
Making Apps with 

Moqui 
Holistic Enterprise Applications Made Easy 
!

by David E. Jones!
!

Sponsored by:  

! "
HotWax Media, Inc. 

http://www.hotwaxmedia.com 

HotWax Media designs, implements, and supports 
custom ERP applications and systems of 
innovation that help businesses run faster, leaner, 
and better. 

Leapfrogging the inflexible legacy ERP suites of 
years past, HotWax Media leverages flexible open 
source software to create business systems for 
today’s innovators and tomorrow’s industry 
leaders. 

If you are running an old fashioned ERP mega 
suite, the time has come to think different. If you 
have a new vision for system innovation in your 
industry, open source ERP is the way to make it 
happen, and Moqui is a great option to consider. 

HotWax Media is proud to sponsor this book, and 
we actively cheer on Moqui’s long-term success!

!

! "
Moqui Ecosystem 

http://www.moqui.org 

Sponsor this book to see your logo and a 
description of your offerings here!  

Contact author at dej@dejc.com for details. 

!

http://www.hotwaxmedia.com
http://www.moqui.org
http://www.hotwaxmedia.com
http://www.moqui.org


!
!
!
!
Copyright © 2014 David E. Jones!

All Rights Reserved"

!
Version 1.0 - First Edition 

Based on Moqui Framework version 1.4.1 and Mantle Business Artifacts version 0.5.2. 
These open source projects are public domain licensed and are available for download 
through http://www.moqui.org."

!
!
The PDF version of this work (available for free download from http://www.moqui.org) is 
licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License. 
To view a copy of this license, visit http://creativecommons.org/licenses/by-nd/4.0/."
A special thanks to the sponsors who helped make this book what it is, keep the price low on 

the printed book, and make the PDF download version available for free. 

For permission to use any part of this work, please send an email to the author at 
dej@dejc.com. For more details about the author see his web site at http://www.dejc.com."

!
!
Designed for a full color 8x10" bound book. With this format the PDF version can also be 
printed on A4 or US Letter paper."

!
For the CreateSpace print edition:"

ISBN-13: 978-0692267059"

ISBN-10: 0692267050"

!

http://www.moqui.org
http://www.moqui.org
http://creativecommons.org/licenses/by-nd/4.0/
mailto:dej@dejc.com
http://www.dejc.com


!
!

Table of Contents 
!
Foreword 1                                                                                 

1. Introduction to Moqui 3                                                        
What is the Moqui Ecosystem? 3                                                                 
What is Moqui Framework? 4                                                                      
Moqui Concepts 5                                                                                       

Application Artifacts 5                                                                                                
The Execution Context 6                                                                                             
The Artifact Stack 7                                                                                                    
Peeking Under the Covers 7                                                                                       
Development Process 7                                                                                              
Development Tools 8                                                                                                  

A Top to Bottom Tour 11                                                                              
Web Browser Request 11                                                                                           
Web Service Call 12                                                                                                   
Incoming and Outgoing Email 12                                                                               

2. Running Moqui 13                                                                 
Download Moqui and Required Software 13                                               
The Runtime Directory and Moqui Conf XML File 13                                  
The Executable WAR File 14                                                                        
Embedding the Runtime Directory in the WAR File 15                                
Building Moqui Framework 16                                                                    
Database Configuration 17                                                                          

3. Framework Tools and Configuration 19                                  
Execution Context and Web Facade 19                                                        

Web Parameters Map 20                                                                                             

Factory, Servlet & Listeners 22                                                                     
Resource and Cache Facades 22                                                                  



Screen Facade 23                                                                                         
Screen Definition 23                                                                                                  
Screen/Form Render Templates 23                                                                             

Service Facade 24                                                                                        
Service Naming 24                                                                                                     
Parameter Cleaning, Conversion and Validation 25                                                    
Quartz Scheduler 25                                                                                                  
Web Services 25                                                                                                         

Entity Facade 26                                                                                          
Multi-Tenant 27                                                                                                          
Connection Pool and Database 27                                                                              
Database Meta-Data 27                                                                                              

Transaction Facade 27                                                                                 
Transaction Manager (JTA) 28                                                                                    

Artifact Execution Facade 28                                                                       
Artifact Authorization 28                                                                                           
Artifact Hit Tracking 29                                                                                              

User, L10n, Message, and Logger Facades 29                                              
Extensions and Add-ons 30                                                                          

The Compelling Component 30                                                                                  
Component Directory Structure 30                                                                            
Installing a Component 30                                                                                         

Load the Component 30                                                                                       
Mounting Screen(s) 31                                                                                         
Moqui Conf XML File Settings 31                                                                         

4. Create Your First Component 33                                            
Summary 33                                                                                                
Part 1 33                                                                                                      

Download Moqui Framework 33                                                                                
Create a Component 34                                                                                             
Add a Screen 34                                                                                                         
Mount as a Subscreen 34                                                                                            
Try Included Content 35                                                                                             
Try Sub-Content 36                                                                                                    

Part 2 37                                                                                                      
My First Entity 37                                                                                                       
Add Some Data 38                                                                                                     



Automatic Find Form 38                                                                                             
An Explicit Field 40                                                                                                    
Add a Create Form 41                                                                                                

Part 3 42                                                                                                      
Custom Create Service 42                                                                                          
Groovy Service 43                                                                                                      

5. Data and Resources 45                                                          
Resources, Content, Templates, and Scripts 45                                            

Resource Locations 45                                                                                                
Using Resources 45                                                                                                    
Rendering Templates and Running Scripts 46                                                             

Data Model Definition 47                                                                           
Entity Definition XML 47                                                                                            
Entity Extension - XML 50                                                                                           
Entity Extension - DB 50                                                                                             

Data Model Patterns 51                                                                               
Master Entities 51                                                                                                       
Detail Entities 51                                                                                                        
Join Entities 51                                                                                                           
Dependent Entities 52                                                                                                
Enumerations 53                                                                                                         
Status, Flow, Transition and History 53                                                                       
Units of Measure 54                                                                                                   
Geographic Boundaries and Points 54                                                                        

The Entity Facade 55                                                                                    
Basic CrUD Operations 55                                                                                         
Finding Entity Records 56                                                                                           
Flexible Finding with View Entities 59                                                                        

Static View Entity 59                                                                                             
View Entity Auto Minimize on Find 60                                                                 
Database Defined View Entity 61                                                                         
Dynamic View Entity 62                                                                                       

Entity ECA Rules 62                                                                                     
Entity Data Import and Export 64                                                                

Loading Entity XML and CSV 64                                                                                 
Writing Entity XML 65                                                                                                
Views and Forms for Easy View and Export 66                                                            



Data Document 68                                                                                      
Data Feed 72                                                                                               
Data Search 73                                                                                            

6. Logic and Services 77                                                             
Service Definition 77                                                                                   
Service Implementation 81                                                                          

Service Scripts 81                                                                                                       
Inline Actions 82                                                                                                   

Java Methods 82                                                                                                         
Entity Auto Services 83                                                                                               
Add Your Own Service Runner 84                                                                              

Calling Services and Scheduling Jobs 84                                                      
Service ECA Rules 86                                                                                   
Overview of XML Actions 88                                                                       

7. User Interface 91                                                                   
XML Screen 91                                                                                            

Subscreens 91                                                                                                             
Standalone Screen 93                                                                                                 
Transition 94                                                                                                               
Parameters and Web Settings 97                                                                                 
Screen Actions, Pre-Actions, and Always Actions 97                                                  
XML Screen Widgets 98                                                                                              
Section, Condition and Fail-Widgets 99                                                                      
Macro Templates and Custom Elements 99                                                                 
CSV, XML, PDF and Other Screen Output 100                                                           

XML Form 101                                                                                             
Form Field 101                                                                                                           
Field Widgets 102                                                                                                       
Single Form 106                                                                                                          

Single Form Example 107                                                                                     
List Form 112                                                                                                              

List Form View/Export Example 113                                                                      
List Form Edit Example 116                                                                                  

Templates 119                                                                                             
Sending and Receiving Email 121                                                                



8. System Interfaces 125                                                            
Data and Logic Level Interfaces 125                                                            
XML, CSV and Plain Text Handling 125                                                       
Web Service 127                                                                                         

XML-RPC and JSON-RPC 127                                                                                     
Sending and Receiving Simple JSON 128                                                                   
RESTful Interface 129                                                                                                 

Enterprise Integration with Apache Camel 130                                           

9. Security 133                                                                           
Authentication 133                                                                                      
Simple Permissions 134                                                                               
Artifact-Aware Authorization 135                                                               

Artifact Execution Stack and History 135                                                                   
Artifact Authz 136                                                                                                      

Artifact Tarpit 137                                                                                       

10. Performance  139                                                                 
Performance Metrics 139                                                                            

Artifact Hit Statistics 139                                                                                           
Artifact Execution Runtime Profiling 141                                                                   

Improving Performance 144                                                                        

11. The Tools Application 147                                                    
Auto Screen 147                                                                                          

Entity List 147                                                                                                             
Find Entity 148                                                                                                           
Edit Entity 149                                                                                                            
Edit Related 150                                                                                                         

Data Document 150                                                                                    
Search 150                                                                                                                  
Index 151                                                                                                                   
Export 151                                                                                                                  

Data View 152                                                                                             
Find DB View 152                                                                                                       
Edit DB View 152                                                                                                       
View DB View 153                                                                                                      



Entity Tools 154                                                                                           
Data Edit 154                                                                                                             
Data Export 154                                                                                                         
Data Import 155                                                                                                         
SQL Runner 155                                                                                                         
Speed Test 156                                                                                                            

Localization 156                                                                                          
Messages 156                                                                                                             
Entity Fields 157                                                                                                         

Service 157                                                                                                  
Service Reference 157                                                                                                

Service List 157                                                                                                    
Service Detail 158                                                                                                

Service Run 158                                                                                                         
Scheduler 159                                                                                                            

Scheduler Status 159                                                                                            
Jobs 159                                                                                                                
Triggers 160                                                                                                          
History 160                                                                                                           

System Info 161                                                                                           
Artifact Statistics 161                                                                                                 

Hit Bins 161                                                                                                          
Artifact Summary 161                                                                                          

Audit Log 162                                                                                                             
Cache Statistics 162                                                                                                   

Cache List 162                                                                                                      
Cache Elements 163                                                                                             

Server Visits 163                                                                                                         
Visit List 163                                                                                                         
Visit Detail 164                                                                                                     

12. Mantle Business Artifacts 165                                              
Mantle Structure and UDM 166                                                                  

Accounting 167                                                                                                          
Account - Billing (mantle.account.billing) 167                                                     
Account - Financial (mantle.account.financial) 167                                              
Account - Invoice (mantle.account.invoice) 168                                                   
Account - Method (mantle.account.method) 170                                                 
Account - Payment (mantle.account.payment) 171                                               
Ledger - Account (mantle.ledger.account) 173                                                     



Ledger - Config (mantle.ledger.config) 176                                                          
Ledger - Reconciliation (mantle.ledger.reconciliation) 177                                  
Ledger - Transaction (mantle.ledger.transaction) 177                                           
Other - Budget (mantle.other.budget) 178                                                           
Other - Tax (mantle.other.tax) 178                                                                        

Facility 179                                                                                                                 
Facility (mantle.facility) 179                                                                                 

Human Resources 181                                                                                                
Ability (mantle.humanres.ability) 181                                                                  
Employment (mantle.humanres.employment) 181                                               
Position (mantle.humanres.position) 182                                                             
Rate (mantle.humanres.rate) 182                                                                         
Recruitment (mantle.humanres.recruitment) 183                                                 

Marketing 183                                                                                                            
Campaign (mantle.marketing.campaign) 183                                                       
Contact (mantle.marketing.contact) 183                                                              
Segment (mantle.marketing.segment) 184                                                           
Tracking (mantle.marketing.tracking) 184                                                            

Order 185                                                                                                                  
Order (mantle.order) 185                                                                                     
Return (mantle.order.return) 187                                                                         

Party 188                                                                                                                    
Party (mantle.party) 188                                                                                       
Agreement (mantle.party.agreement) 190                                                            
Communication Event (mantle.party.communication) 191                                   
Contact Mechanism (mantle.party.contact) 192                                                   
Time Period (mantle.party.time) 193                                                                    

Product 194                                                                                                                
Definition - Product (mantle.product) 194                                                           
Definition - Category (mantle.product.category) 196                                           
Definition - Config (mantle.product.config) 197                                                  
Definition - Cost (mantle.product.cost) 197                                                         
Definition - Feature (mantle.product.feature) 197                                                
Definition - Subscription (mantle.product.subscription) 199                                
Asset - Asset (mantle.product.asset) 199                                                               
Asset - Issuance (mantle.product.issuance) 201                                                    
Asset - Receipt (mantle.product.receipt) 203                                                        
Asset - Maintenance (mantle.product.maintenance) 203                                      
Store (mantle.product.store) 204                                                                          

Request 205                                                                                                                
Request (mantle.request) 205                                                                               
Requirement (mantle.request.requirement) 207                                                   



!
!
!
!
!
!
!
!

Sales 208                                                                                                                    
Opportunity (mantle.sales.opportunity) 208                                                        
Forecast (mantle.sales.forecast) 209                                                                     
Need (mantle.sales.need) 209                                                                               

Shipment 209                                                                                                             
Shipment (mantle.shipment) 209                                                                          
Carrier (mantle.shipment.carrier) 212                                                                  
Picklist (mantle.shipment.picklist) 212                                                                 

Work Effort 214                                                                                                          
Work Effort (mantle.work.effort) 214                                                                   
Time Entry (mantle.work.time) 217                                                                      

USL Business Processes 219                                                                        
Procure to Pay 219                                                                                                     

Supplier Product Pricing 220                                                                                
Place and Approve Purchase Order 221                                                               
Create Incoming Shipment and Purchase Invoice 223                                          
Receive Shipment 225                                                                                          
Approve Purchase Invoice and Send Payment 228                                                

Order to Cash 231                                                                                                      
Place a Sales Order as a Customer 231                                                                
Ship Sales Order 235                                                                                            

Work Plan to Cash 240                                                                                               
Vendor 240                                                                                                           
Worker and Rates 244                                                                                          
Client 245                                                                                                             
Project and Milestone 247                                                                                    
Tasks and Time Entries 249                                                                                   
Request and Task for Request 252                                                                         
Worker Invoice and Payment 253                                                                         
Client Invoice and Payment 256                                                                          



!
Also sponsored by:"

!

See the full page ad for Ant Websystems (http://www.antwebsystems.com/) on page 18. 

See the full page ad for HotWax Media (http://www.hotwaxmedia.com/) on page 32. 

!

!
Sharan Foga 

ERP Project Manager and 
Functional Consultant 

http://cz.linkedin.com/in/sfoga/ 

Author of "Getting Started with 
Apache OFBiz Accounting" and 

"Getting Started with Apache OFBiz 
Manufacturing & MRP". I enjoy 

working with people to show them 
how Apache OFBiz works and how 

it can be configured to fit their 
existing business processes. I also 
focus on producing practical and 

good quality End User 
documentation and other specific 

training related materials.

! "
David E. Jones Consulting 

http://www.dejc.com 
I help organizations build custom 

ERP, CRM, and eCommerce systems 
based on open source software. 
I am the founder of various open 
source projects including Apache 
OFBiz, Moqui Framework, and 
Mantle Business Artifacts. Since 
starting OFBiz in 2001 I have 

worked on over 100 custom systems 
and commercial products based on 

these open source projects.

! "
Jimmy Shen 

http://jimmyshen.info   

I have 12 years experienced in 
enterprise application development 

and operation as well as 
infrastructure operation. Since 2012, 
I have been moving to open source 
solutions to build enterprise-class 

applications and infrastructure with 
scalability, high availability and 

openness, such as Moqui, AngularJS, 
OpenStack, Docker, etc.

! "
Moqui Ecosystem 

http://www.moqui.org 

Sponsor this book to see your 
logo and a short description of 

your offerings here!

http://www.dejc.com
http://jimmyshen.info
http://cz.linkedin.com/in/sfoga/
http://www.moqui.org
http://jimmyshen.info
http://www.moqui.org
http://www.antwebsystems.com/
http://www.hotwaxmedia.com/
http://www.dejc.com


!

Foreword 

I am not a professional framework developer. I am, just like you, a professional application 
developer. My career is oriented around building and customizing applications for a wide 
variety of organizations to manage processes and automate information management."

Like any craftsman an application developer needs a good set of tools, and my quest for the 
best tools possible started in 1999 when I got into this business. At the time Enterprise Java 
was maturing and going through a period of standardization to help consolidate and 
organize the many different tools and technologies that were available in the marketplace. "

There was only one problem: for building large-scale systems like an ERP application these 
tools and technologies were painful to develop with, required massive hardware to run 
satisfactorily, and were plagued by inadequate standards that practically guaranteed lock-in 
to application servers that featured enterprise-grade price tags. These applications were also 
difficult and expensive to customize and maintain after initial implementation. It was, in a 
word, horrible."

Various open source alternatives were starting to emerge to compete with the commercial 
players that drove much of the standardization, and this helped with the licensing cost but 
did little for the inefficiencies in both development and production performance. "

There was much room for improvement. In 2001 I started an open source project called The 
Open For Business Project (OFBiz) with the wide ranging goal of acting as a foundation for 
all manner of information automation applications. This was meant to enable consolidated 
systems and include eCommerce, ERP, CRM, MRP, and so on. Based on my experience with 
enterprise Java tools and exposure to some novel ideas and patterns people were starting to 
develop, I designed a very different sort of tool set. This tool set was not plagued by object 
mapping to organize data and encapsulate logic, and embraced the service-oriented design 
patterns for internal use that have become the standard for interoperation between 
applications."

Along with technical development tools, a good application developer also needs a flexible 
and comprehensive data model to give structure and consistency to applications developed. 
Fortunately in early March 2001, just two months before I started The Open For Business 
Project, Len Silverston published The Data Model Resource Book, Revised Edition, Volume 1 

���   Foreword1                                                                         



and Volume 2. This was a huge expansion and rewrite of an earlier book with a similar name 
by Silverston, Inmon, and Graziano in 1997."

The data model ideas and patterns presented in these two volumes became the foundation 
for the data model in OFBiz. They have gracefully acted as a foundation for that system 
during the growth of the project from a simple eCommerce application to a full-featured ERP 
and CRM system that is used by thousands of organizations and is the basis for over a dozen 
commercial and open source extensions."

Over years of working on a wide variety of projects based on OFBiz the framework was 
expanded along with the higher level business artifacts in the project. The ideas for 
improvements to the framework flowed in steadily, and some extensions and competitors to 
it outside of OFBiz emerged as well. Many of the ideas were incorporated, but as the project 
grew and as the community of users and contributors exploded it became increasingly 
difficult to change fundamental aspects of the system."

For years I kept a list of dozens of great ideas that constituted major changes to improve and 
expand the framework. As the list got longer I knew a different approach would be necessary 
to enter the next phase of my aforementioned quest for the best toolset possible. The result 
was the birth of the Moqui Framework as an independent project, and the Mantle Business 
Artifacts to provide a generic foundation for an ecosystem of open source projects, internal 
applications, and commercial products that go way beyond what one community could do 
with a single generic open source project."

This book will help you get started with the Moqui Framework and Mantle Business 
Artifacts, and provide a reference during months and years of building excellent 
applications."

!

  ���                                                                                                                                                                2



!

1. Introduction to Moqui 

What is the Moqui Ecosystem? 

The Moqui Ecosystem is a set of software packages centered on a common framework and 
universal business artifacts. The central packages (in the Core and Mantle) are organized as 
separate open source projects to keep their purpose, management, and dependencies focused 
and clean. Both are managed with a moderated community model, much like the Linux 
Kernel."

���   1. Introduction to Moqui3                                                             

U
B

P
L U

D
M

USL

Mantle

Crust

Custom Apps

Core

Moqui 
Framework

Industry SpecificSm
al

l B
us

in
es

s

Tools &
 Them

es
D

es
kt

op
 &

 M
ob

ile

Business Artifacts

Add-ons



The goal of the ecosystem is to provide a number of interoperating and yet competing 
enterprise applications (in the Crust), all based on a common framework for flexibility and 
easy customization, and a common set of business artifacts (data model and services) so they 
are implicitly integrated."

The ecosystem includes:"

• Moqui Framework: Synergistic tools for efficient and flexible application building"
• Mantle Business Artifacts: Universal business artifacts to make your applications 

easier to build and implicitly integrated with other apps built on Moqui and Mantle"
• Universal Business Process Library (UBPL)"
• Universal Data Model (UDM)"
• Universal Service Library (USL)"

• Moqui Crust: themes, tool integrations, and applications for different industries, 
company sizes, business areas, etc"!

The focus of this book is Moqui Framework, and the last chapter is a summary of Mantle 
Business Artifacts."

What is Moqui Framework? 

Moqui Framework is an all-in-one, enterprise-ready application framework based on Groovy 
and Java. The framework includes tools for screens, services, entities, and advanced 
functionality based on them such as declarative artifact-aware security and multi-tenancy."

The Framework is well suited for a wide variety of applications from simple web sites (like 
moqui.org) and small form-based applications to complex ERP systems. Applications built 
with Moqui are easy to deploy on a wide variety of highly scalable infrastructure software 
such as Java Servlet containers (or app servers) and both traditional relational and more 
modern NoSQL databases."

Moqui Framework is based on a decade of experience with The Open For Business Project 
(now Apache OFBiz, see http://ofbiz.apache.org) and designed and written by the person 
who founded that project. Many of the ideas and approaches, including the pure relational 
data layer (no object-relational mapping) and the service-oriented logic layer, stem from this 
legacy and are present in Moqui in a more refined and organized form."

With a cleaner design, more straightforward implementation, and better use of other 
excellent open source libraries that did not exist when OFBiz was started in 2001, the Moqui 
Framework code is about 20% of the size of the OFBiz Framework while offering 
significantly more functionality and more advanced tools."

The result is a framework that helps you build applications that automatically handles many 
concerns that would otherwise require a significant percentage of overall effort for every 
application you build."

  ���                                                                                                                                                                4

http://ofbiz.apache.org


Moqui Concepts 

Application Artifacts 

The Moqui Framework toolset is structured around artifacts that you can create to represent 
common parts of applications. In Moqui the term artifact refers to anything you create as a 
developer and includes various XML files as well as scripts and other code. The framework 
supports artifacts for things like:"

• entities for the relational data model used throughout applications (used directly, no 
redundant object-relational mapping)"

• screens and forms for web-based and other user interfaces (base artifacts in XML files 
with general or user-specific extensions in the database)"

• screen transitions to configure flow from screen to screen and process input as needed 
along the way"

• services for logic run internally or exposed for remote execution"
• ECA (event-condition-action) rules triggered on system events like entity and service 

operations and received email messages"

Here is a table of common parts of an application and the artifact or part of an artifact that 
handles each:"

screen XML Screen (rendered as various types of text, or can be used to 
generate other UIs; OOTB support for html, xml, xsl-fo, csv, and 
plain text)

form XML Form (defined within a screen; various OOTB widgets and 
easy to add custom ones or customize existing ones)

prepare data for 
display

screen actions (defined within a screen, can call external logic)

flow from one 
screen to another

screen transition with conditional and default responses (defined 
within the originating screen, response points to destination screen 
or external resource)

process input transition actions (either a single service defined to match the form 
and share validations/etc, or actions embedded in the screen 
definition or call external logic)

menu automatic based on sub-screen hierarchy and configured menu title 
and order for each screen, or define explicitly

���   1. Introduction to Moqui5                                                             



!
The Execution Context 

The ExecutionContext is the central application-facing interface in the Moqui API. An 
instance is created specifically for executing edge artifacts such as a screen or service. The 
ExecutionContext, or "ec" for short, has various facade interfaces that expose 
functionality for the various tools in the framework."

The ec also keeps a context map that represents the variable space that each artifact runs in. 
This context map is a stack of maps and as each artifact is executed a fresh map is pushed 
onto the stack, then popped off it once the artifact is done executing. When reading from the 
map stack it starts at the top and goes down until it finds a matching map entry. When 
writing to the map stack it always writes to the map at the top of the stack (unless to 
explicitly reference the root map, i.e., at the bottom of the stack)."

With this approach each artifact can run without concern of interfering with other artifacts, 
but still able to easily access data from parent artifacts (the chain of artifacts that called or 
included down to the current artifact). Because the ec is created for the execution of each 

internal service XML service definition and various options for embedded or 
external service implementations

XML-RPC and 
JSON-RPC services

internal service with allow-remote=true and called through 
generic interfaces using the natural List and Map structure 
mappings

RESTful web 
services

internal service called through simple transition definition 
supporting path, form body, and JSON body requests and JSON or 
XML responses

remote service calls define an internal service as a proxy with automatic XML-RPC, 
JSON-RPC, and other mappings, or use simple tools for RESTful 
and other service types

send email screen designed to be rendered directly as html and plain text and 
configured along with subject, etc in an EmailTemplate record

receive email define an Email ECA rule to call an internal service that processes 
the email

use scripts, 
templates, and JCR 
content

access and execute/render through the Resource Facade

  ���                                                                                                                                                                6



edge artifact it has detailed information about every aspect of what is happening, including 
the user, messages from artifacts, and much more."

The Artifact Stack 

As each artifact is executed and includes or calls other artifacts the artifact is pushed onto a 
stack that keeps track of the active artifacts, and is added to an artifact history list tracking 
each artifact used."

As artifacts are pushed onto the stack authorization for each artifact is checked, and security 
information related to the artifact is tracked. With this approach authz settings can be 
simplified so that artifacts that include or call or artifacts can allow those artifacts to inherit 
authorization. With inherited authorization configurations are only needed for key screens 
and services that are accessed directly."

Peeking Under the Covers 

When working with Moqui Framework you’ll often be using higher-level artifacts such as 
XML files. These are designed to support most common needs and have the flexibility to 
drop down to lower level tools such as templates and scripts at any point. At some point 
though you’ll probably either get curious about what the framework is doing, or you’ll run 
into a problem that will be much easier to solve if you know exactly what is going on under 
the covers."

While service and entity definitions are handled through code other artifacts like XML 
Actions and the XML Screens and Forms are just transformed into other text using macros in 
FreeMarker template files. XML Actions are converted into a plain old Groovy script and 
then compiled into a class which is cached and executed. The visual (widget) parts of XML 
Screens and Forms are also just transformed into the specified output type (html, xml, xsl-fo, 
csv, text, etc) using a template for each type."

With this approach you can easily see the text that is generated along with the templates that 
produced the text, and through simple configuration you can even point to your own 
templates to modify or extent the OOTB functionality."

Development Process 

Moqui Framework is designed to facilitate implementation with natural concept mappings 
from design elements such as screen outlines and wireframes, screen flow diagrams, data 
statements, and automated process descriptions. Each of these sorts of design artifacts can be 
turned into a specific implementation artifact using the Moqui tools."

These design artifacts are usually best when based on requirements that define and structure 
specific activities that the system should support to interact with other actors including 

���   1. Introduction to Moqui7                                                             



people and systems. These requirements should be distinct and separate from the designs to 
help drive design decisions and make sure that all important aspects of the system are 
considered and covered in the designs."

With this approach implementation artifacts can reference the designs they are based on, and 
in turn designs can reference the requirements they are based on. With implementation 
artifacts that naturally map to design artifacts both tasking and testing are straightforward."

When implementing artifacts based on such designs the order that artifacts are created is not 
so important. Different people can even work simultaneously on things like defining entities 
and building screens."

For web-based applications, especially public-facing ones that require custom artwork and 
design, the static artifacts such as images and CSS can be in separate files stored along with 
screen XML files using the same directory structure that is used for subscreens using a 
directory with the same name as the screen. Resources shared among many screens live 
naturally under screens higher up in the subscreen hierarchy. "

The actual HTML generated from XML Screens and Forms can be customized by overriding 
or adding to the FreeMarker macros that are used to generate output for each XML element. 
Custom HTML can also be included as needed. This allows for easy visual customization of 
the generic HTML using CSS and JavaScript, or when needed totally custom HTML, CSS, 
and JavaScript to get any effect desired."

Web designers who work with HTML and CSS can look at the actual HTML generated and 
style using separate CSS and other static files. When more custom HTML is needed the web 
designers can produce the HTML that a developer can put in a template and parameterize as 
needed for dynamic elements. "

Another option that sometimes works well is to have more advanced web designers build 
the entire client side as custom HTML, CSS, and JavaScript that interacts with the server 
through a service interface using some form of JSON over HTTP. This approach also works 
well with client applications for mobile or desktop devices that will interact with the 
application server using web services. The web services can use the automatic JSON-RPC or 
XML-RPC or other custom automatic mappings, or can use custom wrapper services that call 
internal services to support any sort of web service architecture."

However your team is structured and however work is to be divided on a given project, with 
artifacts designed to handle defined parts of applications it is easier to split up work and 
allow people to work in parallel based on defined interfaces."

Development Tools 

For requirements and designs you need a group content collaboration tool that will be used 
by users and domain experts, analysts, designers, and developers. The collaboration tool 
should support:"

  ���                                                                                                                                                                8



• hierarchical documents"
• links between documents and parts of documents (usually to headers within the target 

document)"
• attachments to documents for images and other supporting documents"
• full revision history for each document"
• threaded comments on each document"
• email notification for document updates"
• online access with a central repository for easy collaboration"

There are various options for this sort of tool, though many do not support all the above and 
collaboration suffers because of it. One good commercial option is Atlassian Confluence. 
Atlassian offers a very affordable hosted solution for small groups along with various 
options for larger organizations. There are various open source options, including the wiki 
built into HiveMind PM which is based on Moqui Framework and Mantle Business Artifacts."

Note that this content collaboration tool is generally separate from your code repository, 
though putting requirement and design content in your code repository can work if 
everyone involved is able to use it effectively. Because Moqui itself can render wiki pages 
and pass through binary attachments you might even consider keeping this in a Moqui 
component. The main problem with this is that until there is a good wiki application built on 
Moqui to allow changing the content, this is very difficult for less technical people involved."

For the actual code repository there are various good options and this often depends on 
personal and organizational preferences. Moqui itself is hosted on GitHub and hosted 
private repositories on GitHub are very affordable (especially for a small number of 
repositories). If you do use GitHub it is easy to fork the moqui/moqui repository to maintain 
your own runtime directory in your private repository while keeping up to date with the 
changes in the main project code base. "

Even if you don’t use GitHub a local or hosted git repository is a great way to manage source 
code for a development project. If you prefer other tools such as Subversion or Mercurial 
then there is no reason not to use them."

For actual coding purposes you’ll need an editor or IDE that supports the following types of 
files:"

• XML (with autocompletion, validation, annotation display, etc)"
• Groovy (for script files and scripts embedded in XML files)"
• HTML, CSS, and JavaScript"
• FreeMarker (FTL)"
• Java (optional)"

My preferred IDE these days is IntelliJ IDEA from JetBrains. The free Community Edition has 
excellent XML and Groovy support. For HTML, CSS, JavaScript, and FreeMarker to go 
beyond a simple text editor you’ll have to pay for the Ultimate Edition. I implemented most 
of Moqui, including the complex FreeMarker macro templates, using the Community 

���   1. Introduction to Moqui9                                                             



Edition. After breaking down and buying a personal license for the Ultimate Edition I am 
happy with it, but the Community Edition is impressively capable."

Other popular Java IDEs like Eclipse and NetBeans are also great options and have built-in 
or plugin functionality to support all of these types of files. I personally prefer having 
autocomplete and other advanced IDE functionality around, but if you prefer a more simple 
text editor then of course use what makes you happy and productive."

The Moqui Framework itself is built using Gradle. While I prefer the command line version 
of Gradle (and Git), most IDEs (including IntelliJ IDEA) include decent user interfaces for 
these tools that help simplify common tasks."

!

  ���                                                                                                                                                              10



A Top to Bottom Tour 

Web Browser Request 

A request from a Web Browser will find its way to the 
framework by way of the Servlet Container (the default is 
the embedded Winstone Servlet Container, also works well 
with Apache Tomcat or any Java Servlet implementation). 
The Servlet Container finds the requested path on the 
server in the standard way using the web.xml file and will 
find the MoquiServlet mounted there. The MoquiServlet is 
quite simple and just sets up an ExecutionContext, then 
renders the requested Screen.	

The screen is rendered based on the configured "root" 
screen for the webapp, and the subscreens path to get down 
to the desired target screen. Beyond the path to the target 
screen there may be a transition name for a transition of 
that screen.	

A transition is part of a screen definition and is used to go 
one from screen to another (or back to the same). 
Transitions are used to process input (not to prepare data 
for presentation), which is separated from the screen 
actions which are used to prepare data for presentation (not 
to process input). "

If there is a transition name in the URL path the service or 
actions of the transition will be run, a response to the 
transition selected (based on conditions and whether there 
was an error), and then the response will be followed, 
usually to another screen.	

When a service is called (often from a transition or screen 
action) the Service Facade validates and cleans up the input 
parameters to the service call using the defined input parameters on the service definition, 
and then calls the defined inline or external script, Java method, auto or implicit entity 
operation, or remote service.	

Entity operations, which interact with the database, should only be called from services for 
write operations and can be called from actions anywhere for read operations (transition or 
screen actions, service scripts/methods, etc)."

���   1. Introduction to Moqui11                                                           

Database

Web

Servlet 
Container 

Screen

Service

Entity

Transition Email

Browser

WS/RPC 
Client



Web Service Call 

Web Service requests generally follow the same path as a form submission request from a 
web browser that is handled by a Screen Transition. The incoming data will be handled by 
the transition actions, and typically the response will be handled by an action that sends back 
the encoded response (in XML, JSON, etc) and the default-response for the transition will be 
of type "none" so that no screen is rendered and no redirecting to a screen is done."

Incoming and Outgoing Email 

Incoming email is handled through Email ECA rules which are called by the 
pollEmailServer service (configured using the EmailServer entity). These rules have 
information about the email received parsed and available to them in structured Maps. If the 
condition of a rule passes, then the actions of the rule will be run. Rules can be written to do 
anything you would like, typically saving the message somewhere, adding it to a queue for 
review based on content, generating an automated response, and so on.	

Outgoing email is most easily done with a call to the sendEmailTemplate service. This 
service uses the passed in emailTemplateId to lookup an EmailTemplate record that has 
settings for the email to render, including the subject, the from address, the XML Screen to 
render and use for the email body, screens or templates to render and attach, and various 
other options. This is meant to be used for all sorts of emails, especially notification messages 
and system-managed communication like customer service replies and such.  

  ���                                                                                                                                                              12



!

2. Running Moqui 

Download Moqui and Required Software 

The only required software for the default configuration of Moqui Framework is the Java SE 
JDK version 7 or later. The Oracle Java SE downloads are generally the best option:"

http://www.oracle.com/technetwork/java/javase/downloads "

To build the framework from source you’ll need Gradle (http://www.gradle.org) version 1.6 
or later. Note that Gradle often has non-backward compatible changes so much more recent 
versions may not work."

You can download Moqui Framework releases from GitHub at:"
https://github.com/moqui/moqui/releases!

The most recent version is first one on the page. You may choose either the binary or source 
distribution archive. The binary release of the framework is named "moqui-<version>.zip" 
and there are links to download source archives."

The Moqui Framework source is available on GitHub for download and online browsing 
here:"
https://github.com/moqui/moqui!

Similarly the Mantle Business Artifacts are available on GitHub here:"
https://github.com/moqui/mantle!

There is also a releases page for Mantle on GitHub."

The Runtime Directory and Moqui Conf XML File 

The Moqui Framework has three main parts to deploy:"

• Executable WAR File (see below)"
• Runtime Directory"
• Moqui Configuration XML File"

���   2. Running Moqui13                                                                

http://www.oracle.com/technetwork/java/javase/downloads
http://www.gradle.org
https://github.com/moqui/moqui/releases
https://github.com/moqui/moqui
https://github.com/moqui/mantle


However you use the executable WAR file, you must have a runtime directory and you may 
override default settings (in the MoquiDefaultConf.xml file) with a Moqui Conf XML file, 
such as the MoquiProductionConf.xml file in the runtime/conf directory."

The runtime directory is the main place to put components you want to load, the root files 
(root screen) for the web application, and general configuration files. It is also where the 
framework will put log files, Derby db files (if you are using Derby), etc. You will eventually 
want to create your own runtime directory and keep it in your own source repository. You 
can use the default project runtime directory as a starting point for your own project’s 
runtime resources."

When running specify these two properties:"

There are two ways to specify these two properties:"

• MoquiInit.properties file on the classpath"
• System properties specified on the command line (with java -D arguments)"

The Executable WAR File 

Yep, that's right: an executable WAR file. The main things you can do with this (with 
example commands to demonstrate, modify as needed):"

When running the data loader (with the -load argument), the following options are available 
as additional parameters:"

moqui.runtime Runtime directory (defaults to "./runtime" if exists or just "." if there is 
no runtime sub-directory)

moqui.conf Moqui Conf XML file (URL or path relative to moqui.runtime)

Load Data $ java -jar moqui-<version>.war -load

Run embedded 
web server

$ java -jar moqui-<version>.war

Deploy as WAR (in 
Tomcat, etc)

$ cp moqui-<version>.war ../tomcat/webapps

Display settings 
and help

$ java -jar moqui-<version>.war -help

-types=<type>[,<type>] Data types to load, matches the entity-facade-
xml.type attribute (can be anything, common are: seed, 
seed-initial, demo, ...)

  ���                                                                                                                                                              14



Note that If no -types or -location argument is used all known data files of all types will 
be loaded."

The examples above show running with the moqui.runtime and moqui.conf values 
coming from the MoquiInit.properties file on the classpath. To specify these 
parameters on the command line, use something like:"
$ java -Dmoqui.conf=conf/MoquiStagingConf.xml -jar moqui-<version>.war!

Note that the moqui.conf path is relative to the moqui.runtime directory, or in other 
words the file lives under the runtime directory."

When running the embedded web server (without the -load or -help parameters) the 
Winstone Servlet Container is used. For a full list of arguments available in Winstone, see:"
http://winstone.sourceforge.net/#commandLine!

For your convenience here are some of the more common Winstone arguments to use:"

Embedding the Runtime Directory in the WAR File 

Moqui can run with an external runtime directory (independent of the WAR file), or with the 
runtime directory embedded in the WAR file. The embedded approach is especially helpful 

-location=<location> Location of a single data file to load

-timeout=<seconds> Transaction timeout for each file, defaults to 600 seconds (10 
minutes)

-dummy-fks Use dummy foreign-keys to avoid referential integrity 
errors

-use-try-insert Try insert and update on error instead of checking for 
record first

-tenantId=<tenantId> ID for the Tenant to load the data into

--httpPort set the http listening port. -1 to disable, Default is 8080

--httpListenAddress set the http listening address. Default is all interfaces

--httpsPort set the https listening port. -1 to disable, Default is disabled

--ajp13Port set the ajp13 listening port. -1 to disable, Default is 8009

--controlPort set the shutdown/control port. -1 to disable, Default disabled

���   2. Running Moqui15                                                                

http://winstone.sourceforge.net/#commandLine


when deploying to WAR hosting providers like Amazon ElasticBeanstalk. To create a WAR 
file with an embedded runtime directory:"

1. Add components and other resources as needed to the runtime directory"
2. Change ${moqui.home}/MoquiInit.properties with desired settings"
3. Change Moqui conf file (runtime/conf/Moqui*Conf.xml) as needed"
4. Create a derived WAR file based on the moqui.war file and with your runtime 

directory contents and MoquiInit.properties file with one of:"
a. $ gradle addRuntime"
b. $ ant add-runtime"

5. Copy the created WAR file (moqui-plus-runtime.war) to deployment target"
6. Run server (or restart/refresh to deploy live WAR)"!

The resulting WAR file will have the runtime directory under its root directory (a sibling to 
the standard WEB-INF directory) and all JAR files under the WEB-INF/lib directory."

Building Moqui Framework 

Moqui Framework uses the build automation tool Gradle (http://www.gradle.org) for 
building from source. There are various custom tasks to automate frequent things, but most 
work is done with the built-in tasks from Gradle. There is also an Ant build file for a few 
common tasks, but not for building from source."

Note that in Gradle the load and run tasks depend on the build task. With this dependency 
the easiest to get a new development system running with a populated database is:"
$ gradle load run!

This will build the WAR file, run the data loader, then run the server. To stop it just press 
<ctrl-c> (or your preferred alternative)."

Build JAR, WAR $ gradle build

Load All Data $ gradle load $ ant load

Run Server in dev mode $ gradle run $ ant run

Clean up JARs, WAR $ gradle clean

Clean up ALL built and runtime 
files (logs, DBs, etc)

$ gradle cleanAll

  ���                                                                                                                                                              16

http://www.gradle.org


Database Configuration 

Database (or datasource) setup is done in the Moqui Conf XML file with moqui-
conf.entity-facade.datasource elements. There is one element for each entity group and 
the datasource.group-name attribute matches against entity.group-name attribute. By 
default in Moqui there are 4 entity groups: transactional, analytical, nosql, and 
tenantcommon. If you only configure a datasource for the transactional group it will also 
be used for the other groups. One exception to this: if you want to use multiple tenants in 
your deployment you must also define a datasource for tenantcommon."

Here is the default configuration for the Apache Derby database:"
<datasource group-name="transactional" database-conf-name="derby" !
    schema-name="MOQUI">!
  <inline-jdbc pool-minsize="5" pool-maxsize="50">!
    <xa-properties databaseName="${moqui.runtime}/db/derby/MoquiDEFAULT" !
        createDatabase="create"/>!
  </inline-jdbc>!
</datasource>!

The database-conf-name attribute points to a database configuration and matches against a 
database-list.database.name attribute to identify which. Database configurations specify 
things like SQL types to use, SQL syntax options, and JDBC driver details."

This example uses a xa-properties element to use the XA (transaction aware) interfaces in 
the JDBC driver. The attributes on the element are specific to each JDBC driver. Some 
examples for reference are included in the MoquiDefaultConf.xml file, but for a full list of 
options look at the documentation for the JDBC driver."

Here is an example of a non-XA configuration for MySQL:"
<datasource group-name="transactional" database-conf-name="mysql" !
    schema-name="">!
  <inline-jdbc jdbc-uri="jdbc:mysql://127.0.0.1:3306/MoquiDEFAULT?
autoReconnect=true&amp;useUnicode=true&amp;characterEncoding=UTF-8"!
      jdbc-username="moqui" jdbc-password="moqui" !
      pool-minsize="2" pool-maxsize="50"/>!
</datasource>!

For non-XA configurations the various jdbc-* attributes are on the inline-jdbc element as 
opposed to a subelement. This example shows the main ones needed: the JDBC URI, 
username, and password. To use something like this put the datasource element under the 
entity-facade element in the runtime Moqui Conf XML file (like the 
MoquiProductionConf.xml file)."

!
!
!
���   2. Running Moqui17                                                                



!
!
!
!

This book sponsored by Ant Websystems (http://www.antwebsystems.com/) 

  ���                                                                                                                                                              18

http://www.antwebsystems.com/


!

3. Framework Tools and 
Configuration 

What follows is a summary of the various tools in the Moqui Framework and corresponding 
configuration elements in the Moqui Conf XML file. The default settings are in the 
MoquiDefaultConf.xml file, which is included in the executable WAR file in a binary 
distribution of Moqui Framework. This is a great file to look at to see some of the settings 
that are available and what they are set to by default. If you downloaded a binary 
distribution of Moqui Framework you can view this file online at (note that this is from the 
master branch on GitHub and may differ slightly from the one you downloaded):"
https://github.com/moqui/moqui/blob/master/framework/src/main/resources/
MoquiDefaultConf.xml!

Any setting in this file can be overridden in the Moqui Conf XML file that is specified at 
runtime along with the runtime directory (and generally in the conf directory under the 
runtime directory). The two files are merged before any settings are used, with the runtime 
file overriding the default one. Because of this, one easy way to change settings is simply 
copy from the default conf file and paste into the runtime one, and then make changes as 
desired."

Execution Context and Web Facade	


The Execution Context is the central object in the Moqui Framework API. This object 
maintains state within the context of a single server interaction such as a web screen request 
or remote service call. Through the ExecutionContext object you have access to a number of 
"facades" that are used to access the functionality of different parts of the framework. There is 
detail below about each of these facades.	

The main state tracked by the Execution Context is the variable space, or "context", used for 
screens, actions, services, scripts, and even entity and other operations. This context is a hash 
or map with name/value entries. It is implemented with the ContextStack class and 
supports protected variable spaces with push() and pop() methods that turn it into a stack 

���   3. Framework Tools and Configuration19                                                 

https://github.com/moqui/moqui/blob/master/framework/src/main/resources/MoquiDefaultConf.xml


of maps. As different artifacts are executed they automatically push() the context before 
writing to it, and then pop() the context to restore its state before finishing. Writing to the 
context always puts the values into the top of the stack, but when reading the named value is 
searched for at each level on the stack starting at the top so that fields in deeper levels are 
visible."

In some cases, such as calling a service, we want a fresh context to better isolate the artifact 
from whatever called it. For this we use the pushContext() method to get a fresh context, 
then the popContext() method after the artifact is run to restore the original context."

The context is the literal variable space for the executing artifact wherever possible. In 
screens when XML actions are executed the results go in the local context. Even Groovy 
scripts embedded in service and screen actions share a variable space and so variables 
declared exist in the context for subsequent artifacts."

Some common expressions you’ll see in Moqui-based code (using Groovy syntax) include:"

• refer to the current variable context: ec.context"
• refer to the "exampleId" field from the context: ec.context.exampleId"
• set the exampleId to "foo": ec.context.exampleId = "foo""
• for inline scripts you can also just do: exampleId = "foo"	


For an ExecutionContext instance created as part of a web request (HttpServletRequest) 
there will be a special facade called the Web Facade. This facade is used to access information 
about the servlet environment for the context including request, response, session, and 
application (ServletContext). It is also used to access the state (attributes) of these various 
parts of the servlet environment including request parameters, request attributes, session 
attributes, and application attributes.	


Web Parameters Map 

The request parameters "map" (ec.web.requestParameters) is a special map that contains 
parameters from the URL parameter string, inline URL parameters (using the "/
~name=value/" format), and multi-part form submission parameters (when applicable). 
There is also a special parameters map (ec.web.parameters) that combines all the other 
maps in the following order (with later overriding earlier): request parameters, application 
attributes, session attributes, and request attributes. That parameters map is a stack of maps 
just like the context so if you write to it the values will go in the top of the stack which is the 
request attributes.	

For security reasons the request parameters map is canonicalized and filtered using the 
OWASP ESAPI library. This and the Service Facade validation help to protect agains XSS and 
injection attacks."

!
  ���                                                                                                                                                              20



 

���   3. Framework Tools and Configuration21                                                 

Database

Entity 
Facade

Service 
Facade

Screen 
Facade

Apache 
XML-RPC

JSON-RPC 
& REST

JTA/DBCP 

Resource 
Facade

Transaction 
Facade

Web 
Facade

Scripts 
(Groovy)

Templates 
(FreeMarker)

Quartz 
Scheduler

ehcache

OWASP 
ESAPI

Servlet 
Container

JCR 
(Jackrabbit)

Wiki Text
jQuery, 

Bootstrap

Cache 
Facade

L10n Facade

Logger 
Facade

Message 
Facade

Execution 
Context

Execution Context 
Factory

Artifact Execution 
Facade

User Facade

Moqui Servlet, 
Listeners

Apache 
Camel

NoSQL
Database

Elastic- 
Search



Factory, Servlet & Listeners	


Execution Context instances are created by the Execution Context Factory. This can be done 
directly by your code when needed, but is usually done by a container that Moqui 
Framework is running in."

The most common way to run Moqui Framework is as a webapp through either a WAR file 
deployed in a servlet container or app server, or by running the executable WAR file and 
using the embedded Winstone Servlet Container. In either case the Moqui root webapp is 
loaded and the WEB-INF/web.xml file tells the servlet container to load the MoquiServlet, 
the MoquiSessionListener, and the MoquiContextListener. These are default classes 
included in the framework, and you can certainly create your own if you want to change the 
lifecycle of the ExecutionContextFactory and ExecutionContext.	

With these default classes the ExecutionContextFactory is created by the 
MoquiContextListener on the contextInitialized() event, and is destroyed by the same 
class on the contextDestroyed() event. The ExecutionContext is created using the factory 
by the MoquiServlet for each request in the doGet() and doPost() methods, and is 
destroyed by the MoquiServlet at the end of each request by the same method.	


Resource and Cache Facades	


The Resource Facade is used to access and execute resource such as scripts, templates, and 
content. The Cache Facade is used to do general operations on caches, and to get a reference 
to a cache as an implementation of the Cache interface. Along with supporting basic get/
put/remove/etc operations you can get statistics for each cache, and modify cache 
properties such as timeouts, size limit, and eviction algorithm. The default Cache Facade 
implementation is just a wrapper around ehcache, and beyond the cache-facade 
configuration in the Moqui Conf XML file you can configure additional options using the 
ehcache.xml file.	

The Resource Facade uses the Cache Facade to cache plain text by its source location (for 
getLocationText() method), compiled Groovy and XML Actions scripts by their locations 
(for the runScriptInCurrentContext method), and compiled FreeMarker (FTL) templates also 
by location (for the renderTemplateInCurrentContext() method).	

