (Dbview.csv) to export a CSV
file. Don’t worry too much about all the details for screens, transitions, forms, and rendering
options, they are covered in detail in the User Interface chapter. This screen definition is an
excerpt from the viewDbView.xml screen in the tools component that comes by default with
Moqui Framework:

<screen>
<parameter name="dbViewEntityName"/>

<transition name="filter"><default-response url="."/></transition>
<transition name="DbView.csv'">
<default-response url="."><parameter name="renderMode" value="csv"/>

<parameter name="pageNoLimit" value="true"/>
<parameter name="lastStandalone" value="true"/></default-response>
</transition>

<actions>
<entity-find entity-name="§${dbViewEntityName}" list="dbViewList">
<search-form-inputs/></entity-find>
</actions>
<widgets>
<link url="DbView.csv" text="Get as CSV"/>
<label text="Data View for: ${dbViewEntityName}" type="h2"/>

<form-single name="FilterDbView" transition="filter" dynamic="true">
<auto-fields-entity entity-name="${dbViewEntityName}"
field-type="£find"/>
<field name="dbViewEntityName"><default-field>
<hidden/></default-field></field>
<field name="submitButton"><default-field title="Find">
<submit/></default-field></field>
</form-single>

<form-list name="ViewList" list="dbViewList" dynamic="true">
<auto-fields-entity entity-name="${dbViewEntityName}"
field-type="display"/>
</form-list>
</widgets>
</screen>

67 5. Data and Resources

While this screen is designed to be used by a user it can also be rendered outside a web or
other UI context to generate CSV output to send to a file or other location. If you were to just
write a screen for that it would be far simpler, basically just the parameter element, the
single entity-find action, and the simple form-1ist definition. The transitions and the
search form would not be needed.

The code to do this through the screen renderer would look something like:

ec.context.putAll ([pageNoLimit:"true", lastStandalone:"true",
dbViewEntityName: "moqui.example.ExampleStatusDetail"])
String csvOutput = ec.screen.makeRender()
.rootScreen("component://tools/screen/Tools/DataView/ViewDbView.xml")
.renderMode("csv").render ()

Data Document

A Data Document is assembled from database records into a JSON document or a Java
nested Map /List representation of the document.

Below is an example Data Document instance and the DataDocument* records that define it.
This example a selection from the HiveMind PM project, which is based on Moqui and
Mantle. The document is for a project, which is a type of WorkEffort.

{

_index": "hivemind",

_type": "HmProject",

" id": "HM",

" _timestamp": "2013-12-27T00:46:07",
"WorkEffort": {

"workEffortIid": "HM",

"name": "HiveMind PM Build Out",
"workEf fortTypeEnumId": "WetProject"

b

"StatusItem": { "status": "In Progress" },
"WorkEffortType": { "type": "Project" },
"Party": [
{
"Person": { "firstName": "John", "lastName": "Doe" },
"RoleType": { "role": "Person - Manager" },
"partyId": "EX JOHN DOE"

"Person": { "firstName": "Joe", "lastName": "Developer" },
"RoleType": { "role": "Person - Worker" },
"partyId": "ORG BIZI JD"

68

}

These are the database records defining the Data Document, in the format of records in an
Entity Facade XML file:

<moqui.entity.document.DataDocument dataDocumentId="HmProject"
indexName="hivemind" documentName="Project"
primaryEntityName="mantle.work.effort.WorkEffort"
documentTitle="S${name}"/>
<moqui.entity.document.DataDocumentField dataDocumentId="HmProject"
fieldPath="workEffortId"/>
<moqui.entity.document.DataDocumentField dataDocumentId="HmProject"
fieldPath="workEffortName" fieldNameAlias="name"/>
<!-- this is aliased so we can have a condition on it -->
<moqui.entity.document.DataDocumentField dataDocumentId="HmProject"
fieldPath="workEffortTypeEnumIid"/>
<moqui.entity.document.DataDocumentField dataDocumentId="HmProject"
fieldPath="WorkEffort#moqui.basic.StatusItem:description”
fieldNameAlias="status"/>
<moqui.entity.document.DataDocumentField dataDocumentId="HmProject"
fieldPath="mantle.work.effort.WorkEffortParty:partyIld"/>
<moqui.entity.document.DataDocumentField dataDocumentId="HmProject"
fieldrPath="mantle.work.effort.WorkEffortParty:mantle.party.RoleType:description”
fieldNameAlias="role"/>
<moqui.entity.document.DataDocumentRelAlias dataDocumentId="HmProject"
relationshipName="mantle.work.effort.WorkEffort"
documentAlias="WorkEffort"/>
<moqui.entity.document.DataDocumentRelAlias dataDocumentId="HmProject"
relationshipName="WorkEffort#moqui.basic.StatusItem"
documentAlias="StatusItem"/>
<moqui.entity.document.DataDocumentRelAlias dataDocumentId="HmProject"
relationshipName="mantle.work.effort.WorkEffortParty"
documentAlias="Party"/>
<moqui.entity.document.DataDocumentRelAlias dataDocumentId="HmProject"
relationshipName="mantle.party.RoleType" documentAlias="RoleType"/>
<moqui.entity.document.DataDocumentCondition dataDocumentId="HmProject"
fieldNameAlias="workEffortTypeEnumId" fieldValue="WetProject"/>
<moqui.entity.document.DataDocumentLink dataDocumentId="HmProject"
label="Edit Project"
linkUrl="/apps/hm/Project/EditProject?workEffortId=${workEffortid}"/>

The top level object (the JSON term, Map in Java) of the Data Document instance has 3 fields
that identify the document:

e _index: The index the document should live in, from the DataDocument . indexName
field in the document definition

e _type: The type of document within the index, and the ID that Moqui Framework uses
for the DataDocument definition, from the DataDocument .dataDocumentId field

69 5. Data and Resources

e _id: The ID for a particular Data Document instance, based on the primary key of the
primary entity as specified in the DataDocument . primaryEntityName field

The top level also contains a _timestamp field with the date and time the document was
generated.

These 4 fields are named the way they are for easy indexing with ElasticSearch, which is the
tool used by the Data Search feature which is based on the Data Document feature. These
fields, and Data Documents in general, are useful for notifications, integrations, and various
things other than just search.

A Data Document definition is made up of these records:

e DataDocument: The main record, identified by a dataDocumentId and contains the
index name, document name (for display purposes)

e primaryEntityName: the primary (master) entity for the document that all other
entities for document fields relate to and that plain field names belong to

e documentTitle: For display purposes, especially in search results and such. Note
that the documentTitle value is expanded using a flattened Map from the Data
Document, so names of expanded fields must match document field names (or
aliases).

e DataDocumentField: Each record specifies a field for the document.

e fieldPath: The field name, optionally preceded by a colon-separated list of
relationship names from the primary entity to the entity the field is on.

o fieldNameAlias: Optionally specify a name for the field to use in the document if
different from the name of the field on the entity it belongs to. The field name in the
document must be unique for the entire document, not just within the entity the field
belongs to. This is true whether the entity field name or an alias is used. The reasons
for this are: this is the alias used in the query to get the data for the document from
the database and to facilitate parametric searching.

e DataDocumentRelAlias: Use these records to produce a cleaner document by
specifying an alias for relationships in fieldrath fields, and for the
primaryEntityName.

e DataDocumentCondition: These records constrain the query that gets data for the
document from the database. In the example above this is used to constrain the query to
only get WworkEffort records with the wetProject type so it only includes projects.

e DataDocumentLink: In search results and other user and system interfaces it is useful
to have a link to where more information about the document, especially the primary
entity in it, is available. Use these records to specify such links. Note that the 1inkurl
value is expanded using a flattened Map from the Data Document, so names of
expanded fields must match document field names (or aliases).

In the top level object of the example document there is a WorkEffort object for the primary
entity in the document. There will always be an object like this in the document and its name
will be the name of the primary entity. It will be the literal value of the
DataDocument.primaryEntityName field unless it is aliased in a DataDocumentRelAlias

70

record, which is why in this document that named of the object is "workEffort" and not
"mantle.work.effort.WorkEffort".

All pataDocumentField records with a fieldPath with plain field names (no colon-
separated relationship prefix) map to fields on the primary entity and will be included in the
primary entity’s object in the document.

All document fields with a colon-separated relationship name prefix will result in other
entries in the top level document object (Map) with the entry key as the relationship name or
the alias for the relationship name if one is configured. The value for that entry will be an
object/Map if it is a type one relationship, or an array of objects (in Java a List of Maps) if it is
a type many relationship.

The same pattern applies when there is more than one colon-separated relationship name in
a fieldpPath. The object/Map entries will be nested as needed to follow the path to the
specified field. An example of this from the HmProject document example above is the
"mantle.work.effort.WorkEffortParty:mantle.party.RoleType:description”
fieldpPath value. Note that the two relationship names are aliased to exclude the package
names, and the field is aliased to be role instead of description. The result is this part of
the JSON document:

{ "Party": [{ "RoleType": { "role": "Person - Manager" } }] }

The JSON syntax for an object (Map) is curly braces ({ }) and for an array (List) is square
braces ([]). So what we have above is the top-level object with a Party entry whose value is
an array with an object in it that has a RoleType entry whose value is an object with a single
entry with the key role and the value is from the RoleType.description entity field. The
reason the description field is aliased as role is the one described above in the description
for the DataDocumentField. fieldNameAlias field: each field in a Data Document must
have a unique name across the entire document.

There are a few ways to generate a Data Document from data in a database. The most
generally useful approach is the Data Feed described below, but you can also get it through
an API call that looks like this:

List<Map> docMapList = ec.entity.getDataDocuments (dataDocumentId,
condition, fromUpdateStamp, thruUpdatedStamp)

In the List returned each Map represents a Data Document. The condition,
fromUpdatedStamp and thruUpdatedStamp parameters can all be null, but if specified are
used as additional constraints when querying the database. The condition should use the
field alias names for the fields in the document. To see if any part of the document has
changed in a certain time range the *UpdatedStamp parameters are used to look for any
record in any of the entities with the automatically added 1astupdatedstamp field in the
from/thru range.

The Map for a Data Document is structured the same way as the example JSON document
above. The ElasticSearch API supports this Map form of a document, but in some cases you

71 5. Data and Resources

will want it as a JSON String. To create a JSON String from the Map in Groovy use a simple
statement like this:

String docString = groovy.json.JsonOutput.toJson(docMap)

If you want a more friendly human-readable version of the JSON String do this:

String prettyDocString = groovy.json.JsonOutput.prettyPrint(docString)

To go the other way (get a Map representation from a JSON String) use a statement like this:

Map docMap = (Map) new groovy.json.JsonSlurper().parseText(docString)
Data Feed

A Data Feed is a configurable way to push Data Documents to a service or group multiple
documents for retrieval through an API call.

The example below is a push feed (dataFeedTypeEnumId="DTFDTP RT PUSH") to send
documents to the HiveMind.SearchServices.indexAndNotify#HiveMindDocuments
service when any data in any of the documents is changed in the database through the
Moqui Entity Facade. The framework automatically keeps track of push Data Feeds and the
entities that are part of the Data Documents associated with them to look for changes as
create, update, and delete operations are done. This is an efficient way to get updated Data
Documents in real time.

Here is an example of entity-facade-xml for the records to configure a push Data Feed:

<moqui.entity.feed.DataFeed dataFeedId="HiveMindSearch"
dataFeedTypeEnumId="DTFDTP RT PUSH" feedName="HiveMind Search"

feedReceiveServiceName="HiveMind.SearchServices.indexAndNotify#HiveMindDocuments" />

<moqui.entity.feed.DataFeedDocument dataFeedId="HiveMindSearch"
dataDocumentId="HmProject"/>

<moqui.entity.feed.DataFeedDocument dataFeedId="HiveMindSearch"
dataDocumentId="HmTask"/>

Each DataFeedDocument record associates a DataDocument record to the DataFeed
record to be included in the feed.

On a side note, when you have data you want to index that is loaded through a XML data file
as part of the load process and it may be loaded before the Data Feed is loaded an activated,
you can include an element for a ServiceTrigger record and the Service Facade will call
the service during the load process to index for the feed. Here is an example of that:

<moqui.entity.ServiceTrigger serviceTriggerId="HM SEARCH INIT"
statusId="SrtrNotRun" mapString="[dataFeedId: ' 'HiveMindSearch']"
serviceName="org.moqui.impl.EntityServices.index#DataFeedDocuments" />

The DataFeed example above is for a push Data Feed. To setup a feed for manual pull just
set dataFeedTypeEnumId="DTFDTP_MAN PULL" on the DataFeed record. Any type of Data

72

Feed can be retrieved manually, but with this type the feed will not be automatically run. To
get the documents for any feed through the API use a statement like this:

List<Map> docList = ec.entity.getDataFeedDocuments (dataFeedId,
fromUpdateStamp, thruUpdatedStamp)

Data Search

The Data Search feature in Moqui Framework is based on ElasticSearch (http://
www.elasticsearch.org). This is a distributed text search tool based on Apache Lucene.
ElasticSearch uses JSON documents as the artifact to search, and each named field in a JSON
document is a facet for searching. The Data Document feature produces documents with 4
special fields that ElasticSearch uses, as described in the Data Document section (_index,
_type, _id, and _timestamp).

There are two main touch points for Data Search: indexing and searching. The service for
indexing in the framework is org.moqui.impl.EntityServices.index#DataDocuments. This service
implements the org.moqui.EntityServices.receive#DataFeed interface and accepts all
parameters from the interface but only uses the documentList parameter, which is the list of
Data Documents to index with ElasticSearch.

It also has one other parameter, getoriginalbDocuments, which when set to true the service
will populate and return originalDocumentList, a list of the previously indexed version of
any matching existing documents from ElasticSearch. The service always returns a
documentVersionList parameter with a list of the version number for each document in the
original list after the index is done to show how many times each document has been
updated in the index.

The example in the previous section used an application-specific service to receive the push
Data Feed, so here is an example of a push Data Feed configuration that uses the indexing
service that is part of the framework:

<moqui.entity.feed.DataFeed dataFeedlId="PopCommerceSearch"
dataFeedTypeEnumId="DTFDTP RT PUSH" feedName="PopCommerce Search"
feedReceiveServiceName="org.moqui.impl.EntityServices.index#DataDocuments" />

<moqui.entity.feed.DataFeedDocument dataFeedId="PopCommerceSearch"
dataDocumentId="PopcProduct"/>

You can also use the ElasticSearch API directly to index documents, either Data Documents
produced by the Entity Facade or any JSON document you want to search. For more
complete information see the ElasticSearch documentation. Here is an example of indexing a
JSON document in nested Map form with the _index, _type, and _id entries set:

IndexResponse response = ec.elasticSearchClient
.prepareIndex(document. index, document. type, document. id)
.setSource(document) .execute().actionGet ()

73 5. Data and Resources

http://www.elasticsearch.org

To search Data Documents use the
org.moqui.impl.EntityServices.search#DataDocuments service, like this:

<service-call name="org.moqui.impl.EntityServices.search#DataDocuments"
out-map="context" in-map="context + [indexName: 'popc’]"/>

Note that in this example the queryString, pageIndex, and pageSize parameters come
from the search form and get into the context from request parameters. The parameters for
this service are:

e queryString: the search query string that will be passed to the Lucene classic query
parser, for documentation see: http:/ /lucene.apache.org/core/4 8 1/queryparser/
org/apache/lucene/queryparser/ classic/package-summary.html

e documentType: the ElasticSearch document type, matches the _type field in the
document and the DataDocument .databDocumentId; examples of this from previous
sections include PopcProduct and HmProject

e pagelIndex, pageSize: these are the standard pagination parameters for Moqui XML list
forms so this service can be easily used with them; only pagesize results will be
returned and starting at the pageIndex * pagesize index in the results

e flattenDocument: default false, if set to true each document in the form of a nested
Map result (object form, JSON document being the text form) will be flattened into a
single flat Map with name/value pairs taken from all of the nested Maps and Lists of
Maps; later values in the document will override earlier values if the same Map entry
key is found more than once (see the stupidutilities.flattenNestedMap ()
method)

The service returns a documentList parameter, which is a List of Maps, each Map
representing a Data Document. It also returns the various documentList* parameters that
are part of the pagination pattern for Moqui XML list forms (*Count, *Pagelndex, *PageSize,
*PageMaxIndex, “PageRangeLow, and *PageRangeHigh). These are used when rendering a
list form, and can be used for other purposes where useful as well.

In addition to this service you can also retrieve results directly through the ElasticSearch API.
Note that there are two main steps, the search to get back the 3 identifying fields of each
document, and then a multi-get to get all of the documents. In this example we get each
document as a Map (the getSourceAsMap () method), and the ElasticSearch API also
supports getting each as a JSON document (the getSourceAsString () method).

SearchHits hits =
ec.elasticSearchClient.prepareSearch().setIndices(indexName)

.setTypes (documentType) .setQuery(QueryBuilders.queryString(queryString))

.setFrom(fromOffset).setSize(sizelLimit).execute().actionGet().getHits()
if (hits.getTotalHits() > 0) {

MultiGetRequestBuilder mgrb = ec.elasticSearchClient.prepareMultiGet ()

for (SearchHit hit in hits)

mgrb.add(hit.getIndex(), hit.getType(), hit.getId())
Iterator mgirIt = mgrb.execute().actionGet().iterator()
while(mgirIt.hasNext()) {

74

http://lucene.apache.org/core/4_8_1/queryparser/org/apache/lucene/queryparser/classic/package-summary.html

MultiGetItemResponse mgir = mgirIt.next()
Map document = mgir.getResponse().getSourceAsMap ()
documentList.add(document)

}

In addition to indexing and searching another aspect of ElasticSearch to know about is the
deployment options. By default Moqui Framework has an embedded node of ElasticSearch
running in the same JVM for fast, convenient access. A remote ElasticSearch server can also
be used.

The easiest distributed deployment mode is to have each Moqui application server be a node
in the ElasticSearch cluster, and if you have separate ES nodes with actual search data
persisted on them then set the app server ES nodes to not persist any data. With that
approach results may be aggregated on the app servers, but actual searches against index
data will be done on the other servers in the cluster.

75 5. Data and Resources

404 - Page Not Found

(not really, this page is intentionally blank for layout reasons; to make it less blank sponsor
this book and see your ad here!)

76

6. Logic and Services

Service Definition

With Moqui Framework the main unit of logic is the service. This is a service-oriented
architecture with services used as internal, granular units of logic as well as external, coarse
aggregations of logic. Moqui services are:

e transactional

e secure (both authentication and authorization, plus tarpit for velocity limits)

o validated (data types and various constraints for input parameters)

e implemented with any of a wide variety of languages and tools including scripting
languages, Java methods, an even an Apache Camel endpoint

e run from a local or remote caller

e run synchronously, asynchronously, or on a schedule

e asource of triggers at various phases of execution to run other services using service
event-condition-action (SECA) rules

e optionally restricted to a single running instance with a database semaphore

Services are defined in a services XML file using the service element. A service name is
composed of a path, a verb and a noun in this structure: "${path.verb#noun}". Note that
the noun is optional in a service definition, and in a service name the hash (#) between the
verb and noun is also optional. Here is an example, the
mantle.party.PartyServices.create#Person service (from Mantle Business Artifacts):

<service verb="create" noun="Person">
<in-parameters>
<parameter name="partyId"/>
<auto-parameters entity-name="mantle.party.Person" include="nonpk"/>
<parameter name="firstName" required="true"/>
<parameter name="lastName" required="true"/>
<parameter name="roleTypeId"/>
</in-parameters>
<out-parameters><parameter name="partyId"/></out-parameters>
<actions>
<service-call name="create#mantle.party.Party" out-map="context"
in-map="[partyId:partyId, partyTypeEnumId:'PtyPerson']"/>

77 6. Logic and Services

<service-call name="create#mantle.party.Person" in-map="context"/>
<if condition="roleTypeId">
<service-call name="create#mantle.party.PartyRole"
in-map="[partyId:partyId, roleTypeld:roleTypeld]"/>
</if>
</actions>
</service>

The only attribute that is required for a service is verb, though use of a noun is generally
recommended. The type attribute is commonly used, but defaults to "inline" just like the
service above which has an actions element containing the service implementation. For
other types of services, i.e. other ways of implementing a service, the location and
optional method attributes are used to specify what to run.

The example above has in-parameters including individual parameter elements and an
auto-parameters element to pull in all non-PK fields on the mantle.party.Person
entity. It also has one out-parameter, a partyId that in this case is either generated if no
partyId is passed as an input parameter or the passed in value is simply passed through.

The actions element has the implementation of the service, containing a XML Actions
script. In this case it calls a couple of services, and then conditionally calls a third if a
roleTypeId is passed in. Note that there is no explicit setting of the partyId output
parameter (in the result Map) as the Service Facade automatically picks up the context
value for each declared output parameter after the service implementation is run to populate
the output/results Map.

These are the attributes available on the service element:

e verb: This can be any verb, and will often be one of: create, update, store, delete, or
find. The full name of the service will be: "${path}.${verb}#${noun}". The verb is
required and the noun is optional so if there is no noun the service name will be just the
verb.

e noun: For entity-auto services this should be a valid entity name. In many other cases
an entity name is the best way to describe what is being acted on, but this can really be
anything.

e type: The service type specifies how the service is implemented. The default available
Opﬁonsinchlde:inline,entity—auto,script,java,interface,remote—xml—rpc,
remote-json-rpc, and camel. Additional types can be added by implementing the
org.moqui.impl.service.ServiceRunner interface and adding a service-
facade.service-type element in the Moqui Conf XML file. The default value is
inline meaning the service implementation is under the service.actions element.

e location: The location of the service. For scripts this is the Resource Facade location
of the file. For Java class methods this is the full class name. For remote services this is
the URL of the remote service. Instead of an actual location can also refer to a pre-
defined location from the service-facade.service-location element in the Moqui
Conf XML file. This is especially useful for remote service URLs.

e method: The method within the location, if applicable to the service type.

78

e authenticate: If not set to false (is true by default) a user much be logged in to run
this service. If the service is running in an ExecutionContext with a user logged in that
will qualify. If not then either a "authUserAccount" parameter or the "authUsername"
and "authPassword" parameters must be specified and must contain valid values for a
user of the system. An "authTenantId" parameter may also be specified to authenticate
the user in a specific tenant instance. If specified will be used to run the service with
that as the context tenant. Can also be set to anonymous-all or anonymous-view and not
only will authentication not be required, but this service will run as if authorized (using
the _NA_ UserAccount) for all actions or for view-only.

e allow-remote: Defaults to false meaning this service cannot be called through remote
interfaces such as JSON-RPC and XML-RPC. If set to true it can be. Before settings to
true make sure the service is adequately secured (for authentication and authorization).

e validate: Defaults to true. Set to false to not validate input parameters, and not
automatically remove unspecified parameters.

e transaction:

e ignore: Don't do anything with transactions (if one is in place use it, if no
transaction in place don't begin one).

e use-or-begin: Use active transaction or if no active transaction begin one. This is
the default.

e force-new: Always begin a new transaction, pausing/resuming the active
transaction if there is one.

e cache: Like use-or-begin but with a write-through per-transaction cache in place
(works even if active TX is in place). See notes and warnings in the JavaDoc
comments of the TransactionCache class for details.

e force-cache: Like force-new with a transaction cache in place like the cache
option.

e transaction-timeout: The timeout for the transaction, in seconds. This value is
only used if this service begins a transaction (force-new, force-cache, or use-or-
begin or cache and there is no other transaction already in place).

e semaphore: Intended for use in long-running services (usually scheduled). This uses a
record in the database to lock the service so that only one instance of it can run against a
given database at any given time. Options include none (default), fail, and wait.

e semaphore-timeout: When waiting how long before timing out, in seconds. Defaults
to 120s.

e semaphore-sleep: When waiting how long to sleep between checking the
semaphore, in seconds. Defaults to 5s.

e semaphore-ignore: Ignore existing semaphores after this time, in seconds. Defaults
to 3600s (1 hour).

The input and output of a service are each a Map with name/value entries. Input parameters
are specified with the in-parameters element, and output parameters with the out-
parameters element. Under these elements use the parameter element to define a single

79 6. Logic and Services

parameter, and the auto-parameters element to automatically define parameters based on
primary key (pk), non-primary key (nonpk) or all fields of an entity.

An individual parameter element has attributes to define it including:

name: The name of the parameter, matches against the key of an entry in the parameters
Map passed into or returned from the service.

type: The type of the attribute, a full Java class name or one of the common Java API
classes (including String, Timestamp, Time, Date, Integer, Long, Float, Double,
BigDecimal, BigInteger, Boolean, Object, Blob, Clob, Collection, List, Map, Set, Node).
required: Defaults to false, set to true for the parameter to be required. Can also set
to disabled to behave the same as if the parameter did not exist, useful when
overriding a previously defined parameter.

allow-html: Applies only to String fields. Only checked for incoming parameters
(meant for validating input from users, other systems, etc). Defaults to none meaning
no HTML is allowed (will result in an error message). If some HTML is desired then use
safe which will follow the rules in the antisamy-esapi.xml file. This should be safe for
both internal and public users. In rare cases when users are trusted or it is not a
sensitive field the any option may be used to not check the HTML content at all.
format: Used only when the parameter is passed in as a String but the type is
something other than String to convert to that type. For date/time uses standard Java
SimpleDateFormat strings.

default: The field or expression specified will be used for the parameter if no value is
passed in (only used if required=false). Like default-value but is a field name or
expression instead of a text value. If both this and default-value are specified this will
be evaluated first and only if empty will default-value be used.

default-value: The text value specified will be used for the parameter if no value is
passed in (only used if required=false). If both this and default are specified default will
be evaluated first and this will only be used if default evaluates to an empty value.
entity-name: Optional name of an entity with a field that this parameter is associated
with.

field-name: Optional field name within the named entity that this parameter is
associated with. Most useful for form fields defined automatically from the service
parameter. This is automatically populated when parameters are defined automatically
with the auto-parameters element.

For parameter object types that contain other objects (such as List, Map, and Node) the
parameter element can be nested to specify what to expect (and if applicable, validate)
within the parameter object.

In addition to the required attribute, validations can be specified for each parameter with
these sub-elements:

matches: Validate the current parameter against the regular expression specified in the
regexp attribute.
number-range: Validate the number within the min and max range.

80

e number-integer: Validate that the parameter is an integer.

e number-decimal: Validate that the parameter is a decimal number.

e text-length: Validate that the length of the text is within the min and max range.

e text-email: Validate that the text is a valid email address.

e text-url: Validate that the text is a valid URL.

o text-letters: Validate that the text contains only letters.

e text-digits: Validate that the text contains only digits.

e time-range: Validate that the date/time is within the before and after range,
using the specified format.

e credit-card: Validate that the text is a valid credit card number using Luhn MOD-10
and if specified for the given card types.

Validation elements can be combined using the val-or and val-and elements, or negated
using the val-not element.

When a XML Form field is based on a service parameter with validations certain validations
are automatically validated in the browser with JavaScript, including required, matches,
number-integer, number-decimal, text-email, text-url, and text-digits.

Now that your service is defined, essentially configuring the behavior of the Service Facade
when the service is called, it is time to implement it.

Service Implementation

Some service types have local implementations while others have no implementation
(interface) or the service definition is a proxy for something else and the location refers to
an external implementation (remote-xml-rpc, remote-json-rpc, and camel). The remote
and Apache Camel types are described in detail in the System Interfaces chapter.

Service Scripts

A script is generally the best way to implement a service, unless an automatic
implementation for entity CrUD operations will do. Scripts are reloaded automatically when
their cache entry is clear, and in development mode these caches expire in a short time by
default to get updates automatically.

Scripts can run very efficiently, especially Groovy scripts which compile to Java classes at
runtime and are cached in their compiled form so they can be run quickly. XML Actions
scripts are transformed into a Groovy script (see the xmlactions.groovy.ftl file for
details) and then compiled and cached, so have a performance profile just like a plain
Groovy script.

Any script that the Resource Facade can run can be used as a service implementation. See the
Rendering Templates and Running Scripts section for details. In summary the scripts
supported by default are Groovy, XML Actions, and JavaScript. Any scripting language can

81 6. Logic and Services

be supported through the javax.script or Moqui-specific interfaces. Here is an example of
a service implemented with a Groovy script, defined in the
org.moqui.impl.EmailServices.xml file:

<service verb="send" noun="EmailTemplate" type="script"
location="classpath://org/moqui/impl/sendEmailTemplate.groovy">
<implements service="org.moqui.EmailServices.send#EmailTemplate"/>
</service>

In this case the location is a classpath location, but any location supported by the Resource
Facade can be used. See the Resource Locations section for details on how to refer to files
within components, in the local file system, or even at general URLs.

At the beginning of a script all of the input parameters passed into the service, or set through
defaults in the service definition, will be in the context as fields available for use in the script.
As with other artifacts in Moqui there is also an ec field with the current ExecutionContext
object.

Note that the script has a context isolated from whatever called it using the
ContextStack.pushContext () and popContext () methods meaning not only do fields
created in the context not persist after the service is run, but the service does not have access
to the context of whatever called it even though it may be running locally and within the
same ExecutionContext as whatever called it.

For convenience there is a result field in the context that is of type Map<String, Object>.
You can put output parameters in this Map to return them, but doing so is not necessary. After
the script is run the script service runner looks for all output parameters defined on the
service in the context and adds them to the results. The script can also return (evaluate to) a
Map object to return results.

Inline Actions

The service definition example near the beginning of this chapter shows a service with the
default service type, inline. In this case the implementation is in the service.actions
element, which contains a XML Actions script. It is treated just like an external script referred
to by the service location but for simplicity and to reduce the number of files to work with it
can be inline in the service definition.

Java Methods

A service implementation can also be a Java method, either a class (static) method or an
object method. If the method is not static then the service runner creates a new instance of
the object using the default (no arguments) constructor.

The method must take a single ExecutionContext argument and return a Map<String,
Object>, so the signature of the method would be something like:

82

Map<String, Object> myService(ExecutionContext ec)

Entity Auto Services

With entity-auto type services you don’t have to implement the service, the
implementation is automatic based on the verb and noun attribute values. The verb can be
create, update, delete, or store (which is a create if the record does not exist, update if it
does). The noun is an entity name, either a full name with the package or just the simple
entity name with no package.

Entity Auto services can be implicitly (automatically) defined by just calling a service named
like $ {verb}#${noun} with no path (package or filename). For example:

ec.service.sync().name("create", "moqui.example.Example")
.parameters([exampleName: 'Test Example’]).call()

When you define a service and use the entity-auto implementation you can specify which
input parameters to use (must match fields on the entity), whether they are required, default
values, etc. When you use an implicitly defined entity auto service it determines the behavior
based on what is passed into the service call. In the example above there is no example1d
parameter passed in, and that is the primary key field of the moqui.example.Example entity,
so it automatically generates a sequenced ID for the field, and returns it as an output
parameter.

For create operations in addition to automatically generating missing primary sequenced
IDs it will also generate a secondary sequenced ID if the entity has a 2-part primary key and
one is specified while the other is missing. There is also special behavior if there is a
fromDpate primary key field that is not passed in, it will use the now Timestamp to populate
it.

The pattern for is update to pass in all primary key fields (this is required) and any non-PK
field desired. There is special behavior for update as well. If the entity has a status1d field
and a statusId parameter is passed in that is different then it automatically returns the
original (DB) value in the oldStatusId output parameter. Whenever the entity has a
statusId field it also returns a statusChanged boolean parameter which is true if the
parameter is different from the original (DB) value, false otherwise. Entity auto services also
enforce valid status transitions by checking for the existing of a matching
moqui.basic.StatusFlowTransition record. If no valid transition is found it will return an
error.

83 6. Logic and Services

Add Your Own Service Runner

To add your own service runner, with its own service type, implement the
org.moqui.impl.service.ServiceRunner interface and add a service-facade.service-
type element in the Moqui Conf XML file.

The serviceRunner interface has 3 methods to implement:

ServiceRunner init(ServiceFacadeImpl sfi);
Map<String, Object> runService(ServiceDefinition sd,

Map<String, Object> parameters) throws ServiceException;
void destroy();

Here is an example of a service-facade.service-type element from the
MoquiDefaultConf.xml file:

<service-type name="script"
runner-class="org.moqui.impl.service.runner.ScriptServiceRunner"/>

The service-type.name attribute matches against the service.type attribute, and the
runner-class attribute is simply the class that implements the ServiceRunner interface.

Calling Services and Scheduling Jobs

There are DSL-style interfaces available through the serviceFacade (ec.getService(), or
in Groovy ec.service) that have options applicable to the various ways of calling a service.
All of these service call interfaces have name () methods to specify the service name, and
parameter () and parameters () methods to specify the input parameters for the service.
These and other methods on the various interfaces return an instance of themselves so that
calls can be chained. Most have some variation of a call () method to actually call the
service.

For example:

Map ahp = [visitId:ec.user.visitId, artifactType:artifactType, ..]

ec.service.async().name("create", "moqui.server.ArtifactHit")
.parameters(ahp).call()

Map result = ec.service.sync()
.name ("org.moqui.impl.UserServices.create#UserAccount")
.parameters(params).call()

The first service call is to an implicitly defined entity CrUD service to create a ArtifactHit
record asynchronously. Note that for async() the call() method returns nothing and in this
case the service call results are ignored. The second is a synchronous call to a defined service
with a params input parameter Map, and because it is a sync() call the call() method
returns a Map with the results of the service call.

Beyond these basic methods each interface for different ways of calling a service has methods
for applicable options, including;:

84

e sync/(): Call the service synchronously and return the results.

e requireNewTransaction(boolean requireNewTransaction):If true suspend/
resume the current transaction (if a transaction is active) and begin a new transaction
for the scope of this service call.

e multi(boolean mlt):If true expect multiple sets of parameters passed in a single
map, each set with a suffix of an underscore and the row of the number, i.e.
something like "userId_8" for the userld parameter in the 8th row.

e disableAuthz (): Disable authorization for the current thread during this service call.

e async(): Call the service asynchronously and ignore the results, get back a
ServiceResultWaiter object to wait for the results, or pass in an implementation of
the serviceResultReceiver interface to receive the results when the service is
complete.

e maxRetry(int maxRetry): Set the maximum number of times to retry running the
service when there is an error.

e resultReceiver(ServiceResultReceiver resultReceiver): Specify the object
that implements the serviceResultReceiver interface to use for the service call.
Use the call() method after this to actually call the service.

e callwaiter(): Calls the service (like call()) and returns a ServiceResultWaiter
instance used to wait for and receive the service results.

e schedule(): Setup call(s) to the service on a schedule.

e jobName(String jobName): Name of the job. If specified repeated schedules with
the same jobName will use the same underlying job.

e startTime(long startTime): Time to first run this service (in milliseconds from
epoch).

e count(int count): Number of times to repeat.

e endTime(long endTime): Time that this service schedule should expire (in
milliseconds from epoch).

e interval(int interval, TimeUnit intervalUnit):A time interval specifying
how often to run this service. The intervalunit parameter is a value from the
enumeration ServiceCall.IntervalUnit { SECONDS, MINUTES, HOURS, DAYS,
WEEKS, MONTHS, YEARS }

e cron(String cronString): A string in the same format used by cron to define a
recurrence.

e maxRetry(int maxRetry): Maximum number of times to retry running this service.

e special(): Register the current service to be called when the current transaction is
either committed (use registeronCommit ()) or rolled back (use
registeronRollback()). This interface does not have a call () method.

The asynchronous and scheduled service calls are run using Quartz Scheduler. To use Quartz
directly get an instance of the org.quartz.scheduler object using the
ec.getServices().getScheduler () method. For details on what you can do with Quartz,
see the documentation at http:/ /quartz-scheduler.org/documentation.

85 6. Logic and Services

http://quartz-scheduler.org/documentation

The Quartz job store is in memory by default and can be put in a database using the Quartz
JDBC job store or the Moqui EntityJobstore which uses the Entity Facade for persistence
for easier configuration and deployment. When using the RAM job store or to make sure that
a certain job is scheduled use the xMLSchedulingDataProcessorPlugin from Quartz by
configuring it in the quartz.properties file. Part of the configuration is the filename of the
XML file that has the job settings, quartz_data.xml by default in Moqui.

Here is an example of a schedule, which is in place by default in Moqui:

<schedule>
<job>
<name>clean ArtifactData single</name>
<group>org.moqui.impl.ServerServices.clean#ArtifactData</group>
<job-class>org.moqui.impl.service.ServiceQuartzJob</job-class>
<job-data-map><entry><key>daysToKeep</key><value>90</value>
</entry></job-data-map>
</job>
<trigger>
<cron>
<name>clean ArtifactData_daily</name>
<group>ServerServices</group>
<job-name>clean ArtifactData single</job-name>
<job-group>org.moqui.impl.ServerServices.clean#ArtifactData
</job-group>
<!-- trigger every night at 2:00 am -->
<cron-expression>0 0 2 * * ?</cron-expression>
<!-- for testing, run every 2 minutes:
<cron-expression>0 0/2 * * * ?</cron-expression> -->
</cron>
</trigger>
</schedule>

The most important elements are job. job-class which should be set to
org.moqui.impl.service.ServiceQuartzJob for Moqui Service Facade jobs, and
job.group which is the service name. Note that trigger. job-name must match job.name,
and trigger. job-group must match job.group.

The Tools app in default runtime that comes with Moqui Framework has some screens for
viewing, pausing, resuming, and canceling Quartz jobs. The screens include a summary of
scheduler details, a history of jobs run, and admin for current jobs and triggers. These
screens are under the Tools => Service => Scheduler screen.

Service ECA Rules

An ECA (event-condition-action) rule is a specialized type of rule to conditionally run actions
based on events. For Service ECA (SECA) rules the events are the various phases of executing
a service, and these are triggered for all service calls.

86

Service ECAs are meant for triggering business processes and for extending the functionality
of existing services that you don't want to, or can't, modify. Service ECAs should NOT
generally be used for maintenance of data derived from other entities, Entity ECA rules are a
much better tool for that.

Here is an example of an SECA rule from the AccountingInvoice.secas.xml file in Mantle
Business Artifacts that calls a service to create invoices for orders when a shipment is packed:

<seca service="update#mantle.shipment.Shipment" when="post-service">
<condition><expression>
statusChanged && statusId == ‘ShipPacked’
</expression></condition>
<actions><service-call
name="mantle.account.InvoiceServices.create#SalesShipmentInvoices"
in-map="context + [statusId:'InvoiceFinalized']"/></actions>
</seca>

The required attributes on the seca element are service with the service name, and when
which is the phase within the service call. These two attributes together make up the event
that triggers the SECA rule. There is also a run-on-error attribute which defaults to false
and if set to true the SECA rule will be triggered even if there is an error in the service call.

The options for the when attribute include:

e pre-auth: Runs before authentication and authorization checks, but after the
authUsername, authPassword and authTenantId parameters are used and specified
user logged in; useful for any custom behavior related to authc or authz

e pre-validate: Runs before input parameters are validated; useful for adding or
modifying parameters before validation and data type conversion

e pre-service: Runs before the service itself is run; best place for general things to be
done before running the service

e post-service: Runs just after the service is run; best place for general things to be
done after the service is run and independent of the transaction

e post-commit: Runs just after the commit would be done, whether it is actually done
or not (depending on service settings and existing TX in place, etc); to run something on
the actual commit use the tx-commit option

e tx-commit:Runs when the transaction the service is running in is successfully
committed. Gets its data after the run of the service so will have the output/results of
the service run as well as the input parameters.

e tx-rollback: Runs when the transaction the service is running in is rolled back. Gets
its data after the run of the service so will have the output/results of the service run as
well as the input parameters.

When the actions run the context will be whatever context the service was run in, plus the
input parameters of the service for convenience in using them. If when is before the service
itself is run there will be a context field called parameters with the input parameters Map in
it that you can modify as needed in the ECA actions. If when is after the service itself the

87 6. Logic and Services

parameters field will contain the input parameters and a results field will contain the
output parameters (results) that also may be modified.

The condition element is the same condition as used in XML Actions and may contain
expression and compare elements, combined as needed with or, and, and not elements.

The actions element is the same as actions elements in service definitions, screens, forms,
etc. It contains a XML Actions script. See the Overview of XML Actions section for more
information.

Overview of XML Actions

The xml-actions-${version}.xsd file has thorough annotations for detailed
documentation, this section is just an overview of what is available to help you get started.
You can view the annotations through most good XML editors (including the better Java
IDEs or IDE plugins), in the XSD file itself, or in the PDF on moqui . org that is generated
from the XSD file.

Here is a summary of the most important XML Actions elements to be aware of:

set Set a field, either from another field or from a value, optionally
specifying the type, a default-value, and whether to set-if-
empty.

if Conditionally run the elements directly under the if element, or in

the if.then element. The condition can be in the i f.condition
attribute or in compare and expression elements under the
if.condition element (combined with and or or element,
negated by the not element). For alternate actions use the else-if
and else subelements.

while Repeat the subelements as long as the condition is true. Just like
the if element the condition can be in the if.condition attribute
orin the if.condition element.

iterate Iterate over elements in the given list, creating a field in the
context using the name in the entry attribute. If the field named in
the 1list attribute is a Map, iterates over the map entries and the
key for each entry is put in the context using the name in the key
attribute. Also creates context fields $ {entry} index and $
{entry} has next.

script Run any kind of script the Resource Facade can run at the specified
location or the Groovy script in the text under this element
(inline script).

88

http://moqui.org

service-call

entity-find-one

entity-find

entity-find-count

entity-make-value

entity-create
entity-update
entity-delete

entity-set

entity-sequenced-
id-primary

entity-sequenced-
id-secondary

89

Call the service specified in the name attribute, using the inputs in
the in-map attribute (which is a Groovy expression, so can use the
square-brace [] syntax for an inline Map) or field-map subelements
and putting the outputs in the out-map. Can optionally be async
and include-user-login. If the service results in an error the
simple method will return immediately unless ignore-error
equals true.

Find a single record for entity-name and put it in an
EntityValue objectin value-£field using attributes including
auto-field-map, cache, and for-update, and subelements
including field-map and select-field.

Find records for entity-name and put an EntityList object in
list using attributes including cache, for-update, distinct,
offset, and limit, and subelements including search-form-
inputs, date-filter, econdition, econditions, econdition-
object, having-econditions, select-field, order-by, limit-
range, limit-view, and use-iterator.

Find the count of the number of records that match the given
conditions. Conditions and other application options follow the
same structure as the entity-find operation.

Create a value-field entity value object for the given entity-
name and optionally set fields based on a map.

Create (or-update) a record for the value-field entity value.
Update the record for the value-£field entity value.
Delete the record corresponding to the value-field entity value.

Set fields to include (pk, nonpk, or all) on EntityValue object in
value-field from map (defaults to context) with an optional
prefix and set-if-empty.

For value-field of an entity with a single primary key field,
populate that primary key field with a sequenced value (the
sequence name is the full entity name).

For value-field of an entity with a two field primary key and
one field already populated, populate the other with a secondary
sequenced key with the value of the highest existing secondary
field for records matching the populated field, plus 1.

6. Logic and Services

entity-data

filter-map-list

order-map-list

message

check-errors

return

log

For the given mode, 1oad or asset the Entity Facade XML at the
specified location.

Filter the 1ist and put the results in to-1ist if specified or back
in list if not. Use one or more field-map or date-filter
subelements to specify how to filter the list.

Order (sort) a 1ist of Map objects by the fields specified in order-
by subelements.

Add the text under the message element to the Message Facade to
the errors list if error=true or the message list otherwise.

Checks the Message Facade error message list
(ec.message.errors) and if not empty returns with an error,
otherwise does nothing.

Returns immediately. Can optionally specify a message to add to
the Message Facade errors list if error=true or the message list
otherwise.

Log the message at the specified 1evel.

90

7. User Interface

The main artifact for building user interfaces in Moqui Framework is the XML Screen.

XML Screens are designed to be used with multiple render modes using the same screen
definition. This includes various types of text output for user and system interfaces, and
code-driven user interfaces in client applications.

To accommodate this design goal most screen elements are render mode agnostic. For
elements that are specific to a particular render mode there is a render-mode element with
subelements designed for specific render modes. To support multiple render mode specific
elements in the same screen just put a subelement under the render-mode element for each
desired type.

In a web-based application a XML Screen is the main way to produce output for incoming
requests. The structure of screens makes it easy to support any sort of URL to a screen.

XML Screen

Screens in Moqui are organized in two ways:

e each screen exists in a hierarchy of subscreens
e a screen may be a node in a graph tied to other nodes by transitions

The hierarchy model is used to reference the screen, and in a URL specify which screen to
render by its path in the hierarchy. Screens also contain links to other screens (literally a
hyperlink or a form submission) that is more like the structure of going from one node to
another in a graph through a transition.

Subscreens

The subscreen hierarchy is primarily used to dynamically include another screen, a
subscreen or child screen. The subscreens of a screen can also be used to populate a menu.

When a screen is rendered it is done with a root screen and a list of screen names.

91 7. User Interface

The root screen is configured per webapp in the Moqui Conf XML file with the mogui-
conf.webapp-list.webapp.root-screen element. Multiple root screens can be configured
per webapp based on a hostname pattern, providing a convenient means of virtual hosting
within a single webapp. Note that there is no root screen specified in the
MoquiDefaultConf.xml file, so it needs to be specified in conf file specified at runtime.

You should have at least one catchall root-screen element meaning that the host is set to
the regular expression ". *". See the sample runtime conf files, such as the
MoquiDevConf.xml file, for an example.

If the list of subscreen names does not reach a leaf screen (with no subscreens) then the
default subscreen, specified with the screen.subscreens.default-item attribute will be
used. Because of this any screen that has subscreens should have a default subscreen.

There are three ways to add subscreens to a screen:

1. for screens within a single application, by directory structure: create a directory in the
directory where the parent screen is named the same as the parent screen's filename and
put XML Screen files in that directory (name=filename up to .xml,
title=screen.default-title, location=parent screen minus filename plus directory
and filename for subscreen)

2. for including screens that are part of another application, or shared and not in any
application, use the subscreens-item element below the screen.subscreens element

3. for adding screens, removing screens, or changing order and title of screens of a separate
application add a record in the moqui.screen.SubscreensItem entity

For #1 a directory structure would look something like this (from the Example application):

e ExampleApp.xml
e ExampleApp
e Feature.xml
e Feature
e FindExampleFeature.xml
e EditExampleFeature.xml
e Example.xml
e Example
e FindExample.xml
e EditExample.xml

The pattern to notice is that if there is are subscreens there should be a directory with the
same name as the XML Screen file, just without the .xml extension. The Feature.xml file is
an example of a screen with subscreens, whereas the FindExampleFeature.xml has no
subscreens (it is a leaf in the hierarchy of screens).

For approach #2 the subscreens-item element would look something like this element
from the apps . xm1 file used to mount the Example app’s root screen:
<subscreens-item name="example" menu-title="Example" menu-index="8"
location="component://example/screen/ExampleApp.xml" />
92

For #3 the record in the database in the SubscreensItem entity would look something like
this (an adaptation of the XML element above):

<moqui.screen.SubscreensItem subscreenName="example"
userGroupId="ALL USERS"
menuTitle="Example" menuIndex="8" menuInclude="Y"
screenLocation="component://webroot/screen/webroot/apps.xml"
subscreenLocation="component://example/screen/ExampleApp.xml" />

Within the widgets (visual elements) part your screen you specify where to render the active
subscreen using the subscreens-active element. You can also specify where the menu
for all subscreens should be rendered using the subscreens-menu element. For a single
element to do both with a default layout use the subscreens-panel element.

While the full path to a screen will always be explicit, when following the default subscreen
item under each screen there can be multiple defaults where all but one have a condition. In

the webroot.xml screen there is an example of defaulting to an alternate subscreen for the
iPad:

<subscreens default-item="apps">
<conditional-default item="ipad"
condition="(ec.web.request.getHeader('User-Agent')?:'"').matches('.*iPad.*"')"/>
</subscreens>

With this in place an explicit screen path will go to either the "apps" subscreen or the "ipad"
subscreen, but if neither is explicit it will default to the ipad.xml subscreen if the User-
Agent matches, otherwise it will default to the normal apps . xm1 subscreen. Both of these
have the example and tools screen hierarchies under them but have slightly different HTML
and CSS to accommodate different platforms.

Once a screen such as the FindExample screen is rendered through one of these two its links
will retain that base screen path in URLs generated from relative screen paths so the user will
stay in the path the original default pointed to.

Standalone Screen

Normally screens will be rendered following the render path, starting with the root screen.
Each screen along the way may add to the output. A screen further down the path that is
rendered without any previous screens in the path adding to the output is a "standalone"
screen.

This is useful when you want a screen to control all of its output and not use headers, menus,
footers, etc from the screen it is under in the subscreens hierarchy.

There are two ways to make a screen standalone:

e set the screen.standalone attribute to true to make the screen always standalone
e to render any screen standalone pass in the lastStandalone=true parameter, or set it in
a screen pre-action (action under the screen.pre-actions element)

93 7. User Interface

The first option is most useful for screens that are the root of an application separate from the
rest and that need different decoration and such. The second option is most useful for screens
that are sometimes used in the context of an application, and other times used to produce
undecorated output like a CSV file or for loading dynamically in a dialog window or screen
section.

Transition

A transition is defined as a part of a screen and is how you get from one screen to another,
processing input if applicable along the way. A transition can of course come right back to
the same screen and when processing input often does.

The logic in transitions (transition actions) should be used only for processing input, and not
for preparing data for display. That is the job of screen actions which, conversely, should not
be used to process input (more on that below).

When a XML Screen is running in a web application the transition comes after the screen in
the URL. In any context the transition is the last entry in the list of subscreen path elements.
For example the first path goes to the EditExample screen, and the second to the
updateExample transition within that screen:

/apps/example/Example/EditExample
/apps/example/Example/EditExample/updateExample

When a transition is the target of a HTTP request any actions associated with the transition
will be run, and then a redirect will be sent to ask the HTTP client (usually a web browser) to
go to the URL of the screen the transition points to. If the transition has no logic and points
right to another screen or external URL when a link is generated to that transition it will
automatically go to that other screen or external URL and skip calling the transition
altogether. Note that these points only apply to a XML Screen running in a web-based
application.

A simple transition that goes from one screen to another, in this case from FindExample to
EditExample, looks like this:

<transition name="editExample">
<default-response url="../EditExample"/>
</transition>

The path in the ur1l attribute is based on the location of the two screens as siblings under the
same parent screen. In this attribute a simple dot (" . ") refers to the current screen and two
dots (" . . ") refers to the parent screen, following the same pattern as Unix file paths.

For screens that have input processing the best pattern to use is to have the transition call a
single service. With this approach the service is defined to agree with the form that is
submitted to the corresponding transition. This makes the designs of both more clear and
offers other benefits such as some of the validations on the service definition are used to

94

generate matching client-side validations. This sort of transition would look like this (the
updateExample transition on the EditExample screen):

<transition name="updateExample">
<service-call name="org.moqui.example.ExampleServices.updateExample"/>
<default-response url="."/>

</transition>

In this case the default-response.url attribute is simple a dot which refers to the current
screen and means that after this transition is processed it will go to the current screen.

A screen transition can also have actions instead of a single service call by using the
actions element instead of the service-call element. Just as with all actions elements in
all XML files in Moqui, the subelements are standard Moqui XML Actions that are
transformed into a Groovy script. This is what a screen transition with actions might look
like (simplified example, also from the EditExample screen):

<transition name="getExampleTypeEnumList">

<actions>
<entity-find entity-name="..." list="...">
<econdition field-name="..." from="..."/>
<order-by field-name="..."/>
</entity-find>
<script>
ec.web.sendJsonResponse([exampleTypeEnumList:exampleTypeEnumList])
</script>
</actions>
<default-response type="none"/>
</transition>

This example also shows how you would do a simple entity find operation and return the
results to the HTTP client as a JSON response. Note the call to the
ec.web.sendJsonResponse () method and the none value for the default-response.type
attribute telling it to not process any additional response.