There is also a cache used for the small Groovy expressions that are scattered throughout 
XML Screen and Form definitions, and that cache is keyed by the actual text of the expression 
instead of by a location that it came from (for the evaluateCondition(), 
evaluateContextField(), and evaluateStringExpand() methods).	

For more generic access to resources the getLocationReference() method returns an 
implementation of the ResourceReference interface. This can be used to read resource 
contents (for files and directories), and get information about them such as content/MIME 
type, last modified time, and whether it exists. These resource references are used by the rest 
  ���                                                                                                                                                              22



of the framework to access resources in a generic and extensible way. Implementations of the 
ResourceReference interface can be implemented as needed and default implementations 
exist for the following protocols/schemes: http, https, file, ftp, jar, classpath, component, and 
content (JCR, i.e., Apache Jackrabbit).	


Screen Facade	


The API of the Screen Facade is deceptively simple, mostly just acting as a factory for the 
ScreenRender interface implementation. Through the ScreenRender interface you can render 
screens in a variety of contexts, the most common being in a service with no dependence on a 
servlet container, or in response to a HttpServletRequest using the 
ScreenRender.render(request, response) convenience method.	

Generally when rendering and a screen you will specify the root screen location, and 
optionally a subscreen path to specify which subscreens should be rendered (if the root 
screen has subscreens, and instead of the default-item for each screen with subscreens). For 
web requests this sub-screen path is simply the request "pathInfo" (the remainder of the URL 
path after the location where the webapp/servlet are mounted).	


Screen Definition	


The real magic of the Screen Facade is in the screen definition XML files. Each screen 
definition can specify web-settings, parameters, transitions with responses, subscreens, pre-
render actions, render-time actions, and widgets. Widgets include subscreens menu/active/
panel, sections, container, container-panel, render-mode-specific content (i.e. html, xml, csv, 
text, xsl-fo, etc), and forms. "

There are two types of forms: form-single and form-list. They both have a variety of layout 
options and support a wide variety of field types. While Screen Forms are primarily defined 
in Screen XML files, they can also be extended for groups of users with the DbForm and 
related entities.	

One important note about forms based on a service (using the auto-fields-service 
element) is that various client-side validations will be added automatically based on the 
validations defined for the service the form field corresponds to.	


Screen/Form Render Templates	


The output of the ScreenRender is created by running a template with macros for the various 
XML elements in screen and form definitions. If a template is specified through the 
ScreenRender.macroTemplate() method then it will be used, otherwise a template will be 
determined with the renderMode and the configuration in the screen-facade.screen-
text-output element of the Moqui Conf XML file. You can create your own templates that 

���   3. Framework Tools and Configuration23                                                 



override the default macros, or simply ignore them altogether, and configure them in the 
Moqui Conf XML file to get any output you want. There is an example of one such template 
in the runtime/template/screen-macro/ScreenHtmlMacros.ftl file, with the override 
configuration in the runtime/conf/development/MoquiDevConf.xml file.	

The default HTML screen and form template uses jQuery Core and UI for dynamic client-
side interactions. Other JS libraries could be used by modifying the screen HTML macros as 
described above, and by changing the theme data (defaults in runtime/component/
webroot/data/WebrootThemeData.xml file) to point to the desired JavaScript and CSS files.	


Service Facade	


The Service Facade is used to call services through a number of service call interfaces for 
synchronous, asynchronous, scheduled and special (TX commit/rollback) service calls. Each 
interface has different methods to build up information about the call you want to do, and 
they have methods for the name and parameters of the service."

When a service is called the caller doesn’t need to know how it is implemented or where it is 
located. The service definition abstracts that out to the service definition so that those details 
are part of the implementation of the service, and not the calling of the service.	


Service Naming	


Service names are composed of 3 parts: path, verb, and noun. When referring to a service 
these are combined as: "${path}.${verb}#${noun}", where the hash/pound sign is 
optional but can be used to make sure the verb and noun match exactly. The path should be a 
Java package-style path such as org.moqui.impl.UserServices for the file at 
classpath://service/org/moqui/impl/UserServices.xml. While it is somewhat 
inconvenient to specify a path this makes it easier to organize services, find definitions based 
on a call to the service, and improve performance and caching since the framework can lazy-
load service definitions as they are needed."

That service definition file will be found based on that path with location patterns: 
"classpath://service/$1" and "component://.*/service/$1" where $1 is the path with 
‘.’ changed to ‘/’ and ".xml" appended to the end. 	

The verb (required) and noun (optional) parts of a service name are separate to better to 
describe what a service does and what it is acting on. When the service operates on a specific 
entity the noun should be the name of that entity.	

The Service Facade supports CrUD operations based solely on entity definitions. To use these 
entity-implicit services use a service name with no path, a noun of create, update, or delete, a 
hash/pound sign, and the name of the entity. For example to update a UserAccount use the 
service name update#UserAccount. When defining entity-auto services the noun must 
also be the name of the entity, and the Service Facade will use the in- and out-parameters 
  ���                                                                                                                                                              24



along with the entity definition to determine what to do (most helpful for create operations 
with primary/secondary sequenced IDs, etc)."

The full service name combined from the examples in the paragraphs above would look like 
this:"
org.moqui.impl.UserServices.update#UserAccount	


Parameter Cleaning, Conversion and Validation	


When calling a service you can pass in any parameters you want, and the service caller will 
clean up the parameters based on the service definition (remove unknown parameters, 
convert types, etc) and validate parameters based on validation rules in the service definition 
before putting those parameters in the context for the service to run. When a service runs the 
parameters will be in the ec.context map along with other inherited context values, and 
will be in a map in the context called parameters to access the parameters segregated from 
the rest of the context.	

One important validation is configured with the parameter.allow-html attribute in the 
service definition. By default no HTML is allowed, and you can use that attribute to allow 
any HTML or just safe HTML for the service parameter. Safe HTML is determined using the 
OWASP ESAPI and Antisamy libraries, and configuration for what is considered safe is done 
in the antisamy-esapi.xml file."

Quartz Scheduler	


The Service Facade uses Quartz Scheduler for asynchronous and scheduled service calls. 
Some options are available when calling the services and configuration in the Moqui Conf 
XML file, but to configure Quartz itself use the quartz.properties file (there is a default in 
the framework/src/main/resources/ directory that may be overridden on the classpath).	


Web Services	


For web services the Service Facade uses Apache XML-RPC for incoming and outgoing 
XML-RPC service calls, and custom code using Moqui JSON and web request tools for 
incoming and outgoing JSON-RPC 2.0 calls. The outgoing calls are handled by the 
RemoteXmlRpcServiceRunner and RemoteJsonRpcServiceRunner classes, which are 
configured in the service-facade.service-type element in the Moqui Conf XML file. To 
add support for other outgoing service calls through the Service Facade implement the 
ServiceRunner interface (as those two classes do) and add a service-facade.service-
type element for it.	

Incoming web services are handled using default transitions defined in the runtime/
component/webroot/screen/webroot/rpc.xml screen. The remote URL for these, if 

���   3. Framework Tools and Configuration25                                                 



webroot.xml is mounted on the root ("/") of the server, would be something like: "http://
hostname/rpc/xml" or "http://hostname/rpc/json". To handle other types of incoming 
services similar screen transitions can be added to the rpc.xml screen, or to any other screen.	

For REST style services a screen transition can be declared with a HTTP request method (get, 
put, etc) as well as a name to match against the incoming URL. For more flexible support of 
parameters in the URL beyond the transition’s place in the URL path values following the 
transition can be configured to be treated the same as named parameters. To make things 
easier for JSON payloads they are also automatically mapped to parameters and can be 
treated just like parameters from any other source, allowing for easily reusable server-side 
code. To handle these REST service transitions an internal service can be called with very 
little configuration, providing for an efficient mapping between exposed REST services and 
internal services.	


Entity Facade	


The Entity Facade is used for common database interactions including create/update/delete 
and find operations, and for more specialized operations such as loading and creating entity 
XML data files. While these operations are versatile and cover most of the database 
interactions needed in typical applications, sometimes you need lower-level access, and you 
can get a JDBC Connection object from the Entity Facade that is based on the entity-facade 
datasource configuration in the Moqui Conf XML file."

Entities correspond to tables in a database and are defined primarily in XML files. These 
definitions include list the fields on the entity, relationships betweens entities, special 
indexes, and so on. Entities can be extended using database record with the UserField and 
related entities.	

Each individual record is represented by an instance of the EntityValue interface. This 
interface extends the Map interface for convenience, and has additional methods for getting 
special sets of values such as the primary key values. It also has methods for database 
interactions for that specific record including create, update, delete, and refresh, and for 
getting setting primary/secondary sequenced IDs, and for finding related records based on 
relationships in the entity definition. To create a new EntityValue object use the 
EntityFacade.makeValue() method, though most often you’ll get EntityValue instances 
through a find operation."

To find entity records use the EntityFind interface. To get an instance of this interface use 
the EntityFacade.makeFind() method. This find interface allows you to set various 
conditions for the find (both where and having, more convenience methods for where), 
specify fields to select and order by, set offset and limit values, and flags including use cache, 
for update, and distinct. Once options are set you can call methods to do the actual find 
including: one(), list(), iterator(), count(), updateAll(), and deleteAll().	


  ���                                                                                                                                                              26



Multi-Tenant	


When getting an EntityFacade instance from the ExecutionContext the instance retrieved 
will be for the active tenantId on the ExecutionContext (which is set before authentication 
either specified by the user, or set by the servlet or a listener before the request is processed). 
If there is no tenantId the EntityFacade will be for the "DEFAULT" tenant and use the 
settings from the Moqui Conf XML file. Otherwise it will use the active tenantId to look up 
settings on the Tenant* entities that will override the defaults in the Moqui Conf XML file 
for the datasource.	


Connection Pool and Database	


The Entity Facade uses Atomikos TransactionsEssentials or Bitronix BTM (default) for XA-
aware database connection pooling. To configure Atomikos use the jta.properties file. To 
configure Bitronix use the bitronix-default-config.properties file. With configuration 
in the entity-facade element of the Moqui Conf XML file you can change this to use any 
DataSource or XADataSource in JNDI instead.	

The default database included with Moqui Framework is Apache Derby. This is easy to 
change with configuration in the entity-facade element of the Moqui Conf XML file. To 
add a database not yet supported in the MoquiDefaultConf.xml file, add a new database-
list.database element. Currently databases supported by default include Apache Derby, 
DB2, HSQL, MySQL, Postgres, Oracle, and MS SQL Server.	


Database Meta-Data	


The first time (in each run of Moqui) the Entity Facade does a database operation on an 
entity it will check to see if the table for that entity exists (unless configured not to). You can 
also configure it to check the tables for all entities on startup. If a table does not exist it will 
create the table, indexes, and foreign keys (for related tables that already exist) based on the 
entity definition. If a table for the entity does exist it will check the columns and add any that 
are missing, and can do the same for indexes and foreign keys.	


Transaction Facade	


Transactions are used mostly for services and screens. Service definitions have transaction 
settings, based on those the service callers will pause/resume and begin/commit/rollback 
transactions as needed. For screens a transaction is always begun for transitions (if one is not 
already in place), and for rendering actual screens a transaction is only begun if the screen is 
setup to do so (mostly for performance reasons).	


���   3. Framework Tools and Configuration27                                                 



You can also use the TransactionFacade for manual transaction demarcation. The JavaDoc 
comments have some code examples with recommended patterns for begin/commit/
rollback and for pause/begin/ commit/rollback/resume to use try/catch/finally clauses to 
make sure the transaction is managed properly.	

When debugging transaction problems, such as tracking down where a rollback-only was 
set, the TransactionFacade can also be use as it keeps a stack trace when 
setRollbackOnly() is called. It will automatically log this on later errors, and you can 
manually get those values at other times too.	


Transaction Manager (JTA)	


By default the Transaction Facade uses the Bitronix TM library (also used for a connection 
pool by the Entity Facade). To configure Bitronix use the bitronix-default-
config.properties file. Moqui also supports Atomikos OOTB. To configure Atomikos use 
the jta.properties file. "

Any JTA transaction manager, such as one from an application server, can be used instead 
through JNDI by configuring the locations of the UserTransaction and 
TransactionManager implementations in the entity-facade element of the Moqui Conf 
XML file.	


Artifact Execution Facade	


The Artifact Execution Facade is called by other facades to keep track of which artifacts are 
"run" in the life of the ExecutionContext. It keeps both a history of all artifacts, and a stack 
of the current artifacts being run. For example if a screen calls a subscreen and that calls a 
service which does a find on an entity the stack will have (bottom to top) the first screen, 
then the second screen, then the service and then the entity.	


Artifact Authorization	


While useful for debugging and satisfying curiosity, the main purpose for keeping track of 
the stack of artifacts is for authorization and permissions. There are implicit permissions for 
screens, transitions, services and entities in Moqui Framework. Others may be added later, 
but these are the most important and the one supported for version 1.0 (see the 
"ArtifactType" Enumeration records in the SecurityTypeData.xml file for details).	

The ArtifactAuthz* and ArtifactGroup* entities are used to configure authorization for 
users (or groups of users) to access specific artifacts. To simplify configuration authorization 
can be "inheritable" meaning that not only is the specific artifact authorized but also 
everything that it uses.	


  ���                                                                                                                                                              28



There are various examples of setting up different authorization patterns in the 
ExampleSecurityData.xml file. One common authorization pattern is to allow access to a 
screen and all of its subscreens where the screen is a higher-level screen such as the 
ExampleApp.xml screen that is the root screen for the example app. Another common pattern 
is that only a certain screen within an application is authorized but the rest of it is not. If a 
subscreen is authorized, even if its parent screen is not, the user will be able to use that 
subscreen."

Artifact Hit Tracking	


There is also functionality to track performance data for artifact "hits". This is done by the 
Execution Context Factory instead of the Artifact Execution Facade because the Artifact 
Execution Facade is created for each Execution Context, and the artifact hit performance data 
needs to be tracked across a large number of artifact hits both concurrent and over a period 
of time. The data for artifact hits is persisted in the ArtifactHit and ArtifactHitBin 
entities. The ArtifactHit records are associated with the Visit record (one visit for each 
web session) so you can see a history of hits within a visit for auditing, user experience 
review, and various other purposes.	


User, L10n, Message, and Logger Facades	


The User Facade is used to manage information about the current user and visit, and for 
login, authentication, and logout. User information includes locale, time zone, and currency. 
There is also the option to set an effective date/time for the user that the system will treat as 
the current date/time (through ec.user.nowTimestamp) instead of using the current system 
date/time.	

The L10n (Localization) Facade uses the locale from the User Facade and localizes the 
message it receives using cached data from the LocalizedMessage entity. The 
EntityFacade also does localization of entity fields using the LocalizedEntityField 
entity. The L10n Facade also has methods for formatting currency amounts, and for parsing 
and formatting for Number, Timestamp, Date, Time, and Calendar objects using the Locale 
and TimeZone from the User Facade as needed.	

The Message Facade is used to track messages and error messages for the user. The error 
message list (ec.message.errors) is also used to determine if there was an error in a service 
call or other action.	

The Logger Facade is used to log information to the system log. This is meant for use in 
scripts and other generic logging. For more accurate and trackable logging code should use 
the SLF4J Logger class (org.slf4j.Logger) directly. The JavaDoc comments in the 
LoggerFacade interface include example code for doing this."

!
���   3. Framework Tools and Configuration29                                                 



Extensions and Add-ons 

The Compelling Component 

A Moqui Framework component is a set of artifacts that make up an application built on 
Moqui, or reusable artifacts meant to be used by other components such as the mantle-udm 
and mantle-usl components, a theme component, or a component that integrates some 
other tool or library with Moqui Framework to extend the potential range of applications 
based on Moqui."

Component Directory Structure 

The structure of a component is driven by convention as opposed to configuration. This 
means that you must use these particular directory names, and that all Moqui components 
you look at will be structured in the same way.	


• data - Entity XML data files with root element entity-facade-xml, loaded by type 
attribute matching types specified on command line (executable WAR with -load), or 
all types if no type specified "

• entity - All Entity Definition and Entity ECA XML files in this directory will be loaded; 
Entity ECA files must be in this directory and have the dual extension ".eecas.xml" "

• lib - JAR files in this directory will be added to the classpath when the webapp is 
deployed"

• screen - Screens are referenced explicitly (usually by "component://*" URL), so this 
is a convention "

• script - Scripts are referenced explicitly (usually by "component://*" URL), so this is 
a convention; Groovy, XML Action, and any other scripts should go under this directory "

• service - Services are loaded by path to the Service Definition XML file they are 
defined in, and those paths are found either under these component service directories or 
under "classpath://service/"; Service ECA files must be in this directory and have 
the dual extension ".secas.xml"; Email ECA files must be in this directory and have 
the extension ".emecas.xml" "

Installing a Component 

Load the Component 

There are two ways to tell Moqui about a component: 	


• put the component directory in the runtime/component directory"
• add a component-list.component element in the Moqui Conf XML file "

  ���                                                                                                                                                              30



Mounting Screen(s) 

Each webapp in Moqui (including the default webroot webapp) must have a root screen 
specified in the moqui-conf.webapp-list.webapp.root-screen-location attribute. The 
default root screen is called webroot which is located at runtime/component/webroot/
screen/webroot.xml."

For screens from your component to be available in a screen path under the webroot screen 
you need to make each top-level screen in your component (i.e. each screen in the 
component’s screen directory) a subscreen of another screen that is an ancestor of the 
webroot screen. There are two ways to do this (this does not include putting it in the 
webroot directory as an implicit subscreen since that is not an option for screens defined 
elsewhere):"

• add a screen.subscreens.subscreen-item element to the parent screen (what the 
subscreen will be under); for example see the apps screen (runtime/component/
webroot/screen/WebRoot/apps.xml) where the example and tools root screens are 
"mounted" "

• add a record in the SubscreensItem entity, specifying the parent screen in the 
screenLocation field, the subscreen in the subscreenLocation field, the "mount point" 
in the subscreenName field (equivalent to the subscreens-item.name attribute), and 
either ALL_USERS in the userGroupId field for it to apply to all users, or an actual 
userGroupId for it to apply to just that user group "

If you want your screen to use its own decoration and be independent from other screens, 
put it under the webroot screen directly. To have your screen part of the default apps menu 
structure and be decorated with the default apps decoration, put it under the apps screen."

Moqui Conf XML File Settings 

You may want have things in your component add to or modify various things that come by 
default with Moqui Framework, including:	


• Resource Reference: see the moqui-conf.resource-facade.resource-reference 
element "

• Template Renderer: see the moqui-conf.resource-facade.template-renderer 
element "

• Screen Text Output Template: see the moqui-conf.screen-facade.screen-text-
output element "

• Service Type Runner: see the moqui-conf.service-facade.service-type element "
• Explicit Entity Data and Definition files: see the moqui-conf.entity-facade.load-

entity and moqui-conf.entity-facade.load-data elements "

There are examples of all of these in the MoquiDefaultConf.xml file since the framework 
uses the Moqui Conf XML file for its own default configuration."

���   3. Framework Tools and Configuration31                                                 



This book sponsored by HotWax Media (http://www.hotwaxmedia.com/) 

  ���                                                                                                                                                              32

http://www.hotwaxmedia.com/


!

4. Create Your First Component 

Summary 

This chapter is a step-by-step guide to creating and running your own Moqui component 
with a user interface, logic, and database interaction."

• Part 1: To get started you'll be creating your own component and a simple "Hello 
world!" screen."

• Part 2: Continuing from there you'll define your own entity (database table) and add 
forms to your screen to find and create records for that entity."

• Part 3: To finish off the fun you will create some custom logic instead of using the 
default CrUD logic performed by the framework based on the entity definition."

The running approach used in this document is a simple one using the embedded servlet 
container and database."

The tutorial code from this chapter is available on moqui.org at:"

http://www.moqui.org/tutorial.zip"

Part 1 

Download Moqui Framework 

If you haven't already downloaded Moqui Framework, do that now. You should have a 
moqui-<version> directory with at least the moqui-<version>.war file and the default 
runtime directory that comes with Moqui. Start out in that moqui root directory."

If you have a clean download, do a data load and try running it real quick:"
$ gradle load  
$ gradle run!

In your browser go to http://localhost:8080/, log in as John Doe with the button in the 
lower-left corner of the screen, and look around a bit."

Now quit (<ctrl>-c in the command line) and you're ready for the next step."
���   4. Create Your First Component33                                                      

http://www.moqui.org/tutorial.zip
http://localhost:8080/


Create a Component 

Moqui follows the "convention over code" principle for components, so all you really have to 
do to create a Moqui component is create a directory:"

$ cd runtime/component  
$ mkdir tutorial	


Now go into the directory and create some of the standard directories that you'll use later in 
this tutorial:"

$ cd tutorial  
$ mkdir data  
$ mkdir entity  
$ mkdir screen  
$ mkdir script  
$ mkdir service	


With your component in place just start up Moqui (with "$ gradle run" or similar)."

Add a Screen 

Using your preferred IDE or text editor add a screen XML file in:"
runtime/component/tutorial/screen/tutorial.xml	


For now let this be a super simple screen with just a "Hello world!" label in it. The contents 
should look something like:"
<screen require-authentication="false">!
    <widgets><label type="h1" text="Hello world!"/></widgets>!
</screen>!

Note that the require-authentication attribute is set to false. By default this is true and 
the screen will require authentication and authorization. We’ll discuss the artifact-aware 
configurable authorization later in the Security chapter."

Mount as a Subscreen 

To make your screen available it needs to be added as a subscreen to a screen that is already 
under the root screen somewhere. In Moqui screens the URL path to the screen and the menu 
structure are both driven by the subscreen hierarchy, so this will setup the URL for the screen 
and add a menu tab for it."

For the purposes of this tutorial we'll use the existing root screen and header/footer/etc that 
are in the included runtime directory. This runtime directory has a webroot component with 
the root screen at:"
runtime/component/webroot/screen/webroot.xml	


  ���                                                                                                                                                              34



On a side note, the root screen is specified in the Moqui Conf XML file using the webapp-
list.webapp.root-screen element, and you can use multiple elements to have different 
root screens for different host names."

To make the subscreen hierarchy more flexible this root screen only has a basic HTML head 
and body, with no header and footer content, so let's put our screen under the "apps" screen 
which adds a header menu and will give our screen some context. Modify the apps screen by 
changing:"
runtime/component/webroot/screen/webroot/apps.xml	


Add a subscreens-item element under the subscreens element in the apps.xml file like:"
<subscreens-item name="tutorial" menu-title="Tutorial" !
    location="component://tutorial/screen/tutorial.xml"/>!

The name attribute specifies the value for the path in the URL to the screen, so your screen is 
now available in your browser at:"
http://localhost:8080/apps/tutorial	


If you don't want to modify an existing screen file and still want to mount your screen as a 
subscreen of another you can do so with a record in the database that looks like this (in the 
entity-facade-xml format with elements representing entities and attributes representing 
fields):"
<SubscreensItem subscreenName="tutorial" userGroupId="ALL_USERS"!
    screenLocation="component://webroot/screen/webroot/apps.xml"!
    subscreenLocation="component://tutorial/screen/tutorial.xml"!
    menuTitle="Tutorial" menuIndex="1" menuInclude=“Y"/>!

Once it’s all wired up this is what your screen should look like:"

Try Included Content 

Instead of using the label element we can get the HTML from a file that is "under" the screen."

First create a simple HTML file located at:"
runtime/component/tutorial/screen/tutorial/hello.html	


���   4. Create Your First Component35                                                      

http://localhost:8080/apps/tutorial


The HTML file can contain any HTML, and since this will be included in a screen whose 
parent screens take care of header/footer/etc we can keep it very simple:"
<h1>Hello world! (from the hello.html file)</h1>!

Now just explicitly include the HTML file in the tutorial.xml screen definition using the 
render-mode.text element:"
<screen>!
    <widgets>!
        <label type="h1" text="Hello world!"/>!
        <render-mode>!
            <text type="html" !
               location="component://tutorial/screen/tutorial/hello.html"/>!
        </render-mode>!
    </widgets>!
</screen>!

So what is this render-mode thingy? Moqui XML Screens are meant to platform agnostic and 
may be rendered in various environments. Because of this we don't want anything in the 
screen that is specific to a certain mode of rendering the screen without making it clear that it 
is. Under the render-mode element you can have various sub-elements for different render 
modes, even for different text modes such as HTML, XML, XSL-FO, CSV, and so on so that a 
single screen definition can be rendered in different modes and produce output as needed for 
each mode."

The screen is available at the same URL, but now includes the content from the HTML file 
instead of having it inline as a label in the screen definition."

Try Sub-Content 

Another way to show the contents of the hello.html file is to treat it as screen sub-content."

To do this the hello.html file must by in a subdirectory with the same name as the screen, 
i.e. in a tutorial directory as a sibling of the tutorial.xml file."

Now all we have to do is:"

• tell the tutorial.xml screen to include child content by setting the screen.include-
child-content attribute to true"

• tell the screen where to include subscreens and child content by adding a 
widgets.subscreens-active element"

• specify the default subscreens item as the hello.html sub-content with the 
subscreens.default-item attribute"

With those done your screen XML file should look like:"

!
!
  ���                                                                                                                                                              36



<screen require-authentication="false" include-child-content="true">!
    <subscreens default-item="hello.html"/>!
    <widgets>!
        <label type="h1" text="Hello world!"/>!
        <subscreens-active/>!
    </widgets>!
</screen>!

To see the content go to a URL that tells Moqui that you want the hello.html file that is 
under the tutorial screen:"
http://localhost:8080/apps/tutorial/hello.html!

With the default subscreens item specified you can also just go to the tutorial screen's URL:"
http://localhost:8080/apps/tutorial!

With this in place this is how your screen should look, with both hello world lines:"

Part 2 

My First Entity 

An entity is a basic tabular data structure, and usually just a table in a database. An entity 
value is equivalent to a row or record in the database. Moqui does not do object-relational 
mapping, so all we have to do is define an entity, and then start writing code using the Entity 
Facade (or other higher level tools) to use it."

To create a simple entity called Tutorial with fields tutorialId and description create an 
entity XML file at:"
runtime/component/tutorial/entity/TutorialEntities.xml	


That contains:"

!
!
���   4. Create Your First Component37                                                      

http://localhost:8080/apps/tutorial/hello.html
localhost:8080/apps/tutorial


<entities>!
    <entity entity-name="Tutorial" package-name="tutorial">!
        <field name="tutorialId" type="id" is-pk="true"/>!
        <field name="description" type="text-long"/>!
    </entity>!
</entities>!

If you're running Moqui in dev mode the entity definition cache clears automatically so you 
don't have to restart, and for production mode or if you don't want to wait (since Moqui does 
start very fast) you can just stop and start the JVM."

How do you create the table? Unless you turn the feature off (in the Moqui Conf XML file) 
the Entity Facade will create the table the first time the entity is used if it doesn't already 
exist."

Add Some Data 

The Entity Facade has functionality to load data from, and write data to, XML files where 
elements map to entity names and attributes map to field names."

We'll create a UI to enter data later on, and you can use the Auto Screen or Entity Data UI in 
the Tools application to work with records in your new entity. Data files are useful for seed 
data that code depends on, data for testing, and data to demonstrate how a data model 
should be used. So, let's try it."

Create an entity facade XML file at:"
runtime/component/tutorial/data/TutorialData.xml	


That contains:"
<entity-facade-xml type="seed">!
    <tutorial.Tutorial tutorialId="TestOne" !
        description="Test one description."/>!
    <tutorial.Tutorial tutorialId="TestTwo" !
        description="Test two description."/>!
</entity-facade-xml>!

To load this just run "$ gradle load" or one of the other load variations described in the 
Running Moqui chapter."

Automatic Find Form 

Add the XML screen definition below as a subscreen for the tutorial screen by putting it in 
the file:"
runtime/component/tutorial/screen/tutorial/FindTutorial.xml	
!!
  ���                                                                                                                                                              38



<screen require-authentication="anonymous-all">!
    <transition name="findTutorial">!
        <default-response url="."/></transition>!
    <actions>!
        <entity-find entity-name="tutorial.Tutorial" list="tutorialList">!
            <search-form-inputs/></entity-find>!
    </actions>!
    <widgets>!
        <form-list name="ListTutorials" list="tutorialList" !
                transition="findTutorial">!
            <auto-fields-entity entity-name="tutorial.Tutorial"!
                    field-type="find-display"/>!
        </form-list>!
    </widgets>!
</screen>!

This screen has a few key parts:"

• transition Think of links between screens as an ordered graph where each screen is a 
node and the transitions defined in each screen are how you go from that screen to 
another (or back to the same), and as part of that transition possibly run actions or a 
service."
• A single transition can have multiple responses with conditions and for errors 

resulting in transition to various screens as needed by your UI design."
• This particular transition refers to the current screen."

• actions.entity-find There is just one action run when this screen is rendered: an 
entity-find."
• Normally with an entity-find element (or in the Java API an EntityFind object) you 

would specify conditions, fields to order by, and other details about the find to run."
• In this case we are doing a find on an entity using standard parameters from a XML 

Form, so we can use the search-form-inputs sub-element to handle these 
automatically."

• To get an idea of what the parameters should be like just view the HTML source in 
your browser that is generated by the XML Form."

• widgets.form-list This is the actual form definition, specifically for a "list" form for 
multiple records/rows (as opposed to a "single" form)."
• The name here can be anything as long as it is unique within the XML Screen."
• Note that the list refers to the result of the entity-find in the actions block, and 

the transition attribute refers to the transition element defined at the top of the 
screen."

• Since the goal was to have a form automatically defined based on an entity we use the 
auto-fields-entity element with the name of our Tutorial entity, and "find-
display" option for the field-type attribute which creates find fields in the header 
and display fields for each record in the table body."

!
���   4. Create Your First Component39                                                      



To view this screen use this URL:"
http://localhost:8080/apps/tutorial/FindTutorial!

An Explicit Field 

Instead of the default for the description field, what if you wanted to specify how it should 
look and what type of field it should be?"

To do this just add a field element inside the form-list element, and just after the auto-
fields-entity element, like this:"
<form-list name="ListTutorials" list="tutorialList" !
        transition="findTutorial">!
    <auto-fields-entity entity-name="tutorial.Tutorial" !
        field-type="display"/>!
    <field name="description">!
        <header-field show-order-by="true">!
            <text-find hide-options="true"/></header-field>!
        <default-field><display/></default-field>!
    </field>!
    <field name="find">!
        <header-field><submit/></header-field>!
    </field>!
</form-list>!

Because the field name attribute is the same as a field already created by the auto-fields-
entity element it will override that field. If the name was different an additional field would 
be created. The result of this is mostly the same as what was automatically generated using 
the auto-fields-entity element, and this is how you would do it explicitly."

With your screen and form defined like this the FindTutorial screen should look something 
like this:"

  ���                                                                                                                                                              40

http://localhost:8080/apps/tutorial/FindTutorial


Add a Create Form 

Let's add a button that will pop up a Create Tutorial form, and a transition to process the 
input."

First add the transition to the FindTutorial.xml screen you created before, right next to the 
findTutorial transition:"
<transition name="createTutorial">!
    <service-call name="create#tutorial.Tutorial"/>!
    <default-response url="."/>!
</transition>!

This transition just calls the create#tutorial.Tutorial service, and then goes back to the 
current screen."

Where did the create#tutorial.Tutorial service come from? We haven't defined 
anything like that yet. The Moqui Service Facade supports a special kind of service for entity 
CrUD operations that don't need to be defined, let alone implemented. This service name 
consists of two parts, a verb and a noun, separated by a hash (#). "

As long as the verb is create, update, store, or delete and the noun is a valid entity name 
the Service Facade will treat it as an implicit entity-auto service and do the desired operation. 
It does so based on the entity definition and the parameters passed to the service call. For 
example, with the create verb and an entity with a single primary key field if you pass in a 
value for that field it will use it, otherwise it will automatically sequence a value using the 
entity name as the sequence key."

Next let's add the create form, in a hidden container that will expand when a button is 
clicked. Put this inside the widget element, just above the form-list element in the original 
FindTutorial screen you created before so that it appears above the list form in the screen:"
<container-dialog id="CreateTutorialDialog" button-text="Create Tutorial">!
    <form-single name="CreateTutorial" transition="createTutorial">!
        <auto-fields-entity entity-name="tutorial.Tutorial" !
            field-type="edit"/>!
        <field name="submitButton">!
            <default-field title="Create"><submit/></default-field>!
        </field>!
    </form-single>!
</container-dialog>!

The form definition refers to the transition you just added to the screen, and uses the 
auto-fields-entity element with edit for the field-type attribute to generate edit 
fields. The last little detail is to declare a button to submit the form, and it is ready to go. Try 
it out and see the records appear in the list form that was part of the original screen."

!
���   4. Create Your First Component41                                                      



Here is a screen shot of the create form, and you can see the button added to the find screen 
in the background:"

Part 3 

Custom Create Service 

The createTutorial transition from our screen above used the implicit entity-auto service 
create#tutorial.Tutorial. Let's see what it would look like to define and implement a 
service manually."

First lets define a service and use the automatic entity CrUD implementation. Put the 
services XML text below in a file in this location:"
runtime/component/tutorial/service/tutorial/TutorialServices.xml	
!
<services>!
    <service verb="create" noun="Tutorial" type="entity-auto">!
        <in-parameters><auto-parameters include="all"/></in-parameters>!
        <out-parameters>!
            <auto-parameters include="pk" required="true"/>!
        </out-parameters>!
    </service>!
</services>!

This will allow all fields of the Tutorial entity to be passed in, and will always return the 
PK field (tutorialId). Note that with the auto-parameters element we are defining the 
service based on the entity, and if we added fields to the entity they would be automatically 
represented in the service."

Now change that service definition to add an inline implementation as well. Notice that the 
service.type attribute has changed, and the actions element has been added."

!
  ���                                                                                                                                                              42



<service verb="create" noun="Tutorial" type="inline">!
    <in-parameters><auto-parameters include="all"/></in-parameters>!
    <out-parameters>!
        <auto-parameters include="pk" required="true"/>!
    </out-parameters>!
    <actions>!
        <entity-make-value entity-name="tutorial.Tutorial" !
            value-field="tutorial"/>!
        <entity-set value-field="tutorial" include="all"/>!
        <if condition="!tutorial.tutorialId">!
            <entity-sequenced-id-primary value-field="tutorial"/>!
        </if>!
        <entity-create value-field="tutorial"/>!
    </actions>!
</service>!

Now to call the service instead of the implicit entity-auto one just change the transition to 
refer to this service:"
<transition name="createTutorial">!
    <service-call name="tutorial.TutorialServices.create#Tutorial"/>!
    <default-response url="."/>!
</transition>!

Note that the service name for a defined service like this is like a fully qualified Java class 
name. It has a "package", in this case tutorial which is the directory (possibly multiple 
directories separated by dots) under the component/service directory. Then there is a dot 
and the equivalent of the class name, in this case "TutorialServices" which is the name of 
the XML file the service is in, but without the .xml extension. After that is another dot, and 
then the service name with the verb and noun optionally separated by a hash (#)."

Groovy Service 

What if you want to implement the service in Groovy (or some other supported scripting 
language) instead of the inline XML Actions? In that case the service definition would look 
like this:"
<service verb="create" noun="Tutorial" type="script"!
     location="component://tutorial/script/tutorial/createTutorial.groovy">!
    <in-parameters><auto-parameters include="all"/></in-parameters>!
    <out-parameters>!
        <auto-parameters include="pk" required="true"/>!
    </out-parameters>!
</service>!

Notice that the service.type attribute has changed to "script", and there is now a 
service.location attribute which specifies the location of the script."

!
���   4. Create Your First Component43                                                      



Here is what the script would look like in that location:"
def tutorial = ec.entity.makeValue("tutorial.Tutorial")!
tutorial.setAll(context)!
if (!tutorial.tutorialId) tutorial.setSequencedIdPrimary()!
tutorial.create()!

When in Groovy, or other languages, you'll be using the Moqui Java API which is based on 
the ExecutionContext class which is available in the script with the variable name "ec". For 
more details on the API see the API JavaDocs (http://www.moqui.org/javadoc/
index.html) and specifically the doc for the ExecutionContext (http://www.moqui.org/
javadoc/org/moqui/context/ExecutionContext.html) class which has links to the other 
major API interface pages."

!
!
!

  ���                                                                                                                                                              44

http://www.moqui.org/javadoc/index.html
http://www.moqui.org/javadoc/index.html
http://www.moqui.org/javadoc/org/moqui/context/ExecutionContext.html
http://www.moqui.org/javadoc/org/moqui/context/ExecutionContext.html


!

5. Data and Resources 

Resources, Content, Templates, and Scripts 

Resource Locations 

A Resource Facade location string is structured like a URL with a protocol, host, optional 
port, and filename. It supports the standard Java URL protocols (http, https, ftp, jar, and file). 
It also supports some additional useful protocols:"

• classpath:// for resources on the Java classpath"
• content:// for resources in a content repository (JCR, via Jackrabbit client); the first 

path element after the protocol prefix is the name of the content repository as specified 
in the repository.name attribute in the Moqui Conf XML file"

• component:// for locations relative to a component base location, no matter where 
the component is located (file system, content repository, etc)"

• dbresource:// for a virtual filesystem persisted with the Entity Facade in a database 
using the moqui.resource.DbResource and DbResourceFile entities"

Additional protocols can be added by implementing the 
org.moqui.context.ResourceReference interface and adding a resource-
facade.resource-reference element to the Moqui Conf XML file. The supported protocols 
listed above are configured this way in the MoquiDefaultConf.xml file."

Using Resources 

The simplest way to use a resource, and supported by all location protocols, is to read the 
text or binary content. To get the text from a resource location use the 
ec.resource.getLocationText(String location, boolean cache) method. To get an 
InputStream for binary or large text resources use the 
ec.resource.getLocationStream(String location) method."

For a wider variety of operations beyond just reading resource data use the 
ec.resource.getLocationReference(String location) method to get an instance of the 
org.moqui.context.ResourceReference interface. This interface has methods to get text 
���   5. Data and Resources45                                                             



or binary stream data from the resource like the Resource Facade methods. It also has 
methods for directory resources to get child resources, find child files and/or directories 
recursively by name, write text or binary stream data, and move the resource to another 
location."

Rendering Templates and Running Scripts 

There is a single method for rendering a template in a resource at a location: 
ec.resource.renderTemplateInCurrentContext(String location, Writer writer). 
This method returns nothing and simply writes the template output to the writer. By default 
FTL (Freemarker Template Language) and GString (Groovy String) are supported."

Additional template renderers can be supported by implementing the 
org.moqui.context.TemplateRenderer interface and adding a resource-
facade.template-renderer element to the Moqui Conf XML file."

To run a script through the Resource Facade use the Object 
ec.resource.runScriptInCurrentContext(String location, String method) 
method. Specify the location and optionally the method within the script at the location 
and this method will run the script and return the Object that the script returns or evaluates 
to. There is a variation on this method in the Resource Facade that also accepts a Map 
additionalContext parameter for convenience (it just pushes the Map onto the context 
stack, runs the script, then pops from the context stack). By default Moqui supports Groovy, 
XML Actions, JavaScript, and any scripting engine available through the 
javax.script.ScriptEngineManager."

To add a script runner you have two options. You can use the javax.script approach for 
any scripting language that implements the javax.script.ScriptEngine interface and is 
discoverable through the javax.script.ScriptEngineManager. Moqui uses this to 
discover the script engine using the extension on the script’s filename and execute the script. 
If the script engine implements the javax.script.Compilable interface then Moqui will 
compile the script and cache it in compiled form for the faster repeat execution of a script at a 
given location."

The other option is to implement the org.moqui.context.ScriptRunner interface and add 
a resource-facade.script-runner element to the Moqui Conf XML file. Moqui uses 
Groovy the XML Actions through this interface as it provides additional flexibility not 
available through the javax.script interfaces."

Because Groovy is the default expression language in Moqui there are a few Resource Facade 
methods to easily evaluate expressions for different purposes:"

• boolean evaluateCondition(String expression, String debugLocation) is 
used to evaluate a Groovy condition expression and return the boolean result"

  ���                                                                                                                                                              46



• Object evaluateContextField(String expression, String debugLocation) is 
used to evaluate the expression to return a field within the context, and more 
generally to evaluate any Groovy expression and return the result"

• String evaluateStringExpand(String inputString, String debugLocation) is 
used to expand the inputString, treating it as a GString (Groovy String) and returns 
the expanded value"

These methods accept a debugLocation parameter that is used in error messages. For faster 
evaluation these expressions are all cached, using the expression itself as the key for maximal 
reuse."

Data Model Definition 

Entity Definition XML 

Let’s start with a simple entity definition that shows the most common elements. This is an 
actual entity that is part of Moqui Framework:"
<entity entity-name="DataSource" package-name="moqui.basic" cache="true">!
    <field name="dataSourceId" type="id" is-pk="true"/>!
    <field name="dataSourceTypeEnumId" type="id"/>!
    <field name="description" type="text-medium"/>!
    <relationship type="one" title="DataSourceType" !
            related-entity-name="Enumeration">!
        <key-map field-name="dataSourceTypeEnumId"/>!
    </relationship>!
    <seed-data>!
        <moqui.basic.EnumerationType description="Data Source Type" !
            enumTypeId="DataSourceType"/>!
        <moqui.basic.Enumeration description="Purchased Data"!
            enumId="DST_PURCHASED_DATA" enumTypeId="DataSourceType"/>!
    </seed-data>!
</entity>!

Just like a Java class an entity has a package name and the full name of the entity is the 
package name plus the entity name, in the format:"
${package-name}.${entity-name}!

Based on that pattern the full name of this entity is:"
moqui.basic.DataSource!

This example also has the entity.cache attribute set to true, meaning that it will be cached 
unless the code doing the find says otherwise."

The first field (dataSourceId) has the is-pk attribute set to true, meaning it is one of the 
primary key fields on this entity. In this case it is the only primary key field, but any number 
of fields can have this attribute set to true to make them part of the primary key."

���   5. Data and Resources47                                                             



The third field (description) is a simple field to hold data. It is not part of the primary key, 
and it is not a foreign key to another entity."

The field.type attribute is used to specify the data type for the field. The default options 
are defined in the MoquiDefaultConf.xml file with the database-list.dictionary-
type element. These elements specify the default type settings for each dictionary type and 
there can be an override to this setting for each database using the database.database-
type element. "

You can use these elements to add your own types in the data type dictionary. Those custom 
types won’t appear in autocomplete for the field.type attribute in your XML editor unless 
you change the XSD file to add them there as well, but they will still function just fine."

The second field (dataSourceTypeEnumId) is a foreign key to the Enumeration entity, as 
denoted by the relationship element in this entity definition. The two records in under the 
seed-data element define the EnumerationType to group the Enumeration options, and 
one of the Enumeration options for the dataSourceTypeEnumId field. The records under the 
seed-data element are loaded with the command-line -load option (or the corresponding 
API call) along with the seed type."

There is an important pattern here that allows the framework to know which enumTypeId to 
use to filter Enumeration options for a field in automatically generated form fields and such. 
Notice that the value in the relationship.title attribute matches the enumTypeId. In 
other words, for enumerations anyway, there is a convention that the relationship.title 
value is the type ID to use to filter the list."

This is a pattern used a lot in Moqui and in the Mantle Business Artifacts because the 
Enumeration entity is used to manage types available for many different entities."

In this example there is a key-map element under the relationship element, but that is only 
necessary if the field name(s) on this entity does not match the corresponding field name(s) 
on the related entity. In other words, because the foreign key field is called 
dataSourceTypeEnumId instead of simply enumId we need to tell the framework which field 
to use. It knows which field is the primary key of the related entity (Enumeration in this 
case), but unless the field names match it does not know which fields on this entity 
correspond to those fields. "

In most cases you can use something more simple without key-map elements like: "
    <relationship type="one" related-entity-name="Enumeration"/>!

The seed-data element allows you to define basic data that is necessary for the use of the 
entity and that is an aspect of defining the data model. These records get loaded into the 
database along with the entity-facade-xml files where the type attribute is set to seed."

With this introduction to the most common elements of an entity definition, lets now look at 
some of the other elements and attributes available in an entity definition."

• other entity attributes"

  ���                                                                                                                                                              48



• group-name: Each datasource available through the Entity Facade is used by putting 
an entity in the group for that datasource. The value here should match a value on the 
moqui-conf.entity-facade.datasource.group-name attribute in the Moqui Conf 
XML file. If no value is specified will default to the value of the moqui-conf.entity-
facade.default-group-name attribute. By default configuration the valid values 
include transactional (default), analytical, tenantcommon, and nosql."

• sequence-bank-size: The size of the sequence bank to keep in memory. Each time 
the in-memory bank runs out the seqNum in the SequenceValueItem record will be 
incremented by this amount."

• sequence-primary-stagger: The maximum amount to stagger the sequenced ID. 
If 1 the sequence will be incremented by 1, otherwise the current sequence ID will be 
incremented by a random value between 1 and staggerMax."

• sequence-secondary-padded-length: If specified front-pads the secondary 
sequenced value with zeroes until it is this length. Defaults to 2."

• optimistic-lock: Set to true to have the Entity Facade compare the 
lastUpdatedStamp field in memory to the one in the database before doing an 
update on the record. If the timestamps don’t match an error will be generated. 
Defaults to "false" (no timestamp locking)."

• no-update-stamp: By default the Entity Facade adds a single field 
(lastUpdatedStamp) to each entity for use in optimistic locking and data 
synchronization. If you do not want it to create that stamp field for this entity then set 
this to "false"."

• cache: can be set to these values (defaults to false):"
• true: use cache for finds (code may override this)"
• false: no cache for finds (code may override this)"
• never: no cache for finds (code may NOT override this)"

• authorize-skip: can be set to these values (defaults to false):"
• true: skip all authz checks for this entity"
• false: do not skip authz checks"
• create: skip authz checks for create operations"
• view: skip authz checks for finds or read-only operations"
• view-create: skip authz checks for find and create ops"

• other field attributes"
• encrypt: Set to true to encrypt this field in the database. Defaults to false (not 

encrypted)."
• enable-audit-log: Set to true to log all changes to the field along with when it 

was changed and the user who changes. The data is stored using the 
EntityAuditLog entity. Defaults to false (no audit logging)."

• enable-localization: If set to true gets on this field will be looked up with the 
LocalizedEntityField entity and if there is a matching record the localized value 
will be returned instead of the original record's value. Defaults to false for 
performance reasons, only set to true for fields that will have translations."

���   5. Data and Resources49                                                             



While some database optimizations must be done in the database itself because so many 
such features vary between databases, you can declare indexes along with the entity 
definition using the index element. As an element under the entity element it would look 
something like this:"
<index name="EX_NAME_IDX1" unique="true">!
    <index-field name="exampleName"/>!
</index>!

Entity Extension - XML 

An entity can be extended without modifying the XML file where the original is defined. 
This is especially useful when you want to extend an entity that is part of a different 
component such as the Mantle Universal Data Model (mantle-udm) or even part of the 
Moqui Framework and you want to keep your extensions separate."

This is done with the extend-entity element which can mixed in with the entity elements 
in an entity definition XML file. This element has most of the same attributes and sub-
elements as the entity element used to define the original entity. Simply make sure the 
entity-name and package-name match the same attributes on the original entity element 
and anything else you specify will add to or override the original entity."

Here is an example if a XML snippet to extend the moqui.example.Example entity:"
<extend-entity entity-name="Example" package-name="moqui.example">!
    <field name="auditedField" type="text-medium" enable-audit-log="true"/>!
    <field name="encryptedField" type="text-medium" encrypt="true"/>!
</extend-entity>!

Entity Extension - DB 

You can also extend an entity with a database record using the UserField entity. This is a bit 
different from extending an entity with the extend-entity XML element because it is a 
virtual extension and the data goes in a separate data structure using the UserFieldValue 
entity."

The main reason for this difference is that User Fields are generally added for a group of 
users or a single user, and are not visible outside the group they are associated with. You can 
use the ALL_USERS User Group to have a User Field applies to all users."

Even though it operates this way under the covers, from the perspective of the 
EntityValue object it is treated the same way as any other field on the entity."

Here is an example element from the ExampleTypeData.xml file showing how you would 
add a testUserField field accessible by all users to the moqui.example.Example entity:"
<moqui.entity.UserField entityName="moqui.example.Example"  !
    fieldName="testUserField" userGroupId="ALL_USERS" fieldType="text-long"!

  ���                                                                                                                                                              50



    enableAuditLog="Y" enableLocalization="N" encrypt="N"/>!

Data Model Patterns 

There are various useful data model patterns that Moqui Framework has conventions and 
functionality to help support. These data model patterns are also used extensively in the 
Moqui and Mantle data models."

Master Entities 

A Master Entity is one whose records exist independent of other entities, and generally has a 
single field primary key. Examples of this include the moqui.example.Example, 
moqui.security.UserAccount, mantle.party.Party, mantle.product.Product, and 
mantle.order.OrderHeader entities."

To set a primary sequenced ID, which is the sequenced value for the primary key of a master 
entity, use the EntityValue.setSequencedIdPrimary() method. You can also manually set 
the primary key field to any value, as long as it is unique."