As implied by the element default-response you can also conditionally choose a response

using the conditional-response element. This element is optional and you can specify any
number of them, though you should always have at least one default-response element to
be used when none the conditions are met. There is also an optional error-response which
you may use to specify the response in the case of an error in the transition actions.

A transition with a conditional-response would look something like this simplified
example from the DataExport screen:

<transition name="EntityExport.xml">
<actions><script><![CDATA[if (...) noResponse = true]]>
</script></actions>
<conditional-response type="none">
<condition><expression>noResponse</expression></condition>
</conditional-response>
<default-response url="."/>

95 7. User Interface

</transition>

This is allowing the script to specify that no response should be sent (when it sends back the
data export), otherwise it transitions back to the current screen. Note that the text under the
condition.expression element is simply a Groovy expression that will be evaluated as a
boolean.

All *-response elements can have parameter subelements that will be used when
redirecting to the url or other activating of the target screen. Each screen has a list of expected
parameters so this is only necessary when you need to override where the parameter value
comes from (default defined in the parameter tag under the screen) or to pass additional
parameters.

Here are the shared attributes of the default-response, conditional-response, and
error-response elements:

type Defaults to url, can be:

« none: No response, do nothing aside from the transition actions.

e screen-last: Go to the screen from the last request unless there is
a saved one from some previous request (using the save-current-
screen attribute, done automatically for login). If no last screen is
found the value in the url will be used, and if nothing there will go
to the default screen (just to root with whatever defaults are setup
for each subscreen).

e screen-last-noparam: Like screen-last but don’t pass through
any parameters.

o url:Redirect to the URL specified in the url attribute, of url-type

url The URL to follow in response, based on url-type. The default url-
type is screen-path which means the value here is a path from the
current screen to the desired screen, transition, or sub-screen content.

Use "." to represent the current screen, and ". . " to represent the parent
screen on the runtime screen path. The ". ." can be used multiple times,
suchas "../.." to get to the parent screen of the parent screen (the
grand-parent screen). If the screen-path type url starts with a " /" it will
be relative to the root screen instead of relative to the current screen.

If url-type is plain then this can be any valid URL (relative on current
domain or absolute).

url-type Can be either screen-path (default) or plain. Normally responses will
go to another screen, hence the default, but if you want to go to a relative
or absolute URL use the plain type.

96

parameter-map Just like the parameter subelement can be used to specify parameters to
pass with the redirect.

save-current- Save the current screen's path and parameters for future use, generally

screen with the screen-1last type of response.
save- Save the current parameters (and request attributes) before doing a
parameters redirect so that the screen rendered after the redirect renders in a context

similar to the original request to the transition.

Parameters and Web Settings

One of the first things in a screen definition is the parameters that are passed to the screen.
This is used when building a URL to link to the screen or preparing a context for the screen
rendering. You do this using the parameter element, which generally looks something like
this:

<parameter name="exampleId"/>

The name attribute is the only required one, and there are others if you want a default static
value (with the value attribute) or to get the value by default from a field in the context
other than one matching the parameter name (with the from attribute).

While parameters apply to all render modes there are certain settings that apply only when
the screen is rendered in a web-based application. These options are on the screen.web-
settings element, including:

e allow-web-request: Defaults to true. Set to false to not allow access to an HTTP
client.

e require-encryption: Defaults to true. Set to false for screens that are less secure
and don’t requite encryption (i.e. HTTPS).

e mime-type: Defaults to text/html. This can vary based on how the screen is rendered
(the render mode) but when always producing a certain type of output set the
corresponding mime type here.

e character-encoding: Defaults to UTF-8 for text output. If you are rendering text with
a different encoding, set it here.

Screen Actions, Pre-Actions, and Always Actions

Before rendering the visual elements (widgets) of a screen data preparation is done using
XML Actions under the screen.actions element. These are the same XML Actions used for
services and other tools and are described in the Logic and Services chapter. There are
elements for running services and scripts (inline Groovy or any type of script supported
through the Resource Facade), doing basic entity and data moving operations, and so on.

97 7. User Interface

Screen actions should be used only for preparing data for output. Use transition actions to
process input.

When screens are rendered it is done in the order they are found in the screen path and the
actions for each screen are run as each screen in the list is rendered. To run actions before the
first screen in the path is rendered use the pre-actions element. This is used mainly for
preparing data needed by screens that will include the current screen (i.e., before the current
screen in the screen path). When using this keep in mind that a screen can be included by
different screens in different circumstances.

If you want actions to run before the screen renders and before any transition is run, then use
the always-actions element. The main difference between always-actions and pre-
actions is that the pre-actions only run before a screen or subscreen is rendered, while
always-actions will run before any transition in the current screen and any transition in
any subscreen. The always-actions also run whether the screen will be rendered, while the
pre-actions only run if the screen will be rendered (i.e., is below a standalone screen in the

path).
XML Screen Widgets

The elements under the screen.widgets element are the visual elements that are rendered,
or when producing text that actually produce the output text. The most common widgets are
XML Forms (using the form-single and form-1list elements) and included templates. See
the section below for details about XML Formes.

While XML Forms are not specific to any render mode templates by their nature are
particular to a specific render mode. This means that to support multiple types of output
you’ll need multiple templates. The webroot .xml screen (the default root screen) has an
example of including multiple templates for different render modes:

<render-mode>
<text type="html"
location="component://webroot/screen/includes/Header.html.ftl"/>
<text type="xsl-fo" no-boundary-comment="true"
location="component://webroot/screen/includes/Header.xsl-fo.ftl"/>
</render-mode>

The same screen also has an example of supporting multiple render modes with inline text:

<render-mode>
<text type="html"><![CDATA[</body></html>]]></text>
<text type="xsl-fo">
<![CDATA[</fo:flow></fo:page-sequence></fo:root>]]></text>
</render-mode>

These are the widget elements for displaying basic things:

e link: a hyperlink to a transition, another screen, or any URL

98

¢ image: display an image
e label: display some text

To structure screens use these widget elements:

e section: a named part of a screen with condition, actions, widgets, and fail-widgets
(run when condition evaluates to false)

e section-iterate: like section but is run for each entry in a collection

e container: an area of a screen

e container-panel: an area of a screen structured into a header, footer and left, center
and right panels in-between

e container-dialog: a screen area that is initially hidden and that pops up when a
button is pressed

e dynamic-dialog: a button and placeholder for a popup that loads its content from the
server through a transition of the current screen

e include-screen: literally include another screen

Section, Condition and Fail-Widgets

A section is a special widget that contains other widgets. It can be used anywhere other
screen widget elements are used. A section has widgets, condition, and fail-widgets
subelements. The screen element also supports these subelements, making it a sort of top-
level section of a screen.

The condition element is used to specify a condition. If it evaluates to true the widgets
under the widgets element will be rendered, and if false the widgets under the fail-
widgets element will be.

Macro Templates and Custom Elements

Moqui XML Screen and XML Form files are transformed to the desired output using a set of
macros in a Freemarker (FTL) template file. There is one macro for each XML element to
produce its output when the screen is rendered.

There are two ways to specify the macro template used to render a screen:

o for all screens: moqui-conf.screen-facade.screen-text-output.macro-template-
location attribute in the Moqui Conf XML file; there is one screen-text-output element
for each render mode (i.e. html, xml, csv, xsl-fo, etc) identified by the screen-text-
output.type attribute

e for a single screen: screen.macro-template.location attribute; you can also specify a
macro-template element for each render-mode, identified by the macro-
template.type attribute

99 7. User Interface

The location of the macro template can be any location supported by the Resource Facade.
The most common types of locations you'll use for this include component, content, and
runtime directory locations.

The default macro templates included with Moqui are specified in the
MoquiDefaultConf .xml file along with all other default settings. You can override them
with your own in the Moqui Conf XML file specified at runtime.

When you use a custom macro template file you don’t need to include a macro for every
element you want to render differently. You can start the file with an include of a default
macro file or any other macro file you want to use, and then just override the macros for
desired elements. An include of another macro file within your file will look something like:

<#include "classpath://template/DefaultScreenMacros.html.ftl"/>
The location here can also be any location supported by the Resource Facade.

You can use this approach to add your own custom elements. In other words, the macros in
your custom macro template file don’t have to be an override of one of the stock elements in
Moqui, they can be anything you want.

Use this approach to add your own widget elements and form field types that you want to be
consistent across screens in your applications. For example you can add macros for special
containers with dynamic HTML like the dialogs in the default macros, or a special form field
like a slider or a custom form field widget you create with JavaScript.

When you add a macro for a custom element you can just start using it in your XML Screen
files even though they are not validated by the XSD file. If you want them to be validated:

1. create your own custom XSD file

2. include one or more of the default Moqui XSD files

3. add your element definitions to your custom XSD

4. refer to your custom XSD file in the screen.xsi:noNamespaceSchemaLocation
attribute of your XML Screen file

CSV, XML, PDF and Other Screen Output

Because a single XML Screen file can support output in multiple render modes the render
mode to use is selected using a parameter to the screen: the renderMode parameter. For web-
based applications this can be a URL parameter. For any application this can be setin a
screen action, usually a pre-action (i.e., under the screen.pre-actions element).

The value of this parameter can be any string matching a screen-text-output.type
attribute in the Moqui Conf XML file. This includes the OOTB types as well as any you add
in your runtime conf file.

100

All screens in the render path are rendered regardless of the render mode, so for output types
where you only want the content of the last screen in the path to be included (like CSV), use
the lastStandalone=true parameter along with the renderMode parameter.

XML Form

There are two types of XML Form: single and list. A single form represents a single set of
fields with a label and widget for each. A list form is presented as a table with a column for
each field, the label in the table header, a widget for the field in each row, and a row for each
entry in the list the form output is based on.

While there are other ways to get data, most commonly a single form gets field values from a
Map and a list form from a List of Maps.

A XML Form is like a XML Screen in that they are both rendered using a FTL macro for each
element, and both support multiple render modes. Just like with XML Screen widgets you
can add your own widgets by adding macros for them. The XML Form macros go in the
same FTL file as the XML Screen macros, so use the same approach to add custom macros.

Form Field

The main element in a form is the field, identified by its name attribute. When a form
extends another form fields are overridden by using the same field name. For HTML output
this is also the name of the HTML form field. The name is also used as the map key or
parameter name (if no map key value found, or when there is an error submitting the form)
to get the field value from. To get the field value from somewhere else in the context, and still
use the name for the parameter when applicable, use the entry-name attribute which can be
any Groovy expression that evaluates to the value desired.

For automatic client-side validation in generated HTML based on a service parameter you
can use the validate-service and validate-parameter attributes on the field element.
When the form field is automatically defined based on a service using the auto-fields-
service element these two attributes will be populated automatically. The XML Form
renderer will also look at the transition the form submits to and if it has a single service-
call element (as opposed to processing input using an actions element) it will look for a
service input parameter with a name matching the field name and use its validations.

The field type or "widget" (visual/interactive element) of a field goes under a subelement of
the field element. The default widget to use goes under the default-field subelement
and all fields should have one (and only one). If you want different widgets to be used in
specific conditions use the conditional-field element with a Groovy expression that
evaluates to a boolean in the condition attribute. This works for both single and list forms,
and for list forms is evaluated for each row.

101 7. User Interface

There is also a field.header-field subelement for a widget that goes in the header row of
list forms. When used these header field widgets are part of a separate form that is meant to
be used for search options. Sort/order links naturally go along with search options in the list
form header and these can be turned on by setting the header-field.show-order-by
attribute to true or case-insensitive.

A field’s title comes from the default-field.title attribute unless there is a header-
field element, then it comes from the title attribute on that element. The default-field
element also has a tooltip attribute which shows as a popup tooltip when focused on or
hovering over the field (specific behavior depends on the HTML generated or other specific
form rendering).

It is often nice when date values are red when a from date has not been reached or after a
thru date. This is controlled using the default-field.red-when attribute, which by default
is by-name meaning if the field name is frombate then the field is red when the date is in the
future and if the field name is thrubate then the field is red when the date is in the past. The
red-when attribute can also be before-now, after-now, and never.

Field Widgets

There are a number of OOTB widgets for form fields, and additional widgets can be added
using the extension mechanism described for screens in the Macro Templates and Custom
Elements section.

Any of the widgets usable in screens can be used in XML Form fields (see the XML Screen
Widgets section). There are also various widgets that are specific to form fields. Here is a
summary of the OOTB field widgets in Moqui:

auto-widget- Define the field widget automatically based on the parameter-name

service input parameter of the service-name service. Use the field-type
attribute to specify the general type of field widget to use, the specific
field widget is selected based on the parameter object type. This can be
edit (default), find, display, find-display (adds both find and
display widgets), or hidden.

auto-widget- Define the field widget automatically based on the field-name field of

entity the entity-name entity. Use the field-type attribute to specify the
general type of field widget to use, the specific field widget is selected
based on the field type. This can be edit, £ind, display, find-display
(default; adds both find and display widgets), or hidden.

102

widget-
template-
include

check

date-find

date-time

display

display-
entity

103

Form field widget templates are defined in a XML file with the widget-
templates root element. Each widget-template element can contain
any of the field widget elements with ${} parameters as needed.

To use a widget template just specify its location and set subelements
as needed define fields for just the scope of rendering the template.

Show check boxes for a list of options from the entity-options, list-
options, and/or option subelements (see the drop-down description
for details). Optionally specify a box to check by default using the no-
current-selected-key attribute, or check all boxes by setting al1-
checked to true.

Displays two date/time input widgets just like date-time with the
same type and format attributes. Use the default-value-£from
attribute for the default value of the from (left) input box, and the
default-value-thru attribute for the thru (right) one.

A date/time input widget specific to the type, either timestamp, date-
time, date, or time. The format of the date/time string is specified in
the format attribute using a Java SimpleDateFormat string. The text
input box part of the widget is size characters wide on a single line
allowing at most maxlength entered characters, though these are
optional and automatically set based on the type. Use the default-
value attribute to specify a value to use if there is no context or
parameter value for the field.

A plain text display of the expanded string from the text attribute (or
the field value if empty) plus a corresponding hidden field submitted
with the form unless also-hidden is set to false. Use the format
attribute to specify the Java format string for date/time
(simpleDateFormat), number (DecimalFormat), etc values. For
currency formatting specify the field containing the currency Uom.uom1d
in currency-unit-field. For HTML output by default encodes the text
unless encode is set to false.

Lookup an entity value for entity-name and display the expanded
text string including the entity field values. This is limited to lookup by
a single primary key field, and if the entity’s PK field has a name
different from field.name then specify it with the key-field-name
attribute. By default this is a cached query, to not use the entity cache set
use-cache to false. Justlike display, this has a corresponding hidden
field submitted with the form unless also-hidden is set to false. For
HTML output by default encodes the text unless encode is set to false.

7. User Interface

drop-down

A drop-down, or multi-line box if size is set to a number greater than 1.
To allow selection of multiple values set allow-multiple to true. The
currently selected value can be the first in the drop-down with a divider
from the rest of the options if current is set to first-in-list (default)
or can be selected from the options with selected. Set allow-empty to
true to add an empty option to the list.

The list of options is assembled using the entity-options, list-
options, and/or option subelements, or alternatively the dynamic-
options element to get the options with a request to a screen transition.

Use entity-options to get options from database records. Specify the
entity field to use as the key/value with the key attribute, and the field
to use as the label text with the text attribute. The query constraints and
options are specified using the entity-£find element, the same element
used in XML Actions scripts.

For options from a List of Maps use the 1ist-options element with a
Groovy expression that evaluates to the List in the 1ist attribute, and
the Map key for the key/value of the option in the key attribute and the
label text Map key in the text attribute. To specify individual options
explicitly use an option element with key and text attributes for each
option.

For dynamic-options specify the screen transition that returns a
JSON string containing a List of Maps plus value-field and label-
field attributes for the map keys to get the value and label from in each
Map. The main reason to use dynamic options is to change the options
when another field changes. To do this use one or more depends-on
subelement with the form field name in its field attribute. When a
referenced field changes new options will be requested from the screen
transition, passing all referenced field values as parameters to the
request.

Set the default option with its key in the no-current-selected-key
attribute. If that option is not in the existing options specify its
description using the current-description attribute.

By default uses a dynamic drop-down widget that filters options based
entered text. To use a plain drop-down set search to false. To allow the
user to enter a new option to submit that is not already in the drop-
down set combo-box to true.

104

file

hidden

ignored

password

radio

range-find

reset

submit

text-area

105

A file upload input box (has a button/link for a file selection popup
window) size (default 30) characters wide allowing at most maxlength
entered characters. Use the default-value attribute to specify a value
to use if there is no context or parameter value for the field.

A hidden field whose value is passed with the submitted form but
nothing is displayed to the user. Use the default-value attribute to
specify a value to use if there is no context or parameter value for the
field.

Treats the field as if it was not even defined. Useful when extending
another form to eliminate undesired fields.

A password input box size (default 30) characters wide allowing at
most maxlength entered characters. Masks the input for security.

Show radio buttons for a list of options from the entity-options,
list-options, and/or option subelements (see the drop-down
description for details). Optionally specify the default option’s key using
the no-current-selected-key attribute (used if there is no value or
parameter for the field).

Mainly for numeric range find, displays two small input boxes size
(default 10) characters wide allowing at most maxlength entered
characters in each. Use the default-value-£from attribute for the
default value of the from (left) input box, and the default-value-thru
attribute for the thru (right) one.

A button to reset the form. The button text comes from the field title.

A form submit button. The button text comes from the field title unless
the image subelement is used to put an image on the button. An icon
next to the text can be used with the icon attribute set to an icon style
from the icon library (for the default runtime webroot the Glyphicons for
Bootstrap icons are available, for example icon="glyphicon
glyphicon-plus" or the Font Awesome icons can be used with
something like "fa fa-search"). To show a message and ask the user
to confirm when the button is pressed put the message in the
confirmation attribute.

A text area cols characters wide and rows lines tall allowing at most
maxlength entered characters. Use the default-value attribute to
specify a value to use if there is no context or parameter value for the
field. Set read-only to true to make the text area display only, not
allow a change to the value.

7. User Interface

text-1line

text-find

Single Form

A simple text input box size characters wide on a single line allowing at
most maxlength entered characters. Use the default-value attribute to
specify a value to use if there is no context or parameter value for the
field. Set disabled to true to make the input box display only, not
allow a change to the value. Use the format attribute to specify the Java
format string for date/time (SimpleDateFormat), number
(DecimalFormat), etc values.

A text-line can have autocomplete by implementing a screen
transition to provide the values and specifying the transition name in the
ac-transition attribute. The transition should respond with a JSON
string (using ec.web.sendJsonResponse ()) with a List of Maps with
value and label fields. Optionally specify the time delay in
milliseconds (default 300) with ac-delay and the minimum characters
to enter before lookup with ac-min-1length (default 1).

Like text-1ine with size, maxlength, and default-value attributes
and also has a checkbox for ignore-case (defaults to true, i.e.
checked), and a drop-down for a search operator with a default specified
in the default-operator attribute (can be equals, 1ike, contains, or
empty)

The ignore case checkbox and operator drop-down can also be hidden
(defaults passed as hidden parameters, no visible UI widget) using the
hide-options attribute Options for hide are false (default, show both),
true (hide both), ignore-case (hide only ignore case checkbox), and
operator (hide the operator drop-down).

Use the form-single element to define a single form. These are the attributes of the form-

single element:

o name: The name of the form. Used to reference the form along with the XML Screen file
location. For HTML output this is the form name and id, and for other output may also
be used to identify the part of the output corresponding to the form.

o extends: The location and name separated by a hash/pound sign (#) of the form to
extend. If there is no location it is treated as a form name in the current screen.

e transition: The transition in the current screen to submit the form to.

o map: The Map to get field values from. Is often a EntityValue object or a Map with data
pulled from various places to populate in the form. Map keys are matched against field
names. This is ignored if the field.entry-name attribute is used, that is evaluated
against the context in place at the time each field is rendered. Defaults to fieldvalues.

e focus-field: The name of the field to focus on when the form is rendered.

106

o skip-start: Skip the starting rendered elements of the form. When used after a form
with skip-end=true this will effectively combine the forms into one.

e skip-end: Skip the ending rendered elements of the form. Use this to leave a form open
so that additional forms can be combined with it.

o dynamic: If true this form will be considered dynamic and the internal definition will
be built up each time it is used instead of only when first referred to. This is necessary
when auto-fields-* elements have ${} string expansion for service or entity names.

e background-submit: Submit the form in the background without reloading the screen.

e background-reload-id: After the form is submitted in the background reload the
dynamic-container with this id.

e background-message: After the form is submitted in the background show this
message in a dialog.

To layout fields in a way other than a plain list of fields use the form-single.field-layout
element. For HTML output there is an optional id attribute to facilitate styling. If the field
layout contains field groups set the collapsible attribute to true to use an accordion
widget to save space, optionally specifying the active group index instead of the first to be
initially open. Here are the subelements to define a layout:

o field-ref: specifies where to include a field by name

e fields-not-referenced: include all fields not referenced elsewhere; if this element is
not present fields that are not referenced in the field-layout will not be rendered

e field-row: create a row of fields specified by field-ref subelements; if there are two
fields in the row they display in four columns, both with titles; if there are more than
two fields only the title of the first field is displayed and the remaining field widgets go
side-by-side in the row, wrapping if needed

e field-group: create a group of fields, in an accordion if field-layout.collapsible
is true, with an optional title above the group and for HTML output an optional
style for the container (div) around the group; use the field-ref, fields-not-
referenced, and field-row subelements to specify the fields to include, and
optionally put them in rows

Single Form Example

To get a better idea of the utility of different aspects of a single form let’s look at a more
complex example. This form is the Edit Task screen from the HiveMind Project Manager
application.

This form has examples of the following (see the full source below):

¢ Project: a drop-down populated using entity-options, and a separate 1ink to go to
the current project associated with the task

107 7. User Interface

e Milestone and Parent Task: drop-down fields populated with dynamic-options, both
dependent on the project (rootWworkEf fort1d) using the depends-on element

e Task Name: simple text-1line input box

e Resolution and Purpose: standard Enumeration drop-down fields using the widget-
template-include element with set subelements; Purpose uses a widget template
constrained by a parent Enumeration (parentEnumid), whereas Resolution includes all
values for an EnumerationType (enumTypeld)

e Status: standard status drop-down with options based on transitions from the current
status using the statusFlowTransition entity

¢ Due Date: simple date-time of type date input box

e Estimated Hours and Remaining Hours: simple number input boxes

e Actual Hours: display with a number format string

¢ Description: simple text-area

Application »

Task Summary | Task | Time Assignments

HM-004

Related Requests = Wiki Pages

Task ID

Project HM: HiveMind PM Build Out v | Edit HiveMind PM Build Out [HM]

Milestone HM-MS-001: HM... v |Edit HM-MS-001

Parent Task HM-001: HM Da... ~

Task Name Dashboard My Tasks

Resolution Unresolved =

Purpose lack v Priority 1 v
Status In Progress 5 Due Date &
Estimated Hours 5 Remaining Hours 25
Actual Hours 1575
Description Show a list of open tasks (statusld not in WeClosed,WeCancelled) for the current logged in user.

For each task include a link to the Project and Milestone the task is associated with. Also display
the priority, purpose, status, due date, estimated hours and actual hours.

The actual hours is populated automatically based on a sum of the TimeEntry records associated
to the task.

This form uses field-layout to put various fields side-by-side, but otherwise uses the
default layout. For an example of a layout with a field-group accordion see the Edit
Example screen in the Moqui Example app.

Here is the source for the Single Form, and the XML Screen it is part of for context and to see
the transition definitions, screen actions for data preparation, etc:

108

<screen xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="http://moqui.org/xsd/xml-screen-1.4.xsd"
default-menu-title="Task" default-menu-index="1">

<parameter name="workEffortId"/>
<transition name="updateTask">

<service-call name="mantle.work.TaskServices.update#Task"
in-map="context"/>

<default-response url="."/>
</transition>
<transition name="editProject">

<default-response url="../../Project/EditProject"/></transition>
<transition name="milestoneSummary">

<default-response url="../../Project/MilestoneSummary"/>
</transition>
<transition name="getProjectMilestones">

<actions>

<service-call in-map="context" out-map="context"
name="mantle.work.ProjectServices.get#ProjectMilestones" />
<script>ec.web.sendJsonResponse(resultList)</script>

</actions>
<default-response type="none"/>
</transition>
<transition name="getProjectTasks">
<actions>

<service-call in-map="context" out-map="context"
name="mantle.work.ProjectServices.get#ProjectTasks"/>
<script>ec.web.sendJsonResponse(resultList)</script>
</actions>
<default-response type="none"/>
</transition>

<actions>
<entity-find-one entity-name="mantle.work.effort.WorkEffort"
value-field="task"/>
<entity-find-one entity-name="mantle.work.effort.WorkEffort"
value-field="project">
<field-map field-name="workEffortId" from="task.rootWorkEffortId"/>
</entity-find-one>

<entity-find entity-name="mantle.work.effort.WorkEffortAssoc"
list="milestoneAssocList">
<date-filter/>
<econdition field-name="toWorkEffortId" from="task.workEffortId"/>
<econdition field-name="workEffortAssocTypeEnumId"
value="WeatMilestone" />
</entity-find>
<set field="milestoneAssoc" from="milestoneAssocList?.getAt(0)"/>
<set field="statusFlowId"

109 7. User Interface

from="(task.statusFlowId ?: project.statusFlowId) ?: 'Default'"/>

</actions>
<widgets>

<form-single name="EditTask" tramnsition="updateTask" map="task">
<field name="workEffortId">
<default-field title="Task ID"><display/></default-field>
</field>
<field name="rootWorkEffortId"><default-field title="Project">
<drop-down>
<entity-options key="${workEffortId}"
text="${workEffortId}: ${workEffortName}">
<entity-find entity-name="WorkEffortAndParty">
<date-filter/>
<econdition field-name="partyId"
from="ec.user.userAccount.partyIld"/>
<econdition field-name="workEffortTypeEnumId"
value="WetProject"/>
</entity-find>
</entity-options>
</drop-down>
<link text="Edit ${project.workEffortName} [${task.rootWorkEffortId}]"
url="editProject">
<parameter name="workEffortId" from="task.rootWorkEffortId"/>
</link>
</default-field></field>
<field name="milestoneWorkEffortId"
entry-name="milestoneAssoc?.workEffortId">
<default-field title="Milestone">
<drop-down combo-box="true">
<dynamic-options transition="getProjectMilestones"
value-field="workEffortId" label-field="milestoneLabel">
<depends-on field="rootWorkEffortIid"/>
</dynamic-options>
</drop-down>
<link url="milestoneSummary"

text="${milestoneAssoc ? 'Edit ' + milestoneAssoc.workEffortId : ''}">

<parameter name="milestoneWorkEffortId"
from="milestoneAssoc?.workEffortIid"/>
</link>
</default-field>
</field>
<field name="parentWorkEffortId"><default-field title="Parent Task">
<drop-down combo-box="true">
<dynamic-options transition="getProjectTasks"
value-field="workEffortId" label-field="taskLabel">
<depends-on field="rootWorkEffortIid"/>
</dynamic-options>
</drop-down>
</default-field></field>
<field name="workEffortName"><default-field title="Task Name">

110

<text-line/></default-field></field>
<field name="priority"><default-field>
<widget-template-include location="component://HiveMind/template/
screen/ProjectWidgetTemplates.xml#priority"/>
</default-field></field>
<field name="purposeEnumId"><default-field title="Purpose">
<widget-template-include location="component://webroot/template/
screen/BasicWidgetTemplates.xml#enumWithParentDropDown">
<set field="enumTypeld" value="WorkEffortPurpose"/>
<set field="parentEnumId" value="WetTask"/>
</widget-template-include>
</default-field></field>
<field name="statusId"><default-field title="Status">
<widget-template-include location="component://webroot/template/
screen/BasicWidgetTemplates.xml#statusTransitionWithFlowDropDown">
<set field="currentDescription"
from="task?. 'WorkEffort#moqui.basic.StatusItem'?.description"/>
<set field="statusId" from="task.statusId"/>
</widget-template-include>
</default-field></field>
<field name="resolutionEnumId"><default-field title="Resolution">
<widget-template-include location="component://webroot/template/
screen/BasicWidgetTemplates.xml#enumDropDown">
<set field="enumTypeld" value="WorkEffortResolution"/>
</widget-template-include>
</default-field></field>
<field name="estimatedCompletionDate">
<default-field title="Due Date">
<date-time type="date" format="yyyy-MM-dd"/></default-field>
</field>
<field name="estimatedWorkTime">
<default-field title="Estimated Hours">
<text-line size="5"/></default-field>
</field>
<field name="remainingWorkTime">
<default-field title="Remaining Hours">
<text-line size="5"/></default-field>
</field>
<field name="actualWorkTime"><default-field title="Actual Hours">
<display format="#.00"/></default-field></field>
<field name="description"><default-field title="Description">
<text-area rows="20" cols="100"/></default-field></field>
<field name="submitButton"><default-field title="Update">
<submit/></default-field></field>

<field-layout>
<fields-not-referenced/>
<field-row><field-ref name="purposeEnumId"/>
<field-ref name="priority"/></field-row>
<field-row><field-ref name="statusId"/>

111 7. User Interface

<field-ref name="estimatedCompletionDate"/></field-row>

<field-row><field-ref name="estimatedWorkTime"/>
<field-ref name="remainingWorkTime"/></field-row>

<field-ref name="actualWorkTime"/>

<field-ref name="description"/>

<field-ref name="submitButton"/>

</field-layout>
</form-single>

</widgets>
</screen>

This
task.

List

screen finds all data based on the single workEffortId parameter, which is the ID of the

Form

Use the form-1ist element to define a single form. These are the attributes of the form-1ist
element:

name: The name of the form. Used to reference the form along with the XML Screen file
location. For HTML output this is the form name and id, and for other output may also
be used to identify the part of the output corresponding to the form.

extends: The location and name separated by a hash/pound sign (#) of the form to
extend. If there is no location it is treated as a form name in the current screen.
transition: The transition in the current screen to submit the form to.

multi: Make the form a multi-submit form where all rows on a page are submitted
together in a single request with a "_${rowNumber} " suffix on each field. Also passes a
_isMulti=true parameter so the Service Facade knows to run the service (a single
service-call in a transition) for each row. Defaults to true, so set to false to
disable this behavior and have a separate form (submitted separately) for each row.
list: An expression that evaluates to a list to iterate over.

list-entry: If specified each list entry will be put in the context with this name,
otherwise the list entry must be a Map and the entries in the map will be put into the
context for each row.

paginate: Indicate if this form should paginate or not. Defaults to true.
paginate-always-show: Always show the pagination control with count of rows, even
when there is only one page? Defaults to true.

skip-start: Skip the starting rendered elements of the form. When used after a form
with skip-end=true this will effectively combine the forms into one.

skip-end: Skip the ending rendered elements of the form. Use this to leave a form open
so that additional forms can be combined with it.

skip-form: Make the output a plain table, not submittable (in HTML don't generate
form elements). Useful for view-only list forms to minimize output.

112

e dynamic: If true this form will be considered dynamic and the internal definition will
be built up each time it is used instead of only when first referred to. This is necessary
when auto-fields-* elements have ${} string expansion for service or entity names.

Similar to field-layout in a single form there is a form-1ist-column element for list
forms. When used there needs to be one element for each column in the list form table, and
all fields must be referenced in a column or they will not be rendered. The form-1list-
column element has a single subelement, the same field-ref element that is used in the
single form field-layout.

Data preparation for a form is best done in the actions in the XML Screen it is used in but
sometimes you need to prepare data for each row in a list form. This can be done by
preparing in advance a List of Map objects that have entries for each list form field. With this
approach the logic that prepares the List can do additional data lookups or calculations to
prepare the data. The other approach is to put XML Actions under the form-list.row-
actions element. These actions will be run for each row in an isolated context so that any
context fields defined will be used only for that row.

List Form View/Export Example

There are two main categories of list forms: those used for searching, viewing, and exporting
and those used for editing a number of records in a single screen.

The Artifact Summary screens in the Moqui Tools application is a good example of a screen
that is used for searching, viewing data, and exporting results to CSV, XML, and PDF files all
using the same screen and form definition. The list form on the screen shows a row for each
artifact with a summary of the moqui.server.ArtifactHitBin records for that artifact

using the moqui.server.ArtifactHitReport view-entity.

Get as CSV Get as XML Get as PDF

|< <1~ 50/ 248 > >

Artifact Type +- Artifact Name +- Last Hit +- Hits +-= Min+- Avg Max+-
entity AuthorizeDotNet.PaymentGatewayAuthorizeNet 2014-07-04 21:24:23.387 4 1 13 36
entity HiveMind.wiki.WikiPage 2014-07-04 21:24:23.387 15 1 4 18
entity HiveMind.wiki.WikiPageAndUser 2014-07-05 15:08:03.756 1 54 54 54
entity HiveMind.wiki.WikiPageAndWorkEffort 2014-07-06 01:49:35.163 9 8 17 43
entity HiveMind.wiki.WikiPageHistory 2014-07-04 21:24:23.387 10 1 3 7
entity HiveMind.wiki.WikiPageWorkEffort 2014-07-04 21:24:23.387 4 1 10 31
entity HiveMind.wiki.WikiSpace 2014-07-04 21:24:23.387 1 0 8 22
entity HiveMind.wiki.WikiSpaceAndUser 2014-07-06 04:42:46.215 7 6 45 152
entity HiveMind.wiki.WikiSpaceUser 2014-07-04 21:24:23.387 2 6 21 36
entity HiveMind.work.effort.PartyTaskSummary 2014-07-06 04:42:46.273 5 18 59 129
entity mantle.account.financial.FinancialAccountType 2014-07-04 21:24:23.387 20 0 8 94
entity mantle.account.invoice.Invoice 2014-07-04 21:24:23.387 4 8 30 85
entity mantle.account.invoice.Invoiceltem 2014-07-04 21:24:23.387 16 0 9 111
entity mantle.account.invoice.InvoiceltemAssoc 2014-07-04 21:24:23.387 2 7 45 82
entity mantle.account.invoice.SettlementTerm 2014-07-04 21:24:23.387 10 0 7 44
entity mantle.account.method.CreditCard 2014-07-04 21:24:23.387 2 62 244 425
entity mantle.account.method.PaymentGatewayConfig 2014-07-04 21:24:23.387 8 1 8 28

113 7. User Interface

Note the "Get as CSV" link in the upper-left corner (and the similar XML and PDF links). This
link goes to the simple ArtifactHitSummaryStats.csv transition that goes to the same
screen and adds renderMode=csv, pageNoLimit=true, and lastStandalone=true
parameters so that the screen renders with csv output instead of html, pagination is disabled
(all results are output), and only the last screen is rendered (skipping all parent screens to
avoid decoration, i.e. the last screen is "standalone"). See the XML, CSV and Plain Text
Handling section for more detail.

Below the "Get as" links are the pagination controls which are enabled by default and by
default shown when there is more than one page of results to display. In the form header row
are the column titles and "+-" links for sorting the results in each column, plus a header find
form with a drop-down for the Artifact Type and a text-£find box for Artifact Name. These
are all defined in the header-field elements under each field.

This form uses form-1list.row-actions element to calculate the averageTime for each row,
which is then displayed using a form field.

Here is the source for the ArtifactHitSummary.xml screen showing the details for the
summary above:

<screen xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="http://moqui.org/xsd/xml-screen-1.4.xsd"
default-menu-title="Artifact Summary">

<transition name="ArtifactHitSummaryStats.csv">
<default-response url="."><parameter name="renderMode" value="csv"/>
<parameter name="pageNoLimit" value="true"/>
<parameter name="lastStandalone" value="true"/></default-response>
</transition>
<transition name="ArtifactHitSummaryStats.xml">
<default-response url="."><parameter name="renderMode" value="xml"/>
<parameter name="pageNoLimit" value="true"/>
<parameter name="lastStandalone" value="true"/></default-response>
</transition>
<transition name="ArtifactHitSummaryStats.pdf">
<default-response url-type="plain"
url="${ec.web.getWebappRootUrl (false, null)}/fop/apps/tools/System/
ArtifactHitSummary">
<parameter name="renderMode" value="xsl-fo"/>
<parameter name="pageNoLimit" value="true"/>
</default-response>
</transition>

<actions>
<entity-find entity-name="moqui.server.ArtifactHitReport"
list="artifactHitReportList" 1limit="50">
<search-form-inputs default-order-by="artifactType,artifactName"/>
</entity-find>
</actions>

114

<widgets>
<container>
<link url="ArtifactHitSummaryStats.csv" text="Get as CSV"
target-window=" blank" expand-transition-url="false"/>
<link url="ArtifactHitSummaryStats.xml" text="Get as XML"
target-window=" blank" expand-transition-url="false"/>
<link url="ArtifactHitSummaryStats.pdf" text="Get as PDF"
target-window="_ blank"/>
</container>
<form-list name="ArtifactHitSummaryList" list="artifactHitReportList">
<row-actions>
<set field="averageTime" from="(totalTimeMillis/hitCount as
BigDecimal).setScale(0,BigDecimal.ROUND UP)"/>
</row-actions>

<field name="artifactType">
<header-field show-order-by="true">
<drop-down allow-empty="true">
<option key="screen"/><option key="screen-content"/>
<option key="transition"/>
<option key="service"/><option key="entity"/>
</drop-down>
</header-field>
<default-field><display also-hidden="false"/></default-field>
</field>
<field name="artifactName">
<header-field show-order-by="true">
<text-find hide-options="true" size="20"/></header-field>
<default-field><display text="${artifactName}"
also-hidden="false"/></default-field>
</field>
<field name="lastHitDateTime">
<header-field title="Last Hit" show-order-by="true"/>
<default-field><display also-hidden="false"/></default-field>
</field>
<field name="hitCount">
<header-field title="Hits" show-order-by="true"/>
<default-field><display also-hidden="false"/></default-field>
</field>
<field name="minTimeMillis">
<header-field title="Min" show-order-by="true"/>
<default-field><display also-hidden="false"/></default-field>
</field>
<field name="averageTime">
<default-field title="Avg">
<display also-hidden="false"/></default-field>
</field>
<field name="maxTimeMillis">
<header-field title="Max" show-order-by="true"/>
<default-field><display also-hidden="false"/></default-field>

115 7. User Interface

</field>
<field name="find"><header-field title="Find">
<submit/></header-field></field>
</form-list>
</widgets>
</screen>

List Form Edit Example

The Entity Fields Localization screen in the Moqui Tools application is a good example of a
list form used to update multiple records in a single page. This screen is designed for adding,
editing, and deleting moqui.basic.LocalizedEntityField records that specify localized
text to use instead of an entity record field’s actual value.

In the screenshot below there is a button in the upper-left corner to add a new record in a
container-dialog modal popup. Just below that are the pagination controls which are
enabled by default. The header row in the form has the field titles (in this case all generated
based on the field name since there are no header-field.title attributes), the "+-" sorting
links (with header-field.show-order-by=true), and header widgets for the fields to find
only matching records.

@ New Field L10n
1€ <1-11/711> >|
Entity Name +- Field Name +- Pk Value +- Locale +- Localized
Enumeration m
Pai
moqui.basic.Enumeration description GEOT_COUNTRY es as
s
. . . - Estado
moqui.basic.Enumeration description GEOT_STATE es
Y
N q - Ciudad
moqui.basic.Enumeration description GEOT_CITY es Delete
VA
. . " - Pays
moqui.basic.Enumeration description GEOT_COUNTRY fr Delete
Y
o n 3 rrry Etat
moqui.basic.Enumeration description GEOT_STATE fr Delete
4
. . . - Ville
moqui.basic.Enumeration description GEOT_CITY fr Delete
Vi
o . . . Paese
moqui.basic.Enumeration description GEOT_COUNTRY it Delete
. . . - . Stato
moqui.basic.Enumeration description GEOT_STATE it Delete
— o e . Citta
moqui.basic.Enumeration description GEOT_CITY it Delete
moqui.basic.Enumeration description GEOT_COUNTRY zh Delete
moqui.basic.Enumeration description GEOT_STATE zh M
Vi
Update

116

The body rows of the list form table have one row for each record with a Delete button, but
the Update button is at the bottom and updates all rows in a single form submission to
update a number of Localized values at once. Notice that the Find button in the header row
is in the same column as the Delete button on each body row. To do this in the form
definition the Find button is defined in a subelement of the header-field element for the
delete field.

Below is the source for the EntityFields.xml screen. The create, update, and delete
transitions use implicitly defined entity-auto services so there is no service definition or
implementation for them. This functionality relies on only a XML Screen file and the
definition of the LocalizedEntityField entity.

<screen xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="http://moqui.org/xsd/xml-screen-1.4.xsd"
default-menu-title="Entity Fields" default-menu-index="2">

<transition name="createLocalizedEntityField">
<service-call name="create#moqui.basic.LocalizedEntityField"/>
<default-response url="."/>

</transition>

<transition name="updateLocalizedEntityField">
<service-call name="update#moqui.basic.LocalizedEntityField"

multi="true"/>

<default-response url="."/>

</transition>

<transition name="deleteLocalizedEntityField">
<service-call name="delete#moqui.basic.LocalizedEntityField"/>
<default-response url="."/>

</transition>

<actions>
<entity-find entity-name="moqui.basic.LocalizedEntityField"
list="localizedEntityFieldList" offset="0" limit="50">
<search-form-inputs default-order-by="entityName, fieldName,locale"/>
</entity-find>
</actions>
<widgets>
<container>
<container-dialog id="CreateEntityFieldDialog"
button-text="New Field L10n">
<form-single name="CreateLocalizedEntityField"
transition="createLocalizedEntityField">
<field name="entityName"><default-field>
<text-line size="15"/></default-field></field>
<field name="fieldName"><default-field>
<text-line size="15"/></default-field></field>
<field name="pkvValue'"><default-field>
<text-line size="20"/></default-field></field>
<field name="locale"><default-field>

117 7. User Interface

<text-line size="5"/></default-field></field>
<field name="localized"><default-field>
<text-area rows="5" cols="60"/></default-field></field>
<field name="submitButton"><default-field title="Create">
<submit/></default-field></field>
</form-single>
</container-dialog>
</container>
<form-list name="UpdateLocalizedEntityFields"
list="localizedEntityFieldList"
transition="updatelLocalizedEntityField" multi="true">
<field name="entityName">
<header-field show-order-by="true">
<text-find hide-options="true" size="12"/></header-field>
<default-field><display/></default-field>
</field>
<field name="fieldName">
<header-field show-order-by="true">
<text-find hide-options="true" size="12"/></header-field>
<default-field><display/></default-field>
</field>
<field name="pkValue">
<header-field show-order-by="true">
<text-find hide-options="true" size="12"/></header-field>
<default-field><display/></default-field>
</field>
<field name="locale">
<header-field show-order-by="true">
<text-find hide-options="true" size="4"/></header-field>
<default-field><display/></default-field>
</field>
<field name="localized"><default-field>
<text-area rows="2" cols="35"/></default-field></field>
<field name="update"><default-field title="Update">
<submit/></default-field></field>
<field name="delete">
<header-field title="Find"><submit/></header-field>
<default-field>
<link text="Delete" url="deleteLocalizedEntityField">
<parameter name="entityName"/>
<parameter name="fieldName"/><parameter name="locale"/></link>
</default-field>
</field>
</form-list>
</widgets>
</screen>

118

Templates

While a wide variety of screens can be built with XML Forms and the various XML Screen
widgets and layout elements. Quite a lot can be done with the OOTB elements. Here is an
example of a more complex screen, the Task Summary screen from the HiveMind PM
application that is made with only OOTB elements and some custom CSS:

Task Summary | Task Time

Task ID: HM-004

Project:

HM - HiveMind PM Build Out
Milestone:

HM-MS-001 - HM Milestone 1
Parent Task:

HM-001 - HM Dashboard
Priority: 1

Purpose: Task

Status: In Progress
Resolution: Unresolved

Due Date:

Estimated Hours: 5.00
Remaining Hours: 2.50
Actual Hours: 15.75

Assignments

Assignments

[iohn.doe] John Doe

Person - Worker - Assigned
Notifications? Y

Biziwork Dev Team A
Organization - Team - Assigned
[joe.developer] Joe Developer
Person - Worker - Assigned
Notifications? N

Time Entries
- 8.00h at 2013-03-02 08:00:00.0 by
John Doe (john.doe)

- 5.75h at 2013-03-04 10:00:00.0 by
John Doe (john.doe)

- 2.00h at 2013-03-05 10:00:00.0 by
Joe Developer (joe.developer)

Related Requests = Wiki Pages

Task: Dashboard My Tasks

Description

Show a list of open tasks (statusId not in WeClosed,WeCancelled) for the
current logged in user.

For each task include a link to the Project and Milestone the task is
associated with. Also display the priority, purpose, status, due date,

estimated hours and actual hours.

The actual hours is populated automatically based on a sum of the TimeEntry
records associated to the task.

Comments

Remaining hours question from John Doe at 2013-03-02 17:00:00.0
Should we also display remaining hours?
BTW: who would be using this? Whatever this is all just a demo anyway.

BTW2: this has newlines just to demonstrate formatting.

! RE: Remaining hours question from Gob Bluth at 2013-03-02 18:00:00.0

Yes, please also display remaining hours.

| RE: Remaining hours question from John Doe at 2013-03-02 20:00:00.0

It is done.

Status History
In Progress at 2014-07-04
19:24:19.126

Related

This Relates To

HM-010 - HM Task Screen

HM-003 - Dashboard Create Project
Relates To This

HM-005 - Dashboard Create Task
Depends On (Blocked By) This

Requests

DEMO_001 - Add Create Request on
dashboard

New Feature - In Progress
DEMO_002 - Why is there so little
color in the app?

Information - Draft

Wiki Pages
DEMO /Demo Page 1
DEMO /Demo Page 2/Child Page 1

! RE: Remaining hours question from Gob Bluth at 2013-03-02 21:00:00.0

Sometimes you need a more flexible layout, styling, widgets, or custom interactive behavior.
For things that will be used in many places, and where you want them to render consistently,
add screen and form widgets (including layout elements) using FTL macros to add or extend
XML Screen elements. For everything else, especially one-off things, an explicit template is
the way to get any sort of HTML output you want.

This is especially useful for custom web site such as corporate or ecommerce sites where
custom HTML is needed to get a very specific form and function.

Custom templates also apply to other forms of output like XML, CSS, and XSL-FO. In a XML
Screen this is done with the render-mode element and one or more text subelements for
each render-mode. text.type to support for the screen. In the current version of Moqui

119 7. User Interface

Framework only text output is supported for screen rendering, but in the future or in custom
code other elements under the render-mode element could be used to define output for non-
text screen rendering such as for GWT or Swing.

If the screen is rendered with a render mode and there is no text subelement with a type
matching the active render mode then it will simply render nothing for the block and
continue with rendering the screen. The options for the text.type attribute match the type
attribute on the screen-facade.screen-text-output element in the Moqui Conf XML file
where the macro template to use for each output type is defined. Currently supported
options include: csv, html, text, xml, and xs1-fo.

Other attributes (in addition to type) available on the text element include:

e location: This is the template or text file location and can be any location supported by
the Resource Facade including file, http, component, content, etc.

e template: Interpret the text at the location as an FTL or other template? Supports any
template type supported by the Resource Facade. Defaults to true, set to false if you
want the text included literally.

e encode: If true the text will be encoded so that it does not interfere with markup of the
target output. Templates ignore this setting and are never encoded. For example, if
output is HTML then data presented will be HTML encoded so that all HTML-specific

characters are escaped.
e no-boundary-comment: Defaults to false. If true won't ever put boundary comments

before this (for opening ?xml tag, etc).

The webroot .xml screen is the default root screen in the OOTB runtime directory and has a
good example of including templates for different render modes:

<widgets>
<render-mode>
<text type="html"
location="component://webroot/screen/includes/Header.html.ftl"/>
<text type="xsl-fo" no-boundary-comment="true"
location="component://webroot/screen/includes/Header.xsl-fo.ftl"/>
</render-mode>

<subscreens-active/>

<render-mode>
<text type="html"
location="component://webroot/screen/includes/Footer.html.ftl"/>
<text type="xsl-fo"><![CDATA[
${sri.getAfterScreenWriterText ()}
</fo:flow></fo:page-sequence></fo:root>
]1></text>
</render-mode>
</widgets>

120

This is an example of a screen with subscreens so it has render-mode elements before and
after the subscreens-active element to decorate (or wrap) what comes from the
subscreens. This shows text elements with a location to include a FTL template and inline
text in a CDATA block right under the text element.

Sending and Receiving Email

The first step to sending and receiving email is to setup an EmailServer with something like
this record loaded:

<moqui.basic.email.EmailServer emailServerId="SYSTEM"
smtpHost="mail.test.com" smtpPort="25" smtpStartTls="N" smtpSsl="N"
storeHost="mail.test.com" storePort="143" storeProtocol="imap"
storeDelete="N" mailUsername="TestUser" mailPassword="TestPassword"/>

Note that these are all example values and should be changed to real values, especially for
the smtpHost, storeHost, mailUsername and mailPassword fields. The storex* fields are
for the remote mail store for incoming email. Here are some other common values for the
port fields:

e smtpPort: 25 (SMTP), 465 (SSMTP), 587 (SSMTP)
e storePort for storeProtocol=imap: 143 (IMAP), 585 (IMAP4-SSL), 993 (IMAPS)
e storePort for storeProtocol=pop3: 110 (POP3), 995 (SSL-POP)

If you need to work with multiple email servers, just add EmailServer records with the
settings for each. When sending an email using an email template the Emailserver to use is
specified on the EmailTemplate record with the emailserverid field.

Speaking of EmailTemplate, the next step for sending an email is to create one. Here is an
example from HiveMind PM for sending a task update notification email:

<moqui.basic.email.EmailTemplate emailTemplateId="HM TASK UPDATE"
description="HiveMind Task Update Notification"
emailServerId="SYSTEM" webappName="webroot"
bodyScreenLocation="component://HiveMind/screen/TaskUpdateNotification.xml"
fromAddress="testl@test.com" ccAddresses="" bccAddresses=""
subject="Task Updated: ${document. id} - ${document.WorkEffort.name}"/>

The general idea is to define a screen that will be rendered for the body when the email is
sent (bodyScreenLocation). The email body screen is a little bit different from normal Ul
screens because there is no Web Facade available when it is rendered as it is not part of a web
request. The URL prefixes (domain name, port, etc) are generated based on webapp settings
in the Moqui Conf XML file, which is why it is necessary to specify a webappName which is
matched against the moqui-conf.webapp-list.webapp.name attribute.

The subject is also a simple template of sorts, it is a Groovy String that is expanded when
the email is sent using the same context as rendering the body. The fromaddress field is
required, and you can optionally specify ccAddresses and bccAddresses.

121 7. User Interface

Attachments to an EmailTemplate can be added with the EmailTemplateAttachment entity.
The filename to use on the email must be specified using the fileName field. The attachment
itself comes from rendering a screen specified with the attachmentLocation field. The
screenRenderMode field is passed to the ScreenRender to specify the type of output to get
from the screen. It is also used to determine the MIME/ content type. If empty the content at
attachmentLocation will be sent over without screen rendering and its MIME type will be
based on its extension. This can be used to generate XSL:FO that is transformed to a PDF and
attached to the email with by setting screenRenderMode to xs1-fo.

Once the EmailServer and EmailTemplate are defined you can send email using the
org.moqui.impl.EmailServices.send#EmailTemplate service. When calling this service
pass in the emailTemplateId parameter to identify the EmailTemplate. As mentioned

above the Emailserver will be determined based on the EmailTemplate.emailServerId
field.

The email addresses to send the message to are passed in the toaddresses parameter which
is a plain string and can have multiple comma-separated addresses. The parameters used
to render the email screen are separate from the context of the service and are passed to it in
the bodyParameters input parameter. By default the send#EmailTemplate service saves
details about the outgoing message in a record of the EmailMessage entity. To disable this
pass in false in the createEmailMessage parameter. The output parameters are messageId
which is the value put in the Message-ID email header field, and emailMessage1d if a
EmailMessage record is created.