Detail Entities 

A Detail Entity adds detail to a Master Entity for fields that have a one-to-many relationship 
with the Master. The primary key is usually two fields and one of the fields is the single 
primary key field of the master entity. The second field is a special sort of sequenced ID that 
instead of having an absolute sequence value its value is in the context of the master entity’s 
primary key."

An example of a detail entity is ExampleItem, which is a detail to the master entity Example. 
ExampleItem has two primary keys: exampleId (the primary key field of the master entity) 
and exampleItemSeqId which is a sub-sequence to distinguish the detail records within the 
context of a master record."

To populate the secondary sequenced ID first set the master’s primary key (exampleId for 
ExampleItem), then use the EntityValue.setSequencedIdSecondary() method to 
automatically populate it (for ExampleItem the exampleItemSeqId)."

A single master entity can have multiple detail entities associated with it to structure distinct 
data as needed."

Join Entities 

A Join Entity is used to associate Master Entities, usually two. A Join Entity is a physical 
representation of a many-to-many relationship between entities in a logical model."

���   5. Data and Resources51                                                             



A join entity is useful for tracking associated records among the master entities, and for any 
data that is associated with both master entities as opposed to just one of them. For example 
if you want to specify a sequence number for one master entity record in the context of a 
record of the other master entity, the sequence number field should go on the join entity and 
not on either of the master entities."

The join entity may have a single generated primary key, or a natural composite primary key 
consisting of the single primary key field of each of the master entities and optionally a 
fromDate field with a corresponding thruDate field that is not part of the join entity’s 
primary key."

One example of this is the ExampleFeatureAppl entity which joins the Example and 
ExampleFeature master entities. The ExampleFeatureAppl entity has three primary key 
fields: exampleId (the PK of the Example entity), exampleFeatureId (the PK of the 
ExampleFeature entity), and a fromDate. It also has a thruDate field to accompany the 
fromDate PK field."

To better describe the relationship between an Example and an ExampleFeature, the 
ExampleFeatureAppl entity also has a sequenceNum field for ordering features within and 
example, and a exampleFeatureApplEnumId field to describe how the feature applies to the 
example (Required, Desired, or Not Allowed)."

To see the actual entity definition and seed data for the ExampleFeatureAppl entity see the 
ExampleEntities.xml file (in the example component that comes with Moqui Framework)."

Dependent Entities 

A few parts of the API and Tools app support the concept of "dependent" entities. Dependent 
entities can be found for any entity, but the concept is most useful for dependents of Master 
Entities. The general idea is that things like the items of an order 
(mantle.order.OrderItem) are dependent on the header (mantle.order.OrderHeader). It 
is useful to do operations such as data export including the master entity and all of its 
dependents."

Conceptually this is pretty simple, but the implementation is more complex because the 
information we have to work with for this is the entity relationships. The general idea is that 
each type one relationship points from a dependent entity to its master, and by this definition 
many dependent entities have more than one master entity and an entity can be both a 
dependent and a master entity so what an entity is depends on how you are treating it. When 
defining entities there is an automatic reverse type relationship for each type one 
relationship, and while it is generally a type many reverse relationship if the two entities 
have the same PK field(s) then it is a type one automatic reverse relationship."

For example, OrderItem has a type one relationship to OrderHeader so there is an automatic 
reverse relationship of type many from OrderHeader to OrderItem. This establishes 
OrderItem as a dependent of OrderHeader."
  ���                                                                                                                                                              52



When getting dependents for an entity the method (which is part of the internal Entity 
Facade implementation: EntityDefinition.getDependentsTree()) runs recursively to get 
the dependents of dependents as well. The general idea is that for entities like OrderHeader 
you can get all records that define the order."

Enumerations 

An Enumeration is simply a pre-configured set of possible values. Enumerations are used to 
describe single records or relationships between records. An entity may have multiple fields 
enumerated values."

The entity in Moqui where all enumerations are stored is named Enumeration, and values in 
it are split by type with a record in the EnumerationType entity."

When a field is to have a constrained set of possible enumerated values it should have the 
suffix "EnumId", like the exampleTypeEnumId field on the Example entity. For each field 
there should also be a relationship element to describe the relationship from the current 
entity to the Enumeration entity. The title attribute on the relationship element should 
have the same value as the enumTypeId that is used for the Enumeration records that are 
possible values for that field. Generally the title attribute should be the same as the enum 
field’s name up to the "EnumId" suffix. For example the relationship title for the 
exampleTypeEnumId field is ExampleType."

Status, Flow, Transition and History 

Another useful data concept is tracking the status of a record. Various business concepts 
have a lifecycle of some sort that is easily tracked with a set of possible status values. The 
possible status values are tracked using the StatusItem entity and exist in sets distinguished 
by a statusTypeId pointing to a record in the StatusType entity."

A set of status values are kind of like nodes in a graph and the transitions between those 
nodes represent possible changes from one status to another. The possible transitions from 
one status to another are configured using records in the StatusFlowTransition entity."

There can be multiple status flows for a set of status items with a given statusTypeId, each 
represented by a StatusFlow record. The StatusItem records are associated with a 
StatusFlow using StatusFlowItem records. For example the WorkEffort entity has a 
statusFlowId field to specify which status flow should be used for a project or task."

If an entity has only a single status associated with it the field to track the status can simply 
be named statusId. If an entity needs to have multiple status values then the field name 
should have a distinguishing prefix and end with "StatusId"."

���   5. Data and Resources53                                                             



There should be a relationship defined for each status field to tie the current entity to the 
StatusItem entity. Similar to the pattern with the Enumeration entity, the title attribute on 
the relationship element should match the statusTypeId on each StatusItem record."

The audit log feature of the Entity Facade is the easiest way to keep a history of status 
changes including who made the change, when it was made, and the old and new status 
values. To turn this on just use set the enable-audit-log attribute to true on the 
entity.field element. With this the field definition would look something like:"
<field name="statusId" type="id" enable-audit-log="true"/>!

Units of Measure 

A unit of measure is a standardized or custom unit for measures such as length, weight, 
temperature, data size, and even currency. These are the types of UOM. A moqui.basic.Uom 
record, identified by uomId, has type (uomTypeEnumId), description, and abbreviation 
fields. The OOTB data for units of measure is in the UnitData.xml file."

Most UOM types have a conversion between different units of the same type. These 
conversions are modeled in the UomConversion entity. For example there are 1000 meters in 
a kilometer, and that is recorded this way:"
<moqui.basic.UomConversion uomConversionId="LEN_km_m" uomId="LEN_km" !
    toUomId="LEN_m" conversionFactor="1000"/>!

The conversionFactor is multiplied by the value with the uomId unit to get a value in the 
toUomId unit. You can also divide to go in the other direction. For example 1km = 1000m so a 
1 value with the LEN_km unit is multiplied by the conversionFactor of 1000 to get a value 
of 1000 for the LEN_m unit."

There is also a conversionOffset field for cases such as Celsius and Fahrenheit 
temperatures where a value must be added (or subtracted) to go from one unit to the other. 
The conversionFactor is multiplied first, then the conversionOffset is added to the 
result. When converting in the reverse direction the conversionOffset is subtracted first, 
then the result is divided by the conversionFactor."

Some UOM types, such as currency, have conversion factors that change over time. To handle 
this the UomConversion entity has optional effective date (fromDate, thruDate) fields."

Geographic Boundaries and Points 

A geographic boundary can be a political division, business region, or any other geographic 
area. Each moqui.basic.Geo record, identified by a geoId, has a type (geoTypeEnumId) such 
as city, country, or sales region. Each Geo has a name (geoName) and may have 2 letter 
(geoCodeAlpha2), 3 letter (geoCodeAlpha3), and numeric (geoCodeNumeric) codes 

  ���                                                                                                                                                              54



following the ISO 3166 pattern for country code (see the GeoCountryData.xml file for the 
country data that comes with Moqui). "

The Geo entity also has a wellKnownText field for machine-readable detail about the 
geometry of the geographic boundary. It is meant to contain text following the ISO/IEC 
13249-3:2011 specification which is supported by various databases and tools (including Java 
libraries). For a good introduction to WKT see:"
http://en.wikipedia.org/wiki/Well-known_text!

Use the GeoAssoc entity to associate Geo records. This has different types 
(geoAssocTypeEnumId) and can be used for regions of larger geographic boundaries 
(GAT_REGIONS; like cities within states, states within countries), for Geo records that are more 
general groups to associate them with the Geo records in the group (GAT_GROUP_MEMBER; like 
the lower 48 states in the USA), or other types you might define. The geoId field should 
point to the group or larger area, and the toGeoId to the group member or region within the 
area. See the GeoUsaData.xml file for examples of both."

A GeoPoint is a specific geographic point, i.e. a point on the Earth’s surface. It has latitude, 
longitude, and elevation fields and a elevationUomId field to specify the unit for the 
elevation (such as feet, which is LEN_ft). There is also a dataSourceId to specify where 
the data came from and an information field for general text about the point."

The Entity Facade 

Basic CrUD Operations 

The basic CrUD operations for an entity record are available through the EntityValue 
interface. There are two main ways to get an EntityValue object:"

• Make a Value (use ec.entity.makeValue(entityName))"
• Find a Value (more details on this below)"

Once you have an EntityValue object you can call the create(), update(), or delete() 
methods to perform the desired operation. There is also a createOrUpdate() method that 
will create a record if it doesn’t exist, or update it if it does."

Note that all of these methods, like many methods on the EntityValue interface, return a 
self-reference for convenience so that you can chain operations. For example:"
ec.entity.makeValue("Example").setAll(fields)!
         .setSequencedIdPrimary().create()!

While this example is interesting, only in rare cases should you create a record directly using 
the Entity Facade API (accessed as ec.entity). You should generally do CrUD operations 
through services, and there are automatic CrUD services for all entities available through the 
Service Facade. These services have no definition, they exist implicitly and are driven only 
the entity definition."
���   5. Data and Resources55                                                             

http://en.wikipedia.org/wiki/Well-known_text


We’ll discuss the Service Facade more below in the context of the logic layer, but here is an 
example of what that operation would look like using an implicit automatic entity service:"
ec.service.sync().name("create#Example").parameters(fields).call()!

Most of the Moqui Framework API methods return a self-reference for convenient chaining 
of method calls like this. The main difference between the two is that one goes through the 
Service Facade and the other doesn’t. There are some advantages of going through the 
Service Facade (such as transaction management, flow control, security options, and so much 
more), but many things are the same between the two calls including automatic cleanup and 
type conversion of the fields passed in before performing the underlying operation. "

Also note that with the implicit automatic entity service you don’t have to explicitly set the 
sequenced primary ID as it automatically determines that there is a single primary and if it is 
not present in the parameters passed into the service then it will generate one."

However you do the operation, only the entity fields that are modified or passed in are 
updated. The EntityValue object will keep track of which fields have been modified and 
only create or update those when the operation is done in the database. You can ask an 
EntityValue object if it is modified using the isModified() method, and you can restore it 
to its state in the database (populating all fields, not just the modified ones) using the 
refresh() method. "

If you want to find all the differences between the field values currently in the EntityValue 
and the corresponding column values in the database, use the checkAgainstDatabase(List 
messages) method. This method is used when asserting (as opposed to loading) an entity-
facade-xml file and can also be used manually if you want to write Java or Groovy code 
check the state of data."

Finding Entity Records 

Finding entity records is done using the EntityFind interface. Rather than using a number 
of different methods with different optional parameters through the EntityFind interface 
you can call methods for the aspects of the find that you care about, and ignore the rest. You 
can get a find object from the EntityFacade with something like:"
ec.getEntity().makeFind("moqui.example.Example")!

Most of the methods on the EntityFind interface return a reference to the object so that you 
can chain method calls instead of putting them in separate statements. For example a find by 
the primary on the Example entity would look like this:"
EntityValue example = ec.entity.makeFind("moqui.example.Example")!
      .condition("exampleId", exampleId).useCache(true).one()!

The EntityFind interface has methods on it for:"

• conditions (both where and having)"

  ���                                                                                                                                                              56



• condition(String fieldName, Object value): Simple condition, named field 
equals value."

• condition(String fieldName, EntityCondition.ComparisonOperator 
operator, Object value): Compare the named field to the value using the 
operator which can be EQUALS, NOT_EQUAL, LESS_THAN, GREATER_THAN, 
LESS_THAN_EQUAL_TO, GREATER_THAN_EQUAL_TO, IN, NOT_IN, BETWEEN, 
LIKE, or NOT_LIKE."

• conditionToField(String fieldName, EntityCondition.ComparisonOperator 
operator, String toFieldName): Compare a field to another field using the 
operator."

• condition(Map<String, ?> fields): Constrain by each entry in the Map whose key 
matches a field name on the entity. If a field has been set with the same name and any 
of the Map keys, this will replace that field's value. Fields set in this way will be 
combined with other conditions (if applicable) just before doing the query. This will do 
conversions if needed from Strings to field types as needed, and will only get keys that 
match entity fields. In other words, it does the same thing as: 
EntityValue.setFields(fields, true, null, null)."

• condition(EntityCondition condition): Add a condition created through the 
EntityConditionFactory."

• conditionDate(String fromFieldName, String thruFieldName, Timestamp 
compareStamp): Add conditions for the standard effective date query pattern 
including from field is null or earlier than or equal to compareStamp and thru field is 
null or later than or equal to compareStamp."

• havingCondition(EntityCondition condition): Add a condition created through 
the EntityConditionFactory to the having conditions. Having is the standard SQL 
concept and used for conditions applied after the grouping and functions."

• searchFormInputs(String inputFieldsMapName, String defaultOrderBy, 
boolean alwaysPaginate): Adds conditions for the fields found in the 
inputFieldsMapName Map. The fields and special fields with suffixes supported are the 
same as the *-find fields in the XML Forms. This means that you can use this to process 
the data from the various inputs generated by XML Forms. The suffixes include things 
like *_op for operators and *_ic for ignore case. If inputFieldsMapName is empty will 
look at the ec.web.parameters map if the web facade is available, otherwise the 
current context (ec.context). If there is not an orderByField parameter (one of the 
standard parameters for search XML Forms) defaultOrderBy is used instead. If 
alwaysPaginate is true pagination offset/limit will be set even if there is no 
pageIndex parameter."

• fields to select with selectField(String fieldToSelect) and/or 
selectFields(Collection<String> fieldsToSelect)"

• fields to order the results by"
• orderBy(String orderByFieldName): A field of the find entity to order the query by. 

Optionally add a " ASC" to the end or "+" to the beginning for ascending, or " DESC" 
to the end of "-" to the beginning for descending. If any other order by fields have 

���   5. Data and Resources57                                                             



already been specified this will be added to the end of the list. The String may be a 
comma-separated list of field names. Only fields that actually exist on the entity will be 
added to the order by list."

• orderBy(List<String> orderByFieldNames): Each List entry is passed to the 
orderBy(String orderByFieldName) method."

• whether or not to cache the results with useCache(Boolean useCache), defaults to the 
value on the entity definition"

• the offset and limit to pass to the datasource to limit results"
• offset(Integer offset): The offset, i.e. the starting row to return. Default (null) 

means start from the first actual row. Only applicable for list() and iterator() 
finds."

• offset(int pageIndex, int pageSize): Specify the offset in terms of page index 
and size. Actual offset is pageIndex * pageSize."

• limit(Integer limit): The limit, i.e. max number of rows to return. Default (null) 
means all rows. Only applicable for list() and iterator() finds."

• database options including distinct with the distinct(boolean distinct) method 
and for update with the forUpdate(boolean forUpdate) method"

• JDBC options"
• resultSetType(int resultSetType): Specifies how the ResultSet will be 

traversed. Available values are ResultSet.TYPE_FORWARD_ONLY, 
ResultSet.TYPE_SCROLL_INSENSITIVE (default) or 
ResultSet.TYPE_SCROLL_SENSITIVE. See the java.sql.ResultSet JavaDoc for 
more information. If you want it to be fast, use the common option 
ResultSet.TYPE_FORWARD_ONLY. For partial results where you want to jump to an 
index make sure to use ResultSet.TYPE_SCROLL_INSENSITIVE, which is the default."

• resultSetConcurrency(int resultSetConcurrency): Specifies whether or not the 
ResultSet can be updated. Available values are ResultSet.CONCUR_READ_ONLY 
(default) or ResultSet.CONCUR_UPDATABLE. Should pretty much always be 
ResultSet.CONCUR_READ_ONLY with the Entity Facade since updates are generally 
done as separate operations."

• fetchSize(Integer fetchSize): The JDBC fetch size for this query. Default (null) 
will fall back to datasource settings. This is not the fetch as in the OFFSET/FETCH 
SQL clause (use the offset/limit methods for that), and is rather the JDBC fetch to 
determine how many rows to get back on each round-trip to the database. Only 
applicable for list() and iterator() finds."

• maxRows(Integer maxRows): The JDBC max rows for this query. Default (null) will 
fall back to datasource settings. This is the maximum number of rows the ResultSet 
will keep in memory at any given time before releasing them and if requested they are 
retrieved from the database again. Only applicable for list() and iterator() finds."

There are various options for conditions, some on the EntityFind interface itself and a more 
extensive set available through the EntityConditionFactory interface. To get an instance of 
this interface use the ec.entity.getConditionFactory() method, something like:"

  ���                                                                                                                                                              58



EntityConditionFactory ecf = ec.entity.getConditionFactory();!
ef.condition(ecf.makeCondition(...));!

For find forms that follow the standard Moqui pattern (used in XML Form find fields and 
can be used in templates or JSON or XML parameter bodies too), just use the 
EntityFind.searchFormInputs() method."

Once all of these options have been specified you can do any of these actual operations to get 
results or make changes:"

• get a single EntityValue (one() method)"
• get an EntityValueList with multiple value objects (list() method)"
• get an EntityListIterator to handle a larger set of results in smaller batches (with the 
iterator() method)"

• get a count of matching results (count() method)"
• update all matching records with specified fields (updateAll() method)"
• delete all matching records (delete() method)"

Flexible Finding with View Entities 

You probably noticed that the EntityFind interface operates on a single entity. To do a query 
across multiple entities joined together and represented by a single entity name you can 
create a static view entity using a XML definition that lives along side normal entity 
definitions. "

A view entity can also be defined in database records (in the DbViewEntity and related 
entities) or with dynamic view entities built with code using the EntityDynamicView 
interface (get an instance using the EntityFind.makeEntityDynamicView() method)."

Static View Entity 

A view entity consists of one or more member entities joined together with key mappings 
and a set of fields aliased from the member entities with optional functions associated with 
them. The view entity can also have conditions associated with it to encapsulate some sort of 
constraint on the data to be included in the view."

Here is an example of a view-entity XML snippet from the ExampleViewEntities.xml file in 
the example component:"
<view-entity entity-name="ExampleFeatureApplAndEnum" !
        package-name="moqui.example">!
    <member-entity entity-alias="EXFTAP" entity-name="ExampleFeatureAppl"/>!
    <member-entity entity-alias="ENUM" !
            entity-name="moqui.basic.Enumeration" !
            join-from-alias="EXFTAP">!
       <key-map field-name="exampleFeatureApplEnumId"/>!
    </member-entity>!

���   5. Data and Resources59                                                             



    <alias-all entity-alias="EXFTAP"/>!
    <alias-all entity-alias="ENUM"/>!
</view-entity>!

Just like an entity a view entity has a name and exists in a package using the entity-name 
and package-name attributes on the view-entity element."

Each member entity is represented by a member-entity element and is uniquely identified 
by an alias in the entity-alias attribute. Part of the reason for this is that the same entity 
can be a member in a view entity multiple times with a different alias for each one."

Note that the second member-entity element also has a join-from-alias attribute to 
specify that it is joined to the first member entity. Only the first member entity does not have 
a join-from-alias attribute. If you want the current member entity to be optional in the 
join (a left outer join in SQL) then just set the join-optional attribute to true."

To describe how the two entities relate to each other use one or more key-map elements 
under the member-entity element. The key-map element has two attributes: field-name 
and related-field-name. Note that the related-field-name attribute is optional when 
matching the primary key field on the current member entity."

Fields can be aliased in sets using the alias-all element, as in the example above, or 
individually using the alias element. If you want to have a function on the field then alias 
them individually with the alias element. Note for SQL databases that if any aliased field 
has a function then all other fields that don’t have a function but that are selected in the 
query will be added to the group by clause to avoid invalid SQL."

View Entity Auto Minimize on Find 

When doing a query with the Entity Facade EntityFind you can specify fields to select and 
only those fields will be selected. For view entities this does a little more to give you a big 
boost in performance without much work."

A common problem with static view entities is that you want to join in a bunch of member 
entities to provide a lot of options for search screens and similar flexible queries and when 
you do this the temporary table for the query in the database can get HUGE. When the 
common use is to only select certain fields and only have conditions and sorting on a limited 
set of fields you may end up joining in a number of tables that are not actually used. In effect 
you are asking the database to do a LOT more work that it really needs to for the data you 
need."

One approach to solving this is to build a EntityDynamicView on the fly and only join in the 
entities you need for the specific query options used. This works, but is cumbersome."

The easy approach is to just take advantage of the feature in EntityFind that automatically 
minimizes the fields and entities joined in for each particular query. On a view entity just 
specify the fields to select, the conditions, and the order by fields. The Entity Facade will 

  ���                                                                                                                                                              60



automatically go through the view entity definition and only alias the fields that are used for 
one of these (select, conditions, order by), and only join in the entities with fields that are 
actually used (or that are need to connect a member entity with other member entities to 
complete the join)."

A good example of this is the FindPartyView view entity defined in the 
PartyViewEntities.xml file in Mantle Business Artifacts. This view entity has a respectable 
13 member entities. Without the automatic minimize that would be 13 tables joined in to 
every query on it. With millions of customer records or other similarly large party data each 
query could take a few minutes. When only querying on a few fields and only joining in a 
small number of member entities and a minimal number of fields, the query gets down to 
sub-second times."

The actual find is done by the mantle.party.PartyServices.find#Party service. The 
implementation of this service is a simple 45 line Groovy script (findParty.groovy), and 
most of that script is just adding conditions to the find based on parameter being specified or 
not. Doing the same thing with the EntityDynamicView approach requires hundreds of lines 
of much more complex scripting, more complex to both write and maintain."

Database Defined View Entity 

In addition to defining view entities in XML you can also define them in database records 
using DbViewEntity and related entities. This is especially useful for building screens where 
the user defines a view on the fly (like the EditDbView.xml screen in the tools component, 
get to it in the menu with Tool => Data View), and then searches, views, and exports the 
data using a screen based on the user-defined view (like the ViewDbView.xml screen)."

There aren’t quite as many options when defining a DB view entity, but the main features are 
there and the same patterns apply. There is a view entity with a name (dbViewEntityName), 
package (packageName), and whether to cache results. It also has member entities 
(DbViewEntityMember), key maps to specify how the members join together 
(DbViewEntityKeyMap), and field aliases (DbViewEntityAlias). Here is an example, from 
the example component:"
<moqui.entity.view.DbViewEntity dbViewEntityName="StatusItemAndTypeDb" !
    packageName="moqui.example" cache="Y"/>!
<moqui.entity.view.DbViewEntityMember !
    dbViewEntityName="StatusItemAndTypeDb" entityAlias="SI" !
    entityName="moqui.basic.StatusItem"/>!
<moqui.entity.view.DbViewEntityMember !
    dbViewEntityName="StatusItemAndTypeDb" entityAlias="ST" !
    entityName="moqui.basic.StatusType" joinFromAlias="SI"/>!
<moqui.entity.view.DbViewEntityKeyMap !
    dbViewEntityName="StatusItemAndTypeDb" joinFromAlias="SI" !
    entityAlias="ST" fieldName="statusTypeId"/>!
<moqui.entity.view.DbViewEntityAlias dbViewEntityName="StatusItemAndTypeDb" !
    entityAlias="SI" fieldAlias="statusId"/>!

���   5. Data and Resources61                                                             



<moqui.entity.view.DbViewEntityAlias dbViewEntityName="StatusItemAndTypeDb" !
    entityAlias="SI" fieldAlias="description"/>!
<moqui.entity.view.DbViewEntityAlias dbViewEntityName="StatusItemAndTypeDb" !
    entityAlias="SI" fieldAlias="sequenceNum"/>!
<moqui.entity.view.DbViewEntityAlias dbViewEntityName="StatusItemAndTypeDb" !
    entityAlias="ST" fieldAlias="typeDescription" fieldName="description"/>!

As you can see the entity and field names correlate with the XML element and attribute 
names. To use these entities just refer to them by name just like any other entity."

Dynamic View Entity 

Even with the automatic view entity minimize that the Entity Facade does during a find 
there are still cases where you’ll need or want to build a view programmatically on the fly 
instead of having a statically defined view entity."

To do this get an instance of the EntityDynamicView interface using the 
EntityFind.makeEntityDynamicView() method. This interface has methods on it that do 
the same things as the XML elements in a static view entity. Add member entities using the 
addMemberEntity(String entityAlias, String entityName, String 
joinFromAlias, Boolean joinOptional, Map<String, String> entityKeyMaps) 
method."

One convenient option that doesn’t exist for static (XML defined) view entities is to join in a 
member entity based on a relationship definition. To do this use the 
addRelationshipMember(String entityAlias, String joinFromAlias, String 
relationshipName, Boolean joinOptional) method."

To alias fields use the addAlias(String entityAlias, String name, String field, 
String function) method, the shortcut variation of it addAlias(String entityAlias, 
String name), or the addAliasAll(String entityAlias, String prefix) method."

You can optionally specify a name for the dynamic view with the setEntityName() method, 
but usually this mostly useful for debugging and the default name (DynamicView) is usually 
just fine."

Once this is done just specify conditions and doing the find operation as normal on the 
EntityFind object that you used to create the EntityDynamicView object."

Entity ECA Rules 

Entity ECA (EECA) rules can be used to trigger actions to run when data is modified or 
searched. It is useful for maintaining entity fields (database columns) that are based on other 
entity fields or for updating data in a separate system based on data in this system. EECA 
rules should not generally be used for triggering business processes because the rules are 
applied too widely. Service ECA rules are a better tool for triggering processes."

  ���                                                                                                                                                              62



For example here is an EECA rule from the Work.eecas.xml file in Mantle Business Artifacts 
that calls a service to update the total time worked on a task (WorkEffort) when a TimeEntry 
is created, updated, or deleted:"
<eeca entity="mantle.work.time.TimeEntry" on-create="true" on-update="true" !
        on-delete="true" get-entire-entity="true">!
    <actions><service-call in-map="context"   !
            name="mantle.work.TaskServices.update#TaskFromTime"/></actions>!
</eeca>!

An ECA (event-condition-action) rule is a specialized type of rule to conditionally run actions 
based on events. For Entity ECA rules the events are the various find and modify operations 
you can do with a record. Set any of these attributes (of the eeca element) to true to trigger 
the EECA rule on the operation: on-create, on-update, on-delete, on-find-one, on-
find-list, on-find-iterator, on-find-count."

By default the EECA rule will run after the entity operation. To have it run before set the 
run-before attribute to true. There is also a run-on-error attribute which defaults to 
false and if set to true the EECA rule will be triggered even if there is an error in the entity 
operation."

When the actions run the context will be whatever context the service was run in, plus the 
entity field values passed into the operation for convenience in using the values. There are 
also special context fields added:"

• entityValue: A Map with the field values passed into the entity operation. This may not 
include all field values that are populated in the database for the record. To fill in the 
field values that are not passed in from the database record set the eeca.get-entire-
entity attribute to true."

• originalValue: If the eeca.get-original-value attribute is set to true and the 
EECA rule runs before the entity operation (run-before=true) this will be an 
EntityValue object representing the original (current) value in the database."

• eecaOperation: A String representing the operation that triggered the EECA rule, 
basically the on-* attribute name without the "on-"."

The condition element is the same condition as used in XML Actions and may contain 
expression and compare elements, combined as needed with or, and, and not elements."

The actions element is the same as actions elements in service definitions, screens, forms, 
etc. It contains a XML Actions script. See the Overview of XML Actions section for more 
information."

���   5. Data and Resources63                                                             



Entity Data Import and Export 

Loading Entity XML and CSV 

Entity records can be imported from XML and CSV files using the EntityDataLoader. This 
can be done through the Entity Facade API using the ec.entity.makeDataLoader() 
method to get an object that implements the interface and using its methods to specify which 
data to load and then load it (using the load() method), get an EntityList of the records 
(using the list() method), or validate the data against the database (using the check() 
method)."

There are a few options for specifying which data to load. You can specify one or more 
locations using the location(String location) and locationList(List<String> 
locationList) methods. You can use text directly with the xmlText(String xmlText) and 
csvText(String csvText) methods. You can also load from component data directories 
and the entity-facade.load-data elements in the Moqui Conf XML file by specifying the 
types of data to load (only the files with a matching type will be loaded) using the 
dataTypes(Set<String> dataTypes) method."

To set the transaction timeout to something different from the default, usually larger to 
handle processing large files, use the transactionTimeout(int tt) method. If you expect 
mostly inserts you can use pass true to the useTryInsert(boolean useTryInsert) 
method to improve performance by doing an insert without a query to see if the record exists 
and then if the insert fails with an error try an update. "

To help with foreign keys when records are out of order, but you know all will eventually be 
loaded, pass true to the dummyFks(boolean dummyFks) method and it will create empty 
records for foreign keys with no existing record. When the real record for the FK is loaded it 
will simply update the empty dummy record. To disable Entity ECA rules as the data is 
loaded pass true to the disableEntityEca(boolean disableEeca) method."

For CSV files you can specify which characters to use when parsing the file(s) with 
csvDelimiter(char delimiter) (defaults to ‘,’), csvCommentStart(char commentStart) 
(defaults to ‘#’), and csvQuoteChar(char quoteChar) (defaults to ‘"’)."

Note that all of these methods on the EntityDataLoader return a self reference so you can 
chain calls, i.e. it is a DSL style API. For example:"
ec.entity.makeDataLoader().dataTypes([‘seed’, ‘demo’]).load()!

In addition to directly using the API you can load data using the Tool => Entity => 
Import screen in the tools component that comes in the default Moqui runtime. You can 
also load data using the command line with the executable WAR file using the -load 
argument. Here are the command line arguments available for the data loader:"
-load -------- Run data loader!
    -types=<type>[,<type>] -- Data types to load (can be anything, common !

  ���                                                                                                                                                              64



         are: seed, seed-initial, demo, ...)!
    -location=<location> ---- Location of data file to load!
    -timeout=<seconds> ------ Transaction timeout for each file, defaults !
         to 600 seconds (10 minutes)!
    -dummy-fks -------------- Use dummy foreign-keys to avoid referential !
         integrity errors!
    -use-try-insert --------- Try insert and update on error instead of !
         checking for record first!
    -tenantId=<tenantId> ---- ID for the Tenant to load the data into!

For example"
$ java -jar moqui-${version}.war -load -types=seed,demo!

The entity data XML file must have the entity-facade-xml root element which has a type 
attribute to specify the type of data in the file, which is compared with the specified types (if 
loading by specifying types) and only loaded if the type is in the set or if all types are loaded. 
Under that root element each element name is an entity or service name. For entities each 
attribute is a field name and for services each attribute is a input parameter."

Here is an example of a entity data XML file:"
<entity-facade-xml type="seed">!
    <moqui.basic.LocalizedMessage original="Example" locale="es" !
            localized="Ejemplo"/>!
    <moqui.basic.LocalizedMessage original="Example" locale="zh" !
            localized="样例"/>!
</entity-facade-xml>!

Here is an example CSV file that calls a service (the same pattern applies for loading entity 
data):"
# first line is ${entityName or serviceName},${dataType}!
org.moqui.example.ExampleServices.create#Example, demo!
# second line is list of field names!
exampleTypeEnumId, statusId, exampleName, exampleSize, exampleDate!
# each additional line has values for those fields!
EXT_MADE_UP, EXST_IN_DESIGN, Test Example Name 3, 13, 2014-03-03 15:00:00!

Writing Entity XML 

The easiest way export entity data to an XML file is to use the EntityDataWriter, which 
you can get with ec.entity.makeDataWriter(). Through this interface you can specify the 
names of entities to export from and various other options, then it does the query and 
exports to a file (with the int file(String filename) method), a directory with one file 
per entity (with the int directory(String path) method), or to a Writer object (with the 
int writer(Writer writer) method). All of these methods return an int with the number 
of records that were written."

���   5. Data and Resources65                                                             



The methods for specifying options return a self reference to enable chaining calls. These are 
the methods for the query and export options:"

• entityName(String entityName): Specify the name of an entity to query and export. 
Data is queried and exporting from entities in the order they are added by calling this 
or entityNames() multiple times."

• entityNames(List<String> entityNames): A List of entity names to query and 
export. Data is queried and exporting from entities in the order they are specified in this 
list and other calls to this or entityName()."

• dependentRecords(boolean dependents): If true export dependent records of each 
record. This dramatically slows down the export so only use it on smaller data sets. See 
the Dependent Entities section for details about what would be included."

• filterMap(Map<String, Object> filterMap): A Map of field name, value pairs to 
filter the results by. Each name/value is only used on entities that have a field matching 
the name."

• orderBy(List<String> orderByList): Field names to order (sort) the results by. Each 
name only used on entities with a field matching the name. May be called multiple 
times. Each entry may be a comma-separated list of field names."

• fromDate(Timestamp fromDate), thruDate(Timestamp thruDate): The from and 
thru dates to filter the records by, compared with the lastUpdatedStamp field which 
the Entity Facade automatically adds to each entity (unless turned off in the entity 
definition)."

Here is an example of an export of all OrderHeader records within a time range plus their 
dependents:"
ec.entity.makeDataWriter().entityName("mantle.order.OrderHeader")!
    .dependentRecords(true).orderBy(["orderId"]).fromDate(lastExportDate)!
    .thruDate(ec.user.nowTimestamp).file("/tmp/TestOrderExport.xml")!

Another way to export entity records is to do a query and get an EntityList or 
EntityListIterator object and call the int writeXmlText(Writer writer, String 
prefix, boolean dependents) method on it. This methods writes XML to the writer, 
optionally adding the prefix to the beginning of each element and including dependents."

Similar to the entity data import UI you can export data using the Tool => Entity => 
Export screen in the tools component that comes in the default Moqui runtime."

Views and Forms for Easy View and Export 

A number of tools come together to make it very easy to view and export database data that 
comes from a number of different tables. We have explored the options for static (XML), 
dynamic, and database defined entities. In the User Interface chapter there is detail about 
XML Forms, and in particular list forms. "

  ���                                                                                                                                                              66



When a form-list has dynamic=true and a ${} string expansion in the auto-fields-
entity.entity-name attribute then it will be expanded on the fly as the screen is rendered, 
meaning a single form can be used to generate tabular HTML or CSV output for any entity 
given an entity name as a screen parameter."

To make things more interesting results viewed can be filtered generically using a dynamic 
form-single with an auto-fields-entity element to generate a search form based on the 
entity, and an entity-find with search-form-inputs to do the query based on the entity 
name parameter and the search parameters from the search form."

Below is an example of these features along with a transition (DbView.csv) to export a CSV 
file. Don’t worry too much about all the details for screens, transitions, forms, and rendering 
options, they are covered in detail in the User Interface chapter. This screen definition is an 
excerpt from the ViewDbView.xml screen in the tools component that comes by default with 
Moqui Framework:"
<screen>!
  <parameter name="dbViewEntityName"/>!!
  <transition name="filter"><default-response url="."/></transition>!
  <transition name="DbView.csv">!
    <default-response url="."><parameter name="renderMode" value="csv"/>!
      <parameter name="pageNoLimit" value="true"/>!
      <parameter name="lastStandalone" value="true"/></default-response>!
  </transition>!!
  <actions>!
    <entity-find entity-name="${dbViewEntityName}" list="dbViewList">!
      <search-form-inputs/></entity-find>!
  </actions>!
  <widgets>!
    <link url="DbView.csv" text="Get as CSV"/>!
    <label text="Data View for: ${dbViewEntityName}" type="h2"/>!!
    <form-single name="FilterDbView" transition="filter" dynamic="true">!
      <auto-fields-entity entity-name="${dbViewEntityName}" !
          field-type="find"/>!
      <field name="dbViewEntityName"><default-field>!
        <hidden/></default-field></field>!
      <field name="submitButton"><default-field title="Find">!
        <submit/></default-field></field>!
    </form-single>!
   !
    <form-list name="ViewList" list="dbViewList" dynamic="true">!
      <auto-fields-entity entity-name="${dbViewEntityName}" !
          field-type="display"/>!
    </form-list>!
  </widgets>!
</screen>!

���   5. Data and Resources67                                                             



While this screen is designed to be used by a user it can also be rendered outside a web or 
other UI context to generate CSV output to send to a file or other location. If you were to just 
write a screen for that it would be far simpler, basically just the parameter element, the 
single entity-find action, and the simple form-list definition. The transitions and the 
search form would not be needed."

The code to do this through the screen renderer would look something like:"
ec.context.putAll([pageNoLimit:"true", lastStandalone:"true", !
    dbViewEntityName:"moqui.example.ExampleStatusDetail"])!
String csvOutput = ec.screen.makeRender()!
  .rootScreen("component://tools/screen/Tools/DataView/ViewDbView.xml")!
  .renderMode("csv").render()!

!
Data Document 

A Data Document is assembled from database records into a JSON document or a Java 
nested Map/List representation of the document."

Below is an example Data Document instance and the DataDocument* records that define it. 
This example a selection from the HiveMind PM project, which is based on Moqui and 
Mantle. The document is for a project, which is a type of WorkEffort."
{!
    "_index": "hivemind",!
    "_type": "HmProject",!
    "_id": "HM",!
    "_timestamp": "2013-12-27T00:46:07",!
   "WorkEffort": {!
        "workEffortId": "HM",!
        "name": "HiveMind PM Build Out",!
        "workEffortTypeEnumId": "WetProject"!
    },!
    "StatusItem": { "status": "In Progress" },!
    "WorkEffortType": { "type": "Project" },!
    "Party": [!
        {!
            "Person": { "firstName": "John", "lastName": "Doe" },!
            "RoleType": { "role": "Person - Manager" },!
            "partyId": "EX_JOHN_DOE"!
        },!
        {!
            "Person": { "firstName": "Joe", "lastName": "Developer" },!
            "RoleType": { "role": "Person - Worker" },!
            "partyId": "ORG_BIZI_JD"!
        }!
    ]!

  ���                                                                                                                                                              68



}!

These are the database records defining the Data Document, in the format of records in an 
Entity Facade XML file:"
<moqui.entity.document.DataDocument dataDocumentId="HmProject" !
    indexName="hivemind" documentName="Project"!
    primaryEntityName="mantle.work.effort.WorkEffort" !
    documentTitle="${name}"/>!
<moqui.entity.document.DataDocumentField dataDocumentId="HmProject" !
    fieldPath="workEffortId"/>!
<moqui.entity.document.DataDocumentField dataDocumentId="HmProject" !
    fieldPath="workEffortName" fieldNameAlias="name"/>!
<!-- this is aliased so we can have a condition on it -->!
<moqui.entity.document.DataDocumentField dataDocumentId="HmProject" !
    fieldPath="workEffortTypeEnumId"/>!
<moqui.entity.document.DataDocumentField dataDocumentId="HmProject"!
    fieldPath="WorkEffort#moqui.basic.StatusItem:description" !
    fieldNameAlias="status"/>!
<moqui.entity.document.DataDocumentField dataDocumentId="HmProject"!
    fieldPath="mantle.work.effort.WorkEffortParty:partyId"/>!
<moqui.entity.document.DataDocumentField dataDocumentId="HmProject"!
    
fieldPath="mantle.work.effort.WorkEffortParty:mantle.party.RoleType:description" !
    fieldNameAlias="role"/>!
<moqui.entity.document.DataDocumentRelAlias dataDocumentId="HmProject"!
    relationshipName="mantle.work.effort.WorkEffort" !
    documentAlias="WorkEffort"/>!
<moqui.entity.document.DataDocumentRelAlias dataDocumentId="HmProject"!
    relationshipName="WorkEffort#moqui.basic.StatusItem"!
    documentAlias="StatusItem"/>!
<moqui.entity.document.DataDocumentRelAlias dataDocumentId="HmProject"!
    relationshipName="mantle.work.effort.WorkEffortParty" !
    documentAlias="Party"/>!
<moqui.entity.document.DataDocumentRelAlias dataDocumentId="HmProject"!
    relationshipName="mantle.party.RoleType" documentAlias="RoleType"/>!
<moqui.entity.document.DataDocumentCondition dataDocumentId="HmProject"!
    fieldNameAlias="workEffortTypeEnumId" fieldValue="WetProject"/>!
<moqui.entity.document.DataDocumentLink dataDocumentId="HmProject" !
    label="Edit Project" !
    linkUrl="/apps/hm/Project/EditProject?workEffortId=${workEffortId}"/>!

The top level object (the JSON term, Map in Java) of the Data Document instance has 3 fields 
that identify the document:"

• _index: The index the document should live in, from the DataDocument.indexName 
field in the document definition"

• _type: The type of document within the index, and the ID that Moqui Framework uses 
for the DataDocument definition, from the DataDocument.dataDocumentId field"

���   5. Data and Resources69                                                             



• _id: The ID for a particular Data Document instance, based on the primary key of the 
primary entity as specified in the DataDocument.primaryEntityName field"

The top level also contains a _timestamp field with the date and time the document was 
generated."

These 4 fields are named the way they are for easy indexing with ElasticSearch, which is the 
tool used by the Data Search feature which is based on the Data Document feature. These 
fields, and Data Documents in general, are useful for notifications, integrations, and various 
things other than just search."

A Data Document definition is made up of these records:"

• DataDocument: The main record, identified by a dataDocumentId and contains the 
index name, document name (for display purposes)"

• primaryEntityName: the primary (master) entity for the document that all other 
entities for document fields relate to and that plain field names belong to"

• documentTitle: For display purposes, especially in search results and such. Note 
that the documentTitle value is expanded using a flattened Map from the Data 
Document, so names of expanded fields must match document field names (or 
aliases)."

• DataDocumentField: Each record specifies a field for the document. "
• fieldPath: The field name, optionally preceded by a colon-separated list of 

relationship names from the primary entity to the entity the field is on."
• fieldNameAlias: Optionally specify a name for the field to use in the document if 

different from the name of the field on the entity it belongs to. The field name in the 
document must be unique for the entire document, not just within the entity the field 
belongs to. This is true whether the entity field name or an alias is used. The reasons 
for this are: this is the alias used in the query to get the data for the document from 
the database and to facilitate parametric searching."

• DataDocumentRelAlias: Use these records to produce a cleaner document by 
specifying an alias for relationships in fieldPath fields, and for the 
primaryEntityName."

• DataDocumentCondition: These records constrain the query that gets data for the 
document from the database. In the example above this is used to constrain the query to 
only get WorkEffort records with the WetProject type so it only includes projects."

• DataDocumentLink: In search results and other user and system interfaces it is useful 
to have a link to where more information about the document, especially the primary 
entity in it, is available. Use these records to specify such links. Note that the linkUrl 
value is expanded using a flattened Map from the Data Document, so names of 
expanded fields must match document field names (or aliases)."

In the top level object of the example document there is a WorkEffort object for the primary 
entity in the document. There will always be an object like this in the document and its name 
will be the name of the primary entity. It will be the literal value of the 
DataDocument.primaryEntityName field unless it is aliased in a DataDocumentRelAlias 
  ���                                                                                                                                                              70



record, which is why in this document that named of the object is "WorkEffort" and not 
"mantle.work.effort.WorkEffort". "

All DataDocumentField records with a fieldPath with plain field names (no colon-
separated relationship prefix) map to fields on the primary entity and will be included in the 
primary entity’s object in the document."

All document fields with a colon-separated relationship name prefix will result in other 
entries in the top level document object (Map) with the entry key as the relationship name or 
the alias for the relationship name if one is configured. The value for that entry will be an 
object/Map if it is a type one relationship, or an array of objects (in Java a List of Maps) if it is 
a type many relationship."

The same pattern applies when there is more than one colon-separated relationship name in 
a fieldPath. The object/Map entries will be nested as needed to follow the path to the 
specified field. An example of this from the HmProject document example above is the 
"mantle.work.effort.WorkEffortParty:mantle.party.RoleType:description" 
fieldPath value. Note that the two relationship names are aliased to exclude the package 
names, and the field is aliased to be role instead of description. The result is this part of 
the JSON document:"
{ "Party": [ { "RoleType": { "role": "Person - Manager" } } ] }!

The JSON syntax for an object (Map) is curly braces ({ }) and for an array (List) is square 
braces ([ ]). So what we have above is the top-level object with a Party entry whose value is 
an array with an object in it that has a RoleType entry whose value is an object with a single 
entry with the key role and the value is from the RoleType.description entity field. The 
reason the description field is aliased as role is the one described above in the description 
for the DataDocumentField.fieldNameAlias field: each field in a Data Document must 
have a unique name across the entire document."

There are a few ways to generate a Data Document from data in a database. The most 
generally useful approach is the Data Feed described below, but you can also get it through 
an API call that looks like this:"
List<Map> docMapList = ec.entity.getDataDocuments(dataDocumentId, !
        condition, fromUpdateStamp, thruUpdatedStamp)!

In the List returned each Map represents a Data Document. The condition, 
fromUpdatedStamp and thruUpdatedStamp parameters can all be null, but if specified are 
used as additional constraints when querying the database. The condition should use the 
field alias names for the fields in the document. To see if any part of the document has 
changed in a certain time range the *UpdatedStamp parameters are used to look for any 
record in any of the entities with the automatically added lastUpdatedStamp field in the 
from/thru range."

The Map for a Data Document is structured the same way as the example JSON document 
above. The ElasticSearch API supports this Map form of a document, but in some cases you 

���   5. Data and Resources71                                                             



will want it as a JSON String. To create a JSON String from the Map in Groovy use a simple 
statement like this:"
String docString = groovy.json.JsonOutput.toJson(docMap)!

If you want a more friendly human-readable version of the JSON String do this:"
String prettyDocString = groovy.json.JsonOutput.prettyPrint(docString)!

To go the other way (get a Map representation from a JSON String) use a statement like this:"
Map docMap = (Map) new groovy.json.JsonSlurper().parseText(docString)!

Data Feed 

A Data Feed is a configurable way to push Data Documents to a service or group multiple 
documents for retrieval through an API call."

The example below is a push feed (dataFeedTypeEnumId="DTFDTP_RT_PUSH") to send 
documents to the HiveMind.SearchServices.indexAndNotify#HiveMindDocuments 
service when any data in any of the documents is changed in the database through the 
Moqui Entity Facade. The framework automatically keeps track of push Data Feeds and the 
entities that are part of the Data Documents associated with them to look for changes as 
create, update, and delete operations are done. This is an efficient way to get updated Data 
Documents in real time."

Here is an example of entity-facade-xml for the records to configure a push Data Feed:"
<moqui.entity.feed.DataFeed dataFeedId="HiveMindSearch" !
    dataFeedTypeEnumId="DTFDTP_RT_PUSH" feedName="HiveMind Search"   
feedReceiveServiceName="HiveMind.SearchServices.indexAndNotify#HiveMindDocuments"/>!
<moqui.entity.feed.DataFeedDocument dataFeedId="HiveMindSearch" !
    dataDocumentId="HmProject"/>!
<moqui.entity.feed.DataFeedDocument dataFeedId="HiveMindSearch" !
    dataDocumentId="HmTask"/>!

Each DataFeedDocument record associates a DataDocument record to the DataFeed 
record to be included in the feed."

On a side note, when you have data you want to index that is loaded through a XML data file 
as part of the load process and it may be loaded before the Data Feed is loaded an activated, 
you can include an element for a ServiceTrigger record and the Service Facade will call 
the service during the load process to index for the feed. Here is an example of that:"
<moqui.entity.ServiceTrigger serviceTriggerId="HM_SEARCH_INIT" !
    statusId="SrtrNotRun" mapString="[dataFeedId:'HiveMindSearch']"!
    serviceName="org.moqui.impl.EntityServices.index#DataFeedDocuments"/>!

The DataFeed example above is for a push Data Feed. To setup a feed for manual pull just 
set dataFeedTypeEnumId="DTFDTP_MAN_PULL" on the DataFeed record. Any type of Data 

  ���                                                                                                                                                              72



Feed can be retrieved manually, but with this type the feed will not be automatically run. To 
get the documents for any feed through the API use a statement like this:"
List<Map> docList = ec.entity.getDataFeedDocuments(dataFeedId, !
        fromUpdateStamp, thruUpdatedStamp)!

Data Search 

The Data Search feature in Moqui Framework is based on ElasticSearch (http://
www.elasticsearch.org). This is a distributed text search tool based on Apache Lucene. 
ElasticSearch uses JSON documents as the artifact to search, and each named field in a JSON 
document is a facet for searching. The Data Document feature produces documents with 4 
special fields that ElasticSearch uses, as described in the Data Document section (_index, 
_type, _id, and _timestamp)."

There are two main touch points for Data Search: indexing and searching. The service for 
indexing in the framework is org.moqui.impl.EntityServices.index#DataDocuments. This service 
implements the org.moqui.EntityServices.receive#DataFeed interface and accepts all 
parameters from the interface but only uses the documentList parameter, which is the list of 
Data Documents to index with ElasticSearch. "

It also has one other parameter, getOriginalDocuments, which when set to true the service 
will populate and return originalDocumentList, a list of the previously indexed version of 
any matching existing documents from ElasticSearch. The service always returns a 
documentVersionList parameter with a list of the version number for each document in the 
original list after the index is done to show how many times each document has been 
updated in the index."

The example in the previous section used an application-specific service to receive the push 
Data Feed, so here is an example of a push Data Feed configuration that uses the indexing 
service that is part of the framework:"
<moqui.entity.feed.DataFeed dataFeedId="PopCommerceSearch"!
    dataFeedTypeEnumId="DTFDTP_RT_PUSH" feedName="PopCommerce Search"!
    feedReceiveServiceName="org.moqui.impl.EntityServices.index#DataDocuments"/>!
<moqui.entity.feed.DataFeedDocument dataFeedId="PopCommerceSearch" !
    dataDocumentId="PopcProduct"/>!

You can also use the ElasticSearch API directly to index documents, either Data Documents 
produced by the Entity Facade or any JSON document you want to search. For more 
complete information see the ElasticSearch documentation. Here is an example of indexing a 
JSON document in nested Map form with the _index, _type, and _id entries set:"
IndexResponse response = ec.elasticSearchClient!
    .prepareIndex(document._index, document._type, document._id)!
    .setSource(document).execute().actionGet()!

���   5. Data and Resources73                                                             

http://www.elasticsearch.org


To search Data Documents use the 
org.moqui.impl.EntityServices.search#DataDocuments service, like this:"
<service-call name="org.moqui.impl.EntityServices.search#DataDocuments" !
    out-map="context" in-map="context + [indexName:’popc’]"/>!

Note that in this example the queryString, pageIndex, and pageSize parameters come 
from the search form and get into the context from request parameters. The parameters for 
this service are:"

• queryString: the search query string that will be passed to the Lucene classic query 
parser, for documentation see: http://lucene.apache.org/core/4_8_1/queryparser/
org/apache/lucene/queryparser/classic/package-summary.html "

• documentType: the ElasticSearch document type, matches the _type field in the 
document and the DataDocument.dataDocumentId; examples of this from previous 
sections include PopcProduct and HmProject"

• pageIndex, pageSize: these are the standard pagination parameters for Moqui XML list 
forms so this service can be easily used with them; only pageSize results will be 
returned and starting at the pageIndex * pageSize index in the results"

• flattenDocument: default false, if set to true each document in the form of a nested 
Map result (object form, JSON document being the text form) will be flattened into a 
single flat Map with name/value pairs taken from all of the nested Maps and Lists of 
Maps; later values in the document will override earlier values if the same Map entry 
key is found more than once (see the StupidUtilities.flattenNestedMap() 
method)"

The service returns a documentList parameter, which is a List of Maps, each Map 
representing a Data Document. It also returns the various documentList* parameters that 
are part of the pagination pattern for Moqui XML list forms (*Count, *PageIndex, *PageSize, 
*PageMaxIndex, *PageRangeLow, and *PageRangeHigh). These are used when rendering a 
list form, and can be used for other purposes where useful as well."

In addition to this service you can also retrieve results directly through the ElasticSearch API. 
Note that there are two main steps, the search to get back the 3 identifying fields of each 
document, and then a multi-get to get all of the documents. In this example we get each 
document as a Map (the getSourceAsMap() method), and the ElasticSearch API also 
supports getting each as a JSON document (the getSourceAsString() method)."
SearchHits hits = 
ec.elasticSearchClient.prepareSearch().setIndices(indexName)!
   .setTypes(documentType).setQuery(QueryBuilders.queryString(queryString))!
   .setFrom(fromOffset).setSize(sizeLimit).execute().actionGet().getHits()!
if (hits.getTotalHits() > 0) {!
    MultiGetRequestBuilder mgrb = ec.elasticSearchClient.prepareMultiGet()!
    for (SearchHit hit in hits) !
        mgrb.add(hit.getIndex(), hit.getType(), hit.getId())!
    Iterator mgirIt = mgrb.execute().actionGet().iterator()!
    while(mgirIt.hasNext()) {!

  ���                                                                                                                                                              74

http://lucene.apache.org/core/4_8_1/queryparser/org/apache/lucene/queryparser/classic/package-summary.html


        MultiGetItemResponse mgir = mgirIt.next()!
        Map document = mgir.getResponse().getSourceAsMap()!
        documentList.add(document)!
    }!
}!

In addition to indexing and searching another aspect of ElasticSearch to know about is the 
deployment options. By default Moqui Framework has an embedded node of ElasticSearch 
running in the same JVM for fast, convenient access. A remote ElasticSearch server can also 
be used. "

The easiest distributed deployment mode is to have each Moqui application server be a node 
in the ElasticSearch cluster, and if you have separate ES nodes with actual search data 
persisted on them then set the app server ES nodes to not persist any data. With that 
approach results may be aggregated on the app servers, but actual searches against index 
data will be done on the other servers in the cluster."

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
���   5. Data and Resources75                                                             



!
!
!
!
!
!
!
!
!
!

404 - Page Not Found"
(not really, this page is intentionally blank for layout reasons; to make it less blank sponsor 

this book and see your ad here!)"

!
!

  ���                                                                                                                                                              76



!

6. Logic and Services 

Service Definition 

With Moqui Framework the main unit of logic is the service. This is a service-oriented 
architecture with services used as internal, granular units of logic as well as external, coarse 
aggregations of logic. Moqui services are:"

• transactional"
• secure (both authentication and authorization, plus tarpit for velocity limits)"
• validated (data types and various constraints for input parameters)"
• implemented with any of a wide variety of languages and tools including scripting 

languages, Java methods, an even an Apache Camel endpoint"
• run from a local or remote caller"
• run synchronously, asynchronously, or on a schedule"
• a source of triggers at various phases of execution to run other services using service 

event-condition-action (SECA) rules"
• optionally restricted to a single running instance with a database semaphore"

Services are defined in a services XML file using the service element. A service name is 
composed of a path, a verb and a noun in this structure: "${path.verb#noun}". Note that 
the noun is optional in a service definition, and in a service name the hash (#) between the 
verb and noun is also optional. Here is an example, the 
mantle.party.PartyServices.create#Person service (from Mantle Business Artifacts):"
<service verb="create" noun="Person">!
    <in-parameters>!
       <parameter name="partyId"/>!
       <auto-parameters entity-name="mantle.party.Person" include="nonpk"/>!
       <parameter name="firstName" required="true"/>!
       <parameter name="lastName" required="true"/>!
       <parameter name="roleTypeId"/>!
    </in-parameters>!
    <out-parameters><parameter name="partyId"/></out-parameters>!
    <actions>!
       <service-call name="create#mantle.party.Party" out-map="context"!
               in-map="[partyId:partyId, partyTypeEnumId:'PtyPerson']"/>!

���   6. Logic and Services77                                                              



       <service-call name="create#mantle.party.Person" in-map="context"/>!
       <if condition="roleTypeId">!
           <service-call name="create#mantle.party.PartyRole" !
                   in-map="[partyId:partyId, roleTypeId:roleTypeId]"/>!
       </if>!
    </actions>!
</service>!

The only attribute that is required for a service is verb, though use of a noun is generally 
recommended. The type attribute is commonly used, but defaults to "inline" just like the 
service above which has an actions element containing the service implementation. For 
other types of services, i.e. other ways of implementing a service, the location and 
optional method attributes are used to specify what to run."

The example above has in-parameters including individual parameter elements and an 
auto-parameters element to pull in all non-PK fields on the mantle.party.Person 
entity. It also has one out-parameter, a partyId that in this case is either generated if no 
partyId is passed as an input parameter or the passed in value is simply passed through."

The actions element has the implementation of the service, containing a XML Actions 
script. In this case it calls a couple of services, and then conditionally calls a third if a 
roleTypeId is passed in. Note that there is no explicit setting of the partyId output 
parameter (in the result Map) as the Service Facade automatically picks up the context 
value for each declared output parameter after the service implementation is run to populate 
the output/results Map."

These are the attributes available on the service element:"

• verb: This can be any verb, and will often be one of: create, update, store, delete, or 
find. The full name of the service will be: "${path}.${verb}#${noun}". The verb is 
required and the noun is optional so if there is no noun the service name will be just the 
verb."

• noun: For entity-auto services this should be a valid entity name. In many other cases 
an entity name is the best way to describe what is being acted on, but this can really be 
anything."

• type: The service type specifies how the service is implemented. The default available 
options include: inline, entity-auto, script, java, interface, remote-xml-rpc, 
remote-json-rpc, and camel. Additional types can be added by implementing the 
org.moqui.impl.service.ServiceRunner interface and adding a service-
facade.service-type element in the Moqui Conf XML file. The default value is 
inline meaning the service implementation is under the service.actions element."

• location: The location of the service. For scripts this is the Resource Facade location 
of the file. For Java class methods this is the full class name. For remote services this is 
the URL of the remote service. Instead of an actual location can also refer to a pre-
defined location from the service-facade.service-location element in the Moqui 
Conf XML file. This is especially useful for remote service URLs."

• method: The method within the location, if applicable to the service type."
  ���                                                                                                                                                              78



• authenticate: If not set to false (is true by default) a user much be logged in to run 
this service. If the service is running in an ExecutionContext with a user logged in that 
will qualify. If not then either a "authUserAccount" parameter or the "authUsername" 
and "authPassword" parameters must be specified and must contain valid values for a 
user of the system. An "authTenantId" parameter may also be specified to authenticate 
the user in a specific tenant instance. If specified will be used to run the service with 
that as the context tenant. Can also be set to anonymous-all or anonymous-view and not 
only will authentication not be required, but this service will run as if authorized (using 
the _NA_ UserAccount) for all actions or for view-only."

• allow-remote: Defaults to false meaning this service cannot be called through remote 
interfaces such as JSON-RPC and XML-RPC. If set to true it can be. Before settings to 
true make sure the service is adequately secured (for authentication and authorization)."

• validate: Defaults to true. Set to false to not validate input parameters, and not 
automatically remove unspecified parameters."

• transaction:"
• ignore: Don't do anything with transactions (if one is in place use it, if no 

transaction in place don't begin one)."
• use-or-begin: Use active transaction or if no active transaction begin one. This is 

the default."
• force-new: Always begin a new transaction, pausing/resuming the active 

transaction if there is one."
• cache: Like use-or-begin but with a write-through per-transaction cache in place 

(works even if active TX is in place). See notes and warnings in the JavaDoc 
comments of the TransactionCache class for details."

• force-cache: Like force-new with a transaction cache in place like the cache 
option."

• transaction-timeout: The timeout for the transaction, in seconds. This value is 
only used if this service begins a transaction (force-new, force-cache, or use-or-
begin or cache and there is no other transaction already in place)."

• semaphore: Intended for use in long-running services (usually scheduled). This uses a 
record in the database to lock the service so that only one instance of it can run against a 
given database at any given time. Options include none (default), fail, and wait."

• semaphore-timeout: When waiting how long before timing out, in seconds. Defaults 
to 120s."

• semaphore-sleep: When waiting how long to sleep between checking the 
semaphore, in seconds. Defaults to 5s."

• semaphore-ignore: Ignore existing semaphores after this time, in seconds. Defaults 
to 3600s (1 hour)."

The input and output of a service are each a Map with name/value entries. Input parameters 
are specified with the in-parameters element, and output parameters with the out-
parameters element. Under these elements use the parameter element to define a single 

���   6. Logic and Services79                                                              



parameter, and the auto-parameters element to automatically define parameters based on 
primary key (pk), non-primary key (nonpk) or all fields of an entity."

An individual parameter element has attributes to define it including:"

• name: The name of the parameter, matches against the key of an entry in the parameters 
Map passed into or returned from the service."

• type: The type of the attribute, a full Java class name or one of the common Java API 
classes (including String, Timestamp, Time, Date, Integer, Long, Float, Double, 
BigDecimal, BigInteger, Boolean, Object, Blob, Clob, Collection, List, Map, Set, Node)."

• required: Defaults to false, set to true for the parameter to be required. Can also set 
to disabled to behave the same as if the parameter did not exist, useful when 
overriding a previously defined parameter."

• allow-html: Applies only to String fields. Only checked for incoming parameters 
(meant for validating input from users, other systems, etc). Defaults to none meaning 
no HTML is allowed (will result in an error message). If some HTML is desired then use 
safe which will follow the rules in the antisamy-esapi.xml file. This should be safe for 
both internal and public users. In rare cases when users are trusted or it is not a 
sensitive field the any option may be used to not check the HTML content at all."

• format: Used only when the parameter is passed in as a String but the type is 
something other than String to convert to that type. For date/time uses standard Java 
SimpleDateFormat strings."

• default: The field or expression specified will be used for the parameter if no value is 
passed in (only used if required=false). Like default-value but is a field name or 
expression instead of a text value. If both this and default-value are specified this will 
be evaluated first and only if empty will default-value be used."

• default-value: The text value specified will be used for the parameter if no value is 
passed in (only used if required=false). If both this and default are specified default will 
be evaluated first and this will only be used if default evaluates to an empty value."

• entity-name: Optional name of an entity with a field that this parameter is associated 
with."

• field-name: Optional field name within the named entity that this parameter is 
associated with. Most useful for form fields defined automatically from the service 
parameter. This is automatically populated when parameters are defined automatically 
with the auto-parameters element."

For parameter object types that contain other objects (such as List, Map, and Node) the 
parameter element can be nested to specify what to expect (and if applicable, validate) 
within the parameter object."

In addition to the required attribute, validations can be specified for each parameter with 
these sub-elements:"

• matches: Validate the current parameter against the regular expression specified in the 
regexp attribute. "

• number-range: Validate the number within the min and max range."
  ���                                                                                                                                                              80



• number-integer: Validate that the parameter is an integer."
• number-decimal: Validate that the parameter is a decimal number."
• text-length: Validate that the length of the text is within the min and max range."
• text-email: Validate that the text is a valid email address."
• text-url: Validate that the text is a valid URL."
• text-letters: Validate that the text contains only letters."
• text-digits: Validate that the text contains only digits."
• time-range: Validate that the date/time is within the before and after range, 

using the specified format."
• credit-card: Validate that the text is a valid credit card number using Luhn MOD-10 

and if specified for the given card types."

Validation elements can be combined using the val-or and val-and elements, or negated 
using the val-not element."

When a XML Form field is based on a service parameter with validations certain validations 
are automatically validated in the browser with JavaScript, including required, matches, 
number-integer, number-decimal, text-email, text-url, and text-digits."

Now that your service is defined, essentially configuring the behavior of the Service Facade 
when the service is called, it is time to implement it."

Service Implementation 

Some service types have local implementations while others have no implementation 
(interface) or the service definition is a proxy for something else and the location refers to 
an external implementation (remote-xml-rpc, remote-json-rpc, and camel). The remote 
and Apache Camel types are described in detail in the System Interfaces chapter."

Service Scripts 

A script is generally the best way to implement a service, unless an automatic 
implementation for entity CrUD operations will do. Scripts are reloaded automatically when 
their cache entry is clear, and in development mode these caches expire in a short time by 
default to get updates automatically. "

Scripts can run very efficiently, especially Groovy scripts which compile to Java classes at 
runtime and are cached in their compiled form so they can be run quickly. XML Actions 
scripts are transformed into a Groovy script (see the XmlActions.groovy.ftl file for 
details) and then compiled and cached, so have a performance profile just like a plain 
Groovy script."

Any script that the Resource Facade can run can be used as a service implementation. See the 
Rendering Templates and Running Scripts section for details. In summary the scripts 
supported by default are Groovy, XML Actions, and JavaScript. Any scripting language can 
���   6. Logic and Services81                                                              



be supported through the javax.script or Moqui-specific interfaces. Here is an example of 
a service implemented with a Groovy script, defined in the 
org.moqui.impl.EmailServices.xml file:"
<service verb="send" noun="EmailTemplate" type="script"!
        location="classpath://org/moqui/impl/sendEmailTemplate.groovy">!
    <implements service="org.moqui.EmailServices.send#EmailTemplate"/>!
</service>!

In this case the location is a classpath location, but any location supported by the Resource 
Facade can be used. See the Resource Locations section for details on how to refer to files 
within components, in the local file system, or even at general URLs."

At the beginning of a script all of the input parameters passed into the service, or set through 
defaults in the service definition, will be in the context as fields available for use in the script. 
As with other artifacts in Moqui there is also an ec field with the current ExecutionContext 
object. "

Note that the script has a context isolated from whatever called it using the 
ContextStack.pushContext() and popContext() methods meaning not only do fields 
created in the context not persist after the service is run, but the service does not have access 
to the context of whatever called it even though it may be running locally and within the 
same ExecutionContext as whatever called it."

For convenience there is a result field in the context that is of type Map<String, Object>. 
You can put output parameters in this Map to return them, but doing so is not necessary. After 
the script is run the script service runner looks for all output parameters defined on the 
service in the context and adds them to the results. The script can also return (evaluate to) a 
Map object to return results."

Inline Actions 

The service definition example near the beginning of this chapter shows a service with the 
default service type, inline. In this case the implementation is in the service.actions 
element, which contains a XML Actions script. It is treated just like an external script referred 
to by the service location but for simplicity and to reduce the number of files to work with it 
can be inline in the service definition."

Java Methods 

A service implementation can also be a Java method, either a class (static) method or an 
object method. If the method is not static then the service runner creates a new instance of 
the object using the default (no arguments) constructor."

The method must take a single ExecutionContext argument and return a Map<String, 
Object>, so the signature of the method would be something like:"

  ���                                                                                                                                                              82



Map<String, Object> myService(ExecutionContext ec)!

!
Entity Auto Services 

With entity-auto type services you don’t have to implement the service, the 
implementation is automatic based on the verb and noun attribute values. The verb can be 
create, update, delete, or store (which is a create if the record does not exist, update if it 
does). The noun is an entity name, either a full name with the package or just the simple 
entity name with no package."

Entity Auto services can be implicitly (automatically) defined by just calling a service named 
like ${verb}#${noun} with no path (package or filename). For example:"
ec.service.sync().name("create", "moqui.example.Example")!
        .parameters([exampleName:’Test Example’]).call()!

When you define a service and use the entity-auto implementation you can specify which 
input parameters to use (must match fields on the entity), whether they are required, default 
values, etc. When you use an implicitly defined entity auto service it determines the behavior 
based on what is passed into the service call. In the example above there is no exampleId 
parameter passed in, and that is the primary key field of the moqui.example.Example entity, 
so it automatically generates a sequenced ID for the field, and returns it as an output 
parameter."

For create operations in addition to automatically generating missing primary sequenced 
IDs it will also generate a secondary sequenced ID if the entity has a 2-part primary key and 
one is specified while the other is missing. There is also special behavior if there is a 
fromDate primary key field that is not passed in, it will use the now Timestamp to populate 
it."

The pattern for is update to pass in all primary key fields (this is required) and any non-PK 
field desired. There is special behavior for update as well. If the entity has a statusId field 
and a statusId parameter is passed in that is different then it automatically returns the 
original (DB) value in the oldStatusId output parameter. Whenever the entity has a 
statusId field it also returns a statusChanged boolean parameter which is true if the 
parameter is different from the original (DB) value, false otherwise. Entity auto services also 
enforce valid status transitions by checking for the existing of a matching 
moqui.basic.StatusFlowTransition record. If no valid transition is found it will return an 
error."

���   6. Logic and Services83                                                              



Add Your Own Service Runner 

To add your own service runner, with its own service type, implement the 
org.moqui.impl.service.ServiceRunner interface and add a service-facade.service-
type element in the Moqui Conf XML file."

The ServiceRunner interface has 3 methods to implement:"
ServiceRunner init(ServiceFacadeImpl sfi);!
Map<String, Object> runService(ServiceDefinition sd, !
        Map<String, Object> parameters) throws ServiceException;!
void destroy();!

Here is an example of a service-facade.service-type element from the 
MoquiDefaultConf.xml file:"
<service-type name="script" !
    runner-class="org.moqui.impl.service.runner.ScriptServiceRunner"/>!

The service-type.name attribute matches against the service.type attribute, and the 
runner-class attribute is simply the class that implements the ServiceRunner interface."

Calling Services and Scheduling Jobs 

There are DSL-style interfaces available through the ServiceFacade (ec.getService(), or 
in Groovy ec.service) that have options applicable to the various ways of calling a service. 
All of these service call interfaces have name() methods to specify the service name, and 
parameter() and parameters() methods to specify the input parameters for the service. 
These and other methods on the various interfaces return an instance of themselves so that 
calls can be chained. Most have some variation of a call() method to actually call the 
service."

For example:"
Map ahp = [visitId:ec.user.visitId, artifactType:artifactType, …]!
ec.service.async().name("create", "moqui.server.ArtifactHit")!
        .parameters(ahp).call()!
Map result = ec.service.sync()!
        .name("org.moqui.impl.UserServices.create#UserAccount")!
        .parameters(params).call()!

The first service call is to an implicitly defined entity CrUD service to create a ArtifactHit 
record asynchronously. Note that for async() the call() method returns nothing and in this 
case the service call results are ignored. The second is a synchronous call to a defined service 
with a params input parameter Map, and because it is a sync() call the call() method 
returns a Map with the results of the service call."

Beyond these basic methods each interface for different ways of calling a service has methods 
for applicable options, including:"

  ���                                                                                                                                                              84



• sync(): Call the service synchronously and return the results."
• requireNewTransaction(boolean requireNewTransaction): If true suspend/

resume the current transaction (if a transaction is active) and begin a new transaction 
for the scope of this service call."

• multi(boolean mlt): If true expect multiple sets of parameters passed in a single 
map, each set with a suffix of an underscore and the row of the number, i.e. 
something like "userId_8" for the userId parameter in the 8th row."

• disableAuthz(): Disable authorization for the current thread during this service call."
• async(): Call the service asynchronously and ignore the results, get back a 

ServiceResultWaiter object to wait for the results, or pass in an implementation of 
the ServiceResultReceiver interface to receive the results when the service is 
complete."

• maxRetry(int maxRetry): Set the maximum number of times to retry running the 
service when there is an error."

• resultReceiver(ServiceResultReceiver resultReceiver): Specify the object 
that implements the ServiceResultReceiver interface to use for the service call. 
Use the call() method after this to actually call the service."

• callWaiter(): Calls the service (like call()) and returns a ServiceResultWaiter 
instance used to wait for and receive the service results."

• schedule(): Setup call(s) to the service on a schedule."
• jobName(String jobName): Name of the job. If specified repeated schedules with 

the same jobName will use the same underlying job."
• startTime(long startTime): Time to first run this service (in milliseconds from 

epoch)."
• count(int count): Number of times to repeat."
• endTime(long endTime): Time that this service schedule should expire (in 

milliseconds from epoch)."
• interval(int interval, TimeUnit intervalUnit): A time interval specifying 

how often to run this service. The intervalUnit parameter is a value from the 
enumeration ServiceCall.IntervalUnit { SECONDS, MINUTES, HOURS, DAYS, 
WEEKS, MONTHS, YEARS }"

• cron(String cronString): A string in the same format used by cron to define a 
recurrence."

• maxRetry(int maxRetry): Maximum number of times to retry running this service."
• special(): Register the current service to be called when the current transaction is 

either committed (use registerOnCommit()) or rolled back (use 
registerOnRollback()). This interface does not have a call() method."

The asynchronous and scheduled service calls are run using Quartz Scheduler. To use Quartz 
directly get an instance of the org.quartz.Scheduler object using the 
ec.getServices().getScheduler() method. For details on what you can do with Quartz, 
see the documentation at http://quartz-scheduler.org/documentation."

���   6. Logic and Services85                                                              

http://quartz-scheduler.org/documentation


The Quartz job store is in memory by default and can be put in a database using the Quartz 
JDBC job store or the Moqui EntityJobStore which uses the Entity Facade for persistence 
for easier configuration and deployment. When using the RAM job store or to make sure that 
a certain job is scheduled use the XMLSchedulingDataProcessorPlugin from Quartz by 
configuring it in the quartz.properties file. Part of the configuration is the filename of the 
XML file that has the job settings, quartz_data.xml by default in Moqui."

Here is an example of a schedule, which is in place by default in Moqui:"
<schedule>!
    <job>!
        <name>clean_ArtifactData_single</name>!
        <group>org.moqui.impl.ServerServices.clean#ArtifactData</group>!
        <job-class>org.moqui.impl.service.ServiceQuartzJob</job-class>!
        <job-data-map><entry><key>daysToKeep</key><value>90</value>!
            </entry></job-data-map>!
    </job>!
    <trigger>!
        <cron>!
            <name>clean_ArtifactData_daily</name>!
            <group>ServerServices</group>!
            <job-name>clean_ArtifactData_single</job-name>!
            <job-group>org.moqui.impl.ServerServices.clean#ArtifactData!
                </job-group>!
            <!-- trigger every night at 2:00 am -->!
            <cron-expression>0 0 2 * * ?</cron-expression>!
            <!-- for testing, run every 2 minutes: !
                <cron-expression>0 0/2 * * * ?</cron-expression> -->!
        </cron>!
    </trigger>!
</schedule>!

The most important elements are job.job-class which should be set to 
org.moqui.impl.service.ServiceQuartzJob for Moqui Service Facade jobs, and 
job.group which is the service name. Note that trigger.job-name must match job.name, 
and trigger.job-group must match job.group."

The Tools app in default runtime that comes with Moqui Framework has some screens for 
viewing, pausing, resuming, and canceling Quartz jobs. The screens include a summary of 
scheduler details, a history of jobs run, and admin for current jobs and triggers. These 
screens are under the Tools => Service => Scheduler screen."

Service ECA Rules 

An ECA (event-condition-action) rule is a specialized type of rule to conditionally run actions 
based on events. For Service ECA (SECA) rules the events are the various phases of executing 
a service, and these are triggered for all service calls. "

  ���                                                                                                                                                              86



Service ECAs are meant for triggering business processes and for extending the functionality 
of existing services that you don't want to, or can't, modify. Service ECAs should NOT 
generally be used for maintenance of data derived from other entities, Entity ECA rules are a 
much better tool for that."

Here is an example of an SECA rule from the AccountingInvoice.secas.xml file in Mantle 
Business Artifacts that calls a service to create invoices for orders when a shipment is packed:"
<seca service="update#mantle.shipment.Shipment" when="post-service">!
    <condition><expression>!
        statusChanged &amp;&amp; statusId == ‘ShipPacked'!
    </expression></condition>!
    <actions><service-call !
        name="mantle.account.InvoiceServices.create#SalesShipmentInvoices"!
        in-map="context + [statusId:'InvoiceFinalized']"/></actions>!
</seca>!

The required attributes on the seca element are service with the service name, and when 
which is the phase within the service call. These two attributes together make up the event 
that triggers the SECA rule. There is also a run-on-error attribute which defaults to false 
and if set to true the SECA rule will be triggered even if there is an error in the service call."

The options for the when attribute include:"

• pre-auth: Runs before authentication and authorization checks, but after the 
authUsername, authPassword and authTenantId parameters are used and specified 
user logged in; useful for any custom behavior related to authc or authz"

• pre-validate: Runs before input parameters are validated; useful for adding or 
modifying parameters before validation and data type conversion"

• pre-service: Runs before the service itself is run; best place for general things to be 
done before running the service"

• post-service: Runs just after the service is run; best place for general things to be 
done after the service is run and independent of the transaction"

• post-commit: Runs just after the commit would be done, whether it is actually done 
or not (depending on service settings and existing TX in place, etc); to run something on 
the actual commit use the tx-commit option"

• tx-commit: Runs when the transaction the service is running in is successfully 
committed. Gets its data after the run of the service so will have the output/results of 
the service run as well as the input parameters."

• tx-rollback: Runs when the transaction the service is running in is rolled back. Gets 
its data after the run of the service so will have the output/results of the service run as 
well as the input parameters."

When the actions run the context will be whatever context the service was run in, plus the 
input parameters of the service for convenience in using them. If when is before the service 
itself is run there will be a context field called parameters with the input parameters Map in 
it that you can modify as needed in the ECA actions. If when is after the service itself the 

���   6. Logic and Services87                                                              



parameters field will contain the input parameters and a results field will contain the 
output parameters (results) that also may be modified."

The condition element is the same condition as used in XML Actions and may contain 
expression and compare elements, combined as needed with or, and, and not elements."

The actions element is the same as actions elements in service definitions, screens, forms, 
etc. It contains a XML Actions script. See the Overview of XML Actions section for more 
information."

Overview of XML Actions 

The xml-actions-${version}.xsd file has thorough annotations for detailed 
documentation, this section is just an overview of what is available to help you get started. 
You can view the annotations through most good XML editors (including the better Java 
IDEs or IDE plugins), in the XSD file itself, or in the PDF on moqui.org that is generated 
from the XSD file."

Here is a summary of the most important XML Actions elements to be aware of:"

set Set a field, either from another field or from a value, optionally 
specifying the type, a default-value, and whether to set-if-
empty.

if Conditionally run the elements directly under the if element, or in 
the if.then element. The condition can be in the if.condition 
attribute or in compare and expression elements under the 
if.condition element (combined with and or or element, 
negated by the not element). For alternate actions use the else-if 
and else subelements.

while Repeat the subelements as long as the condition is true. Just like 
the if element the condition can be in the if.condition attribute 
or in the if.condition element.

iterate Iterate over elements in the given list, creating a field in the 
context using the name in the entry attribute. If the field named in 
the list attribute is a Map, iterates over the map entries and the 
key for each entry is put in the context using the name in the key 
attribute. Also creates context fields ${entry}_index and $
{entry}_has_next.

script Run any kind of script the Resource Facade can run at the specified 
location or the Groovy script in the text under this element 
(inline script).

  ���                                                                                                                                                              88

http://moqui.org


service-call Call the service specified in the name attribute, using the inputs in 
the in-map attribute (which is a Groovy expression, so can use the 
square-brace [] syntax for an inline Map) or field-map subelements 
and putting the outputs in the out-map. Can optionally be async 
and include-user-login. If the service results in an error the 
simple method will return immediately unless ignore-error 
equals true.

entity-find-one Find a single record for entity-name and put it in an 
EntityValue object in value-field using attributes including 
auto-field-map, cache, and for-update, and subelements 
including field-map and select-field.

entity-find Find records for entity-name and put an EntityList object in 
list using attributes including cache, for-update, distinct, 
offset, and limit, and subelements including search-form-
inputs, date-filter, econdition, econditions, econdition-
object, having-econditions, select-field, order-by, limit-
range, limit-view, and use-iterator.

entity-find-count Find the count of the number of records that match the given 
conditions. Conditions and other application options follow the 
same structure as the entity-find operation.

entity-make-value Create a value-field entity value object for the given entity-
name and optionally set fields based on a map.

entity-create Create (or-update) a record for the value-field entity value.

entity-update Update the record for the value-field entity value.

entity-delete Delete the record corresponding to the value-field entity value.

entity-set Set fields to include (pk, nonpk, or all) on EntityValue object in 
value-field from map (defaults to context) with an optional 
prefix and set-if-empty.

entity-sequenced-
id-primary

For value-field of an entity with a single primary key field, 
populate that primary key field with a sequenced value (the 
sequence name is the full entity name).

entity-sequenced-
id-secondary

For value-field of an entity with a two field primary key and 
one field already populated, populate the other with a secondary 
sequenced key with the value of the highest existing secondary 
field for records matching the populated field, plus 1.

���   6. Logic and Services89                                                              



  "

!
!
!

entity-data For the given mode, load or asset the Entity Facade XML at the 
specified location.

filter-map-list Filter the list and put the results in to-list if specified or back 
in list if not. Use one or more field-map or date-filter 
subelements to specify how to filter the list.

order-map-list Order (sort) a list of Map objects by the fields specified in order-
by subelements.

message Add the text under the message element to the Message Facade to 
the errors list if error=true or the message list otherwise.

check-errors Checks the Message Facade error message list 
(ec.message.errors) and if not empty returns with an error, 
otherwise does nothing.

return Returns immediately. Can optionally specify a message to add to 
the Message Facade errors list if error=true or the message list 
otherwise.

log Log the message at the specified level.

  ���                                                                                                                                                              90



!

7. User Interface 

The main artifact for building user interfaces in Moqui Framework is the XML Screen. "

XML Screens are designed to be used with multiple render modes using the same screen 
definition. This includes various types of text output for user and system interfaces, and 
code-driven user interfaces in client applications. "

To accommodate this design goal most screen elements are render mode agnostic. For 
elements that are specific to a particular render mode there is a render-mode element with 
subelements designed for specific render modes. To support multiple render mode specific 
elements in the same screen just put a subelement under the render-mode element for each 
desired type."

In a web-based application a XML Screen is the main way to produce output for incoming 
requests. The structure of screens makes it easy to support any sort of URL to a screen."

XML Screen 

Screens in Moqui are organized in two ways: "

• each screen exists in a hierarchy of subscreens "
• a screen may be a node in a graph tied to other nodes by transitions"

The hierarchy model is used to reference the screen, and in a URL specify which screen to 
render by its path in the hierarchy. Screens also contain links to other screens (literally a 
hyperlink or a form submission) that is more like the structure of going from one node to 
another in a graph through a transition."

Subscreens 

The subscreen hierarchy is primarily used to dynamically include another screen, a 
subscreen or child screen. The subscreens of a screen can also be used to populate a menu."

When a screen is rendered it is done with a root screen and a list of screen names. "

���   7. User Interface91                                                                  



The root screen is configured per webapp in the Moqui Conf XML file with the moqui-
conf.webapp-list.webapp.root-screen element. Multiple root screens can be configured 
per webapp based on a hostname pattern, providing a convenient means of virtual hosting 
within a single webapp. Note that there is no root screen specified in the 
MoquiDefaultConf.xml file, so it needs to be specified in conf file specified at runtime. "

You should have at least one catchall root-screen element meaning that the host is set to 
the regular expression ".*". See the sample runtime conf files, such as the 
MoquiDevConf.xml file, for an example."

If the list of subscreen names does not reach a leaf screen (with no subscreens) then the 
default subscreen, specified with the screen.subscreens.default-item attribute will be 
used. Because of this any screen that has subscreens should have a default subscreen."

There are three ways to add subscreens to a screen:"

1. for screens within a single application, by directory structure: create a directory in the 
directory where the parent screen is named the same as the parent screen's filename and 
put XML Screen files in that directory (name=filename up to .xml, 
title=screen.default-title, location=parent screen minus filename plus directory 
and filename for subscreen)"

2. for including screens that are part of another application, or shared and not in any 
application, use the subscreens-item element below the screen.subscreens element"

3. for adding screens, removing screens, or changing order and title of screens of a separate 
application add a record in the moqui.screen.SubscreensItem entity"!

For #1 a directory structure would look something like this (from the Example application):"

• ExampleApp.xml!
• ExampleApp!
• Feature.xml!
• Feature!

• FindExampleFeature.xml!
• EditExampleFeature.xml!

• Example.xml!
• Example!

• FindExample.xml!
• EditExample.xml!

The pattern to notice is that if there is are subscreens there should be a directory with the 
same name as the XML Screen file, just without the .xml extension. The Feature.xml file is 
an example of a screen with subscreens, whereas the FindExampleFeature.xml has no 
subscreens (it is a leaf in the hierarchy of screens)."

For approach #2 the subscreens-item element would look something like this element 
from the apps.xml file used to mount the Example app’s root screen:"
<subscreens-item name="example" menu-title="Example" menu-index="8"!
    location="component://example/screen/ExampleApp.xml"/>!

  ���                                                                                                                                                              92



For #3 the record in the database in the SubscreensItem entity would look something like 
this (an adaptation of the XML element above):"
<moqui.screen.SubscreensItem subscreenName="example" !
    userGroupId="ALL_USERS" !
    menuTitle="Example" menuIndex="8" menuInclude="Y" !
    screenLocation="component://webroot/screen/webroot/apps.xml"!
    subscreenLocation="component://example/screen/ExampleApp.xml"/>!

Within the widgets (visual elements) part your screen you specify where to render the active 
subscreen using the subscreens-active element. You can also specify where the menu 
for all subscreens should be rendered using the subscreens-menu element. For a single 
element to do both with a default layout use the subscreens-panel element."

While the full path to a screen will always be explicit, when following the default subscreen 
item under each screen there can be multiple defaults where all but one have a condition. In 
the webroot.xml screen there is an example of defaulting to an alternate subscreen for the 
iPad:"
<subscreens default-item="apps">!
    <conditional-default item="ipad"!
     condition="(ec.web.request.getHeader('User-Agent')?:'').matches('.*iPad.*')"/>!
</subscreens>!

With this in place an explicit screen path will go to either the "apps" subscreen or the "ipad" 
subscreen, but if neither is explicit it will default to the ipad.xml subscreen if the User-
Agent matches, otherwise it will default to the normal apps.xml subscreen. Both of these 
have the example and tools screen hierarchies under them but have slightly different HTML 
and CSS to accommodate different platforms. "

Once a screen such as the FindExample screen is rendered through one of these two its links 
will retain that base screen path in URLs generated from relative screen paths so the user will 
stay in the path the original default pointed to."

Standalone Screen 

Normally screens will be rendered following the render path, starting with the root screen. 
Each screen along the way may add to the output. A screen further down the path that is 
rendered without any previous screens in the path adding to the output is a "standalone" 
screen."

This is useful when you want a screen to control all of its output and not use headers, menus, 
footers, etc from the screen it is under in the subscreens hierarchy."

There are two ways to make a screen standalone:"

• set the screen.standalone attribute to true to make the screen always standalone"
• to render any screen standalone pass in the lastStandalone=true parameter, or set it in 

a screen pre-action (action under the screen.pre-actions element)"
���   7. User Interface93                                                                  



The first option is most useful for screens that are the root of an application separate from the 
rest and that need different decoration and such. The second option is most useful for screens 
that are sometimes used in the context of an application, and other times used to produce 
undecorated output like a CSV file or for loading dynamically in a dialog window or screen 
section."

Transition 

A transition is defined as a part of a screen and is how you get from one screen to another, 
processing input if applicable along the way. A transition can of course come right back to 
the same screen and when processing input often does."

The logic in transitions (transition actions) should be used only for processing input, and not 
for preparing data for display. That is the job of screen actions which, conversely, should not 
be used to process input (more on that below)."

When a XML Screen is running in a web application the transition comes after the screen in 
the URL. In any context the transition is the last entry in the list of subscreen path elements. 
For example the first path goes to the EditExample screen, and the second to the 
updateExample transition within that screen:"
/apps/example/Example/EditExample!
/apps/example/Example/EditExample/updateExample!

When a transition is the target of a HTTP request any actions associated with the transition 
will be run, and then a redirect will be sent to ask the HTTP client (usually a web browser) to 
go to the URL of the screen the transition points to. If the transition has no logic and points 
right to another screen or external URL when a link is generated to that transition it will 
automatically go to that other screen or external URL and skip calling the transition 
altogether. Note that these points only apply to a XML Screen running in a web-based 
application."

A simple transition that goes from one screen to another, in this case from FindExample to 
EditExample, looks like this:"
<transition name="editExample">!
    <default-response url="../EditExample"/>!
</transition>!

The path in the url attribute is based on the location of the two screens as siblings under the 
same parent screen. In this attribute a simple dot (".") refers to the current screen and two 
dots ("..") refers to the parent screen, following the same pattern as Unix file paths."

For screens that have input processing the best pattern to use is to have the transition call a 
single service. With this approach the service is defined to agree with the form that is 
submitted to the corresponding transition. This makes the designs of both more clear and 
offers other benefits such as some of the validations on the service definition are used to 

  ���                                                                                                                                                              94



generate matching client-side validations. This sort of transition would look like this (the 
updateExample transition on the EditExample screen):"
<transition name="updateExample">!
    <service-call name="org.moqui.example.ExampleServices.updateExample"/>!
    <default-response url="."/>!
</transition>!

In this case the default-response.url attribute is simple a dot which refers to the current 
screen and means that after this transition is processed it will go to the current screen."

A screen transition can also have actions instead of a single service call by using the 
actions element instead of the service-call element. Just as with all actions elements in 
all XML files in Moqui, the subelements are standard Moqui XML Actions that are 
transformed into a Groovy script. This is what a screen transition with actions might look 
like (simplified example, also from the EditExample screen):"
<transition name="getExampleTypeEnumList">!
    <actions>!
        <entity-find entity-name="..." list="...">!
            <econdition field-name="..." from="..."/>!
            <order-by field-name="..."/>!
        </entity-find>!
        <script>!
        ec.web.sendJsonResponse([exampleTypeEnumList:exampleTypeEnumList])!
        </script>!
    </actions>!
    <default-response type="none"/>!
</transition>!

This example also shows how you would do a simple entity find operation and return the 
results to the HTTP client as a JSON response. Note the call to the 
ec.web.sendJsonResponse() method and the none value for the default-response.type 
attribute telling it to not process any additional response."

As implied by the element default-response you can also conditionally choose a response 
using the conditional-response element. This element is optional and you can specify any 
number of them, though you should always have at least one default-response element to 
be used when none the conditions are met. There is also an optional error-response which 
you may use to specify the response in the case of an error in the transition actions."

A transition with a conditional-response would look something like this simplified 
example from the DataExport screen:"
<transition name="EntityExport.xml">!
    <actions><script><![CDATA[if (...) noResponse = true]]>!
        </script></actions>!
    <conditional-response type="none">!
        <condition><expression>noResponse</expression></condition>!
    </conditional-response>!
    <default-response url="."/>!

���   7. User Interface95                                                                  



</transition>!

This is allowing the script to specify that no response should be sent (when it sends back the 
data export), otherwise it transitions back to the current screen. Note that the text under the 
condition.expression element is simply a Groovy expression that will be evaluated as a 
boolean."

All *-response elements can have parameter subelements that will be used when 
redirecting to the url or other activating of the target screen. Each screen has a list of expected 
parameters so this is only necessary when you need to override where the parameter value 
comes from (default defined in the parameter tag under the screen) or to pass additional 
parameters."

Here are the shared attributes of the default-response, conditional-response, and 
error-response elements:"

type Defaults to url, can be:"

• none: No response, do nothing aside from the transition actions."
• screen-last: Go to the screen from the last request unless there is 

a saved one from some previous request (using the save-current-
screen attribute, done automatically for login). If no last screen is 
found the value in the url will be used, and if nothing there will go 
to the default screen (just to root with whatever defaults are setup 
for each subscreen)."

• screen-last-noparam: Like screen-last but don’t pass through 
any parameters."

• url: Redirect to the URL specified in the url attribute, of url-type

url The URL to follow in response, based on url-type. The default url-
type is screen-path which means the value here is a path from the 
current screen to the desired screen, transition, or sub-screen content. "

Use "." to represent the current screen, and ".." to represent the parent 
screen on the runtime screen path. The ".." can be used multiple times, 
such as "../.." to get to the parent screen of the parent screen (the 
grand-parent screen). If the screen-path type url starts with a "/" it will 
be relative to the root screen instead of relative to the current screen."

If url-type is plain then this can be any valid URL (relative on current 
domain or absolute).

url-type Can be either screen-path (default) or plain. Normally responses will 
go to another screen, hence the default, but if you want to go to a relative 
or absolute URL use the plain type.

  ���                                                                                                                                                              96



Parameters and Web Settings 

One of the first things in a screen definition is the parameters that are passed to the screen. 
This is used when building a URL to link to the screen or preparing a context for the screen 
rendering. You do this using the parameter element, which generally looks something like 
this:"
<parameter name="exampleId"/>!

The name attribute is the only required one, and there are others if you want a default static 
value (with the value attribute) or to get the value by default from a field in the context 
other than one matching the parameter name (with the from attribute)."

While parameters apply to all render modes there are certain settings that apply only when 
the screen is rendered in a web-based application. These options are on the screen.web-
settings element, including:"

• allow-web-request: Defaults to true. Set to false to not allow access to an HTTP 
client."

• require-encryption: Defaults to true. Set to false for screens that are less secure 
and don’t requite encryption (i.e. HTTPS)."

• mime-type: Defaults to text/html. This can vary based on how the screen is rendered 
(the render mode) but when always producing a certain type of output set the 
corresponding mime type here."

• character-encoding: Defaults to UTF-8 for text output. If you are rendering text with 
a different encoding, set it here."

Screen Actions, Pre-Actions, and Always Actions 

Before rendering the visual elements (widgets) of a screen data preparation is done using 
XML Actions under the screen.actions element. These are the same XML Actions used for 
services and other tools and are described in the Logic and Services chapter. There are 
elements for running services and scripts (inline Groovy or any type of script supported 
through the Resource Facade), doing basic entity and data moving operations, and so on."

parameter-map Just like the parameter subelement can be used to specify parameters to 
pass with the redirect.

save-current-
screen

Save the current screen's path and parameters for future use, generally 
with the screen-last type of response.

save-
parameters

Save the current parameters (and request attributes) before doing a 
redirect so that the screen rendered after the redirect renders in a context 
similar to the original request to the transition.

���   7. User Interface97                                                                  



Screen actions should be used only for preparing data for output. Use transition actions to 
process input."

When screens are rendered it is done in the order they are found in the screen path and the 
actions for each screen are run as each screen in the list is rendered. To run actions before the 
first screen in the path is rendered use the pre-actions element. This is used mainly for 
preparing data needed by screens that will include the current screen (i.e., before the current 
screen in the screen path). When using this keep in mind that a screen can be included by 
different screens in different circumstances."

If you want actions to run before the screen renders and before any transition is run, then use 
the always-actions element. The main difference between always-actions and pre-
actions is that the pre-actions only run before a screen or subscreen is rendered, while 
always-actions will run before any transition in the current screen and any transition in 
any subscreen. The always-actions also run whether the screen will be rendered, while the 
pre-actions only run if the screen will be rendered (i.e., is below a standalone screen in the 
path)."

XML Screen Widgets 

The elements under the screen.widgets element are the visual elements that are rendered, 
or when producing text that actually produce the output text. The most common widgets are 
XML Forms (using the form-single and form-list elements) and included templates. See 
the section below for details about XML Forms."

While XML Forms are not specific to any render mode templates by their nature are 
particular to a specific render mode. This means that to support multiple types of output 
you’ll need multiple templates. The webroot.xml screen (the default root screen) has an 
example of including multiple templates for different render modes:"
<render-mode>!
    <text type="html" !
        location="component://webroot/screen/includes/Header.html.ftl"/>!
    <text type="xsl-fo" no-boundary-comment="true"!
        location="component://webroot/screen/includes/Header.xsl-fo.ftl"/>!
</render-mode>!

The same screen also has an example of supporting multiple render modes with inline text:"
<render-mode>!
    <text type="html"><![CDATA[</body></html>]]></text>!
    <text type="xsl-fo">!
        <![CDATA[</fo:flow></fo:page-sequence></fo:root>]]></text>!
</render-mode>!

These are the widget elements for displaying basic things:"

• link: a hyperlink to a transition, another screen, or any URL"

  ���                                                                                                                                                              98



• image: display an image"
• label: display some text"

To structure screens use these widget elements:"

• section: a named part of a screen with condition, actions, widgets, and fail-widgets 
(run when condition evaluates to false)"

• section-iterate: like section but is run for each entry in a collection"
• container: an area of a screen"
• container-panel: an area of a screen structured into a header, footer and left, center 

and right panels in-between"
• container-dialog: a screen area that is initially hidden and that pops up when a 

button is pressed"
• dynamic-dialog: a button and placeholder for a popup that loads its content from the 

server through a transition of the current screen"
• include-screen: literally include another screen"

Section, Condition and Fail-Widgets 

A section is a special widget that contains other widgets. It can be used anywhere other 
screen widget elements are used. A section has widgets, condition, and fail-widgets 
subelements. The screen element also supports these subelements, making it a sort of top-
level section of a screen."

The condition element is used to specify a condition. If it evaluates to true the widgets 
under the widgets element will be rendered, and if false the widgets under the fail-
widgets element will be."

Macro Templates and Custom Elements 

Moqui XML Screen and XML Form files are transformed to the desired output using a set of 
macros in a Freemarker (FTL) template file. There is one macro for each XML element to 
produce its output when the screen is rendered."

There are two ways to specify the macro template used to render a screen:"

• for all screens: moqui-conf.screen-facade.screen-text-output.macro-template-
location attribute in the Moqui Conf XML file; there is one screen-text-output element 
for each render mode (i.e. html, xml, csv, xsl-fo, etc) identified by the screen-text-
output.type attribute"

• for a single screen: screen.macro-template.location attribute; you can also specify a 
macro-template element for each render-mode, identified by the macro-
template.type attribute"

���   7. User Interface99                                                                  



The location of the macro template can be any location supported by the Resource Facade. 
The most common types of locations you’ll use for this include component, content, and 
runtime directory locations."

The default macro templates included with Moqui are specified in the 
MoquiDefaultConf.xml file along with all other default settings. You can override them 
with your own in the Moqui Conf XML file specified at runtime."

When you use a custom macro template file you don’t need to include a macro for every 
element you want to render differently. You can start the file with an include of a default 
macro file or any other macro file you want to use, and then just override the macros for 
desired elements. An include of another macro file within your file will look something like:"
<#include "classpath://template/DefaultScreenMacros.html.ftl"/>!

The location here can also be any location supported by the Resource Facade."

You can use this approach to add your own custom elements. In other words, the macros in 
your custom macro template file don’t have to be an override of one of the stock elements in 
Moqui, they can be anything you want. "

Use this approach to add your own widget elements and form field types that you want to be 
consistent across screens in your applications. For example you can add macros for special 
containers with dynamic HTML like the dialogs in the default macros, or a special form field 
like a slider or a custom form field widget you create with JavaScript."