The EmailMessage entity is used for both outgoing and incoming email messages. For
outgoing messages sent using the send#EmailTemplate service the status (statusId) starts
out as Sent (actually sets it to Ready, sends the email, then sets it to Sent) and may be
changed to Viewed if there is open message tracking based on an image request (usually
with the emailMessageId as a parameter or path element). If the message is returned
undeliverable the status may be changed to Bounced.

An EmailMessage may also be sent manually instead of from a template and in that case the
status would start out as Draft. Once the user is done with the message they would change
the status to Ready, and then when it is actually sent the status would change to Sent.
Incoming messages start in the Received status and can be changed to the Viewed status
after they are initially opened.

For email threads the EmailMessage entity has rootEmailMessage1d for the original
messages that all messages in the thread are grouped under, and parentEmailMessageId for
the message the current message was an immediate reply to.

Receiving email follows a very different path. The
org.moqui.impl.EmailServices.poll#EmailServer service polls a IMAP or POP3
mailbox based on the settings on the Emailserver entity. It takes a single input parameter,
the emailServerid. Generally this will be run as a scheduled service.

122

For each message found in the mailbox and not yet marked as seen this service calls the
Email ECA (EMECA) rules for it. These are similar to the Entity and Service ECA rules but
there is no special trigger, just the receiving of an email. The conditions can be used to only
run the actions for a particular to address or tag in the subject like or any other criteria
desired.

The context for the condition and actions will include a headers Map with all of the email
headers in it (either string, or List of String if there are more than one of the header), and
a fields Map with the following: toList, ccList, becList, from, subject, sentDate,
receivedDate, bodyPartList. The *List fields are List of String, and the *Date fields are
java.util.Date objects. For a service that is called directly with this context setup you can
implement the org.moqui.EmailServices.process#EmailEca interface.

The actions and services they call can do anything with the incoming email. To save the
incoming message you can use the
org.moqui.impl.EmailServices.save#EcaEmailMessage service.

123 7. User Interface

404 - Page Not Found

(not really, this page is intentionally blank for layout reasons; to make it less blank sponsor
this book and see your ad here!)

124

8. System Interfaces

Along with support for user interfaces, Moqui Framework supports various options for
interfacing with other systems. There are standards-based options and ways to build more
custom system interfaces.

Data and Logic Level Interfaces

System interfaces can generally be divided into two main categories of supporting a step in a
process and transferring data (often to keep data updated in another system). For most
system integrations a process level one is more flexible and also more focused on a specific
part of the system as opposed to transferring all data. Sometimes keeping data consistent
between systems is the nature of the integration requirement or the only option available,
and then a data level integration is the way to go. Moqui has tools for both logic/ process and
data level system interfaces.

The best way to trigger outgoing messages is through ECA (event-condition-action) rules,
either Service ECA (SECA) rules for a logic level interface or Entity ECA (EECA) rules for a
data level interface. See the Service ECA Rules and Entity ECA Rules sections for details on
how to define these.

All ECA rules call actions, typically one or more service-call actions, and those actions
will call out to whatever system interface is needed. This may be custom code or simply
calling an already existing local or remote service. The following sections describe specific
tools available in Moqui and with custom code you can implementation any interface and
use any additional libraries needed.

XML, CSV and Plain Text Handling

There are various ways to produce and consume XML, CSV, JSON, and other text data using
Moqui Framework.

Groovy has a good API for producing and consuming XML with:

125 8. System Interfaces

e groovy.util.Node: The Groovy class that represents a tree node with attributes and
child nodes. For XML data each element is represented as a Node.

e groovy.util.XmlNodePrinter: Print XML text from a tree of Node objects.

e groovy.util.xXmlParser: Read XML text into a tree of Node objects.

e groovy.util.xmlSlurper: Read XML text into a GPathResult object which can be
used in Groovy with a syntax similar to XPath expressions to pull out specific parts of a
XML element tree.

e groovy.xml.MarkupBuilder: Offers a Groovy DSL (domain-specific language) for
writing code that has a structure similar to the structure of the XML output. Most useful
for scripts that explicitly create and XML tree as opposed to building more dynamically.

There are many other XML libraries written in Java that be used with Moqui such as dom4;
and JDOM. If you prefer these just include the JAR files in the Gradle build and code away.

For CSV files Moqui uses the Apache Commons CSV library, and just like with XML files
other libraries can be used too. You can see how Moqui uses this in the
org.moqui.impl.entity.EntityDatalLoaderImpl.EntityCsvHandler class.

In Moqui Framework the main tool for repotting and exporting data is the XML Form,
especially the list form. XML Screens and Forms can be rendered in various modes including
XML, CSV, and plain text. To do this set the renderMode field in the context either in screen
actions or for web requests with a request parameter. This is matched against the screen-
facade.screen-text-output.type attribute in the Moqui Conf XML file and can be set to
any value defined there, including the default Moqui ones (csv, html, text, xml, xs1-fo) or
any that you define in your runtime Moqui Conf XML file.

The XML Form is probably setup for pagination (this is the default). To get all results instead
of pagination for an export (or any other reason) set the pageNoLimit field to true. In some
cases you will not want to render any of the parent screens that normally decorate the final
screen to render, especially for XML files. For CSV files other screen elements are generally
ignored. This can be done by setting the 1aststandalone field to true meaning that the last
screen is rendered standalone and not within parent screens in the screen path. These can be
set in screen actions of for web requests as a request parameter.

Just as with other XML Screen and XML Form output modes the FTL macro template used to
produce output can be customized by include and override/add. With this approach you can
get custom output for a particular screen (including subscreens, so for an entire app or app
section, etc) or for everything running in Moqui.

For a detailed example of a screen and form that has CSV, XML, and XSL-FO (PDF) output
options see the List Form View/Export Example section.

126

Web Service

XML-RPC and JSON-RPC

Moqui has tools for providing and consuming XML-RPC and JSON-RPC services. Any
Service Facade service can be exposed as a remote callable service by setting the
service.allow-remote attribute to true.

The Web Facade has methods to receive these RPC calls:
ec.web.handleXmlRpcServiceCall()znuiec.web.handleroancServiceCall().Inthe
OOTB webroot component there is a rpc.xml screen that has xm1 and json transitions that
call these methods. With the setup the URL paths for the remote service calls are /rpc/xml
and /rpc/json.

Below is an example of a JSON-RPC service call, using curl as the client. It calls the
org.moqui.example.ExampleServices.createExampleS€ﬁdcexvﬂhlunnatype,and
status parameters. It also passes in the username and password to use for authentication
before running the service (following a pattern that can be used for any Service Facade
service call).

The id field is always something like 1. This JSON-RPC field is used for multi-message
requests Each message in the request would have a different id value and that value is used
in the id field in the response. To use this the JSON string would have an outer list
containing the individual messages like the one in this example.

curl -X POST -H "Content-Type: application/json" \

--data '{"jsonrpc":"2.0",
"method":"org.moqui.example.ExampleServices.createExample", "id":1,
"params": { "authUsername":"john.doe", "authPassword":"moqui",
"exampleName":"JSON-RPC Test 1", "exampleTypeEnumId":"EXT MADE UP",
"statusId":"EXST IN DESIGN" } }' \

http://localhost:8080/rpc/json

When you run this you will get a response like (the example1d value will vary):
{"jsonrpc":"2.0","id":1, "result":{"exampleId":"100050"}}

The JSON-RPC implementation in Moqui follows the JSON-RPC 2.0 specification available
at: http:/ /www.jsonrpc.org/specification.

XML-RPC requests follow a similar pattern. Moqui uses Apache XML-RPC library (http://
ws.apache.org/xmlrpc/) which implements the XML-RPC specification available at: http:/ /

xmlrpc.scripting.com/spec.html.

While you can write code call remote XML-RPC and JSON-RPC services by directly using a
library (or custom JSON handling code like in RemoteJsonRpcServiceRunner.groovy), the
easiest way to call remote services is to use a proxy service definition. To do this:

e define a service

127 8. System Interfaces

http://www.jsonrpc.org/specification
http://ws.apache.org/xmlrpc/
http://xmlrpc.scripting.com/spec.html

e use remote-xml-rpc OF remote-json-rpc for the service.type attribute

e setservice.location to the URL of the RPC server and path (such as http://
localhost:8080/rpc/json), or to a value matching a service location name in the
Moqui Conf XML file (i.e. service-facade.service-location.name); there are two
OOTB service locations for the purpose of calling remote services: main-xml and main-
json; these and additional desired one can be configured in the runtime Moqui Conf
XML file and then used in your service locations to simplify configuration, especially
when you have different URLs for test and production environments

e set service.method to the name of the remote service to call; in JSON-RPC this maps
to the method field; in XML-RPC this maps to the methodName element; when calling
another Moqui server this is the name of the service that will be called

e the service can have parameters to define that match the remote service definition, or
can be setup to not validate input; you can also define parameters with defaults and
specify types for type conversion which are done before the remote service is called

When you call this service locally the Service Facade will call the remote service and return
the results. In other words, you call a local service that is a configured proxy to the remote
service.

Sending and Receiving Simple JSON

Sometimes an API spec calls for a particular JSON structure or something other than the
envelope structure of JSON-RPC. There are some feature in the Web Facade that make this
easier.

When a HTTP request is received (really when the Web Facade is initialized) if the content-
Type (MIME type) of the request is application/json it will parse the JSON string in the
request body and if the outer element is a Map (in JSON an object) then the entries in that Map
will be added to the web parameters (ec.web.parameters), and web parameters are
automatically added to the context (ec.context) with a screen is rendered or a screen
transition run. If the outer element is a List (in JSON an array) then it is put in a
_requestBodyJsonList web parameter, and again from there available in the context.

This makes it easy to get at the JSON data in a web request. It also resolves issues with
getting the request body after the Web Facade automatically looks for multi-part content in
the request body (which the Web Facade always does) because the Servlet container may not
allow reading the request body again after this.

For a JSON response you can manually put together the response by setting various things
on the HttpservletResponse and using the Groovy JsonBuilder to produce the JSON text.
For convenience the ec.web.sendJsonResponse (Object responseObj) method does all of
this for you.

128

To go in the other direction, doing a request to a URL that accepts and responds with JSON,
there are special tools because the Groovy and other utilities make this pretty simple. For
example, this a variation on the actual code that remotely calls a JSON-RPC service:

Map jsonRequestMap = [Jjsonrpc:"2.0", id:1, method:method,
params:parameters]

JsonBuilder jb = new JsonBuilder()

jb.call(jsonRequestMap)

String jsonResponse = StupidWebUtilities.simpleHttpStringRequest (location,
jb.toString(), "application/json")

Object jsonObj = new JsonSlurper().parseText(jsonResponse)

This uses the JsonBuilder and JsonSlurper classes from Groovy and the
StupidWebUtilities.simpleHttpStringRequest () method which internally uses the
Apache HTTP Client library.

RESTful Interface

A RESTful service uses a URL pattern and request method to identify a service instead of a
method name like JSON-RPC and XML-RPC. The general idea is to have things like a record
represented by URL with the type of record (like an entity or table) as a path element and the
ID of the record as one or more path elements (often one for simplicity, i.e., a single field
primary key).

When interacting with this record as a web resource the HTTP request method specifies what
to do with the record. This is much like the create, update, and delete service verbs for Moqui
entity-auto services. The GET method generally does a record lookup. The POST method
generally maps to creating a record. The PUT method generally maps to updating a record.
The DELETE method does the obvious, a delete.

For examples, such as the one below, see the ExampleApp.xml file.

To support RESTful web services we need a way for transitions to be sensitive to the HTTP
request method when running in a web-based application. This is handled in Moqui
Framework using the transition.method attribute, like this:

<transition name="ExampleEntity" method="put">
<path-parameter name="exampleId"/>
<service-call name="org.moqui.example.ExampleServices.updateExample"
in-map="ec.web.parameters" web-send-json-response="true"/>
<default-response type="none"/>
</transition>

To test this transition use a curl command something like this to update the exampleName
field of the Example entity with an example1d of 100010:

curl -X PUT -H "Content-Type: application/json" \
-H "Authorization: Basic am90obi5kb2U6bW9xdwk=" \
--data '{ "exampleName":"REST Test - Rev 2" }' \

129 8. System Interfaces

http://.../apps/example/ExampleEntity/100010

There are some important things to note about this example that make it easier to create
REST wrappers around internal Moqui services:

o uses HTTP Basic authentication (john.doe /moqui), which Moqui automatically
recognizes and uses for authentication

e uses the automatic JSON body input mapping to parameters (the JSON string must have
a Map root object)

o the example1d is passed as part of the path and treated as a normal parameter using the
path-parameter element

e uses the ec.web.parameters Map as the in-map to explicitly pass the web parameters to
the service (could also use ec.context for the entire context which would also include
the web parameters, but this way is more explicit and constrained)

e sends a JSON response with the service-call.web-send-json-response convenience
attribute and a type none response

There are various other examples of handling RESTful service requests in the
ExampleApp.xml file.

Enterprise Integration with Apache Camel

Apache Camel (http:/ /camel.apache.org) is a tool for routing and processing messages with
tools for Enterprise Integration Patterns which are described here (and other pages on this
site have much other good information about EIP): http:/ /www.eaipatterns.com/toc.html

Moqui Framework has a Message Endpoint for Camel (MoquiServiceEndpoint) that ties it
to the Service Facade. This allows services (with type=camel) to send the service call as a
message to Camel using the MoquiServiceConsumer. The endpoint also includes a message
producer (MoquiServiceProducer) that is available in Camel routing strings as
moquiservice.

Here are some example Camel services from the ExampleServices.xml file:

<service verb="localCamelExample" type="camel"
location="moquiservice:org.moqui.example.ExampleServices.targetCamelExample">
<in-parameters><parameter name="testInput"/></in-parameters>
<out-parameters><parameter name="testOutput"/></out-parameters>
</service>
<service verb="targetCamelExample">
<in-parameters><parameter name="testInput"/></in-parameters>
<out-parameters><parameter name="testOutput"/></out-parameters>
<actions>
<set field="testOutput" value="Here's the input: ${testInput}"/>
<log level="warn"
message="targetCamelExample testOutput: ${result.testOutput}"/>
</actions>
</service>

130

http://camel.apache.org
http://www.eaipatterns.com/toc.html

When you call the 1localcamelExample service it calls the targetCamelExample service
through Apache Camel. This is a very simple example of using services with Camel. To get
an idea of the many things you can do with Camel the components reference is a good place
to start:

http:/ /camel.apache.org/components.html

The general idea is you can:

o get message data from a wide variety of sources (file polling, incoming HTTP request,
JMS messages, and many more)

e transform messages (supported formats include XML, CSV, JSON, ED], etc)

e run custom expressions (even in Groovy!)

e split, merge, route, filter, enrich, or apply any of the other EIP tools

e send message(s) to endpoint(s)

Camel is a very flexible and feature rich tool so instead of trying to document and
demonstrate more here I recommend these books:

o Instant Apache Camel Message Routing by Bilgin Ibryam

e http:/ /www.packtpub.com/apache-camel-message-routing /book
o This book is a quick introduction that will get you going quickly with lots of cool
stuff you can do with Camel.
e Apache Camel Developer's Cookbook by Scott Cranton and Jakub Korab
e http:/ /www.packtpub.com/apache-camel-developers-cookbook /book
e This book has hundreds of tips and examples for using Camel.
e Camel in Action by Claus Ibsen and Jonathan Anstey
e http://manning.com/ibsen/
e This is the classic book on Apache Camel. It covers general concepts, various internal
details, how to apply the various EIPs, and a summary of many of the components.
The web site for this book also has links to a bunch of useful online resources.

131 8. System Interfaces

http://camel.apache.org/components.html
http://www.packtpub.com/apache-camel-message-routing/book
http://www.packtpub.com/apache-camel-developers-cookbook/book
http://manning.com/ibsen/

404 - Page Not Found

(not really, this page is intentionally blank for layout reasons; to make it less blank sponsor
this book and see your ad here!)

132

9. Security

Authentication

The main code path for user authentication starts with a call to the
UserFacade.loginUser () method. This calls into Apache Shiro for the actual
authentication. This is basically what the code looks like to authenticate using the Shiro
SecurityManager that the ExecutionContextFactoryImpl keeps internally:

UsernamePasswordToken token = new UsernamePasswordToken(username, password)
Subject currentUser = eci.getEcfi().getSecurityManager()

.createSubject (new DefaultSubjectContext())
currentUser.login(token)

Shiro is configured by default to use the MoquishiroRealm so this ends up in a call to the
MoquiShiroRealm.getAuthenticationInfo () method, which authenticates using the
moqui.security.UserAccount entity and handles things like disabled accounts, keeping
track of failed login attempts, etc. Here are the lines from the shiro. ini file where this is
configured:

moquiRealm = org.moqui.impl.MoquiShiroRealm
securityManager.realms = $moquiRealm

Shiro can be configured to use other authentication realms such as the CasRealm, JdbcRealm,
or JndiLdapRealm classes that come with Shiro. You can also implement your own, or even
modify the MoquiShiroRealm class to better suit your needs. Shiro has documentation for
writing your own realm, and each of these classes has documentation on configuration, such
as this JavaDoc for JndiLdapRealm to use it with an LDAP server:

http:/ /shiro.apache.org /static/1.2.3 /apidocs/org /apache /shiro/realm/lda
Indil. dapRealm.html

Back to the MoquisShiroRealm that is used by default, here is its default configuration from

the MoquiDefaultConf.xml file that can be overridden in your runtime Moqui Conf XML
file:

133 9. Security

http://shiro.apache.org/static/1.2.3/apidocs/org/apache/shiro/cas/CasRealm.html
http://shiro.apache.org/static/1.2.3/apidocs/org/apache/shiro/realm/jdbc/JdbcRealm.html
http://shiro.apache.org/static/1.2.3/apidocs/org/apache/shiro/realm/ldap/JndiLdapRealm.html
http://shiro.apache.org/static/1.2.3/apidocs/org/apache/shiro/realm/ldap/JndiLdapRealm.html
http://shiro.apache.org/static/1.2.3/apidocs/org/apache/shiro/realm/ldap/JndiLdapRealm.html

<user-facade>
<password encrypt-hash-type="SHA-256" min-length="6" min-digits="1"
min-others="1" history-limit="5" change-weeks="26"
email-require-change="true" email-expire-hours="48"/>
<login max-failures="3" disable-minutes="5" history-store="true"
history-incorrect-password="true" />
</user-facade>

The login element configures the max number of login failures to allow before disabling a
UserAccount (max-failures), how long to disable the account when the max failures is
reached (disable-minutes), whether to store a history of login attempts in the
UserLoginHistory entity (history-store) and whether to persist incorrect passwords in
the}ﬁsKHy(history—incorrect—password)

The password element is used to configure the password constraints that are checked when
creating an account (org.moqui.impl.UserServices.create#UserAccount) or updating a
paSSNord(org.moqui.impl.UserServices.update#Password)

Settings include the hash algorithm to use for passwords before persisting them and before
comparing an entered password (encrypt-hash-type; MD5, SHA, SHA-256, SHA-384,
SHAS512), the minimum password length (min-1length), the minimum number of digit
characters in the password (min-digits), the minimum number of characters other than
digits or letters (min-others), how many old passwords to remember on password change
to avoid use of the same password (history-1limit), and how many weeks before forcing a
password change (change-weeks).

The main way to reset a forgotten password is by an email that includes a randomly
generated password. The email-require-change attribute specifies whether to require a
change on the first login with the password from the email, making it a temporary password.
The email-expire-hours attribute specifies how many hours before the password in the
email expires.

Simple Permissions

The most basic for of authorization (authz) is a permission explicitly checked by code.
Artifact-aware authz (covered in the next section) is generally more flexible as it is
configured external to the artifact (screen, service, etc) and is inheritable to avoid issues when
artifacts (especially services) are reused.

The API method to check permissions is the ec.user.hasPermission(String
userPermissionId) method. A user has a permission if the user is a member
(UserGroupMember) of a group (UserGroup) that has the permission
(UserGroupPermission)fTheuserPermissionIdInaylxﬁntk)aUserPermissionreconl
but it may also be any arbitrary text value as the UserGroupPermission has no foreign key to
UserPermission.

134

Artifact-Aware Authorization

The artifact-aware authorization in Moqui enables external configuration of access to artifacts
such as screens, screen transitions, services, and even entities. With this approach there is no
need to add code or configuration to each artifact to check permissions or otherwise see if the
current user has access to the artifact.

Artifact Execution Stack and History

The ArtifactExecutionFacade is used by all parts of the framework to keep track of each
artifact as it executes. It keeps a stack of the currently executing artifacts, each one pushed on
the stack as it begins (with one of the push () methods) and popped from the stack as it ends
(with the pop () method). As each artifact is pushed on to the stack it is also added to a
history of all artifacts used in the current ExecutionContext (i.e., for a single web request,
remote service call, etc).

Use the ArtifactExecutionInfo peek() method to get info about the artifact at the top of
the stack, Deque<ArtifactExecutionInfo> getStack() to get the entire current stack, and
List<ArtifactExecutionInfo> getHistory() to get a history of all artifacts executed.

This is important for artifact-aware authorization because authz records are inheritable. If an
artifact authz is configured inheritable then not only is that artifact authorized but any
artifact it uses is also authorized.

Imagine a system with hundreds of screens and transitions, thousands of services, and
hundreds of entities. Configuring authorization for every one of them would require a
massive effort to both setup initially and to maintain over time. It would also be very prone
to error, both incorrectly allowing and denying access to artifacts and resulting in exposure
of sensitive data or functionality, or runtime errors for users trying to perform critical
operations that are a valid part of their job.

The solution is inheritable authorization. With this you can setup access to an entire
application or part of an application with authz configuration for a single screen that all sub-
screens, transitions, services, and entities will inherit. To limit the scope sensitive services
and entities can have a deny authz that overrides the inheritable authz, requiring special
authorization to those artifacts. With this approach you have a combination of flexibility,
simplicity, and granular control of sensitive resources.

This is also used to track performance metrics for each artifact. See the Artifact Execution
Runtime Profiling section for details.

135 9. Security

Artifact Authz

The first step to configure artifact authorization is to create a group of artifacts. This involves
a ArtifactGroup record and a ArtifactGroupMember record for each artifact, or artifact
name pattern, in the group.

For example here is the artifact group for the Example app with the root screen
(ExampleApp.xml) as a member of the group:

<moqui.security.ArtifactGroup artifactGroupId="EXAMPLE APP"
description="Example App (via root screen)"/>

<moqui.security.ArtifactGroupMember artifactGroupId="EXAMPLE APP"
artifactTypeEnumId="AT XML SCREEN" inheritAuthz="Y"
artifactName="component://example/screen/ExampleApp.xml"/>

In this case the artifactName attribute has the literal value for the location of the screen. It
can also be a pattern for the artifact name (with namerspPattern="v"), which is especially
useful for authz for all services or entities in a package. Here is an example of that for all
services in the org.moqui.example package, or more specifically all services whose full
name matches the regular expression "org\ .moqui\.example\..*":

<moqui.security.ArtifactGroupMember artifactGroupId="EXAMPLE APP"
artifactName="org\.moqui\.example\..*" nameIsPattern="Y"
artifactTypeEnumId="AT SERVICE" inheritAuthz="Y"/>

The next step is to configure authorization for the artifact group with a Artifactauthz
record. Below is an example of a record that gives the ADMIN group always (AUTHZT ALWAYS)
access for all actions (AUTHZA ALL) to the artifacts in the ExAMPLE_APP artifact group setup
above.

<moqui.security.ArtifactAuthz artifactAuthzId="EXAMPLE AUTHZ ALL"
userGroupId="ADMIN" artifactGroupId="EXAMPLE APP"
authzTypeEnumId="AUTHZT ALWAYS" authzActionEnumId="AUTHZA ALL"/>

The always type (authzTypeEnumid) of authorization overrides deny (AUTHZT DENY)
authorizations, unlike the allow authz (auTHzT_ ArLOW) which is overridden by deny. The
other options for the authz action (authzActionEnumid) include view (AUTHZA VIEW), create
(auTHZA CREATE), update (AUTHZA UPDATE), and delete (AuTHZA DELETE) in addition to all
(AUTHZA ALL).

For example here is a record that grants only view authz with the type allow (so can be
denied) of the same artifact group to the ExAMPLE VIEWER group:

<moqui.security.ArtifactAuthz artifactAuthzId="EXAMPLE AUTHZ VW"
userGroupId="EXAMPLE VIEWER" artifactGroupId="EXAMPLE APP"
authzTypeEnumId="AUTHZT ALLOW" authzActionEnumId="AUTHZA VIEW"/>

Entity artifact authorization can also be restricted to particular records using the
ArtifactAuthzRecord entity. This is used with a view entity (viewEntityName) that joins
between the user1d of the currently logged in user and the desired record. If the name of the

136

field with the user1d is anything other than user1d specify its name with the userIdrield
field. The record level authz is checked by doing a query on the view entity with the current
userId and the PK fields of the entity the operation is being done on. To add constraints to
this query you can add them to the view-entity definition, use the filterByDate attribute,
or use ArtifactAuthzRecordCond records to specify conditions.

If authorization fails when an artifact is used the framework creates a
ArtifactAuthzFailure record with relevant details.

Artifact Tarpit

An artifact tarpit limits the velocity of access to artifacts in a group. Here is an example of an
artifact group for all screens and a ArtifactTarpit to restrict access for all users to each
screen for 60 seconds (tarpitDuration) if there are more than 120 hits (maxHitsCount)
within 60 seconds (maxHitsDuration).

<moqui.security.ArtifactGroup artifactGroupId="ALL SCREENS"
description="All Screens"/>

<moqui.security.ArtifactGroupMember artifactGroupId="ALL SCREENS"
artifactName=".*" nameIsPattern="Y"
artifactTypeEnumId="AT XML SCREEN"/>

<moqui.security.ArtifactTarpit userGroupId="ALL USERS"
artifactGroupId="ALL SCREENS" maxHitsCount="120"

maxHitsDuration="60" tarpitDuration="60"/>

When a particular user (user1d) exceeds the configured velocity limit for a particular artifact
(artifactName) or a particular type (artifactTypeEnumid) the framework creates a
ArtifactTarpitLock record to restrict access to that artifact by the user until a certain date/
time (releaseDateTime).

137 9. Security

404 - Page Not Found

(not really, this page is intentionally blank for layout reasons; to make it less blank sponsor
this book and see your ad here!)

138

10. Performance

Performance Metrics

Artifact Hit Statistics

Moqui keeps statistics about use (hits) and timing for artifacts according to the configuration
in the server-stats.artifact-stats elements in the Moqui Conf XML file. Here is the
default configuration (in MoquiDefaultConf.xml) that you can override in the runtime conf
file. The default development runtime conf file (MoquiDevConf.xml) has settings that record
even more than this.

<server-stats bin-length-seconds="900" visit-enabled="true"
visitor-enabled="true">
<artifact-stats type="screen" persist-bin="true" persist-hit="true"/>
<artifact-stats type="screen-content" persist-bin="true"
persist-hit="true"/>
<artifact-stats type="transition" persist-bin="true" persist-hit="true"/>
<artifact-stats type="service" persist-bin="true" persist-hit="false"/>
<artifact-stats type="entity" persist-bin="false"/>
</server-stats>

These settings create a ArtifactHit record for each hit to a screen, screen-content
(content under a screen), and screen transition. They also create ArtifactHitBin records
for those plus service calls.

Here are a couple of examples of ArtifactHit records, the first for a hit to the
FindExample.xml screen and the second for a hit to the EntityExport.xml transition in the
DataExport.xml screen in the tools application. The hit to the EntityExport.xml transition
has parameters which are recorded in the parameterstring attribute.

<moqui.server.ArtifactHit hitId="100030" wvisitId="100000"
userId="EX JOHN DOE" artifactType="screen" artifactSubType="text/html"
artifactName="component://example/screen/ExampleApp/Example/FindExample.xml"
startDateTime="1406670788608" runningTimeMillis="1,499" wasError="N"
requestUrl="http://localhost:8080/apps/example/Example/FindExample"
serverIpAddress="172.16.7.38" serverHostName="DEJCMBA3.local"
lastUpdatedStamp="1406670790120"/>

139 10. Performance

<moqui.server.ArtifactHit hitId="100037" visitId="100001"
userId="EX JOHN DOE" artifactType="transition"
artifactName="component://tools/screen/Tools/Entity/
DataExport.xml#EntityExport.xml"
parameterString="moquiFormName=ExportData,output=file, filterMap=
[artifactType:"screen"],entityNames=moqui.server.ArtifactHit"
startDateTime="1406674728129" runningTimeMillis="45" wasError="N"
requestUrl="http://localhost:8080/apps/tools/Entity/DataExport/
EntityExport.xml"
serverIpAddress="172.16.7.38" serverHostName="DEJCMBA3.local"
lastUpdatedStamp="1406674728195" />

In a web application there is a Visit record for each session that has details about the session
and ties together ArtifactHit records by the visit1d. The visit will keep track of the
logged in user1d once a user is logged in, but even before that visits are tied together using a
visitoriId thatis tracked on the service in a Visitor record and in a browser/ client with a
cookie to tie sessions together, even if no user is logged in during a session.

<moqui.server.Visit visitId="100000" visitorId="100000"
userId="EX JOHN DOE" sessionId="749389362bac39c39de3c77769b9b485"
serverIpAddress="172.16.7.38" serverHostName="DEJCMBA3.local"
webappName="ROOT" initialLocale="en US"
initialRequest="http://localhost:8080/" initialUserAgent="Mozilla/5.0
(Macintosh; Intel Mac OS X 10 9 4) AppleWebKit/537.77.4 (KHTML,
like Gecko) Version/7.0.5 Safari/537.77.4"
clientIpAddress="0:0:0:0:0:0:0:1" clientHostName="0:0:0:0:0:0:0:1"
fromDate="1406670784083" lastUpdatedStamp="1406670784396"/>
<moqui.server.Visitor visitorId="100000" createdDate="1406670784353"
lastUpdatedStamp="1406670784363"/>

There is a performance impact for creating a record for each hit on an artifact, and on busy
servers the database size can get very large. This can be mitigated by using a low-latency
insert database such as OrientDB or other NoSQL databases. If you just want statistics of
performance over a time period and don’t need the individual hit records for auditing or
detailed analysis the ArtifactHitBin records will do the trick.

These records have a summary of hits for an artifact during a time period, between
binStartDateTime and binEndDateTime. The length of the bin is configured with the
server-stats.bin-length-seconds attribute and defaults to 900 seconds (15 minutes).

Here is an example of a hit bin for the create#moqui.entity.EntityAuditLog service. In
this example it has been hit/used 77 times with a total (cumulative) run time of 252ms which
means the average run time for the artifact in the bin is 3.27ms.

<moqui.server.ArtifactHitBin hitBinId="100010" artifactType="service"
artifactSubType="entity-implicit"
artifactName="create#moqui.entity.EntityAuditLog"
serverIpAddress="172.16.7.38" serverHostName="DEJCMBA3.local"
binStartDateTime="1406268616369" binEndDateTime="1406268636249"
hitCount="77" totalTimeMillis="252" minTimeMillis="1"

140

maxTimeMillis="61" lastUpdatedStamp="1406268636290"/>

These can be used directly from the database and with the Artifact Bins and Artifact
Summary screens in the Tools application.

Artifact Execution Runtime Profiling

Java profilers such as JProfiler are great tools for analyzing the performance of Java methods
but know nothing about Moqui artifacts such as screens, transitions, services, and entities.
The Moqui Artifact Execution Facade keeps track of performance details of artifacts in
memory for each instance (each ExecutionContext, such as a web request, etc) as they run.

This data is kept in with the ArtifactExecutionInfo objects that are created as each artifact
runs and are pushed onto the execution stack and kept in the execution history. You can
access these using the ec.artifactExecution.getStack(), and
ec.artifactExecution.getHistory () methods.

From the ArtifactExecutionInfo instance you can get its own runtime (long
getRunningTime ()), the artifact that called it (ArtifactExecutionInfo getParent()), the
artifacts it calls (List<ArtifactExecutionInfo> getChildList()), the running time of all
artifacts called by this artifact (long getChildrenRunningTime()), and based on that the
running time of just this artifact (long getThisRunningTime (), which is
getRunningTime() - getChildrenRunningTime()). You can also print a report with these
stats for the current artifact info and optionally its children recursively using the

print (Writer writer, int level, boolean children) method.

For a complex code section like placing an order that does dozens of service calls this can be
a lot of data. To make it easier to track down the parts that are taking the most time have this
method on the ArtifactExecutionInfolmpl class to generate a list of hot spots:

static List<Map> hotSpotByTime(List<ArtifactExecutionInfoImpl> aeiilList,
boolean ownTime, String orderBy)

This goes through all ArtifactExecutionInfolmpl instances in the execution history and sums
up stats to create a Map for each artifact with the following entries: time, timeMin, timeMax,
count, name, actionDetail, artifact type, and artifact action.

Another situation where you’ll have a LOT of data is when running a process many times to
get better average statistics. In this case you could have hundreds or thousands of artifact
execution infos in the history. To consolidate data from multiple runs into a single tree of info
about the execution of each artifact and its children use this method:

List<Map> consolidateArtifactInfo(List<ArtifactExecutionInfoImpl> aeiilist)

Each Map has these entries: time, thisTime, childrenTime, count, name, actionDetail,
childInfoList, key (which is: name + ":" + typeEnumId + ":" + actionEnumId + ":" +
actionDetail), type, and action. With that result you can print the tree with indentation in
plain text (best displayed with a fixed width font) with this method:

141 10. Performance

String printArtifactInfolist(List<Map> infoList)

One example of using these methods is the Testorders. xml screen in the POP Commerce
application. It is used with a URL like this and display a screen with the performance profile
results of the code that places and ships the specified number of orders:

http://localhost:8080/popc/TestOrders?numOrders=10

Here is a snippet from the screen actions script that runs the test code and gets the
performance statistics using the methods described above:

def artifactHistory = ec.artifactExecution.history
ownHotSpotList = ArtifactExecutionInfoImpl.hotSpotByTime(artifactHistory,

true, "-time")
totalHotSpotList = ArtifactExecutionInfoImpl.hotSpotByTime(artifactHistory,
false, "-time")

List<Map> consolidatedList =
ArtifactExecutionInfoImpl.consolidateArtifactInfo(artifactHistory)

String printedArtifactInfo =
ArtifactExecutionInfoImpl.printArtifactInfolList(consolidatedList)

Here is an example of the top few rows in the Artifacts by Own Time section of the output
on that screen for the placing and shipping of 25 orders:

Time Time Time Time Count Name Type Action Action
Min Avg Max Detail
1838 0 2.29 25 801 mantle.order.Orderltem Entity View list

mantle.ledger.account.
GlAccountOrgTimePeriod

1025 0 1.08 10 950 moqui.entity.EntityAuditLog Entity Create

1093 0 1.32 26 825 Entity Update

mantle.product.PriceServices.
get#ProductPrice

686 0 343 12 200 mantle.order.OrderPart Entity Update

844 7 11.25 33 75 Service All

From these results we can see that the most time is spent doing an Entity View (find) list
operation on the orderItem entity. In this run the transaction cache for the place#order and
ship#orderPart services was disabled, and the orderItem entity is not cached using the
entity cache so it is doing that query 801 times during this run. The transaction cache is a
write-through cache that will cache written records and reads like this. With that enabled
overall the orders per second goes from around 0.8 to 1.4 (on my laptop with a Derby
database) and the output for Artifacts by Own Time looks very different:

Time Time Time Time Count Name Type Action Action
Min Avg Max Detail
mantle.shipment.
3449 72 137.96 222 25 ShipmentServices. Service All
ship#OrderPart
1284 0 1.60 10 801 mantle.order.Orderltem Entity View list

142

Time Time Time Time Count Name Type Action Action
Min Avg Max Detail
mantle.product.PriceServices. .
679 6 9.05 14 75 get#ProductPrice Service All
mantle.order.OrderServices. .
614 14 24.56 51 25 place#Order Service All
561 0 068 5 gos mantleledgeraccount. Entity ~ View one

GlAccountOrgTimePeriod

Below is some sample output from the Consolidated Artifacts Tree section. It shows the
hierarchy of artifacts consolidated across runs and within each run to show the data for each
artifact in the context of parent and child artifacts. When interpreting these results note that
the total counts and times for each artifact are not just the values for that artifact running as a
child of the parent artifact shown, but all runs of that artifact. The main value is tracking
down where the busiest artifacts are used, and understanding exactly what is actually done

at runtime, especially for specific services.

In this output each line is formatted as follows:

[${time}:${thisTime}:${childrenTime}][${coun

t}l $

{type} ${action} ${actionDetail} ${name}

Here is the sample output, note that certain artifact names have been shortened with ellipses

for better formatting;:

[16: 3: 13][2] Screen View

| [13:-41: 54][3] Screen View

| | [165:165: 0][126] Entity View one
|] 0:-31263:31263][3] Screen View
|]| 3: 3: 0][3] Entity View o
]| 5: 5: O0][1] Entity View
1] 6: 1: 5][1] Service Create
(| 5: 5: 0][1] Entity Create
| | | [4700:269:4431][75] Service All

| | | | [632:632: 0][300] Entity View

| | | | [497:497: 0][375] Entity View

| | | | [165:165: 0][126] Entity View

| | | | [195:195: O0][25] Entity View

| | | | [328: 21:307][25] Service Create
[| | | | [146: 12:134][25] Service Crea
| | | | | | 1 134: 97: 37][25] Entity Cr
| 1 | | | | | [1564:406:1158][950] Service
1T 83: 83: O0][30] Entity
' 1|1 1]] 90:90: 0][30] Entity
[1| 1 | || | [1025:1025: 0]1[950] Entity
[1 | | | [161l: 11:150][25] Service Crea
| | |] | | [632:632: 0][300] Entity Vi
| || | | | 1 134: 99: 35][25] Entity Cr
[1 I |] 1] [1564:406:1158][950] Service
' 1 I |11]] 83:83: 0][30] Entity
' 11 1 1 || 90:90: 0][30] Entity
['1 L1 ||| | [1025:1025: 0][950] Entity
| | | | [1838:1838: 0][801] Entity View
| | | | [882:844: 38][75] Service All
[38: 38: 0][150] Entity View
| | | | [2324: 83:2241][75] Service Creat
| | | | | [430:430: 0]1[575] Entity View
| | | | | [2747: 64:2683][100] Service Cre

143

comp
ma

ne
one

list
one
one
list

te
eate
Crea
Vie
Upd
Cr
te
ew
eate
Crea
Vie
Upd
Cr
lis

1i
e

on
ate

component://webroot/screen/webroot .xml

onent://PopCommerce/../PopCommerceRoot . xml
ntle.product.store.ProductStore
component: //PopCommerce/../TestOrders.xml
moqui.security.UserAccount
moqui.server.Visit
create#moqui.security.UserLoginHistory
moqui.security.UserLoginHistory
..OrderServices.add#0OrderProductQuantity
mantle.order.OrderPart
mantle.order.OrderPart
mantle.product.store.ProductStore
mantle.order.OrderHeaderAndPart
mantle.order.OrderServices.create#Order
create#mantle.order.OrderHeader
mantle.order.OrderHeader
create#moqui.entity.EntityAuditLog
moqui.entity.SequencevValueltem
moqui.entity.SequencevValueltem
moqui.entity.EntityAuditLog
create#mantle.order.OrderPart
list mantle.order.OrderPart
mantle.order.OrderPart
create#moqui.entity.EntityAuditLog
moqui.entity.SequencevValueltem
ate moqui.entity.SequenceValueItem
eate moqui.entity.EntityAuditLog
t mantle.order.OrderItem
.PriceServices.get#ProductPrice
st mantle.product.ProductPrice
..OrderServices.create#0OrderItem
mantle.product.Product
create#mantle.order.OrderItem

te
W
ate
eate

one

te

W one

e

10. Performance

1838:1838: 0][801] Entity View list mantle.order.OrderItem

2482:384:2098][100] Entity Create mantle.order.OrderItem
[1564:406:1158][950] Service Create create#moqui.entity.EntityAuditLog
[83: 83: 0][30] Entity View one moqui.entity.SequencevValueltem
[90: 90: O0][30] Entity Update moqui.entity.SequencevValueltem
[1025:1025: 0][950] Entity Create moqui.entity.EntityAuditLog
1784: 89:1695][100] Service Update ..OrderServices.update#OrderPartTotal
[1838:1838: 0][801] Entity View list mantle.order.OrderItem
322:127:195][250] Service All ..OrderServices.get#0rderItemTotal

[1838:1838: 0][801] Entity View list mantle.order.OrderItem
497:497: 0][375] Entity View one mantle.order.OrderPart

1204:686:518][200] Entity Update mantle.order.OrderPart

[224:224: 0][200] Entity View refresh mantle.order.OrderPart

[1564:406:1158]1[950] Service Create create#..EntityAuditLog

| [83: 83: O0][30] Entity View one moqui.entity.SequenceValueItem
| [90: 90: O0][30] Entity Update moqui.entity.SequencevValueltem
| [1025:1025: 0][950] Entity Create moqui.entity.EntityAuditLog
629: 56:573][100] Service Update ..update#OrderHeaderTotal

632:632: 0][300] Entity View list mantle.order.OrderPart
349:349: 0][450] Entity View one mantle.order.OrderHeader

|
|
|
[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

[

[

[884:592:292][175] Entity Update mantle.order.OrderHeader

| [181:181: 0][175] Entity View refresh mantle.order.OrderHeader

| [1564:406:1158][950] Service Create create#..EntityAuditLog

|] 83: 83: 0][30] Entity View one ..SequenceValueItem

|] 90: 90: O0][30] Entity Update ..SequenceValueItem

| | [1025:1025: 0][950] Entity Create moqui.entity.EntityAuditLog

Improving Performance

Once an artifact or code block has been identified a taking up a lot of execution time the next
step is to review it and see if any part of it can be improved. Sometimes operations just take
time and there isn’t much to be done about it. Even in those cases parts can be made
asynchronous or other approaches used to at least minimize the impact on users or system
resources.

The slowest operations typically involve database or file access and in-memory caching can
help a lot with this. The Moqui Cache Facade is used by various parts of the framework and
can be used directly by your code for caching as needed. By default Moqui uses ehcache for
the actual caching, and the configuration settings in the Moqui Conf XML file are passed
through to it. Other cache configuration is ehcache specific and can be setup using its files
(mainly ehcache.xml). This is especially true for setting up things like a distributed caching
in an app server cluster.

In the runtime configuration for development (MogquiDevConf .xml) the caches for artifacts
such as entities, service definitions, XML Screens, scripts, and templates have a short timeout
so that they are reloaded frequently for testing after changing a file. In the production
configuration (MogquiProductionConf .xml) the caches are all used fully to get the best
performance. When doing performance testing make sure you are running with the caches

144

fully used, i.e. with production settings, so that numbers are not biased by things that are
quite slow and won’t happen in production.

The Resources Facade does a lot of caching. The getLocationText (String location,
boolean cache) method uses the resource.text.location cache is the cache parameter is
set to true. Other caches are always used including scripts and templates in their compiled
form (if possible with the script interpreter or template renderer), and even the Groovy
expressions and string expansions done by the Resource Facade. As mentioned above these
are never "disabled" but to facilitate runtime reloading the easiest approach is to use a
timeout on the desired caches.

Another common cache is the entity cache managed by the Entity Facade. There are caches
for individual records, list results, and count results. These caches are cleared automatically
when records are created, updated, or deleted through the Entity Facade. Both simple entities
that correspond to a single table and view entities can be cached, and the automatic cache
clearing works for both. To make cache clearing more efficient it uses a reverse association
cache by default to lookup cache entries by the entity name and PK values of a record. In
other cases (such as when creating a record) it must do a scan of the conditions on cache
entries to find matching entries to clear, especially on list and count caches. For more details
see the Data and Resources chapter.

In addition to the entity read cache there is a write-through per-transaction cache that can be
enabled with the service.transaction attribute by setting it to cache or force-cache.
The implementation of this is in the TransactionCache.groovy file.

The basic idea is that when creating, updating, or deleting a record it just remembers that in
an object that is associated with the transaction instead of actually writing it to the database.
When the transaction is committed, but before the actual commit, it writes the changes to the
database. When find operations are done it uses the values in cache directly or augments the
query results from the database with values in the cache.

It is even smart enough to know when finding with a constraint that could only match values
in the TX cache (created through it) that there is no need to go to the database at all and the
query is handled fully in memory. For example if you create a OrderHeader record and then
various OrderItem records and then query all orderItem records by order1d it will see if
the orderHeader record was created through the transaction cache and if so it will just get
the orderItem records from the TX cache and not query the database at all for them.

For entity find operations another valuable tool is the auto-minimize of view entities. When
you do a find on a large view-entity, such as the Findpartyview entity, just make sure to
specify the fields to select and limit those to only the fields you need. The Entity Facade will
automatically look at the fields selected, used in conditions, and used to order/sort the
results and only include the aliased fields and member entities necessary for those fields.
With this approach there is no need to use a dynamic view entity (EntityDynamicview) to
conditionally add member entities and aliased fields. Back to the FindPartyView example,

145 10. Performance

the find#Party service (implemented in findParty.groovy) uses this to provide a large
number of options with very minimal code.

A general guideline when querying tables with a very large number of records is to not ask
the database to do more than is absolutely necessary. Joining in too many member entities in
a view entity is a dramatic form of this as creating large temporary tables is a very expensive
operation.

Along these lines another common scenario is doing a find that may return a very large
number of results and then showing those results one page (like 20 records) at a time. It is
best to not select all the data you'll display for each record in the main query as this makes
the temporary table for joins much larger, and you are asking the database to get that data for
all records instead of just the 20 or so you will be displaying. A better approach is to just
query the field or fields sufficient to identify the records, then query the data to display for
just those keys in a separate find. This is usually much faster, but in some rare cases it is not
so it is still good to test these and other query variations with real data to see which performs
best for your specific scenario.

In high volume production ecommerce and ERP systems another common problem is
synchronization and locking delays. These can happen within the app server with Java
synchronization, or in a database with locks and lock waiting. You may also find deadlocks,
but that is another issue (i.e., separate from performance). The only way to really find these is
with load testing, especially load testing that uses the same resources as much as possible
like a bunch of orders for the same product as close to the same time as possible.

There are a few ways to improve these. On the Java synchronization level using non-blocking
algorithms and data structures can make a huge difference, and many libraries are moving
this way. Java Concurrency in Practice by Brian Goetz is a good book on this topic.

Beyond these basic things to keep in mind there are countless ways to improve performance.
For really important code, especially highly used or generally performance sensitive
functionality, within reasonable constraints the only limit to how much faster it can run is
often a matter of how much time and effort can be put into performance testing and
optimization.

Sometimes this involves significant creativity and using very different architectures and tools
to handle things like a large number of users, a very large amount of data, data scattered in
many places, and so on. For some of these issues distributed processing or data storage tools
such as Hadoop and OrientDB (and really countless others these days) may be just what you
need, even if using them requires significantly more effort and it only makes sense to do so
for very specific functionality.

When doing Java profiling with a tool like JProfiler you are usually looking for different sorts
of things that impact performance than when looking at Moqui artifact execution
performance data. To optimize Java methods (and classes for memory use) there are different
tools and guidelines to use than the ones above which are more for optimizing business logic
at a higher level.

146

11. The Tools Application

The Tools application is part of the default Moqui runtime and lives in the component at
moqui/runtime/component/tools. It has screens for technical administration of systems
built on Moqui Framework such as viewing and editing data, running services, managing
jobs, managing caches, and viewing statistics about server use.

Auto Screen

Auto screens are based on entity definitions and use the default forms generated by a XML
Form with auto form fields based on the fields for a given entity. There are screens to find
and create values, edit exiting values, and view related values for an entity.

Entity List

The main entity list for auto screens has a drop-down at the top with all entities plus a list of
the master entities to select from. Master entities are entities with dependents and are the
most useful to find and view with a tab set for their dependent and related entities, though
any entity can be used with the auto screens. Select an entity to go to its find page.

4« » | |2|| A | + @ localhost:8080 ¢ O | m| | ®

Al Entities v m

Package +- Master Entity +-
AuthorizeDotNet Payment Gateway Authorize Net
HiveMind.wiki Wiki Page

HiveMind.wiki Wiki Space
mantle.account.billing s
mantle.account.financial
mantle.account.financial
mantle.account.financial

mantle.account.invoice Invoice
mantle.account.invoice Settlement Term
mantle.account.method Bitcoin Wallet
mantle.account.method Credit Card

147 11. The Tools Application

Find Entity

The find screen has a paginated list of records for the selected entity with Edit and Delete
buttons for each, the Edit button going to the Edit Entity screen. The table has auto generated
view fields based on the entity fields in a form-1ist. The Entity List button goes back to the
list of master and all entities. The Find button pops a form with filter inputs for each entity
field, and the New Value button pops up a form to create a new record.

My Company - Find

< 2| | || + | ® localhost:8080/apps/tools/AutoScreen/Auto 1=moqui.basic.Geo&pagelndex=2 4 O m o0

|< < 101 - 150 / 312 > >|
Geo ID +~ Geo Type Enum ID +- Geo Name +- Geo Code Alpha2 +- Geo Code Alpha3 +~ Geo Code Numeric +~- Last Updated Stamp +-
BIE s o : o
m Delete 0] g:gtw?coumm India IN IND 356 f?‘:a‘Z,ZZQ
B ST e b o e mom
m Delete G g:g‘gcoum Iran (islamic Republic Of) IR IRN 364 ??:14‘:%229
m IRQ Eg:fcoumﬂ Iraq 1Q IRQ e ?(1,:14:%-.229
m IRL :(:Ec:g:fCOUNTRY] Ireland IE IRL 372 f?j:g:;:gg
BaE- = - .
B e romw mEE
Here is the Find form for the Geo entity that pops up.
My Company - Find
< 2 | A | + @ localhost:8080 t AutoScreen/AutoFind7aen ul.basic.Geodr X c o) (o)e

Find Geo

(1) Not | Contains 3 # Ignore Case

Geo Type () Not Contains ¢ | @ Ignore Case
Enum ID

Geo () Not | Contains # | @ lgnore Case
Name

Geo Code () Not | Contains # | @ Ignore Case
Alpha2

Geo Code () Not | Contains_# | @ Ignore Case
Alpha3

Geo Code () Not | Contains | @ Ignore Case
Numeric

Well () Not | Contains # | @ Ignore Case
Known
Text

Last
Updated
Stamp

148

Here is the New Value form that pops up for the Geo entity.

My Company - Find

< 2| A | + @ localhost:8080/z0ps /10 O m 0] (0

New Value

Geo ID

Geo Type
Enum ID

Geo
Name

Geo Code
Alpha2

Geo Code
Alpha3

Geo Code
Numeric

Well
Known
Text

Edit Entity

The edit entity screen has tabs for the current entity and all related entities. It has an auto-
generated edit form (form-single) based on the entity definition, including drop-downs for
fields that are foreign keys to other records. There is also a simple form at the bottom to
export the record and its dependent records to a file (like the Entity Export screen). Here is an
example for the USA Geo record:

My Company - Edit

4 2] (2] [+ [® locathost:8080/apps/ tools/Autoscreen/AutoEdit/AutoEditMaster?geold=UsA&aen=moqu ol@m (o]0

| Geo | Payment Application (Tax Auth) Market Segment = Order Item (Primary) Order Item (Secondary) Tax Authority (Tax Auth) ~Agreement Item
Postal Address (Country) Postal Address (State Province) Postal Address (County) Postal Address (Postal Code) Product (Origin) Product
Product Price (Tax Authority) = Cost Component = Assoc (Main) Assoc (Assoc) Visit (Client Ip State Prov) Visit (Client Ip Country)

Geo ID
Geo Type Enum ID

Geo Name

Geo Code Alpha2

Geo Code Alpha3

Geo Code Numeric

Well Known Text

Filename

USA

Country [GEOT_COUNTRY] + | Edit Enumeration [GEOT_COUNTRY]
United States
us

UsA

840

Export with Dependents to File

149

11. The Tools Application

Edit Related

When you click on a tab for a related entity from the edit screen you get a list of the related
records with Edit and Delete links for each just like the Entity Find screen. It is a form-1list
with fields auto generated from the entity fields. You also get Entity List, Find, and New
value buttons like the find screen. This example shows the Postal Address records with the
same Geo (USA) set as the Country.