When you add a macro for a custom element you can just start using it in your XML Screen 
files even though they are not validated by the XSD file. If you want them to be validated:"

1. create your own custom XSD file"
2. include one or more of the default Moqui XSD files"
3. add your element definitions to your custom XSD"
4. refer to your custom XSD file in the screen.xsi:noNamespaceSchemaLocation 

attribute of your XML Screen file"

CSV, XML, PDF and Other Screen Output 

Because a single XML Screen file can support output in multiple render modes the render 
mode to use is selected using a parameter to the screen: the renderMode parameter. For web-
based applications this can be a URL parameter. For any application this can be set in a 
screen action, usually a pre-action (i.e., under the screen.pre-actions element)."

The value of this parameter can be any string matching a screen-text-output.type 
attribute in the Moqui Conf XML file. This includes the OOTB types as well as any you add 
in your runtime conf file."

  ���                                                                                                                                                            100



All screens in the render path are rendered regardless of the render mode, so for output types 
where you only want the content of the last screen in the path to be included (like CSV), use 
the lastStandalone=true parameter along with the renderMode parameter."

XML Form 

There are two types of XML Form: single and list. A single form represents a single set of 
fields with a label and widget for each. A list form is presented as a table with a column for 
each field, the label in the table header, a widget for the field in each row, and a row for each 
entry in the list the form output is based on."

While there are other ways to get data, most commonly a single form gets field values from a 
Map and a list form from a List of Maps."

A XML Form is like a XML Screen in that they are both rendered using a FTL macro for each 
element, and both support multiple render modes. Just like with XML Screen widgets you 
can add your own widgets by adding macros for them. The XML Form macros go in the 
same FTL file as the XML Screen macros, so use the same approach to add custom macros."

Form Field 

The main element in a form is the field, identified by its name attribute. When a form 
extends another form fields are overridden by using the same field name. For HTML output 
this is also the name of the HTML form field. The name is also used as the map key or 
parameter name (if no map key value found, or when there is an error submitting the form) 
to get the field value from. To get the field value from somewhere else in the context, and still 
use the name for the parameter when applicable, use the entry-name attribute which can be 
any Groovy expression that evaluates to the value desired."

For automatic client-side validation in generated HTML based on a service parameter you 
can use the validate-service and validate-parameter attributes on the field element. 
When the form field is automatically defined based on a service using the auto-fields-
service element these two attributes will be populated automatically. The XML Form 
renderer will also look at the transition the form submits to and if it has a single service-
call element (as opposed to processing input using an actions element) it will look for a 
service input parameter with a name matching the field name and use its validations."

The field type or "widget" (visual/interactive element) of a field goes under a subelement of 
the field element. The default widget to use goes under the default-field subelement 
and all fields should have one (and only one). If you want different widgets to be used in 
specific conditions use the conditional-field element with a Groovy expression that 
evaluates to a boolean in the condition attribute. This works for both single and list forms, 
and for list forms is evaluated for each row."

���   7. User Interface101                                                                



There is also a field.header-field subelement for a widget that goes in the header row of 
list forms. When used these header field widgets are part of a separate form that is meant to 
be used for search options. Sort/order links naturally go along with search options in the list 
form header and these can be turned on by setting the header-field.show-order-by 
attribute to true or case-insensitive."

A field’s title comes from the default-field.title attribute unless there is a header-
field element, then it comes from the title attribute on that element. The default-field 
element also has a tooltip attribute which shows as a popup tooltip when focused on or 
hovering over the field (specific behavior depends on the HTML generated or other specific 
form rendering)."

It is often nice when date values are red when a from date has not been reached or after a 
thru date. This is controlled using the default-field.red-when attribute, which by default 
is by-name meaning if the field name is fromDate then the field is red when the date is in the 
future and if the field name is thruDate then the field is red when the date is in the past. The 
red-when attribute can also be before-now, after-now, and never."

Field Widgets 

There are a number of OOTB widgets for form fields, and additional widgets can be added 
using the extension mechanism described for screens in the Macro Templates and Custom 
Elements section."

Any of the widgets usable in screens can be used in XML Form fields (see the XML Screen 
Widgets section). There are also various widgets that are specific to form fields. Here is a 
summary of the OOTB field widgets in Moqui:"

auto-widget-
service

Define the field widget automatically based on the parameter-name 
input parameter of the service-name service. Use the field-type 
attribute to specify the general type of field widget to use, the specific 
field widget is selected based on the parameter object type. This can be 
edit (default), find, display, find-display (adds both find and 
display widgets), or hidden.

auto-widget-
entity

Define the field widget automatically based on the field-name field of 
the entity-name entity. Use the field-type attribute to specify the 
general type of field widget to use, the specific field widget is selected 
based on the field type. This can be edit, find, display, find-display 
(default; adds both find and display widgets), or hidden.

  ���                                                                                                                                                            102



widget-
template-
include

Form field widget templates are defined in a XML file with the widget-
templates root element. Each widget-template element can contain 
any of the field widget elements with ${} parameters as needed."

To use a widget template just specify its location and set subelements 
as needed define fields for just the scope of rendering the template.

check Show check boxes for a list of options from the entity-options, list-
options, and/or option subelements (see the drop-down description 
for details). Optionally specify a box to check by default using the no-
current-selected-key attribute, or check all boxes by setting all-
checked to true.

date-find Displays two date/time input widgets just like date-time with the 
same type and format attributes. Use the default-value-from 
attribute for the default value of the from (left) input box, and the 
default-value-thru attribute for the thru (right) one.

date-time A date/time input widget specific to the type, either timestamp, date-
time, date, or time. The format of the date/time string is specified in 
the format attribute using a Java SimpleDateFormat string. The text 
input box part of the widget is size characters wide on a single line 
allowing at most maxlength entered characters, though these are 
optional and automatically set based on the type. Use the default-
value attribute to specify a value to use if there is no context or 
parameter value for the field.

display A plain text display of the expanded string from the text attribute (or 
the field value if empty) plus a corresponding hidden field submitted 
with the form unless also-hidden is set to false. Use the format 
attribute to specify the Java format string for date/time 
(SimpleDateFormat), number (DecimalFormat), etc values. For 
currency formatting specify the field containing the currency Uom.uomId 
in currency-unit-field. For HTML output by default encodes the text 
unless encode is set to false.

display-
entity

Lookup an entity value for entity-name and display the expanded 
text string including the entity field values. This is limited to lookup by 
a single primary key field, and if the entity’s PK field has a name 
different from field.name then specify it with the key-field-name 
attribute. By default this is a cached query, to not use the entity cache set 
use-cache to false.  Just like display, this has a corresponding hidden 
field submitted with the form unless also-hidden is set to false. For 
HTML output by default encodes the text unless encode is set to false.

���   7. User Interface103                                                                



drop-down A drop-down, or multi-line box if size is set to a number greater than 1. 
To allow selection of multiple values set allow-multiple to true. The 
currently selected value can be the first in the drop-down with a divider 
from the rest of the options if current is set to first-in-list (default) 
or can be selected from the options with selected. Set allow-empty to 
true to add an empty option to the list."

The list of options is assembled using the entity-options, list-
options, and/or option subelements, or alternatively the dynamic-
options element to get the options with a request to a screen transition."

Use entity-options to get options from database records. Specify the 
entity field to use as the key/value with the key attribute, and the field 
to use as the label text with the text attribute. The query constraints and 
options are specified using the entity-find element, the same element 
used in XML Actions scripts."

For options from a List of Maps use the list-options element with a 
Groovy expression that evaluates to the List in the list attribute, and 
the Map key for the key/value of the option in the key attribute and the 
label text Map key in the text attribute. To specify individual options 
explicitly use an option element with key and text attributes for each 
option."

For dynamic-options specify the screen transition that returns a 
JSON string containing a List of Maps plus value-field and label-
field attributes for the map keys to get the value and label from in each 
Map. The main reason to use dynamic options is to change the options 
when another field changes. To do this use one or more depends-on 
subelement with the form field name in its field attribute. When a 
referenced field changes new options will be requested from the screen 
transition, passing all referenced field values as parameters to the 
request."

Set the default option with its key in the no-current-selected-key 
attribute. If that option is not in the existing options specify its 
description using the current-description attribute."

By default uses a dynamic drop-down widget that filters options based 
entered text. To use a plain drop-down set search to false. To allow the 
user to enter a new option to submit that is not already in the drop-
down set combo-box to true.

  ���                                                                                                                                                            104



file A file upload input box (has a button/link for a file selection popup 
window) size (default 30) characters wide allowing at most maxlength 
entered characters. Use the default-value attribute to specify a value 
to use if there is no context or parameter value for the field.

hidden A hidden field whose value is passed with the submitted form but 
nothing is displayed to the user. Use the default-value attribute to 
specify a value to use if there is no context or parameter value for the 
field.

ignored Treats the field as if it was not even defined. Useful when extending 
another form to eliminate undesired fields.

password A password input box size (default 30) characters wide allowing at 
most maxlength entered characters. Masks the input for security.

radio Show radio buttons for a list of options from the entity-options, 
list-options, and/or option subelements (see the drop-down 
description for details). Optionally specify the default option’s key using 
the no-current-selected-key attribute (used if there is no value or 
parameter for the field).

range-find Mainly for numeric range find, displays two small input boxes size 
(default 10) characters wide allowing at most maxlength entered 
characters in each. Use the default-value-from attribute for the 
default value of the from (left) input box, and the default-value-thru 
attribute for the thru (right) one.

reset A button to reset the form. The button text comes from the field title.

submit A form submit button. The button text comes from the field title unless 
the image subelement is used to put an image on the button. An icon 
next to the text can be used with the icon attribute set to an icon style 
from the icon library (for the default runtime webroot the Glyphicons for 
Bootstrap icons are available, for example icon="glyphicon 
glyphicon-plus" or the Font Awesome icons can be used with 
something like "fa fa-search"). To show a message and ask the user 
to confirm when the button is pressed put the message in the 
confirmation attribute.

text-area A text area cols characters wide and rows lines tall allowing at most 
maxlength entered characters. Use the default-value attribute to 
specify a value to use if there is no context or parameter value for the 
field. Set read-only to true to make the text area display only, not 
allow a change to the value.

���   7. User Interface105                                                                



Single Form 

Use the form-single element to define a single form. These are the attributes of the form-
single element:"

• name: The name of the form. Used to reference the form along with the XML Screen file 
location. For HTML output this is the form name and id, and for other output may also 
be used to identify the part of the output corresponding to the form."

• extends: The location and name separated by a hash/pound sign (#) of the form to 
extend. If there is no location it is treated as a form name in the current screen."

• transition: The transition in the current screen to submit the form to."
• map: The Map to get field values from. Is often a EntityValue object or a Map with data 

pulled from various places to populate in the form. Map keys are matched against field 
names. This is ignored if the field.entry-name attribute is used, that is evaluated 
against the context in place at the time each field is rendered. Defaults to fieldValues."

• focus-field: The name of the field to focus on when the form is rendered."

text-line A simple text input box size characters wide on a single line allowing at 
most maxlength entered characters. Use the default-value attribute to 
specify a value to use if there is no context or parameter value for the 
field. Set disabled to true to make the input box display only, not 
allow a change to the value. Use the format attribute to specify the Java 
format string for date/time (SimpleDateFormat), number 
(DecimalFormat), etc values."

A text-line can have autocomplete by implementing a screen 
transition to provide the values and specifying the transition name in the 
ac-transition attribute. The transition should respond with a JSON 
string (using ec.web.sendJsonResponse()) with a List of Maps with 
value and label fields. Optionally specify the time delay in 
milliseconds (default 300) with ac-delay and the minimum characters 
to enter before lookup with ac-min-length (default 1).

text-find Like text-line with size, maxlength, and default-value attributes 
and also has a checkbox for ignore-case (defaults to true, i.e. 
checked), and a drop-down for a search operator with a default specified 
in the default-operator attribute (can be equals, like, contains, or 
empty). "

The ignore case checkbox and operator drop-down can also be hidden 
(defaults passed as hidden parameters, no visible UI widget) using the 
hide-options attribute Options for hide are false (default, show both), 
true (hide both), ignore-case (hide only ignore case checkbox), and 
operator (hide the operator drop-down).

  ���                                                                                                                                                            106



• skip-start: Skip the starting rendered elements of the form. When used after a form 
with skip-end=true this will effectively combine the forms into one."

• skip-end: Skip the ending rendered elements of the form. Use this to leave a form open 
so that additional forms can be combined with it."

• dynamic: If true this form will be considered dynamic and the internal definition will 
be built up each time it is used instead of only when first referred to. This is necessary 
when auto-fields-* elements have ${} string expansion for service or entity names."

• background-submit: Submit the form in the background without reloading the screen."
• background-reload-id: After the form is submitted in the background reload the 

dynamic-container with this id."
• background-message: After the form is submitted in the background show this 

message in a dialog."

To layout fields in a way other than a plain list of fields use the form-single.field-layout 
element. For HTML output there is an optional id attribute to facilitate styling. If the field 
layout contains field groups set the collapsible attribute to true to use an accordion 
widget to save space, optionally specifying the active group index instead of the first to be 
initially open. Here are the subelements to define a layout:"

• field-ref: specifies where to include a field by name"
• fields-not-referenced: include all fields not referenced elsewhere; if this element is 

not present fields that are not referenced in the field-layout will not be rendered"
• field-row: create a row of fields specified by field-ref subelements; if there are two 

fields in the row they display in four columns, both with titles; if there are more than 
two fields only the title of the first field is displayed and the remaining field widgets go 
side-by-side in the row, wrapping if needed"

• field-group: create a group of fields, in an accordion if field-layout.collapsible 
is true, with an optional title above the group and for HTML output an optional 
style for the container (div) around the group; use the field-ref, fields-not-
referenced, and field-row subelements to specify the fields to include, and 
optionally put them in rows"

!
Single Form Example 

To get a better idea of the utility of different aspects of a single form let’s look at a more 
complex example. This form is the Edit Task screen from the HiveMind Project Manager 
application."

This form has examples of the following (see the full source below):"

• Project: a drop-down populated using entity-options, and a separate link to go to 
the current project associated with the task"

���   7. User Interface107                                                                



• Milestone and Parent Task: drop-down fields populated with dynamic-options, both 
dependent on the project (rootWorkEffortId) using the depends-on element"

• Task Name: simple text-line input box"
• Resolution and Purpose: standard Enumeration drop-down fields using the widget-

template-include element with set subelements; Purpose uses a widget template 
constrained by a parent Enumeration (parentEnumId), whereas Resolution includes all 
values for an EnumerationType (enumTypeId)"

• Status: standard status drop-down with options based on transitions from the current 
status using the StatusFlowTransition entity"

• Due Date: simple date-time of type date input box"
• Estimated Hours and Remaining Hours: simple number input boxes"
• Actual Hours: display with a number format string"
• Description: simple text-area"

This form uses field-layout to put various fields side-by-side, but otherwise uses the 
default layout. For an example of a layout with a field-group accordion see the Edit 
Example screen in the Moqui Example app."

Here is the source for the Single Form, and the XML Screen it is part of for context and to see 
the transition definitions, screen actions for data preparation, etc:"

  ���                                                                                                                                                            108



<screen xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"!
        xsi:noNamespaceSchemaLocation="http://moqui.org/xsd/xml-screen-1.4.xsd"!
        default-menu-title="Task" default-menu-index="1">!!
  <parameter name="workEffortId"/>!!
  <transition name="updateTask">!
    <service-call name="mantle.work.TaskServices.update#Task" !
            in-map="context"/>!
    <default-response url="."/>!
  </transition>!
  <transition name="editProject">!
    <default-response url="../../Project/EditProject"/></transition>!
  <transition name="milestoneSummary">!
    <default-response url="../../Project/MilestoneSummary"/>!
  </transition>!
  <transition name="getProjectMilestones">!
    <actions>!
      <service-call in-map="context" out-map="context"!
          name="mantle.work.ProjectServices.get#ProjectMilestones"/>!
      <script>ec.web.sendJsonResponse(resultList)</script>!
    </actions>!
    <default-response type="none"/>!
  </transition>!
  <transition name="getProjectTasks">!
    <actions>!
      <service-call in-map="context" out-map="context" !
          name="mantle.work.ProjectServices.get#ProjectTasks"/>!
      <script>ec.web.sendJsonResponse(resultList)</script>!
    </actions>!
    <default-response type="none"/>!
  </transition>!!
  <actions>!
    <entity-find-one entity-name="mantle.work.effort.WorkEffort" !
            value-field="task"/>!
    <entity-find-one entity-name="mantle.work.effort.WorkEffort" !
            value-field="project">!
      <field-map field-name="workEffortId" from="task.rootWorkEffortId"/>!
    </entity-find-one>!!
    <entity-find entity-name="mantle.work.effort.WorkEffortAssoc" !
        list="milestoneAssocList">!
      <date-filter/>!
      <econdition field-name="toWorkEffortId" from="task.workEffortId"/>!
      <econdition field-name="workEffortAssocTypeEnumId" !
          value="WeatMilestone"/>!
    </entity-find>!
    <set field="milestoneAssoc" from="milestoneAssocList?.getAt(0)"/>!
    <set field="statusFlowId" !

���   7. User Interface109                                                                



        from="(task.statusFlowId ?: project.statusFlowId) ?: 'Default'"/>!
  </actions>!
  <widgets>!
    <form-single name="EditTask" transition="updateTask" map="task">!
      <field name="workEffortId">!
        <default-field title="Task ID"><display/></default-field>!
      </field>!
      <field name="rootWorkEffortId"><default-field title="Project">!
        <drop-down>!
          <entity-options key="${workEffortId}" !
              text="${workEffortId}: ${workEffortName}">!
            <entity-find entity-name="WorkEffortAndParty">!
              <date-filter/>!
              <econdition field-name="partyId" !
                  from="ec.user.userAccount.partyId"/>!
              <econdition field-name="workEffortTypeEnumId" !
                  value="WetProject"/>!
            </entity-find>!
          </entity-options>!
        </drop-down>!
        <link text="Edit ${project.workEffortName} [${task.rootWorkEffortId}]" !
            url="editProject">!
          <parameter name="workEffortId" from="task.rootWorkEffortId"/>!
        </link>!
      </default-field></field>!
      <field name="milestoneWorkEffortId" !
          entry-name="milestoneAssoc?.workEffortId">!
        <default-field title="Milestone">!
          <drop-down combo-box="true">!
            <dynamic-options transition="getProjectMilestones" !
                value-field="workEffortId" label-field="milestoneLabel">!
              <depends-on field="rootWorkEffortId"/>!
            </dynamic-options>!
          </drop-down>!
          <link url="milestoneSummary" !
text="${milestoneAssoc ? 'Edit ' + milestoneAssoc.workEffortId : ''}">!
            <parameter name="milestoneWorkEffortId" !
                from="milestoneAssoc?.workEffortId"/>!
          </link>!
        </default-field>!
      </field>!
      <field name="parentWorkEffortId"><default-field title="Parent Task">!
        <drop-down combo-box="true">!
          <dynamic-options transition="getProjectTasks" !
              value-field="workEffortId" label-field="taskLabel">!
            <depends-on field="rootWorkEffortId"/>!
          </dynamic-options>!
        </drop-down>!
      </default-field></field>!
      <field name="workEffortName"><default-field title="Task Name">!

  ���                                                                                                                                                            110



        <text-line/></default-field></field>!
      <field name="priority"><default-field>!
        <widget-template-include location="component://HiveMind/template/!
            screen/ProjectWidgetTemplates.xml#priority"/>!
      </default-field></field>!
      <field name="purposeEnumId"><default-field title="Purpose">!
        <widget-template-include location="component://webroot/template/  !
            screen/BasicWidgetTemplates.xml#enumWithParentDropDown">!
          <set field="enumTypeId" value="WorkEffortPurpose"/>!
          <set field="parentEnumId" value="WetTask"/>!
        </widget-template-include>!
      </default-field></field>!
      <field name="statusId"><default-field title="Status">!
        <widget-template-include location="component://webroot/template/
screen/BasicWidgetTemplates.xml#statusTransitionWithFlowDropDown">!
          <set field="currentDescription"    !
            from="task?.'WorkEffort#moqui.basic.StatusItem'?.description"/>!
          <set field="statusId" from="task.statusId"/>!
        </widget-template-include>!
      </default-field></field>!
      <field name="resolutionEnumId"><default-field title="Resolution">!
        <widget-template-include location="component://webroot/template/!
            screen/BasicWidgetTemplates.xml#enumDropDown">!
          <set field="enumTypeId" value="WorkEffortResolution"/>!
        </widget-template-include>!
      </default-field></field>!
      <field name="estimatedCompletionDate">!
        <default-field title="Due Date">!
          <date-time type="date" format="yyyy-MM-dd"/></default-field>!
      </field>!
      <field name="estimatedWorkTime">!
        <default-field title="Estimated Hours">!
          <text-line size="5"/></default-field>!
      </field>!
      <field name="remainingWorkTime">!
        <default-field title="Remaining Hours">!
          <text-line size="5"/></default-field>!
      </field>!
      <field name="actualWorkTime"><default-field title="Actual Hours">!
        <display format="#.00"/></default-field></field>!
      <field name="description"><default-field title="Description">!
        <text-area rows="20" cols="100"/></default-field></field>!
      <field name="submitButton"><default-field title="Update">!
        <submit/></default-field></field>!
            !
      <field-layout>!
        <fields-not-referenced/>!
        <field-row><field-ref name="purposeEnumId"/>!
          <field-ref name="priority"/></field-row>!
        <field-row><field-ref name="statusId"/>!

���   7. User Interface111                                                                



          <field-ref name="estimatedCompletionDate"/></field-row>!
        <field-row><field-ref name="estimatedWorkTime"/>!
          <field-ref name="remainingWorkTime"/></field-row>!
        <field-ref name="actualWorkTime"/>!
        <field-ref name="description"/>!
        <field-ref name="submitButton"/>!
      </field-layout>!
    </form-single>!
  </widgets>!
</screen>!

This screen finds all data based on the single workEffortId parameter, which is the ID of the 
task."

List Form 

Use the form-list element to define a single form. These are the attributes of the form-list 
element:"

• name: The name of the form. Used to reference the form along with the XML Screen file 
location. For HTML output this is the form name and id, and for other output may also 
be used to identify the part of the output corresponding to the form."

• extends: The location and name separated by a hash/pound sign (#) of the form to 
extend. If there is no location it is treated as a form name in the current screen."

• transition: The transition in the current screen to submit the form to."
• multi: Make the form a multi-submit form where all rows on a page are submitted 

together in a single request with a "_${rowNumber}" suffix on each field. Also passes a 
_isMulti=true parameter so the Service Facade knows to run the service (a single 
service-call in a transition) for each row. Defaults to true, so set to false to 
disable this behavior and have a separate form (submitted separately) for each row."

• list: An expression that evaluates to a list to iterate over."
• list-entry: If specified each list entry will be put in the context with this name, 

otherwise the list entry must be a Map and the entries in the map will be put into the 
context for each row."

• paginate: Indicate if this form should paginate or not. Defaults to true."
• paginate-always-show: Always show the pagination control with count of rows, even 

when there is only one page? Defaults to true."
• skip-start: Skip the starting rendered elements of the form. When used after a form 

with skip-end=true this will effectively combine the forms into one."
• skip-end: Skip the ending rendered elements of the form. Use this to leave a form open 

so that additional forms can be combined with it."
• skip-form: Make the output a plain table, not submittable (in HTML don't generate 

form elements). Useful for view-only list forms to minimize output."

  ���                                                                                                                                                            112



• dynamic: If true this form will be considered dynamic and the internal definition will 
be built up each time it is used instead of only when first referred to. This is necessary 
when auto-fields-* elements have ${} string expansion for service or entity names."

Similar to field-layout in a single form there is a form-list-column element for list 
forms. When used there needs to be one element for each column in the list form table, and 
all fields must be referenced in a column or they will not be rendered. The form-list-
column element has a single subelement, the same field-ref element that is used in the 
single form field-layout."

Data preparation for a form is best done in the actions in the XML Screen it is used in but 
sometimes you need to prepare data for each row in a list form. This can be done by 
preparing in advance a List of Map objects that have entries for each list form field. With this 
approach the logic that prepares the List can do additional data lookups or calculations to 
prepare the data. The other approach is to put XML Actions under the form-list.row-
actions element. These actions will be run for each row in an isolated context so that any 
context fields defined will be used only for that row."

List Form View/Export Example 

There are two main categories of list forms: those used for searching, viewing, and exporting 
and those used for editing a number of records in a single screen."

The Artifact Summary screens in the Moqui Tools application is a good example of a screen 
that is used for searching, viewing data, and exporting results to CSV, XML, and PDF files all 
using the same screen and form definition. The list form on the screen shows a row for each 
artifact with a summary of the moqui.server.ArtifactHitBin records for that artifact 
using the moqui.server.ArtifactHitReport view-entity."

���   7. User Interface113                                                                



Note the "Get as CSV" link in the upper-left corner (and the similar XML and PDF links). This 
link goes to the simple ArtifactHitSummaryStats.csv transition that goes to the same 
screen and adds renderMode=csv, pageNoLimit=true, and lastStandalone=true 
parameters so that the screen renders with csv output instead of html, pagination is disabled 
(all results are output), and only the last screen is rendered (skipping all parent screens to 
avoid decoration, i.e. the last screen is "standalone"). See the XML, CSV and Plain Text 
Handling section for more detail."

Below the "Get as" links are the pagination controls which are enabled by default and by 
default shown when there is more than one page of results to display. In the form header row 
are the column titles and "+-" links for sorting the results in each column, plus a header find 
form with a drop-down for the Artifact Type and a text-find box for Artifact Name. These 
are all defined in the header-field elements under each field."

This form uses form-list.row-actions element to calculate the averageTime for each row, 
which is then displayed using a form field."

Here is the source for the ArtifactHitSummary.xml screen showing the details for the 
summary above:"
<screen xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"!
        xsi:noNamespaceSchemaLocation="http://moqui.org/xsd/xml-screen-1.4.xsd"!
        default-menu-title="Artifact Summary">!!
  <transition name="ArtifactHitSummaryStats.csv">!
    <default-response url="."><parameter name="renderMode" value="csv"/>!
      <parameter name="pageNoLimit" value="true"/>!
      <parameter name="lastStandalone" value="true"/></default-response>!
  </transition>!
  <transition name="ArtifactHitSummaryStats.xml">!
    <default-response url="."><parameter name="renderMode" value="xml"/>!
      <parameter name="pageNoLimit" value="true"/>!
      <parameter name="lastStandalone" value="true"/></default-response>!
  </transition>!
  <transition name="ArtifactHitSummaryStats.pdf">!
    <default-response url-type="plain"!
        url="${ec.web.getWebappRootUrl(false, null)}/fop/apps/tools/System/  !
          ArtifactHitSummary">!
      <parameter name="renderMode" value="xsl-fo"/>!
      <parameter name="pageNoLimit" value="true"/>!
    </default-response>!
  </transition>!!
  <actions>!
    <entity-find entity-name="moqui.server.ArtifactHitReport" !
        list="artifactHitReportList" limit="50">!
      <search-form-inputs default-order-by="artifactType,artifactName"/>!
    </entity-find>!
  </actions>!

  ���                                                                                                                                                            114



  <widgets>!
    <container>!
      <link url="ArtifactHitSummaryStats.csv" text="Get as CSV" !
          target-window="_blank" expand-transition-url="false"/>!
      <link url="ArtifactHitSummaryStats.xml" text="Get as XML" !
          target-window="_blank" expand-transition-url="false"/>!
      <link url="ArtifactHitSummaryStats.pdf" text="Get as PDF" !
          target-window="_blank"/>!
    </container>!
    <form-list name="ArtifactHitSummaryList" list="artifactHitReportList">!
      <row-actions>!
        <set field="averageTime" from="(totalTimeMillis/hitCount as !
            BigDecimal).setScale(0,BigDecimal.ROUND_UP)"/>!
      </row-actions>!!
      <field name="artifactType">!
        <header-field show-order-by="true">!
          <drop-down allow-empty="true">!
            <option key="screen"/><option key="screen-content"/>!
            <option key="transition"/>!
            <option key="service"/><option key="entity"/>!
          </drop-down>!
        </header-field>!
        <default-field><display also-hidden="false"/></default-field>!
      </field>!
      <field name="artifactName">!
        <header-field show-order-by="true">!
          <text-find hide-options="true" size="20"/></header-field>!
        <default-field><display text="${artifactName}" !
            also-hidden="false"/></default-field>!
      </field>!
      <field name="lastHitDateTime">!
        <header-field title="Last Hit" show-order-by="true"/>!
        <default-field><display also-hidden="false"/></default-field>!
      </field>!
      <field name="hitCount">!
        <header-field title="Hits" show-order-by="true"/>!
        <default-field><display also-hidden="false"/></default-field>!
      </field>!
      <field name="minTimeMillis">!
        <header-field title="Min" show-order-by="true"/>!
        <default-field><display also-hidden="false"/></default-field>!
      </field>!
      <field name="averageTime">!
        <default-field title="Avg">!
          <display also-hidden="false"/></default-field>!
      </field>!
      <field name="maxTimeMillis">!
        <header-field title="Max" show-order-by="true"/>!
        <default-field><display also-hidden="false"/></default-field>!

���   7. User Interface115                                                                



      </field>!
      <field name="find"><header-field title="Find">!
        <submit/></header-field></field>!
    </form-list>!
  </widgets>!
</screen>!

List Form Edit Example 

The Entity Fields Localization screen in the Moqui Tools application is a good example of a 
list form used to update multiple records in a single page. This screen is designed for adding, 
editing, and deleting moqui.basic.LocalizedEntityField records that specify localized 
text to use instead of an entity record field’s actual value."

In the screenshot below there is a button in the upper-left corner to add a new record in a 
container-dialog modal popup. Just below that are the pagination controls which are 
enabled by default. The header row in the form has the field titles (in this case all generated 
based on the field name since there are no header-field.title attributes), the "+-" sorting 
links (with header-field.show-order-by=true), and header widgets for the fields to find 
only matching records."

  ���                                                                                                                                                            116



The body rows of the list form table have one row for each record with a Delete button, but 
the Update button is at the bottom and updates all rows in a single form submission to 
update a number of Localized values at once. Notice that the Find button in the header row 
is in the same column as the Delete button on each body row. To do this in the form 
definition the Find button is defined in a subelement of the header-field element for the 
delete field."

Below is the source for the EntityFields.xml screen. The create, update, and delete 
transitions use implicitly defined entity-auto services so there is no service definition or 
implementation for them. This functionality relies on only a XML Screen file and the 
definition of the LocalizedEntityField entity. "
<screen xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"!
        xsi:noNamespaceSchemaLocation="http://moqui.org/xsd/xml-screen-1.4.xsd"!
        default-menu-title="Entity Fields" default-menu-index="2">!!
  <transition name="createLocalizedEntityField">!
    <service-call name="create#moqui.basic.LocalizedEntityField"/>!
    <default-response url="."/>!
  </transition>!
  <transition name="updateLocalizedEntityField">!
    <service-call name="update#moqui.basic.LocalizedEntityField" !
        multi="true"/>!
    <default-response url="."/>!
  </transition>!
  <transition name="deleteLocalizedEntityField">!
    <service-call name="delete#moqui.basic.LocalizedEntityField"/>!
    <default-response url="."/>!
  </transition>!!
  <actions>!
    <entity-find entity-name="moqui.basic.LocalizedEntityField" !
        list="localizedEntityFieldList" offset="0" limit="50">!
      <search-form-inputs default-order-by="entityName,fieldName,locale"/>!
    </entity-find>!
  </actions>!
  <widgets>!
    <container>!
      <container-dialog id="CreateEntityFieldDialog" !
          button-text="New Field L10n">!
        <form-single name="CreateLocalizedEntityField"    !
            transition="createLocalizedEntityField">!
          <field name="entityName"><default-field>!
            <text-line size="15"/></default-field></field>!
          <field name="fieldName"><default-field>!
            <text-line size="15"/></default-field></field>!
          <field name="pkValue"><default-field>!
            <text-line size="20"/></default-field></field>!
          <field name="locale"><default-field>!

���   7. User Interface117                                                                



            <text-line size="5"/></default-field></field>!
          <field name="localized"><default-field>!
            <text-area rows="5" cols="60"/></default-field></field>!
          <field name="submitButton"><default-field title="Create">!
            <submit/></default-field></field>!
        </form-single>!
      </container-dialog>!
    </container>!
    <form-list name="UpdateLocalizedEntityFields" !
        list="localizedEntityFieldList"!
        transition="updateLocalizedEntityField" multi="true">!
      <field name="entityName">!
        <header-field show-order-by="true">!
          <text-find hide-options="true" size="12"/></header-field>!
        <default-field><display/></default-field>!
      </field>!
      <field name="fieldName">!
        <header-field show-order-by="true">!
          <text-find hide-options="true" size="12"/></header-field>!
        <default-field><display/></default-field>!
      </field>!
      <field name="pkValue">!
        <header-field show-order-by="true">!
          <text-find hide-options="true" size="12"/></header-field>!
        <default-field><display/></default-field>!
      </field>!
      <field name="locale">!
        <header-field show-order-by="true">!
          <text-find hide-options="true" size="4"/></header-field>!
        <default-field><display/></default-field>!
      </field>!
      <field name="localized"><default-field>!
        <text-area rows="2" cols="35"/></default-field></field>!
      <field name="update"><default-field title="Update">!
        <submit/></default-field></field>!
      <field name="delete">!
        <header-field title="Find"><submit/></header-field>!
        <default-field>!
          <link text="Delete" url="deleteLocalizedEntityField">!
            <parameter name="entityName"/>!
            <parameter name="fieldName"/><parameter name="locale"/></link>!
        </default-field>!
      </field>!
    </form-list>!
  </widgets>!
</screen>!!

  ���                                                                                                                                                            118



Templates 

While a wide variety of screens can be built with XML Forms and the various XML Screen 
widgets and layout elements. Quite a lot can be done with the OOTB elements. Here is an 
example of a more complex screen, the Task Summary screen from the HiveMind PM 
application that is made with only OOTB elements and some custom CSS:"

Sometimes you need a more flexible layout, styling, widgets, or custom interactive behavior. 
For things that will be used in many places, and where you want them to render consistently, 
add screen and form widgets (including layout elements) using FTL macros to add or extend 
XML Screen elements. For everything else, especially one-off things, an explicit template is 
the way to get any sort of HTML output you want."

This is especially useful for custom web site such as corporate or ecommerce sites where 
custom HTML is needed to get a very specific form and function."

Custom templates also apply to other forms of output like XML, CSS, and XSL-FO. In a XML 
Screen this is done with the render-mode element and one or more text subelements for 
each render-mode.text.type to support for the screen. In the current version of Moqui 

���   7. User Interface119                                                                



Framework only text output is supported for screen rendering, but in the future or in custom 
code other elements under the render-mode element could be used to define output for non-
text screen rendering such as for GWT or Swing."

If the screen is rendered with a render mode and there is no text subelement with a type 
matching the active render mode then it will simply render nothing for the block and 
continue with rendering the screen. The options for the text.type attribute match the type 
attribute on the screen-facade.screen-text-output element in the Moqui Conf XML file 
where the macro template to use for each output type is defined. Currently supported 
options include: csv, html, text, xml, and xsl-fo."

Other attributes (in addition to type) available on the text element include:"

• location: This is the template or text file location and can be any location supported by 
the Resource Facade including file, http, component, content, etc."

• template: Interpret the text at the location as an FTL or other template? Supports any 
template type supported by the Resource Facade. Defaults to true, set to false if you 
want the text included literally."

• encode: If true the text will be encoded so that it does not interfere with markup of the 
target output. Templates ignore this setting and are never encoded. For example, if 
output is HTML then data presented will be HTML encoded so that all HTML-specific 
characters are escaped."

• no-boundary-comment: Defaults to false. If true won't ever put boundary comments 
before this (for opening ?xml tag, etc)."

The webroot.xml screen is the default root screen in the OOTB runtime directory and has a 
good example of including templates for different render modes:"
<widgets>!
  <render-mode>!
    <text type="html" !
        location="component://webroot/screen/includes/Header.html.ftl"/>!
    <text type="xsl-fo" no-boundary-comment="true"!
        location="component://webroot/screen/includes/Header.xsl-fo.ftl"/>!
  </render-mode>!!
  <subscreens-active/>!!
  <render-mode>!
    <text type="html" !
        location="component://webroot/screen/includes/Footer.html.ftl"/>!
    <text type="xsl-fo"><![CDATA[!
        ${sri.getAfterScreenWriterText()}!
        </fo:flow></fo:page-sequence></fo:root>!
    ]]></text>!
  </render-mode>!
</widgets>!

  ���                                                                                                                                                            120



This is an example of a screen with subscreens so it has render-mode elements before and 
after the subscreens-active element to decorate (or wrap) what comes from the 
subscreens. This shows text elements with a location to include a FTL template and inline 
text in a CDATA block right under the text element."

Sending and Receiving Email 

The first step to sending and receiving email is to setup an EmailServer with something like 
this record loaded:"
<moqui.basic.email.EmailServer emailServerId="SYSTEM" !
    smtpHost="mail.test.com" smtpPort="25" smtpStartTls="N" smtpSsl="N" !
    storeHost="mail.test.com" storePort="143" storeProtocol="imap" !
    storeDelete="N" mailUsername="TestUser" mailPassword="TestPassword"/>!

Note that these are all example values and should be changed to real values, especially for 
the smtpHost, storeHost, mailUsername and mailPassword fields. The store* fields are 
for the remote mail store for incoming email. Here are some other common values for the 
port fields:"

• smtpPort: 25 (SMTP), 465 (SSMTP), 587 (SSMTP)"
• storePort for storeProtocol=imap: 143 (IMAP), 585 (IMAP4-SSL), 993 (IMAPS)"
• storePort for storeProtocol=pop3: 110 (POP3), 995 (SSL-POP)"

If you need to work with multiple email servers, just add EmailServer records with the 
settings for each. When sending an email using an email template the EmailServer to use is 
specified on the EmailTemplate record with the emailServerId field."

Speaking of EmailTemplate, the next step for sending an email is to create one. Here is an 
example from HiveMind PM for sending a task update notification email:"
<moqui.basic.email.EmailTemplate emailTemplateId="HM_TASK_UPDATE" !
    description="HiveMind Task Update Notification"!
    emailServerId="SYSTEM" webappName="webroot"!
    bodyScreenLocation="component://HiveMind/screen/TaskUpdateNotification.xml"!
    fromAddress="test@test.com" ccAddresses="" bccAddresses=""!
    subject="Task Updated: ${document._id} - ${document.WorkEffort.name}"/>!

The general idea is to define a screen that will be rendered for the body when the email is 
sent (bodyScreenLocation). The email body screen is a little bit different from normal UI 
screens because there is no Web Facade available when it is rendered as it is not part of a web 
request. The URL prefixes (domain name, port, etc) are generated based on webapp settings 
in the Moqui Conf XML file, which is why it is necessary to specify a webappName which is 
matched against the moqui-conf.webapp-list.webapp.name attribute."

The subject is also a simple template of sorts, it is a Groovy String that is expanded when 
the email is sent using the same context as rendering the body. The fromAddress field is 
required, and you can optionally specify ccAddresses and bccAddresses."

���   7. User Interface121                                                                



Attachments to an EmailTemplate can be added with the EmailTemplateAttachment entity. 
The filename to use on the email must be specified using the fileName field. The attachment 
itself comes from rendering a screen specified with the attachmentLocation field. The 
screenRenderMode field is passed to the ScreenRender to specify the type of output to get 
from the screen. It is also used to determine the MIME/content type. If empty the content at 
attachmentLocation will be sent over without screen rendering and its MIME type will be 
based on its extension. This can be used to generate XSL:FO that is transformed to a PDF and 
attached to the email with by setting screenRenderMode to xsl-fo."

Once the EmailServer and EmailTemplate are defined you can send email using the 
org.moqui.impl.EmailServices.send#EmailTemplate service. When calling this service 
pass in the emailTemplateId parameter to identify the EmailTemplate. As mentioned 
above the EmailServer will be determined based on the EmailTemplate.emailServerId 
field."

The email addresses to send the message to are passed in the toAddresses parameter which 
is a plain String and can have multiple comma-separated addresses. The parameters used 
to render the email screen are separate from the context of the service and are passed to it in 
the bodyParameters input parameter. By default the send#EmailTemplate service saves 
details about the outgoing message in a record of the EmailMessage entity. To disable this 
pass in false in the createEmailMessage parameter. The output parameters are messageId 
which is the value put in the Message-ID email header field, and emailMessageId if a 
EmailMessage record is created."

The EmailMessage entity is used for both outgoing and incoming email messages. For 
outgoing messages sent using the send#EmailTemplate service the status (statusId) starts 
out as Sent (actually sets it to Ready, sends the email, then sets it to Sent) and may be 
changed to Viewed if there is open message tracking based on an image request (usually 
with the emailMessageId as a parameter or path element). If the message is returned 
undeliverable the status may be changed to Bounced."

An EmailMessage may also be sent manually instead of from a template and in that case the 
status would start out as Draft. Once the user is done with the message they would change 
the status to Ready, and then when it is actually sent the status would change to Sent. 
Incoming messages start in the Received status and can be changed to the Viewed status 
after they are initially opened."

For email threads the EmailMessage entity has rootEmailMessageId for the original 
messages that all messages in the thread are grouped under, and parentEmailMessageId for 
the message the current message was an immediate reply to."

Receiving email follows a very different path. The 
org.moqui.impl.EmailServices.poll#EmailServer service polls a IMAP or POP3 
mailbox based on the settings on the EmailServer entity. It takes a single input parameter, 
the emailServerId. Generally this will be run as a scheduled service."

  ���                                                                                                                                                            122



For each message found in the mailbox and not yet marked as seen this service calls the 
Email ECA (EMECA) rules for it. These are similar to the Entity and Service ECA rules but 
there is no special trigger, just the receiving of an email. The conditions can be used to only 
run the actions for a particular to address or tag in the subject like or any other criteria 
desired."

The context for the condition and actions will include a headers Map with all of the email 
headers in it (either String, or List of String if there are more than one of the header), and 
a fields Map with the following: toList, ccList, bccList, from, subject, sentDate, 
receivedDate, bodyPartList. The *List fields are List of String, and the *Date fields are 
java.util.Date objects. For a service that is called directly with this context setup you can 
implement the org.moqui.EmailServices.process#EmailEca interface."

The actions and services they call can do anything with the incoming email. To save the 
incoming message you can use the 
org.moqui.impl.EmailServices.save#EcaEmailMessage service."

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
���   7. User Interface123                                                                



!
!
!
!
!
!
!
!
!
!

404 - Page Not Found"
(not really, this page is intentionally blank for layout reasons; to make it less blank sponsor 

this book and see your ad here!)"

!

  ���                                                                                                                                                            124



!

8. System Interfaces 

Along with support for user interfaces, Moqui Framework supports various options for 
interfacing with other systems. There are standards-based options and ways to build more 
custom system interfaces."

Data and Logic Level Interfaces 

System interfaces can generally be divided into two main categories of supporting a step in a 
process and transferring data (often to keep data updated in another system). For most 
system integrations a process level one is more flexible and also more focused on a specific 
part of the system as opposed to transferring all data. Sometimes keeping data consistent 
between systems is the nature of the integration requirement or the only option available, 
and then a data level integration is the way to go. Moqui has tools for both logic/process and 
data level system interfaces."

The best way to trigger outgoing messages is through ECA (event-condition-action) rules, 
either Service ECA (SECA) rules for a logic level interface or Entity ECA (EECA) rules for a 
data level interface. See the Service ECA Rules and Entity ECA Rules sections for details on 
how to define these."

All ECA rules call actions, typically one or more service-call actions, and those actions 
will call out to whatever system interface is needed. This may be custom code or simply 
calling an already existing local or remote service. The following sections describe specific 
tools available in Moqui and with custom code you can implementation any interface and 
use any additional libraries needed."

XML, CSV and Plain Text Handling 

There are various ways to produce and consume XML, CSV, JSON, and other text data using 
Moqui Framework. "

Groovy has a good API for producing and consuming XML with:"

���   8. System Interfaces125                                                             



• groovy.util.Node: The Groovy class that represents a tree node with attributes and 
child nodes. For XML data each element is represented as a Node."

• groovy.util.XmlNodePrinter: Print XML text from a tree of Node objects."
• groovy.util.XmlParser: Read XML text into a tree of Node objects."
• groovy.util.XmlSlurper: Read XML text into a GPathResult object which can be 

used in Groovy with a syntax similar to XPath expressions to pull out specific parts of a 
XML element tree."

• groovy.xml.MarkupBuilder: Offers a Groovy DSL (domain-specific language) for 
writing code that has a structure similar to the structure of the XML output. Most useful 
for scripts that explicitly create and XML tree as opposed to building more dynamically."

There are many other XML libraries written in Java that be used with Moqui such as dom4j 
and JDOM. If you prefer these just include the JAR files in the Gradle build and code away."

For CSV files Moqui uses the Apache Commons CSV library, and just like with XML files 
other libraries can be used too. You can see how Moqui uses this in the 
org.moqui.impl.entity.EntityDataLoaderImpl.EntityCsvHandler class."

In Moqui Framework the main tool for repotting and exporting data is the XML Form, 
especially the list form. XML Screens and Forms can be rendered in various modes including 
XML, CSV, and plain text. To do this set the renderMode field in the context either in screen 
actions or for web requests with a request parameter. This is matched against the screen-
facade.screen-text-output.type attribute in the Moqui Conf XML file and can be set to 
any value defined there, including the default Moqui ones (csv, html, text, xml, xsl-fo) or 
any that you define in your runtime Moqui Conf XML file."

The XML Form is probably setup for pagination (this is the default). To get all results instead 
of pagination for an export (or any other reason) set the pageNoLimit field to true. In some 
cases you will not want to render any of the parent screens that normally decorate the final 
screen to render, especially for XML files. For CSV files other screen elements are generally 
ignored. This can be done by setting the lastStandalone field to true meaning that the last 
screen is rendered standalone and not within parent screens in the screen path. These can be 
set in screen actions of for web requests as a request parameter."

Just as with other XML Screen and XML Form output modes the FTL macro template used to 
produce output can be customized by include and override/add. With this approach you can 
get custom output for a particular screen (including subscreens, so for an entire app or app 
section, etc) or for everything running in Moqui."

For a detailed example of a screen and form that has CSV, XML, and XSL-FO (PDF) output 
options see the List Form View/Export Example section."

  ���                                                                                                                                                            126



Web Service 

XML-RPC and JSON-RPC 

Moqui has tools for providing and consuming XML-RPC and JSON-RPC services. Any 
Service Facade service can be exposed as a remote callable service by setting the 
service.allow-remote attribute to true."

The Web Facade has methods to receive these RPC calls: 
ec.web.handleXmlRpcServiceCall() and ec.web.handleJsonRpcServiceCall(). In the 
OOTB webroot component there is a rpc.xml screen that has xml and json transitions that 
call these methods. With the setup the URL paths for the remote service calls are /rpc/xml 
and /rpc/json."

Below is an example of a JSON-RPC service call, using curl as the client. It calls the 
org.moqui.example.ExampleServices.createExample service with name, type, and 
status parameters. It also passes in the username and password to use for authentication 
before running the service (following a pattern that can be used for any Service Facade 
service call)."

The id field is always something like 1. This JSON-RPC field is used for multi-message 
requests Each message in the request would have a different id value and that value is used 
in the id field in the response. To use this the JSON string would have an outer list 
containing the individual messages like the one in this example."
curl -X POST -H "Content-Type: application/json" \!
    --data '{"jsonrpc":"2.0", 
"method":"org.moqui.example.ExampleServices.createExample", "id":1, 
"params": { "authUsername":"john.doe", "authPassword":"moqui", 
"exampleName":"JSON-RPC Test 1", "exampleTypeEnumId":"EXT_MADE_UP", 
"statusId":"EXST_IN_DESIGN" } }' \!
    http://localhost:8080/rpc/json!

When you run this you will get a response like (the exampleId value will vary):"
{"jsonrpc":"2.0","id":1,"result":{"exampleId":"100050"}}!

The JSON-RPC implementation in Moqui follows the JSON-RPC 2.0 specification available 
at: http://www.jsonrpc.org/specification."

XML-RPC requests follow a similar pattern. Moqui uses Apache XML-RPC library (http://
ws.apache.org/xmlrpc/) which implements the XML-RPC specification available at: http://
xmlrpc.scripting.com/spec.html."

While you can write code call remote XML-RPC and JSON-RPC services by directly using a 
library (or custom JSON handling code like in RemoteJsonRpcServiceRunner.groovy), the 
easiest way to call remote services is to use a proxy service definition. To do this:"

• define a service"

���   8. System Interfaces127                                                             

http://www.jsonrpc.org/specification
http://ws.apache.org/xmlrpc/
http://xmlrpc.scripting.com/spec.html


• use remote-xml-rpc or remote-json-rpc for the service.type attribute"
• set service.location to the URL of the RPC server and path (such as http://

localhost:8080/rpc/json), or to a value matching a service location name in the 
Moqui Conf XML file (i.e. service-facade.service-location.name); there are two 
OOTB service locations for the purpose of calling remote services: main-xml and main-
json; these and additional desired one can be configured in the runtime Moqui Conf 
XML file and then used in your service locations to simplify configuration, especially 
when you have different URLs for test and production environments"

• set service.method to the name of the remote service to call; in JSON-RPC this maps 
to the method field; in XML-RPC this maps to the methodName element; when calling 
another Moqui server this is the name of the service that will be called"

• the service can have parameters to define that match the remote service definition, or 
can be setup to not validate input; you can also define parameters with defaults and 
specify types for type conversion which are done before the remote service is called"

When you call this service locally the Service Facade will call the remote service and return 
the results. In other words, you call a local service that is a configured proxy to the remote 
service."

Sending and Receiving Simple JSON 

Sometimes an API spec calls for a particular JSON structure or something other than the 
envelope structure of JSON-RPC. There are some feature in the Web Facade that make this 
easier."

When a HTTP request is received (really when the Web Facade is initialized) if the Content-
Type (MIME type) of the request is application/json it will parse the JSON string in the 
request body and if the outer element is a Map (in JSON an object) then the entries in that Map 
will be added to the web parameters (ec.web.parameters), and web parameters are 
automatically added to the context (ec.context) with a screen is rendered or a screen 
transition run. If the outer element is a List (in JSON an array) then it is put in a 
_requestBodyJsonList web parameter, and again from there available in the context. "

This makes it easy to get at the JSON data in a web request. It also resolves issues with 
getting the request body after the Web Facade automatically looks for multi-part content in 
the request body (which the Web Facade always does) because the Servlet container may not 
allow reading the request body again after this."

For a JSON response you can manually put together the response by setting various things 
on the HttpServletResponse and using the Groovy JsonBuilder to produce the JSON text. 
For convenience the ec.web.sendJsonResponse(Object responseObj) method does all of 
this for you."

  ���                                                                                                                                                            128



To go in the other direction, doing a request to a URL that accepts and responds with JSON, 
there are special tools because the Groovy and other utilities make this pretty simple. For 
example, this a variation on the actual code that remotely calls a JSON-RPC service:"
Map jsonRequestMap = [jsonrpc:"2.0", id:1, method:method, !
        params:parameters]!
JsonBuilder jb = new JsonBuilder()!
jb.call(jsonRequestMap)!
String jsonResponse = StupidWebUtilities.simpleHttpStringRequest(location, !
        jb.toString(), "application/json")!
Object jsonObj = new JsonSlurper().parseText(jsonResponse)!

This uses the JsonBuilder and JsonSlurper classes from Groovy and the 
StupidWebUtilities.simpleHttpStringRequest() method which internally uses the 
Apache HTTP Client library."

RESTful Interface 

A RESTful service uses a URL pattern and request method to identify a service instead of a 
method name like JSON-RPC and XML-RPC. The general idea is to have things like a record 
represented by URL with the type of record (like an entity or table) as a path element and the 
ID of the record as one or more path elements (often one for simplicity, i.e., a single field 
primary key). "

When interacting with this record as a web resource the HTTP request method specifies what 
to do with the record. This is much like the create, update, and delete service verbs for Moqui 
entity-auto services. The GET method generally does a record lookup. The POST method 
generally maps to creating a record. The PUT method generally maps to updating a record. 
The DELETE method does the obvious, a delete."

For examples, such as the one below, see the ExampleApp.xml file."

To support RESTful web services we need a way for transitions to be sensitive to the HTTP 
request method when running in a web-based application. This is handled in Moqui 
Framework using the transition.method attribute, like this:"
<transition name="ExampleEntity" method="put">!
    <path-parameter name="exampleId"/>!
    <service-call name="org.moqui.example.ExampleServices.updateExample" !
                in-map="ec.web.parameters" web-send-json-response="true"/>!
    <default-response type="none"/>!
</transition>!

To test this transition use a curl command something like this to update the exampleName 
field of the Example entity with an exampleId of 100010: "
curl -X PUT -H "Content-Type: application/json" \!
    -H "Authorization: Basic am9obi5kb2U6bW9xdWk=" \!
    --data '{ "exampleName":"REST Test - Rev 2" }' \!

���   8. System Interfaces129                                                             



    http://.../apps/example/ExampleEntity/100010!

There are some important things to note about this example that make it easier to create 
REST wrappers around internal Moqui services:"

• uses HTTP Basic authentication (john.doe/moqui), which Moqui automatically 
recognizes and uses for authentication"

• uses the automatic JSON body input mapping to parameters (the JSON string must have 
a Map root object)"

• the exampleId is passed as part of the path and treated as a normal parameter using the 
path-parameter element"

• uses the ec.web.parameters Map as the in-map to explicitly pass the web parameters to 
the service (could also use ec.context for the entire context which would also include 
the web parameters, but this way is more explicit and constrained)"

• sends a JSON response with the service-call.web-send-json-response convenience 
attribute and a type none response"

There are various other examples of handling RESTful service requests in the 
ExampleApp.xml file."

Enterprise Integration with Apache Camel 

Apache Camel (http://camel.apache.org) is a tool for routing and processing messages with 
tools for Enterprise Integration Patterns which are described here (and other pages on this 
site have much other good information about EIP): http://www.eaipatterns.com/toc.html "

Moqui Framework has a Message Endpoint for Camel (MoquiServiceEndpoint) that ties it 
to the Service Facade. This allows services (with type=camel) to send the service call as a 
message to Camel using the MoquiServiceConsumer. The endpoint also includes a message 
producer (MoquiServiceProducer) that is available in Camel routing strings as 
moquiservice."

Here are some example Camel services from the ExampleServices.xml file:"
<service verb="localCamelExample" type="camel" !
    location="moquiservice:org.moqui.example.ExampleServices.targetCamelExample">!
  <in-parameters><parameter name="testInput"/></in-parameters>!
  <out-parameters><parameter name="testOutput"/></out-parameters>!
</service>!
<service verb="targetCamelExample">!
  <in-parameters><parameter name="testInput"/></in-parameters>!
  <out-parameters><parameter name="testOutput"/></out-parameters>!
  <actions>!
    <set field="testOutput" value="Here's the input: ${testInput}"/>!
    <log level="warn" !
        message="targetCamelExample testOutput: ${result.testOutput}"/>!
  </actions>!
</service>!

  ���                                                                                                                                                            130

http://camel.apache.org
http://www.eaipatterns.com/toc.html


When you call the localCamelExample service it calls the targetCamelExample service 
through Apache Camel. This is a very simple example of using services with Camel. To get 
an idea of the many things you can do with Camel the components reference is a good place 
to start:"

http://camel.apache.org/components.html"

The general idea is you can:"

• get message data from a wide variety of sources (file polling, incoming HTTP request, 
JMS messages, and many more)"

• transform messages (supported formats include XML, CSV, JSON, EDI, etc)"
• run custom expressions (even in Groovy!)"
• split, merge, route, filter, enrich, or apply any of the other EIP tools"
• send message(s) to endpoint(s)"

Camel is a very flexible and feature rich tool so instead of trying to document and 
demonstrate more here I recommend these books:"

• Instant Apache Camel Message Routing by Bilgin Ibryam"
• http://www.packtpub.com/apache-camel-message-routing/book"
• This book is a quick introduction that will get you going quickly with lots of cool 

stuff you can do with Camel."
• Apache Camel Developer's Cookbook by Scott Cranton and Jakub Korab"

• http://www.packtpub.com/apache-camel-developers-cookbook/book"
• This book has hundreds of tips and examples for using Camel."

• Camel in Action by Claus Ibsen and Jonathan Anstey"
• http://manning.com/ibsen/"
• This is the classic book on Apache Camel. It covers general concepts, various internal 

details, how to apply the various EIPs, and a summary of many of the components. 
The web site for this book also has links to a bunch of useful online resources."

!
!
!
!
!
!
!
!
!
!
���   8. System Interfaces131                                                             

http://camel.apache.org/components.html
http://www.packtpub.com/apache-camel-message-routing/book
http://www.packtpub.com/apache-camel-developers-cookbook/book
http://manning.com/ibsen/


!
!
!
!
!
!
!
!
!
!

404 - Page Not Found"
(not really, this page is intentionally blank for layout reasons; to make it less blank sponsor 

this book and see your ad here!)"

!
!
!

  ���                                                                                                                                                            132



!

9. Security 

!
Authentication 

The main code path for user authentication starts with a call to the 
UserFacade.loginUser() method. This calls into Apache Shiro for the actual 
authentication. This is basically what the code looks like to authenticate using the Shiro 
SecurityManager that the ExecutionContextFactoryImpl keeps internally:"
UsernamePasswordToken token = new UsernamePasswordToken(username, password)!
Subject currentUser = eci.getEcfi().getSecurityManager()!
    .createSubject(new DefaultSubjectContext())!
currentUser.login(token)!

Shiro is configured by default to use the MoquiShiroRealm so this ends up in a call to the 
MoquiShiroRealm.getAuthenticationInfo() method, which authenticates using the 
moqui.security.UserAccount entity and handles things like disabled accounts, keeping 
track of failed login attempts, etc. Here are the lines from the shiro.ini file where this is 
configured:"
moquiRealm = org.moqui.impl.MoquiShiroRealm!
securityManager.realms = $moquiRealm!

Shiro can be configured to use other authentication realms such as the CasRealm, JdbcRealm, 
or JndiLdapRealm classes that come with Shiro. You can also implement your own, or even 
modify the MoquiShiroRealm class to better suit your needs. Shiro has documentation for 
writing your own realm, and each of these classes has documentation on configuration, such 
as this JavaDoc for JndiLdapRealm to use it with an LDAP server:"

http://shiro.apache.org/static/1.2.3/apidocs/org/apache/shiro/realm/ldap/
JndiLdapRealm.html"

Back to the MoquiShiroRealm that is used by default, here is its default configuration from 
the MoquiDefaultConf.xml file that can be overridden in your runtime Moqui Conf XML 
file:"

���   9. Security133                                                                    

http://shiro.apache.org/static/1.2.3/apidocs/org/apache/shiro/cas/CasRealm.html
http://shiro.apache.org/static/1.2.3/apidocs/org/apache/shiro/realm/jdbc/JdbcRealm.html
http://shiro.apache.org/static/1.2.3/apidocs/org/apache/shiro/realm/ldap/JndiLdapRealm.html
http://shiro.apache.org/static/1.2.3/apidocs/org/apache/shiro/realm/ldap/JndiLdapRealm.html
http://shiro.apache.org/static/1.2.3/apidocs/org/apache/shiro/realm/ldap/JndiLdapRealm.html


<user-facade>!
    <password encrypt-hash-type="SHA-256" min-length="6" min-digits="1" !
        min-others="1" history-limit="5" change-weeks="26" !
        email-require-change="true" email-expire-hours="48"/>!
    <login max-failures="3" disable-minutes="5" history-store="true" !
        history-incorrect-password="true"/>!
</user-facade>!

The login element configures the max number of login failures to allow before disabling a 
UserAccount (max-failures), how long to disable the account when the max failures is 
reached (disable-minutes), whether to store a history of login attempts in the 
UserLoginHistory entity (history-store) and whether to persist incorrect passwords in 
the history (history-incorrect-password)."

The password element is used to configure the password constraints that are checked when 
creating an account (org.moqui.impl.UserServices.create#UserAccount) or updating a 
password (org.moqui.impl.UserServices.update#Password)."

Settings include the hash algorithm to use for passwords before persisting them and before 
comparing an entered password (encrypt-hash-type; MD5, SHA, SHA-256, SHA-384, 
SHA512), the minimum password length (min-length), the minimum number of digit 
characters in the password (min-digits), the minimum number of characters other than 
digits or letters (min-others), how many old passwords to remember on password change 
to avoid use of the same password (history-limit), and how many weeks before forcing a 
password change (change-weeks)."

The main way to reset a forgotten password is by an email that includes a randomly 
generated password. The email-require-change attribute specifies whether to require a 
change on the first login with the password from the email, making it a temporary password. 
The email-expire-hours attribute specifies how many hours before the password in the 
email expires."

Simple Permissions 

The most basic for of authorization (authz) is a permission explicitly checked by code. 
Artifact-aware authz (covered in the next section) is generally more flexible as it is 
configured external to the artifact (screen, service, etc) and is inheritable to avoid issues when 
artifacts (especially services) are reused."

The API method to check permissions is the ec.user.hasPermission(String 
userPermissionId) method. A user has a permission if the user is a member 
(UserGroupMember) of a group (UserGroup) that has the permission 
(UserGroupPermission). The userPermissionId may point to a UserPermission record, 
but it may also be any arbitrary text value as the UserGroupPermission has no foreign key to 
UserPermission."

!
  ���                                                                                                                                                            134



Artifact-Aware Authorization 

The artifact-aware authorization in Moqui enables external configuration of access to artifacts 
such as screens, screen transitions, services, and even entities. With this approach there is no 
need to add code or configuration to each artifact to check permissions or otherwise see if the 
current user has access to the artifact."

Artifact Execution Stack and History 

The ArtifactExecutionFacade is used by all parts of the framework to keep track of each 
artifact as it executes. It keeps a stack of the currently executing artifacts, each one pushed on 
the stack as it begins (with one of the push() methods) and popped from the stack as it ends 
(with the pop() method). As each artifact is pushed on to the stack it is also added to a 
history of all artifacts used in the current ExecutionContext (i.e., for a single web request, 
remote service call, etc)."

Use the ArtifactExecutionInfo peek() method to get info about the artifact at the top of 
the stack, Deque<ArtifactExecutionInfo> getStack() to get the entire current stack, and 
List<ArtifactExecutionInfo> getHistory() to get a history of all artifacts executed."

This is important for artifact-aware authorization because authz records are inheritable. If an 
artifact authz is configured inheritable then not only is that artifact authorized but any 
artifact it uses is also authorized."

Imagine a system with hundreds of screens and transitions, thousands of services, and 
hundreds of entities. Configuring authorization for every one of them would require a 
massive effort to both setup initially and to maintain over time. It would also be very prone 
to error, both incorrectly allowing and denying access to artifacts and resulting in exposure 
of sensitive data or functionality, or runtime errors for users trying to perform critical 
operations that are a valid part of their job."

The solution is inheritable authorization. With this you can setup access to an entire 
application or part of an application with authz configuration for a single screen that all sub-
screens, transitions, services, and entities will inherit. To limit the scope sensitive services 
and entities can have a deny authz that overrides the inheritable authz, requiring special 
authorization to those artifacts. With this approach you have a combination of flexibility, 
simplicity, and granular control of sensitive resources."

This is also used to track performance metrics for each artifact. See the Artifact Execution 
Runtime Profiling section for details."

���   9. Security135                                                                    



Artifact Authz 

The first step to configure artifact authorization is to create a group of artifacts. This involves 
a ArtifactGroup record and a ArtifactGroupMember record for each artifact, or artifact 
name pattern, in the group."

For example here is the artifact group for the Example app with the root screen 
(ExampleApp.xml) as a member of the group:"
<moqui.security.ArtifactGroup artifactGroupId="EXAMPLE_APP" !
    description="Example App (via root screen)"/>!
<moqui.security.ArtifactGroupMember artifactGroupId="EXAMPLE_APP" !
    artifactTypeEnumId="AT_XML_SCREEN" inheritAuthz="Y" !
    artifactName="component://example/screen/ExampleApp.xml"/>!

In this case the artifactName attribute has the literal value for the location of the screen. It 
can also be a pattern for the artifact name (with nameIsPattern="Y"), which is especially 
useful for authz for all services or entities in a package. Here is an example of that for all 
services in the org.moqui.example package, or more specifically all services whose full 
name matches the regular expression "org\.moqui\.example\..*":"
<moqui.security.ArtifactGroupMember artifactGroupId="EXAMPLE_APP" !
    artifactName="org\.moqui\.example\..*" nameIsPattern="Y" !
    artifactTypeEnumId="AT_SERVICE" inheritAuthz="Y"/>!

The next step is to configure authorization for the artifact group with a ArtifactAuthz 
record. Below is an example of a record that gives the ADMIN group always (AUTHZT_ALWAYS) 
access for all actions (AUTHZA_ALL) to the artifacts in the EXAMPLE_APP artifact group setup 
above."
<moqui.security.ArtifactAuthz artifactAuthzId="EXAMPLE_AUTHZ_ALL" !
    userGroupId="ADMIN" artifactGroupId="EXAMPLE_APP"!
    authzTypeEnumId="AUTHZT_ALWAYS" authzActionEnumId="AUTHZA_ALL"/>!

The always type (authzTypeEnumId) of authorization overrides deny (AUTHZT_DENY) 
authorizations, unlike the allow authz (AUTHZT_ALLOW) which is overridden by deny. The 
other options for the authz action (authzActionEnumId) include view (AUTHZA_VIEW), create 
(AUTHZA_CREATE), update (AUTHZA_UPDATE), and delete (AUTHZA_DELETE) in addition to all 
(AUTHZA_ALL)."

For example here is a record that grants only view authz with the type allow (so can be 
denied) of the same artifact group to the EXAMPLE_VIEWER group:"
<moqui.security.ArtifactAuthz artifactAuthzId="EXAMPLE_AUTHZ_VW" !
    userGroupId="EXAMPLE_VIEWER" artifactGroupId="EXAMPLE_APP" !
    authzTypeEnumId="AUTHZT_ALLOW" authzActionEnumId="AUTHZA_VIEW"/>!

Entity artifact authorization can also be restricted to particular records using the 
ArtifactAuthzRecord entity. This is used with a view entity (viewEntityName) that joins 
between the userId of the currently logged in user and the desired record. If the name of the 

  ���                                                                                                                                                            136



field with the userId is anything other than userId specify its name with the userIdField 
field. The record level authz is checked by doing a query on the view entity with the current 
userId and the PK fields of the entity the operation is being done on. To add constraints to 
this query you can add them to the view-entity definition, use the filterByDate attribute, 
or use ArtifactAuthzRecordCond records to specify conditions."

If authorization fails when an artifact is used the framework creates a 
ArtifactAuthzFailure record with relevant details."

Artifact Tarpit 

An artifact tarpit limits the velocity of access to artifacts in a group. Here is an example of an 
artifact group for all screens and a ArtifactTarpit to restrict access for all users to each 
screen for 60 seconds (tarpitDuration) if there are more than 120 hits (maxHitsCount) 
within 60 seconds (maxHitsDuration)."
<moqui.security.ArtifactGroup artifactGroupId="ALL_SCREENS" !
    description="All Screens"/>!
<moqui.security.ArtifactGroupMember artifactGroupId="ALL_SCREENS" !
    artifactName=".*" nameIsPattern="Y"!
    artifactTypeEnumId="AT_XML_SCREEN"/>!
<moqui.security.ArtifactTarpit userGroupId="ALL_USERS" !
    artifactGroupId="ALL_SCREENS" maxHitsCount="120" !
    maxHitsDuration="60" tarpitDuration="60"/>!

When a particular user (userId) exceeds the configured velocity limit for a particular artifact 
(artifactName) or a particular type (artifactTypeEnumId) the framework creates a 
ArtifactTarpitLock record to restrict access to that artifact by the user until a certain date/
time (releaseDateTime)."

!
!
!
!
!
!
!
!
!
!
!
���   9. Security137                                                                    



!
!
!
!
!
!
!
!
!
!

404 - Page Not Found"
(not really, this page is intentionally blank for layout reasons; to make it less blank sponsor 

this book and see your ad here!)"

!
!
!

  ���                                                                                                                                                            138



!

10. Performance  

Performance Metrics 

Artifact Hit Statistics 

Moqui keeps statistics about use (hits) and timing for artifacts according to the configuration 
in the server-stats.artifact-stats elements in the Moqui Conf XML file. Here is the 
default configuration (in MoquiDefaultConf.xml) that you can override in the runtime conf 
file. The default development runtime conf file (MoquiDevConf.xml) has settings that record 
even more than this."
<server-stats bin-length-seconds="900" visit-enabled="true" !
    visitor-enabled="true">!
  <artifact-stats type="screen" persist-bin="true" persist-hit="true"/>!
  <artifact-stats type="screen-content" persist-bin="true" !
      persist-hit="true"/>!
  <artifact-stats type="transition" persist-bin="true" persist-hit="true"/>!
  <artifact-stats type="service" persist-bin="true" persist-hit="false"/>!
  <artifact-stats type="entity" persist-bin="false"/>!
</server-stats>!

These settings create a ArtifactHit record for each hit to a screen, screen-content 
(content under a screen), and screen transition. They also create ArtifactHitBin records 
for those plus service calls."

Here are a couple of examples of ArtifactHit records, the first for a hit to the 
FindExample.xml screen and the second for a hit to the EntityExport.xml transition in the 
DataExport.xml screen in the tools application. The hit to the EntityExport.xml transition 
has parameters which are recorded in the parameterString attribute."
<moqui.server.ArtifactHit hitId="100030" visitId="100000" !
    userId="EX_JOHN_DOE" artifactType="screen" artifactSubType="text/html" !
    artifactName="component://example/screen/ExampleApp/Example/FindExample.xml" !
    startDateTime="1406670788608" runningTimeMillis="1,499" wasError="N" !
    requestUrl="http://localhost:8080/apps/example/Example/FindExample" !
    serverIpAddress="172.16.7.38" serverHostName="DEJCMBA3.local" !
    lastUpdatedStamp="1406670790120"/>!

���   10. Performance139                                                                



<moqui.server.ArtifactHit hitId="100037" visitId="100001" !
    userId="EX_JOHN_DOE" artifactType="transition" !
    artifactName="component://tools/screen/Tools/Entity/!
        DataExport.xml#EntityExport.xml" !
    parameterString="moquiFormName=ExportData,output=file,filterMap= !
        [artifactType:"screen"],entityNames=moqui.server.ArtifactHit" !
    startDateTime="1406674728129" runningTimeMillis="45" wasError="N" !
    requestUrl="http://localhost:8080/apps/tools/Entity/DataExport/!
        EntityExport.xml" !
    serverIpAddress="172.16.7.38" serverHostName="DEJCMBA3.local" !
    lastUpdatedStamp="1406674728195"/>!

In a web application there is a Visit record for each session that has details about the session 
and ties together ArtifactHit records by the visitId. The Visit will keep track of the 
logged in userId once a user is logged in, but even before that visits are tied together using a 
visitorId that is tracked on the service in a Visitor record and in a browser/client with a 
cookie to tie sessions together, even if no user is logged in during a session."
<moqui.server.Visit visitId="100000" visitorId="100000" !
    userId="EX_JOHN_DOE" sessionId="749389362bac39c39de3c77769b9b485" !
    serverIpAddress="172.16.7.38" serverHostName="DEJCMBA3.local" !
    webappName="ROOT" initialLocale="en_US" !
    initialRequest="http://localhost:8080/" initialUserAgent="Mozilla/5.0 !
        (Macintosh; Intel Mac OS X 10_9_4) AppleWebKit/537.77.4 (KHTML, !
        like Gecko) Version/7.0.5 Safari/537.77.4" !
    clientIpAddress="0:0:0:0:0:0:0:1" clientHostName="0:0:0:0:0:0:0:1" !
    fromDate="1406670784083" lastUpdatedStamp="1406670784396"/>!
<moqui.server.Visitor visitorId="100000" createdDate="1406670784353" !
    lastUpdatedStamp="1406670784363"/>!

There is a performance impact for creating a record for each hit on an artifact, and on busy 
servers the database size can get very large. This can be mitigated by using a low-latency 
insert database such as OrientDB or other NoSQL databases. If you just want statistics of 
performance over a time period and don’t need the individual hit records for auditing or 
detailed analysis the ArtifactHitBin records will do the trick."

These records have a summary of hits for an artifact during a time period, between 
binStartDateTime and binEndDateTime. The length of the bin is configured with the 
server-stats.bin-length-seconds attribute and defaults to 900 seconds (15 minutes)."

Here is an example of a hit bin for the create#moqui.entity.EntityAuditLog service. In 
this example it has been hit/used 77 times with a total (cumulative) run time of 252ms which 
means the average run time for the artifact in the bin is 3.27ms."
<moqui.server.ArtifactHitBin hitBinId="100010" artifactType="service" !
    artifactSubType="entity-implicit" !
    artifactName="create#moqui.entity.EntityAuditLog" !
    serverIpAddress="172.16.7.38" serverHostName="DEJCMBA3.local" !
    binStartDateTime="1406268616369" binEndDateTime="1406268636249" !
    hitCount="77" totalTimeMillis="252" minTimeMillis="1" !

  ���                                                                                                                                                            140



    maxTimeMillis="61" lastUpdatedStamp="1406268636290"/>!

These can be used directly from the database and with the Artifact Bins and Artifact 
Summary screens in the Tools application."

Artifact Execution Runtime Profiling 

Java profilers such as JProfiler are great tools for analyzing the performance of Java methods 
but know nothing about Moqui artifacts such as screens, transitions, services, and entities. 
The Moqui Artifact Execution Facade keeps track of performance details of artifacts in 
memory for each instance (each ExecutionContext, such as a web request, etc) as they run."

This data is kept in with the ArtifactExecutionInfo objects that are created as each artifact 
runs and are pushed onto the execution stack and kept in the execution history. You can 
access these using the ec.artifactExecution.getStack(), and 
ec.artifactExecution.getHistory() methods."

From the ArtifactExecutionInfo instance you can get its own runtime (long 
getRunningTime()), the artifact that called it (ArtifactExecutionInfo getParent()), the 
artifacts it calls (List<ArtifactExecutionInfo> getChildList()), the running time of all 
artifacts called by this artifact (long getChildrenRunningTime()), and based on that the 
running time of just this artifact (long getThisRunningTime(), which is 
getRunningTime() - getChildrenRunningTime()). You can also print a report with these 
stats for the current artifact info and optionally its children recursively using the 
print(Writer writer, int level, boolean children) method."

For a complex code section like placing an order that does dozens of service calls this can be 
a lot of data. To make it easier to track down the parts that are taking the most time have this 
method on the ArtifactExecutionInfoImpl class to generate a list of hot spots:"
static List<Map> hotSpotByTime(List<ArtifactExecutionInfoImpl> aeiiList, !
    boolean ownTime, String orderBy)!

This goes through all ArtifactExecutionInfoImpl instances in the execution history and sums 
up stats to create a Map for each artifact with the following entries: time, timeMin, timeMax, 
count, name, actionDetail, artifact type, and artifact action."

Another situation where you’ll have a LOT of data is when running a process many times to 
get better average statistics. In this case you could have hundreds or thousands of artifact 
execution infos in the history. To consolidate data from multiple runs into a single tree of info 
about the execution of each artifact and its children use this method:"
List<Map> consolidateArtifactInfo(List<ArtifactExecutionInfoImpl> aeiiList)!

Each Map has these entries: time, thisTime, childrenTime, count, name, actionDetail, 
childInfoList, key (which is: name + ":" + typeEnumId + ":" + actionEnumId + ":" + 
actionDetail), type, and action. With that result you can print the tree with indentation in 
plain text (best displayed with a fixed width font) with this method:"

���   10. Performance141                                                                



String printArtifactInfoList(List<Map> infoList)!

One example of using these methods is the TestOrders.xml screen in the POP Commerce 
application. It is used with a URL like this and display a screen with the performance profile 
results of the code that places and ships the specified number of orders:"
http://localhost:8080/popc/TestOrders?numOrders=10!

Here is a snippet from the screen actions script that runs the test code and gets the 
performance statistics using the methods described above:"
def artifactHistory = ec.artifactExecution.history!
ownHotSpotList = ArtifactExecutionInfoImpl.hotSpotByTime(artifactHistory, !
        true, "-time")!
totalHotSpotList = ArtifactExecutionInfoImpl.hotSpotByTime(artifactHistory, !
        false, "-time")!!
List<Map> consolidatedList = !
    ArtifactExecutionInfoImpl.consolidateArtifactInfo(artifactHistory)!
String printedArtifactInfo = !
    ArtifactExecutionInfoImpl.printArtifactInfoList(consolidatedList)!

Here is an example of the top few rows in the Artifacts by Own Time section of the output 
on that screen for the placing and shipping of 25 orders:"

From these results we can see that the most time is spent doing an Entity View (find) list 
operation on the OrderItem entity. In this run the transaction cache for the place#Order and 
ship#OrderPart services was disabled, and the OrderItem entity is not cached using the 
entity cache so it is doing that query 801 times during this run. The transaction cache is a 
write-through cache that will cache written records and reads like this. With that enabled 
overall the orders per second goes from around 0.8 to 1.4 (on my laptop with a Derby 
database) and the output for Artifacts by Own Time looks very different:"

Time Time!
Min

Time 
Avg

Time 
Max

Count Name Type Action Action 
Detail

1838 0 2.29 25 801 mantle.order.OrderItem Entity View list

1093 0 1.32 26 825 mantle.ledger.account.!
GlAccountOrgTimePeriod Entity Update

1025 0 1.08 10 950 moqui.entity.EntityAuditLog Entity Create

844 7 11.25 33 75 mantle.product.PriceServices.!
get#ProductPrice Service All

686 0 3.43 12 200 mantle.order.OrderPart Entity Update

Time Time!
Min

Time!
Avg

Time!
Max

Count Name Type Action Action 
Detail

3449 72 137.96 222 25
mantle.shipment.!
ShipmentServices.!
ship#OrderPart

Service All

1284 0 1.60 10 801 mantle.order.OrderItem Entity View list

  ���                                                                                                                                                            142



Below is some sample output from the Consolidated Artifacts Tree section. It shows the 
hierarchy of artifacts consolidated across runs and within each run to show the data for each 
artifact in the context of parent and child artifacts. When interpreting these results note that 
the total counts and times for each artifact are not just the values for that artifact running as a 
child of the parent artifact shown, but all runs of that artifact. The main value is tracking 
down where the busiest artifacts are used, and understanding exactly what is actually done 
at runtime, especially for specific services."

In this output each line is formatted as follows:"
[${time}:${thisTime}:${childrenTime}][${count}] ${type} ${action} ${actionDetail} ${name}!

Here is the sample output, note that certain artifact names have been shortened with ellipses 
for better formatting:"
[   16:  3: 13][  2] Screen   View         component://webroot/screen/webroot.xml!
| [   13:-41: 54][  3] Screen   View         component://PopCommerce/…/PopCommerceRoot.xml!
| | [  165:165:  0][126] Entity   View   one   mantle.product.store.ProductStore!
| | [    0:-31263:31263][  3] Screen   View         component://PopCommerce/…/TestOrders.xml!
| | | [    3:  3:  0][  3] Entity   View   one   moqui.security.UserAccount!
| | | [    5:  5:  0][  1] Entity   View    one   moqui.server.Visit!
| | | [    6:  1:  5][  1] Service  Create       create#moqui.security.UserLoginHistory!
| | | | [    5:  5:  0][  1] Entity   Create       moqui.security.UserLoginHistory!
| | | [ 4700:269:4431][ 75] Service  All          …OrderServices.add#OrderProductQuantity!
| | | | [  632:632:  0][300] Entity   View   list  mantle.order.OrderPart!
| | | | [  497:497:  0][375] Entity   View   one   mantle.order.OrderPart!
| | | | [  165:165:  0][126] Entity   View   one   mantle.product.store.ProductStore!
| | | | [  195:195:  0][ 25] Entity   View   list  mantle.order.OrderHeaderAndPart!
| | | | [  328: 21:307][ 25] Service  Create       mantle.order.OrderServices.create#Order!
| | | | | [  146: 12:134][ 25] Service  Create       create#mantle.order.OrderHeader!
| | | | | | [  134: 97: 37][ 25] Entity   Create       mantle.order.OrderHeader!
| | | | | | | [ 1564:406:1158][950] Service  Create       create#moqui.entity.EntityAuditLog!
| | | | | | | | [   83: 83:  0][ 30] Entity   View   one   moqui.entity.SequenceValueItem!
| | | | | | | | [   90: 90:  0][ 30] Entity   Update       moqui.entity.SequenceValueItem!
| | | | | | | | [ 1025:1025:  0][950] Entity   Create       moqui.entity.EntityAuditLog!
| | | | | [  161: 11:150][ 25] Service  Create       create#mantle.order.OrderPart!
| | | | | | [  632:632:  0][300] Entity   View   list  mantle.order.OrderPart!
| | | | | | [  134: 99: 35][ 25] Entity   Create       mantle.order.OrderPart!
| | | | | | | [ 1564:406:1158][950] Service  Create       create#moqui.entity.EntityAuditLog!
| | | | | | | | [   83: 83:  0][ 30] Entity   View   one   moqui.entity.SequenceValueItem!
| | | | | | | | [   90: 90:  0][ 30] Entity   Update       moqui.entity.SequenceValueItem!
| | | | | | | | [ 1025:1025:  0][950] Entity   Create       moqui.entity.EntityAuditLog!
| | | | [ 1838:1838:  0][801] Entity   View   list  mantle.order.OrderItem!
| | | | [  882:844: 38][ 75] Service  All          …PriceServices.get#ProductPrice!
| | | | | [   38: 38:  0][150] Entity   View   list  mantle.product.ProductPrice!
| | | | [ 2324: 83:2241][ 75] Service  Create       …OrderServices.create#OrderItem!
| | | | | [  430:430:  0][575] Entity   View   one   mantle.product.Product!
| | | | | [ 2747: 64:2683][100] Service  Create       create#mantle.order.OrderItem!

679 6 9.05 14 75 mantle.product.PriceServices.!
get#ProductPrice Service All

614 14 24.56 51 25 mantle.order.OrderServices.!
place#Order Service All

561 0 0.68 5 825 mantle.ledger.account.!
GlAccountOrgTimePeriod Entity View one

Time Time!
Min

Time!
Avg

Time!
Max

Count Name Type Action Action 
Detail

���   10. Performance143                                                                



| | | | | | [ 1838:1838:  0][801] Entity   View   list  mantle.order.OrderItem!
| | | | | | [ 2482:384:2098][100] Entity   Create       mantle.order.OrderItem!
| | | | | | | [ 1564:406:1158][950] Service  Create       create#moqui.entity.EntityAuditLog!
| | | | | | | | [   83: 83:  0][ 30] Entity   View   one   moqui.entity.SequenceValueItem!
| | | | | | | | [   90: 90:  0][ 30] Entity   Update       moqui.entity.SequenceValueItem!
| | | | | | | | [ 1025:1025:  0][950] Entity   Create       moqui.entity.EntityAuditLog!
| | | | | | | [ 1784: 89:1695][100] Service  Update       …OrderServices.update#OrderPartTotal!
| | | | | | | | [ 1838:1838:  0][801] Entity   View   list  mantle.order.OrderItem!
| | | | | | | | [  322:127:195][250] Service  All          …OrderServices.get#OrderItemTotal!
| | | | | | | | | [ 1838:1838:  0][801] Entity   View   list  mantle.order.OrderItem!
| | | | | | | | [  497:497:  0][375] Entity   View   one   mantle.order.OrderPart!
| | | | | | | | [ 1204:686:518][200] Entity   Update       mantle.order.OrderPart!
| | | | | | | | | [  224:224:  0][200] Entity   View   refresh mantle.order.OrderPart!
| | | | | | | | | [ 1564:406:1158][950] Service  Create       create#…EntityAuditLog!
| | | | | | | | | | [   83: 83:  0][ 30] Entity   View   one   moqui.entity.SequenceValueItem!
| | | | | | | | | | [   90: 90:  0][ 30] Entity   Update       moqui.entity.SequenceValueItem!
| | | | | | | | | | [ 1025:1025:  0][950] Entity   Create       moqui.entity.EntityAuditLog!
| | | | | | | | [  629: 56:573][100] Service  Update       …update#OrderHeaderTotal!
| | | | | | | | | [  632:632:  0][300] Entity   View   list  mantle.order.OrderPart!
| | | | | | | | | [  349:349:  0][450] Entity   View   one   mantle.order.OrderHeader!
| | | | | | | | | [  884:592:292][175] Entity   Update       mantle.order.OrderHeader!
| | | | | | | | | | [  181:181:  0][175] Entity   View   refresh mantle.order.OrderHeader!
| | | | | | | | | | [ 1564:406:1158][950] Service  Create       create#…EntityAuditLog!
| | | | | | | | | | | [   83: 83:  0][ 30] Entity   View   one   …SequenceValueItem!
| | | | | | | | | | | [   90: 90:  0][ 30] Entity   Update       …SequenceValueItem!
| | | | | | | | | | | [ 1025:1025:  0][950] Entity   Create       moqui.entity.EntityAuditLog!

!
Improving Performance 

Once an artifact or code block has been identified a taking up a lot of execution time the next 
step is to review it and see if any part of it can be improved. Sometimes operations just take 
time and there isn’t much to be done about it. Even in those cases parts can be made 
asynchronous or other approaches used to at least minimize the impact on users or system 
resources."

The slowest operations typically involve database or file access and in-memory caching can 
help a lot with this. The Moqui Cache Facade is used by various parts of the framework and 
can be used directly by your code for caching as needed. By default Moqui uses ehcache for 
the actual caching, and the configuration settings in the Moqui Conf XML file are passed 
through to it. Other cache configuration is ehcache specific and can be setup using its files 
(mainly ehcache.xml). This is especially true for setting up things like a distributed caching 
in an app server cluster."

In the runtime configuration for development (MoquiDevConf.xml) the caches for artifacts 
such as entities, service definitions, XML Screens, scripts, and templates have a short timeout 
so that they are reloaded frequently for testing after changing a file. In the production 
configuration (MoquiProductionConf.xml) the caches are all used fully to get the best 
performance. When doing performance testing make sure you are running with the caches 

  ���                                                                                                                                                            144



fully used, i.e. with production settings, so that numbers are not biased by things that are 
quite slow and won’t happen in production."

The Resources Facade does a lot of caching. The getLocationText(String location, 
boolean cache) method uses the resource.text.location cache is the cache parameter is 
set to true. Other caches are always used including scripts and templates in their compiled 
form (if possible with the script interpreter or template renderer), and even the Groovy 
expressions and string expansions done by the Resource Facade. As mentioned above these 
are never "disabled" but to facilitate runtime reloading the easiest approach is to use a 
timeout on the desired caches."

Another common cache is the entity cache managed by the Entity Facade. There are caches 
for individual records, list results, and count results. These caches are cleared automatically 
when records are created, updated, or deleted through the Entity Facade. Both simple entities 
that correspond to a single table and view entities can be cached, and the automatic cache 
clearing works for both. To make cache clearing more efficient it uses a reverse association 
cache by default to lookup cache entries by the entity name and PK values of a record. In 
other cases (such as when creating a record) it must do a scan of the conditions on cache 
entries to find matching entries to clear, especially on list and count caches. For more details 
see the Data and Resources chapter."

In addition to the entity read cache there is a write-through per-transaction cache that can be 
enabled with the service.transaction attribute by setting it to cache or force-cache. 
The implementation of this is in the TransactionCache.groovy file. "

The basic idea is that when creating, updating, or deleting a record it just remembers that in 
an object that is associated with the transaction instead of actually writing it to the database. 
When the transaction is committed, but before the actual commit, it writes the changes to the 
database. When find operations are done it uses the values in cache directly or augments the 
query results from the database with values in the cache. "

It is even smart enough to know when finding with a constraint that could only match values 
in the TX cache (created through it) that there is no need to go to the database at all and the 
query is handled fully in memory. For example if you create a OrderHeader record and then 
various OrderItem records and then query all OrderItem records by orderId it will see if 
the OrderHeader record was created through the transaction cache and if so it will just get 
the OrderItem records from the TX cache and not query the database at all for them."

For entity find operations another valuable tool is the auto-minimize of view entities. When 
you do a find on a large view-entity, such as the FindPartyView entity, just make sure to 
specify the fields to select and limit those to only the fields you need. The Entity Facade will 
automatically look at the fields selected, used in conditions, and used to order/sort the 
results and only include the aliased fields and member entities necessary for those fields. 
With this approach there is no need to use a dynamic view entity (EntityDynamicView) to 
conditionally add member entities and aliased fields. Back to the FindPartyView example, 

���   10. Performance145                                                                



the find#Party service (implemented in findParty.groovy) uses this to provide a large 
number of options with very minimal code."

A general guideline when querying tables with a very large number of records is to not ask 
the database to do more than is absolutely necessary. Joining in too many member entities in 
a view entity is a dramatic form of this as creating large temporary tables is a very expensive 
operation. "

Along these lines another common scenario is doing a find that may return a very large 
number of results and then showing those results one page (like 20 records) at a time. It is 
best to not select all the data you’ll display for each record in the main query as this makes 
the temporary table for joins much larger, and you are asking the database to get that data for 
all records instead of just the 20 or so you will be displaying. A better approach is to just 
query the field or fields sufficient to identify the records, then query the data to display for 
just those keys in a separate find. This is usually much faster, but in some rare cases it is not 
so it is still good to test these and other query variations with real data to see which performs 
best for your specific scenario."

In high volume production ecommerce and ERP systems another common problem is 
synchronization and locking delays. These can happen within the app server with Java 
synchronization, or in a database with locks and lock waiting. You may also find deadlocks, 
but that is another issue (i.e., separate from performance). The only way to really find these is 
with load testing, especially load testing that uses the same resources as much as possible 
like a bunch of orders for the same product as close to the same time as possible."

There are a few ways to improve these. On the Java synchronization level using non-blocking 
algorithms and data structures can make a huge difference, and many libraries are moving 
this way. Java Concurrency in Practice by Brian Goetz is a good book on this topic."

Beyond these basic things to keep in mind there are countless ways to improve performance. 
For really important code, especially highly used or generally performance sensitive 
functionality, within reasonable constraints the only limit to how much faster it can run is 
often a matter of how much time and effort can be put into performance testing and 
optimization. "

Sometimes this involves significant creativity and using very different architectures and tools 
to handle things like a large number of users, a very large amount of data, data scattered in 
many places, and so on. For some of these issues distributed processing or data storage tools 
such as Hadoop and OrientDB (and really countless others these days)  may be just what you 
need, even if using them requires significantly more effort and it only makes sense to do so 
for very specific functionality."

When doing Java profiling with a tool like JProfiler you are usually looking for different sorts 
of things that impact performance than when looking at Moqui artifact execution 
performance data. To optimize Java methods (and classes for memory use) there are different 
tools and guidelines to use than the ones above which are more for optimizing business logic 
at a higher level.  
  ���                                                                                                                                                            146



!

11. The Tools Application 

The Tools application is part of the default Moqui runtime and lives in the component at 
moqui/runtime/component/tools. It has screens for technical administration of systems 
built on Moqui Framework such as viewing and editing data, running services, managing 
jobs, managing caches, and viewing statistics about server use."

Auto Screen 

Auto screens are based on entity definitions and use the default forms generated by a XML 
Form with auto form fields based on the fields for a given entity. There are screens to find 
and create values, edit exiting values, and view related values for an entity."

Entity List 

The main entity list for auto screens has a drop-down at the top with all entities plus a list of 
the master entities to select from. Master entities are entities with dependents and are the 
most useful to find and view with a tab set for their dependent and related entities, though 
any entity can be used with the auto screens. Select an entity to go to its find page."

���   11. The Tools Application147                                                         



Find Entity 

The find screen has a paginated list of records for the selected entity with Edit and Delete 
buttons for each, the Edit button going to the Edit Entity screen. The table has auto generated 
view fields based on the entity fields in a form-list. The Entity List button goes back to the 
list of master and all entities. The Find button pops a form with filter inputs for each entity 
field, and the New Value button pops up a form to create a new record."

Here is the Find form for the Geo entity that pops up."

  ���                                                                                                                                                            148



Here is the New Value form that pops up for the Geo entity."

Edit Entity 

The edit entity screen has tabs for the current entity and all related entities. It has an auto-
generated edit form (form-single) based on the entity definition, including drop-downs for 
fields that are foreign keys to other records. There is also a simple form at the bottom to 
export the record and its dependent records to a file (like the Entity Export screen). Here is an 
example for the USA Geo record:"

���   11. The Tools Application149                                                         



Edit Related 

When you click on a tab for a related entity from the edit screen you get a list of the related 
records with Edit and Delete links for each just like the Entity Find screen. It is a form-list 
with fields auto generated from the entity fields. You also get Entity List, Find, and New 
value buttons like the find screen. This example shows the Postal Address records with the 
same Geo (USA) set as the Country."

Data Document 

Entity data documents are covered in the Data Document section of the Data and Resources 
chapter. These screens in the Tools application allow you to search documents, index 
documents for defined data feeds, and export data documents as JSON files."

Search 

Use the search screen to find data documents in an index, such as the hivemind index in this 
example. The links are based on the DataDocumentLink record to go a screen associated with 
a document in the corresponding application. The View Document button pops up a window 
with the full document in JSON text and a print of the flattened map for the document."

!
!
!
  ���                                                                                                                                                            150



Index 

With the data document index screen you can select a Data Feed and optionally specify from 
and thru timestamps to limit the documents by the lastUpdateStamp field automatically 
added by the entity facade, and then index all data documents associated with the feed."

Export 

Use this screen to export data documents from the specified IDs and within the from/thru 
lastUpdateStamp range to a single file, directory of doc files, or out to the browser."

���   11. The Tools Application151                                                         



Data View 

The data view screens are used to define a simple view entity stored in the database (using 
the DbViewEntity and related entities) and then view the results and export them as a CSV 
file. These screens are a simple form of ad-hoc report and data export that leverage the 
concept of master and dependent entities and allow for easy aliasing of fields on a master 
entity and all directly related dependents with an optional function. More elaborate DB view 
entities can be defined and viewed/exported from these screens, but the Edit DB View screen 
only supports a master entity and the entities directly related to it."

Find DB View 

The find screen has a form at the top to create a DbViewEntity and then table with all 
existing DB view entities and links to Edit or View them."

Edit DB View 

The screen to edit a DB view entity has a form at the top to change the package the entity is 
in. Note that view entities defined in DbViewEntity can be used in the Entity Facade just like 
any other entity or view entity. "

Next on the screen is a form to set the master entity, or the main entity in the view that all 
other entities will be related to. Once this is set the list form below shows all of the fields on 
that entity and directly related entities. In this screenshot below the master entity is the 
Example entity and the fields shown are for it and the ExampleType Enumeration, and 
Example StatusItem. The screen is cut off partway down and if you view the full screen 
you’ll also see fields further down for the ExampleContent, ExampleFeatureAppl, and 
ExampleItem entities (which all have a cardinality of many)."

The fields selected to include in the view are the Enumeration.description and 
StatusItem.description fields, the exampleId and exampleName from the Example entity 
(the master entity), and further off screen the ExampleItem.exampleItemSeqId field is 
selected with a count function to get a count of items on the example."

!
  ���                                                                                                                                                            152



View DB View 

This screen displays the results of querying the defined DB view entity, paginated if needed, 
and with a Filter button that pops up a form with filter options for the fields on the view 
entity (using the default auto fields in a form-single). There is a link to go back to the Edit 
DB View screen, and a link to get the results in a CSV file."

Here is a sample of the CSV export from the same ExampleDbView results as the screenshot:"
Description,Description2,Example ID,Example Item Seq ID,Example Name!
Contrived,Complete,100100,5,Manual Test Example!
Made Up,In Design,100000,0,Test Example Name 3!
Made Up,In Design,TEST2,2,Test Example Name 2!

���   11. The Tools Application153                                                         



Entity Tools 

Data Edit 

The data edit screens are 
somewhat similar to the 
Auto Screens, but 
without the tab sets and 
instead on the entity edit 
screen a list of related 
entities with a link to 
find records related to 
the current record, as 
you can see here. These 
screens still have their 
uses but are mostly 
superseded by the Auto 
Screens."

Data Export 

This screen is used to export entity data in one or more entity XML files, or out to the 
browser. Select one or more entity names, from/thru dates to filter by the 
lastUpdatedStamp, the output path or filename (leave empty for Out to Browser), an 
optional Map in Groovy syntax to filter by (filter fields only applied to entities with matching 
field names, otherwise ignored), and optional comma-separated order by field names (also 
only applies to entities with matching field names)."

  ���                                                                                                                                                            154



Data Import 

Use this screen to import data from entity XML or CSV text. There are 3 options for the text 
itself: comma-separated data types (matching the entity-facade-xml.type attribute), a 
resource location that can be a local filename or any location supported by the Resource 
Facade, or text pasted right into the browser in a textarea. Dummy FKs checks each record’s 
foreign keys and if a record doesn’t exist adds one with only PK fields populated. Use Try 
Insert is 
meant for 
data that is 
expected to 
not exist 
and instead 
of querying 
each record 
to see if it 
does it just 
tries an 
insert and if 
that fails does an update (slower for lots of updates). Check Only doesn’t actually load the 
data and instead checks each record and reports the differences."

SQL Runner 

Use this 
screen to 
run 
arbitrary 
SQL 
statements 
against the 
database for 
a given 
entity group 
and view 
the results."

!
!

���   11. The Tools Application155                                                         



Speed Test 

This screen runs a series of cache and entity operations to report timing results. It is most 
useful to see comparative performance between different databases and server 
configurations. The screen accepts a baseCalls parameter which defaults to 100 (as seen 
below). Note that this screen shot uses the default configuration with the "nosql" entity group 
in the Derby 
database 
along with all 
the others. 
When using 
OrientDB or 
some other 
NoSQL 
datasource 
you’ll see 
fairly different 
results."