My Company - Edit

« 2 | A 4+ @ localhost:8080/apps/tools/AutoScreen/AutoEdit/A 7geold=USA& basic.Geo ¢ O m| O

Geo Payment Application (Tax Auth) Market Segment Order Item (Primary) Order Item (Secondary) Tax Authority (Tax Auth) Agreement Item
Postal Address (Country) | Postal Address (State Province) Postal Address (County) Postal Address (Postal Code) Product (Origin) Product
Product Price (Tax Authority) Cost Component Assoc (Main) Assoc (Assoc) Visit (Client Ip State Prov) Visit (Client Ip Country)

Entity List m & New Postal Address

< <1-8/85>>|

Contact Mech ID +- To Name +- Attn Name +- Addressl +- Address2 +- Unit Number +- City +- County Geo ID +- State Province Ge(l
Biziwork

m [ORG_BIZI_SVCS_PA] Industries - 51 We 1234 Orem Utah [USA_UT]
. Center St.
Services
QZ:h:; Accounts 1830.E. Las
m LA™ [ORG_ACME_BA] APanYy Flamingo 1234 Nevada [USA_NV]
Making Payable Vegas
" Rd.
Everything
Biziwork 51 W.
m PEEEE [ORG_BIZI_RTL_PA] Industries - . 2345 Orem Utah [USA_UT]
. Center St.
Retail
Biziwork 51 W
m [ORG_BIZI_RTL_SA] Industries - X 5432 Orem Utah [USA_UT]
- Center St.
Retail
1350 E. Las
m [CustlgpAddr] Joe Q. Public Flamingo 2345 Nevada [USA_NV]
Rd. Vegas

Data Document

Entity data documents are covered in the Data Document section of the Data and Resources
chapter. These screens in the Tools application allow you to search documents, index
documents for defined data feeds, and export data documents as JSON files.

Search

Use the search screen to find data documents in an index, such as the hivemind index in this
example. The links are based on the batabocumentLink record to go a screen associated with
a document in the corresponding application. The View Document button pops up a window
with the full document in JSON text and a print of the flattened map for the document.

150

4 2| »| + @ localnost:8080 ¢

()
B
®

>

hivemind - ‘ . |m
I<<1-17717>>

Type D Title Link View Document
Task [HmTask] HM-002 Dashboard Project List Task Summary @ View Document
Task [HmTask] HM-007 Dashboard Create Request Task Summary @ View Document
Request [HmRequest] DEMO_001 Add Create Request on dashboard Edit Request
Task [HmTask] HM-004 Dashboard My Tasks Task Summary (@ View Document
Wiki Page [HmWikiPage] DEMO_DP1_CP1 DEMO/Demo Page 1/Child Page 1 Wiki Page @ View Document

Index

With the data document index screen you can select a Data Feed and optionally specify from
and thru timestamps to limit the documents by the lastupdatestamp field automatically
added by the entity facade, and then index all data documents associated with the feed.

< 2 A |+ @ localhost:8080 ¢ ol m (OO

Indexed 23 documents

Data Feed HiveMind Search [HiveMindSearch]
From Update Stamp ®
Thru Update Stamp @

Index Feed Documents

Export

Use this screen to export data documents from the specified IDs and within the from/thru
lastUpdateStamp range to a single file, directory of doc files, or out to the browser.

y Cor Expo
< # || A || + | @ localhost:8080 ¢! ol (m] (o] (e

Data Document IDs HmTask - Task X
HmWikiPage - Wiki Page x

From Update Stamp

o

Thru Update Stamp &
Pretty Print JSON?
Path

Output @ Single File O Directory (one file per document) () Out to Browser

151 11. The Tools Application

Data View

The data view screens are used to define a simple view entity stored in the database (using
the DbviewEntity and related entities) and then view the results and export them as a CSV
file. These screens are a simple form of ad-hoc report and data export that leverage the
concept of master and dependent entities and allow for easy aliasing of fields on a master
entity and all directly related dependents with an optional function. More elaborate DB view
entities can be defined and viewed /exported from these screens, but the Edit DB View screen
only supports a master entity and the entities directly related to it.

Find DB View

The find screen has a form at the top to create a DbviewEntity and then table with all
existing DB view entities and links to Edit or View them.

- Entity List
< 2 | A |+ @ localhost:8080 =

D
B
D
)

View Entity Name Package

1€<1=-1/15>>

Entity +- Package +- Edit View
ExampleDbView moqui.example Edit View

Edit DB View

The screen to edit a DB view entity has a form at the top to change the package the entity is
in. Note that view entities defined in DbviewEntity can be used in the Entity Facade just like
any other entity or view entity.

Next on the screen is a form to set the master entity, or the main entity in the view that all
other entities will be related to. Once this is set the list form below shows all of the fields on
that entity and directly related entities. In this screenshot below the master entity is the
Example entity and the fields shown are for it and the ExampleType Enumeration, and
Example StatusItem. The screen is cut off partway down and if you view the full screen
you’ll also see fields further down for the ExampleContent, ExampleFeatureAppl, and
ExampleItem entities (which all have a cardinality of many).

The fields selected to include in the view are the Enumeration.description and
StatusItem.description fields, the example1d and exampleName from the Example entity
(the master entity), and further off screen the ExampleItem.exampleItemSeqid field is
selected with a count function to get a count of items on the example.

152

< 2 | A || + @ localhost:8080 ¢ om0

View ExampleDbView Get as CSV
View Name ExampleDbView Package moqui.example Update
Entity Name | £xample - moqui.example v
Field Field Name +~- Related Entity Name +- Type Cardinality Function Name
J enumid moqui.basic.Enumeration (ExampleType) id one v
enumTypeld moqui.basic.Enumeration (ExampleType) id-long one v
] parentEnumid moqui.basic. i ype) id one
enumCode moqui.basic.Enumeration (ExampleType) text-medium one v
e sequenceNum moqui.basic.Enumeration (ExampleType) number-integer one v
~ description moqui.basic.Enumeration (ExampleType) text-medium one v
e lastUpdatedStamp moqui.basic.Enumeration (ExampleType) date-time one v
statusld moqui.basic.Statusitem (Example) id one v
B| statusTypeld moqui.basic.Statusitem (Example) id-long one v
statusCode moqui.basic.Statusitem (Example) text-medium one v
] sequenceNum moqui.basic.Statusitem (Example) number-integer one
~ description moqui.basic.Statusitem (Example) text-medium one v
=] lastUpdatedStamp moqui.basic.Statusitem (Example) date-time one v
~ exampleld moqui.example.Example id one v
e exampleTypeEnumid mogqui.example.Example id one v
statusld moqui.example.Example id one v
o~ exampleName moqui.example.Example text-medium one v

View DB View

This screen displays the results of querying the defined DB view entity, paginated if needed,
and with a Filter button that pops up a form with filter options for the fields on the view
entity (using the default auto fields in a form-single). There is a link to go back to the Edit
DB View screen, and a link to get the results in a CSV file.

< 2 A + @ localhost:8080 ¢l O |m OO

Edit ExampleDbView Get as CSV

Data View for: ExampleDbView

1€<1=-3/35>>

Description +- Description2 +- Example ID +- Example Item Seq ID +- Example Name +-

Contrived Complete 100100 Manual Test Example
Made Up In Design 100000 Test Example Name 3
Made Up In Design TEST2 Test Example Name 2

Here is a sample of the CSV export from the same ExampleDbView results as the screenshot:

Description,Description2,Example ID,Example Item Seq ID,Example Name
Contrived,Complete,100100,5,Manual Test Example

Made Up,In Design,100000,0,Test Example Name 3

Made Up,In Design,TEST2,2,Test Example Name 2

153 11. The Tools Application

Entity Tools

Data Edit

The data edit screens are
somewhat similar to the
Auto Screens, but
without the tab sets and
instead on the entity edit
screen a list of related
entities with a link to
find records related to
the current record, as
you can see here. These
screens still have their
uses but are mostly
superseded by the Auto
Screens.

Data Export

This screen is used to export entity data in one or more entity XML files, or out to the

& | + @ localhost:8080,

Entity List Find

Edit 'Geo' Entity Value
Geold USA

GeoType EnumID | Country [GEOT_COUNTRY]

Geo Name United States
Geo Code Alpha2 us
Geo Code Alphad USA
Geo Code Numeric 840
Well Known Text
Title Related Entity Name
GeoType moaqui.basic.Enumeration
TaxAuth mantle.account.payment.PaymentApplication
mantle.marketing.segment G
Primary mantle.order.Orderitem
Secondary mantle.order.Orderitem
TaxAuth mantie.other.tax TaxAuthority

mantle.party.agreement. AgreementitemGeo

Type
one

many
many
many
many
many
many

1D Map
[enumid:GEOT_COUNTRY]
[taxAuthGeold:USA]
[geold:USA]
[primaryGeold:USA)
[secondaryGeold:USA]
[taxAuthGeold:USA]
[geold:USA]

browser. Select one or more entity names, from/thru dates to filter by the

lastUpdatedstamp, the output path or filename (leave empty for Out to Browser), an

Link
Edit
Find
Find
Find
Find
Find
Find

optional Map in Groovy syntax to filter by (filter fields only applied to entities with matching
field names, otherwise ignored), and optional comma-separated order by field names (also
only applies to entities with matching field names).

+ @ localhost:8080

Entity Names moqui.example.Example %

@Write dependents of each value?

From Date]

Thru Date =

Path
Filter Map [[statusld:'EXST_IN_DESIGN']
Order By ‘ exampleName
Output Single File) Directory (one file per entity) @ Out to Browser

]

154

Data Import

Use this screen to import data from entity XML or CSV text. There are 3 options for the text
itself: comma-separated data types (matching the entity-facade-xml.type attribute), a
resource location that can be a local filename or any location supported by the Resource
Facade, or text pasted right into the browser in a textarea. Dummy FKs checks each record’s
foreign keys and if a record doesn’t exist adds one with only PK fields populated. Use Try

Insert is
meant for
data that is
expected to
not exist
and instead
of querying
each record
to see if it
does it just
tries an
insert and if

@ localhost:8080

Timeout Seconds 60
Dummy FKs? [Use Try Insert? (/Check Only

~ Data Types, Comma Separated (from entity-facade-xml.@type)

Types

» Resource Location

> XML Text

that fails does an update (slower for lots of updates). Check Only doesn’t actually load the
data and instead checks each record and reports the differences.

SQL Runner

Use this
screen to
run
arbitrary
SQL
statements
against the
database for
a given
entity group
and view
the results.

155

@ localhost:8080

Showing all 3 results.

Group Name transactional
SQL Statement select * from MOQUI.EXAMPLE
Limit 500
Query Results
EXAMPLE_ID EXAMPLE_TYPE_ENUM_ID STATUS_ID
Test Example Tost
TEST2 EXT_MADE_UP EXST_IN_DESIGN = = PI® Gescription 2, 12
with a comma
Test
T I i
100000 EXT_MADE_UP EXST_IN_DESIGN 1ot EXample - description 3, 13
Name 3 with a comma,
from a service
100100 EXT_CONTRIVED ExsT_compLETe Manual Test

Example

Feb 2, 2014
2:00:00 PM

Mar 3, 2014
3:00:00 PM

EXAMPLE_NAME DESCRIPTION LONG_DESCRIPTION COMMENTS EXAMPLE_SIZE EXAMPLE_DATE TEST_DATETEST_TI

Feb 2, 2014 2:00:00 P|

Mar 3, 2014 3:00:00 P|

11. The Tools Application

Speed Test

This screen runs a series of cache and entity operations to report timing results. It is most
useful to see comparative performance between different databases and server
configurations. The screen accepts a baseCalls parameter which defaults to 100 (as seen
below). Note that this screen shot uses the default configuration with the "nosql" entity group
in the Derby

database oy oy Soond o

< 2| A | + | @ localhost:8080 ¢ O |m|o) (o

along with all
the others.

: Operation Entity Calls Seconds Secs Per Call Calls Per Second
When US1ng create EntityCondition moqui.basic.Enumeration 100 0.002 0.00002 50,000
. direct cache writes moqui.basic. Enumeration 100 0.002 0.00002 50,000
OrlentDB or direct cache reads modqui.basic. Enumeration 100 0.001 0.00001 100,000
one PK cache moqui.basic.Enumeration 100 0.04 0.0004 2,500
some Other one PK moqui.basic.Enumeration 100 0.164 0.00164 609.7560976
direct create with sequenced ID moqui.tools.test.ToolsTestEntity 50 0.157 0.00314 318.4713376
N OSQL direct create with preset ID moqui.tools.test. ToolsTestEntity 50 0.128 0.00256 390.625
direct update moqui.tools.test. ToolsTestEntity 100 0.247 0.00247 404.8582996
direct delete moqui.tools.test. ToolsTestEntity 100 0.098 0.00088 1,020.4081633
datasource service create with sequenced ID moquitools.test.ToolsTestEntity 25 0081 0.00324 308.6419753
’ service update moqui.tools.test. ToolsTestEntity 25 0.067 0.00268 373.1343284
you 11 see service delete moqui.tools.test. ToolsTestEntity 25 0.049 0.00196 510.2040816
direct create with sequenced ID moqui.tools.test. ToolsTestNoSglEntity 50 0.144 0.00288 347.2222222
fairly different direct create with preset ID moqui.tools.test. ToolsTestNoSqIEntity 50 0.126 0.00252 396.8253968
direct update moqui.tools.test. ToolsTestNoSqIEntity 100 0.274 0.00274 364.9635036
direct delete moqui.tools.test.ToolsTestNoSqlEntit 100 0.096 0.00096 1,041.6666667
results. i T

Localization

Messages

Moqui uses database records instead of property or XML files for localized messages and
labels. Use this screen to administer localized messages that are used by the
Ll0nFacade.getLocalizedMessage () method, which is in turn used by the Resource
Facade before string expansion and in XML Screens and Forms for titles, etc.

My Company - Messages

< 2| A + @ localhost:8080 ¢ O MmO 0

€< 1-45/ 45> >
Original +~- Locale +- Localized +- Update

=)
Add -~ Anadir ®
Add f Ajouter
Add it Aggiungi m
Add zh e
Create es e m

156

Entity Fields

The Entityvalue.get () method supports localized entity fields for any entity by simply
setting the field.enable-localization attribute to true and adding records here (which
are recorded with the LocalizedEntityField entity). Each record had the entity name, the
field name to localize, the value of the single field primary key (only entities with single field
PKs can use this), the locale for the value, and the localized value.

My Company - Entity Fields

- = A |+ @ localhost:8080 ¢! oM OO

(New Field L10n

1€ <1-12/12 > >

Entity Name +- Field Name +- Pk Value +- Locale +- Localized
: 2 i — Pals
moqui.basic.Enumeration description GEOT_COUNTRY es

Estado

=)
moqui.basic.Enumeration description GEOT_STATE es

Ciudad
moqui.basic.Enumeration description GEOT_CITY es oS

P:
moqui.basic.Enumeration description GEOT_COUNTRY fr a3

Service
Service Reference
Service List

With the service reference you can see a list of existing services, details of each, and go to a
screen to run them as well.

My Company - Service Reference

< 2 | A | + @ localhost:8080 c| o) ||

(C]
)

Service Name ¥ Run Service
(path.verb#noun)
Service Name Run Service
(path.verb#noun)
Service Name Detail Run
AuthorizeDotNet.AimPaymentServices.authorize#Payment Service Detail Service Run
AuthorizeDotNet.AimPaymentServices.authorizeAndCapture#Payment Service Detail Service Run
AuthorizeDotNet.AimPaymentServices.capture#Payment Service Detail Service Run
AuthorizeDotNet.AimPaymentServices.get#AimGatewayinfo Service Detail Service Run
AuthorizeDotNet. AimPaymentServices.get#AuthGatewayinfo Service Detail Service Run

157 11. The Tools Application

Service Detail

The detail screen for a service shows the service description and general information about
the service, plus the in and out parameters with details for each. This is useful for a general
reference and to see how a service expands at runtime when it implements interfaces, etc.

= # | A + @ localhost:8080

Authenticate: anonymous-view

Service Type: inline

In Parameters

Name Type
productid String
quantity BigDecimal
priceUomid String
pricePurposeEnumlid String
productStoreld String
vendorPartyld String

Out Parameters

Name Type

price BigDecimal
listPrice BigDecimal
priceUomid String

Required
true
false
false
false
false
false

Required

mantle.product.PriceServices.get#ProductPrice

Use the ProductPrice entity to determine the price to charge for a Product.

Tx Ignore: false, Force New: false, Use Tx Cache: false, Timeout: null

Default Format Description
-1

-UsD

- PppPurchase

Default Format Description

Entity Field
mantle.product.ProductPrice.productid

mantle.product.ProductPrice.priceUomid
mantle.product.ProductPrice.pricePurposeEnumid
mantie.product.ProductPrice.productStoreld
mantle.product.ProductPrice.vendorPartyld

Entity Field
mantle.product.ProductPrice.price

mantle.product.ProductPrice.priceUomid

D
R
B

Service Run

The service run screen shows a XML single form with fields auto generated based on the
service definition, which works best when the service in parameters are associated with
entity fields (to get drop-downs for related entity values and such). Simply enter/select

values and submit to run the service and see the results.

< 2 | A | + | @ localhost:8080

(path.verb#noun)

Product ID

Quantity

Price Uom ID

Price Purpose Enum ID

Product Store ID

Vendor Party ID

My Company - Service Run

Service Name mantle.product.PriceServices.get#ProductPrice

Run Service: mantle.product.PriceServices.get#ProductPrice

158

Scheduler

Moqui Framework uses Quartz Scheduler to run scheduled and asynchronous services and
jobs. These screens are used to see information about the scheduler and scheduled jobs and
perform administration such as pausing and resuming jobs and triggers.

Scheduler Status

This screen shows the status of Quartz Scheduler and has buttons to put the entire scheduler
on standby, and to pause and resume all triggers.

My Company - Scheduler

A || + | @ localhost:8080 Cﬁ O [m o0

Scheduler | Jobs Triggers = History

Scheduler: DefaultQuartzScheduler [NON_CLUSTERED]

Quartz Scheduler (v2.2.1) ‘DefaultQuartzScheduler’ with instanceld 'NON_CLUSTERED'

Scheduler class: 'org.quartz.impl.StdScheduler' - running locally.

Running since: Wed Jul 30 22:34:03 PDT 2014

Not currently in standby mode.

Number of jobs executed: 204

Using thread pool ‘org.quartz.simpl.SimpleThreadPool' - with 10 threads.

Using job-store ‘org.quartz.simpl.RAMJobStore' - which does not support persistence. and is not clustered.

=3
Pause All Triggers Paused Groups: [|

Calendars: [

Trigger Groups: [ServiceServices, ServerServices]

Job Groups: [org.moqui.impl.ServerServices.clean#ArtifactData, org.moqui.impl.ServiceServices.clean#SchedulerHistory]

Jobs

The jobs tab shows currently active jobs, organized by job group which for Moqui service
jobs is the name of the service. In addition to details about the job is has buttons to Pause the
job, or when paused to Resume the job, and to Delete the job. When pausing a job it pauses
all triggers associated with the job.

< 2| | & + @ localhost:8080 ¢ ol (ml e [e

Scheduler | Jobs | Triggers History

Job Group org.moqui.impl.ServerServices.clean#ArtifactData
Trigger Group Trigger Name Job Group Job Name Next Fire Time Previous Fire Time Trigger State Param String Pause Resume Delete Job

ServerServices clean_ArtifactData_daily org.moqui.impl.ServerServices.clean#ArtifactData clean_ArtifactData_single 2014-07-31 04:00:00.000 NORMAL { m m

Job Group org.moqui.impl.ServiceServices.clean#SchedulerHistory

Trigger Group Trigger Name Job Group Job Name Next Fire Time Previous Fire Time Trigger State Param String Pause Resume Delete Job

2014-07-31
vice: Histor i . i.impl. i redulerHistor Histor Delete
clean_! y_daily org.moqui.impl.Service: y clean_: y_single 04:00:00, NORMAL { ﬂ -

159 11. The Tools Application

Triggers

Much like the Jobs tab this tab shows the triggers associated with jobs and has the same
options to pause/resume and delete. A job may have more than one trigger and from this
screen you can pause/ resume certain triggers for a job while leaving the others as-is.

< 2| | A || + @ localhost:8080, <

)
B
€]

>

Scheduler Jobs | Triggers | History

Trigger Group ServiceServices

Trigger Group ~ Trigger Name Job Group Job Name Next Fire Time Previous Fire Time Trigger State Param String Pause Resume Delete Job
2014-07-31
ServiceServices clean_SchedulerHistory_daily org.moqui.impl.Servic History clean_! History_single 04:00:00.000 NORMAL {} m

Trigger Group ServerServices

Trigger Group Trigger Name Job Group Job Name Next Fire Time Previous Fire Time Trigger State Param String Pause Resume Delete Job
ServerServices clean_ArtifactData_daily org.moqui.impl.ServerServices.clean#ArtifactData clean_ArtifactData_single 2014-07-31 04:00:00.000 NORMAL { m
.

History

The history tab for the scheduler shows a history of jobs run including scheduled services
and any other custom jobs you might have running. There are links to get the data as a CSV
or XML file. The header of the list form has options to filter the results which are also
paginated as there may be a large number of jobs.

This data comes from the schedulerHistory entity, which is managed by the
ServiceFacadeImpl.HistorySchedulerListener class which implements the Quartz
SchedulerListener interface.

< # | A | + @ localhost:8080 ¢ O m|e O

Scheduler Jobs = Triggers | History

Get as CSV Get as XML
< <1-18 /18 > >|

Event Type Enum ID +- Host Address +~- Event Date +- Trigger Group +~- Trigger Name +- Job Group +- I
= From
Thru
Job Scheduled 172.16.7.38 2014-07-31 00:34:04.614 ServiceServices clean_SchedulerHistory_daily org.moqui.impl.ServiceServices.clean#Sch:
Job Scheduled 172.16.7.38 2014-07-31 00:34:03.953 ServerServices clean_ArtifactData_daily org.moqui.impl.ServerServices.clean#Artifa
Job Scheduled 172.16.7.38 2014-07-31 00:26:01.890 ServiceServices clean_SchedulerHistory_daily org.moqui.impl.ServiceServices.clean#Sch
Job Scheduled 172.16.7.38 2014-07-31 00:26:01.234 ServerServices clean_ArtifactData_daily org.moqui.impl.ServerServices.clean#Artifa
Job Scheduled 172.16.7.38 2014-07-31 00:20:10.385 ServiceServices clean_SchedulerHistory_daily org.moqui.impl.ServiceServices.clean#Schi

160

System Info

Artifact Statistics
Hit Bins

This screen shows records from the ArtifactHitBin entity and has options for filtering,
sorting, and exporting to CSV, XML, and PDF. Use this screen to see artifact hit data about
specific artifacts in a specific date/time range.

< 2| | A || + @ localhost:8080 <

b}
B
c]

D

Get as CSV Get as XML Get as PDF
I<<1-50/1,044>>
Artifact Type +- Artifact Sub Type +~- Artifact Name +— Bin Start +- Hits +- Min +- Avg Max +- Total +-
. . " , 2014-07-31
entity list moqui.security.ArtifactTarpitLock 02:03:12.570 73 0 1 4 44
" " 2014-07-31
entity list moqui.entity.document.DataDocumentCondition 02:03:01.811 5 0 0 0 0
. . o . 2014-07-31
entity list moqui.entity.document.DataDocumentField 02:03:01.804 L 0 1 1 2

Artifact Summary

The artifact summary screen shows general performance data for each artifact over all time
based on ArtifactHitBin records using the ArtifactHitReport view entity. Just like the
hit bins screen this has filter, sort, and export options. The screen shot below shows just the
artifacts with "Example" in their name using the header form to filter results.

My Company - Artifact Summary

< 2| A + | ® localhost:8080 ¢ ollml (e[

Get as CSV Get as XML Get as PDF
<< 1-4/4>>|

Artifact Type +- Artifact Name +- Last Hit +— Hits +— Min+- Avg Max +-

Example

.) 2014-07-31
entity moqui.example.Example 00:57:01.723 13 46

) . 2014-07-30
entity moqui.example.ExampleStatusitem 25:01:17.884 32 32 32
2014-07-30
22:01:17.684
2014-07-30

service org.moqui.example.ExampleServices.create#Example 11:47:01.812 22 22 22

screen component://example/screen/ExampleApp/Example/FindExample.xml 1,566 1,566 1,566

161 11. The Tools Application

Audit Log

When the field.enable-audit-log attribute is set to true the Entity Facade tracks the
changes in EntityAuditLog records. Use this screen to view those records.

< 2| | A || + @ localhost:3080 ¢ O || |o|0

|< <1~ 50/ 420 > >

Date +~- Entity +- Field +- PK1 4~ PK2 Oid +- New +- User +- Visit +-
anar moqui.example.Example statusld 100100 EXST_COMPLETE EX_JOHN_DOE 100500
00:42:52.028 quL.example.Examp B _JOHN_|

2014-07-30 .

11:49:29.646 mantle.ledger.transaction.AcctgTrans isPosted 55903 N Y EX_JOHN_DOE
2014-07-30 .

11:49:29.646 mantle.ledger.transaction.AcctgTrans isPosted 55903 N EX_JOHN_DOE
2014-07-30

11:49:29.646 mantle.account.payment.Payment statusld 100009 PmntPromised PmntDelivered EX_JOHN_DOE

Cache Statistics
Cache List

The Moqui Cache Facade is used for caching across the system including resource, entity,
and various other caches. Use this list to see a summary of details about each cache. Size is
the number of elements in the cache. Hits are the successful cache hits. Misses include
general cache misses (unsuccessful gets from the cache) and specifically not found (NF) and
expired (EX) miss counts. Removes shows the count of explicit removes from the cache.

There are two expire time that can be configured: idle for expiration after being idle for a
certain time and live for the time since the cache element was created. The Max (Evct)
column shows the maximum elements for each cache (default is 10,000) and the eviction
algorithm to use once the limit is reached. The Clear button for each cache clears just that
cache, and the Clear All button at the top clears all caches. Click on the Name to see the
elements in the cache.

< 2| A |+ @ localhost:3080 ¢ O m (0|0

Name +- Size 4+~ Hits +- Misses (NF/EX) +- Removes +- Exp Idle Exp Live Max (Evct) Clear
artifact.tarpit.hits 24 145 24 (24/0) 0 900 :323? m
g . 2000

entity.data.feed.info.DEFAULT 22 52 1026 (1026/0) 0 0

(LRU)
2000

entity.definition 946 55,804 8942 (4951/3991) 0 30 m
(LRU)

entity.location 946 13,626 6089 (3251/2838) 0 300 2X0 m
tity.locat . (LRU)
- 1000

entity.record.list. noqui.entity.UserField. DEFAULT 1 110 1(1/0) 0 0 (LFU) m
. 1000
entity.record.list. noqui.entity.document.DataDocumentCondition.DEFAULT 5 15 5 (5/0) 0 0 (LFU)

162

Cache Elements

When you click on the name of a cache you'll see this screen. It shows the cache entries up to
a limit of 500 (use the displayLimit parameter for a different limit). It has details for each
cache element plus a button to Clear (remove) just that element from the cache. This screen
shot is for an entity one cache (for the Enumeration entity). The text shown for key and
value are from calling toString() on the objects. In this case the key is an EntityCondition
and the value is an EntityValue and they both evaluate to nice text, but not all objects will.

< 2| | A || + | @ localhost:8080 ¢ oM e |0

Elements for Cache [entity.record.one.moqui.basic.Enumeration.DEFAULT]

enumlid:GEOT_COUNTRY, enumCode:null, parentEnumid:null, 291 01:55:44.019 01:55:44.019 02:19:57.967 1

Key +- Value Hits +- Created +~ Last Update +- Last Access +- Version +- Clear
[enumId:EXT_CONTRIVED, enumTypeld:ExampleType,

enumid = lastUpdatedStamp:2014-07-30 09:46:48.552, sequenceNum:null, 1 2014-07-31 2014-07-31 2014-07-31 1 m

EXT_CONTRIVED parentEnumid:EXT_MADE_UP, enumCode:null, 01:53:56.337 01:53:56.337 02:19:57.974
description:Contrived]
[sequenceNum:null, enumlid:EXT_MADE_UP,

enumid = 2014-07-31 2014-07-31 2014-07-31

EXT_MADE_UP IastUpdgtedStamp.ZM4—07-30 09:46:48.552, parentEnumid:null, 6 00:41:32.405 00:41:32.405 02:19:57.977 1 m
description:Made Up, enumCode:null, enumTypeld:ExampleType]

e [sequenceNum:null, enumTypeld:GeoType, description:Country, 2014-07-31 2014-07-31 2014-07-31

el lastUpdatedStamp:2014-07-30 09:46:40.982]

Server Visits

Moqui creates a Visit record for each web session to track server access and tie together
artifact hits (page requests as screens, content, transitions, services, etc) within a session.

Visit List
This screen shows a list of visits with pagination and options to filter and sort the records

because over time there will be a large number of visits. Click on the Visit ID to view details
about the visit.

< 2| A + @ localhost:8080 ¢ O M| OO

€ <1-11/115>3|

From Date +- Visit ID +- Visitor ID +~ User ID +- Server IP Client IP Initial Request +-

2014-07-31 .
01:47:41.663 100501 100000 EX_JOHN_DOE 172.16.7.38 0:0:0:0:0:0:0:1 http://localhost:8080/apps/tools/Entity
2014-07-31

00:34:34.315 100500 100000 EX_JOHN_DOE 172.16.7.38 0:0:0:0:0:0:0:1 http://localhost:8080/apps/tools/DataView
2014-07-31

00:26:41.269 100400 100000 EX_JOHN_DOE 172.16.7.38 0:0:0:0:0:0:0:1 http://localhost:8080/apps/tools/DataView

163 11. The Tools Application

Visit Detail

This screen shows details about the visit (session). The header has fields generally available
in a HTTP request plus additional information like the User ID logged in during the visit (if a
user logs in). It also shows the artifact hits related to the visit (i.e., page requests and such
within a session). This can be used to see a history of activity for specific users for security
and service purposes, and the underlying data in visit and ArtifactHit can be used for
more general analysis for those purposes and marketing too.

< 2| A | + @ localhost:8080 ¢ O m (OO0

Visitip 100000 Visitor 0 [100000]
User ID John Doe [EX_JOHN_DOE] User Created
Session ID edcfc4c788{9994bed894d41c11fccad Webapp Name ROOT
Server Host Name DEJCMBAS.local Server Ip Address 172.16.7.38
Initial Locale en_US Initial Request http://localhost:8080/
Initial Referrer Initial User Agent Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_4)
AppleWebKit/537.77.4 (KHTML, like Gecko) Version/7.0.5
Safari/537.77.4
Client Ip Address 0:0:0:0:0:0:0:1 Client Host Name 0:0:0:0:0:0:0:1

Client User Client Ip Isp Name

From Date 2014-07-30 14:24:06.978 Thru Date 2014-07-30 14:42:11.006
Start Date Time Type Artifact Name Time Request Url Error Server Ip Address
User ID Sub Type Parameter String Size Referrer Url Message Server Host Name
2014-07-30 screen 1t ogin.xml [1183] 172.16.7.38

http://localhost:8080/Logil N
14:24:08.785 text/html null [null Sl e DEJCMBA3.local
20140730 279" component/web i css/ min.css [20] s mincss N 172.16.7.38
14:24:00408 D07 nul [99548] - - DEJCMBA3.local
screen -

2014-07-30 o] it ib/jquery-ui.css (3 . . - q 172.16.7.38
14:24:09.426 ::;r:t/ez(ss null 32046] http://localhost:8080/assets/lib/jquery-ui.css N DEJCMBA3.local

164

12. Mantle Business Artifacts

Mantle Business Artifacts is an open source project separate from and built on Moqui
Framework. Moqui Framework is a set of tools to build applications. Mantle Business
Artifact is a library of lower-level artifacts that act as a foundation for business applications.
The main benefits of using Mantle are cost savings, design and implementation risk
reduction, adoption of common and standardized business structures and processes, and
consistency with other applications built on Moqui and Mantle.

Mantle has three main parts: Universal Data Model (UDM), Universal Service Library (USL),
and Universal Business Process Library (UBPL). This chapter will focus on the data model
(UDM) and service library (USL).

UBPL is a set of business process stories and other generic business requirement documents
that drive the design of business applications. They are a good source for understanding the
business concepts, actors, and processes that the data model and service library are based on.
They are also generic enough to be used as a starting point for real-world business and
modified as needed.

Mantle is a foundation for building enterprise automation applications such as:

o Enterprise Resource Planning (ERP)

e Project ERP

e Professional Services Automation (PSA)

o Customer Relationship Management (CRM)
e Supply Chain Management (SCM)

e Manufacturing Resource Planning (MRP)

o Enterprise Asset Management (EAM)

e Point-of-Sale (POS)

e eCommerce

Together Moqui Framework and Mantle Business Artifacts form a foundation for an
ecosystem of applications that are implicitly integrated. Applications can extend the Mantle
data model and will always have their own services, but using the data model and services
as intended will make applications work readily with data and services from other
applications built on the same.

165 12. Mantle Business Artifacts

When such applications are deployed together the data is automatically shared. For example
you will have a single structure for customer data that is used across all ecommerce,
customer service, fulfillment, project management, and accounting applications and any
other types of application that needs it.

NOTE: This chapter uses a large number of business terms. If you run across terms you are
not familiar with you may look them up as you go (the internet is a wonderful thing, as is the
full text search of the digital version of this book) or just take note of them, move on, and
don’t worry too much about each one. The Mantle Structure and UDM section goes through
a lot of terms with only data structures as context. When you get to the USL Business
Processes section you will see the terms used in context of a process along with examples
and they may make more sense, especially if you have spent some time reading about the
data structures.

Mantle Structure and UDM

The Mantle data model (UDM) is based on concepts found in The Data Model Resource
Book, Revised Edition, Volume 1 and Volume 2 by Len Silverston. In addition to the material
in this section these books are a good reference for the data model concepts that make up the
foundation for Mantle UDM. UDM is a loose implementation of the data model concepts in
these books. UDM has a number of entities that go beyond what is in these books, and
consolidates some of them too (like quote and order).

Both the data model (UDM) and the service library (USL) follow the same pattern for
organizing artifacts. The directory and file structure of each are based on this pattern.

The sections below are a summary of the structure and the entities in each part. These are in
alphabetical order for easy reference and to show the structure. When initially learning about
the data model I recommend reading the sections on the more fundamental entities first with
an order somewhat like this:

o The Data Model Patterns section in the Data and Resources chapter
e Party (mantle.party)

e Contact Mechanism (mantle.party.contact)

e Facility (mantle.facility)

e Definition - Product (mantle.product)

o Asset - Asset (mantle.product.asset)

e Account - Invoice (mantle.account.invoice)

e Account - Payment (mantle.account.payment)
e Work Effort (mantle.work.effort)

e Order (mantle.order)

e Shipment (mantle.shipment)

The data model diagrams have only selected entities to illustrate important structures, and
only selected fields on those entities. They are not a complete reference of all entities and

Mantle Structure and UDM 166

fields. In the diagrams the master entities have a blue border, the detail entities a purple
border, and the join entities a green border.

Accounting
Account - Billing (mantle.account.billing)

A BillingAccount is used to group Invoice and Payment records for the purposes of
tracking how much a customer (billToPartyId) owes to a vendor (billFromPartyId). The
balance owed on the account is the unpaid invoice total minus the associated payment total.
The payment total may be larger than the invoice total, in which case there is a positive
balance in the account owed to the customer (billToPartyId). The BillingAccount may
have a credit limit in the accountLimit field and its associated currency in
accountLimitUomId.

A BillingAccount itself is fairly simple as the "transaction" details in the account are in
Invoice and Payment records. It can have other parties associated with it using
BillingAccountParty. For terms on the account use BillingAccountTerm.

Account - Financial (mantle.account.financial)

A FinancialAccount is a singe-entry balance account like a bank account. There are various
types of financial account defined with the FinancialAccountType entity with settings like
isRefundable, requirePinCode, automatic replenishment settings, and others. OOTB types
include Gift Certificate, Store Credit Account, Service Credit Account, Loan Account, and
Bank Account.

AFinancialAccount is owned by a Party (ownerPartyId) and an internal organization
(organizationPartyId) is liable for the balance on the account. Other parties may be
associated with it using FinancialAccountParty. It has a name (finAccountName), code
(finAccountCode), and may have a PIN number (finAccountPin). It may be valid only
within a date range (fromDate, thrubate). It has a status (status1d) that may be Active,
Negative Pending Replenishment, Manually Frozen, or Cancelled.

The actualBalance of a FinancialAccount is the sum of the transactions
(FinancialAccountTrans) associated with the account. The availableBalance of an
account is the actualBalance minus the total of authorizations (FinancialAccountAuth)
on the account.

A transaction (FinancialAccountTrans) for a given amount may be a for Deposit,
Withdraw, or Adjustment (finAccountTransTypeEnumId). Transactions requiring approval
or for other reasons may have a statusi1d of Created, Approved, or Cancelled. They will
generally have a reason (reasonEnum1d) such as Purchase, Initial Deposit, Replenishment, or
Refund.

167 12. Mantle Business Artifacts

A transaction happens at a certain date/time (transactionDate) and may be entered at a
different time (entryDate). It is generally performed or initiated by a party
(performedByPartyId) and may have comments about it. A transaction will also often have a
Payment (paymentId) and/or OrderItem (orderid, orderItemSeqId) associated with it.

An authorization (FinancialAccountAuth) is used to reserve an amount in advance of a
Withdraw transaction. The auth is done on authorizationDate and expires on expireDate.

Account - Invoice (mantle.account.invoice)

An Invoice or bill is used to request Payment with details about why and is sent from the
Party that is owed (fromPartyId) to the Party that owes (toPartyId). There are a few
types of invoices (invoiceTypeEnumId) including Sales, Return, Payroll, Commission, and
Template. The direction of the invoice is determined by the from and to parties so there is no
separate type for purchase versus sales, they are both Sales type invoices with parties going
one way or the other.

Depending on the direction and which Party is the internal organization there is a different
set of statuses (statusid). For incoming invoices the statuses are Incoming, Received,
Approved, Payment Sent, Billed Through, and Cancelled. For outgoing invoices the statuses
are In-Process, Finalized, Sent, Payment Received, Write Off, and Cancelled.

The invoice may be associated with a BillingAccount (billingAccount1d), see the
Account - Billing (mantle.account.billing) section for details. Amounts on an invoice are for
a single currency specified with the currencyuomid field. Each invoice is initiated on a
certain date (invoiceDate), has a due date (dueDate) and for historical reference date when
it was paid (paidpate). The due date is generally determined by a SettlementTerm record
specified with the settlementTermi1d field. Other terms may be associated with the invoice
or with invoice items using InvoiceTerm.

Contact details for an invoice are associated with it using InvoiceContactMech. In addition
to the from and to parties other parties such as sales reps or accountants may be associated
with an invoice using InvoiceParty.

The details of goods, services, shipping, tax, discounts, and so on for an invoice are recorded
with InvoiceItem records. Invoice items use the same set of types as other items including
mantle.order.OrderItem and mantle.order.return.ReturnItem. These shared item
types are defined in the ItemTypeData.xml file. There are a wide variety of types for things
like sales, purchase, expenses, commissions, and payroll. For sales orders the most common
types are product, time entry, shipping charges, sales taxes, and discounts.

Just like order items, invoice items may have a hierarchical structure using the
parentInvoiceld and parentInvoiceItemSeqId fields. This is used for things like tax
items that are for a particular good or service item.

Mantle Structure and UDM 168

InvoiceContactMech InvoiceParty

invoiceld id invoiceld id
contactMechPurposeld | id partyld id
contactMechid id roleTypeld id
— o< datetimePerformed date-time
percentage number-decimal
_ :1 Invoiceltem
Invoice invoiceld id
invoiceld id invoiceltemSeqld id
:chOi;eTyTgEnumld ig itemTypeEnumid id
romParty i i i
topartid o < Z\S/Zrartll((jjeGlAccountld :g
statusld id productld id
billingAccountld id parentinvoiceld id
invoiceDate date-time parentlnvoiceltemSeqgld | id
dueDate date-time taxableFlag text-indicator
settiementTermid id quantity number-decimal
paidDate date-time quantityUomld id
currencyUomld id amount currency-precise
overrideOrgPartyld id description text-medium
itemDate date-time

_ from % X to
InvoiceTerm

InvoiceltemAssoc

invoiceld id — -
invoiceltemSeqld id invoiceltemAssocld id
settlementTermid id invoiceld id
invoiceltemSeqld id
tolnvoiceld id
tolnvoiceltemSeqld id
invoiceltemAssocTypeEnumld | id
SettlementTerm fromDate date-time
settlementTermid id thruDate date-time
termTypeEnumid id fromPartyld id
description text-medium toPartyld id
termValue number-decimal quantity number-decimal
termValueUomld id amount currency-amount

Each item has a description and will generally have a productid and possibly an asset1d
for more detail about goods and services. Each item has a quantity and unit for the quantity
(quantityUomId) and an amount per quantity. The sub-total for an invoice item is: quantity
* amount.

Invoice items may be associated with other items using InvoiceItemAssoc. One example of
when this is useful is when receiving an invoice with expense items from a service provider
and billing those items through to a client.

An Invoice is a record with financial impact and triggers GL posting when the status
changes to Finalized for outgoing invoices and Approved for incoming ones. Note that if
both from and to parties on an invoice are internal organizations with accounting settings the

169 12. Mantle Business Artifacts

invoice will be posted for both. If the overrideorgpPartyid field is populated that
Organization will be used instead of the fromParty1d or toPartyId when posting
depending on which is an internal org (this is not generally used if both are internal orgs).

The accounting transaction (AcctgTrans) generated for automated posting of an invoice will
have one entry for each invoice item posted to the GL account (G1account) configured for
the item type, and a balancing transaction entry with the total of the invoice posted to an
accounts payable account for incoming invoices and an accounts receivable account for
outgoing invoices.

Account - Method (mantle.account.method)

A pPaymentMethod is an instrument used for payment and each type has a separate entity
with details including Bitcoinwallet, CreditCard, EftAccount, GiftCard, and
PayPalAccount. A PaymentMethod may be for a FinancialAccount and that is specified
with the finAccount1d field. Some payment method types such as cash, checks, and money

orders are used directly on payments, orders, and so on with no PaymentMethod record
because the Payment is not processed through a payment method.

PaymentMethod BitcoinWallet
paymentMethodid id paymentMethodid id
paymentMethodTypeEnumlid | id walletAddress text-medium
ownerPartyld id description text-medium
description text-medium onlineWalletUrl text-medium
fromDate date-time
thruDate date-time -
postalContactMechld id o CredltCar_d
telecomContactMechld id paymentMethodid id
emailContactMechld id T creditCardTypeEnumid id
trustLevelEnumld id cardNumber text-medium
paymentFraudEvidenceld id) cardNumberLookupHash | text-medium
finAccountld id validFromDate text-short
originalPaymentMethodld id expireDate text-short

issueNumber text-short
GiftCard companyNameOnCard text-medium
paymentMethodid id firstNameOnCard text-medium
cardNumber text-medium —Ho— lastNameOnCard text-medium
pinNumber text-medium
expireDate text-short PayPalAccount
paymentMethodid id
EftAccount O payerld id
paymentMethodid id expressCheckoutToken text-short
bankName text-medium —O- payerStatus text-short
routingNumber text-medium avsAddr text-indicator
accountType text-short avsZip text-indicator
accountNumber text-short correlationld id
nameOnAccount text-medium transactionld text-short

Mantle Structure and UDM

170

A payment method is owned by a Party (ownerPartyId), has a description, and generally
has a postalContactMechld, telecomContactMechId, and possibly a
emailContactMechId.

A PaymentMethod is valid in a date range (fromDate, thruDate). Generally the thrubate
field is null until the payment method is no longer used, or has been changes.
PaymentMethod and related records are considered immutable, so when changed the original
record has the thrubate set and a new record is created with the modified details. The new
record points to the original with the originalPaymentMethod1d field.

Where fraud is a concern the PaymentMethod should have a trustLevelEnumid set. OOTB
options include New Data, Valid / Clean (through 3rd party service), Verified (with outbound
contact or authorization), Greylisted, and Blacklisted. If the trust level is Greylisted or
Blacklisted there should be a paymentFraudEvidenceId pointing to a
PaymentFraudEvidence record with details about why.

For GiftCard payment methods they are usually purchased from or issue by the
organization and details about that are tracked with the GiftCardFulfillment entity.

Certain types of payment method, especially credit cards, commonly have automated
payment processing through a payment gateway such as Authorize.net and Cybersource.
The integration with the payment processor consists of services for authorize, capture,
release, and refund. These services are configured with the PaymentGatewayConfig which is
typically associated with a Productstore using the ProductStorePaymentGateway entity.

Any time a payment gateway is used the details of the response should be stored with the
PaymentGatewayResponse entity. There are generally associated with a Payment
(payment1d) and have various fields for codes and results from the payment processor.

Account - Payment (mantle.account.payment)

A Payment is generally issued in response to an Invoice and like an invoice goes from one
Party (fromPartyId) to another (toParty1d). The parties on a Payment will be reversed from
the parties on an Invoice. Types of payments (paymentTypeEnumid) include Invoice
Payment, Disbursement, and Refund. A payment always has an amount and the currency for
it in amountUomId.

A payment should always have a payment method type (paymentMethodTypeEnumId) such
as cash, check, or credit card and if applicable for the payment method type should also have
a payment method (paymentMethod1d).

If the payment is processed automatically through a payment gateway the gateway used for
auth should be recorded in paymentGatewayConfigId so that it can be used for subsequent
operations like capture or void. For convenience (since these are also on the
PaymentGatewayResponse) for automated payments there are paymentAuthcCode and
paymentRefNum fields for authorization results and the reference number to use for

171 12. Mantle Business Artifacts

PaymentMethod

—

5

Payment
paymentid id
paymentTypeEnumld id
fromPartyld id
toPartyld id
paymentMethodTypeEnumid | id
paymentMethodld id
orderld id
orderPartSeqld id
statusld id
effectiveDate date-time
paymentAuthCode text-short
paymentRefNum text-short
comments text-medium
amount currency-amount
amountUomld id
visitld id

to

PaymentApplication

paymentApplicationld
paymentld

invoiceld
invoiceltemSeqld
billingAccountld
toPaymentid
amountApplied
appliedDate

id
id
id
id
id
id
date-time
date-time

|

paymentMethodid id
paymentMethodTypeEnumlid | id
ownerPartyld id
description text-medium
PaymentFraudEvidence
paymentFraudEvidenceld id
fraudTypeEnumid id
comments text-medium
paymentld id
orderld id
partyld id
visitld id
Invoice
invoiceld id
invoiceTypeEnumid id
fromPartyld id
toPartyld id
Invoiceltem
invoiceld id
invoiceltemSeqld id
itemTypeEnumld id

quantity
quantityUomld
amount
description
itemDate

number-decimal
id
currency-precise
text-medium
date-time

subsequent operations. Other fields for details when processing credit card and similar
payments through a gateway include presentFlag, swipedFlag, processAttempt, and

needsNsfRetry.

A payment has various statuses (statusId) including Proposed, Promised, Authorized,
Delivered, Confirmed Paid, Cancelled, Void, Declined and Refunded.

Payments to not have items like an invoice, but may have deductions for special cases and
these are recorded using the beduction entity.

A payment record may be created very early in an ordering process to specify payment
details for an entire order or for a particular order part. There may be multiple Payment
records for a given OrderHeader or OrderPart, so they are referred to using the order1d

and if applicable orderPartseqid fields on the Payment record. Payment details are looked

up for an order or part using these fields on the Payment entity.

Payments may be associated with a financial account (finAccount1d), and more particularly

an authorization and/or transaction on a financial account (finAccountAuthid,

finAccountTransId).

Mantle Structure and UDM

For fraud sensitive organizations and applications when processing online transactions it is
important to associated the Payment with a visit using the visit1d field. This tracks the
client IP address and other HTTP client and session information. When a fraudulent
transaction is identified the evidence should be recorded in a PaymentFraudEvidence and
this is usually used to change the trust level on the associated payment method
(PaymentMethod.trustLevelEnumId) and contact mechs
(contactMech.trustLevelEnumId).

For organizations that deal with multiple currencies the payment may be converted to an
internal currency for the organization, or to match the currency on the associated invoice(s).
In this case the original amount and currency should be recorded in the
originalCurrencyAmount and originalCurrencyUomId fields for bank and other
reconciliation.

A Payment is a record with financial impact and triggers GL posting when the status changes
to Delivered. Note that if both from and to parties on a payment are internal organizations
with accounting settings the payment will be posted for both. If the overrideorgpParty1d
field is populated that Organization will be used instead of the fromParty1Id or toPartyId
when posting depending on which is an internal org (this is not generally used if both are
internal orgs).

The accounting transaction (AcctgTrans) generated for automated posting of a payment will
have one entry posted to the GL account (G1account) configured for the cash account for
payment method type (unless overrideGlAccountld is populated, then that is used), and a
balancing transaction entry posted to an accounts payable account for outgoing payments
and an accounts receivable account for incoming payments.

To make things a little more complex payments are explicitly applied to an Invoice using
the PaymentApplication entity so that a single payment can apply to multiple invoices, and
an invoice can have multiple payments applied to it. A payment may also be applied to
another Payment for situations where incoming and outgoing payments between parties
cancel one another.

For GL posting purposes a Payment can be received without being applied to an invoice, or
being partially applied and the unapplied amount will be posted to an unapplied payment
account instead of a cash account. When the payment is applied another accounting
transaction will be triggered with entries in the unapplied payments account and the cash
account to balance things out.

When a Payment is part of a budgeted expenditure it can be associated with one or more
BudgetItem records using PaymentBudgetAllocation.

Ledger - Account (mantle.ledger.account)

General ledger accounts (G1account) make up the chart of accounts for an internal
Organization. Each account has a class (g1AccountClassEnumId) to determine if the

173 12. Mantle Business Artifacts

account balance is add or subtracted to a transaction total and for reporting purposes
(especially: Balance Sheet with Asset on one side and Contra Asset, Liability and Equity on
the other; and Income Statement with Revenue, Contra Revenue, Cost of Sales, Income and
Expense accounts). Here is the structure of the OOTB GL account classes (this can be changed
with different Enumeration records of type GlAccountClass):

° Debit
e Asset
e Current Asset
e Cash and Equivalent
e Inventory Asset
e Accounts Receivable
e Prepaid Expense and Other
e Long Term Asset
¢ Land and Building
e Equipment
e Other Asset
e Expense
e Cash Expense
e Interest Expense
e Sales, General, and Administrative Expense
e Non-Cash Expense
e Depreciation
e Amortization
e Cost of Sales
e Cost of Goods Sold
e Inventory Adjustment
e Cost of Services Sold
e Contra Revenue
e Equity Distribution
e Return of Capital
¢ Dividends
e Non-Posting
o Credit
e Income
e Cash Income
e Non-Cash Income
e Revenue
e Goods Revenue
e Services Revenue
e Equity
e Owners Equity
¢ Retained Earnings

Mantle Structure and UDM 174

o Liability
e Current Liability
¢ Accounts Payable
¢ Accrued Expenses
¢ Long Term Liability
e Contra Asset
¢ Accumulated Depreciation
e Accumulated Amortization
e Resource

GlAccount records also have a type (glAccountTypeEnumid) that is used for automated
posting configuration. The available GL account types are in Enumeration records of type
GlAccountType. There are quite a few defined OOTB such as AR, AP, Fixed Asset, Current
Liability, Inventory, Finished Good Inventory, Tax, Profit Loss, Cost of Goods Sold, Expense,
Customer Deposits, and Commission Expense (plus many others). There is some overlap in
GL account classes and types, but they are separate fields because they are used for different
things.

GL accounts are hierarchical with the parentGlaccount1d field specifying the parent
account. Each account has a code (accountcode) that is separate from the glAccountld so
that it can be changed, a name (accountName) and a description. Thereis a
postedBalance field that is maintained with each posting and derived from
AcctgTransEntry records associated with the G1Account.

For more general accounting use outside a typical general ledger G1account has a resource
type (glResourceTypeEnumId) that is generally Money and can be other things such as Raw
Material, Labor, and Finished Good. It also has a g1xbrlclassEnumid field to specify the
reporting (XBRL) class such as US GAAP and IAP.

To support multi-organization accounting there is a shared chart of accounts in G1account
records and each internal 0rganization that needs it has a subset of the accounts assigned
to it using the G1AccountOrganization entity. This has a postedBalance field that is
updated with the balance of that account for just that organization. Getting more specific
there is a record in G1AccountOrgTimePeriod for each GlAccount, Organization, and
TimePeriod (a fiscal month, quarter or year period). It has more detailed information about
totals: postedDebits, postedCredits, beginningBalance, and endingBalance. These are
all maintained by the GL posting service.

Other parties may be associated with a GL account using the G1accountParty entity. A
GlAccount may be associated with a budget through a budget item type using the
GlBudgetXref.

In addition to the inherent hierarchy of GL accounts they may be organized with two other
structures: categories and groups. G1AccountCategory is used for an arbitrary grouping of
GL accounts and has a many-to-many relationship with them through the

175 12. Mantle Business Artifacts

GlAccountCategoryMember. This is used for special tracking and reporting purposes such as
cost centers.

A GlAccountGroup is a more restricted grouping of G1Account records for purposes of
reporting and populating forms such as tax forms. For example a US IRS Form 1120 (U.S.
Corporation Income Tax Return) would be a group type, and groups within the type would
be "1a Gross receipts or sales", "1b Returns and allowances", and "4 Dividends". Each GL
account can be associated with at most one group of each type (i.e. for each form, etc)
through G1AccountGroupMember. This is intentional to avoid applying a GL account more
than once and duplicating its value.

Ledger - Config (mantle.ledger.config)

The main entity of accounting preferences for an internal 0rganization is
PartyAcctgPreference. It has fields for the tax filing form to use (taxFormEnumid), COGS
method (cogsMethodEnumId), base currency for accounting (baseCurrencyUomid), fields to
manage invoice ID sequencing (invoiceSequenceEnumId, invoiceIdPrefix,
invoiceLastNumber, invoiceLastRestartDate, and useInvoiceIdForReturns), order ID
sequencing (orderSequenceEnumId, orderIdPrefix, orderLastNumber) and the default
PaymentMethod to use for refunds (refundPaymentMethod1d).

One of the more important fields is errorGlJournalid. This is the GlJournal to put
transactions (AcctgTrans) in when there is a problem with automatic posting. Transactions
in this journal should be reviewed periodically, and most importantly before closing a
period, to resolve issues and post the transaction. The most common issue is not finding the
configuration for the G1account for a particular entry (AcctgTransEntry). Another possible
issue is that the debits and credits don’t match.

The other entities in this package are for configuration the G1Account to use for automated
posting of various types of records that have a financial impact. The most general are
GlAccountTypeDefault and GlAccountTypePartyDefault which are used to configure the
default account for different GL account types if no more specific mapping is found.

For 1nvoice posting the various items are mapped by their TtemType (the same item type
that is shared among OrderItem, ReturnItem, and InvoiceItem)using
ItemTypeGlAccount. If a more specific mapping is found for an InvoiceItemit will be
used. This may be for specific products with ProductGlaccount or
ProductCategoryGlAccount or for tax items for a specific TaxAuthority with
TaxAuthorityGlAccount. The balancing entry for an invoice is generally a debit to the
default accounts receivable type account, or a credit to the default accounts payable type
account.

For payment posting the PaymentTypeGlaccount entity is used to find the balancing liability
or asset (AR, AP, etc) GL account for the payment for an 0rganization by
paymentTypeEnumId, isApplied, and isPayable (i.e., payable versus receivable). The cash

Mantle Structure and UDM 176

account to post to is found for the payment method using PaymentMethodTypeGlAccount
unless a more specific mapping is found for the credit card type in
CreditCardTypeGlAccount or for a financial account type in
FinancialAccountTypeGlAccount.

For inventory postings the GL account is determined generally with AssetTypeGlaccount,
but for physical inventory variances the gain or loss is posted according to the variance
reason configured with the VarianceReasonGlaccount entity.

Ledger - Reconciliation (mantle.ledger.reconciliation)

GlReconciliation is used to record results of reconciliation with external sources such as a
bank statement. Each G1Reconciliation record is associated with a G1Account
(glaccountId), and generally for a specific Organization (organizationPartyId) for
reconciliation on a certain date (reconciledbate). It tracks the openingBalance and
reconciledBalance. The actual records to reconcile are AcctgTransEntry and the
reconciledAmount for each is tracked with the G1ReconciliationEntry entity.

Ledger - Transaction (mantle.ledger.transaction)

An accounting transaction (AcctgTrans) is triggered by various things, and is associated
with what triggered it or adds detail to what triggered it including asset issuance
(assetIssuancelId), asset receipt (assetReceiptid), physical inventory
(physicalInventoryId), invoice (invoiceId), payment (paymentId), payment application
(paymentApplicationId) financial account transaction (finAccountTransId), shipment
(shipment1d), and work effort (workEffort1d). Transactions may also be created manually,
i.e., not just through automated posting.

There are many types of accounting transaction (acctgTransTypeEnumId). The most
common ones are Sales Invoice (from Org to Customer), Purchase Invoice (from Vendor to
Org), Asset Receipt, Sales Inventory, Incoming Payment (Receipt), and Outgoing Payment
(Disbursement). More exotic types include Amortization, Capitalization, Period Closing, and
Credit Memo.

An AcctgTrans happens in the context of an internal 0rganization
(organizationPartyId), happens at a certain date/time (transactionbate), knows if it is
posted yet (isPosted), and if so the date/time when (postedpate). It may be in a single
journal, such as the organization’s error journal, with the glgournalid field. The currency it
is posted in is tracked in the amountUom1d field, and if that is different from the currency of
whatever the transaction is based on (such as an order) that currency goes in
origCurrencyAmountUomId.

Each transaction entry (AcctgTransEntry) may be a debit or credit (debitCreditFlag of ‘D’
or ‘C’), has an amount and if the posting currency is different from the currency of what the
transaction is based on the amount in the original currency goes in origCurrencyAmount.
177 12. Mantle Business Artifacts

Each is associated with a specific GL account type (glAccountTypeEnumid), and in order to
post successfully must be associated with a GL account (glAccountId).

An entry may be a summary of transactions from an external system and if so isSummary is
set to Y. For invoice items the invoiceld is on the AcctgTrans record and the
invoiceItemSeqId is on the AcctgTransEntry. The entry may also be associated with a
product (productId) and/or asset (assetId).

Journals (G1Journal) may be used to keep track of specific accounting transactions, usually
for transactions with errors or manual transactions and are in progress
(gldournalTypeEnumid). They are for a particular organization (organizationPartyId)
and single-use journals may be posted all at once, tracked with isPosted and postedbate.
Transactions are associated with journals using the AcctgTrans.glJournalid field.

Other - Budget (mantle.other.budget)

A Budget is generally associated with a TimePeriod (timePeriod1d) and may be of various
types (budgetTypeEnumId) such as Capital or Operating. Each BudgetItem has an amount
and may have text descriptions of purpose and justification. The item type
(budgetItemTypeEnumid) is generally something like Required or Discretionary. Parties may
be associated with a budget using BudgetParty.

Various other entities point to BudgetItem records to provide detail for them, including:
Payment through PaymentBudgetAllocation, EmplPosition, OrderItem, and
Requirement through RequirementBudgetAllocation.

When a budget is reviewed by a particular party the results of the review are recorded with
the BudgetReview entity. To keep a history of budget revisions use the BudgetRevision and
BudgetRevisionImpact entities.

During a budget planning process various scenarios may be discussed and modeled. These
can be recorded with the Budgetscenario and details for specific items in
BudgetScenarioApplication and more generally for budget item types in
BudgetScenarioRule.

Other - Tax (mantle.other.tax)

A TaxAuthority is a government entity (taxAuthParty1d) that collects taxes within a
geographic boundary (taxauthGeo1d). For VAT tax authorities set includeTaxInPrice to V.
If a tax ID is required for exemption set requireTaxIdForExemption to V.

Many tax authorities have different tax rates for different types of products. To configure this
create a ProductCategory for each type and use TaxAuthorityCategory to associate it with
the tax authority. Tax authorities may be associated with other tax authorities using
TaxAuthorityAssoc for Exemption Inheritance or as a Collection Agent
(assocTypeEnumid). For example a US state tax authority may collect taxes on behalf of a

Mantle Structure and UDM 178

city or county tax authority within that state, and exemption at the state level may exempt at
the city or county level.

Parties may be associated with a TaxAuthority using TaxAuthorityParty. This is useful to
represent that an internal organization has a nexus (isNexus=v) or that a customer is tax
exempt (isExempt=Y) and in either case the Party may have an ID issued by that tax
authority and that is recored in the partyTax1d field.

Tax may be calculated using an external system or internal services configured using
TaxGatewayConfig that in either case points to the service (calculateServiceName) that
calculates the taxes or calls out to the external system. There used to be a TaxAuthorityRate
entity for configuring local tax calculation, but that has been replaced with a Drools decision
table which is more flexible. The TaxGatewayConfig is associated with a ProductsStore
using the Productstore.taxGatewayConfigid field.

Facility
Facility (mantle.facility)

A facility is a building, unit, room, land or even floor space. There are also more particular
types of facility such as warehouse and office. The primary entity for a facility is what you
would imagine (Facility) and it is identified by a single PK field (facility1d). As with
many of the main (master) entities a facility has a type (facilityTypeEnumId), status
(statusId), and name (facilityName). There are also fields for the owner, size, open/close
dates, etc.

Facilities are hierarchical to model things like units within a building and rooms within a
unit. The Facility.parentFacility1d field is used to specify the parent for each facility. In
theory this could be used for things like warehouse inventory locations but to simplify and
flatten that structure the FacilityLocation entity is just for inventory locations within a
facility. These have a type (such as bulk or pick/primary), locator fields (area1d, aisleld,
sectionlId, levelld, and positionId), and even a geoPointId for GPS-driven automation.

A Product may be associated with a FacilityLocation using the
ProductFacilityLocation entity to record which products go in which locations, and to set
minimumStock and moveQuantity values to use for recommended stock moves (when
replenishing pick/primary locations from bulk locations). If you need to track more data
about a particular product in a particular location extend this entity.

Similarly a Product may be associated with a Facility to using the ProductFacility
entity to specify minimumStock and reorderQuantity values for use in simple automated
(recommended) replenishment. Other fields related to a particular product in a particular
facility can be added to this entity as needed.

The physical location of a facility can be recorded in two ways: through a GeoPoint record
referenced by the Facility.geoPoint1d field, or in a PostalAddress type of ContactMech

179 12. Mantle Business Artifacts

with the FacilityContactMech. FacilityContactMech can also be used for more general
contact information for the facility including phone/fax/etc (telecom) numbers, email and
web addresses, and even multiple postal addresses when there are different ones for things
like receiving correspondence, receiving shipments, shipping return address, etc.

For more details about ContactMech see the Contact Mechanism (mantle.party.contact)

FacilityGroup

5

facilityGroupld id
parentGroupld id
facilityGroupTypeEnumid id
description text-medium

FacilityParty

e g 54

facilityld id

partyld id

roleTypeld id

fromDate date-time

thruDate date-time

FacilityContactMech

facilityld id

contactMechid id

contactMechPurposeld id

fromDate date-time

thruDate date-time

extension text-short

comments text-medium
ProductFacility

productid id

facilityld id

minimumStock number-decimal

reorderQuantity number-decimal

daysToShip number-integer

ProductFacilityLocation

productid id

facilityld id

locationSeqld id

minimumStock
moveQuantity

number-decimal
number-decimal

section.
FacilityGroupMember
facilityld id
facilityGroupld id
fromDate date-time
thruDate date-time
sequenceNum number-integer
Facility
facilityld id 11
facility TypeEnumld id o
parentFacilityld id
statusld id
ownerPartyld id
facilityName text-medium
facilitySize number-decimal
facilitySizeUomId id
openedDate date-time
closedDate date-time
description text-medium
geoPointld id
FacilityLocation
facilityld id
locationSeqld id
locationTypeEnumld id
areald id
aisleld id
sectionld id
levelld id
positionld id
geoPointld id

Use the FacilityParty to associate a party (party1d) with a facility (facilityId)ina
particular role (roleType1d) and within an effective date range (frombate, thruDate). This
can be used for any role and might be used to record who is an owner, tenant, occupant,
manager, picker, packer, etc for a particular facility.

To associate Resource Facade content (with a contentLocation) with a facility use the
FacilityContent entity. This has a content type (facilityContentTypeEnumId) such as

Mantle Structure and UDM

180

internal content (documents, etc) and images, and the ever useful effective date range
(fromDate, thruDate).

To organize facilities for pricing or management purposes, or more generally to keep better
track of large numbers of facilities, use FacilityGroup. Facility groups have a description,
are hierarchical (parentGroup1d) and have a type (facilityGroupTypeEnumid) such as
management structure or pricing group. To associate a Facility with a FacilityGroup use
the FacilityGroupMember entity. You may also associate a party in a particular role with a
facility group with the FacilityGroupParty entity.

Human Resources
Ability (mantle.humanres.ability)

The most general representation of ability is PartyResume which may have the full text in
the resumeText field or may point to a Resource Facade contentLocation.

Getting more structured the PartyQualification entity is used for things like degrees,
certifications, and work experience. The types available (qualificationTypeEnumId) are
Enumeration records of type QualificationType and you can add any needed there. It has
a verificationStatusld for tracking verification, and a more general status (status1d) that can
be Completed, Incomplete, or Deferred for things like degrees and certifications, and Full-
time, Part-time, or Contractor for things like work experience.

Partyskill is for more specific skills as opposed to more general qualifications. This would
include things like specific programming languages and libraries, equipment operation, and
even creative talents. The skill types (skillTypeEnumId) are Enumeration records of type
skillType. This has fields about the skill such as yearsExperience, skillLevel, and
startedUsingDate.

A PerformanceReview is between a manager (managerPartyId) and employee
(employeePartyId) for a particular position (emplPositionid). It has items
(PerformanceReviewItem) of various types (reviewItemTypeEnumId) such as
Responsibility, Attitude, and Job Satisfaction with a rating (reviewRatingEnumid) and
comments for each. Outside the context of a review there may also be performance notes
recorded with the PerformanceNote entity.

To track employer sponsored and other training use the TrainingClass entity for classes
available and PersonTraining for classes to approve and/or actually completed.

Employment (mantle.humanres.employment)

The Employment entity is used to track employment of an employee (employeePartyId) by
an employer (employerPartyId) in a certain position (emplPositionId) within a date range

181 12. Mantle Business Artifacts

(fromDate, thruDate). When employment is terminated it can track a reason
(terminationReasonEnumId) and type (terminationTypeEnumId).

Benefits of BenefitType may be tracked with EmploymentBenefit, the relevant PayGrade
with EmploymentPayGrade, and payroll preferences with PayrollPreference.

Before employment there may be an application (EmploymentApplication) by an applicant
(applyingPartyId) for a position (emplPositionId) and optionally associated with a
JobRequisition (jobRequisitionId).

After employment any unemployment claims would be tracked with UnemploymentClaim.
Position (mantle.humanres.position)

An EmplPosition is a specific position for a single Person (filledByPartyId) within an
organization (employerOrganizationPartyId). For other parties associated with the
position such as manager or department use the EmplPositionParty entity. EmplPosition
has a pay grade (payGradeId), may be part of a budget (budget1d, budgetItemSeqId) and
may be planned for a date range (estimatedFromDate, estimatedThruDate).

A position is associated with an employment position class (emplPositionClassId pointing
to EmplPositionClass) like Programmer, Business Analyst, Project Manager, and so on. It is
common to have multiple positions for a class, and a class can exist separately and be
associated directly with parties (EmplPositionClassParty) for a simplified model for rate
determination and such that does not require a EmplPosition record.

Responsibilities such as Finance Management, Inventory Management, and Purchase
Management may be associated with a position using EmplPositionResponsibility or
with a class using EmplClassResponsibility. A few responsibilities are defined OOTB and
additional ones may be defined with Enumeration records of type
EmploymentResponsibility.

Rate (mantle.humanres.rate)

Within an organization it is often useful to standardize pay grades. Use the PayGrade entity
for pay grades available, and PayGradesalary for the actual pay amount within a date range
(fromDate, thruDate).

For more detailed and structured pay rate information use the RateAmount entity. This can
be used for billing rates to clients for services performed, and payment to external vendors if
applicable for actually performing services (ratePurposeEnumId). Rate types
(rateTypeEnumid) include Standard, Discounted, Overtime, and On-site Work.

The rateamount (with currency rateCurrencyuomid and for time unit timePerioduom1d) is
valid within a date range (fromDate, thrubate) and may be restricted to a particular Party
(party1d), WorkEffort (workEffortId), and position class (emplPositionClassId).

Mantle Structure and UDM 182

Recruitment (mantle.humanres.recruitment)

The recruitment process will often begin with creating a JobRequisition and one or more
EmplPosition records for the requisition. Typically EmploymentApplication records are
next to apply for the position, and then for some of the applications zero to many
JobInterview records, one for each interview done with the candidate (candidateParty1d)
by an interviewer (interviewerPartyId). For each position an Employment record is created
when a candidate is hired.

Marketing
Campaign (mantle.marketing.campaign)

A MarketingCampaign is used for general tracking of marketing efforts and may be used for
efforts that tracked in the system, or may be used to group other things like ContactrList,
TrackingCode, and SalesOpportunity.

A campaign has various budget/ cost fields including budgetedCost, actualCost, and
estimatedcCost. [t is valid within an optional date range (frombate, thrubate). For
campaign results there are fields like convertedLeads, expectedResponsePercent, and
expectedRevenue.

A campaign may have various parties like marketers, sales reps, managers, prospects, and
leads associated with it using MarketingCampaignParty. Use the MarketingCampaignNote
entity to track notes about the campaign, which are in addition to the campaignName and
campaignSummary fields on the campaign itself.

Contact (mantle.marketing.contact)

A contactList is used to plan and track mass outgoing communication such as Marketing,
Newsletter, and Announcement (contactListTypeEnumid). This can be by email, phone,
postal mail, or any other means of contact (contactMechTypeEnumId). It may be associated
with a MarketingCampaign (marketingCampaignid).

A contact list is generally owned /managed by a particular Party (ownerPartyid). Other
parties are associated with it using ContactListParty. The main use for this is parties who
will receive the outgoing communication and optionally how they should be contacted
(preferredContactMechId). Most emailing lists are opt-in and this is often done with an
outgoing email to verify the address and the opt-in with a code, which is tracked for
verification with the optInverifycCode field.

A contactListParty has a status (status1d) which may be Pending Acceptance, Accepted,
Rejected, In Use, Invalid, Unsubscribe Pending, or Unsubscribed.

183 12. Mantle Business Artifacts

To configure outgoing email for the list, including types (emailTypeEnumid) such as
Subscribe Notification, Unsubscribe Verify, Unsubscribe Notification, and Outgoing Email
use the ContactListEmail entity. This points to a Moqui EmailTemplate record (with
emailTemplateId) to be used with the
org.moqui.impl.EmailServices.send#EmailTemplate service.

To track actual communication use a CommunicationEvent record associated with the
contact list using ContactListCommStatus. Use this to track the Party (partyId) and actual
ContactMech (contactMechId) used, though further details are on the
CommunicationEvent record. See the Communication Event (mantle.party.communication)
section for additional details.

Segment (mantle.marketing.segment)

The MarketSegment and related entities are used to define a group (segment) of Party
records by PartyClassification using MarketSegmentClassification, by Geo
(geographic boundary) using MarketSegmentGeo, and by Organization parties using
MarketSegmentParty for all parties in the organization.

A segment can be used for many purposes such as populating ContactListParty records
based on all current Party records in the system that match the segment criteria or recording
interest in a set of products in a ProductCategory using the MarketInterest entity.

Tracking (mantle.marketing.tracking)

A TrackingCode can be used for internal path tracking for critical web pages or for AB or
other multivariate testing. It can also be used to track incoming links from affiliates for
particular orders to pay affiliate commissions.

Once a tracking code is in the system it can be associated with a Moqui web visit using
TrackingCodeVisit, with an order (for conversion tracking and affiliate commissions) using
TrackingCodeOrder and with returns using TrackingCodeOrderReturn.

For affiliate commissions that follow browser cookie preservation rules the tracking code is
generally put in a cookie and then pulled from the cookie when an order is placed as
opposed to remembering it through more means. The tracking codes associated with a Visit
are different, they are generally all tracking codes used during a Visit and orders can then be
tied to these through the visitid field on orderHeader.

Mantle Structure and UDM 184

Order
Order (mantle.order)

The primary entity for an order is OrderHeader. An order can be a purchase or sales order,
and in fact with the orderPart structure supports multi-party orders since each order part
has a customerParty1d and a vendorPartyId. Order parts are used to split the order for
other purposes such as shipping to different locations or by different methods, to ship from
different locations, and so on. Order parts can have other parties associated with them using
the orderpartParty entity. Order parts are also used to split orders by different shipping
addresses, shipment options, delivery dates, etc.

OrderContent
orderContentld id
orderContentTypeEnumld | id
orderld id I
orderltemSeqld id T R
contentLocation text-medium OrderPart
O<] fromDate date-time orderld id
thruDate date-time orderPartSeqld id
parentPartSeqld id
OrderHeader partName text-medium
orderid id statusid id
orderName text-medium |—|—< vendorPartyld !d
entryDate date-time cugt_omerPartyId !d
placedDate date-time faC|I_|tyId !d
statusld id ca_rnerPartyId !d
shipmentMethodEnumlid | id
E H— postalContactMechld id
}{ telecomContactMechld id
Orderiiem partTotal currency-amount
orderld id OrderltemBilling
} orger;’tertgse?c:d 'g orderltemBillingld id
oraerrartseq I orderld id
parentitemSeq|d id orderltemSeq|d id
IterzTy?IZEnumld !g invoiceld id
proauc | invoiceltem | i
productConfigSavedld id as;e;isﬁanscf;?dd ig
itemDescription text-medium assetReceiptld id
quantity number-decimal shipmentld id
quantityUomid id quantity number-decimal
quantityCancelled number-decimal amount currency-amount
selectedAmount number-decimal
unitAmount currency-precise Invoiceltem
unitListPrice currency-precise invoiceld id
fromAssetld id invoiceltemSeqld id
productPriceld id itemTypeEnumid id
productld id
OrderTerm description text-medium
or:er:d Soald ig quantity number-decimal
orderltemSeq i quantityUomid id
settlementTermid id amount currency-precise

185

12. Mantle Business Artifacts

The shipping address (a type of contact mechanism) is referenced in the orderpart.
postalContactMechid field and there is an optional telecomContactMech1d field to point
to a phone (telecommunications) number. Additional contact mechs can be associated with
the order by purpose (such as billing phone, shipping address) using the ordercontactMech
entity.

With a wide variety of statuses an order can be a shopping cart (Open/Tentative), quote
(Proposed by Vendor), or a placed order (Accepted by Customer). There are also statuses so
an order can be a wish list, gift registry, and auto reorder (order stays open for automatic
recurring orders, each of which is a separate order).

After an order is Placed it can be fulfilled and is eventually either Completed, Cancelled by
the customer, or Rejected by the vendor. It can also be Held or put in a special Being
Changed status temporarily to avoid automatic calculation of things like shipping and taxes.
Both orderHeader and OrderpPart have statusid fields to track statuses independently.
Order items do not have a status1Id field, their status is determined by looking at quantities
on the item and quantities fulfilled, etc.

The items on an order are recorded as OrderItem records. For simplicity each orderItemis
associated with a single orderpart record. OrderItem records are hierarchical so that they
can be used for adjusting or detailing a parent item. This is useful for things like sales tax and
discounts that apply to a single item. It is also useful for highly complex orders where items
are organized under other items, such as specific building materials that are used for
different parts of a structure of phases of building it.

Order items use the same set of types as other items including
mantle.account.invoice.InvoiceItemand mantle.order.return.ReturnItem. These
shared item types are defined in the ItemTypeData.xml file. There are a wide variety of
types for things like sales, purchase, expenses, commissions, and payroll. For sales orders the
most common types are product, time entry, shipping charges, sales taxes, and discounts.

When an orderItemis billed (invoiced) it is associated with the InvoiceItem using the
OrderItemBilling entity. Often billing of physical goods is done when a shipment is sent
(actually packed) or received, so there is a shipmentId on the OrderItemBilling entity. For
outgoing shipments there is an inventory issuance modeled as a AssetIssuance record and
we have the assetIssuanceld field to point to it. Similarly for incoming shipments there is a
AssetReceipt record pointed to by the assetReceiptid field.

When an orderItemis associated with a task, project or other type of workEffort (usually
for work/service orders) it is associated with it using the orderItemworkEffort entity.

Orders may have a number of other records associated with them, including communication
events (OrderCommunicationEvent), content such as documents or images (OrderContent),
notes (OrderNote), and payment or other terms (OrderTerm).

Mantle Structure and UDM 186

Return (mantle.order.return)

A return (ReturnHeader) tracks the details of requesting and processing order item returns
from the customer (fromPartyId) to the vendor (toPartyId). Note that either Party may be
an internal organization, or in other words the return may be incoming (receiving a return
from a customer) or outgoing (sending a return to a supplier).

Each ReturnItemrecord points to a OrderItem record and specified the returnguantity
for that item. There is a separate field, receivedQuantity, to track the quantity of the item
actually received for the return. Each ReturnItem also has a itemTypeEnumid just like the
orderItemso that any type of item can be "returned” (including products, taxes, shipping

charges, discounts, etc) and considered in the refund or other response.

Invoiceltem

invoiceld id
invoiceltemSeqld id
itemTypeEnumld id

productld id

description text-medium
quantity number-decimal
quantityUomld id

amount currency-precise

ReturnHeader
returnid id
statusld id
fromPartyld id
toPartyld id
entryDate date-time
destinationFacilityld id H
currencyUomid id

Returnltem

returnid id
returnitemSeqld id
returnReasonEnumld id
returnResponseEnumld | id
itemTypeEnumld id
productld id
description text-medium
orderld id
orderltemSeqld id
statusld id
returnQuantity number-decimal
receivedQuantity number-decimal
returnPrice currency-amount
replacementOrderld id
originalPaymentid id
refundPaymentld id
responseAmount currency-amount
responseDate date-time

ReturnltemBilling

returnid
returnltemSeqld
invoiceld
invoiceltemSeqld
assetReceiptld

id
id
id
id
id

T L.

quantity number-decimal

amount currency-amount
Orderltem

orderld id

orderltemSeqld id

orderPartSeqld id

itemTypeEnumld id

productid id

description text-medium

quantity number-decimal

quantityUomld id

selectedAmount number-decimal

unitAmount currency-precise

Each ReturnItem has a returnReasonEnumid (like did not want, defective, mis-shipped, etc)
for tracking purpose. Each item also has a returnResponseEnumid to specify how the
organization should respond to the returned item (like refund, store credit, various methods
of replacement, etc). There are fields on the item for tracking related records for the response
(replacementOrderid, refundPaymentId, billingAccountId, finAccountTransId).

187

12. Mantle Business Artifacts

For refunds there will be an invoice based on the return for financial tracking (which will
result in GL posting, etc) and the ReturnItemBilling is used to associated each ReturnItem
with an InvoiceItem.

Both ReturnHeader and ReturnItem have a status1d field to track the progress of each
item, and as major steps are completed the status of the return as a whole. OOTB statuses
include: Created, Requested, Approved, Shipped, Received, Completed, Manual Response
Required, and Cancelled.

Party
Party (mantle.party)

The term party in this case has a meaning like the legal term of a party to a lawsuit as in an
individual or group, not the fun kind of party. There are two types of party and each has its
own entity to add applicable detail to the Party entity: Person representing an individual
and Oorganization which is a group and each member of the group may be a person or
organization. These entities have the same primary key field as the Party entity (partyId) so
that they have a one-to-one relationship.

The name of a Party comes from different fields depending on its type. For organizations it
comes from the Organization.organizationName field. For persons (people) it comes from
multiple fields on the Person entity: salutation, firstName, middleName, lastName,
personalTitle, suffix, and nickname. Usually at least first and last names are used,
and the others less commonly. There are various other fields on Party, Person, and
Organization to specify details about parties, and just like any other entities you can extend
these to add any others you might need.

Each party may have zero to many roles that are used to define how a party relates to other
structures in the system such as orders, work efforts (tasks, etc), agreements, and even other
parties. The available roles are defined using the RoleType entity and there is a fairly
comprehensive set of them defined OOTB in Mantle. Some examples of roles include: carrier,
bill-to customer, ship-from vendor, employee, affiliate, and spouse.

A role can be associated with a party using the PartyRole entity. Entities that have a
partyId and a roleTypeld intentionally have foreign keys just to Party and RoleType and
not to PartyRole so that PartyRole records are optional. In some cases it is useful to see if a
party is in a certain role, and PartyRole is the entity you would use for that.

Relationships between parties are recorded with the PartyRelationship entity. These
include members of a group, employees of an organization, organization hierarchies (rollup),
contacts, friends, and so on. There are various OOTB relationship types for the
relationshipTypeEnumId field, and you can add more by adding Enumeration records
with enumTypeId=PartyRelationshipType. In addition to the relationship type there are
from and to party and role type fields that detail the nature relationship. When needed there

Mantle Structure and UDM 188

are also effective date (frombDate, thruDate) fields and a statusId field (which like most

statuses is has enable-audit-log=true for a status history).

A party may have multiple identifiers such as a driver license number, employee number,

and external system identifiers for correlation. These are stored with the

PartyIdentification entity. This entity has an idvalue, a partyIdTypeEnumid for the

type of ID, and an optional expireDate for identifiers that expire.

RoleType UserAccount
roleTypeld id userld id-long
parentTypeld id username text-medium
description text-medium userFullName text-medium

currentPassword text-medium
currencyUomld id

locale text-short
timeZone id-long

PartyRole emailAddress text-medium
partyld id partyld id
roleTypeld id

Partyldentification
partyld id
———O< partyldTypeEnumld | id
idValue id-long
:]: :]: expireDate date
Party Person
partyld id partyld id
partyTypeEnumid id —H—O T firstName text-medium
disabled text-indicator middleName text-medium
externalld id lastName text-medium
dataSourceld id H gender text-indicator
comments text-long birthDate date
Organization
to partyld id
from organizationName text-medium
officeSiteName text-medium
PartyRelationship PartyClassificationAppl
partyRelationshipld id —O<< partyld id
relationshipTypeEnumld id partyClassificationl | id
fromPartyld id dfromDate date-time
fromRoleTypeld id thruDate date-time
toPartyld id
toRoleTypeld id H PartyClassification
fromDate date-time H—| partyClassificationid id
thruDate dateOtime classificationTypeEnumld | id
statusld id parentClassificationld id
relationshipName text-medium o< description text-medium

Party classifications are used to classify parties by industry /SIC/NAICS, size, revenue,
minority /EEOC, etc. Each PartyClassification (such as the NAICS industry classification

189 12. Mantle Business Artifacts

541511 - Custom Computer Programming Services) has a classificationTypeEnumid (such
as PctNaicsCode) and optional parentClassificationId to organize them. Use the
PartyClassificationAppl entity to associate a party with a classification in a date range
(fromDate, thruDate).

A party can be have associated Resource Facade content with PartyContent, geographic
points with PartyGeoPoint, and notes with PartyNote. A party may be associated with a
Moqui Framework UseraAccount with the UserAccount.party1d field that Mantle adds to it
using extend-entity.

Agreement (mantle.party.agreement)

Agreement is used to track sales, employment, commission, and other types
(agreementTypeEnumId) of agreements. An agreement is typically between two parties
(fromPartyId, toPartyId) and those parties may be in specific roles (fromRoleTypeId,
toRoleTypeId). Additional parties may be associated with it using the AgreementParty
entity. Parties may also be associated with a specific item on the agreement using the
AgreementItemParty entity.

An agreement is made on a certain date (agreementbate) and is valid within a date range
(fromDate, thruDate). You can record a description for the agreement and the full text in
textData if available.

An agreement is detailed with one or more AgreementItem records that have most of the
structure around an agreement. An item may have its own detail text (itemText) and its own
effective date range (frombate, thruDate). An item will typically have a type
(agreementItemTypeEnumId) such as Sub-Agreement, Pricing, Section, or Commission Rate.
When relevant the currency for an item is tracked with the currencyuom1d field.

If an agreement is changed it should be tracked with an addendum using the
AgreementAddendum entity, which can be applied to a particular item or the entire
agreement.

An item or the entire agreement may also have terms, recorded with the AgreementTerm
entity, such as Payment, Fee, Penalty, Incentive, Termination, Indemnification, Commission,
and Purchasing terms. There are various others defined and you can define more by adding
Enumeration records with the type TermType. These are also used for BillingAccount and
for Invoice through the settlementTerm entity.

Use AgreementItemGeo to associated an item with a specific geographic boundary (Geo),
and AgreementItemWorkEffort for a WorkEffort such as a project. When an agreement
(item) is for employment, associated the item with the Employment record using
AgreementItemEmployment.

Mantle Structure and UDM 190

For product pricing agreement items the ProductPrice has agreement1d and
agreementItemSeqId fields to point to an AgreementItem. This provides structured detail
about the pricing, and can be used for automated price calculation for a particular order.

Communication Event (mantle.party.communication)

Use CommunicationEvent to keep track of communication between parties (fromParty1d,
toPartyId), optionally in particular roles (fromRoleTypeId, toRoleTypeld), and also
optionally with specific contact mechanisms (fromContactMechId, toContactMechId; see
the next section for ContactMech details). Even if there are not specific contact mechs
associated with the communication event the type (contactMechTypeEnumid) such as
phone/telecom number or email address can be.

In addition to the from and to parties other parties, along with a role and contact mech, can
be associated with the CcommunicationEvent using the CommunicationEventParty entity.
This is especially useful for events like meetings and conference calls.

Communication event types are specified with the communicationEventType1Id field on the
CommunicationEvent entity which points to a CommunicationEventType record. These
types correlate to contact mech types. For example the phone comm event type is associated
with the telecom number contact mech type using the contactMechTypeEnumId attribute on
the CommunicationEventType entity.

CommunicationEvent has a status (status1d) for both incoming and outgoing events
including In Progress, Ready, Sent, Received, Viewed, Resolved, Referred, Bounced,
Unknown Party, and Cancelled. These statuses should handle most situations, including
inbound email queues that need to be viewed and acted on (resolved). For status history this
field use the Entity Facade audit log. The time of special events are tracked on the
entryDate, datetimeStarted, and datetimeEnded fields.

Communication events are hierarchical to handle threaded discussions with a
parentCommEventId to track the previous or parent comm event, and the rootCommEventId
to tie all comm events to the comm event that initiated the thread.

If available the content of the comm event can be stored with the subject, contentType
(MIME type), and body fields with any notes about it in the note field. For records from
email messages the Message-1D header that identifies the email can be recorded with the
emailMessageld field. Additional content can be saved in a Resource Facade location and
associated with the comm event using the CommunicationEventContent entity.

One or more purposes, such as Customer Service and Sales Inquiry, for the comm event can
be tracked with the CommunicationEventPurpose entity (separate entity so that multiple
purposes can be associated with the comm event). The purpose is specified with the
purposeEnumId field which points to Enumeration records of type CommunicationPurpose,
so use the enum type to add more available purposes.

191 12. Mantle Business Artifacts

When relevant products may be associated with a comm event using the
CommunicationEventProduct entity.

Contact Mechanism (mantle.party.contact)

A contact mechanism is a means of contacting a party. The primary entity is ContactMech
and while there are various types only two have entities with additional fields:
PostalAddress and TelecomNumber. The remaining types (such as email address) use the
ContactMech.infoString field.

The primary key field of ContactMech is contactMechId. Like the pattern with party,
Person, and Organization the ContactMech, PostalAddress, and TelecomNumber entities
share the same primary key field so they have a one-to-one relationship.

The PartyContactMech entity is used to associate a ContactMech with a Party. A purpose
(contactMechPurposeld) describes what the contactMech is for the Party such as
destination shipping address or billing phone (telecom) number. The purposes are defined as
records in the ContactMechPurpose entity. There is a comprehensive set available OOTB and
you can add records to define more.

Party
partyld id
partyTypeEnumid id ContactMechPurpose
contactMechPurposeld | id
contactMechTypeEnumld | id
description text-medium
PartyContactMech
partyld id
contactMechid id
contactMechPurposeld | id TelecomNumber
fromDate date-time contactMechld id
thruDate date-time countryCode text-short
extension text-short areaCode text-short
comments text-medium — O contactNumber text-shorit
allowSolicitation text-indicator askForName text-medium
usedSince date
verifyCode text-medium PostalAddress
O contactMechid id
toName text-medium
attnName text-medium
addressi text-medium
ContactMech address2 text-medium
contactMechld id ' unitNumber text-medium
contactMechTypeEnumld | id city text-medium
dataSourceld id Tt countyGeold id
infoString text-medium stateProvinceGeold id
trustLevelEnumld id countryGeold id
paymentFraudEvidenceld | id postalCode text-short

Mantle Structure and UDM 192

PartyContactMech has effective date (frombpate, thrubate) fields to define the date range
where the contactMech is valid for the Party. ContactMech records are immutable (they
should never be changed) so that they can be referenced in other places without a change
unintentionally effecting other places (and to keep a history of contact information). When
one needs to be updated a new record is created and associated with the party and the
thruDate is set on the old PartyContactMech record to expire it. See the
mantle.party.ContactServices.update#PartyContactOther service for details of how
this is done (and there are similar services for postal addresses and telecom numbers to
handle the additional fields and separate entities).

Where fraud is a concern the contactMech should have a trustLevelEnumid set. OOTB
options include New Data, Valid /Clean (through 3rd party service), Verified (with outbound
contact or authorization), Greylisted, and Blacklisted. If the trust level is Greylisted or
Blacklisted there should be a paymentFraudEvidenceId pointing to a
PaymentFraudEvidence record with details about why:.

Another entity that uses ContactMech similar to Party ismantle.facility.Facility. A
facility has contact information just like a party and is a long-lasting record with multiple
contact mechs that may change over time. Just like for Party there are services to update
contact mechs for a facility (see the mantle.facility.ContactServices services) that
expire the old record and create a new one.

There are many entities which refer to contact mechs, and some which use a join entity to
associate multiple contact mechs with different purposes. These include
InvoiceContactMech, OrderContactMech, ReturnContactMech, ShipmentContactMech,
and WorkEffortContactMech. These entities do not have effective date (fromDpate,
thruDate) fields as they are short-lived and if contact information changes the
contactMechId is simply updated to point to a different record.

Time Period (mantle.party.time)

The TimePeriod entity is for custom time periods, as opposed to calendar time periods, such
as fiscal years/quarters/ months and sales quarters (timePeriodTypeId, references the
TimePeriodType entity). They may match calendar time periods, i.e. frombate is the
beginning of a calendar period and thrubate is the actual end of the calendar period, but are
referenced anyway for any functionality that allows the time period to be something other
than a calendar period.

A time period can be linked to its parent (parentPeriodid) and previous
(previousPeriodId) time periods. It can also be associated with a Party (partyId) for
things such as fiscal time periods that are specific to an organization for accounting purposes.
When a TimePeriod is used for the general ledger the isclosed field specifies when the
period is closed and transactions can no longer be posted to it.

193 12. Mantle Business Artifacts

Product

Definition - Product (mantle.product)

A product is a person, place, or thing. Actually, that’s a noun, but products are similar. A
Product is a description of a service, facility use, asset use, or a digital or physical good for
sale. For manufacturing a product can represent raw materials, subassemblies, finished
goods, and so on. These product types are specified with the productTypeEnumid and the
options available are Enumeration records with the type ProductType.

An instance of a Product is tracked in different places depending on what type of product it
is. Physical goods are tracked as inventory using the Asset and related entities. Asset use
products are tracked as Asset records and have corresponding Wworkef fort records for their
schedule. Facility use products are tracked with Facility records, and also use WorkEffort
for scheduling. Service products are tracked through a variety of workEffort records for
projects, tasks, etc and may also have corresponding Request and Requirement records. The
services will generally have one or more party records associated with them for the people
and/or organizations that will perform or have performed the service.

Product ProductAssoc
productid id productid id
productTypeEnumlid id toProductid id
statusld id from productAssocTypeEnumlid | id
productName text-medium fromDate date-time
description text-medium thruDate date-time
saleslIntroductionDate date-time sequenceNum number-integer
salesDiscontinuationDate date-time to quantity number-decimal
salesDiscWhenNotAvail text-indicator
supportDiscontinuationDate date-time ProductContent
requirelnventory text-indicator productid id
requirementMethodEnumld id contentLocation id
chargeShipping text-indicator productContentTypeEnumid id
inShippingBox text-indicator fromDate date-time
defaultShipmentBoxTypeld id thruDate date-time
taxable text-indicator sequenceNum number-integer
amountUomld id H _
amountFixed text-indicator ProductPrice
amountRequire text-indicator productPriceld id
originGeold id ——O<| productld id
B productStoreld id
r vendorPartyld id
TP customerPartyld id
Productldentlflcatlon priceTypeEnumid id
productld id pricePurposeEnumld id
productIdTypeEnumId !d fromDate date-time
idValue id-long thruDate date-time
minQuantity number-decimal
ProductDimension price currency-precise
productid id priceUomld id
——0<| dimensionTypeEnumid | id termUomid id
value number-decimal taxInPrice text-indicator
valueUomld id taxAmount currency-precise

Mantle Structure and UDM

194

The Product entity has a statusId, but this is mostly there for special cases and is not used
for certain things that might seem like statuses but are modeled as dates, including
salesIntroductionDate, salesDiscontinuationDate, and
supportDiscontinuationDate. If you want to know whether a product is available for sale,
you check the current date/time against the sales date fields instead of looking at an
indicator or status.

For content about the product it has productName and description fields, and the
everything else such as more localized name/ description, detailed descriptions, images,
instructions, warnings, button/link labels, etc are all recorded with the ProductContent
entity. The contentLocation points to a Resource Facade location so the content can be in a
database (with the DbResource/File entities), a JCR (Java Content Repository, such as
Apache JackRabbit), in the local filesystem, or any other location configured OOTB or that
you add. See the Resource Locations section for more details.

Product has inventory (requireInventory, requirementMethodEnumId), shipping
(chargeShipping, inShippingBox, defaultShipmentBoxTypeld, returnable), and tax
(taxable, taxCode) settings. Some products have an amount associated with them, such as a
number of cans in a case, or allow the user to enter an amount when purchasing it. Use the
amountUomId, amountFixed, and amountRequire fields for this.

The various possible dimensions for a product are recorded with the ProductDimension
entity. This would include weight, lengths dimensions, shipping dimensions, quantity and
pieces included, and any other dimension you might want to define. To add other dimension
types add Enumeration records of type ProductDimensionType. There is a similar structure
for identifiers such as UPC, ISBN, EAN, etc: ProductIdentification.

Product has an originGeo1d field to specify where the product comes from for import/
export restrictions or for pure curiosity. For more specific Geo details like shipping and
purchase restrictions use the ProductGeo entity.

A product can be associated with other products using pProductassoc. This is useful for
cross/ up sell, size/color/etc variants, accessories, and for manufacturing purposes even
BOM breakdowns. To associate a Product with a Party use the ProductParty entity. The
ProductReview entity is used to record user/customer reviews and ratings.

The ProductPrice entity is used for a wide variety of prices, including: prices from
suppliers and prices for customers (via vendorPartyId and customerPartyId); list, current,
max/min, promotional, competitive, etc prices (priceTypeEnumid); purchase, recurring, and
use prices (pricePurposeEnumid). For quantity breaks there is a minQuantity field (for any
quantity greater than or equal to this, and less than the next highest matching record’s
minQuantity).

Prices are valid in an effective date range (fromDate, thrubate) and can be restricted to a
particular ProductStore (productStore1d). For jurisdictions with VAT taxes the price can
have tax included (taxInPrice=true), and use the other tax fields to specify details

195 12. Mantle Business Artifacts

(taxAmount, taxPercentage, taxAuthPartyId, taxAuthGeoId). See the mantle.other.tax
section for more details about tax calculation.

The actual price goes in the price field, and its currency in the priceuomid field. See the
Units of Measure section in the Data and Resources chapter for more details on UOMs. For
recurring prices the recurrence term goes in termuomId and the price is the price per unit
(like time, data size, etc).

Definition - Category (mantle.product.category)

The obvious use for a ProductCategory is a way to structure products within a catalog, but
that is only one of various types (productCategoryTypeEnumid). More generally a category
is a way to specify a set of products. Other common types include tax, cross sell, industry,
search, and best selling.

ProductCategory H— o< ProductCategoryRollup
productCategoryld id parent productCategoryid id
productCategoryTypeEnumlid | id parentProductCategoryld id
categoryName text-medium hild fromDate date-time
description text-very-long en thruDate date-time

L sequenceNum number-integer
o< ProductCategoryContent
productCategoryld id
contentLocation id
categoryContentTypeEnumid | id
ProductCategoryMember fromDate date-time
productCategoryld id thruDate date-time
productid id
fromDate date-time
thruDate date-time Product
sequenceNum number-integer productid id
quantity number-decimal productTypeEnumld id
productName text-medium

Products are associated with a category using ProductCategoryMember, which is the join
entity that supports a many-to-many relationship (products can be in many categories,
categories can have many products). Categories are associated with parent/child categories
using ProductCategoryRollup, which is also a many-to-many relationship so a category
can have multiple parent and child categories. Both of these have effective dates (frombate,
thruDate) and a sequenceNum field for sorting products within categories, and
subcategories of categories.

ProductCategoryMember also has a quantity field which can be used when a category
represents a set of products that come in a sort of ad-hoc or recommended package.

Content from the Resource Facade can be associated with a category using
ProductCategoryContent. Similarly, parties can be associated with a category using
ProductCategoryParty.

Mantle Structure and UDM 196

Definition - Config (mantle.product.config)

Product configuration entities are used to specify configuration options for products of type
Configurable Good (Product .productTypeEnumId=PtConfigurableGood). Configuration
items are specified with the ProductConfigItem entity, and applied to the Configurable
Good product using ProductConfigItemappl. The options for a config item are specified
with ProductConfigOption, and for options that are associated with another Product
(which has its own inventory, pricing, supplier details, etc) use the
ProductConfigOptionProduct entity.

To help clarify here is the path between the configurable product and the component
product: Product ==> ProductConfigItemAppl ==> ProductConfigItem ==>
ProductConfigOption ==> ProductConfigOptionProduct ==> Product.

The ProductConfigOption entity has a description field, and for localized description and
other content associated with an option use the ProductConfigItemContent entity to
reference Resource Facade content locations.

When a configurable product is configured, usually when added to an order, we need a place
to save the configuration and that starts with the Productconfigsaved entity. This is
referenced on an order item using the OrderItem.productConfigSavedid field. Within the
saved configuration the option selected for each item is recorded with the
ProductConfigSavedOption entity.

Definition - Cost (mantle.product.cost)

CostComponent records are used to break down the cost of a Product, especially
manufactured products. Products purchased from suppliers have a much simpler cost, the
price paid to the supplier. Cost components include things like estimated and actual
material, supply, equipment usage, and other costs. The various cost components added
together for a particular product within a date range make up the cost of a product.

The costComponentcCalc entity, and the ProductCostComponentcalc to apply itto a
Product, are used to specify how a CostComponent is to be calculated, or what the cost of a
product should be based on.

The ProductAverageCost entity is used to keep track of the average cost of a Product over
time (with a from/thru effective date range) optionally for a particular Facility and a
particular Organization. This is mostly to be used for the purpose of COGS calculations
that require an average cost history as opposed to being based on actual cost of an item sold.

Definition - Feature (mantle.product.feature)

A ProductFeature describes a Product in a structured way. There are quite a few feature
types (productFeatureTypeEnumid) defined OOTB, like Brand, Color, Fabric, License, and

197 12. Mantle Business Artifacts

Size. It is common to add customer feature types using Enumeration records of type

ProductFeatureType.

A feature is applied to a product using the ProductFeatureaAppl with a applTypeEnumIid to
specify what the feature is to the product (Selectable for optional features, Standard for

inherent aspects of a product, or Distinguishing to describe variants or a virtual product),
and within an effective date range (fromDate, thrubDate).

Sometimes it is necessary to model features that are incompatible or dependent, use the
ProductFeatureIactn entity for this.

ProductFeatureAppl
productid id
productFeatureld id
fromDate date-time
thruDate date-time
applTypeEnumid id
sequenceNum number-integer
amount currency-amount
recurringAmount currency-amount

numberUomld
defaultAmount
defaultSequenceNum
abbrev

idCode

ProductFeature
productFeatureld id
productFeatureTypeEnumld id
description text-medium
numberSpecified number-decimal

id
currency-amount
number-decimal
id

id-long

Product
productid id
productTypeEnumld id
productName text-medium

ProductFeatureGroupAppl

from

to

ProductFeaturelactn

productFeatureGroupld id

productFeatureld id

fromDate date-time

thruDate date-time

sequenceNum number-integer
ProductFeatureGroup

productFeatureGroupld id

description text-medium

ProductCategoryFeatGrpAppl

fromProductFeatureld id
toProductFeatureld id
iactnTypeEnumld id
productld id

productCategoryld id
productFeatureGroupld id
fromDate date-time
thruDate date-time
ProductCategory
productCategoryld id
productCategoryTypeEnumlid | id
categoryName text-medium
description text-very-long

Features are naturally organized by type, but it is often useful to define sets of features that

are used for a particular purpose such as facets for search of certain products or that are used

to describe certain types of products (mostly for administrative purposes). The
ProductFeatureGroup entity does just that. Use ProductFeatureGroupappl to specify
which features belong in which groups. For feature groups that are associated with a
ProductCategory use ProductCategoryFeatGrpAppl to tie them together.

Mantle Structure and UDM

Definition - Subscription (mantle.product.subscription)

A subscription is used to record a party’s (subscriberPartyId) access to a
SubscriptionResource for a specific date range (fromDate, thrubate). It is typically
associated with the orderItem used to purchase the subscription and for convenience the
product that was purchased to create the subscription. In addition to, or as an alternative to,
the date range the subscription can be limited by actual use time as opposed to calendar time
(useTime) and/or by use count (useCountLimit).

To configure a SubscriptionResource to be accessible for a availableTime, useTime, and/
or useCountLimit when a Product is purchased use the ProductSubscriptionResource
entity.

Use the subscriptionDelivery entity to keep track of CommunicationEvent instances that
are related to the subscription, especially for delivery of digital subscription resources.

Asset - Asset (mantle.product.asset)

The Asset entity is used for inventory, equipment, and anything to be financially tracked as
a fixed asset (assetTypeEnumId). Assets are identified by an assetId. An asset also has a
class (classEnumId) such as forklift, tractor, laptop computer, or even software that can be
used to categorize assets especially for manufacturing purposes to find the equipment
needed for specific routes (manufacturing tasks). Add your own asset classes with
Enumeration records of type AssetClass.