Localization 

Messages 

Moqui uses database records instead of property or XML files for localized messages and 
labels. Use this screen to administer localized messages that are used by the 
L10nFacade.getLocalizedMessage() method, which is in turn used by the Resource 
Facade before string expansion and in XML Screens and Forms for titles, etc."

  ���                                                                                                                                                            156



Entity Fields 

The EntityValue.get() method supports localized entity fields for any entity by simply 
setting the field.enable-localization attribute to true and adding records here (which 
are recorded with the LocalizedEntityField entity). Each record had the entity name, the 
field name to localize, the value of the single field primary key (only entities with single field 
PKs can use this), the locale for the value, and the localized value."

Service 

Service Reference 

Service List 

With the service reference you can see a list of existing services, details of each, and go to a 
screen to run them as well. "

���   11. The Tools Application157                                                         



Service Detail 

The detail screen for a service shows the service description and general information about 
the service, plus the in and out parameters with details for each. This is useful for a general 
reference and to see how a service expands at runtime when it implements interfaces, etc."

Service Run 

The service run screen shows a XML single form with fields auto generated based on the 
service definition, which works best when the service in parameters are associated with 
entity fields (to get drop-downs for related entity values and such). Simply enter/select 
values and submit to run the service and see the results."

  ���                                                                                                                                                            158



Scheduler 

Moqui Framework uses Quartz Scheduler to run scheduled and asynchronous services and 
jobs. These screens are used to see information about the scheduler and scheduled jobs and 
perform administration such as pausing and resuming jobs and triggers."

Scheduler Status 

This screen shows the status of Quartz Scheduler and has buttons to put the entire scheduler 
on standby, and to pause and resume all triggers."

Jobs 

The jobs tab shows currently active jobs, organized by job group which for Moqui service 
jobs is the name of the service. In addition to details about the job is has buttons to Pause the 
job, or when paused to Resume the job, and to Delete the job. When pausing a job it pauses 
all triggers associated with the job."

���   11. The Tools Application159                                                         



Triggers 

Much like the Jobs tab this tab shows the triggers associated with jobs and has the same 
options to pause/resume and delete. A job may have more than one trigger and from this 
screen you can pause/resume certain triggers for a job while leaving the others as-is."

History 

The history tab for the scheduler shows a history of jobs run including scheduled services 
and any other custom jobs you might have running. There are links to get the data as a CSV 
or XML file. The header of the list form has options to filter the results which are also 
paginated as there may be a large number of jobs. "

This data comes from the SchedulerHistory entity, which is managed by the 
ServiceFacadeImpl.HistorySchedulerListener class which implements the Quartz 
SchedulerListener interface."

!
  ���                                                                                                                                                            160



System Info 

Artifact Statistics 

Hit Bins 

This screen shows records from the ArtifactHitBin entity and has options for filtering, 
sorting, and exporting to CSV, XML, and PDF. Use this screen to see artifact hit data about 
specific artifacts in a specific date/time range."

Artifact Summary 

The artifact summary screen shows general performance data for each artifact over all time 
based on ArtifactHitBin records using the ArtifactHitReport view entity. Just like the 
hit bins screen this has filter, sort, and export options. The screen shot below shows just the 
artifacts with "Example" in their name using the header form to filter results."

!
���   11. The Tools Application161                                                         



Audit Log 

When the field.enable-audit-log attribute is set to true the Entity Facade tracks the 
changes in EntityAuditLog records. Use this screen to view those records."

Cache Statistics 

Cache List 

The Moqui Cache Facade is used for caching across the system including resource, entity, 
and various other caches. Use this list to see a summary of details about each cache. Size is 
the number of elements in the cache. Hits are the successful cache hits. Misses include 
general cache misses (unsuccessful gets from the cache) and specifically not found (NF) and 
expired (EX) miss counts. Removes shows the count of explicit removes from the cache. "

There are two expire time that can be configured: idle for expiration after being idle for a 
certain time and live for the time since the cache element was created. The Max (Evct) 
column shows the maximum elements for each cache (default is 10,000) and the eviction 
algorithm to use once the limit is reached. The Clear button for each cache clears just that 
cache, and the Clear All button at the top clears all caches. Click on the Name to see the 
elements in the cache."

  ���                                                                                                                                                            162



Cache Elements 

When you click on the name of a cache you’ll see this screen. It shows the cache entries up to 
a limit of 500 (use the displayLimit parameter for a different limit). It has details for each 
cache element plus a button to Clear (remove) just that element from the cache. This screen 
shot is for an entity one cache (for the Enumeration entity). The text shown for key and 
value are from calling toString() on the objects. In this case the key is an EntityCondition 
and the value is an EntityValue and they both evaluate to nice text, but not all objects will."

Server Visits 

Moqui creates a Visit record for each web session to track server access and tie together 
artifact hits (page requests as screens, content, transitions, services, etc) within a session."

Visit List 

This screen shows a list of visits with pagination and options to filter and sort the records 
because over time there will be a large number of visits. Click on the Visit ID to view details 
about the visit."

���   11. The Tools Application163                                                         



Visit Detail 

This screen shows details about the visit (session). The header has fields generally available 
in a HTTP request plus additional information like the User ID logged in during the visit (if a 
user logs in). It also shows the artifact hits related to the visit (i.e., page requests and such 
within a session). This can be used to see a history of activity for specific users for security 
and service purposes, and the underlying data in Visit and ArtifactHit can be used for 
more general analysis for those purposes and marketing too."

!

  ���                                                                                                                                                            164



!

12. Mantle Business Artifacts 

Mantle Business Artifacts is an open source project separate from and built on Moqui 
Framework. Moqui Framework is a set of tools to build applications. Mantle Business 
Artifact is a library of lower-level artifacts that act as a foundation for business applications. 
The main benefits of using Mantle are cost savings, design and implementation risk 
reduction, adoption of common and standardized business structures and processes, and 
consistency with other applications built on Moqui and Mantle."

Mantle has three main parts: Universal Data Model (UDM), Universal Service Library (USL), 
and Universal Business Process Library (UBPL). This chapter will focus on the data model 
(UDM) and service library (USL). "

UBPL is a set of business process stories and other generic business requirement documents 
that drive the design of business applications. They are a good source for understanding the 
business concepts, actors, and processes that the data model and service library are based on.  
They are also generic enough to be used as a starting point for real-world business and 
modified as needed."

Mantle is a foundation for building enterprise automation applications such as:"

• Enterprise Resource Planning (ERP)"
• Project ERP"
• Professional Services Automation (PSA)"
• Customer Relationship Management (CRM)"
• Supply Chain Management (SCM)"
• Manufacturing Resource Planning (MRP)"
• Enterprise Asset Management (EAM)"
• Point-of-Sale (POS)"
• eCommerce"

Together Moqui Framework and Mantle Business Artifacts form a foundation for an 
ecosystem of applications that are implicitly integrated. Applications can extend the Mantle 
data model and will always have their own services, but using the data model and services 
as intended will make applications work readily with data and services from other 
applications built on the same. "

���   12. Mantle Business Artifacts165                                                      



When such applications are deployed together the data is automatically shared. For example 
you will have a single structure for customer data that is used across all ecommerce, 
customer service, fulfillment, project management, and accounting applications and any 
other types of application that needs it."

NOTE: This chapter uses a large number of business terms. If you run across terms you are 
not familiar with you may look them up as you go (the internet is a wonderful thing, as is the 
full text search of the digital version of this book) or just take note of them, move on, and 
don’t worry too much about each one. The Mantle Structure and UDM section goes through 
a lot of terms with only data structures as context. When you get to the USL Business 
Processes section you will see the terms used in context of a process along with examples 
and they may make more sense, especially if you have spent some time reading about the 
data structures."

Mantle Structure and UDM 

The Mantle data model (UDM) is based on concepts found in The Data Model Resource 
Book, Revised Edition, Volume 1 and Volume 2 by Len Silverston. In addition to the material 
in this section these books are a good reference for the data model concepts that make up the 
foundation for Mantle UDM. UDM is a loose implementation of the data model concepts in 
these books. UDM has a number of entities that go beyond what is in these books, and 
consolidates some of them too (like quote and order)."

Both the data model (UDM) and the service library (USL) follow the same pattern for 
organizing artifacts. The directory and file structure of each are based on this pattern."

The sections below are a summary of the structure and the entities in each part. These are in 
alphabetical order for easy reference and to show the structure. When initially learning about 
the data model I recommend reading the sections on the more fundamental entities first with 
an order somewhat like this:"

• The Data Model Patterns section in the Data and Resources chapter"
• Party (mantle.party)"
• Contact Mechanism (mantle.party.contact)"
• Facility (mantle.facility)"
• Definition - Product (mantle.product)"
• Asset - Asset (mantle.product.asset)"
• Account - Invoice (mantle.account.invoice)"
• Account - Payment (mantle.account.payment)"
• Work Effort (mantle.work.effort)"
• Order (mantle.order)"
• Shipment (mantle.shipment)"

The data model diagrams have only selected entities to illustrate important structures, and 
only selected fields on those entities. They are not a complete reference of all entities and 

Mantle Structure and UDM  ���                                                    166



fields. In the diagrams the master entities have a blue border, the detail entities a purple 
border, and the join entities a green border."

Accounting 

Account - Billing (mantle.account.billing) 

A BillingAccount is used to group Invoice and Payment records for the purposes of 
tracking how much a customer (billToPartyId) owes to a vendor (billFromPartyId). The 
balance owed on the account is the unpaid invoice total minus the associated payment total. 
The payment total may be larger than the invoice total, in which case there is a positive 
balance in the account owed to the customer (billToPartyId). The BillingAccount may 
have a credit limit in the accountLimit field and its associated currency in 
accountLimitUomId."

A BillingAccount itself is fairly simple as the "transaction" details in the account are in 
Invoice and Payment records. It can have other parties associated with it using 
BillingAccountParty. For terms on the account use BillingAccountTerm."

Account - Financial (mantle.account.financial) 

A FinancialAccount is a singe-entry balance account like a bank account. There are various 
types of financial account defined with the FinancialAccountType entity with settings like 
isRefundable, requirePinCode, automatic replenishment settings, and others. OOTB types 
include Gift Certificate, Store Credit Account, Service Credit Account, Loan Account, and 
Bank Account."

A FinancialAccount is owned by a Party (ownerPartyId) and an internal organization 
(organizationPartyId) is liable for the balance on the account. Other parties may be 
associated with it using FinancialAccountParty. It has a name (finAccountName), code 
(finAccountCode), and may have a PIN number (finAccountPin). It may be valid only 
within a date range (fromDate, thruDate). It has a status (statusId) that may be Active, 
Negative Pending Replenishment, Manually Frozen, or Cancelled."

The actualBalance of a FinancialAccount is the sum of the transactions 
(FinancialAccountTrans) associated with the account. The availableBalance of an 
account is the actualBalance minus the total of authorizations (FinancialAccountAuth) 
on the account."

A transaction (FinancialAccountTrans) for a given amount may be a for Deposit, 
Withdraw, or Adjustment (finAccountTransTypeEnumId). Transactions requiring approval 
or for other reasons may have a statusId of Created, Approved, or Cancelled. They will 
generally have a reason (reasonEnumId) such as Purchase, Initial Deposit, Replenishment, or 
Refund. "

���   12. Mantle Business Artifacts167                                                      



A transaction happens at a certain date/time (transactionDate) and may be entered at a 
different time (entryDate). It is generally performed or initiated by a party 
(performedByPartyId) and may have comments about it. A transaction will also often have a 
Payment (paymentId) and/or OrderItem (orderId, orderItemSeqId) associated with it."

An authorization (FinancialAccountAuth) is used to reserve an amount in advance of a 
Withdraw transaction. The auth is done on authorizationDate and expires on expireDate."

Account - Invoice (mantle.account.invoice) 

An Invoice or bill is used to request Payment with details about why and is sent from the 
Party that is owed (fromPartyId) to the Party that owes (toPartyId). There are a few 
types of invoices (invoiceTypeEnumId) including Sales, Return, Payroll, Commission, and 
Template. The direction of the invoice is determined by the from and to parties so there is no 
separate type for purchase versus sales, they are both Sales type invoices with parties going 
one way or the other."

Depending on the direction and which Party is the internal organization there is a different 
set of statuses (statusId). For incoming invoices the statuses are Incoming, Received, 
Approved, Payment Sent, Billed Through, and Cancelled. For outgoing invoices the statuses 
are In-Process, Finalized, Sent, Payment Received, Write Off, and Cancelled."

The invoice may be associated with a BillingAccount (billingAccountId), see the 
Account - Billing (mantle.account.billing) section for details. Amounts on an invoice are for 
a single currency specified with the currencyUomId field. Each invoice is initiated on a 
certain date (invoiceDate), has a due date (dueDate) and for historical reference date when 
it was paid (paidDate). The due date is generally determined by a SettlementTerm record 
specified with the settlementTermId field. Other terms may be associated with the invoice 
or with invoice items using InvoiceTerm."

Contact details for an invoice are associated with it using InvoiceContactMech. In addition 
to the from and to parties other parties such as sales reps or accountants may be associated 
with an invoice using InvoiceParty."

The details of goods, services, shipping, tax, discounts, and so on for an invoice are recorded 
with InvoiceItem records. Invoice items use the same set of types as other items including 
mantle.order.OrderItem and mantle.order.return.ReturnItem. These shared item 
types are defined in the ItemTypeData.xml file. There are a wide variety of types for things 
like sales, purchase, expenses, commissions, and payroll. For sales orders the most common 
types are product, time entry, shipping charges, sales taxes, and discounts."

Just like order items, invoice items may have a hierarchical structure using the 
parentInvoiceId and parentInvoiceItemSeqId fields. This is used for things like tax 
items that are for a particular good or service item."

!
Mantle Structure and UDM  ���                                                    168



Each item has a description and will generally have a productId and possibly an assetId 
for more detail about goods and services. Each item has a quantity and unit for the quantity 
(quantityUomId) and an amount per quantity. The sub-total for an invoice item is: quantity 
* amount."

Invoice items may be associated with other items using InvoiceItemAssoc. One example of 
when this is useful is when receiving an invoice with expense items from a service provider 
and billing those items through to a client."

An Invoice is a record with financial impact and triggers GL posting when the status 
changes to Finalized for outgoing invoices and Approved for incoming ones. Note that if 
both from and to parties on an invoice are internal organizations with accounting settings the 
���   12. Mantle Business Artifacts169                                                      

Invoice

invoiceTypeEnumId
fromPartyId
toPartyId
statusId
billingAccountId
invoiceDate
dueDate
settlementTermId
paidDate
currencyUomId
overrideOrgPartyId

invoiceId
id
id
id
id
id
date-time
date-time
id
date-time
id
id

id

InvoiceItem

itemTypeEnumId
overrideGlAccountId
assetId
productId
parentInvoiceId
parentInvoiceItemSeqId
taxableFlag
quantity
quantityUomId
amount
description
itemDate

invoiceId
invoiceItemSeqId

id
id
id
id
id
id
text-indicator
number-decimal
id
currency-precise
text-medium
date-time

id
id

InvoiceItemAssoc

invoiceId
invoiceItemSeqId
toInvoiceId
toInvoiceItemSeqId
invoiceItemAssocTypeEnumId
fromDate
thruDate
fromPartyId
toPartyId
quantity
amount

invoiceItemAssocId
id
id
id
id
id
date-time
date-time
id
id
number-decimal
currency-amount

id

from to
InvoiceTerm

invoiceId
invoiceItemSeqId
settlementTermId

id
id
id

SettlementTerm

termTypeEnumId
description
termValue
termValueUomId

settlementTermId
id
text-medium
number-decimal
id

id

InvoiceContactMech
invoiceId
contactMechPurposeId
contactMechId

id
id
id

InvoiceParty

datetimePerformed
percentage

invoiceId
partyId
roleTypeId

date-time
number-decimal

id
id
id



invoice will be posted for both. If the overrideOrgPartyId field is populated that 
Organization will be used instead of the fromPartyId or toPartyId when posting 
depending on which is an internal org (this is not generally used if both are internal orgs)."

The accounting transaction (AcctgTrans) generated for automated posting of an invoice will 
have one entry for each invoice item posted to the GL account (GlAccount) configured for 
the item type, and a balancing transaction entry with the total of the invoice posted to an 
accounts payable account for incoming invoices and an accounts receivable account for 
outgoing invoices."

Account - Method (mantle.account.method) 

A PaymentMethod is an instrument used for payment and each type has a separate entity 
with details including BitcoinWallet, CreditCard, EftAccount, GiftCard, and 
PayPalAccount. A PaymentMethod may be for a FinancialAccount and that is specified 
with the finAccountId field. Some payment method types such as cash, checks, and money 
orders are used directly on payments, orders, and so on with no PaymentMethod record 
because the Payment is not processed through a payment method."

Mantle Structure and UDM  ���                                                    170

PaymentMethod

paymentMethodTypeEnumId
ownerPartyId
description
fromDate
thruDate
postalContactMechId
telecomContactMechId
emailContactMechId
trustLevelEnumId
paymentFraudEvidenceId
finAccountId
originalPaymentMethodId

paymentMethodId
id
id
text-medium
date-time
date-time
id
id
id
id
id
id
id

id
BitcoinWallet

walletAddress
description
onlineWalletUrl

paymentMethodId
text-medium
text-medium
text-medium

id

CreditCard

creditCardTypeEnumId
cardNumber
cardNumberLookupHash
validFromDate
expireDate
issueNumber
companyNameOnCard
firstNameOnCard
lastNameOnCard

paymentMethodId
id
text-medium
text-medium
text-short
text-short
text-short
text-medium
text-medium
text-medium

id

EftAccount

bankName
routingNumber
accountType
accountNumber
nameOnAccount

paymentMethodId
text-medium
text-medium
text-short
text-short
text-medium

id

GiftCard

cardNumber
pinNumber
expireDate

paymentMethodId
text-medium
text-medium
text-short

id

PayPalAccount

payerId
expressCheckoutToken
payerStatus
avsAddr
avsZip
correlationId
transactionId

paymentMethodId
id
text-short
text-short
text-indicator
text-indicator
id
text-short

id



A payment method is owned by a Party (ownerPartyId), has a description, and generally 
has a postalContactMechId, telecomContactMechId, and possibly a 
emailContactMechId."

A PaymentMethod is valid in a date range (fromDate, thruDate). Generally the thruDate 
field is null until the payment method is no longer used, or has been changes. 
PaymentMethod and related records are considered immutable, so when changed the original 
record has the thruDate set and a new record is created with the modified details. The new 
record points to the original with the originalPaymentMethodId field."

Where fraud is a concern the PaymentMethod should have a trustLevelEnumId set. OOTB 
options include New Data, Valid/Clean (through 3rd party service), Verified (with outbound 
contact or authorization), Greylisted, and Blacklisted. If the trust level is Greylisted or 
Blacklisted there should be a paymentFraudEvidenceId pointing to a 
PaymentFraudEvidence record with details about why."

For GiftCard payment methods they are usually purchased from or issue by the 
organization and details about that are tracked with the GiftCardFulfillment entity."

Certain types of payment method, especially credit cards, commonly have automated 
payment processing through a payment gateway such as Authorize.net and Cybersource. 
The integration with the payment processor consists of services for authorize, capture, 
release, and refund. These services are configured with the PaymentGatewayConfig which is 
typically associated with a ProductStore using the ProductStorePaymentGateway entity."

Any time a payment gateway is used the details of the response should be stored with the 
PaymentGatewayResponse entity. There are generally associated with a Payment 
(paymentId) and have various fields for codes and results from the payment processor."

Account - Payment (mantle.account.payment) 

A Payment is generally issued in response to an Invoice and like an invoice goes from one 
Party (fromPartyId) to another (toPartyId). The parties on a Payment will be reversed from 
the parties on an Invoice. Types of payments (paymentTypeEnumId) include Invoice 
Payment, Disbursement, and Refund. A payment always has an amount and the currency for 
it in amountUomId."

A Payment should always have a payment method type (paymentMethodTypeEnumId) such 
as cash, check, or credit card and if applicable for the payment method type should also have 
a payment method (paymentMethodId). "

If the payment is processed automatically through a payment gateway the gateway used for 
auth should be recorded in paymentGatewayConfigId so that it can be used for subsequent 
operations like capture or void. For convenience (since these are also on the 
PaymentGatewayResponse) for automated payments there are paymentAuthCode and 
paymentRefNum fields for authorization results and the reference number to use for 

���   12. Mantle Business Artifacts171                                                      



subsequent operations. Other fields for details when processing credit card and similar 
payments through a gateway include presentFlag, swipedFlag, processAttempt, and 
needsNsfRetry."

A payment has various statuses (statusId) including Proposed, Promised, Authorized, 
Delivered, Confirmed Paid, Cancelled, Void, Declined and Refunded."

Payments to not have items like an invoice, but may have deductions for special cases and 
these are recorded using the Deduction entity."

A Payment record may be created very early in an ordering process to specify payment 
details for an entire order or for a particular order part. There may be multiple Payment 
records for a given OrderHeader or OrderPart, so they are referred to using the orderId 
and if applicable orderPartSeqId fields on the Payment record. Payment details are looked 
up for an order or part using these fields on the Payment entity."

Payments may be associated with a financial account (finAccountId), and more particularly 
an authorization and/or transaction on a financial account (finAccountAuthId, 
finAccountTransId)."

Mantle Structure and UDM  ���                                                    172

Payment

paymentTypeEnumId
fromPartyId
toPartyId
paymentMethodTypeEnumId
paymentMethodId
orderId
orderPartSeqId
statusId
effectiveDate
paymentAuthCode
paymentRefNum
comments
amount
amountUomId
visitId

paymentId
id
id
id
id
id
id
id
id
date-time
text-short
text-short
text-medium
currency-amount
id
id

id
PaymentMethod

paymentMethodTypeEnumId
ownerPartyId
description

paymentMethodId
id
id
text-medium

id

PaymentApplication

paymentId
invoiceId
invoiceItemSeqId
billingAccountId
toPaymentId
amountApplied
appliedDate

paymentApplicationId
id
id
id
id
id
date-time
date-time

id

PaymentFraudEvidence

fraudTypeEnumId
comments
paymentId
orderId
partyId
visitId

paymentFraudEvidenceId
id
text-medium
id
id
id
id

id

Invoice

invoiceTypeEnumId
fromPartyId
toPartyId

invoiceId
id
id
id

id

InvoiceItem

itemTypeEnumId
quantity
quantityUomId
amount
description
itemDate

invoiceId
invoiceItemSeqId

id
number-decimal
id
currency-precise
text-medium
date-time

id
id

to



For fraud sensitive organizations and applications when processing online transactions it is 
important to associated the Payment with a Visit using the visitId field. This tracks the 
client IP address and other HTTP client and session information. When a fraudulent 
transaction is identified the evidence should be recorded in a PaymentFraudEvidence and 
this is usually used to change the trust level on the associated payment method 
(PaymentMethod.trustLevelEnumId) and contact mechs 
(ContactMech.trustLevelEnumId)."

For organizations that deal with multiple currencies the payment may be converted to an 
internal currency for the organization, or to match the currency on the associated invoice(s). 
In this case the original amount and currency should be recorded in the 
originalCurrencyAmount and originalCurrencyUomId fields for bank and other 
reconciliation."

A Payment is a record with financial impact and triggers GL posting when the status changes 
to Delivered. Note that if both from and to parties on a payment are internal organizations 
with accounting settings the payment will be posted for both. If the overrideOrgPartyId 
field is populated that Organization will be used instead of the fromPartyId or toPartyId 
when posting depending on which is an internal org (this is not generally used if both are 
internal orgs)."

The accounting transaction (AcctgTrans) generated for automated posting of a payment will 
have one entry posted to the GL account (GlAccount) configured for the cash account for 
payment method type (unless overrideGlAccountId is populated, then that is used), and a 
balancing transaction entry posted to an accounts payable account for outgoing payments 
and an accounts receivable account for incoming payments."

To make things a little more complex payments are explicitly applied to an Invoice using 
the PaymentApplication entity so that a single payment can apply to multiple invoices, and 
an invoice can have multiple payments applied to it. A payment may also be applied to 
another Payment for situations where incoming and outgoing payments between parties 
cancel one another."

For GL posting purposes a Payment can be received without being applied to an invoice, or 
being partially applied and the unapplied amount will be posted to an unapplied payment 
account instead of a cash account. When the payment is applied another accounting 
transaction will be triggered with entries in the unapplied payments account and the cash 
account to balance things out."

When a Payment is part of a budgeted expenditure it can be associated with one or more 
BudgetItem records using PaymentBudgetAllocation."

Ledger - Account (mantle.ledger.account) 

General ledger accounts (GlAccount) make up the chart of accounts for an internal 
Organization. Each account has a class (glAccountClassEnumId) to determine if the 

���   12. Mantle Business Artifacts173                                                      



account balance is add or subtracted to a transaction total and for reporting purposes 
(especially: Balance Sheet with Asset on one side and Contra Asset, Liability and Equity on 
the other; and Income Statement with Revenue, Contra Revenue, Cost of Sales, Income and 
Expense accounts). Here is the structure of the OOTB GL account classes (this can be changed 
with different Enumeration records of type GlAccountClass):"

• Debit"
• Asset"

• Current Asset"
• Cash and Equivalent"
• Inventory Asset"
• Accounts Receivable"
• Prepaid Expense and Other"

• Long Term Asset"
• Land and Building"
• Equipment"

• Other Asset"
• Expense"

• Cash Expense"
• Interest Expense"
• Sales, General, and Administrative Expense"
• Non-Cash Expense"

• Depreciation"
• Amortization"

• Cost of Sales"
• Cost of Goods Sold"

• Inventory Adjustment"
• Cost of Services Sold"

• Contra Revenue"
• Equity Distribution"

• Return of Capital"
• Dividends"

• Non-Posting"
• Credit"

• Income"
• Cash Income"
• Non-Cash Income"

• Revenue"
• Goods Revenue"
• Services Revenue"

• Equity"
• Owners Equity"
• Retained Earnings"

Mantle Structure and UDM  ���                                                    174



• Liability"
• Current Liability"

• Accounts Payable"
• Accrued Expenses"

• Long Term Liability"
• Contra Asset"

• Accumulated Depreciation"
• Accumulated Amortization"

• Resource"

GlAccount records also have a type (glAccountTypeEnumId) that is used for automated 
posting configuration. The available GL account types are in Enumeration records of type 
GlAccountType. There are quite a few defined OOTB such as AR, AP, Fixed Asset, Current 
Liability, Inventory, Finished Good Inventory, Tax, Profit Loss, Cost of Goods Sold, Expense, 
Customer Deposits, and Commission Expense (plus many others). There is some overlap in 
GL account classes and types, but they are separate fields because they are used for different 
things."

GL accounts are hierarchical with the parentGlAccountId field specifying the parent 
account. Each account has a code (accountCode) that is separate from the glAccountId so 
that it can be changed, a name (accountName) and a description. There is a 
postedBalance field that is maintained with each posting and derived from 
AcctgTransEntry records associated with the GlAccount."

For more general accounting use outside a typical general ledger GlAccount has a resource 
type (glResourceTypeEnumId) that is generally Money and can be other things such as Raw 
Material, Labor, and Finished Good. It also has a glXbrlClassEnumId field to specify the 
reporting (XBRL) class such as US GAAP and IAP."

To support multi-organization accounting there is a shared chart of accounts in GlAccount 
records and each internal Organization that needs it has a subset of the accounts assigned 
to it using the GlAccountOrganization entity. This has a postedBalance field that is 
updated with the balance of that account for just that Organization. Getting more specific 
there is a record in GlAccountOrgTimePeriod for each GlAccount, Organization, and 
TimePeriod (a fiscal month, quarter or year period). It has more detailed information about 
totals: postedDebits, postedCredits, beginningBalance, and endingBalance. These are 
all maintained by the GL posting service."

Other parties may be associated with a GL account using the GlAccountParty entity. A 
GlAccount may be associated with a budget through a budget item type using the 
GlBudgetXref."

In addition to the inherent hierarchy of GL accounts they may be organized with two other 
structures: categories and groups. GlAccountCategory is used for an arbitrary grouping of 
GL accounts and has a many-to-many relationship with them through the 

���   12. Mantle Business Artifacts175                                                      



GlAccountCategoryMember. This is used for special tracking and reporting purposes such as 
cost centers."

A GlAccountGroup is a more restricted grouping of GlAccount records for purposes of 
reporting and populating forms such as tax forms. For example a US IRS Form 1120 (U.S. 
Corporation Income Tax Return) would be a group type, and groups within the type would 
be "1a Gross receipts or sales", "1b Returns and allowances", and "4 Dividends". Each GL 
account can be associated with at most one group of each type (i.e. for each form, etc) 
through GlAccountGroupMember. This is intentional to avoid applying a GL account more 
than once and duplicating its value."

Ledger - Config (mantle.ledger.config) 

The main entity of accounting preferences for an internal Organization is 
PartyAcctgPreference. It has fields for the tax filing form to use (taxFormEnumId), COGS 
method (cogsMethodEnumId), base currency for accounting (baseCurrencyUomId), fields to 
manage invoice ID sequencing (invoiceSequenceEnumId, invoiceIdPrefix, 
invoiceLastNumber, invoiceLastRestartDate, and useInvoiceIdForReturns), order ID 
sequencing (orderSequenceEnumId, orderIdPrefix, orderLastNumber) and the default 
PaymentMethod to use for refunds (refundPaymentMethodId)."

One of the more important fields is errorGlJournalId. This is the GlJournal to put 
transactions (AcctgTrans) in when there is a problem with automatic posting. Transactions 
in this journal should be reviewed periodically, and most importantly before closing a 
period, to resolve issues and post the transaction. The most common issue is not finding the 
configuration for the GlAccount for a particular entry (AcctgTransEntry). Another possible 
issue is that the debits and credits don’t match."

The other entities in this package are for configuration the GlAccount to use for automated 
posting of various types of records that have a financial impact. The most general are 
GlAccountTypeDefault and GlAccountTypePartyDefault which are used to configure the 
default account for different GL account types if no more specific mapping is found."

For Invoice posting the various items are mapped by their ItemType (the same item type 
that is shared among OrderItem, ReturnItem, and InvoiceItem) using 
ItemTypeGlAccount. If a more specific mapping is found for an InvoiceItem it will be 
used. This may be for specific products with ProductGlAccount or 
ProductCategoryGlAccount or for tax items for a specific TaxAuthority with 
TaxAuthorityGlAccount. The balancing entry for an invoice is generally a debit to the 
default accounts receivable type account, or a credit to the default accounts payable type 
account."

For Payment posting the PaymentTypeGlAccount entity is used to find the balancing liability 
or asset (AR, AP, etc) GL account for the payment for an Organization by 
paymentTypeEnumId, isApplied, and isPayable (i.e., payable versus receivable). The cash 

Mantle Structure and UDM  ���                                                    176



account to post to is found for the payment method using PaymentMethodTypeGlAccount 
unless a more specific mapping is found for the credit card type in 
CreditCardTypeGlAccount or for a financial account type in 
FinancialAccountTypeGlAccount."

For inventory postings the GL account is determined generally with AssetTypeGlAccount, 
but for physical inventory variances the gain or loss is posted according to the variance 
reason configured with the VarianceReasonGlAccount entity."

Ledger - Reconciliation (mantle.ledger.reconciliation) 

GlReconciliation is used to record results of reconciliation with external sources such as a 
bank statement. Each GlReconciliation record is associated with a GlAccount 
(glAccountId), and generally for a specific Organization (organizationPartyId) for 
reconciliation on a certain date (reconciledDate). It tracks the openingBalance and 
reconciledBalance. The actual records to reconcile are AcctgTransEntry and the 
reconciledAmount for each is tracked with the GlReconciliationEntry entity."

Ledger - Transaction (mantle.ledger.transaction) 

An accounting transaction (AcctgTrans) is triggered by various things, and is associated 
with what triggered it or adds detail to what triggered it including asset issuance 
(assetIssuanceId), asset receipt (assetReceiptId), physical inventory 
(physicalInventoryId), invoice (invoiceId), payment (paymentId), payment application 
(paymentApplicationId) financial account transaction (finAccountTransId), shipment 
(shipmentId), and work effort (workEffortId). Transactions may also be created manually, 
i.e., not just through automated posting."

There are many types of accounting transaction (acctgTransTypeEnumId). The most 
common ones are Sales Invoice (from Org to Customer), Purchase Invoice (from Vendor to 
Org), Asset Receipt, Sales Inventory, Incoming Payment (Receipt), and Outgoing Payment 
(Disbursement). More exotic types include Amortization, Capitalization, Period Closing, and 
Credit Memo."

An AcctgTrans happens in the context of an internal Organization 
(organizationPartyId), happens at a certain date/time (transactionDate), knows if it is 
posted yet (isPosted), and if so the date/time when (postedDate). It may be in a single 
journal, such as the organization’s error journal, with the glJournalId field. The currency it 
is posted in is tracked in the amountUomId field, and if that is different from the currency of 
whatever the transaction is based on (such as an order) that currency goes in 
origCurrencyAmountUomId."

Each transaction entry (AcctgTransEntry) may be a debit or credit (debitCreditFlag of ‘D’ 
or ‘C’), has an amount and if the posting currency is different from the currency of what the 
transaction is based on the amount in the original currency goes in origCurrencyAmount. 
���   12. Mantle Business Artifacts177                                                      



Each is associated with a specific GL account type (glAccountTypeEnumId), and in order to 
post successfully must be associated with a GL account (glAccountId)."

An entry may be a summary of transactions from an external system and if so isSummary is 
set to Y. For invoice items the invoiceId is on the AcctgTrans record and the 
invoiceItemSeqId is on the AcctgTransEntry. The entry may also be associated with a 
product (productId) and/or asset (assetId)."

Journals (GlJournal) may be used to keep track of specific accounting transactions, usually 
for transactions with errors or manual transactions and are in progress 
(glJournalTypeEnumId). They are for a particular organization (organizationPartyId) 
and single-use journals may be posted all at once, tracked with isPosted and postedDate. 
Transactions are associated with journals using the AcctgTrans.glJournalId field."

Other - Budget (mantle.other.budget) 

A Budget is generally associated with a TimePeriod (timePeriodId) and may be of various 
types (budgetTypeEnumId) such as Capital or Operating. Each BudgetItem has an amount 
and may have text descriptions of purpose and justification. The item type 
(budgetItemTypeEnumId) is generally something like Required or Discretionary. Parties may 
be associated with a budget using BudgetParty."

Various other entities point to BudgetItem records to provide detail for them, including: 
Payment through PaymentBudgetAllocation, EmplPosition, OrderItem, and 
Requirement through RequirementBudgetAllocation."

When a budget is reviewed by a particular party the results of the review are recorded with 
the BudgetReview entity. To keep a history of budget revisions use the BudgetRevision and 
BudgetRevisionImpact entities."

During a budget planning process various scenarios may be discussed and modeled. These 
can be recorded with the BudgetScenario and details for specific items in 
BudgetScenarioApplication and more generally for budget item types in 
BudgetScenarioRule."

Other - Tax (mantle.other.tax) 

A TaxAuthority is a government entity (taxAuthPartyId) that collects taxes within a 
geographic boundary (taxAuthGeoId). For VAT tax authorities set includeTaxInPrice to Y. 
If a tax ID is required for exemption set requireTaxIdForExemption to Y."

Many tax authorities have different tax rates for different types of products. To configure this 
create a ProductCategory for each type and use TaxAuthorityCategory to associate it with 
the tax authority. Tax authorities may be associated with other tax authorities using 
TaxAuthorityAssoc for Exemption Inheritance or as a Collection Agent 
(assocTypeEnumId). For example a US state tax authority may collect taxes on behalf of a 

Mantle Structure and UDM  ���                                                    178



city or county tax authority within that state, and exemption at the state level may exempt at 
the city or county level."

Parties may be associated with a TaxAuthority using TaxAuthorityParty. This is useful to 
represent that an internal organization has a nexus (isNexus=Y) or that a customer is tax 
exempt (isExempt=Y) and in either case the Party may have an ID issued by that tax 
authority and that is recored in the partyTaxId field."

Tax may be calculated using an external system or internal services configured using 
TaxGatewayConfig that in either case points to the service (calculateServiceName) that 
calculates the taxes or calls out to the external system. There used to be a TaxAuthorityRate 
entity for configuring local tax calculation, but that has been replaced with a Drools decision 
table which is more flexible. The TaxGatewayConfig is associated with a ProductStore 
using the ProductStore.taxGatewayConfigId field."

Facility 

Facility (mantle.facility) 

A facility is a building, unit, room, land or even floor space. There are also more particular 
types of facility such as warehouse and office. The primary entity for a facility is what you 
would imagine (Facility) and it is identified by a single PK field (facilityId). As with 
many of the main (master) entities a facility has a type (facilityTypeEnumId), status 
(statusId), and name (facilityName). There are also fields for the owner, size, open/close 
dates, etc."

Facilities are hierarchical to model things like units within a building and rooms within a 
unit. The Facility.parentFacilityId field is used to specify the parent for each facility. In 
theory this could be used for things like warehouse inventory locations but to simplify and 
flatten that structure the FacilityLocation entity is just for inventory locations within a 
facility. These have a type (such as bulk or pick/primary), locator fields (areaId, aisleId, 
sectionId, levelId, and positionId), and even a geoPointId for GPS-driven automation."

A Product may be associated with a FacilityLocation using the 
ProductFacilityLocation entity to record which products go in which locations, and to set 
minimumStock and moveQuantity values to use for recommended stock moves (when 
replenishing pick/primary locations from bulk locations). If you need to track more data 
about a particular product in a particular location extend this entity."

Similarly a Product may be associated with a Facility to using the ProductFacility 
entity to specify minimumStock and reorderQuantity values for use in simple automated 
(recommended) replenishment. Other fields related to a particular product in a particular 
facility can be added to this entity as needed."

The physical location of a facility can be recorded in two ways: through a GeoPoint record 
referenced by the Facility.geoPointId field, or in a PostalAddress type of ContactMech 
���   12. Mantle Business Artifacts179                                                      



with the FacilityContactMech. FacilityContactMech can also be used for more general 
contact information for the facility including phone/fax/etc (telecom) numbers, email and 
web addresses, and even multiple postal addresses when there are different ones for things 
like receiving correspondence, receiving shipments, shipping return address, etc. "

For more details about ContactMech see the Contact Mechanism (mantle.party.contact) 
section."

Use the FacilityParty to associate a party (partyId) with a facility (facilityId) in a 
particular role (roleTypeId) and within an effective date range (fromDate, thruDate). This 
can be used for any role and might be used to record who is an owner, tenant, occupant, 
manager, picker, packer, etc for a particular facility."

To associate Resource Facade content (with a contentLocation) with a facility use the 
FacilityContent entity. This has a content type (facilityContentTypeEnumId) such as 

Mantle Structure and UDM  ���                                                    180

Facility

facilityTypeEnumId
parentFacilityId
statusId
ownerPartyId
facilityName
facilitySize
facilitySizeUomId
openedDate
closedDate
description
geoPointId

facilityId
id
id
id
id
text-medium
number-decimal
id
date-time
date-time
text-medium
id

id

FacilityLocation

locationTypeEnumId
areaId
aisleId
sectionId
levelId
positionId
geoPointId

facilityId
locationSeqId

id
id
id
id
id
id
id

id
id

ProductFacility

minimumStock
reorderQuantity
daysToShip

productId
facilityId

number-decimal
number-decimal
number-integer

id
id

ProductFacilityLocation

minimumStock
moveQuantity

productId
facilityId
locationSeqId

number-decimal
number-decimal

id
id
id

FacilityContactMech

thruDate
extension
comments

facilityId
contactMechId
contactMechPurposeId
fromDate

date-time
text-short
text-medium

id
id
id
date-time

FacilityGroupMember

thruDate
sequenceNum

facilityId
facilityGroupId
fromDate

date-time
number-integer

id
id
date-time

FacilityGroup

parentGroupId
facilityGroupTypeEnumId
description

facilityGroupId
id
id
text-medium

id

FacilityParty

thruDate

facilityId
partyId
roleTypeId
fromDate

date-time

id
id
id
date-time



internal content (documents, etc) and images, and the ever useful effective date range 
(fromDate, thruDate)."

To organize facilities for pricing or management purposes, or more generally to keep better 
track of large numbers of facilities, use FacilityGroup. Facility groups have a description, 
are hierarchical (parentGroupId) and have a type (facilityGroupTypeEnumId) such as 
management structure or pricing group. To associate a Facility with a FacilityGroup use 
the FacilityGroupMember entity. You may also associate a party in a particular role with a 
facility group with the FacilityGroupParty entity."

Human Resources 

Ability (mantle.humanres.ability) 

The most general representation of ability is PartyResume which may have the full text in 
the resumeText field or may point to a Resource Facade contentLocation. "

Getting more structured the PartyQualification entity is used for things like degrees, 
certifications, and work experience. The types available (qualificationTypeEnumId) are 
Enumeration records of type QualificationType and you can add any needed there. It has 
a verificationStatusId for tracking verification, and a more general status (statusId) that can 
be Completed, Incomplete, or Deferred for things like degrees and certifications, and Full-
time, Part-time, or Contractor for things like work experience."

PartySkill is for more specific skills as opposed to more general qualifications. This would 
include things like specific programming languages and libraries, equipment operation, and 
even creative talents. The skill types (skillTypeEnumId) are Enumeration records of type 
SkillType. This has fields about the skill such as yearsExperience, skillLevel, and 
startedUsingDate."

A PerformanceReview is between a manager (managerPartyId) and employee 
(employeePartyId) for a particular position (emplPositionId). It has items 
(PerformanceReviewItem) of various types (reviewItemTypeEnumId) such as 
Responsibility, Attitude, and Job Satisfaction with a rating (reviewRatingEnumId) and 
comments for each. Outside the context of a review there may also be performance notes 
recorded with the PerformanceNote entity."

To track employer sponsored and other training use the TrainingClass entity for classes 
available and PersonTraining for classes to approve and/or actually completed."

Employment (mantle.humanres.employment) 

The Employment entity is used to track employment of an employee (employeePartyId) by 
an employer (employerPartyId) in a certain position (emplPositionId) within a date range 

���   12. Mantle Business Artifacts181                                                      



(fromDate, thruDate). When employment is terminated it can track a reason 
(terminationReasonEnumId) and type (terminationTypeEnumId)."

Benefits of BenefitType may be tracked with EmploymentBenefit, the relevant PayGrade 
with  EmploymentPayGrade, and payroll preferences with PayrollPreference."

Before employment there may be an application (EmploymentApplication) by an applicant 
(applyingPartyId) for a position (emplPositionId) and optionally associated with a 
JobRequisition (jobRequisitionId)."

After employment any unemployment claims would be tracked with UnemploymentClaim."

Position (mantle.humanres.position) 

An EmplPosition is a specific position for a single Person (filledByPartyId) within an 
organization (employerOrganizationPartyId). For other parties associated with the 
position such as manager or department use the EmplPositionParty entity. EmplPosition 
has a pay grade (payGradeId), may be part of a budget (budgetId, budgetItemSeqId) and 
may be planned for a date range (estimatedFromDate, estimatedThruDate). "

A position is associated with an employment position class (emplPositionClassId pointing 
to EmplPositionClass) like Programmer, Business Analyst, Project Manager, and so on. It is 
common to have multiple positions for a class, and a class can exist separately and be 
associated directly with parties (EmplPositionClassParty) for a simplified model for rate 
determination and such that does not require a EmplPosition record."

Responsibilities such as Finance Management, Inventory Management, and Purchase 
Management may be associated with a position using EmplPositionResponsibility or 
with a class using EmplClassResponsibility. A few responsibilities are defined OOTB and 
additional ones may be defined with Enumeration records of type 
EmploymentResponsibility."

Rate (mantle.humanres.rate) 

Within an organization it is often useful to standardize pay grades. Use the PayGrade entity 
for pay grades available, and PayGradeSalary for the actual pay amount within a date range 
(fromDate, thruDate)."

For more detailed and structured pay rate information use the RateAmount entity. This can 
be used for billing rates to clients for services performed, and payment to external vendors if 
applicable for actually performing services (ratePurposeEnumId). Rate types 
(rateTypeEnumId) include Standard, Discounted, Overtime, and On-site Work."

The rateAmount (with currency rateCurrencyUomId and for time unit timePeriodUomId) is 
valid within a date range (fromDate, thruDate) and may be restricted to a particular Party 
(partyId), WorkEffort (workEffortId), and position class (emplPositionClassId)."

Mantle Structure and UDM  ���                                                    182



Recruitment (mantle.humanres.recruitment) 

The recruitment process will often begin with creating a JobRequisition and one or more 
EmplPosition records for the requisition. Typically EmploymentApplication records are 
next to apply for the position, and then for some of the applications zero to many 
JobInterview records, one for each interview done with the candidate (candidatePartyId) 
by an interviewer (interviewerPartyId). For each position an Employment record is created 
when a candidate is hired."

Marketing 

Campaign (mantle.marketing.campaign) 

A MarketingCampaign is used for general tracking of marketing efforts and may be used for 
efforts that tracked in the system, or may be used to group other things like ContactList, 
TrackingCode, and SalesOpportunity."

A campaign has various budget/cost fields including budgetedCost, actualCost, and 
estimatedCost. It is valid within an optional date range (fromDate, thruDate). For 
campaign results there are fields like convertedLeads, expectedResponsePercent, and 
expectedRevenue."

A campaign may have various parties like marketers, sales reps, managers, prospects, and 
leads associated with it using MarketingCampaignParty. Use the MarketingCampaignNote 
entity to track notes about the campaign, which are in addition to the campaignName and 
campaignSummary fields on the campaign itself."

Contact (mantle.marketing.contact) 

A ContactList is used to plan and track mass outgoing communication such as Marketing, 
Newsletter, and Announcement (contactListTypeEnumId). This can be by email, phone, 
postal mail, or any other means of contact (contactMechTypeEnumId). It may be associated 
with a MarketingCampaign (marketingCampaignId)."

A contact list is generally owned/managed by a particular Party (ownerPartyId). Other 
parties are associated with it using ContactListParty. The main use for this is parties who 
will receive the outgoing communication and optionally how they should be contacted 
(preferredContactMechId). Most emailing lists are opt-in and this is often done with an 
outgoing email to verify the address and the opt-in with a code, which is tracked for 
verification with the optInVerifyCode field."

A ContactListParty has a status (statusId) which may be Pending Acceptance, Accepted, 
Rejected, In Use, Invalid, Unsubscribe Pending, or Unsubscribed."

���   12. Mantle Business Artifacts183                                                      



To configure outgoing email for the list, including types (emailTypeEnumId) such as 
Subscribe Notification, Unsubscribe Verify, Unsubscribe Notification, and Outgoing Email 
use the ContactListEmail entity. This points to a Moqui EmailTemplate record (with 
emailTemplateId) to be used with the 
org.moqui.impl.EmailServices.send#EmailTemplate service."

To track actual communication use a CommunicationEvent record associated with the 
contact list using ContactListCommStatus. Use this to track the Party (partyId) and actual 
ContactMech (contactMechId) used, though further details are on the 
CommunicationEvent record. See the Communication Event (mantle.party.communication) 
section for additional details."

Segment (mantle.marketing.segment) 

The MarketSegment and related entities are used to define a group (segment) of Party 
records by PartyClassification using MarketSegmentClassification, by Geo 
(geographic boundary) using MarketSegmentGeo, and by Organization parties using 
MarketSegmentParty for all parties in the organization."

A segment can be used for many purposes such as populating ContactListParty records 
based on all current Party records in the system that match the segment criteria or recording 
interest in a set of products in a ProductCategory using the MarketInterest entity."

Tracking (mantle.marketing.tracking) 

A TrackingCode can be used for internal path tracking for critical web pages or for AB or 
other multivariate testing. It can also be used to track incoming links from affiliates for 
particular orders to pay affiliate commissions."

Once a tracking code is in the system it can be associated with a Moqui web Visit using 
TrackingCodeVisit, with an order (for conversion tracking and affiliate commissions) using 
TrackingCodeOrder and with returns using TrackingCodeOrderReturn."

For affiliate commissions that follow browser cookie preservation rules the tracking code is 
generally put in a cookie and then pulled from the cookie when an order is placed as 
opposed to remembering it through more means. The tracking codes associated with a Visit 
are different, they are generally all tracking codes used during a Visit and orders can then be 
tied to these through the visitId field on OrderHeader."