An Asset commonly represents an instance of a Product, or in other words the physical
item that the Product record describes. The product1d field specified which. An asset will
also generally have an assetName and has a comments field to track general comments/
notes.

Assets have a status (statusId) with various OOTB statuses for serialized inventory and
equipment. A serialized inventory asset represents a single physical item and commonly has
a serialNumber, hence the name.

Non-serialized inventory assets (hasQuantity=Y) represent more than a single quantity to
handle simpler inventory needs where the items are all the same and don’t need to be
individually tracked. The current physical quantity on hand is maintained in the
quantityOnHandTotal field, and the quantity that can be reserved or promised in the
availableToPromiseTotal. Inventory of a product will usually consist of multiple Asset
records such that all items represented by the record have the same receivedbate, lot1d,
facilityId and locationSeqId (for the FacilityLocation where the asset is stored),
ownerPartyId (the Party, usually internal org for inventory, that owns it), and where
applicable status1d. Typically as each batch of inventory is received and put away a new
Asset record is created for it.

199 12. Mantle Business Artifacts

Product AssetProduct
. productid id assetld id
productTypeEnumid id productid id
productName text-medium assetProductTypeEnumid id
fromDate date-time
Asset thruDate date-time
assetld id comments text-medium
parentAssetld id sequenceNum number-integer
assetTypeEnumlid id quantity number-decimal
I: classEnumld id quantityUomld id
statusld id
ownerPartyld id
productld id :
hasQuantity text-indicator iDetailld AssetDeta“i 4

o< quantityOnHandTotal number-decimal assetld id
availableToPromiseTotal number-decimal . .
assetName text-medium effectiveDate date-time
comments text-medium quaptltyOnHandl?lﬂ . number-dec!mal
serialNumber text-medium availableToPromiseDiff number-decimal

" | receivedDate date-time o unitCost . gurrency-amount
manufacturedDate date-time :ﬁiser;F;i?%rvatlonld :g
expectedEndOfLife date ro?ductl d id
actualEndOfLife date o ”

H—| facilityld id H .
locationSeqld id returnitemSeqld !d
containerld id workEffo.rtId !d
lotld id assetMaintenanceld !d
acquireOrderld id assetlssuan celd !d

rH acquireOrderltemSeqld id H aﬁse?Recelptld !d
acquireCost currency-amount P y_smallnventoryld !d
acquireCostUomld id varlachReasonEnumId id .
depreciation currency-amount description text-medium
depreciationTypeEnumlid id Physicallnventory

physicallnventoryld id
AssetPartyAssignment physicallnventoryDate date-time
assetld id partyld id

lo< Partyld id comments text-long
roleTypeld id
fromDate date-time
thruDate date-time Assetldentification
allocatedDate date-time assetld id
statusld id _ identificationTypeEnumid | id
comments text-medium idValue text-medium

AssetStandardCost -
assetld id AssetGeoPoint
O< assetStandardCostTypeEnumid | id assetld id
fromDate date-time —O<| geoPointld id
thruDate date-time fromDate date-time
amount currency-amount thruDate date-time
amountUomld id
Container
Lot containerld id
lotld id —O<{[containerTypeEnumld id
creationDate date-time facilityld id
—O<] quantity number-decimal locationSeqld id
expirationDate date-time geoPointld id
description text-medium

The quantity fields have the Total suffix because they are derived from the
quantityOnHandDiff and availableToPromiseDiff fields on the AssetDetail entity.
Each AssetDetail record represents some change to an Asset such as a reservation for a

Mantle Structure and UDM

200

placed order (assetReservationId), issuance on outgoing shipment (assetIssuanceId),
receipt on incoming shipment (assetReceiptId), variance from physical inventory count
(physicalInventoryld, varianceReasonEnumId), and production or consumption in a
work effort such as a manufacturing route (workEffort1d). If a Shipment is involved that is
recorded in shipment1d, and all details should have their effectiveDate recorded.

When a physical inventory count is done it is tracked with a PhysicalInventory record,
and the details for each inventory variance are recorded in AssetDetail records as described
above.

An asset may have a number of dates recorded as applicable for the type of asset:
receivedDate, acquiredDate, manufacturedDate, expectedEndOfLife, and
actualEndofLife. To track purchased assets and actual cost data Asset has
acquireOrderild, acquireOrderItemSeqId, acquireCost, and acquireCostUomid fields.
For fixed asset depreciation tracking, in adding to the corresponding AcctgTrans records, it
has depreciation, depreciationTypeEnumId, and salvageValue fields.

Use AssetGeoPoint to record where an asset is, and a history of where it has been (with
from/thru date fields). Use AssetIdentification to ID values for an asset such as a
tracking label number, manufacturer serial number, VIN, etc. An Asset can be assigned to a
Party using AssetPartyAssignment in a particular role and with an effective date range
(fromDate, thrubDate) for purposes such as use, management, maintenance, etc.

While an asset is an instance of a Product, additional products may be associated with the
asset to represent things such as rental or sale of the asset. Use the AssetProduct entity to
keep track of these associated products.

While an inventory Asset, and sometimes other types of asset, are generally located in a
FacilityLocation with the facilityId and locationSeqid fields it can also be located in
a Container to more easily track movement of a set of assets that are in the container. In this
case the facilityId and locationSeqid fields will be null and the Asset.containerid
field will be populated. In that case the actual location will be found using the facilityId,
locationSeqid, and geoPoint1Id fields as applicable. These fields are audit logged to keep a
history of their changes as a container moves.

Asset - Issuance (mantle.product.issuance)

Because competition for specific inventory items is common, such as when sales orders are
placed for products with limited inventory, it is necessary to track reservations with
AssetReservation records that are created when an item is promised. Later on when the
physical item is fulfilled a AssetIssuance is created and the AssetReservation is deleted
as it is no longer valid.

A reservation is associated with the Asset (assetId), Product (productId) for convenience,
and orderItem (orderld, orderItemSeqId). It has the quantity reserved, and for when the

201 12. Mantle Business Artifacts

reservation goes beyond on hand inventory the quantity reserved that was not available to
promise is tracked with the quantityNotavailable field.

An issuance is associated with the Asset (assetId), the AssetReservation
(assetReservationId) if applicable, Product (product1d) for convenience, and OrderItem
(orderId, orderItemSeqid), and the Shipment (shipmentId) or AssetMaintenance
(assetMaintenanceId) the asset is issued to. The issuance has a issuedDate, the quantity
issued, and when applicable the quantitycancelled from the issuance.

The issuance may have parties associated with it in particular roles using

AssetIssuanceParty.

When an AssetIssuance is created it triggers a general ledger accounting transaction to
deduct it from the value of inventory on hand. This is part of the standard set of accounting
transactions for inventory sales.

Asset
assetld id
assetTypeEnumld id
classEnumld id
assetName text-medium

AssetReservation

quantity
quantityNotAvailable
quantityNotlssued

assetReservationld id
assetld id
productld id
orderld id
orderltemSeqld id
reservationOrderEnumid id

number-decimal
number-decimal
number-decimal

AssetDetail
assetDetailld id
assetld id
guantityOnHandDiff number-decimal

availableToPromiseDiff
assetReservationld

number-decimal
id

quantityCancelled

reservedDate date-time

originalPromisedDate date-time

currentPromisedDate date-time

priority number-integer

sequenceNum number-integer
Assetlssuance

assetlssuanceld id

assetld id

assetReservationld id

orderld id

orderltemSeqld id

shipmentld id

productld id

assetMaintenanceld id

issuedDate date-time

quantity number-decimal

number-decimal

assetlssuanceld id

assetReceiptld id
AssetReceipt

assetReceiptld id

assetld id

productld id

orderld id

orderltemSeqld id

shipmentid id

shipmentPackageSeqld id

returnid id

returnltemSeqld id

receivedByUserld id-long

receivedDate date-time

itemDescription text-medium

quantityAccepted number-decimal

guantityRejected number-decimal

rejectionReasonEnumld id

Mantle Structure and UDM

202

Asset - Receipt (mantle.product.receipt)

When an aAsset is received, especially an inventory asset, that receipt is tracked with the
AssetReceipt. For convenience the product1d of the asset and an itemDescription are
recorded on this. The receipt may be associated with an orderItem (order1d,
orderItemSeqld), ShipmentPackage (shipmentId, shipmentPackageSeqld),
ShipmentItem (shipmentId, productId), and ReturnItem (returnld, returnItemSeqId).

There are fields to track the user who received the asset (receivedByUserid), the date it was
received (receivedDate), the quantityAccepted and quantityRejected, and if there is a
rejected quantity the reason for it (rejectionReasonEnumId).

When an AssetReceipt is created it triggers a general ledger accounting transaction to add
it to the value of inventory on hand. This is part of the standard set of accounting
transactions for inventory purchasing.

Asset - Maintenance (mantle.product.maintenance)

Following the pattern of Asset being an instance of a Product, the product describes the
asset including the maintenance schedule associated with the product in the form of the
ProductMaintenance entity. There are many types of maintenance, specified with the
maintenanceTypeEnumid field, such as oil change and cleaning. You can add more by
creating Enumeration records of type MaintenanceType.

The maintenance is to be done each intervalQuantity with the unit intervaluomid. The
interval may be measured by a meter on the asset of ProductMeterType identified by
intervalMeterTypeId. The meter should also be associated directly with the Product using
ProductMeter. If a repeatCount is specified on the ProductMaintenance record the
maintenance would be done only that many times.

The maintenance may be tracked with a workEffort and to simplify this a predefined work
effort can be used as a template and copied from the maintenance schedule
(ProductMaintenance.templateWorkEffortId) to the actual maintenance record
(AssetMaintenance.taskWorkEffortId) where it would be assigned, the status updated,
and so on.

For an actual maintenance effort for a particular Asset the AssetMaintenance entity has
similar fields like the intervalgQuantity value and related fields when the maintenance is
actually performed. This has a status (statusId) to track planning and completion of the
maintenance. It also has a purchaseorderid for when the work is hired out to track the
corresponding order. The maintenance may be purchased or sold and the relevant order item
or items are tracked with AssetMaintenanceOrderItem.

It is typical to read meters on the asset when maintenance is done, and the meter values for
each meter associated with the product (ProductMeter) are recorded with AssetMeter.
Other meter readings may be done outside the context of maintenance and also recorded

203 12. Mantle Business Artifacts

AssetMeter ProductMeterType
assetld id >0 productMeterTypeld id
productMeterTypeld id ~H—{ description text-medium
readingDate date-time defaultUomld id
meterValue number-decimal
readingReasonEnumld id ProductMeter
O-<| assetMaintenanceld id \O< productid id
workEffortld id productMeterTypeld id
©<"meterUomld id
Asset meterName text-medium
assetld id
assetTypeEnumld id >O—|_A‘j: Product
classEnumid id productid id
productld id productTypeEnumid id
assetName text-medium productName text-medium
AssetMaintenance ProductMaintenance
L4 assetMaintenanceld id productMaintenanceld id
assetld id productld id
statusld id maintenanceTypeEnumld id
maintenanceTypeEnumid id description text-medium
productMaintenanceld id >0— templateWorkEffortld id
taskWorkEffortld id intervalQuantity number-decimal
intervalQuantity number-decimal intervalUomld id
intervalUomld id intervalMeterTypeld id
intervalMeterTypeld id repeatCount number-integer
purchaseOrderld id
AssetMaintenanceOrderltem WorkEffort
assetMaintenanceld id workEffortld .'d
orderld id + workEffortTypeEnumid id _
orderitemSeq|d id workEffortName text-medium

with AssetMeter. This may be done when fueling, at route waypoints, before/ after
production tasks, etc (readingReasonEnumid) and these records are often very important for
financial management and tax liability.

Use AssetRegistration to record details when an Asset is registered with a government
authority (govAgencyPartyId). These may include a 1icenseNumber and
registrationNumber. The registration will happen on a certain date (registrationDate)
and be valid within a date range (fromDate, thruDate).

Store (mantle.product.store)

For sales order processing on an eCommerce site or in a POS (point of sale) system we need a
way to keep track of all of the relevant settings. The Productstore and related entities are
used for this.

A store has a name (storeName) and is owned /run by an internal organization
(organizationPartyId). While a store may support various languages and currencies each

Mantle Structure and UDM 204

store is typically best focused on a single country/area with a single language
(defaultLocale) and currency (defaultCurrencyUomId).

including:

e Products available: The ProductStoreCategory entity associates ProductCategory
records with a store for browse root, default search, purchase allow, etc and the
products in those categories or their sub-categories make up the products available in
the store.

¢ Notification emails: Use ProductStoreEmail to associated Moqui EmailTemplate
records with the store for notification emails such as registration, order confirmation,
order change, return completion, password update, and so on.

o Inventory reservation: The most common case is to have a single inventory Facility
for a store, and this is specified in the Productstore.inventoryFacilityId field.
When more than one is needed use the ProductstoreFacility entity. Inventory is
reserved in the order specified with the ProductsStore.reservationOrderEnumId,
such as FIFO or LIFO by received date or expiration date. For automatic replenishment
requirements set the Productstore.requirementMethodEnumid field.

e Payment processing: Use ProductStorePaymentGateway to configure the
PaymentGatewayConfig to use for each paymentMethodTypeEnumId.

e Shipping options and rate calculation: The ProductStoreshippingGateway entity is
used to configure the shippingGatewayConfig to use for each carrierPartyId.

e Tax calculation: The ProductStore.taxGatewayConfigId points to the
TaxGatewayConfig record to use for this store for sales/ VAT tax calculation.

The ProductstoreParty entity is used for general needs to associate parties in a particular
role with a store. One of many uses for this is if ProductStore.requireCustomerRole is set
to v then only parties associated with the store in the Customer role can access the store.

When managing a large number of stores or to automate based on specific sets of stores use
the ProductStoreGroup entity to represent a group of stores, and
ProductStoreGroupMember entity to associate stores with the group. A store can be
associated with multiple groups. Use the ProductstoreGroupParty entity to associate
parties with the group.

Request
Request (mantle.request)

A Request can be from a party (filedByParty1d) inside an organization such as an
employee for things like inventory or general purchases, or outside an organization such as a
client or customer for things like a quote, proposal, or in the software world for things like a
bug fix or new feature. These are specified in the requestTypeEnumid field and while there
are a few general ones defined OOTB you may want to define others by adding
Enumeration records of type RequestType.

205 12. Mantle Business Artifacts

The default Request statuses (status1d) include Draft, Submitted, Reviewed, In Progress,
Completed, and Cancelled. It also has a resolution (requestResolutionEnumid) that is by
default Unresolved and default options include Fixed, Can't Reproduce, Won't Fix,
Duplicate, Rejected, and Insufficient Information. Additional resolutions can be added as
Enumeration records of type RequestResolution. If the result should be sent where to send
it is specified with the fulfillcontactMech1d field.

RequestContent RequestCategory
requestld id requestCategoryld id
contentLocation id parentCategoryld id
requestContentTypeEnumid | id responsiblePartyld id
fromDate date-time description text-medium
thruDate date-time

Request RequestCommEvent

requestid id requestld id
requestTypeEnumlid id communicationEventld | id
requestCategoryld id
satuetd id RequestParty
requestName text-medium requestid id
description text-medium partyld id
storyLocation text-medium roleTypeld id
priority number-integer fromDate date-time
requestDate date-time thruDate date-time
responseRequiredDate date-time receiveNotifications text-indicator
requestResolutionEnumlid id
maximumAmountUomid id RequeStworl_(Eﬁort
currencyUomld id requestld id
filedByPartyld id workEffortld id

RequestltemAssoc
requestid id
requestitemSeqld id

15—

Requestltem otherRequestid id
requestid id otherRequestltemSeqld id
requestltemSeqld id quantity number-decimal
statusld id
requiredByDate date-time RequestitemOrder
productld id -
. . requestltemOrderld id
quantity number-decimal -
. requestld id
selectedAmount number-decimal .
. requestltemSeqld id
maximumAmount currency-amount .
. . orderld id
description text-medium .
supplierPartyld id orderl_temSqud id .
quantity number-decimal

A Request has a name (requestName), description, and if there is a story with additional
details in Resource Facade content it is referred to with the storyLocation field. To help
determine the order to work on requests and for general information it has priority,
requestDate, and responseRequiredDate fields. A request may be associated with a
Facility (facilityId) and ProductStore (productStorelId).

Mantle Structure and UDM

206

The details for a request are in its RequestItem records. An item can have its own statusId
(using the same statuses as a request) and requiredByDate and typically has a
description. If the request is for Product use the product1d, quantity, and (if applicable)
selectedAmount fields to specify details.

For quotes and other similar types of requests where there is a maximum amount/ price to
pay for the item, specify it in the maximumAmount field on the item. The unit for this amount
is on the Request record in the maximumAmountUomid field. These types of requests also
typically result in an order and the RequestItemis associated with an orderItem using the
RequestItemOrder entity.

For manual organization of requests use RequestCategory to specify hierarchical (with
parentCategoryId) request categories associated with requests using the
Request.requestCategoryld field.

A request may be associated with CommunicationEvent for communication related to the
request (RequestCommEvent), Resource Facade content for additional content or documents
(RequestContent), Party for parties working on or otherwise related to the request
(RequestParty), and WorkEf fort for tasks and other efforts related to handling the request
(RequestWorkEffort). A request may also have notes (RequestNote).

As an example a Request may be created for a software bug fix. The request is assigned to
someone with a RequestParty record. That person creates a task (WorkEffort) which is
associated with the request using a RequestWorkef fort record. That task may be assigned
to the same person or someone else, or even a group. Once the task is done its status is
updated as is the status on the request.

Requirement (mantle.request.requirement)

A Requirement may be for work, inventory, general customer or internal requirements, etc
(requirementTypeEnumId). Add your own types with Enumeration records of type
RequirementType. Its statuses (status1d) include Proposed, Created, Approved, Ordered,
and Rejected. Inventory requirements and other types as applicable may be for a specific
Facility (facilityId), and Product (quantity).

A requirement will typically have a requirementStartDate and a requiredByDate. To
describe the requirement in detail, especially for software requirements, the usecase and
reason fields are there for you. Parties may be associated with the requirement using the
RequirementParty entity.

For automatic inventory replenishment inventory requirements can be created based on the
ProductStore requirementMethodEnumId setting. Common options include creating a
requirement based on every order, when ATP or QOH fall below the level configured on the
relevant ProductFacility record, or for drop-ship third party ordering purposes. After
requirements are created they can be summarized by Product and Facility then after a

207 12. Mantle Business Artifacts

supplier is selected an order with the total quantity can be created and associated with the

RequirementOrderItem entity.

Work requirements follow a different path. They may have an order associated with them for
the labor, but more commonly result in a specific RequestItem (associated with

RequirementRequestItem) or directly to a workEffort (with
WorkRequirementFulfillment). The work effort can be for Implements, Fixes, Deploys,
Tests, or Delivers (ful£illmentTypeEnumId).

Requirement Requestltem
requirementid id requestid id
requirementTypeEnumld id requestlitemSeqld id
statusld id statusld id
facilityld id H requiredByDate date-time
deliverableld id description text-medium
assetld id
productld id ™
description text-medium
requirementStartDate date-time 1 .
requiredByDate date-time o RequirementRequestitem
estimatedBudget currency-amount requirementid id
quantity number-decimal -O<| requestld id
useCase text-very-long requestitemSeq|d id
reason text-long
RequirementParty
WorkRequirementFulfillment lo<| requirementid id
requirementid id partyld id
workEffortld id roleTypeld id
fulfillmentTypeEnumld id fromDate date-time
thruDate date-time
i RequirementOrderltem
WorkEffort L—o<| requirementid id
workEffortld id orderld id
workEffortTypeEnumld id orderltemSeqid id
workEffortName text-medium quantity number-decimal

The Requirement entity has a simple estimatedBudget field, and for more complex
budgeting requirements or to include it in a larger budget plan it can be associated with a
BudgetItem using the RequirementBudgetAllocation entity.

Sales

Opportunity (mantle.sales.opportunity)

As part of sales force automation (SFA) use the salesOpportunity to keep track of
opportunities. An opportunity is typically associated with a certain sales stage
(salesOpportunityStage), and you can define any series of stages desired.

Mantle Structure and UDM

208

There may be many parties associated with an opportunity including the customer/prospect,
sales representative, manager, etc. Record these with the salesopportunityParty entity.
You could use this for competitors as well, but generally there is additional information for
competitors so use the salesOpportunityCompetitor entity for them.

An opportunity will often be associated with a quote, which may turn into an order. Use
SalesOpportunityQuote to keep track of these. There may be meetings, other calendar
events, or tasks associated with an opportunity and use salesOpportunityWorkEffort to
associate it with those.

There are a couple of touch points to marketing records. One is to a MarketingCampaign
using SalesOpportunity.marketingCampaignId. Another is marketing TrackingCode
records which are associated using the salesOpportunityTracking entity. See the
Marketing section for more details about these.

Forecast (mantle.sales.forecast)

A salesForecast may be for an entire internal organization (organizationPartyId)or a
specific Party within that Organization (internalPartyId). It is associated with a
TimePeriod and has amount fields including quotaAmount, forecastAmount,
bestCaseAmount, and closedAmount for the final result.

Details about actual Product sold are recorded in SalesForecastDetail with a record with
the sales amount and quantity sold for each Product and/or ProductCategory.

Need (mantle.sales.need)

To record when a customer or other Party needs product (could be internal or external) use
the PartyNeed entity. It can be for a Product and/or ProductCategory for needs that may
be met by a variety or products, or when the exact product needed is not yet known. It often
comes from a CommunicationEvent or through a web app with a visit so there are fields
for both.

Shipment
Shipment (mantle.shipment)

The shipment and related entities may be used for both Incoming and Outgoing shipments
(shipmentTypeEnumId), and more specifically for Sales Return, Sales Shipment, Purchase
Shipment, Purchase Return, Drop Shipment, and Transfer shipments. A shipment is
generally from one Party (fromPartyId) and to another (toParty1d). If needed put special
instructions in the handlingInstructions field.

209 12. Mantle Business Artifacts

For planning purposes a shipment may have estimatedReadyDate, estimatedShipDate,
estimatedArrivalDate, and latestCancelDate values. For further detail or to get the
shipment in a calendar as an event use the shipWorkEffortid and arrivalWorkEffortId
fields to point for workEffort records. There is typically some sort of estimated cost for the
shipment, track that in estimatedshipCost with its currency in costuomId. If the cost is
adjusted use the addt1shippingCharge field along with a description of the additional

charge in addt1shippingChargeDesc.

For the entire shipment there is a statusId that may be Input, Scheduled, Picked, Packed,
Shipped, Delivered, and Cancelled. This field is audit logged for a status history. The Packed
status is one of the more important as it is the point where the shipment is generally

ShipmentltemSource

- - Shipmentitem
::ilgrl:eenr:lttljtemSourceld :g >O—'_H_ shipmentld | d
productld id p'°d?t°“d id e deoal
binLocationNumber number-integer guantty umber-cecima
orderld id
orderltemSeqld id
returnid id
returnltemSeqld id ShipmentPackageContent
statusld id shipmentid id
quantity number-decimal shipmentPackageSeqld id
quantityNotHandled number-decimal productid id
invoiceld id quantity number-decimal
invoiceltemSeq|d id

Shipment

shipmentid id o
shipmentTypeEnumid id T - ShlpmentPackgge
statusld id sh!pmentld !d
picklistld id } L shlnpmentPackageSqud !d
binLocationNumber number-integer \sNr:ip?;entBoxTypeld I:umber-decimal
estimatedShipDate date-time 1 weightUomI d id
estimatedArrivalDate date-time

estimatedShipCost

currency-amount

costUomld id
handlinglnstructions text-medium
fromPartyld id
toPartyld id
ShipmentRouteSegment

shipmentid id
shipmentRouteSegmentSeqld | id
deliveryld id
originFacilityld id
originPostalContactMechld id
originTelecomContactMechld id
destinationFacilityld id
destPostalContactMechld id
destTelecomContactMechld id
carrierPartyld id
shipmentMethodEnumld id
statusld id

ShipmentPackageRouteSeg

shipmentid
shipmentPackageSeqld
shipmentRouteSegmentSeqld
trackingCode

boxNumber

labellmage

labelPrinted
estimatedAmount
packageTransportAmount
packageServiceAmount
packageOtherAmount
codAmount
insuredAmount
amountUomlId

Mantle Structure and UDM

id

id

id

text-short
text-short
binary-very-long
text-indicator
currency-amount
currency-amount
currency-amount
currency-amount
currency-amount
currency-amount
id

210

considered fulfilled for billing purposes. The change to the Packed status is used to trigger
Invoice creation for the order(s) on the shipment, and if applicable automated payment
processing.

Each shipment has shipmentItemrecords with a quantity for each Product (productid) in
the shipment.

A shipment always has one or more packages (ShipmentPackage) and the quantity of
productId in each package is recorded with shipmentPackageContent. Each package may
have the box used (shipmentBoxTypeId pointing to a ShipmentBoxType record), and the
total shipping weight of the package along with the unit for the weight (weightuom1d).

A shipment also always has one or more route segments (ShipmentRouteSegment).
Consumer fulfillment and most simple shipments involve a single route segment with a
carrier (carrierPartyId) and shipment method (shipmentMethodEnumid) going from a
certain origin (originPostalContactMechld, originTelecomContactMechId) to a
destination (destPostalContactMechld, destTelecomContactMechId). A shipment may
also have other contact information associated with it using the shipmentContactMech
entity.

For consumer fulfillment the origin will usually be a warehouse Facility and specified with
originFacilityId. For consumer returns or inventory purchase shipments they will
generally go to a Facility, recorded in destinationFacilityId. There are various dates
associated with a route segment including estimatedstartDate, estimatedArrivalDate,
actualStartDate and actualArrivalDate.

Each package will have certain details for each route segment (shipmentPackageRouteSeq)
including trackingCode, boxNumber (within the shipment, if applicable), and labels/
documents including labelImage, labelIntlSignImage, labelHtml, labelPrinted, and
internationalInvoice.

For billing purposes each package in a route segment (ShipmentPackageRouteSeg) has an
estimatedAmount for the estimate before getting a quote or actuals from the carrier, plus
packageTransportAmount, packageServiceAmount, and packageOtherAmount for actuals
from the carrier, along with codAmount and insuredamount for those special situations. All
of these use the currency specified in amountUomId.

For all packages in a route segment (i.e., on ShipmentRouteSegment) there are fields for the
totals in actualTransportCost, actualServiceCost, actualOtherCost, and actualCost
with the currency in costuom1d. The route segment also has a total billingWeight with
billingWeightUomid that includes the billing weight used from all packages for the route
segment. A route segment also has a status (status1d) that is mostly used for keeping track
of communication (usually by integration) with the carrier, including: Not Started,
Confirmed, Accepted, and Voided.

A shipment is generally based on one or more orders or returns, and generally results in one
or more invoices being produced. The shipmentItemsource entity is used to keep track of

211 12. Mantle Business Artifacts

these, and there may be more than one shipmentItemsSource for each shipmentItem record.
More specifically a shipment item may be associated with multiple order items (order1d,
orderItemSeqId) or return items (returnid, returnItemSeqId) and is generally associated
with one or more invoice items (invoiceId, invoiceItemSeqId).

There is a shipmentItemSource.quantity field to specify how much of the
ShipmentItem.quantity comes from the specified order or return item. There is also a
quantityNotHandled field on the source to specify how much of the quantity should have
been shipped but was not.

Shipment has picklistId and binLocationNumber fields, and shipmentItemSource has
binLocationNumber and statusid fields to use for picking and packing in a warehouse. See
the Picklist (mantle.shipment.picklist) section below for details.

Carrier (mantle.shipment.carrier)

A carrier is typically a company like UPS or FedEx. Use CarriershipmentMethod to
configure which carriers (carrierParty1d) support which shipment methods
(shipmentMethodEnumId) and the carrier’s service code (carrierServiceCode) and
Standard Carrier Alpha code (scacode) for the method.

Similarly carriershipmentBoxType is used to configure the ShipmentBoxType (by
shipmentBoxTypeId) records for a carrier and their corresponding packagingTypeCode and
if applicable oversizecode. The method and box codes are all typically used for carrier
integrations to specify the service level and boxes using codes that the carrier supports.

If a Party has an account with a carrier track that using the PartyCarrieraAccount entity.

The shippingGatewayConfig entity is used to specify details for an integration with a
carrier for purposes of shipping estimates, rate quotes, getting labels, voiding labels, tracking
packages, and even validating addresses. To implement a shipping gateway (carrier
integration) implement services for each of these and create a record that points to them, then
associate that with a ProductsStore using the ProductstoreshippingGateway entity.

Picklist (mantle.shipment.picklist)

A picklist is used to organize pending shipment records for a pick/pack process. There is
no separate picklist bin structure, instead shipment itself is used. Similarly there is no
picklist item, the ShipmentItemSource is used to track items in a pick "bin" and details
about the order, return, and invoice that the particular quantity of the item are associated
with.

For a shipment in the Input or Scheduled statuses the shipment.picklistId points to the
Picklist itis on. A picklist is always associated with a Facility (facilityId) and may be
associated with a particular shipment method (shipmentMethodEnum1d) for planning and
processing fulfillment by shipment method. For management and historical tracking

Mantle Structure and UDM 212

purposes Picklist has a date/time it was planned in the picklistbate field. Parties in a
particular role such as Picker, Packer, Manager, etc may be associated with the picklist using
PicklistParty.

In a typical picking process multiple shipments are picked at the same time, with the
contents put into a bin. This is tracked with the shipment .binLocationNumber field unless
the shipment is split into multiple bins (like one bin per order on the shipment) and then the
ShipmentItemSource.binLocationNumber field is used to override the one on the
Shipment record.

Picklist Shipment
picklistid id o< shipmentid id
description text-medium shipmentTypeEnumld id
facilityld id statusld id
shipmentMethodEnumlid id picklistld id
statusld id binLocationNumber number-integer
picklistDate date-time

ShipmentltemSource

PicklistParty shipmentltemSourceld id
picklistld id shipmentld id
partyld id productld id
roleTypeld id binLocationNumber number-integer
fromDate date-time statusld id .
thruDate date-time quantity number-decimal
quantityNotHandled number-decimal

The shipmentItemSource entity has the orderItem details (orderid, orderItemSeqId) to
lookup related AssetReservation records that have the quantity (or quantityNotIssued
if used) to pick and the corresponding Asset to find the FacilityLocation that the asset is
stored in for picking.

ShipmentItemSource has a status (status1d) for picking and packing purposes that can be
Pending, Picked, Packed, Received, or Cancelled. Note that the Received status goes beyond
the typical pick/pack process to track receipt of items when that data is available and
needed.

A typical pick sheet will have a list of all facility locations to pick from listed in order of their
location for easy walking of the floor to pick all shipments on the list. For each location the
product and quantity to pick are listed along with the pick bin number and the quantity for
that bin to get the right number of items in the bin for the right shipment (or order). The
series of entities above is used to get all of those details.

213 12. Mantle Business Artifacts

Work Effort
Work Effort (mantle.work.effort)

The most basic types of WworkEffort task and calendar event. More generally workEffort is
used for projects, milestones, tasks, manufacturing routing, meetings, calls, travel, and even
time off and work availability.

These are specified with the type (workEf fortTypeEnumid) and purpose (purposeEnumId).
Types have more automation around them and are more limited, currently including Project,
Milestone, Task, Event, Available, and Time Off. The purposes are more flexible, there is a
much larger set, and you can add more with Enumeration records of type
WorkEffortPurpose.

Work efforts are hierarchical with the rootWorkEffort1d to identify the root (such as a
project) and parentWorkEffortId for the immediate parent in the hierarchy. For example
with a Project type WorkEffort as the root the top-level tasks are Task type WorkEffort
records with the rootworkEffortId pointing to the project and no parentWorkeffortId.
Sub-tasks have the same rootWorkEffortid value and their parentWorkEffort1d field
points to the top-level task.

WorkEffort has all the basic fields needed for a task or event including name
(workEffortNameLdescription,location,infoUrl,estimatedStartData
estimatedCompletionDate, percentComplete, and priority. For iCal files and similar
uses the workEf fortId isn’t generally a universally unique identifier so there is a
universalld field for that. For historical tracking it also has actualstartbate and
actualCompletionDate fields.

A work effort may take place in an office, warehouse, or other type of Facility and thatis
tracked with the facilityid field. For additional location and contact information use the
WorkEffortContactMech entity to associate contact mechs such a postal addresses,
telephone numbers (for conference calls, etc), email addresses, and so on. To keep track of
actual communication related to a work effort use the workEf fortCommEvent entity and
associated CommunicationEvent records.

AworkEffort may be internal, sensitive, or totally public and this is specified with
visibilityEnumId. The OOTB options for it are General (public access), Work Group (group
only access), Restricted (private access), and Top Secret (confidential access).

For some types of efforts such as manufacturing tasks more detailed time allowances and
tracking are needed. There are a few decimal number fields for this: estimatedWworkTime,
estimatedSetupTime, remainingWorkTime, actualWorkTime, actualSetupTime, and
totalTimeAllowed. The time unit for these fields is specified in the timeUom1d field.

Mantle Structure and UDM 214

WorkEffortAssoc WorkEffortAssetAssign
workEffortld id workEffortld id
toWorkEffortld id assetld id
workEffortAssocTypeEnumlid | id fromDate date-time
fromDate date-time thruDate date-time
thruDate date-time statusld id
sequenceNum number-integer allocatedCost currency-amount
comments text-medium
from to T WorkEffortProduct
WorkEffort workEffortid id
workEffortid id productld id .
universalld i fromDate date-tllme
parentWorkEffortld id :hrue[é?]fm d icjjate-tlme
~ | rootWorkEffortld id P .
9] . statusld id
S | workEffortTypeEnumld id . . .
urposeEnumid id est!matedQuantlty number-decimal
\BisibilityEnumId id estimatedCost currency-amount
resolutionEnumld id _
statusld id WorkEffortBilling
statusFlowld id workEffortld id
priority number-integer invoiceld id
o | sendNotificationEmail text-indicator invoiceltemSeqld id
% percentComplete number-integer percentage number-float
= | revisionNumber number-integer
workEffortName text-medium
description text-long ' WorkEffortContactMech
location text-medium workEffortld id
facilityld id contactMechid id
infoUrl text-medium L contactMechPurposeld id)
estimatedStartDate date-time o fromDate date-time
estimatedCompletionDate date-time thruDate date-time
actualStartDate date-time extension text-short
actualCompletionDate date-time comments text-medium
WorkEffortPart
workEffortid idy WorkEffortCommEvent
partyld id —O< workEffortld id
roleTypeld id communicationEventid id
fromDate date-time description text-medium
thruDate date-time sequenceNum number-integer
statusld id
ZV?"aﬁ"'gE"“m'g d !g WorkEffortContent
elegateReasonEnum i TKEffortl -
expectationEnumld id —0<g ‘(’:v:ntentfoc:tion :g
L fromDate date-time
mustRsvp text-indicator thruDate date-time
receiveNotifications text-indicator

WorkEffort status (statusId) options include: In Planning, Approved/Scheduled, In
Progress, Complete, Closed, On Hold and Cancelled. These are the statuses for the befault
statusFlow. To use a different StatusFlow use the statusFlowId field on either a particular
WorkEffort or (depending on implementation) its root WorkEf fort pointed to with
rootWorkEffortId.

215 12. Mantle Business Artifacts

In addition to status WorkEffort has a resolution (resolutionEnumid). OOTB options
include Unresolved (default), Completed, Incomplete, Won't Complete, Duplicate, Cannot
Reproduce, and Insufficient Information. Additional resolutions can be added with
Enumeration records of type WorkEffortResolution.

In addition to the hierarchical structure of work efforts they may be associated with others
using the workEffortAssoc entity with types such as Depends On, Duplicates, Caused By,
Independent Of (Concurrent), Routing Component, and Milestone. Note that milestones are
associated with tasks through an association and are not as a parent workef fort. This is
because a task may be associated with multiple milestones over time so we have a history
and forward planning options. Additional association types can be added with Enumeration
records of type WworkEffortAssocType.

For equipment or other types of Asset used (but not consumed) for a work effort use the
WorkEffortAssetAssign entity. Asset records assigned this way are generally considered
busy (otherwise unavailable) for the duration of the workeffort. To plan for a type of asset
needed by the Product (assetProductId) that represents a type of asset, use the
WorkEffortAssetNeeded entity. Product records may be associated with a workEf fort for
other reasons using WorkEffortProduct. Assets such as materials and supplies that are used
(consumed) for a work effort are tracked with WworkEffortAssetUsed and asset produced by
the work effort with workEffortAssetProduced.

Sometimes it is useful for organize work efforts by a more general Deliverable. Associate
work efforts with it using WorkEf fortDeliverableProd.

Use WorkEffortSkillstandard to record the skills (Enumeration of type skillType from
the HR/humanres entities) needed for a workef fort, usually as part of selection of parties to
assign to the effort.

There are various reasons to associate a Party with a workEffort, and the party’s
involvement with the work effort (just as a party’s association with other entities) is
determined by the role (roleType1d). This may be Manager, Worker, Operator, or any other
role (including Not Applicable). For billing reasons a EmplPositionClass may be specified
on the workEf fortParty with the emplPositionClassld field.

Each party association with a workEffort has a status (statusid; Offered, Assigned,
Declined, Unassigned), availability (availabilityEnumid; Available, Busy, Away),
expectation (expectationEnumid; For Your Information, Involvement Required,
Involvement Requested, Immediate Response Requested) and in the case of delegation a
reason for it (delegateReasonEnumId; Need Support or Help, My Part Finished, Completely
Finished).

To associated a higher-level workeffort (such as a Project) with an Invoice using the
WorkEffortInvoice entity. For more detail billing of particular tasks or other lower-level
work efforts, or even a percentage of one, use the WworkEf fortBilling entity.

Mantle Structure and UDM 216

General Resource Facade content and documents may be associated with a workEffort
using the workEffortContent. Notes may be recorded for an effort using WorkEf fortNote.

Time Entry (mantle.work.time)

Use the TimeEntry entity to record the time worked (hours) on a task or other type of
WorkEffort (by workEffort1d) by a particular Party (party1d). The working time falls
between the frompate and thruDate, and if any time within that range was not spent
working it can be recorded in breakHours. Generally hours + breakHours, if both specified,
should match the time duration between frombate and thrubDate.

For billing purposes a RateType will generally be specified in rateType1d. Common types
include Standard, Discounted, Overtime, and On-site Work. This is used to lookup a
RateAmount record along with other data applicable (may include party1d, workEffortId,
emplPositionClassId, and ratePurposeEnumId as Client or Vendor). This may be done
twice, once for the Client rate (client pays to vendor) and once for the Vendor rate (vendor
pays to worker) and recorded in rateAmountId and vendorRateAmountId.

WorkEffort Invoiceltem
workEffortld id !nvo!celd !d
workEffortTypeEnumid id 1 invoiceltemSeqld id
purposeEnumld id itemTypeEnumid id
statusld id produ.ctlld id '
percentComplete number-integer 4| description text-medium
workEffortName text-medium quant!ty pumber-demmal
estimatedWorkTime number-decimal - quantityUomid id .
remainingWorkTime number-decimal o amount currency-precise
actualWorkTime number-decimal 8‘
A TimeEntry
timeEntryld id
timesheetld id
TimesheetParty partyld id
timesheetld id rateTypeEnumid id
partyld id —O~<| rateAmountld id
roleTypeld id vendorRateAmountld id
fromDate date-time
—O<| thruDate date-time
Timesheet hours number-decimal
timesheetld id breakHours number-decimal
partyld id comments .text-long
clientPartyld id }NorleffortId !d
fromDate date-time o< invoiceld id
thruDate date-time invoiceltemSeqld id
statusld id vendorlnvoiceld id
comments text-medium vendorInvoiceltemSeq|d id

Once a TimeEntry is billed the relevant InvoiceItem is referenced with the invoice1d and
invoiceItemSeqId fields for the invoice from vendor to client, and with the

217 12. Mantle Business Artifacts

vendorInvoicelId and vendorInvoiceItemSeqld fields for the invoice from worker to
vendor. When these are populated it means the time entry has been billed.

A Timesheet may be used to organize TimeEntry records, or to make time entry easier.
There are generally two parties associated with a timesheet, the worker Party (party1d) and
the client Party (clientPartyId). Other parties may be associated with it using
TimesheetParty.

A Timesheet is generally used for just a specific date range (fromDate, thruDate). During
its lifecycle a timesheet has a status (status1d) which is typically In-Process (work being
done, time being recorded), Completed (all relevant work done and time recorded), or
Approved (approved for billing).

Mantle Structure and UDM 218

USL Business Processes

This section contains overviews of the main high-level business processes supported in
Mantle. This is an introduction to the business process concepts and the specific services and
entities involved with each process. There are other services and entities not covered here, or
in other words this is not a complete reference of all services and options available. This will
give you a good idea of the general functionality that exists and how it is structured, and
from there you can easily review the source or references to find related artifacts.

Mantle Business Artifacts has a wide variety of functionality, including the procure to pay,
order to cash, and work plan to cash processes, with:

Purchase and Sales Orders (for goods, services, materials, etc; POs for inventory and
equipment/supplies/etc)

Project, Task, and Request management with time and expense recording, billable/
payable rates by project/task/client/worker/etc

Incoming and Outgoing Invoices with a wide variety of item types and an XSL:FO
template for print or email

Automatic invoice generation for purchase orders (AP), sales orders (AR), project client
time and expenses (AR), project vendor/worker time and expenses (AP)

Payments, both manually recorded and automatic through payment processing
interfaces; applying payments to invoices

Fulfillment of sales orders (including basic picking and packing) and receiving of
purchase orders

Inventory management including issuance and receipt, and inventory reservation for
sales orders

Automated GL account posting of incoming and outgoing invoices, outgoing and
incoming payments, payment application, and inventory receipt and issuance
General GL functionality for time periods, validation of transactions to post, time
period closing

Balance Sheet and Income Statement reports (and basic posted amounts and account
balance by time period summaries)

Drools rules for product pricing, shipping charge calculation, and tax calculation

Procure to Pay

The Spock test suite for this process is in the OrderProcureToPayBasicFlow.groovy file.

219

12. Mantle Business Artifacts

Some of the more relevant setup data is shown in the examples below but you can find the
rest of it in the ZzaGlAccountsDemoData.xml, ZzbOrganizationDemoData.xml, and
ZzcProductDemoData.xml files.

Supplier Product Pricing

Here are some test calls to get pricing for the DEMO_1_1 product from the external supplier
(vendor) Party MiddlemanInc (vendorPartyId) for the internal organization
ORG_BIZI_RETAIL (customerPartyId) with quantities of 1 and 100 to test quantity breaks:

String vendorPartyId = 'MiddlemanInc', customerPartyId = 'ORG BIZI RETAIL'
String priceUomId = 'USD', currencyUomId = 'USD'
String facilityId = 'ORG BIZI RETAIL WH'

Map priceMap = ec.service.sync()
.name("mantle.product.PriceServices.get#ProductPrice")
.parameters([productId: 'DEMO 1 1', priceUomId:priceUomId, quantity:1,
vendorPartyId:vendorPartyId,
customerPartyId:customerPartyId]).call()
Map priceMap2 = ec.service.sync()
.name("mantle.product.PriceServices.get#ProductPrice")
.parameters ([productId: 'DEMO 1 1', priceUomId:priceUomId, quantity:100,
vendorPartyId:vendorPartyId,
customerPartyId:customerPartyId]).call()

Here is the demo Product record and the demo ProductPrice records used to configure
these supplier prices:

<mantle.product.Product productId="DEMO 1 1"
productTypeEnumId="PtFinishedGood" chargeShipping="Y"
returnable="Y" productName="Demo Product One-One" description=""/>

<mantle.product.ProductPrice productPriceId="DEMO 1 1 CS1"
productId="DEMO 1 1" vendorPartyId="MiddlemanInc"
pricePurposeEnumId="PppPurchase" priceTypeEnumId="PptCurrent"
fromDate="2010-02-03 00:00:00" minQuantity="1" price="9.00"
priceUomId="USD"/>

<mantle.product.ProductPrice productPriceId="DEMO 1 1 CS100"
productId="DEMO 1 1" vendorPartyId="MiddlemanInc"
pricePurposeEnumId="PppPurchase" priceTypeEnumId="PptCurrent"
fromDate="2010-02-03 00:00:00" minQuantity="100" price="8.00"
priceUomId="USD"/>

The results are validated like this, note the 9.00 for quantity of 1 and 8.00 for quantity of 100:

priceMap.price == 9.00
priceMap2.price == 8.00
priceMap.priceUomId == 'USD'

USL Business Processes 220

Place and Approve Purchase Order

For purchase orders there is no ProductStore, so we have no payment, shipping, party, and
other settings to use from configuration. In this create#Order call we explicitly set the
customer and vendor. Here is a code snippet with service calls to create the order, add
product items to the order, add a shipping charge item to the order, set billing and shipping
info for the order, place the order, and then approve the order.

Map orderOut = ec.service.sync()
.name("mantle.order.OrderServices.create#Order")
.parameters([customerPartyId:customerPartyId,
vendorPartyId:vendorPartyId, currencyUomlId:currencyUomId]).call()

purchaseOrderId = orderOut.orderId
orderPartSeqId = orderOut.orderPartSeqId

ec.service.sync()
.name("mantle.order.OrderServices.add#0rderProductQuantity")
.parameters([orderId:purchaseOrderId, orderPartSeqld:orderPartSeqld,
productId: 'DEMO 1 1', quantity:150,
itemTypeEnumId: 'ItemProduct']).call()
ec.service.sync()
.name("mantle.order.OrderServices.add#0rderProductQuantity")
.parameters([orderId:purchaseOrderId, orderPartSeqld:orderPartSeqld,
productId: 'DEMO 3 1', quantity:100,
itemTypeEnumId: 'ItemProduct']).call()
ec.service.sync()
.name("mantle.order.OrderServices.add#0rderProductQuantity")
.parameters([orderId:purchaseOrderId, orderPartSeqld:orderPartSeqld,
productId: 'EQUIP 1', quantity:1,
itemTypeEnumId: 'ItemAsset', unitAmount:10000]).call()

// add shipping charge
ec.service.sync()
.name("mantle.order.OrderServices.create#OrderItem")
.parameters([orderId:purchaseOrderId, orderPartSeqld:orderPartSeqld,
unitAmount:145.00, itemTypeEnumId:'ItemShipping',
itemDescription: 'Incoming Freight']).call()
// set billing and shipping info
setInfoOut = ec.service.sync()
.name("mantle.order.OrderServices.set#0rderBillingShippingInfo")
.parameters([orderId:purchaseOrderId, orderPartSeqld:orderPartSeqld,
paymentMethodTypeEnumId: 'PmtCompanyCheck',
shippingPostalContactMechId: 'ORG BIZI RTL SA',
shippingTelecomContactMechId: 'ORG BIZI RTL PT',
shipmentMethodEnumId: 'ShMthNoShipping']).call()

// one person will place the PO
ec.service.sync()

221 12. Mantle Business Artifacts

.name("mantle.order.OrderServices.place#0Order")
.parameters ([orderId:purchaseOrderId]).call()
// typically another person will approve the PO
ec.service.sync()
.name("mantle.order.OrderServices.approve#0rder")
.parameters ([orderId:purchaseOrderId]).call()

Once this process is done the PO is somehow sent to the supplier (vendor). Below is the
entity XML for the order that is created. Note that much of the detail is in the orderpart
record including the vendor and customer parties, the payment and shipping info, and so on.
Also note that effectiveTime is set to on ec.user as the effective time with a line like this
(before the code above runs):

long effectiveTime = System.currentTimeMillis()
ec.user.setEffectiveTime (new Timestamp(effectiveTime))

Here is the XML for the order:

<mantle.order.OrderHeader orderId="S${purchaseOrderId}"
entryDate="${effectiveTime}" placedDate="S${effectiveTime}"
statusId="OrderApproved" currencyUomId="USD" grandTotal="11795.00"/>

<mantle.order.OrderPart orderId="S{purchaseOrderId}" orderPartSeqId="01"
vendorPartyId="MiddlemanInc" customerPartyId="ORG BIZI RETAIL"
shipmentMethodEnumId="ShMthNoShipping"
postalContactMechId="ORG BIZI RTL SA"
telecomContactMechId="ORG BIZI RTL PT" partTotal="11795.00"/>

<mantle.account.payment.Payment paymentId="${setInfoOut.paymentId}"
paymentMethodTypeEnumId="PmtCompanyCheck" orderId="S${purchaseOrderId}
orderPartSeqId="01" statusId="PmntPromised" amount="11795.00"
amountUomId="USD" />

<mantle.order.OrderItem orderId="S{purchaseOrderId}" orderItemSeqId="01"
orderPartSeqId="01" itemTypeEnumId="ItemProduct" productId="DEMO 1 1"
itemDescription="Demo Product One-One" quantity="150" unitAmount="8.00"
isModifiedPrice="N"/>

<mantle.order.OrderItem orderId="S{purchaseOrderId}" orderItemSeqId="02"
orderPartSeqId="01" itemTypeEnumId="ItemProduct" productId="DEMO 3 1"
itemDescription="Demo Product Three-One" quantity="100"
unitAmount="4.50" isModifiedPrice="N"/>

<mantle.order.OrderItem orderId="S{purchaseOrderId}" orderItemSeqId="03"
orderPartSeqId="01" itemTypeEnumId="ItemAsset" productId="EQUIP 1"
itemDescription="Picker Bot 2000" quantity="1" unitAmount="10000"
isModifiedPrice="Y"/>

<mantle.order.OrderItem orderId="S{purchaseOrderId}" orderItemSeqId="04"
orderPartSeqId="01" itemTypeEnumId="ItemShipping"
itemDescription="Incoming Freight" quantity="1" unitAmount="145.00"/>

USL Business Processes 222

Create Incoming Shipment and Purchase Invoice

The code below creates a shipment for the orderpart (and there is just one order part, so we
just create one), then marks the shipment as Shipped, and then creates an Invoice for the
entire OrderPart

In real-world scenarios the invoice received may not match what is expected, or may even be
for multiple or partial purchase orders. For this example we'll simply create an invoice
automatically from the order to somewhat simulate a real-world scenario. In a real process
we would more likely create the Invoice in the InvoiceIncoming status and then change it
to InvoiceReceived to allow for manual changes between based on the invoice document
received from the suppler (vendor).

shipResult = ec.service.sync()
.name("mantle.shipment.ShipmentServices.create#OrderPartShipment")
.parameters([orderId:purchaseOrderId, orderPartSeqId:orderPartSeqld,
destinationFacilityId:facilityId]).call()
ec.service.sync()
.name("mantle.shipment.ShipmentServices.ship#Shipment")
.parameters([shipmentId:shipResult.shipmentId]).call()
invResult = ec.service.sync()
.name("mantle.account.InvoiceServices.create#EntireOrderPartInvoice")
.parameters([orderId:purchaseOrderId, orderPartSeqId:orderPartSeqld,
statusId: 'InvoiceReceived']).call()

The shipment created looks like this:

<mantle.shipment.Shipment shipmentId="§${shipResult.shipmentId}"
shipmentTypeEnumId="ShpTpPurchase" statusId="ShipInput"
fromPartyId="MiddlemanInc" toPartyId="ORG BIZI RETAIL"/>

<mantle.shipment.ShipmentPackage shipmentId="${shipResult.shipmentId}"
shipmentPackageSeqId="01"/>

<mantle.shipment.ShipmentRouteSegment shipmentId="§${shipResult.shipmentId}"
shipmentRouteSegmentSeqId="01"
destPostalContactMechId="ORG BIZI RTL SA"
destTelecomContactMechId="ORG BIZI RTL PT"/>

<mantle.shipment.ShipmentPackageRouteSeg
shipmentId="5${shipResult.shipmentId}" shipmentPackageSeqId="01"
shipmentRouteSegmentSeqId="01"/>

<mantle.shipment.ShipmentItem shipmentId="${shipResult.shipmentId}"
productId="DEMO 1 1" quantity="150"/>

<mantle.shipment.ShipmentItemSource shipmentItemSourceId="55400"
shipmentId="${shipResult.shipmentId}" productId="DEMO 1 1"
orderId="S{purchaseOrderId}" orderItemSeqId="01" statusId="SisPending"
quantity="150" quantityNotHandled="150" invoiceId=""
invoiceItemSeqId=""/>

<mantle.shipment.ShipmentItem shipmentId="${shipResult.shipmentId}"
productId="DEMO 3 1" quantity="100"/>

223 12. Mantle Business Artifacts

<mantle.shipment.ShipmentItemSource shipmentItemSourceId="55401"
shipmentId="5${shipResult.shipmentId}" productId="DEMO 3 1"
orderIld="S{purchaseOrderId}" orderItemSeqId="02" statusId="SisPending"
quantity="100" quantityNotHandled="100" invoiceId=""
invoiceItemSeqId=""/>

<mantle.shipment.ShipmentItem shipmentId="${shipResult.shipmentId}"
productId="EQUIP 1" quantity="1"/>

<mantle.shipment.ShipmentItemSource shipmentItemSourceId="55402"
shipmentId="S${shipResult.shipmentId}" productId="EQUIP 1"
orderid="S{purchaseOrderId}" orderItemSeqId="03" statusId="SisPending"
quantity="1" quantityNotHandled="1" invoiceId="" invoicelItemSeqId=""/>

After the ship#Shipment call the shipment record looks like this:

<mantle.shipment.Shipment shipmentId="S${shipResult.shipmentId}"
shipmentTypeEnumId="ShpTpPurchase" statusId="ShipShipped"
fromPartyId="MiddlemanInc" toPartyId="ORG BIZI RETAIL"/>

The XML below is what the Invoice looks like. Note that each InvoiceItemhas a
corresponding OrderItemBilling record to associated it with the OrderItem it is based on.

<!-- Invoice created and received, not yet approved/etc -->
<mantle.account.invoice.Invoice invoiceId="${invResult.invoiceId}"
invoiceTypeEnumId="InvoiceSales" fromPartyId="MiddlemanInc"
toPartyId="ORG BIZI RETAIL" statusId="InvoiceReceived"
invoiceDate="S${effectiveTime}"
description="Invoice for Order ${purchaseOrderId} part 01"
currencyUomId="USD" />

<mantle.account.invoice.Invoiceltem invoiceId="${invResult.invoiceId}"
invoiceItemSeqId="01" itemTypeEnumId="ItemProduct" productId="DEMO 1 1"
quantity="150" amount="8.00" description="Demo Product One-One"
itemDate="S{effectiveTime}"/>

<mantle.order.OrderItemBilling orderItemBillingId="55400"
orderIld="5{purchaseOrderId}" orderItemSeqId="01"
invoiceId="${invResult.invoiceId}" invoiceItemSeqId="01" quantity="150"
amount="8.00" shipmentId="${shipResult.shipmentId}"/>

<mantle.account.invoice.Invoiceltem invoiceId="${invResult.invoiceId}"
invoiceItemSeqId="02" itemTypeEnumId="ItemProduct" productId="DEMO 3 1"
quantity="100" amount="4.50" description="Demo Product Three-One"
itemDate="S{effectiveTime}"/>

<mantle.order.OrderItemBilling orderItemBillingId="55401"
orderIld="5{purchaseOrderId}" orderItemSeqId="02"
invoiceId="${invResult.invoiceId}" invoiceItemSeqId="02" quantity="100"
amount="4.50" shipmentId="${shipResult.shipmentId}"/>

<mantle.account.invoice.InvoicelItem invoiceId="${invResult.invoiceId}"
invoiceItemSeqId="03" itemTypeEnumId="ItemAsset" productId="EQUIP 1"
quantity="1" amount="10,000" description="Picker Bot 2000"

USL Business Processes 224

itemDate="S{effectiveTime}"/>

<mantle.order.OrderItemBilling orderItemBillingId="55402"
orderIld="5{purchaseOrderId}" orderItemSeqId="03"
invoiceId="${invResult.invoiceId}" invoiceItemSeqId="03" quantity="1"
amount="10,000" shipmentId="S${shipResult.shipmentId}"/>

<mantle.account.invoice.Invoiceltem invoiceId="${invResult.invoiceId}"
invoiceItemSeqId="04" itemTypeEnumId="ItemShipping" quantity="1"
amount="145" description="Incoming Freight"
itemDate="S{effectiveTime}"/>

<mantle.order.OrderItemBilling orderItemBillingId="55403"
orderIld="5{purchaseOrderId}" orderItemSeqId="04"
invoiceId="${invResult.invoiceId}" invoiceItemSeqId="04" quantity="1"
amount="145"/>

<!-- ShipmentItemSource now has invoiceId and invoiceltemSeqId -->
<mantle.shipment.ShipmentItemSource shipmentItemSourceId="55400"
invoiceId="${invResult.invoiceId}" invoicelItemSeqId="01"/>
<mantle.shipment.ShipmentItemSource shipmentItemSourceId="55401"
invoiceId="${invResult.invoiceId}" invoicelItemSeqId="02"/>
<mantle.shipment.ShipmentItemSource shipmentItemSourceId="55402"
invoiceId="${invResult.invoiceId}" invoicelItemSeqId="03"/>

Receive Shipment

There is a receive#EntireShipment service but in this case we want to receive an item at a
time to show how to specify more details, and to handle the equipment product telling the
system it is equipment and not inventory (assetTypeEnumId=AstTpEquipment) and
recording the serialNumber.

ec.service.sync()
.name("mantle.shipment.ShipmentServices.receive#ShipmentProduct")
.parameters([shipmentId:shipResult.shipmentId, productId: 'DEMO 1 1°',
quantityAccepted:150, facilityId:facilityId]).call()
ec.service.sync()
.name("mantle.shipment.ShipmentServices.receive#ShipmentProduct")
.parameters([shipmentId:shipResult.shipmentId, productId: 'DEMO 3 1°',
quantityAccepted:100, facilityId:facilityId]).call()
ec.service.sync()
.name("mantle.shipment.ShipmentServices.receive#ShipmentProduct")
.parameters([shipmentId:shipResult.shipmentId, productId: ' 'EQUIP 1°',
quantityAccepted:1, facilityId:facilityId,
serialNumber: ' 'PB2000AZQRTFP',
assetTypeEnumId: 'AstTpEquipment']).call()

This produces quite a bit of data including Asset records, AssetReceipt records to show the
inventory and equipment received, and AssetDetail records to show the quantity change
on the Asset records and why the quantity changed:

225 12. Mantle Business Artifacts

<mantle.product.asset.Asset assetId="55400"
assetTypeEnumId="AstTpInventory" statusId="AstAvailable"
ownerPartyId="ORG BIZI RETAIL" productId="DEMO 1 1" hasQuantity="Y"
quantityOnHandTotal="150" availableToPromiseTotal="150"
assetName="Demo Product One-One" receivedDate="S${effectiveTime}"
acquiredDate="S{effectiveTime}" facilityId="ORG BIZI RETAIL WH"
acquireOrderId="5{purchaseOrderId}" acquireOrderItemSeqId="01"
acquireCost="8" acquireCostUomId="USD"/>

<mantle.product.receipt.AssetReceipt assetReceiptId="55400" assetId="55400"
productId="DEMO 1 1" orderId="${purchaseOrderId}" orderItemSeqId="01"
shipmentId="S${shipResult.shipmentId}" receivedByUserId="EX JOHN DOE"
receivedDate="S${effectiveTime}" quantityAccepted="150"/>

<mantle.product.asset.AssetDetail assetDetailId="55400" assetId="55400"
effectiveDate="S{effectiveTime}" quantityOnHandDiff="150"
availableToPromiseDiff="150" unitCost="8"
shipmentId="5${shipResult.shipmentId}" productId="DEMO 1 1"
assetReceiptId="55400"/>

<mantle.product.asset.Asset assetId="55401"
assetTypeEnumId="AstTpInventory" statusId="AstAvailable"
ownerPartyId="ORG BIZI RETAIL" productId="DEMO 3 1" hasQuantity="Y"
quantityOnHandTotal="100" availableToPromiseTotal="100"
assetName="Demo Product Three-One" receivedDate="S${effectiveTime}"
acquiredDate="S{effectiveTime}" facilityId="ORG BIZI RETAIL WH"
acquireOrderId="5{purchaseOrderId}" acquireOrderItemSeqId="02"
acquireCost="4.5" acquireCostUomId="USD"/>

<mantle.product.receipt.AssetReceipt assetReceiptId="55401" assetId="55401"
productId="DEMO 3 1" orderId="${purchaseOrderId}" orderItemSeqId="02"
shipmentId="S${shipResult.shipmentId}" receivedByUserId="EX JOHN DOE"
receivedDate="S${effectiveTime}" quantityAccepted="100"/>

<mantle.product.asset.AssetDetail assetDetailId="55401" assetId="55401"
effectiveDate="S{effectiveTime}" quantityOnHandDiff="100"
availableToPromiseDiff="100" unitCost="4.5"
shipmentId="5${shipResult.shipmentId}" productId="DEMO 3 1"
assetReceiptId="55401"/>

<mantle.product.asset.Asset assetId="55402"
assetTypeEnumId="AstTpEquipment" statusId="AstInStorage"
ownerPartyId="ORG BIZI RETAIL" productId="EQUIP 1" hasQuantity="N"
quantityOnHandTotal="1" availableToPromiseTotal="0"
assetName="Picker Bot 2000" serialNumber="PB2000AZQRTFP"
receivedDate="S{effectiveTime}" acquiredDate="S${effectiveTime}"
facilityId="ORG BIZI RETAIL WH" acquireOrderId="${purchaseOrderId}"
acquireOrderItemSeqId="03" acquireCost="10,000"
acquireCostUomId="USD" />

<mantle.product.receipt.AssetReceipt assetReceiptId="55402" assetId="55402"
productId="EQUIP 1" orderId="${purchaseOrderId}" orderItemSeqId="03"
shipmentId="S${shipResult.shipmentId}" receivedByUserId="EX JOHN DOE"
receivedDate="${effectiveTime}" quantityAccepted="1"/>

<mantle.product.asset.AssetDetail assetDetailId="55402" assetId="55402"

USL Business Processes 226

effectiveDate="S{effectiveTime}" quantityOnHandDiff="1"
availableToPromiseDiff="0" unitCost="10,000"
shipmentId="S${shipResult.shipmentId}" productId="EQUIP 1"
assetReceiptId="55402"/>

Two other entities that is updated automatically when records exist are OrderItemBilling
to have the assetReceiptld, and shipmentItemSource now has quantityNotHandled="0" and
statusld is set to SisReceived:

<mantle.order.OrderItemBilling orderItemBillingId="55400"
assetReceiptId="55400"/>

<mantle.order.OrderItemBilling orderItemBillingId="55401"
assetReceiptId="55401"/>

<mantle.order.OrderItemBilling orderItemBillingId="55402"
assetReceiptId="55402"/>

<mantle.shipment.ShipmentItemSource shipmentItemSourceId="55400"
statusId="SisReceived" quantity="150" quantityNotHandled="0"/>

<mantle.shipment.ShipmentItemSource shipmentItemSourceId="55401"
statusId="SisReceived" quantity="100" quantityNotHandled="0"/>

<mantle.shipment.ShipmentItemSource shipmentItemSourceId="55402"
statusId="SisReceived" quantity="1" quantityNotHandled="0"/>

Inventory receipt also triggers accounting transactions with balancing entries for the COGS
and inventory accounts:

<mantle.ledger.transaction.AcctgTrans acctgTransId="55400"
acctgTransTypeEnumId="AttInventoryReceipt"
organizationPartyId="ORG BIZI RETAIL"
transactionDate="$S{effectiveTime}" isPosted="Y"
postedDate="S${effectiveTime}" glFiscalTypeEnumId="GLFT ACTUAL"
amountUomId="USD" assetId="55400" assetReceiptId="55400"/>

<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55400"
acctgTransEntrySeqId="01" debitCreditFlag="C" amount="1,200"
glAccountTypeEnumId="COGS ACCOUNT" glAccountId="501000"
reconcileStatusId="AES NOT RECONCILED" isSummary="N"
productIid="DEMO 1 1"/>

<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55400"
acctgTransEntrySeqId="02" debitCreditFlag="D" amount="1,200"
glAccountTypeEnumId="INVENTORY ACCOUNT" glAccountId="140000"
reconcileStatusId="AES NOT RECONCILED" isSummary="N"
productIid="DEMO 1 1"/>

<mantle.ledger.transaction.AcctgTrans acctgTransId="55401"
acctgTransTypeEnumId="AttInventoryReceipt"
organizationPartyId="ORG BIZI RETAIL"
transactionDate="$S{effectiveTime}" isPosted="Y"
postedDate="S${effectiveTime}" glFiscalTypeEnumId="GLFT ACTUAL"
amountUomId="USD" assetId="55401" assetReceiptId="55401"/>

<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55401"
acctgTransEntrySeqId="01" debitCreditFlag="C" amount="450"
glAccountTypeEnumId="COGS ACCOUNT" glAccountId="501000"

227 12. Mantle Business Artifacts

reconcileStatusId="AES NOT RECONCILED" isSummary="N"
productId="DEMO 3 1"/>

<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55401"
acctgTransEntrySeqId="02" debitCreditFlag="D" amount="450"
glAccountTypeEnumId="INVENTORY ACCOUNT" glAccountId="140000"
reconcileStatusId="AES NOT RECONCILED" isSummary="N"
productId="DEMO 3 1"/>

Next to wrap things up with the order and shipment we record that the Shipment is
Delivered and that the OrderPart is Complete:

ec.service.sync() .name("update#mantle.shipment.Shipment")
.parameters([shipmentId:shipResult.shipmentId,
statusId: 'ShipDelivered']).call()
ec.service.sync().name("mantle.order.OrderServices.complete#OrderPart")
.parameters ([orderId:purchaseOrderId, orderPartSeqId:orderPartSeqId])
.call()

Because there is only one OrderPart on the order the status is updated on the OrderHeader
as well. This data shows that and the updated Shipment status:

<mantle.shipment.Shipment shipmentId="S${shipResult.shipmentId}"
statusId="ShipDelivered"/>

<mantle.order.OrderHeader orderId="S${purchaseOrderId}"
statusId="OrderCompleted" />

Approve Purchase Invoice and Send Payment

Now that the shipment is received it’s time to approve the Invoice for payment. Here is the
service call to do that, note the pattern of using the implicit entity-auto service to change
status (this is how ALL status changes are done to facilitate a consistent place to attach SECA
rules):

ec.service.sync().name("update#mantle.account.invoice.Invoice")
.parameters([invoiceId:invResult.invoiceId, statusId:'InvoiceApproved'])
.call()

Here is the updated Invoice record:

<mantle.account.invoice.Invoice invoiceId="${invResult.invoiceId}"
statusId="InvoiceApproved"/>

When an Invoice goes into the InvoiceaApproved status it triggers the posting of the
accounting transaction for the Invoice. The XML below has the AcctgTrans record and the
corresponding AcctgTransEntry records, one for each InvoiceItemand the last one (05) for
the balancing entry to G1account 210000 which is the Accounts Payable account.

<mantle.ledger.transaction.AcctgTrans acctgTransId="55402"
acctgTransTypeEnumId="AttPurchaseInvoice"
organizationPartyId="ORG BIZI RETAIL"
transactionDate="5{effectiveTime}" isPosted="Y"

USL Business Processes 228

postedDate="5{effectiveTime}" glFiscalTypeEnumId="GLFT ACTUAL"
amountUomId="USD" otherPartyId="MiddlemanInc"
invoiceId="${invResult.invoiceId}"/>
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55402"
acctgTransEntrySeqId="01" debitCreditFlag="D" amount="1200"
glAccountId="501000" reconcileStatusId="AES NOT RECONCILED"
isSummary="N" productId="DEMO 1 1" invoiceItemSeqId="01"/>
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55402"
acctgTransEntrySeqId="02" debitCreditFlag="D" amount="450"
glAccountId="501000" reconcileStatusId="AES NOT RECONCILED"
isSummary="N" productId="DEMO 3 1" invoiceItemSeqId="02"/>
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55402"
acctgTransEntrySeqId="03" debitCreditFlag="D" amount="10,000"
glAccountTypeEnumId="FIXED ASSET" glAccountId="171000"
reconcileStatusId="AES NOT RECONCILED" isSummary="N"
productId="EQUIP 1" invoiceItemSeqId="03"/>
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55402"
acctgTransEntrySeqId="04" debitCreditFlag="D" amount="145"
glAccountTypeEnumId="" glAccountId="509000"
reconcileStatusId="AES NOT RECONCILED" isSummary="N"
invoiceItemSeqId="04"/>
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55402"
acctgTransEntrySeqId="05" debitCreditFlag="C" amount="11795"
glAccountTypeEnumId="ACCOUNTS PAYABLE" glAccountId="210000"
reconcileStatusId="AES NOT RECONCILED" isSummary="N"/>

The Payment was created above with the order as the promised payment (see the Place and
Approve Purchase Order section). Now we call a service to mark that promised payment as
sent. This service will also apply the Payment to the Invoice, creating a
PaymentApplication record. Once a Payment is applied to a purchase Invoice its status
gets changed to payment sent (InvoicePmtSent).

sendPmtResult = ec.service.sync()
.name("mantle.account.PaymentServices.send#PromisedPayment")
.parameters([invoiceId:invResult.invoiceld,
paymentId:setInfoOut.paymentId]).call()

Here is the PaymentaApplication just created, the Payment record with a status1d of
pmntDelivered and the effectiveDate field set, and the Invoice updated to the
InvoicePmtSent status:

<mantle.account.payment.PaymentApplication
paymentApplicationId="${sendPmtResult.paymentApplicationId}"
paymentId="5${setInfoOut.paymentId}" invoiceId="${invResult.invoiceId}"
amountApplied="11795.00" appliedDate="S${effectiveTime}"/>

<mantle.account.payment.Payment paymentId="S${setInfoOut.paymentId}"
statusId="PmntDelivered" effectiveDate="S${effectiveTime}"/>

<mantle.account.invoice.Invoice invoiceId="S${invResult.invoiceId}"
statusId="InvoicePmtSent"/>

229 12. Mantle Business Artifacts

The Payment status change to Delivered triggers its GL posting. Because it is a check received
and the automated posting is configured this way the Payment comes from (credited to) the
General Checking Account GL account (111100):

<mantle.ledger.transaction.AcctgTrans acctgTransId="55403"
acctgTransTypeEnumId="AttOutgoingPayment"
organizationPartyId="ORG BIZI RETAIL"
transactionDate="5{effectiveTime}" isPosted="Y"
postedDate="S${effectiveTime}" glFiscalTypeEnumId="GLFT ACTUAL"
amountUomId="USD" otherPartyId="MiddlemanInc"
paymentId="${setInfoOut.paymentId}" />

<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55403"
acctgTransEntrySeqId="01" debitCreditFlag="D" amount="11795"
glAccountId="216000" reconcileStatusId="AES NOT RECONCILED"
isSummary="N"/>

<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55403"
acctgTransEntrySeqId="02" debitCreditFlag="C" amount="11795"
glAccountId="111100" reconcileStatusId="AES NOT RECONCILED"
isSummary="N"/>

Because the Payment was posted (from the status update) before it was applied to the
Invoice it was posted to the Accounts Payable Unapplied Payments account (216000).
When the pPaymentaApplication is created this triggers another GL posting for the
PaymentApplication to credit those funds back to the unapplied payments account and
debit them from the main Accounts Payable account (210000). Here is that transaction:

<mantle.ledger.transaction.AcctgTrans acctgTransId="55404"
acctgTransTypeEnumId="AttOutgoingPaymentAp"
organizationPartyId="ORG BIZI RETAIL"
transactionDate="$S{effectiveTime}" isPosted="Y"
postedDate="S${effectiveTime}" glFiscalTypeEnumId="GLFT ACTUAL"
amountUomId="USD" otherPartyId="MiddlemanInc"
paymentId="5{setInfoOut.paymentId}"
paymentApplicationId="${sendPmtResult.paymentApplicationId}" />

<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55404"
acctgTransEntrySeqId="01" debitCreditFlag="D" amount="11795"
glAccountId="210000" reconcileStatusId="AES NOT RECONCILED"
isSummary="N"/>

<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55404"
acctgTransEntrySeqId="02" debitCreditFlag="C" amount="11795"
glAccountId="216000" reconcileStatusId="AES NOT RECONCILED"
isSummary="N"/>

With the assets received, the invoice paid, and the everything posted to the general ledger
the Procure to Pay process is complete. The net effect of the GL postings is the outgoing
payment is credited to the General Checking Account GL account (111100), the price of the
inventory purchase is debited to the Inventory asset account (140000), the price of the
equipment is debited to the Equipment asset account (171000), and the shipping cost to the

USL Business Processes 230

Freight In cost of sales account (509000). The entries posted to all other accounts balance
each other out to zero, including the Accounts Payable account (210000).

Order to Cash

The Spock test suite for this process is in the OrderToCashBasicFlow.groovy file and that is
the file covered in this section. There are related test suites for placing a sales order for tenant
subscription and provisioning in OrderTenantAccess.groovy and for testing the time it
takes to place sales orders in OrderToCashTime.groovy.

Some of the more relevant setup data is shown in the examples below but you can find the
rest of it in the ZzaGlAccountsDemoData.xml, ZzbOrganizationDemoData.xml, and
ZzcProductDemoData.xml files.

Place a Sales Order as a Customer

This process is a basic ecommerce process. The order is placed by a customer
(joe@public.com) so the first step in the code below is to login that user, and the last step is to
logout that user, then an internal user does the shipping which triggers automated payment
processing and so on.

The code below uses the PoPc DEFAULT demo ProductStore, which uses the
ORG_BIZI_RETAIL WH Facility for inventory, a test payment processor, and local services
for tax and shipping calculation. Here are the records that define these (from the
ZzcProductDemoData.xml file):

<mantle.facility.Facility facilityId="ORG BIZI RETAIL WH"
facilityTypeEnumId="FcTpWarehouse" ownerPartyId="ORG BIZI RETAIL"
facilityName="Biziwork Retail Warehouse"/>
<mantle.product.store.ProductStore productStoreId="POPC DEFAULT"
storeName="Biziwork Retail Store" organizationPartyId="ORG BIZI RETAIL"
inventoryFacilityId="ORG BIZI RETAIL WH"
reservationOrderEnumId="AsResOrdFifoRec" requirementMethodEnumId=
defaultLocale="en US" defaultCurrencyUomId="USD"
taxGatewayConfigId="LOCAL"/>
<mantle.product.store.ProductStorePaymentGateway
productStoreId="POPC DEFAULT" paymentMethodTypeEnumId="PmtCreditCard"
paymentGatewayConfigId="TEST APPROVE"/>
<mantle.product.store.ProductStoreShippingGateway
productStoreId="POPC DEFAULT" carrierPartyId=" NA "
shippingGatewayConfigId="NA LOCAL"/>

In the code below the get#ProductPrice service is used to get (calculate) the price for a
Product and is called here on its own for demonstration. When adding to the order it calls
this service on its own to get the price.

231 12. Mantle Business Artifacts

Note that the first call to the add#0rderProductQuantity service results in a new order
being created, so we get the "cart" orderId from the results of that service call. Subsequent
calls pass in an orderld parameter so that the product quantities are added to the same order.

Next it calls the set#0rderBillingShippingInfo service to set the billing and shipping info
on the order, using a payment method and contact mechs from the customer’s profile. Finally
it calls the place#order service which is what would happen when a customer does a final
order review and confirms the order.

ec.user.loginUser (" joelpublic.com", "moqui", null)
long effectiveTime = System.currentTimeMillis()
ec.user.setEffectiveTime(new Timestamp(effectiveTime))

String productStoreId = "POPC DEFAULT"

EntityValue productStore =
ec.entity.makeFind("mantle.product.store.ProductStore")

.condition("productStoreId", productStoreId).one()

String currencyUomId = productStore.defaultCurrencyUomId

String priceUomId = productStore.defaultCurrencyUomId

String vendorPartyId = productStore.organizationPartyId

String customerPartyId = ec.user.userAccount.partyId

Map priceMap = ec.service.sync()
.name("mantle.product.PriceServices.get#ProductPrice")
.parameters ([productId: 'DEMO 1 1', priceUomId:priceUomId,
productStoreId:productStoreIld, vendorPartyId:vendorPartyId,
customerPartyId:customerPartyId]).call()

Map addOutl = ec.service.sync()
.name("mantle.order.OrderServices.add#0rderProductQuantity")
.parameters ([productId: 'DEMO 1 1', quantity:1,
customerPartyId:customerPartyId, currencyUomId:currencyUomId,
productStoreId:productStoreId]).call()

cartOrderId = addOutl.orderId
orderPartSeqId = addOutl.orderPartSeqId

ec.service.sync()
.name("mantle.order.OrderServices.add#0rderProductQuantity")
.parameters ([orderId:cartOrderId, productId: 'DEMO 3 1', quantity:5,
customerPartyId:customerPartyId, currencyUomId:currencyUomId,
productStoreId:productStoreId]).call()
ec.service.sync()
.name("mantle.order.OrderServices.add#0rderProductQuantity")
.parameters([orderId:cartOrderId, orderPartSeqld:orderPartSeqld,
productId: 'DEMO 2 1', quantity:7, customerPartyId:customerPartyId,
currencyUomId:currencyUomId, productStoreld:productStoreId])
.call()

setInfoOut = ec.service.sync()

USL Business Processes 232

.name("mantle.order.OrderServices.set#0rderBillingShippingInfo")
.parameters([orderId:cartOrderId, paymentMethodId:'CustJgpCc',
shippingPostalContactMechId: 'CustJgpAddr ',
shippingTelecomContactMechId: 'CustJgpTeln', carrierPartyId:' NA ',
shipmentMethodEnumId: 'ShMthGround']).call()
ec.service.sync().name("mantle.order.OrderServices.place#0rder")
.parameters ([orderId:cartOrderId]).call()

ec.user.logoutUser()

The place#order service call triggers payment authorization, which then updates the order
status to Approved so that is the status at this point. We also have a Payment record with the
billing settings set#0rderBillingShippingInfo and the rest are on the orderpart record.
There is a PaymentGatewayResponse record from the credit card authorization. To wrap it
up we have three orderItem records, one for each call to add#0rderProductQuantity with
a different productld.

<mantle.order.OrderHeader orderlId="${cartOrderId}"
entryDate="${effectiveTime}" placedDate="S${effectiveTime}"
statusId="OrderApproved" currencyUomId="USD"
productStoreId="POPC DEFAULT" grandTotal="145.68"/>

<mantle.account.payment.Payment paymentId="S${setInfoOut.paymentId}"
paymentTypeEnumId="PtInvoicePayment" paymentMethodId="CustJgpCc"
paymentMethodTypeEnumId="PmtCreditCard" orderId="${cartOrderId}"
orderPartSeqId="01" statusId="PmntAuthorized" amount="145.68"
amountUomId="USD" fromPartyId="CustJgp" toPartyId="ORG BIZI RETAIL"/>

<mantle.account.method.PaymentGatewayResponse
paymentGatewayResponseId="55500" paymentOperationEnumId="PgoAuthorize'
paymentId="5{setInfoOut.paymentId}" paymentMethodId="CustJgpCc"
amount="145.68" amountUomId="USD" transactionDate="S${effectiveTime}"
resultSuccess="Y" resultDeclined="N" resultNsf="N" resultBadExpire="N"
resultBadCardNumber="N"/>

<mantle.order.OrderPart orderId="${cartOrderId}" orderPartSeqId="01"
vendorPartyId="ORG BIZI RETAIL" customerPartyId="CustJgp"
shipmentMethodEnumId="ShMthGround" postalContactMechId="CustJgpAddr"
telecomContactMechId="CustJgpTeln" partTotal="145.68"/>

<mantle.order.OrderItem orderId="S{cartOrderId}" orderItemSeqId="01"
orderPartSeqId="01" itemTypeEnumId="ItemProduct" productId="DEMO 1 1"
itemDescription="Demo Product One-One" quantity="1" unitAmount="16.99"
unitListPrice="19.99" isModifiedPrice="N"/>

<mantle.order.OrderItem orderId="S{cartOrderId}" orderItemSeqId="02"
orderPartSeqId="01" itemTypeEnumId="ItemProduct" productId="DEMO 3 1"
itemDescription="Demo Product Three-One" quantity="5" unitAmount="7.77"
unitListPrice="" isModifiedPrice="N"/>

<mantle.order.OrderItem orderId="S{cartOrderId}" orderItemSeqId="03"
orderPartSeqId="01" itemTypeEnumId="ItemProduct" productId="DEMO 2 1"
itemDescription="Demo Product Two-One" quantity="7" unitAmount="12.12"
unitListPrice="" isModifiedPrice="N"/>

233 12. Mantle Business Artifacts

The other main thing that happens when an order is placed is that inventory (in the Asset

entity) is reserved for the items on the order. Inventory reservations are tracked with the

AssetReservation entity, so we have 3 records for it (one for each product on the order).

The first 2 Asset records are from demo data in the ZzcProductDemoData. xml file. They

already have inventory available to the AssetDetail records for those that adjust the
Asset.availableToPromiseTotal using a negative
AssetDetail.availableToPromiseDiff value.

The last asset record has a sequenced ID because there was no inventory for this product

and the Asset record was created on the fly with an ATP and QOH of 0. After the

AssetDetail record is created the availableToPromiseTotal is set to "-7" meaning there is

a quantity of 7 on backorder. This is also tracked in the

AssetReservation.quantityNotAvailable field, as this is the quantity "reserved" that is

not available to promise.

<mantle.product.asset.Asset assetId="DEMO 1 1A"
assetTypeEnumId="AstTpInventory" statusId="AstAvailable"

ownerPartyId="ORG BIZI RETAIL" productId="DEMO 1 1" hasQuantity="Y"

quantityOnHandTotal="100" availableToPromiseTotal="99"
receivedDate="1265184000000" facilityId="ORG BIZI RETAIL WH"/>
<mantle.product.issuance.AssetReservation assetReservationId="55500"
assetId="DEMO 1 1A" productId="DEMO 1 1" orderId="S${cartOrderId}"
orderItemSeqId="01" reservationOrderEnumId="AsResOrdFifoRec"
quantity="1" reservedDate="${effectiveTime}" sequenceNum="0"/>

<mantle.product.asset.AssetDetail assetDetailId="55500" assetId="DEMO 1 1A"

effectiveDate="S{effectiveTime}" availableToPromiseDiff="-1"
assetReservationId="55500" productId="DEMO 1 1"/>

<mantle.product.asset.Asset assetId="DEMO 3 1A"
assetTypeEnumId="AstTpInventory" statusId="AstAvailable"

ownerPartyId="ORG BIZI RETAIL" productId="DEMO 3 1" hasQuantity="Y"

quantityOnHandTotal="5" availableToPromiseTotal="0"
receivedDate="1265184000000" facilityId="ORG BIZI RETAIL WH"/>
<mantle.product.issuance.AssetReservation assetReservationId="55501"
assetId="DEMO 3 1A" productId="DEMO 3 1" orderId="S${cartOrderId}"
orderItemSeqId="02" reservationOrderEnumId="AsResOrdFifoRec"
quantity="5" reservedDate="${effectiveTime}" sequenceNum="0"/>

<mantle.product.asset.AssetDetail assetDetailId="55501" assetId="DEMO 3 1A"

n

effectiveDate="S{effectiveTime}" availableToPromiseDiff="-5
assetReservationId="55501" productId="DEMO 3 1"/>

<mantle.product.asset.Asset assetId="55500"
assetTypeEnumId="AstTpInventory" statusId="AstAvailable"

ownerPartyId="ORG BIZI RETAIL" productId="DEMO 2 1" hasQuantity="Y"

quantityOnHandTotal="0" availableToPromiseTotal="-7"

receivedDate="${effectiveTime}" facilityId="ORG BIZI RETAIL WH"/>
<mantle.product.issuance.AssetReservation assetReservationId="55502"

assetId="55500" productId="DEMO 2 1" orderId="S${cartOrderId}"

USL Business Processes

234

orderItemSeqId="03" reservationOrderEnumId="AsResOrdFifoRec"
quantity="7" quantityNotAvailable="7" reservedDate="S${effectiveTime}"/>
<mantle.product.asset.AssetDetail assetDetailId="55502" assetId="55500"
effectiveDate="${effectiveTime}" availableToPromiseDiff="-7"
assetReservationId="55502" productId="DEMO 2 1"/>

Ship Sales Order

There is a single service call that can be used to ship an entire OrderPart: ship#0rderPart.

shipResult = ec.service.sync()
.name("mantle.shipment.ShipmentServices.ship#0OrderPart")
.parameters([orderId:cartOrderId, orderPartSeqgId:orderPartSeqId])
.call()

This service does a few things and when implementing a real-world system the services it
calls, or even the services they call, will have more granular options and be more useful:

e mantle.shipment.ShipmentServices.create#OrderPartShipment (created a
Shipment, adds ShipmentItem records for all products on the order, creates a package
and route segment, and ties it all together)

e mantle.shipment.ShipmentServices.pack#ShipmentProduct (with the productld
and quantity from each OrderItem)

e mantle.shipment.ShipmentServices.pack#Shipment (the Shipment going to the
Packed status triggers invoicing with the
mantle.account.InvoiceServices.create#SalesShipmentInvoices service and
credit card payment capture)

e mantle.order.OrderServices.checkComplete#OrderPart (if all items in the order

part have been fulfilled change its status to Complete)
e mantle.shipment.ShipmentServices.ship#Shipment

Here is the XML for the shipment and related entities. There is a ShipmentItem record for
each productld, and a shipmentItemSource record to associate it with the orderItem and
InvoiceItem, and to keep track of pick/pack status (in this case Packed as we called the
pack#ShipmentProduct service). There is also a shipmentPackage plus a
ShipmentPackageContent record for each shipment item to associate it with the package.
Finally there is a ShipmentRouteSegment record and a shipmentPackageRouteSeg to
associate it with the package.

<mantle.shipment.Shipment shipmentId="${shipResult.shipmentId}"
shipmentTypeEnumId="ShpTpSales" statusId="ShipShipped"
fromPartyId="ORG BIZI RETAIL" toPartyId="CustJgp"/>

<mantle.shipment.ShipmentPackage shipmentId="${shipResult.shipmentId}"
shipmentPackageSeqId="01"/>

<mantle.shipment.ShipmentItem shipmentId="${shipResult.shipmentId}"
productId="DEMO 1 1" quantity="1"/>
<mantle.shipment.ShipmentItemSource shipmentItemSourceId="55500"

235 12. Mantle Business Artifacts

shipmentId="5${shipResult.shipmentId}" productId="DEMO 1 1"
orderId="S${cartOrderId}" orderItemSeqId="01" statusId="SisPacked"
quantity="1" invoiceId="55500" invoiceItemSeqId="01"/>

<mantle.shipment.ShipmentPackageContent
shipmentId="S${shipResult.shipmentId}" shipmentPackageSeqId="01"
productId="DEMO 1 1" quantity="1"/>

<mantle.shipment.ShipmentItem shipmentId="${shipResult.shipmentId}"
productId="DEMO 3 1" quantity="5"/>

<mantle.shipment.ShipmentItemSource shipmentItemSourceId="55501"
shipmentId="5${shipResult.shipmentId}" productId="DEMO 3 1"
orderId="S${cartOrderId}" orderItemSeqId="02" statusId="SisPacked"
quantity="5" invoiceId="55500" invoiceItemSeqId="02"/>

<mantle.shipment.ShipmentPackageContent
shipmentId="S${shipResult.shipmentId}" shipmentPackageSeqId="01"
productId="DEMO 3 1" quantity="5"/>

<mantle.shipment.ShipmentItem shipmentId="${shipResult.shipmentId}"
productId="DEMO 2 1" quantity="7"/>

<mantle.shipment.ShipmentItemSource shipmentItemSourceId="55502"
shipmentId="5${shipResult.shipmentId}" productId="DEMO 2 1"
orderId="S${cartOrderId}" orderItemSeqId="03" statusId="SisPacked"
quantity="7" invoiceId="55500" invoiceItemSeqId="03"/>

<mantle.shipment.ShipmentPackageContent
shipmentId="5${shipResult.shipmentId}" shipmentPackageSeqId="01"
productId="DEMO 2 1" quantity="7"/>

<mantle.shipment.ShipmentRouteSegment shipmentId="${shipResult.shipmentId}"

shipmentRouteSegmentSeqId="01" destPostalContactMechId="CustJgpAddr"

destTelecomContactMechId="CustJgpTeln"/>
<mantle.shipment.ShipmentPackageRouteSeg

shipmentId="S${shipResult.shipmentId}" shipmentPackageSeqId="01"

shipmentRouteSegmentSeqId="01"/>

Here is the orderHeader with its status updated based on the Complete orderpart:

<mantle.order.OrderHeader orderId="S${cartOrderId}"
statusId="OrderCompleted" />

When an shipmentItem (or more specifically a shipmentItemsource)is packed the

inventory, usually reserved so having a AssetReservation record, is issued to the shipment

and recorded in a AssetIssuance record plus a AssetDetail record with a

quantityOnHandDiff to adjust the Asset.quantityonHandTotal. Here are those records

for this shipment:

<mantle.product.asset.Asset assetId="DEMO 1 1A" quantityOnHandTotal="99"

availableToPromiseTotal="99"/>
<mantle.product.issuance.AssetIssuance assetIssuanceId="55500"
assetId="DEMO 1 1A" assetReservationId="55500"
orderId="5${cartOrderId}" orderItemSeqId="01"
shipmentId="5${shipResult.shipmentId}" productId="DEMO 1 1"

USL Business Processes

236

quantity="1"/>

<mantle.product.asset.AssetDetail assetDetailId="55503" assetId="DEMO 1 1A"
effectiveDate="S{effectiveTime}" quantityOnHandDiff="-1"
assetReservationId="55500" shipmentId="${shipResult.shipmentId}"
productId="DEMO 1 1" assetIssuanceId="55500"/>

<mantle.product.asset.Asset assetId="DEMO 3 1A" quantityOnHandTotal="0"
availableToPromiseTotal="0"/>

<mantle.product.issuance.AssetIssuance assetIssuanceId="55501"
assetId="DEMO 3 1A" assetReservationId="55501"
orderId="5${cartOrderId}" orderItemSeqId="02"
shipmentId="5${shipResult.shipmentId}" productId="DEMO 3 1"
quantity="5"/>

<mantle.product.asset.AssetDetail assetDetailId="55504" assetId="DEMO 3 1A"
effectiveDate="S{effectiveTime}" quantityOnHandDiff="-5"
assetReservationId="55501" shipmentId="S${shipResult.shipmentId}"
productId="DEMO 3 1" assetIssuanceId="55501"/>

<mantle.product.asset.Asset assetId="55500" quantityOnHandTotal="-7"
availableToPromiseTotal="-7"/>

<mantle.product.issuance.AssetIssuance assetIssuanceId="55502"
assetId="55500" assetReservationId="55502" orderId="${cartOrderId}"
orderItemSeqId="03" shipmentId="S${shipResult.shipmentId}"
productId="DEMO 2 1" quantity="7"/>

<mantle.product.asset.AssetDetail assetDetailId="55505" assetId="55500"
effectiveDate="S{effectiveTime}" quantityOnHandDiff="-7"
assetReservationId="55502" shipmentId="${shipResult.shipmentId}"
productId="DEMO 2 1" assetIssuanceId="55502"/>

Asset issuance is a business activity that has a financial impact, so there are accounting
transactions posted to the GL for it. The one exception is there is no AcctgTrans for assetId
55500, productId DEMO 2 1 because it is auto-created and has no acquirecost. For most
organizations you wouldn’t want to do this, i.e. the acquirecost field should always be
populated, but for simpler system needs where you don’t want to track the cost and
inventory value this is what is expected.

<mantle.ledger.transaction.AcctgTrans acctgTransId="55500"
acctgTransTypeEnumId="AttInventoryIssuance"
organizationPartyId="ORG BIZI RETAIL"
transactionDate="5${effectiveTime}" isPosted="Y"
postedDate="S${effectiveTime}" glFiscalTypeEnumId="GLFT ACTUAL"
amountUomId="USD" assetId="DEMO 1 1A" assetIssuanceId="55500"/>

<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55500"
acctgTransEntrySeqId="01" debitCreditFlag="C" amount="7.5"
glAccountTypeEnumId="INVENTORY ACCOUNT" glAccountId="140000"
reconcileStatusId="AES NOT RECONCILED" isSummary="N'
productId="DEMO 1 1"/>

<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55500"
acctgTransEntrySeqId="02" debitCreditFlag="D" amount="7.5"
glAccountTypeEnumId="COGS ACCOUNT" glAccountId="501000"

237 12. Mantle Business Artifacts

reconcileStatusId="AES NOT RECONCILED" isSummary="N"
productId="DEMO 1 1"/>

<mantle.ledger.transaction.AcctgTrans acctgTransId="55501"
acctgTransTypeEnumId="AttInventoryIssuance"
organizationPartyId="ORG BIZI RETAIL"
transactionDate="5{effectiveTime}" isPosted="Y"
postedDate="S${effectiveTime}" glFiscalTypeEnumId="GLFT ACTUAL"
amountUomId="USD" assetId="DEMO 3 1A" assetIssuanceId="55501"/>

<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55501"
acctgTransEntrySeqId="01" debitCreditFlag="C" amount="20"
glAccountTypeEnumId="INVENTORY ACCOUNT" glAccountId="140000"
reconcileStatusId="AES NOT RECONCILED" isSummary="N"
productId="DEMO 3 1"/>

<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55501"
acctgTransEntrySeqId="02" debitCreditFlag="D" amount="20"
glAccountTypeEnumId="COGS ACCOUNT" glAccountId="501000"
reconcileStatusId="AES NOT RECONCILED" isSummary="N"
productId="DEMO 3 1"/>

As mentioned above when a shipment goes into the Packed status it triggers the creation of
an Invoice for the order items on the shipment. Here is what that Invoice looks like with
its InvoiceItem records and orderItemBilling records that associate InvoiceItem records
with their corresponding orderItem records:

<mantle.account.invoice.Invoice invoiceId="55500"
invoiceTypeEnumId="InvoiceSales" fromPartyId="ORG BIZI RETAIL"
toPartyId="CustJgp" statusId="InvoicePmtRecvd"
invoiceDate="S${effectiveTime}"
description="Invoice for Order ${cartOrderId} part 01 and Shipment
${shipResult.shipmentId}" currencyUomId="USD"/>

<mantle.account.invoice.InvoiceItem invoiceId="55500" invoiceItemSeqId="01"
itemTypeEnumId="ItemProduct" productId="DEMO 1 1" quantity="1"
amount="16.99" description="Demo Product One-One"
itemDate="S${effectiveTime}"/>

<mantle.order.OrderItemBilling orderItemBillingId="55500"
orderId="5${cartOrderId}" orderItemSeqId="01" invoiceId="55500"
invoiceItemSeqId="01" assetIssuanceId="55500"
shipmentId="5${shipResult.shipmentId}" quantity="1" amount="16.99"/>

<mantle.account.invoice.InvoiceItem invoiceId="55500" invoiceItemSeqId="02"
itemTypeEnumId="ItemProduct" productId="DEMO 3 1" quantity="5"
amount="7.77" description="Demo Product Three-One"
itemDate="S${effectiveTime}"/>

<mantle.order.OrderItemBilling orderItemBillingId="55501"
orderId="5${cartOrderId}" orderItemSeqId="02" invoiceId="55500"
invoiceItemSeqId="02" assetIssuanceId="55501"
shipmentId="${shipResult.shipmentId}" quantity="5" amount="7.77"/>

USL Business Processes 238

<mantle.account.invoice.InvoiceIltem invoiceId="55500" invoiceItemSeqId="03"
itemTypeEnumId="ItemProduct" productId="DEMO 2 1" quantity="7"
amount="12.12" description="Demo Product Two-One"
itemDate="S{effectiveTime}"/>

<mantle.order.OrderItemBilling orderItemBillingId="55502"
orderId="S${cartOrderId}" orderItemSeqId="03" invoiceId="55500"
invoiceItemSeqId="03" assetIssuanceId="55502"
shipmentId="S${shipResult.shipmentId}" quantity="7" amount="12.12"/>

<mantle.account.invoice.InvoiceIltem invoiceId="55500" invoiceItemSeqId="04"
itemTypeEnumId="ItemShipping" quantity="1" amount="5"
description="Ground" itemDate="S${effectiveTime}"/>

<mantle.order.OrderItemBilling orderItemBillingId="55503"
orderId="S${cartOrderId}" orderItemSeqId="04" invoiceId="55500"
invoiceItemSeqId="04" shipmentId="S${shipResult.shipmentId}"
quantity="1" amount="5"/>

Invoices are records with a financial impact so they also have accounting transactions posted
to the GL. There is one transaction entry (AcctgTransEntry) per InvoiceItem to credit the
applicable sales account (or shipping/handling received account), and one balancing entry to
debit the Accounts Receivable account.

<mantle.ledger.transaction.AcctgTrans acctgTransId="55502"
acctgTransTypeEnumId="AttSalesInvoice"
organizationPartyId="ORG BIZI RETAIL"
transactionDate="${effectiveTime}" isPosted="Y"
postedDate="S${effectiveTime}" glFiscalTypeEnumId="GLFT ACTUAL"
amountUomId="USD" otherPartyId="CustJgp" invoiceId="55500"/>
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55502"
acctgTransEntrySeqId="01" debitCreditFlag="C" amount="16.99"
glAccountId="401000" reconcileStatusId="AES NOT RECONCILED"
isSummary="N" productId="DEMO 1 1" invoiceItemSeqId="01"/>
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55502"
acctgTransEntrySeqId="02" debitCreditFlag="C" amount="38.85"
glAccountId="401000" reconcileStatusId="AES NOT RECONCILED"
isSummary="N" productId="DEMO 3 1" invoiceItemSeqId="02"/>
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55502"
acctgTransEntrySeqId="03" debitCreditFlag="C" amount="84.84"
glAccountId="401000" reconcileStatusId="AES NOT RECONCILED"
isSummary="N" productId="DEMO 2 1" invoiceItemSeqId="03"/>
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55502"
acctgTransEntrySeqId="04" debitCreditFlag="C" amount="5"
glAccountId="731200" reconcileStatusId="AES NOT RECONCILED"
isSummary="N" invoiceItemSeqId="04"/>
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55502"
acctgTransEntrySeqId="05" debitCreditFlag="D" amount="145.68"
glAccountTypeEnumId="ACCOUNTS RECEIVABLE" glAccountId="120000"
reconcileStatusId="AES NOT RECONCILED" isSummary="N"/>

239 12. Mantle Business Artifacts

The final operation is to capture the credit card payment resulting in a
PaymentGatewayResponse record and an update of the Payment status to Delivered. This
also has an AcctgTrans record with entries for the cash account and accounts receivable
account.

<mantle.account.payment.Payment paymentId="S${setInfoOut.paymentId}"
statusId="PmntDelivered"/>

<mantle.account.payment.PaymentApplication paymentApplicationId="55500"
paymentId="5${setInfoOut.paymentId}" invoiceId="55500"
amountApplied="145.68" appliedDate="S${effectiveTime}"/>

<mantle.account.method.PaymentGatewayResponse
paymentGatewayResponseId="55501" paymentOperationEnumId="PgoCapture"
paymentId="5${setInfoOut.paymentId}" paymentMethodId="CustJgpCc"
amount="145.68" amountUomId="USD" transactionDate="${effectiveTime}"
resultSuccess="Y" resultDeclined="N" resultNsf="N"
resultBadExpire="N" resultBadCardNumber="N"/>

<mantle.ledger.transaction.AcctgTrans acctgTransId="55503"
acctgTransTypeEnumId="AttIncomingPayment"
organizationPartyId="ORG BIZI RETAIL"
transactionDate="${effectiveTime}" isPosted="Y"
glFiscalTypeEnumId="GLFT ACTUAL" amountUomId="USD"
otherPartyId="CustJgp" paymentId="S${setInfoOut.paymentId}"/>

<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55503"
acctgTransEntrySeqId="01" debitCreditFlag="C" amount="145.68"
glAccountId="120000" reconcileStatusId="AES NOT RECONCILED"
isSummary="N"/>

<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55503"
acctgTransEntrySeqId="02" debitCreditFlag="D" amount="145.68"
glAccountId="122000" reconcileStatusId="AES NOT RECONCILED"
isSummary="N"/>

With the items shipped, payment received, and everything posted to the general ledger the
Order to Cash process is complete.

Work Plan to Cash

The Spock test suite for this process is in the WorkPlanToCashBasicFlow.groovy file. This is
the main process supported by the HiveMind Project Manager application.

Some of the more relevant setup data is shown in the examples below but you can find the
rest of it in the ZzaGlAccountsDemoData.xml, ZzbOrganizationDemoData.xml, and
ZzcProductDemoData.xml files.

Vendor

The first thing to setup in a system for a services organization is the vendor, the services
organization itself. This is an 0rganization type Party with the role of Internal

USL Business Processes 240

Organization (0OrgInternal). Itis also in the vendor (vendorBillFrom) role. It also has a
full accounting configuration copied from the 'Defaultsettings' Party (defined in the
ZzaGlAccountsDemoData.xmlfﬂe)uﬁngtheinit#PartyAccountingConfiguration
service. This also uses the create#Account service to create a representative (for AR/ AP/
etc) of the vendor organization that is a Person type Party with a UseraAccount.

long effectiveTime = System.currentTimeMillis()
ec.user.loginUser("john.doe", "moqui", null)
// set an effective date so data check works, etc
ec.user.setEffectiveTime (new Timestamp(effectiveTime))
effectiveThruDate = ec.ll0n.parseTimestamp (
ec.1l10n.formatValue(ec.user.nowTimestamp, 'yyyy-MM-dd HH:mm'),
'yyyy-MM-dd HH:mm')
Map vendorResult = ec.service.sync()
.name("mantle.party.PartyServices.create#Organization")
.parameters([roleTypeld: 'VendorBillFrom',
organizationName: 'Test Vendor']).call()
Map vendorCiResult = ec.service.sync()
.name("mantle.party.ContactServices.store#PartyContactInfo")
.parameters ([partyId:vendorResult.partyId,
postalContactMechPurposeId: 'PostalPayment’',
telecomContactMechPurposelId: 'PhonePayment',
emailContactMechPurposeId: 'EmailPayment', countryGeoId:'USA',
addressl: '51 W. Center St.', unitNumber:'1234', city:'Orem',
stateProvinceGeoId: 'USA UT', postalCode:'84057',
postalCodeExt: '4605', countryCode:'+1', areaCode:'801',
contactNumber: '123-4567', emailAddress: 'vendor.ar@test.com'])
.call()
ec.service.sync().name("create#mantle.party.PartyRole")
.parameters([partyId:vendorResult.partyId, roleTypeld: 'OrgInternal'])
.call()
ec.service.sync()
.name("mantle.ledger.LedgerServices.init#PartyAccountingConfiguration")
.parameters ([sourcePartyId: 'DefaultSettings’,
organizationPartyId:vendorResult.partyId]).call()

Map vendorRepResult = ec.service.sync()
.name("mantle.party.PartyServices.create#Account")
.parameters([firstName: 'Vendor', lastName:'TestRep',
emailAddress: 'vendor.rep@test.com', username: 'vendor.rep',
newPassword: 'moquil!', newPasswordVerify: 'moquil!",
loginAfterCreate: 'false']).call()
Map repRelResult = ec.service.sync()
.name("create#mantle.party.PartyRelationship")
.parameters([relationshipTypeEnumId: 'PrtRepresentative’,
fromPartyId:vendorRepResult.partyId, fromRoleTypeld: ' Manager',
toPartyId:vendorResult.partyId, toRoleTypeld: 'VendorBillFrom',
fromDate:ec.user.nowTimestamp]).call()

Here are the records for the vendor organization and its contact information:

241 12. Mantle Business Artifacts

<mantle.party.Party partyId="S${vendorResult.partyId}"
partyTypeEnumId="PtyOrganization"/>

<mantle.party.Organization partyId="${vendorResult.partyId}"
organizationName="Test Vendor"/>

<mantle.party.PartyRole partyId="§${vendorResult.partyId}"
roleTypeId="OrgInternal"/>

<mantle.party.PartyRole partyId="§${vendorResult.partyId}"
roleTypeId="VendorBillFrom" />

<mantle.party.contact.ContactMech
contactMechId="S{vendorCiResult.postalContactMechId}"
contactMechTypeEnumId="CmtPostalAddress" />
<mantle.party.contact.PostalAddress
contactMechId="S{vendorCiResult.postalContactMechId}"
addressl="51 W. Center St." unitNumber="1234" city="Orem"
stateProvinceGeoId="USA UT" countryGeoId="USA" postalCode="84057"
postalCodeExt="4605"/>
<mantle.party.contact.PartyContactMech partyId="${vendorResult.partyId}"
contactMechId="S{vendorCiResult.postalContactMechId}"
contactMechPurposeId="PostalPayment" fromDate="${effectiveTime}"/>
<mantle.party.contact.ContactMech
contactMechlId="5{vendorCiResult.telecomContactMechId}"
contactMechTypeEnumId="CmtTelecomNumber" />
<mantle.party.contact.PartyContactMech partyId="${vendorResult.partyId}"
contactMechlId="5{vendorCiResult.telecomContactMechId}"
contactMechPurposeId="PhonePayment" fromDate="S{effectiveTime}"/>
<mantle.party.contact.TelecomNumber
contactMechId="S{vendorCiResult.telecomContactMechId}" countryCode="+1"
areaCode="801" contactNumber="123-4567"/>
<mantle.party.contact.ContactMech
contactMechId="5{vendorCiResult.emailContactMechId}"
contactMechTypeEnumId="CmtEmailAddress"
infoString="vendor.ar@test.com"/>
<mantle.party.contact.PartyContactMech partyId="${vendorResult.partyId}"
contactMechId="5{vendorCiResult.emailContactMechId}"
contactMechPurposeId="EmailPayment" fromDate="S{effectiveTime}"/>

Here are the records for the accounting configuration for the vendor. The various
configuration records (GlAccountTypeDefault, ItemTypeGlAccount, GlAccountOrganization,
PaymentTypeGlAccount, etc) are a small selection and there are many others copied from the
'DefaultSettings' Party.

<mantle.ledger.transaction.GlJournal
glJdournalIlId="S${vendorResult.partyId}Error"
glJdournalName="Error Journal for ${vendorResult.partyId}"
organizationPartyId="${vendorResult.partyId}"/>

<mantle.ledger.config.PartyAcctgPreference
organizationPartyId="S{vendorResult.partyId}"
taxFormEnumId="TxfUsIrs1120" cogsMethodEnumId="CogsActualCost"
baseCurrencyUomId="USD" invoiceSequenceEnumId="InvSgStandard"

USL Business Processes 242

orderSequenceEnumId="0OrdSgStandard"
errorGlJournalId="S${vendorResult.partyId}Error"/>
<mantle.ledger.config.GlAccountTypeDefault
glAccountTypeEnumId="ACCOUNTS RECEIVABLE"
organizationPartyId="${vendorResult.partyId}" glAccountId="120000"/>
<mantle.ledger.config.GlAccountTypeDefault
glAccountTypeEnumId="ACCOUNTS PAYABLE"
organizationPartylId="${vendorResult.partyId}" glAccountId="210000"/>
<mantle.ledger.config.PaymentMethodTypeGlAccount
paymentMethodTypeEnumId="PmtCompanyCheck"
organizationPartyId="${vendorResult.partyId}" glAccountId="111100"/>
<mantle.ledger.config.ItemTypeGlAccount glAccountId="402000" direction="0O"
itemTypeEnumId="ItemTimeEntry"
organizationPartylId="${vendorResult.partyId}"/>
<mantle.ledger.config.ItemTypeGlAccount glAccountId="550000" direction="1I"
itemTypeEnumId="ItemTimeEntry"
organizationPartylId="${vendorResult.partyId}"/>
<mantle.ledger.config.ItemTypeGlAccount itemTypeEnumId="ItemExpTravAir"
direction="E" glAccountId="681000"
organizationPartylId="${vendorResult.partyId}"/>
<mantle.ledger.account.GlAccountOrganization glAccountId="120000"
organizationPartylId="${vendorResult.partyId}"/>
<mantle.ledger.account.GlAccountOrganization glAccountId="210000"
organizationPartylId="${vendorResult.partyId}"/>
<mantle.ledger.config.PaymentTypeGlAccount
paymentTypeEnumId="PtInvoicePayment"
organizationPartyId="S{vendorResult.partyId}" isPayable="N"
isApplied="Y" glAccountId="120000"/>
<mantle.ledger.config.PaymentTypeGlAccount
paymentTypeEnumId="PtInvoicePayment"
organizationPartyId="S{vendorResult.partyId}" isPayable="Y"
isApplied="Y" glAccountId="210000"/>

Here are the records for the vendor representative Person and its contact information. Note
that the passwordSalt is randomly generated so the SHA-256 encrypted password will be
different from any other run.

<mantle.party.Party partyId="S${vendorRepResult.partyId}"
partyTypeEnumId="PtyPerson" disabled="N"/>
<mantle.party.Person partylId="${vendorRepResult.partyId}"
firstName="Vendor" lastName="TestRep"/>
<moqui.security.UserAccount userId="${vendorRepResult.userId}"
username="vendor.rep" userFullName="Vendor TestRep"
passwordHashType="SHA-256" passwordSetDate="S${effectiveTime}"
disabled="N" requirePasswordChange="N"
emailAddress="vendor.repltest.com" passwordSalt="{.rglPt8x"
partyId="S${vendorRepResult.partyId}" currentPassword="32ce60cl4d9e72cl
fb17938ede30fe9de04390409cce7310743¢c2716a2c7b£89" />
<mantle.party.contact.ContactMech
contactMechId="S {vendorRepResult.emailContactMechId}"

243 12. Mantle Business Artifacts

contactMechTypeEnumId="CmtEmailAddress"
infoString="vendor.repltest.com"/>

<mantle.party.contact.PartyContactMech partyId="${vendorRepResult.partyId}"
contactMechId="S{vendorRepResult.emailContactMechId}"
contactMechPurposeId="EmailPrimary" fromDate="S{effectiveTime}"/>

<mantle.party.PartyRelationship
partyRelationshipId="5${repRelResult.partyRelationshipId}"
relationshipTypeEnumId="PrtRepresentative"
fromPartyId="S{vendorRepResult.partyId}" fromRoleTypeld="Manager"
toPartylId="S${vendorResult.partyId}" toRoleTypeld="VendorBillFrom"
fromDate="S${effectiveTime}"/>

Worker and Rates

The code below creates a Person type Party and UserAccount for a worker, i.e. someone to
work on tasks. It also creates two RateAmount records, one for the $60 rate the vendor (the
internal organization, i.e. the org running the system) will bill the client, and another for the
$40 rate the worker as an external contractor will bill to the vendor. The worker is related to
the vendor as an agent with a PartyRelationship record of type PrtAgent.

Map workerResult = ec.service.sync()
.name("mantle.party.PartyServices.create#Account")
.parameters([firstName: 'Test', lastName: Worker',
emailAddress: 'worker@test.com', username: 'worker',
newPassword: 'moquil!', newPasswordVerify: 'moquil!"',
loginAfterCreate: 'false']).call()
Map workerRelResult = ec.service.sync()
.name("create#mantle.party.PartyRelationship")
.parameters([relationshipTypeEnumId: 'PrtAgent’,
fromPartyId:workerResult.partyId, fromRoleTypeId: Worker',
toPartyId:vendorResult.partyId, toRoleTypeld: ' VendorBillFrom',
fromDate:ec.user.nowTimestamp]).call()
Map clientRateResult = ec.service.sync()
.name("create#mantle.humanres.rate.RateAmount")
.parameters([rateTypeEnumId: 'RatpStandard',
ratePurposeEnumId: 'RaprClient', timePeriodUomId:'TF hr',
emplPositionClassId: 'Programmer', fromDate:'2010-02-03 00:00:00",
rateAmount: '60.00', rateCurrencyUomId: 'USD',
partyId:workerResult.partyId]).call()
Map vendorRateResult = ec.service.sync()
.name("create#mantle.humanres.rate.RateAmount")
.parameters([rateTypeEnumId: 'RatpStandard',
ratePurposeEnumId: 'RaprVendor', timePeriodUomId:'TF hr',
emplPositionClassId: 'Programmer', fromDate:'2010-02-03 00:00:00",
rateAmount: '40.00', rateCurrencyUomId: 'USD',
partyId:workerResult.partyId]).call()

Here are the records for the worker pParty and the billing rates:

<mantle.party.Party partyId="S${workerResult.partyId}"
USL Business Processes 244

partyTypeEnumId="PtyPerson" disabled="N"/>

<mantle.party.Person partylId="${workerResult.partyId}" firstName="Test"
lastName="Worker"/>

<moqui.security.UserAccount userId="${workerResult.userId}"
username="worker" userFullName="Test Worker" passwordHashType="SHA-256"
passwordSetDate="S${effectiveTime}" disabled="N"
requirePasswordChange="N" emailAddress="worker@test.com"
partyId="S${workerResult.partyId}" passwordSalt="{.rglbPt8x"
currentPassword="32ce60c14d9e72c1fb17938ede30fe9de04390409cce7310743

c2716a2c7b£f89" />

<mantle.party.contact.ContactMech
contactMechId="5{workerResult.emailContactMechId}"
contactMechTypeEnumId="CmtEmailAddress" infoString="worker@test.com"/>

<mantle.party.contact.PartyContactMech partyId="S${workerResult.partyId}"
contactMechId="5{workerResult.emailContactMechId}"
contactMechPurposeId="EmailPrimary" fromDate="S{effectiveTime}"/>

<mantle.party.PartyRelationship
partyRelationshipId="5{workerRelResult.partyRelationshipId}"
relationshipTypeEnumId="PrtAgent" fromPartyId="S${workerResult.partyId}"
fromRoleTypeId="Worker" toPartyId="S${vendorResult.partyId}"
toRoleTypeld="VendorBillFrom" fromDate="S{effectiveTime}"/>

<mantle.humanres.rate.RateAmount
rateAmountId="S${clientRateResult.rateAmountId}"
rateTypeEnumId="RatpStandard" ratePurposeEnumId="RaprClient"
timePeriodUomId="TF hr" partyId="S${workerResult.partyId}"
emplPositionClassId="Programmer" fromDate="2010-02-03 00:00:00"
rateAmount="60.00" rateCurrencyUomId="USD"/>

<mantle.humanres.rate.RateAmount
rateAmountId="5{vendorRateResult.rateAmountId}"
rateTypeEnumId="RatpStandard" ratePurposeEnumId="RaprVendor"
timePeriodUomId="TF hr" partyId="S${workerResult.partyId}"
emplPositionClassId="Programmer" fromDate="2010-02-03 00:00:00"
rateAmount="40.00" rateCurrencyUomId="USD"/>

Client

Below is the code that create the client (CustomerBillTo) Organization, and a Person that
is a representative (with a PartyRelationship of type PrtRepresentative) of the client
along with contact information, etc.

Map clientResult = ec.service.sync()
.name("mantle.party.PartyServices.create#0Organization")
.parameters([roleTypeId: 'CustomerBillTo",
organizationName: 'Test Client']).call()
Map clientCiResult = ec.service.sync()
.name("mantle.party.ContactServices.store#PartyContactInfo")
.parameters([partyId:clientResult.partyId,
postalContactMechPurposeId: 'PostalBilling',

245 12. Mantle Business Artifacts

telecomContactMechPurposelId: 'PhoneBilling',

emailContactMechPurposeId: 'EmailBilling', countryGeolId: 'USA',

addressl:'1350 E. Flamingo Rd.', unitNumber:'1234°',

city:'Las Vegas', stateProvinceGeolId: 'USA NV', postalCode: '89119'

postalCodeExt: '5263', countryCode:'+1', areaCode:'702',

contactNumber: '123-4567", emailAddress: 'client.ap@test.com'])
.call()

Map clientRepResult = ec.service.sync()
.name("mantle.party.PartyServices.create#Account")
.parameters([firstName: 'Client', lastName: TestRep',
emailAddress: 'client.rep@test.com', username: 'client.rep',
newPassword: 'moquil!', newPasswordVerify: 'moquil!"',
loginAfterCreate: 'false']).call()
Map repRelResult = ec.service.sync()
.name("create#mantle.party.PartyRelationship")
.parameters([relationshipTypeEnumId: 'PrtRepresentative',
fromPartyId:clientRepResult.partyId,
fromRoleTypeId: 'ClientBilling', toPartyId:clientResult.partyId,
toRoleTypeld: 'CustomerBillTo', fromDate:ec.user.nowTimestamp])
.call()

Here are the records for the client, contact info, and client representative:

<mantle.party.Party partyId="S${clientResult.partyId}"
partyTypeEnumId="PtyOrganization"/>

<mantle.party.Organization partyId="${clientResult.partyId}"
organizationName="Test Client"/>

<mantle.party.PartyRole partyId="${clientResult.partyId}"
roleTypeId="CustomerBillTo" />

<mantle.party.contact.ContactMech
contactMechId="S${clientCiResult.postalContactMechId}"
contactMechTypeEnumId="CmtPostalAddress" />

<mantle.party.contact.PostalAddress
contactMechId="S${clientCiResult.postalContactMechId}"
address1="1350 E. Flamingo Rd." unitNumber="1234" city="Las Vegas"
stateProvinceGeoId="USA NV" countryGeoId="USA" postalCode="89119"
postalCodeExt="5263"/>

<mantle.party.contact.PartyContactMech partyId="${clientResult.partyId}"
contactMechId="S${clientCiResult.postalContactMechId}"
contactMechPurposeId="PostalBilling" fromDate="${effectiveTime}"/>

<mantle.party.contact.ContactMech
contactMechId="S${clientCiResult.telecomContactMechId}"
contactMechTypeEnumId="CmtTelecomNumber" />

<mantle.party.contact.PartyContactMech partyId="${clientResult.partyId}"
contactMechId="S${clientCiResult.telecomContactMechId}"
contactMechPurposeId="PhoneBilling" fromDate="S${effectiveTime}"/>

<mantle.party.contact.TelecomNumber

14

contactMechId="S${clientCiResult.telecomContactMechId}" countryCode="+1"

areaCode="702" contactNumber="123-4567"/>

USL Business Processes

246

<mantle.party.contact.ContactMech
contactMechId="${clientCiResult.emailContactMechId}"
contactMechTypeEnumId="CmtEmailAddress"
infoString="client.ap@test.com"/>

<mantle.party.contact.PartyContactMech partyId="${clientResult.partyId}"
contactMechId="${clientCiResult.emailContactMechId}"
contactMechPurposeId="EmailBilling" fromDate="S{effectiveTime}"/>

<mantle.party.Party partyId="S${clientRepResult.partyId}"
partyTypeEnumId="PtyPerson" disabled="N"/>

<mantle.party.Person partyId="${clientRepResult.partyId}"
firstName="Client" lastName="TestRep"/>

<moqui.security.UserAccount userId="${clientRepResult.userId}"
username="client.rep" userFullName="Client TestRep"
passwordHashType="SHA-256" passwordSetDate="S${effectiveTime}"
disabled="N" requirePasswordChange="N"
emailAddress="client.rep@test.com"
partyId="S${clientRepResult.partyId}" passwordSalt="{.rglPt8x"
currentPassword="32ce60c14d9e72c1fb17938ede30fe9de04390409cce7310743

c2716a2c7b£f89" />

<mantle.party.contact.ContactMech
contactMechId="${clientRepResult.emailContactMechId}"
contactMechTypeEnumId="CmtEmailAddress"
infoString="client.rep@test.com"/>

<mantle.party.contact.PartyContactMech partyId="${clientRepResult.partyId}"
contactMechId="${clientRepResult.emailContactMechId}"
contactMechPurposeId="EmailPrimary" fromDate="${effectiveTime}"/>

<mantle.party.PartyRelationship
partyRelationshipId="S${repRelResult.partyRelationshipId}"
relationshipTypeEnumId="PrtRepresentative"
fromPartyId="S${clientRepResult.partyId}" fromRoleTypeId="ClientBilling"
toPartyId="S${clientResult.partyId}" toRoleTypeld="CustomerBillTo"
fromDate="S${effectiveTime}"/>

Project and Milestone

This code creates a Project type WorkEf fort with the client and vendor set, and assigns the
worker Person created above as a Worker. Note that the WworkEffortParty record for the
assignment has a emplPositionClassId of Programmer which is used for looking up the
RateAmount record create above for the billing rate.

ec.service.sync().name("'mantle.work.ProjectServices.create#Project")
.parameters ([workEffortId: 'TEST', workEffortName:'Test Project',
statusId: 'WeInProgress', clientPartyId:clientResult.partyId,
vendorPartyId:vendorResult.partyId]).call()
ec.service.sync().name("create#mantle.work.effort.WorkEffortParty")
.parameters ([workEffortId: 'TEST', partyId:workerResult.partyld,
roleTypeld: 'Worker', emplPositionClassId:'Programmer',
fromDate: '2013-11-01"', statusId: PRTYASGN ASSIGNED']).call()

247 12. Mantle Business Artifacts

Here are the records for the project and the client (CustomerBillTo), vendor
(VendorBillFrom) and worker (Worker) associated with it:

<mantle.work.effort.WorkEffort workEffortId="TEST"
workEffortTypeEnumId="WetProject" statusId="WeInProgress"
workEffortName="Test Project"/>
<mantle.work.effort.WorkEffortParty workEffortId="TEST"
partyId="EX JOHN DOE" roleTypeId="Manager" fromDate="S${effectiveTime}"
statusId="PRTYASGN ASSIGNED"/>
<mantle.work.effort.WorkEffortParty workEffortId="TEST"
partyId="S${clientResult.partyId}" roleTypelId="CustomerBillTo"
fromDate="S${effectiveTime}" />
<mantle.work.effort.WorkEffortParty workEffortId="TEST"
partyId="S${vendorResult.partyId}" roleTypelId="VendorBillFrom"
fromDate="S${effectiveTime}" />
<mantle.work.effort.WorkEffortParty workEffortId="TEST"
partyId="s${workerResult.partyId}" roleTypelId="Worker"
fromDate="1383282000000" statusId="PRTYASGN ASSIGNED"
emplPositionClassId="Programmer"/>

The workEffort.statusId field is audit logged and here is the EntityAuditLog record for
the status change from In Planning to In Progress:

<moqui.entity.EntityAuditLog auditHistorySeqId="55911"
changedEntityName="mantle.work.effort.WorkEffort"
changedFieldName="statusId" pkPrimaryValue="TEST"
oldvValueText="WeInPlanning" newValueText="WeInProgress"
changedDate="${effectiveTime}" changedByUserId="EX JOHN DOE"/>

Next we'll create a couple of milestones for the project:

ec.service.sync().name("'mantle.work.ProjectServices.create#Milestone")
.parameters ([rootWorkEffortId: 'TEST', workEffortId:'TEST-MS-01',
workEffortName: 'Test Milestone 1', estimatedStartDate:'2013-11-01",
estimatedCompletionDate: '2013-11-30', statusId: 'WeInProgress'])
.call()

ec.service.sync().name("'mantle.work.ProjectServices.create#Milestone")
.parameters ([rootWorkEffortId: 'TEST', workEffortId:'TEST-MS-02',
workEffortName: 'Test Milestone 2', estimatedStartDate:'2013-12-01",
estimatedCompletionDate: '2013-12-31"', statusId: WeApproved'])
.call()

Here are the milestone records. They are of type wetMilestone and are associated with the
project using the rootWorkEf fort1d field.

<mantle.work.effort.WorkEffort workEffortId="TEST-MS-01"
rootWorkEffortId="TEST" workEffortTypeEnumId="WetMilestone"
statusId="WeInProgress" workEffortName="Test Milestone 1"
estimatedStartDate="2013-11-01 00:00:00.0"
estimatedCompletionDate="2013-11-30 00:00:00.0"/>

<mantle.work.effort.WorkEffort workEffortId="TEST-MS-02"

USL Business Processes 248

rootWorkEffortId="TEST" workEffortTypeEnumId="WetMilestone"
statusId="WeApproved" workEffortName="Test Milestone 2"
estimatedStartDate="2013-12-01 00:00:00.0"
estimatedCompletionDate="2013-12-31 00:00:00.0"/>

Tasks and Time Entries

These service calls create 3 tasks with their own purpose, status, priority, estimated work
time, etc:

ec.service.sync().name("mantle.work.TaskServices.create#Task")
.parameters([rootWorkEffortId: 'TEST', parentWorkEffortId:null,
workEffortId: 'TEST-001', milestoneWorkEffortId: ' TEST-MS-01",
workEffortName: 'Test Task 1', estimatedCompletionDate:'2013-11-15",
statusId: 'WeApproved', assignToPartyId:workerResult.partyId,
priority:3, purposeEnumId: 'WepTask', estimatedWorkTime:10,
description: 'Will be really great when it\'s done'])
.call()
ec.service.sync().name("mantle.work.TaskServices.create#Task")
.parameters([rootWorkEffortId: 'TEST', parentWorkEffortId:' 'TEST-001",
workEffortId: 'TEST-001A', milestoneWorkEffortId: ' TEST-MS-01",
workEffortName: 'Test Task 1A',
estimatedCompletionDate: '2013-11-15"', statusId: 'WeInPlanning',
assignToPartyId:workerResult.partyId, priority:4,
purposeEnumId: 'WepNewFeature', estimatedWorkTime:2,
description: 'One piece of the puzzle'])
.call()
ec.service.sync().name("mantle.work.TaskServices.create#Task")
.parameters([rootWorkEffortId: 'TEST', parentWorkEffortId:' 'TEST-001",
workEffortId: 'TEST-001B', milestoneWorkEffortId: ' TEST-MS-01",
workEffortName: 'Test Task 1B',
estimatedCompletionDate: '2013-11-15"', statusId: ' WeApproved',
assignToPartyId:workerResult.partyId, priority:4,
purposeEnumId: 'WepFix', estimatedWorkTime:2,
description: 'Broken piece of the puzzle'])
.call()

Here are the records produced by those service calls including a WorkEffort record with a
rootWorkEffortld connection it to the product and a WorkEffortAssoc record connecting it to
the milestone. There is also a WorkEffortParty record for each task for the worker that is
associated with it. Note that the estimatedCompletionDate is in the milliseconds since epoch

format. This is the case for all entity XML exported data to avoid issues with time zones and
such.

<mantle.work.effort.WorkEffort workEffortId="TEST-001"
rootWorkEffortId="TEST" workEffortTypeEnumId="WetTask"
purposeEnumId="WepTask" resolutionEnumId="WerUnresolved"
statusId="WeApproved" priority="3" workEffortName="Test Task 1"
description="Will be really great when it's done"

249 12. Mantle Business Artifacts

estimatedCompletionDate="1384495200000" estimatedWorkTime="10"
remainingWorkTime="10" timeUomId="TF hr"/>

<mantle.work.effort.WorkEffortParty workEffortId="TEST-001"
partyId="S${workerResult.partyId}" roleTypeId="Worker"
fromDate="S{effectiveTime}" statusId="PRTYASGN ASSIGNED"/>

<mantle.work.effort.WorkEffortAssoc workEffortId="TEST-MS-01"
toWorkEffortId="TEST-001" workEffortAssocTypeEnumId="WeatMilestone"
fromDate="S${effectiveTime}"/>

<mantle.work.effort.WorkEffort workEffortId="TEST-001A"
parentWorkEffortId="TEST-001" rootWorkEffortId="TEST"
workEffortTypeEnumId="WetTask" purposeEnumId="WepNewFeature"
resolutionEnumId="WerUnresolved" statusId="WeInPlanning" priority="4"
workEffortName="Test Task 1A" description="One piece of the puzzle"
estimatedCompletionDate="1384495200000" estimatedWorkTime="2"
remainingWorkTime="2" timeUomId="TF hr"/>

<mantle.work.effort.WorkEffortParty workEffortId="TEST-001A"
partylId="S${workerResult.partyId}" roleTypeId="Worker"
fromDate="5{effectiveTime}" statusId="PRTYASGN ASSIGNED"/>

<mantle.work.effort.WorkEffortAssoc workEffortId="TEST-MS-01"
toWorkEffortId="TEST-001A" workEffortAssocTypeEnumId="WeatMilestone"
fromDate="S${effectiveTime}"/>

<mantle.work.effort.WorkEffort workEffortId="TEST-001B"
parentWorkEffortId="TEST-001" rootWorkEffortId="TEST"
workEffortTypeEnumId="WetTask" purposeEnumId="WepFix"
resolutionEnumId="WerUnresolved" statusId="WeApproved" priority="4"
workEffortName="Test Task 1B" description="Broken piece of the puzzle"
estimatedCompletionDate="1384495200000" estimatedWorkTime="2"
remainingWorkTime="2" timeUomId="TF hr"/>

<mantle.work.effort.WorkEffortParty workEffortId="TEST-001B"
partylId="S${workerResult.partyId}" roleTypeId="Worker"
fromDate="S{effectiveTime}" statusId="PRTYASGN ASSIGNED"/>

<mantle.work.effort.WorkEffortAssoc workEffortId="TEST-MS-01"
toWorkEffortId="TEST-001B" workEffortAssocTypeEnumId="WeatMilestone"
fromDate="S${effectiveTime}"/>

This code first updates the status of the 3 tasks to In Progress.

Then there are 3 different examples of recording time worked on a task for common options
that a user recording time might use. The first specifies the hours worked and the
remainingWorkTime, and the from and thru dates for the TimeEntry are calculated based on
the thrubate being set to the current date/time. The second call has hours worked and
breakHours, and again no from/thru dates and in this case the thrupate is the current
date/time and the frombate is the thrubate minus (hours + breakHours). In the third call
it specifies the breakHours, the frombate and the thrubate and the hours are calculated
based on that.

Finally it sets the status of all 3 tasks to Completed.

USL Business Processes 250

ec.service.sync().name("mantle.work.TaskServices.update#Task")

.parameters ([workEffortId: 'TEST-001', statusId: WeInProgress']).call()
ec.service.sync().name("mantle.work.TaskServices.update#Task")

.parameters ([workEffortId: 'TEST-001A', statusId: WelInProgress']).call()
ec.service.sync().name("mantle.work.TaskServices.update#Task")

.parameters ([workEffortId: 'TEST-001B', statusId: WelInProgress']).call()

ec.service.sync().name("mantle.work.TaskServices.add#TaskTime")
.parameters([workEffortId: TEST-001', partyId:workerResult.partyId,
rateTypeEnumId: 'RatpStandard', remainingWorkTime:3, hours:6,
fromDate:null, thruDate:null, breakHours:null]).call()

ec.service.sync().name("mantle.work.TaskServices.add#TaskTime")
.parameters([workEffortId: TEST-001A"', partyId:workerResult.partyId,
rateTypeEnumId: 'RatpStandard', remainingWorkTime:1l, hours:1.5,
fromDate:null, thruDate:null, breakHours:0.5]).call()

ec.service.sync().name("mantle.work.TaskServices.add#TaskTime")
.parameters([workEffortId: TEST-001B', partyId:workerResult.partyId,
rateTypeEnumId: 'RatpStandard', remainingWorkTime:0.5, hours:null,
fromDate:"2013-11-03 12:00:00", thruDate:"2013-11-03 15:00:00",
breakHours:1]).call()

ec.service.sync().name("mantle.work.TaskServices.update#Task")
.parameters ([workEffortId: 'TEST-001', statusId: WeComplete',
resolutionEnumId: 'WerCompleted']).call()
ec.service.sync().name("mantle.work.TaskServices.update#Task")
.parameters ([workEffortId: 'TEST-001A', statusId: 'WeComplete',
resolutionEnumId: 'WerCompleted']).call()
ec.service.sync().name("mantle.work.TaskServices.update#Task")
.parameters ([workEffortId: 'TEST-001B', statusId:'WeComplete',
resolutionEnumId: 'WerCompleted']).call()

Below are the updated workEffort records with the fields that were changed including
resolution, status, and remaining and actual work times. Also below are the TimeEntry
records for each task. Note that the rateAmount1d field gets filled in automatically based on
the most relevant RateAmount record for the worker Party. That rate is used for displaying
the rate and total cost for the TimeEntry, and as the amount on the Invoiceltem records later
on when they are created for worker and client (as shown in the 2 invoice and payment
sections below).

<mantle.work.effort.WorkEffort workEffortId="TEST-001"
resolutionEnumId="WerCompleted" statusId="WeComplete"
estimatedWorkTime="10" remainingWorkTime="3" actualWorkTime="6"/>

<mantle.work.time.TimeEntry timeEntryId="55900"
partyId="S{workerResult.partyId}" rateTypeEnumId="RatpStandard"
rateAmountId="S${clientRateResult.rateAmountId}"
vendorRateAmountId="5{vendorRateResult.rateAmountId}"
fromDate="5${effectiveThruDate.time-(6*60*60*1000)}"

251 12. Mantle Business Artifacts

thruDate="${effectiveThruDate.time}" hours="6"
workEffortId="TEST-001"/>

<mantle.work.effort.WorkEffort workEffortId="TEST-001A"
resolutionEnumId="WerCompleted" statusId="WeComplete"
estimatedWorkTime="2" remainingWorkTime="1" actualWorkTime="1.5"/>

<mantle.work.time.TimeEntry timeEntryId="55901"
partyId="S${workerResult.partyId}" rateTypeEnumId="RatpStandard"
rateAmountId="S${clientRateResult.rateAmountId}"
vendorRateAmountId="S${vendorRateResult.rateAmountId}"
fromDate="5${effectiveThruDate.time-(2*60*60*1000)}"
thruDate="${effectiveThruDate.time}" hours="1.5" breakHours="0.5"
workEffortId="TEST-001A"/>

<mantle.work.effort.WorkEffort workEffortId="TEST-001B"
resolutionEnumId="WerCompleted" statusId="WeComplete"
estimatedWorkTime="2" remainingWorkTime="0.5" actualWorkTime="2"/>

<mantle.work.time.TimeEntry timeEntryId="55902"
partyId="S${workerResult.partyId}" rateTypeEnumId="RatpStandard"
rateAmountId="S${clientRateResult.rateAmountId}"
vendorRateAmountId="S${vendorRateResult.rateAmountId}"
fromDate="1383501600000" thruDate="1383512400000" hours="2"
breakHours="1" workEffortId="TEST-001B"/>

Request and Task for Request

This code shows how to create a support request assigned to the worker, update its status
from submitted to reviewed, create a task for the request, complete the task, and then
complete the request.

Map createRegResult = ec.service.sync()
.name("mantle.request.RequestServices.create#Request")
.parameters([clientPartyId:clientResult.partyId,
assignToPartyId:workerResult.partyId, requestName: ' Test Request 1',
description: 'Description of Test Request 1', priority:7,
requestTypeEnumId: 'RgtSupport', statusId:'RegSubmitted',
responseRequiredDate: '2013-11-15 15:00:00"']).call()
ec.service.sync().name("'mantle.request.RequestServices.update#Request")
.parameters ([requestId:createReqResult.requestId,
statusId: 'RegReviewed']).call()

Map createReqgTskResult = ec.service.sync()

.name("mantle.work.TaskServices.create#Task")

.parameters([rootWorkEffortId: 'TEST',
workEffortName: 'Test Request 1 Task',
estimatedCompletionDate: '2013-11-15"', statusId:'WeApproved',
assignToPartyId:workerResult.partyId, priority:7,
purposeEnumId: 'WepTask', estimatedWorkTime:2,
description:'']).call()

USL Business Processes 252

ec.service.sync().name("create#mantle.request.RequestWorkEffort")
.parameters ([workEffortId:createReqTskResult.workEffortId,
requestId:createReqResult.requestId]).call()
ec.service.sync().name("'mantle.work.TaskServices.update#Task")
.parameters([workEffortId:createReqTskResult.workEffortId,
statusId: 'WeComplete', resolutionEnumId: ' WerCompleted']).call()

ec.service.sync().name("'mantle.request.RequestServices.update#Request")
.parameters ([requestId:createReqResult.requestId,
statusId: 'RegCompleted']).call()

Here is the Request record and the RequestParty records to associate it with worker and
client (customer). Here is also the task WworkEf fort, the WorkEf fortParty record for the
worker, and the RequestWorkEffort record to associate it with the Request.

<mantle.request.Request requestId="S${createReqgResult.requestId}"
requestTypeEnumId="RgtSupport" statusId="RegCompleted"
requestName="Test Request 1"
description="Description of Test Request 1" priority="7"
responseRequiredDate="1384549200000"
requestResolutionEnumId="RrUnresolved" filedByPartyId="EX JOHN DOE"/>

<mantle.request.RequestParty requestId="S${createReqgResult.requestId}"
partyld="S${workerResult.partyId}" roleTypeIlId="Worker"
fromDate="S${effectiveTime}"/>

<mantle.request.RequestParty requestId="S${createReqgResult.requestId}"
partyId="S${clientResult.partyId}" roleTypeId="CustomerBillTo"
fromDate="S${effectiveTime}"/>

<mantle.work.effort.WorkEffort
workEffortId="S {createReqTskResult.workEffortId}"
rootWorkEffortId="TEST" workEffortTypeEnumId="WetTask"
purposeEnumId="WepTask" resolutionEnumId="WerCompleted"
statusId="WeComplete" priority="7" workEffortName="Test Request 1 Task"
estimatedCompletionDate="1384495200000" estimatedWorkTime="2"
remainingWorkTime="2" timeUomId="TF hr"/>

<mantle.work.effort.WorkEffortParty
workEffortId="S{createReqTskResult.workEffortId}"
partyId="S${workerResult.partyId}" roleTypeId="Worker"
fromDate="S${effectiveTime}" statusId="PRTYASGN ASSIGNED"/>

<mantle.request.RequestWorkEffort requestId="${createReqResult.requestId}"
workEffortId="${createReqTskResult.workEffortId}"/>

Worker Invoice and Payment

The Invoice from the worker to the services vendor (the internal organization running the
system) has both expenses and time entries. The create#ProjectExpenseInvoice service
gets most of the settings for the Invoice (including the vendor, bill-to, party) from the
project workEffort (ID: TEST) and specifies the worker as the fromPartyld.

253 12. Mantle Business Artifacts

Once the invoice is created the next two service calls add expense invoice items and then call
the create#ProjectInvoiceItems service to add invoice items for all time entries for the
worker party in the TEST project, with ratePurposeEnumId of Raprvendor so that the rates
and other details are for a worker to vendor invoice (as opposed to a vendor to client
invoice). Next we mark the invoice as Received. This is something that would be done by a
representative of the vendor organization, i.e., the bill-to party for the invoice.

The last service call, to create#InvoicePayment, records a delivered check payment for the
invoice.

expInvResult = ec.service.sync()
.name("mantle.account.InvoiceServices.create#ProjectExpenseInvoice")
.parameters([workEffortId: 'TEST', fromPartyId:workerResult.partyId])
.call()
ec.service.sync().name("create#mantle.account.invoice.InvoiceItem")
.parameters([invoiceId:expInvResult.invoiceld,
itemTypeEnumId: 'ItemExpTravAir', description: 'United SFO-LAX',
itemDate: '2013-11-02', quantity:1, amount:345.67]).call()
ec.service.sync().name("create#mantle.account.invoice.InvoiceItem")
.parameters([invoiceId:expInvResult.invoiceld,
itemTypeEnumId: 'ItemExpTravLodging',
description: 'Fleabag Inn 2 nights', itemDate:'2013-11-04"',
quantity:1, amount:123.45]).call()

ec.service.sync()
.name("mantle.account.InvoiceServices.create#ProjectInvoiceItems")
.parameters([invoiceId:expInvResult.invoiceld,
workerPartyId:workerResult.partyId, ratePurposeEnumId:'RaprVendor',
workEffortId: 'TEST',
thruDate:new Timestamp(effectiveTime + 1)]).call()

ec.service.sync() .name("update#mantle.account.invoice.Invoice")
.parameters([invoiceId:expInvResult.invoiceld,
statusId: 'InvoiceReceived']).call()

Map expPmtResult = ec.service.sync()
.name("mantle.account.PaymentServices.create#InvoicePayment")
.parameters([invoiceId:expInvResult.invoiceld,
statusId: 'PmntDelivered', amount: '849.12"',
paymentMethodTypeEnumId: 'PmtCompanyCheck',
effectiveDate: '2013-11-10 12:00:00"', paymentRefNum:'1234"',
comments: 'Delivered by Fedex']).call()

Here are the records created for the invoice, including the expense items and three time entry

items (one for each of the task time entries):

<mantle.account.invoice.Invoice invoiceId="${expInvResult.invoiceId}"
invoiceTypeEnumId="InvoiceSales" fromPartyld="S{workerResult.partyId}"

toPartylId="S{vendorResult.partyId}" statusId="InvoicePmtSent"
invoiceDate="S${effectiveTime}" currencyUomId="USD"/>

USL Business Processes 254

<mantle.account.invoice.InvoiceIltem invoiceId="${expInvResult.invoiceId}"
invoiceItemSeqId="01" itemTypeEnumId="ItemExpTravAir" quantity="1"
amount="345.67" description="United SFO-LAX" itemDate="1383368400000"/>

<mantle.account.invoice.Invoiceltem invoiceId="${expInvResult.invoiceId}"
invoiceItemSeqId="02" itemTypeEnumId="ItemExpTravLodging" quantity="1"
amount="123.45" description="Fleabag Inn 2 nights"
itemDate="1383544800000"/>

<mantle.account.invoice.Invoiceltem invoiceId="${expInvResult.invoiceId}"
invoiceItemSeqId="03" itemTypeEnumId="ItemTimeEntry" quantity="6"
amount="40" itemDate="S${effectiveThruDate.time-(6*60%60%1000)}"/>

<mantle.work.time.TimeEntry timeEntryId="55900"
vendorInvoiceId="S{expInvResult.invoiceId}"
vendorInvoiceItemSeqId="03"/>

<mantle.account.invoice.InvoiceIltem invoiceId="${expInvResult.invoiceId}"
invoiceItemSeqId="04" itemTypeEnumId="ItemTimeEntry" quantity="1.5"
amount="40" itemDate="S${effectiveThruDate.time-(2*%60%60%1000)}"/>

<mantle.work.time.TimeEntry timeEntryId="55901"
vendorInvoiceId="S{expInvResult.invoiceId}"
vendorInvoiceItemSeqId="04"/>

<mantle.account.invoice.Invoiceltem invoiceId="${expInvResult.invoiceId}"
invoiceItemSeqId="05" itemTypeEnumId="ItemTimeEntry" quantity="2"
amount="40" itemDate="1383501600000"/>

<mantle.work.time.TimeEntry timeEntryId="55902"
vendorInvoiceId="S{expInvResult.invoiceId}"
vendorInvoiceItemSeqId="05"/>

This is the accounting transaction for the GL posting of the invoice with one entry for each
invoice item, and the balancing entry to the accounts payable account:

<mantle.ledger.transaction.AcctgTrans acctgTransId="55900"
acctgTransTypeEnumId="AttPurchaseInvoice"
organizationPartyId="S{vendorResult.partyId}"
transactionDate="$S{effectiveTime}" isPosted="Y"
postedDate="S${effectiveTime}" glFiscalTypeEnumId="GLFT ACTUAL"
amountUomId="USD" otherPartyId="S{workerResult.partyId}"
invoiceId="${expInvResult.invoiceId}"/>
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55900"
acctgTransEntrySeqId="01" debitCreditFlag="D" amount="345.67"
glAccountId="681000" reconcileStatusId="AES NOT RECONCILED"
isSummary="N" invoiceItemSeqId="01"/>
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55900"
acctgTransEntrySeqId="02" debitCreditFlag="D" amount="123.45"
glAccountId="681000" reconcileStatusId="AES NOT RECONCILED"
isSummary="N" invoiceItemSeqId="02"/>
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55900"
acctgTransEntrySeqId="03" debitCreditFlag="D" amount="240"
glAccountId="550000" reconcileStatusId="AES NOT RECONCILED"
isSummary="N" invoiceItemSeqId="03"/>
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55900"
acctgTransEntrySeqId="04" debitCreditFlag="D" amount="60"
glAccountId="550000" reconcileStatusId="AES NOT RECONCILED"

255 12. Mantle Business Artifacts

n

isSummary="N" invoiceItemSeqId="04"/>

<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55900"
acctgTransEntrySeqId="05" debitCreditFlag="D" amount="80"
glAccountId="550000" reconcileStatusId="AES NOT RECONCILED"
isSummary="N" invoiceItemSeqId="05"/>

<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55900"
acctgTransEntrySeqId="06" debitCreditFlag="C" amount="849.12"
glAccountTypeEnumId="ACCOUNTS PAYABLE" glAccountId="210000"
reconcileStatusId="AES NOT RECONCILED" isSummary="N"/>

<mantle.work.effort.WorkEffortInvoice invoiceId="§${expInvResult.invoiceId}"
workEffortId="TEST"/>

Here is the payment record for the check from the vendor (internal organization) to the
worker, the payment application to apply it to the invoice, and the accounting transition for
the payment:

<mantle.account.payment.Payment paymentId="§${expPmtResult.paymentId}"
paymentTypeEnumId="PtInvoicePayment"
fromPartyId="S{vendorResult.partyId}"
toPartylId="S${workerResult.partyId}"
paymentMethodTypeEnumId="PmtCompanyCheck" statusId="PmntDelivered"
effectiveDate="1384106400000" paymentRefNum="1234"
comments="Delivered by Fedex" amount="849.12" amountUomId="USD"/>

<mantle.account.payment.PaymentApplication
paymentApplicationId="5{expPmtResult.paymentApplicationId}"
paymentId="5{expPmtResult.paymentId}"
invoiceId="${expInvResult.invoiceId}" amountApplied="849.12"
appliedDate="S{effectiveTime}"/>

<mantle.ledger.transaction.AcctgTrans acctgTransId="55901"
acctgTransTypeEnumId="AttOutgoingPayment"
organizationPartyId="S{vendorResult.partyId}"
transactionDate="5{effectiveTime}" isPosted="Y"
postedDate="5${effectiveTime}" glFiscalTypeEnumId="GLFT ACTUAL"
amountUomId="USD" otherPartyId="S{workerResult.partyId}"
paymentId="${expPmtResult.paymentId}"/>

<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55901"
acctgTransEntrySeqId="01" debitCreditFlag="D" amount="849.12"
glAccountId="210000" reconcileStatusId="AES NOT RECONCILED"
isSummary="N"/>

<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55901"
acctgTransEntrySeqId="02" debitCreditFlag="C" amount="849.12"
glAccountId="111100" reconcileStatusId="AES NOT RECONCILED"
isSummary="N"/>

Client Invoice and Payment

With everything setup already, including the worker expenses and project settings, call the
create#ProjectInvoicelItems service to add invoice items for all time entries for the

USL Business Processes 256

worker party in the TEST project, with ratePurposeEnumId of RaprClient so that the rates
and other details are for a vendor to client invoice (as opposed to a worker to vendor
invoice). The thrubate passed to the service tells it to get all expenses and time entries for
the project that are not yet billed up to that date/time. Next we mark the invoice as
Finalized, which triggers GL posting for the invoice.

clientInvResult = ec.service.sync()
.name("mantle.account.InvoiceServices.create#ProjectInvoiceItems")
.parameters ([ratePurposeEnumId: 'RaprClient', workEffortId: TEST',
thruDate:new Timestamp(effectiveTime + 1)]).call()
ec.service.sync() .name("update#mantle.account.invoice.Invoice")
.parameters([invoiceId:clientInvResult.invoiceld,
statusId: 'InvoiceFinalized']).call()

Below are the records for the vendor to client invoice with the time entry and expense
invoice items, and InvoiceItemAssoc records to associate the expense items on this vendor
to client invoice with the expense items as originally recorded on the worker to vendor
invoice (which is how expenses are recorded, and this is how they are marked as billed

through).

<mantle.account.invoice.Invoice invoiceId="${clientInvResult.invoiceId}"
invoiceTypeEnumId="InvoiceSales" fromPartylId="S{vendorResult.partyId}"
toPartylId="S${clientResult.partyId}" statusId="InvoiceFinalized"
invoiceDate="S${effectiveTime}" currencyUomId="USD"
description="Invoice for projectTest Project [TEST] "/>
<mantle.account.invoice.InvoiceItem
invoiceId="${clientInvResult.invoiceId}" invoiceItemSeqId="01"
itemTypeEnumId="ItemTimeEntry" quantity="6" amount="60"
itemDate="${effectiveThruDate.time-(6*60%60*1000)}"/>
<mantle.work.time.TimeEntry timeEntryId="55900"
invoiceId="S${clientInvResult.invoiceId}" invoiceItemSeqId="01"/>
<mantle.account.invoice.InvoiceItem
invoiceId="${clientInvResult.invoiceId}" invoiceItemSeqId="02"
itemTypeEnumId="ItemTimeEntry" quantity="1.5" amount="60"
itemDate="${effectiveThruDate.time-(2*60%60*1000)}"/>
<mantle.work.time.TimeEntry timeEntryId="55901"
invoiceId="S${clientInvResult.invoiceId}" invoiceItemSeqId="02"/>
<mantle.account.invoice.InvoiceItem
invoiceId="${clientInvResult.invoiceId}" invoiceItemSeqId="03"
itemTypeEnumId="ItemTimeEntry" quantity="2" amount="60"
itemDate="1383501600000"/>
<mantle.work.time.TimeEntry timeEntryId="55902"
invoiceId="S${clientInvResult.invoiceId}" invoiceItemSeqId="03"/>
<mantle.account.invoice.InvoiceItem
invoiceId="${clientInvResult.invoiceId}" invoiceItemSeqId="04"
itemTypeEnumId="ItemExpTravAir" quantity="1" amount="345.67"
description="United SFO-LAX" itemDate="1383368400000"/>
<mantle.account.invoice.InvoiceItemAssoc invoiceItemAssocId="55900"
invoiceId="S${expInvResult.invoiceId}" invoiceItemSeqId="01"
toInvoiceId="S${clientInvResult.invoiceId}" toInvoiceItemSeqId="04"

257 12. Mantle Business Artifacts

invoiceItemAssocTypeEnumId="IiatBillThrough" quantity="1"
amount="345.67"/>

<mantle.account.invoice.InvoiceItem
invoiceId="${clientInvResult.invoiceId}" invoiceItemSeqId="05"
itemTypeEnumId="TItemExpTravLodging" quantity="1" amount="123.45"
description="Fleabag Inn 2 nights" itemDate="1383544800000"/>

<mantle.account.invoice.InvoiceltemAssoc invoiceItemAssocId="55901"
invoiceId="5${expInvResult.invoiceId}" invoiceItemSeqId="02"
toInvoiceId="S${clientInvResult.invoiceId}" toInvoiceItemSeqId="05"
invoiceItemAssocTypeEnumId="IiatBillThrough" quantity="1"
amount="123.45"/>

These are the records for the accounting transaction posted to the GL for the invoice, with

one entry for each invoice item and the balancing entry in the accounts receivable account.

Note the different glaccount1d values for the time entry and expense entries.

<mantle.ledger.transaction.AcctgTrans acctgTransId="55902"
acctgTransTypeEnumId="AttSalesInvoice"
organizationPartyId="S{vendorResult.partyId}"
transactionDate="5{effectiveTime}" isPosted="Y"
postedDate="${effectiveTime}" glFiscalTypeEnumId="GLFT ACTUAL"
amountUomId="USD" otherPartyId="S${clientResult.partyId}"
invoiceId="S${clientInvResult.invoiceId}"/>
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55902"
acctgTransEntrySeqId="01" debitCreditFlag="C" amount="360"
glAccountId="402000" reconcileStatusId="AES NOT RECONCILED"
isSummary="N" invoiceItemSeqId="01"/>
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55902"
acctgTransEntrySeqId="02" debitCreditFlag="C" amount="90"
glAccountId="402000" reconcileStatusId="AES NOT RECONCILED"
isSummary="N" invoiceItemSeqId="02"/>
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55902"
acctgTransEntrySeqId="03" debitCreditFlag="C" amount="120"
glAccountId="402000" reconcileStatusId="AES NOT RECONCILED"
isSummary="N" invoiceItemSeqId="03"/>
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55902"
acctgTransEntrySeqId="04" debitCreditFlag="C" amount="345.67"
glAccountId="681000" reconcileStatusId="AES NOT RECONCILED"
isSummary="N" invoiceItemSeqId="04"/>
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55902"
acctgTransEntrySeqId="05" debitCreditFlag="C" amount="123.45"
glAccountId="681000" reconcileStatusId="AES NOT RECONCILED"
isSummary="N" invoiceItemSeqId="05"/>
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55902"
acctgTransEntrySeqId="06" debitCreditFlag="D" amount="1,039.12"
glAccountTypeEnumId="ACCOUNTS RECEIVABLE" glAccountId="120000"
reconcileStatusId="AES NOT RECONCILED" isSummary="N"/>

This is the service call to record a delivered payment by company check for the invoice,
which automatically makes it from the client to the vendor:

USL Business Processes

258

Map clientPmtResult = ec.service.sync()
.name("mantle.account.PaymentServices.create#InvoicePayment")
.parameters([invoiceId:clientInvResult.invoiceld,
statusId: 'PmntDelivered', amount:1039.12,
paymentMethodTypeEnumId: 'PmtCompanyCheck',
effectiveDate: '2013-11-12 12:00:00"', paymentRefNum: '54321'])
.call()

The first record here shows the status update on the invoice to payment received. Then we
have the payment record and the application of the payment to the invoice. After that is the
accounting transaction to post the payment to the general ledger.

<mantle.account.invoice.Invoice invoicelId="${clientInvResult.invoiceId}"
statusId="InvoicePmtRecvd"/>

<mantle.account.payment.Payment paymentId="S${clientPmtResult.paymentId}"
paymentTypeEnumId="PtInvoicePayment"
fromPartyId="S${clientResult.partyId}"
toPartylId="S${vendorResult.partyId}"
paymentMethodTypeEnumId="PmtCompanyCheck" statusId="PmntDelivered"
effectiveDate="1384279200000" paymentRefNum="54321" amount="1,039.12"
amountUomId="USD" />

<mantle.account.payment.PaymentApplication
paymentApplicationId="${clientPmtResult.paymentApplicationId}"
paymentId="S${clientPmtResult.paymentId}"
invoiceId="${clientInvResult.invoiceId}" amountApplied="1,039.12"
appliedDate="S{effectiveTime}"/>

<mantle.ledger.transaction.AcctgTrans acctgTransId="55903"
acctgTransTypeEnumId="AttIncomingPayment"
organizationPartyId="S{vendorResult.partyId}"
transactionDate="5{effectiveTime}" isPosted="Y"
postedDate="5${effectiveTime}" glFiscalTypeEnumId="GLFT ACTUAL"
amountUomId="USD" otherPartyId="S${clientResult.partyId}"
paymentId="S${clientPmtResult.paymentId}"/>

<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55903"
acctgTransEntrySeqId="01" debitCreditFlag="C" amount="1,039.12"
glAccountId="120000" reconcileStatusId="AES NOT RECONCILED"
isSummary="N"/>

<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55903"
acctgTransEntrySeqId="02" debitCreditFlag="D" amount="1,039.12"
glAccountId="111100" reconcileStatusId="AES NOT RECONCILED"
isSummary="N"/>

259 12. Mantle Business Artifacts