Mantle Structure and UDM  ���                                                    184



Order 

Order (mantle.order) 

The primary entity for an order is OrderHeader. An order can be a purchase or sales order, 
and in fact with the OrderPart structure supports multi-party orders since each order part 
has a customerPartyId and a vendorPartyId. Order parts are used to split the order for 
other purposes such as shipping to different locations or by different methods, to ship from 
different locations, and so on. Order parts can have other parties associated with them using 
the OrderPartParty entity. Order parts are also used to split orders by different shipping 
addresses, shipment options, delivery dates, etc. "

���   12. Mantle Business Artifacts185                                                      

OrderHeader

orderName
entryDate
placedDate
statusId

orderId
text-medium
date-time
date-time
id

id

OrderPart

parentPartSeqId
partName
statusId
vendorPartyId
customerPartyId
facilityId
carrierPartyId
shipmentMethodEnumId
postalContactMechId
telecomContactMechId
partTotal

orderId
orderPartSeqId

id
text-medium
id
id
id
id
id
id
id
id
currency-amount

id
id

OrderItem

orderPartSeqId
parentItemSeqId
itemTypeEnumId
productId
productConfigSavedId
itemDescription
quantity
quantityUomId
quantityCancelled
selectedAmount
unitAmount
unitListPrice
fromAssetId
productPriceId

orderId
orderItemSeqId

id
id
id
id
id
text-medium
number-decimal
id
number-decimal
number-decimal
currency-precise
currency-precise
id
id

id
id

OrderItemBilling

orderId
orderItemSeqId
invoiceId
invoiceItemSeqId
assetIssuanceId
assetReceiptId
shipmentId
quantity
amount

orderItemBillingId
id
id
id
id
id
id
id
number-decimal
currency-amount

id

InvoiceItem

itemTypeEnumId
productId
description
quantity
quantityUomId
amount

invoiceId
invoiceItemSeqId

id
id
text-medium
number-decimal
id
currency-precise

id
id

OrderTerm
orderId
orderItemSeqId
settlementTermId

id
id
id

OrderContent

orderContentTypeEnumId
orderId
orderItemSeqId
contentLocation
fromDate
thruDate

orderContentId
id
id
id
text-medium
date-time
date-time

id



The shipping address (a type of contact mechanism) is referenced in the OrderPart. 
postalContactMechId field and there is an optional telecomContactMechId field to point 
to a phone (telecommunications) number. Additional contact mechs can be associated with 
the order by purpose (such as billing phone, shipping address) using the OrderContactMech 
entity."

With a wide variety of statuses an order can be a shopping cart (Open/Tentative), quote 
(Proposed by Vendor), or a placed order (Accepted by Customer). There are also statuses so 
an order can be a wish list, gift registry, and auto reorder (order stays open for automatic 
recurring orders, each of which is a separate order). "

After an order is Placed it can be fulfilled and is eventually either Completed, Cancelled by 
the customer, or Rejected by the vendor. It can also be Held or put in a special Being 
Changed status temporarily to avoid automatic calculation of things like shipping and taxes. 
Both OrderHeader and OrderPart have statusId fields to track statuses independently. 
Order items do not have a statusId field, their status is determined by looking at quantities 
on the item and quantities fulfilled, etc."

The items on an order are recorded as OrderItem records. For simplicity each OrderItem is 
associated with a single OrderPart record. OrderItem records are hierarchical so that they 
can be used for adjusting or detailing a parent item. This is useful for things like sales tax and 
discounts that apply to a single item. It is also useful for highly complex orders where items 
are organized under other items, such as specific building materials that are used for 
different parts of a structure of phases of building it."

Order items use the same set of types as other items including 
mantle.account.invoice.InvoiceItem and mantle.order.return.ReturnItem. These 
shared item types are defined in the ItemTypeData.xml file. There are a wide variety of 
types for things like sales, purchase, expenses, commissions, and payroll. For sales orders the 
most common types are product, time entry, shipping charges, sales taxes, and discounts."

When an OrderItem is billed (invoiced) it is associated with the InvoiceItem using the 
OrderItemBilling entity. Often billing of physical goods is done when a Shipment is sent 
(actually packed) or received, so there is a shipmentId on the OrderItemBilling entity. For 
outgoing shipments there is an inventory issuance modeled as a AssetIssuance record and 
we have the assetIssuanceId field to point to it. Similarly for incoming shipments there is a 
AssetReceipt record pointed to by the assetReceiptId field."

When an OrderItem is associated with a task, project or other type of WorkEffort (usually 
for work/service orders) it is associated with it using the OrderItemWorkEffort entity. "

Orders may have a number of other records associated with them, including communication 
events (OrderCommunicationEvent), content such as documents or images (OrderContent), 
notes (OrderNote), and payment or other terms (OrderTerm)."

Mantle Structure and UDM  ���                                                    186



Return (mantle.order.return) 

A return (ReturnHeader) tracks the details of requesting and processing order item returns 
from the customer (fromPartyId) to the vendor (toPartyId). Note that either Party may be 
an internal organization, or in other words the return may be incoming (receiving a return 
from a customer) or outgoing (sending a return to a supplier)."

Each ReturnItem record points to a OrderItem record and specified the returnQuantity 
for that item. There is a separate field, receivedQuantity, to track the quantity of the item 
actually received for the return. Each ReturnItem also has a itemTypeEnumId just like the 
OrderItem so that any type of item can be "returned" (including products, taxes, shipping 
charges, discounts, etc) and considered in the refund or other response."

Each ReturnItem has a returnReasonEnumId (like did not want, defective, mis-shipped, etc) 
for tracking purpose. Each item also has a returnResponseEnumId to specify how the 
organization should respond to the returned item (like refund, store credit, various methods 
of replacement, etc). There are fields on the item for tracking related records for the response 
(replacementOrderId, refundPaymentId, billingAccountId, finAccountTransId). 
���   12. Mantle Business Artifacts187                                                      

ReturnHeader

statusId
fromPartyId
toPartyId
entryDate
destinationFacilityId
currencyUomId

returnId
id
id
id
date-time
id
id

id

ReturnItem

returnReasonEnumId
returnResponseEnumId
itemTypeEnumId
productId
description
orderId
orderItemSeqId
statusId
returnQuantity
receivedQuantity
returnPrice
replacementOrderId
originalPaymentId
refundPaymentId
responseAmount
responseDate

returnId
returnItemSeqId

id
id
id
id
text-medium
id
id
id
number-decimal
number-decimal
currency-amount
id
id
id
currency-amount
date-time

id
id

ReturnItemBilling

assetReceiptId
quantity
amount

returnId
returnItemSeqId
invoiceId
invoiceItemSeqId

id
number-decimal
currency-amount

id
id
id
id

OrderItem

orderPartSeqId
itemTypeEnumId
productId
description
quantity
quantityUomId
selectedAmount
unitAmount

orderId
orderItemSeqId

id
id
id
text-medium
number-decimal
id
number-decimal
currency-precise

id
id

InvoiceItem

itemTypeEnumId
productId
description
quantity
quantityUomId
amount

invoiceId
invoiceItemSeqId

id
id
text-medium
number-decimal
id
currency-precise

id
id



For refunds there will be an invoice based on the return for financial tracking (which will 
result in GL posting, etc) and the ReturnItemBilling is used to associated each ReturnItem 
with an InvoiceItem."

Both ReturnHeader and ReturnItem have a statusId field to track the progress of each 
item, and as major steps are completed the status of the return as a whole. OOTB statuses 
include: Created, Requested, Approved, Shipped, Received, Completed, Manual Response 
Required, and Cancelled."

Party 

Party (mantle.party) 

The term party in this case has a meaning like the legal term of a party to a lawsuit as in an 
individual or group, not the fun kind of party. There are two types of party and each has its 
own entity to add applicable detail to the Party entity: Person representing an individual 
and Organization which is a group and each member of the group may be a person or 
organization. These entities have the same primary key field as the Party entity (partyId) so 
that they have a one-to-one relationship."

The name of a Party comes from different fields depending on its type. For organizations it 
comes from the Organization.organizationName field. For persons (people) it comes from 
multiple fields on the Person entity: salutation, firstName, middleName, lastName, 
personalTitle, suffix, and nickname. Usually at least first and last names are used, 
and the others less commonly. There are various other fields on Party, Person, and 
Organization to specify details about parties, and just like any other entities you can extend 
these to add any others you might need."

Each party may have zero to many roles that are used to define how a party relates to other 
structures in the system such as orders, work efforts (tasks, etc), agreements, and even other 
parties. The available roles are defined using the RoleType entity and there is a fairly 
comprehensive set of them defined OOTB in Mantle. Some examples of roles include: carrier, 
bill-to customer, ship-from vendor, employee, affiliate, and spouse."

A role can be associated with a party using the PartyRole entity. Entities that have a 
partyId and a roleTypeId intentionally have foreign keys just to Party and RoleType and 
not to PartyRole so that PartyRole records are optional. In some cases it is useful to see if a 
party is in a certain role, and PartyRole is the entity you would use for that."

Relationships between parties are recorded with the PartyRelationship entity. These 
include members of a group, employees of an organization, organization hierarchies (rollup), 
contacts, friends, and so on. There are various OOTB relationship types for the 
relationshipTypeEnumId field, and you can add more by adding Enumeration records 
with enumTypeId=PartyRelationshipType. In addition to the relationship type there are 
from and to party and role type fields that detail the nature relationship. When needed there 

Mantle Structure and UDM  ���                                                    188



are also effective date (fromDate, thruDate) fields and a statusId field (which like most 
statuses is has enable-audit-log=true for a status history)."

A party may have multiple identifiers such as a driver license number, employee number, 
and external system identifiers for correlation. These are stored with the 
PartyIdentification entity. This entity has an idValue, a partyIdTypeEnumId for the 
type of ID, and an optional expireDate for identifiers that expire."

Party classifications are used to classify parties by industry/SIC/NAICS, size, revenue, 
minority/EEOC, etc. Each PartyClassification (such as the NAICS industry classification 

���   12. Mantle Business Artifacts189                                                      

Party

partyTypeEnumId
disabled
externalId
dataSourceId
comments

partyId
id
text-indicator
id
id
text-long

id

PartyRole
partyId
roleTypeId

id
id

RoleType

parentTypeId
description

roleTypeId
id
text-medium

id

Person

firstName
middleName
lastName
gender
birthDate

partyId
text-medium
text-medium
text-medium
text-indicator
date

id

Organization

organizationName
officeSiteName

partyId
text-medium
text-medium

id

PartyRelationship

relationshipTypeEnumId
fromPartyId
fromRoleTypeId
toPartyId
toRoleTypeId
fromDate
thruDate
statusId
relationshipName

partyRelationshipId
id
id
id
id
id
date-time
date0time
id
text-medium

id

PartyIdentification

idValue
expireDate

partyId
partyIdTypeEnumId

id-long
date

id
id

from to

UserAccount

username
userFullName
currentPassword
currencyUomId
locale
timeZone
emailAddress
partyId

userId
text-medium
text-medium
text-medium
id
text-short
id-long
text-medium
id

id-long

PartyClassification

classificationTypeEnumId
parentClassificationId
description

partyClassificationId
id
id
text-medium

id

PartyClassificationAppl

thruDate

partyId
partyClassificationI
dfromDate

date-time

id
id
date-time



541511 - Custom Computer Programming Services) has a classificationTypeEnumId (such 
as PctNaicsCode) and optional parentClassificationId to organize them. Use the 
PartyClassificationAppl entity to associate a party with a classification in a date range 
(fromDate, thruDate)."

A party can be have associated Resource Facade content with PartyContent, geographic 
points with PartyGeoPoint, and notes with PartyNote. A party may be associated with a 
Moqui Framework UserAccount with the UserAccount.partyId field that Mantle adds to it 
using extend-entity."

Agreement (mantle.party.agreement) 

Agreement is used to track sales, employment, commission, and other types 
(agreementTypeEnumId) of agreements. An agreement is typically between two parties 
(fromPartyId, toPartyId) and those parties may be in specific roles (fromRoleTypeId, 
toRoleTypeId). Additional parties may be associated with it using the AgreementParty 
entity. Parties may also be associated with a specific item on the agreement using the 
AgreementItemParty entity."

An agreement is made on a certain date (agreementDate) and is valid within a date range 
(fromDate, thruDate). You can record a description for the agreement and the full text in 
textData if available."

An agreement is detailed with one or more AgreementItem records that have most of the 
structure around an agreement. An item may have its own detail text (itemText) and its own 
effective date range (fromDate, thruDate). An item will typically have a type 
(agreementItemTypeEnumId) such as Sub-Agreement, Pricing, Section, or Commission Rate. 
When relevant the currency for an item is tracked with the currencyUomId field."

If an agreement is changed it should be tracked with an addendum using the 
AgreementAddendum entity, which can be applied to a particular item or the entire 
agreement. "

An item or the entire agreement may also have terms, recorded with the AgreementTerm 
entity, such as Payment, Fee, Penalty, Incentive, Termination, Indemnification, Commission, 
and Purchasing terms. There are various others defined and you can define more by adding 
Enumeration records with the type TermType. These are also used for BillingAccount and 
for Invoice through the SettlementTerm entity."

Use AgreementItemGeo to associated an item with a specific geographic boundary (Geo), 
and AgreementItemWorkEffort for a WorkEffort such as a project. When an agreement 
(item) is for employment, associated the item with the Employment record using 
AgreementItemEmployment."

Mantle Structure and UDM  ���                                                    190



For product pricing agreement items the ProductPrice has agreementId and 
agreementItemSeqId fields to point to an AgreementItem. This provides structured detail 
about the pricing, and can be used for automated price calculation for a particular order."

Communication Event (mantle.party.communication) 

Use CommunicationEvent to keep track of communication between parties (fromPartyId, 
toPartyId), optionally in particular roles (fromRoleTypeId, toRoleTypeId), and also 
optionally with specific contact mechanisms (fromContactMechId, toContactMechId; see 
the next section for ContactMech details). Even if there are not specific contact mechs 
associated with the communication event the type (contactMechTypeEnumId) such as 
phone/telecom number or email address can be."

In addition to the from and to parties other parties, along with a role and contact mech, can 
be associated with the CommunicationEvent using the CommunicationEventParty entity. 
This is especially useful for events like meetings and conference calls."

Communication event types are specified with the communicationEventTypeId field on the 
CommunicationEvent entity which points to a CommunicationEventType record. These 
types correlate to contact mech types. For example the phone comm event type is associated 
with the telecom number contact mech type using the contactMechTypeEnumId attribute on 
the CommunicationEventType entity."

CommunicationEvent has a status (statusId) for both incoming and outgoing events 
including In Progress, Ready, Sent, Received, Viewed, Resolved, Referred, Bounced, 
Unknown Party, and Cancelled. These statuses should handle most situations, including 
inbound email queues that need to be viewed and acted on (resolved). For status history this 
field use the Entity Facade audit log. The time of special events are tracked on the 
entryDate, datetimeStarted, and datetimeEnded fields."

Communication events are hierarchical to handle threaded discussions with a 
parentCommEventId to track the previous or parent comm event, and the rootCommEventId 
to tie all comm events to the comm event that initiated the thread."

If available the content of the comm event can be stored with the subject, contentType 
(MIME type), and body fields with any notes about it in the note field. For records from 
email messages the Message-ID header that identifies the email can be recorded with the 
emailMessageId field. Additional content can be saved in a Resource Facade location and 
associated with the comm event using the CommunicationEventContent entity."

One or more purposes, such as Customer Service and Sales Inquiry, for the comm event can 
be tracked with the CommunicationEventPurpose entity (separate entity so that multiple 
purposes can be associated with the comm event). The purpose is specified with the 
purposeEnumId field which points to Enumeration records of type CommunicationPurpose, 
so use the enum type to add more available purposes."

���   12. Mantle Business Artifacts191                                                      



When relevant products may be associated with a comm event using the 
CommunicationEventProduct entity."

Contact Mechanism (mantle.party.contact) 

A contact mechanism is a means of contacting a party. The primary entity is ContactMech 
and while there are various types only two have entities with additional fields: 
PostalAddress and TelecomNumber. The remaining types (such as email address) use the 
ContactMech.infoString field."

The primary key field of ContactMech is contactMechId. Like the pattern with Party, 
Person, and Organization the ContactMech, PostalAddress, and TelecomNumber entities 
share the same primary key field so they have a one-to-one relationship."

The PartyContactMech entity is used to associate a ContactMech with a Party. A purpose 
(contactMechPurposeId) describes what the ContactMech is for the Party such as 
destination shipping address or billing phone (telecom) number. The purposes are defined as 
records in the ContactMechPurpose entity. There is a comprehensive set available OOTB and 
you can add records to define more. "

Mantle Structure and UDM  ���                                                    192

Party

partyTypeEnumId
partyId

id
id

PartyContactMech

thruDate
extension
comments
allowSolicitation
usedSince
verifyCode

partyId
contactMechId
contactMechPurposeId
fromDate

date-time
text-short
text-medium
text-indicator
date
text-medium

id
id
id
date-time

ContactMech

contactMechTypeEnumId
dataSourceId
infoString
trustLevelEnumId
paymentFraudEvidenceId

contactMechId
id
id
text-medium
id
id

id

ContactMechPurpose

contactMechTypeEnumId
description

contactMechPurposeId
id
text-medium

id

TelecomNumber

countryCode
areaCode
contactNumber
askForName

contactMechId
text-short
text-short
text-short
text-medium

id

PostalAddress

toName
attnName
address1
address2
unitNumber
city
countyGeoId
stateProvinceGeoId
countryGeoId
postalCode

contactMechId
text-medium
text-medium
text-medium
text-medium
text-medium
text-medium
id
id
id
text-short

id



PartyContactMech has effective date (fromDate, thruDate) fields to define the date range 
where the ContactMech is valid for the Party. ContactMech records are immutable (they 
should never be changed) so that they can be referenced in other places without a change 
unintentionally effecting other places (and to keep a history of contact information). When 
one needs to be updated a new record is created and associated with the Party and the 
thruDate is set on the old PartyContactMech record to expire it. See the 
mantle.party.ContactServices.update#PartyContactOther service for details of how 
this is done (and there are similar services for postal addresses and telecom numbers to 
handle the additional fields and separate entities)."

Where fraud is a concern the ContactMech should have a trustLevelEnumId set. OOTB 
options include New Data, Valid/Clean (through 3rd party service), Verified (with outbound 
contact or authorization), Greylisted, and Blacklisted. If the trust level is Greylisted or 
Blacklisted there should be a paymentFraudEvidenceId pointing to a 
PaymentFraudEvidence record with details about why."

Another entity that uses ContactMech similar to Party is mantle.facility.Facility. A 
facility has contact information just like a party and is a long-lasting record with multiple 
contact mechs that may change over time. Just like for Party there are services to update 
contact mechs for a facility (see the mantle.facility.ContactServices services) that 
expire the old record and create a new one."

There are many entities which refer to contact mechs, and some which use a join entity to 
associate multiple contact mechs with different purposes. These include 
InvoiceContactMech, OrderContactMech, ReturnContactMech, ShipmentContactMech, 
and WorkEffortContactMech. These entities do not have effective date (fromDate, 
thruDate) fields as they are short-lived and if contact information changes the 
contactMechId is simply updated to point to a different record."

Time Period (mantle.party.time) 

The TimePeriod entity is for custom time periods, as opposed to calendar time periods, such 
as fiscal years/quarters/months and sales quarters (timePeriodTypeId, references the 
TimePeriodType entity). They may match calendar time periods, i.e. fromDate is the 
beginning of a calendar period and thruDate is the actual end of the calendar period, but are 
referenced anyway for any functionality that allows the time period to be something other 
than a calendar period."

A time period can be linked to its parent (parentPeriodId) and previous 
(previousPeriodId) time periods. It can also be associated with a Party (partyId) for 
things such as fiscal time periods that are specific to an organization for accounting purposes. 
When a TimePeriod is used for the general ledger the isClosed field specifies when the 
period is closed and transactions can no longer be posted to it."

���   12. Mantle Business Artifacts193                                                      



Product 

Definition - Product (mantle.product) 

A product is a person, place, or thing. Actually, that’s a noun, but products are similar. A 
Product is a description of a service, facility use, asset use, or a digital or physical good for 
sale. For manufacturing a product can represent raw materials, subassemblies, finished 
goods, and so on. These product types are specified with the productTypeEnumId and the 
options available are Enumeration records with the type ProductType."

An instance of a Product is tracked in different places depending on what type of product it 
is. Physical goods are tracked as inventory using the Asset and related entities. Asset use 
products are tracked as Asset records and have corresponding WorkEffort records for their 
schedule. Facility use products are tracked with Facility records, and also use WorkEffort 
for scheduling. Service products are tracked through a variety of WorkEffort records for 
projects, tasks, etc and may also have corresponding Request and Requirement records. The 
services will generally have one or more Party records associated with them for the people 
and/or organizations that will perform or have performed the service."

Mantle Structure and UDM  ���                                                    194

Product

productTypeEnumId
statusId
productName
description
salesIntroductionDate
salesDiscontinuationDate
salesDiscWhenNotAvail
supportDiscontinuationDate
requireInventory
requirementMethodEnumId
chargeShipping
inShippingBox
defaultShipmentBoxTypeId
taxable
amountUomId
amountFixed
amountRequire
originGeoId

productId
id
id
text-medium
text-medium
date-time
date-time
text-indicator
date-time
text-indicator
id
text-indicator
text-indicator
id
text-indicator
id
text-indicator
text-indicator
id

id

ProductContent

thruDate
sequenceNum

productId
contentLocation
productContentTypeEnumId
fromDate

date-time
number-integer

id
id
id
date-time

ProductDimension

value
valueUomId

productId
dimensionTypeEnumId

number-decimal
id

id
id

ProductIdentification

idValue

productId
productIdTypeEnumId

id-long

id
id

ProductAssoc

thruDate
sequenceNum
quantity

productId
toProductId
productAssocTypeEnumId
fromDate

date-time
number-integer
number-decimal

id
id
id
date-time

ProductPrice

productId
productStoreId
vendorPartyId
customerPartyId
priceTypeEnumId
pricePurposeEnumId
fromDate
thruDate
minQuantity
price
priceUomId
termUomId
taxInPrice
taxAmount

productPriceId
id
id
id
id
id
id
date-time
date-time
number-decimal
currency-precise
id
id
text-indicator
currency-precise

id

from

to



The Product entity has a statusId, but this is mostly there for special cases and is not used 
for certain things that might seem like statuses but are modeled as dates, including 
salesIntroductionDate, salesDiscontinuationDate, and 
supportDiscontinuationDate. If you want to know whether a product is available for sale, 
you check the current date/time against the sales date fields instead of looking at an 
indicator or status."

For content about the product it has productName and description fields, and the 
everything else such as more localized name/description, detailed descriptions, images, 
instructions, warnings, button/link labels, etc are all recorded with the ProductContent 
entity. The contentLocation points to a Resource Facade location so the content can be in a 
database (with the DbResource/File entities), a JCR (Java Content Repository, such as 
Apache JackRabbit), in the local filesystem, or any other location configured OOTB or that 
you add. See the Resource Locations section for more details."

Product has inventory (requireInventory, requirementMethodEnumId), shipping 
(chargeShipping, inShippingBox, defaultShipmentBoxTypeId, returnable), and tax 
(taxable, taxCode) settings. Some products have an amount associated with them, such as a 
number of cans in a case, or allow the user to enter an amount when purchasing it. Use the 
amountUomId, amountFixed, and amountRequire fields for this. "

The various possible dimensions for a product are recorded with the ProductDimension 
entity. This would include weight, lengths dimensions, shipping dimensions, quantity and 
pieces included, and any other dimension you might want to define. To add other dimension 
types add Enumeration records of type ProductDimensionType. There is a similar structure 
for identifiers such as UPC, ISBN, EAN, etc: ProductIdentification."

Product has an originGeoId field to specify where the product comes from for import/
export restrictions or for pure curiosity. For more specific Geo details like shipping and 
purchase restrictions use the ProductGeo entity."

A product can be associated with other products using ProductAssoc. This is useful for 
cross/up sell, size/color/etc variants, accessories, and for manufacturing purposes even 
BOM breakdowns. To associate a Product with a Party use the ProductParty entity. The 
ProductReview entity is used to record user/customer reviews and ratings."

The ProductPrice entity is used for a wide variety of prices, including: prices from 
suppliers and prices for customers (via vendorPartyId and customerPartyId); list, current, 
max/min, promotional, competitive, etc prices (priceTypeEnumId); purchase, recurring, and 
use prices (pricePurposeEnumId). For quantity breaks there is a minQuantity field (for any 
quantity greater than or equal to this, and less than the next highest matching record’s 
minQuantity)."

Prices are valid in an effective date range (fromDate, thruDate) and can be restricted to a 
particular ProductStore (productStoreId). For jurisdictions with VAT taxes the price can 
have tax included (taxInPrice=true), and use the other tax fields to specify details 

���   12. Mantle Business Artifacts195                                                      



(taxAmount, taxPercentage, taxAuthPartyId, taxAuthGeoId). See the mantle.other.tax 
section for more details about tax calculation."

The actual price goes in the price field, and its currency in the priceUomId field. See the 
Units of Measure section in the Data and Resources chapter for more details on UOMs. For 
recurring prices the recurrence term goes in termUomId and the price is the price per unit 
(like time, data size, etc)."

Definition - Category (mantle.product.category) 

The obvious use for a ProductCategory is a way to structure products within a catalog, but 
that is only one of various types (productCategoryTypeEnumId). More generally a category 
is a way to specify a set of products. Other common types include tax, cross sell, industry, 
search, and best selling."

Products are associated with a category using ProductCategoryMember, which is the join 
entity that supports a many-to-many relationship (products can be in many categories, 
categories can have many products). Categories are associated with parent/child categories 
using ProductCategoryRollup, which is also a many-to-many relationship so a category 
can have multiple parent and child categories. Both of these have effective dates (fromDate, 
thruDate) and a sequenceNum field for sorting products within categories, and 
subcategories of categories. "

ProductCategoryMember also has a quantity field which can be used when a category 
represents a set of products that come in a sort of ad-hoc or recommended package."

Content from the Resource Facade can be associated with a category using 
ProductCategoryContent. Similarly, parties can be associated with a category using 
ProductCategoryParty."

Mantle Structure and UDM  ���                                                    196

ProductCategoryMember

thruDate
sequenceNum
quantity

productCategoryId
productId
fromDate

date-time
number-integer
number-decimal

id
id
date-time

ProductCategory

productCategoryTypeEnumId
categoryName
description

productCategoryId
id
text-medium
text-very-long

id

Product

productTypeEnumId
productName

productId
id
text-medium

id

ProductCategoryContent

thruDate

productCategoryId
contentLocation
categoryContentTypeEnumId
fromDate

date-time

id
id
id
date-time

ProductCategoryRollup

thruDate
sequenceNum

productCategoryId
parentProductCategoryId
fromDate

date-time
number-integer

id
id
date-time

parent

child



Definition - Config (mantle.product.config) 

Product configuration entities are used to specify configuration options for products of type 
Configurable Good (Product.productTypeEnumId=PtConfigurableGood). Configuration 
items are specified with the ProductConfigItem entity, and applied to the Configurable 
Good product using ProductConfigItemAppl. The options for a config item are specified 
with ProductConfigOption, and for options that are associated with another Product 
(which has its own inventory, pricing, supplier details, etc) use the 
ProductConfigOptionProduct entity."

To help clarify here is the path between the configurable product and the component 
product: Product ==> ProductConfigItemAppl ==> ProductConfigItem ==> 
ProductConfigOption ==> ProductConfigOptionProduct ==> Product.!

The ProductConfigOption entity has a description field, and for localized description and 
other content associated with an option use the ProductConfigItemContent entity to 
reference Resource Facade content locations."

When a configurable product is configured, usually when added to an order, we need a place 
to save the configuration and that starts with the ProductConfigSaved entity. This is 
referenced on an order item using the OrderItem.productConfigSavedId field. Within the 
saved configuration the option selected for each item is recorded with the 
ProductConfigSavedOption entity."

Definition - Cost (mantle.product.cost) 

CostComponent records are used to break down the cost of a Product, especially 
manufactured products. Products purchased from suppliers have a much simpler cost, the 
price paid to the supplier. Cost components include things like estimated and actual 
material, supply, equipment usage, and other costs. The various cost components added 
together for a particular product within a date range make up the cost of a product."

The CostComponentCalc entity, and the ProductCostComponentCalc to apply it to a 
Product, are used to specify how a CostComponent is to be calculated, or what the cost of a 
product should be based on."

The ProductAverageCost entity is used to keep track of the average cost of a Product over 
time (with a from/thru effective date range) optionally for a particular Facility and a 
particular Organization. This is mostly to be used for the purpose of COGS calculations 
that require an average cost history as opposed to being based on actual cost of an item sold."

Definition - Feature (mantle.product.feature) 

A ProductFeature describes a Product in a structured way. There are quite a few feature 
types (productFeatureTypeEnumId) defined OOTB, like Brand, Color, Fabric, License, and 

���   12. Mantle Business Artifacts197                                                      



Size. It is common to add customer feature types using Enumeration records of type 
ProductFeatureType. "

A feature is applied to a product using the ProductFeatureAppl with a applTypeEnumId to 
specify what the feature is to the product (Selectable for optional features, Standard for 
inherent aspects of a product, or Distinguishing to describe variants or a virtual product), 
and within an effective date range (fromDate, thruDate)."

Sometimes it is necessary to model features that are incompatible or dependent, use the 
ProductFeatureIactn entity for this."

Features are naturally organized by type, but it is often useful to define sets of features that 
are used for a particular purpose such as facets for search of certain products or that are used 
to describe certain types of products (mostly for administrative purposes). The 
ProductFeatureGroup entity does just that. Use ProductFeatureGroupAppl to specify 
which features belong in which groups. For feature groups that are associated with a 
ProductCategory use ProductCategoryFeatGrpAppl to tie them together."

Mantle Structure and UDM  ���                                                    198

ProductFeature

productFeatureTypeEnumId
description
numberSpecified
numberUomId
defaultAmount
defaultSequenceNum
abbrev
idCode

productFeatureId
id
text-medium
number-decimal
id
currency-amount
number-decimal
id
id-long

id

ProductFeatureAppl

thruDate
applTypeEnumId
sequenceNum
amount
recurringAmount

productId
productFeatureId
fromDate

date-time
id
number-integer
currency-amount
currency-amount

id
id
date-time

ProductFeatureIactn

iactnTypeEnumId
productId

fromProductFeatureId
toProductFeatureId

id
id

id
id

Product

productTypeEnumId
productName

productId
id
text-medium

id

ProductCategory

productCategoryTypeEnumId
categoryName
description

productCategoryId
id
text-medium
text-very-long

id

ProductFeatureGroup

description
productFeatureGroupId

text-medium
id

ProductFeatureGroupAppl

thruDate
sequenceNum

productFeatureGroupId
productFeatureId
fromDate

date-time
number-integer

id
id
date-time

ProductCategoryFeatGrpAppl

thruDate

productCategoryId
productFeatureGroupId
fromDate

date-time

id
id
date-time

from to



Definition - Subscription (mantle.product.subscription) 

A Subscription is used to record a party’s (subscriberPartyId) access to a 
SubscriptionResource for a specific date range (fromDate, thruDate). It is typically 
associated with the OrderItem used to purchase the subscription and for convenience the 
Product that was purchased to create the subscription. In addition to, or as an alternative to, 
the date range the subscription can be limited by actual use time as opposed to calendar time 
(useTime) and/or by use count (useCountLimit)."

To configure a SubscriptionResource to be accessible for a availableTime, useTime, and/
or useCountLimit when a Product is purchased use the ProductSubscriptionResource 
entity. "

Use the SubscriptionDelivery entity to keep track of CommunicationEvent instances that 
are related to the subscription, especially for delivery of digital subscription resources."

Asset - Asset (mantle.product.asset) 

The Asset entity is used for inventory, equipment, and anything to be financially tracked as 
a fixed asset (assetTypeEnumId). Assets are identified by an assetId. An asset also has a 
class (classEnumId) such as forklift, tractor, laptop computer, or even software that can be 
used to categorize assets especially for manufacturing purposes to find the equipment 
needed for specific routes (manufacturing tasks). Add your own asset classes with 
Enumeration records of type AssetClass."

An Asset commonly represents an instance of a Product, or in other words the physical 
item that the Product record describes. The productId field specified which. An asset will 
also generally have an assetName and has a comments field to track general comments/
notes."

Assets have a status (statusId) with various OOTB statuses for serialized inventory and 
equipment. A serialized inventory asset represents a single physical item and commonly has 
a serialNumber, hence the name. "

Non-serialized inventory assets (hasQuantity=Y) represent more than a single quantity to 
handle simpler inventory needs where the items are all the same and don’t need to be 
individually tracked. The current physical quantity on hand is maintained in the 
quantityOnHandTotal field, and the quantity that can be reserved or promised in the 
availableToPromiseTotal. Inventory of a product will usually consist of multiple Asset 
records such that all items represented by the record have the same receivedDate, lotId, 
facilityId and locationSeqId (for the FacilityLocation where the asset is stored), 
ownerPartyId (the Party, usually internal org for inventory, that owns it), and where 
applicable statusId. Typically as each batch of inventory is received and put away a new 
Asset record is created for it."

���   12. Mantle Business Artifacts199                                                      



The quantity fields have the Total suffix because they are derived from the 
quantityOnHandDiff and availableToPromiseDiff fields on the AssetDetail entity. 
Each AssetDetail record represents some change to an Asset such as a reservation for a 

Mantle Structure and UDM  ���                                                    200

Asset

parentAssetId
assetTypeEnumId
classEnumId
statusId
ownerPartyId
productId
hasQuantity
quantityOnHandTotal
availableToPromiseTotal
assetName
comments
serialNumber
receivedDate
manufacturedDate
expectedEndOfLife
actualEndOfLife
facilityId
locationSeqId
containerId
lotId
acquireOrderId
acquireOrderItemSeqId
acquireCost
acquireCostUomId
depreciation
depreciationTypeEnumId

assetId
id
id
id
id
id
id
text-indicator
number-decimal
number-decimal
text-medium
text-medium
text-medium
date-time
date-time
date
date
id
id
id
id
id
id
currency-amount
id
currency-amount
id

id

AssetDetail

assetId
effectiveDate
quantityOnHandDiff
availableToPromiseDiff
unitCost
assetReservationId
shipmentId
productId
returnId
returnItemSeqId
workEffortId
assetMaintenanceId
assetIssuanceId
assetReceiptId
physicalInventoryId
varianceReasonEnumId
description

assetDetailId
id
date-time
number-decimal
number-decimal
currency-amount
id
id
id
id
id
id
id
id
id
id
id
text-medium

id

AssetGeoPoint

thruDate

assetId
geoPointId
fromDate

date-time

id
id
date-time

AssetIdentification

idValue

assetId
identificationTypeEnumId

text-medium

id
id

AssetPartyAssignment

thruDate
allocatedDate
statusId
comments

assetId
partyId
roleTypeId
fromDate

date-time
date-time
id
text-medium

id
id
id
date-time

AssetProduct

thruDate
comments
sequenceNum
quantity
quantityUomId

assetId
productId
assetProductTypeEnumId
fromDate

date-time
text-medium
number-integer
number-decimal
id

id
id
id
date-time

AssetStandardCost

thruDate
amount
amountUomId

assetId
assetStandardCostTypeEnumId
fromDate

date-time
currency-amount
id

id
id
date-time

Container

containerTypeEnumId
facilityId
locationSeqId
geoPointId
description

containerId
id
id
id
id
text-medium

idLot

creationDate
quantity
expirationDate

lotId
date-time
number-decimal
date-time

id

PhysicalInventory

physicalInventoryDate
partyId
comments

physicalInventoryId
date-time
id
text-long

id

Product

productTypeEnumId
productName

productId
id
text-medium

id



placed order (assetReservationId), issuance on outgoing shipment (assetIssuanceId), 
receipt on incoming shipment (assetReceiptId), variance from physical inventory count 
(physicalInventoryId, varianceReasonEnumId), and production or consumption in a 
work effort such as a manufacturing route (workEffortId). If a Shipment is involved that is 
recorded in shipmentId, and all details should have their effectiveDate recorded."

When a physical inventory count is done it is tracked with a PhysicalInventory record, 
and the details for each inventory variance are recorded in AssetDetail records as described 
above."

An asset may have a number of dates recorded as applicable for the type of asset: 
receivedDate, acquiredDate, manufacturedDate, expectedEndOfLife, and 
actualEndOfLife. To track purchased assets and actual cost data Asset has 
acquireOrderId, acquireOrderItemSeqId, acquireCost, and acquireCostUomId fields. 
For fixed asset depreciation tracking, in adding to the corresponding AcctgTrans records, it 
has depreciation, depreciationTypeEnumId, and salvageValue fields."

Use AssetGeoPoint to record where an asset is, and a history of where it has been (with 
from/thru date fields). Use AssetIdentification to ID values for an asset such as a 
tracking label number, manufacturer serial number, VIN, etc. An Asset can be assigned to a 
Party using AssetPartyAssignment in a particular role and with an effective date range 
(fromDate, thruDate) for purposes such as use, management, maintenance, etc."

While an Asset is an instance of a Product, additional products may be associated with the 
asset to represent things such as rental or sale of the asset. Use the AssetProduct entity to 
keep track of these associated products."

While an inventory Asset, and sometimes other types of asset, are generally located in a 
FacilityLocation with the facilityId and locationSeqId fields it can also be located in 
a Container to more easily track movement of a set of assets that are in the container. In this 
case the facilityId and locationSeqId fields will be null and the Asset.containerId 
field will be populated. In that case the actual location will be found using the facilityId, 
locationSeqId, and geoPointId fields as applicable. These fields are audit logged to keep a 
history of their changes as a container moves."

Asset - Issuance (mantle.product.issuance) 

Because competition for specific inventory items is common, such as when sales orders are 
placed for products with limited inventory, it is necessary to track reservations with 
AssetReservation records that are created when an item is promised. Later on when the 
physical item is fulfilled a AssetIssuance is created and the AssetReservation is deleted 
as it is no longer valid."

A reservation is associated with the Asset (assetId), Product (productId) for convenience, 
and OrderItem (orderId, orderItemSeqId). It has the quantity reserved, and for when the 

���   12. Mantle Business Artifacts201                                                      



reservation goes beyond on hand inventory the quantity reserved that was not available to 
promise is tracked with the quantityNotAvailable field."

An issuance is associated with the Asset (assetId), the AssetReservation 
(assetReservationId) if applicable, Product (productId) for convenience, and OrderItem 
(orderId, orderItemSeqId), and the Shipment (shipmentId) or AssetMaintenance 
(assetMaintenanceId) the asset is issued to. The issuance has a issuedDate, the quantity 
issued, and when applicable the quantityCancelled from the issuance."

The issuance may have parties associated with it in particular roles using 
AssetIssuanceParty."

When an AssetIssuance is created it triggers a general ledger accounting transaction to 
deduct it from the value of inventory on hand. This is part of the standard set of accounting 
transactions for inventory sales."

Mantle Structure and UDM  ���                                                    202

Asset

assetTypeEnumId
classEnumId
assetName

assetId
id
id
text-medium

id

AssetReservation

assetId
productId
orderId
orderItemSeqId
reservationOrderEnumId
quantity
quantityNotAvailable
quantityNotIssued
reservedDate
originalPromisedDate
currentPromisedDate
priority
sequenceNum

assetReservationId
id
id
id
id
id
number-decimal
number-decimal
number-decimal
date-time
date-time
date-time
number-integer
number-integer

id

AssetIssuance

assetId
assetReservationId
orderId
orderItemSeqId
shipmentId
productId
assetMaintenanceId
issuedDate
quantity
quantityCancelled

assetIssuanceId
id
id
id
id
id
id
id
date-time
number-decimal
number-decimal

id

AssetReceipt

assetId
productId
orderId
orderItemSeqId
shipmentId
shipmentPackageSeqId
returnId
returnItemSeqId
receivedByUserId
receivedDate
itemDescription
quantityAccepted
quantityRejected
rejectionReasonEnumId

assetReceiptId
id
id
id
id
id
id
id
id
id-long
date-time
text-medium
number-decimal
number-decimal
id

id

AssetDetail

assetId
quantityOnHandDiff
availableToPromiseDiff
assetReservationId
assetIssuanceId
assetReceiptId

assetDetailId
id
number-decimal
number-decimal
id
id
id

id



Asset - Receipt (mantle.product.receipt) 

When an Asset is received, especially an inventory asset, that receipt is tracked with the 
AssetReceipt. For convenience the productId of the asset and an itemDescription are 
recorded on this. The receipt may be associated with an OrderItem (orderId, 
orderItemSeqId), ShipmentPackage (shipmentId, shipmentPackageSeqId), 
ShipmentItem (shipmentId, productId), and ReturnItem (returnId, returnItemSeqId)."

There are fields to track the user who received the asset (receivedByUserId), the date it was 
received (receivedDate), the quantityAccepted and quantityRejected, and if there is a 
rejected quantity the reason for it (rejectionReasonEnumId)."

When an AssetReceipt is created it triggers a general ledger accounting transaction to add 
it to the value of inventory on hand. This is part of the standard set of accounting 
transactions for inventory purchasing."

Asset - Maintenance (mantle.product.maintenance) 

Following the pattern of Asset being an instance of a Product, the product describes the 
asset including the maintenance schedule associated with the product in the form of the 
ProductMaintenance entity. There are many types of maintenance, specified with the 
maintenanceTypeEnumId field, such as oil change and cleaning. You can add more by 
creating Enumeration records of type MaintenanceType."

The maintenance is to be done each intervalQuantity with the unit intervalUomId. The 
interval may be measured by a meter on the asset of ProductMeterType identified by 
intervalMeterTypeId. The meter should also be associated directly with the Product using 
ProductMeter. If a repeatCount is specified on the ProductMaintenance record the 
maintenance would be done only that many times."

The maintenance may be tracked with a WorkEffort and to simplify this a predefined work 
effort can be used as a template and copied from the maintenance schedule 
(ProductMaintenance.templateWorkEffortId) to the actual maintenance record 
(AssetMaintenance.taskWorkEffortId) where it would be assigned, the status updated, 
and so on."

For an actual maintenance effort for a particular Asset the AssetMaintenance entity has 
similar fields like the intervalQuantity value and related fields when the maintenance is 
actually performed. This has a status (statusId) to track planning and completion of the 
maintenance. It also has a purchaseOrderId for when the work is hired out to track the 
corresponding order. The maintenance may be purchased or sold and the relevant order item 
or items are tracked with AssetMaintenanceOrderItem."

It is typical to read meters on the asset when maintenance is done, and the meter values for 
each meter associated with the product (ProductMeter) are recorded with AssetMeter. 
Other meter readings may be done outside the context of maintenance and also recorded 

���   12. Mantle Business Artifacts203                                                      



with AssetMeter. This may be done when fueling, at route waypoints, before/after 
production tasks, etc (readingReasonEnumId) and these records are often very important for 
financial management and tax liability."

Use AssetRegistration to record details when an Asset is registered with a government 
authority (govAgencyPartyId). These may include a licenseNumber and 
registrationNumber. The registration will happen on a certain date (registrationDate) 
and be valid within a date range (fromDate, thruDate)."

Store (mantle.product.store) 

For sales order processing on an eCommerce site or in a POS (point of sale) system we need a 
way to keep track of all of the relevant settings. The ProductStore and related entities are 
used for this. "

A store has a name (storeName) and is owned/run by an internal organization 
(organizationPartyId). While a store may support various languages and currencies each 

Mantle Structure and UDM  ���                                                    204

Asset

assetTypeEnumId
classEnumId
productId
assetName

assetId
id
id
id
text-medium

id
Product

productTypeEnumId
productName

productId
id
text-medium

id

AssetMaintenance

assetId
statusId
maintenanceTypeEnumId
productMaintenanceId
taskWorkEffortId
intervalQuantity
intervalUomId
intervalMeterTypeId
purchaseOrderId

assetMaintenanceId
id
id
id
id
id
number-decimal
id
id
id

id
ProductMaintenance

productId
maintenanceTypeEnumId
description
templateWorkEffortId
intervalQuantity
intervalUomId
intervalMeterTypeId
repeatCount

productMaintenanceId
id
id
text-medium
id
number-decimal
id
id
number-integer

id

ProductMeter

meterUomId
meterName

productId
productMeterTypeId

id
text-medium

id
id

ProductMeterType

description
defaultUomId

productMeterTypeId
text-medium
id

id
AssetMeter

meterValue
readingReasonEnumId
assetMaintenanceId
workEffortId

assetId
productMeterTypeId
readingDate

number-decimal
id
id
id

id
id
date-time

WorkEffort

workEffortTypeEnumId
workEffortName

workEffortId
id
text-medium

id
AssetMaintenanceOrderItem

assetMaintenanceId
orderId
orderItemSeqId

id
id
id



store is typically best focused on a single country/area with a single language 
(defaultLocale) and currency (defaultCurrencyUomId)."

 including:"

• Products available: The ProductStoreCategory entity associates ProductCategory 
records with a store for browse root, default search, purchase allow, etc and the 
products in those categories or their sub-categories make up the products available in 
the store."

• Notification emails: Use ProductStoreEmail to associated Moqui EmailTemplate 
records with the store for notification emails such as registration, order confirmation, 
order change, return completion, password update, and so on."

• Inventory reservation: The most common case is to have a single inventory Facility 
for a store, and this is specified in the ProductStore.inventoryFacilityId field. 
When more than one is needed use the ProductStoreFacility entity. Inventory is 
reserved in the order specified with the ProductStore.reservationOrderEnumId, 
such as FIFO or LIFO by received date or expiration date. For automatic replenishment 
requirements set the ProductStore.requirementMethodEnumId field."

• Payment processing: Use ProductStorePaymentGateway to configure the 
PaymentGatewayConfig to use for each paymentMethodTypeEnumId."

• Shipping options and rate calculation: The ProductStoreShippingGateway entity is 
used to configure the ShippingGatewayConfig to use for each carrierPartyId."

• Tax calculation: The ProductStore.taxGatewayConfigId points to the 
TaxGatewayConfig record to use for this store for sales/VAT tax calculation."

The ProductStoreParty entity is used for general needs to associate parties in a particular 
role with a store. One of many uses for this is if ProductStore.requireCustomerRole is set 
to Y then only parties associated with the store in the Customer role can access the store."

When managing a large number of stores or to automate based on specific sets of stores use 
the ProductStoreGroup entity to represent a group of stores, and 
ProductStoreGroupMember entity to associate stores with the group. A store can be 
associated with multiple groups. Use the ProductStoreGroupParty entity to associate 
parties with the group."

Request 

Request (mantle.request) 

A Request can be from a party (filedByPartyId) inside an organization such as an 
employee for things like inventory or general purchases, or outside an organization such as a 
client or customer for things like a quote, proposal, or in the software world for things like a 
bug fix or new feature. These are specified in the requestTypeEnumId field and while there 
are a few general ones defined OOTB you may want to define others by adding 
Enumeration records of type RequestType."
���   12. Mantle Business Artifacts205                                                      



The default Request statuses (statusId) include Draft, Submitted, Reviewed, In Progress, 
Completed, and Cancelled. It also has a resolution (requestResolutionEnumId) that is by 
default Unresolved and default options include Fixed, Can't Reproduce, Won't Fix, 
Duplicate, Rejected, and Insufficient Information. Additional resolutions can be added as 
Enumeration records of type RequestResolution. If the result should be sent where to send 
it is specified with the fulfillContactMechId field."

A Request has a name (requestName), description, and if there is a story with additional 
details in Resource Facade content it is referred to with the storyLocation field. To help 
determine the order to work on requests and for general information it has priority, 
requestDate, and responseRequiredDate fields. A request may be associated with a 
Facility (facilityId) and ProductStore (productStoreId)."

Mantle Structure and UDM  ���                                                    206

Request

requestTypeEnumId
requestCategoryId
statusId
requestName
description
storyLocation
priority
requestDate
responseRequiredDate
requestResolutionEnumId
maximumAmountUomId
currencyUomId
filedByPartyId

requestId
id
id
id
text-medium
text-medium
text-medium
number-integer
date-time
date-time
id
id
id
id

id

RequestItem

statusId
requiredByDate
productId
quantity
selectedAmount
maximumAmount
description
supplierPartyId

requestId
requestItemSeqId

id
date-time
id
number-decimal
number-decimal
currency-amount
text-medium
id

id
id

RequestItemAssoc

quantity

requestId
requestItemSeqId
otherRequestId
otherRequestItemSeqId

number-decimal

id
id
id
id

RequestItemOrder

requestId
requestItemSeqId
orderId
orderItemSeqId
quantity

requestItemOrderId
id
id
id
id
number-decimal

id

RequestWorkEffort
requestId
workEffortId

id
id

RequestParty

thruDate
receiveNotifications

requestId
partyId
roleTypeId
fromDate

date-time
text-indicator

id
id
id
date-time

RequestCategory

parentCategoryId
responsiblePartyId
description

requestCategoryId
id
id
text-medium

id

RequestCommEvent
requestId
communicationEventId

id
id

RequestContent

thruDate

requestId
contentLocation
requestContentTypeEnumId
fromDate

date-time

id
id
id
date-time



The details for a request are in its RequestItem records. An item can have its own statusId 
(using the same statuses as a request) and requiredByDate and typically has a 
description. If the request is for Product use the productId, quantity, and (if applicable) 
selectedAmount fields to specify details. "

For quotes and other similar types of requests where there is a maximum amount/price to 
pay for the item, specify it in the maximumAmount field on the item. The unit for this amount 
is on the Request record in the maximumAmountUomId field. These types of requests also 
typically result in an order and the RequestItem is associated with an OrderItem using the 
RequestItemOrder entity."

For manual organization of requests use RequestCategory to specify hierarchical (with 
parentCategoryId) request categories associated with requests using the 
Request.requestCategoryId field."

A request may be associated with CommunicationEvent for communication related to the 
request (RequestCommEvent), Resource Facade content for additional content or documents 
(RequestContent), Party for parties working on or otherwise related to the request 
(RequestParty), and WorkEffort for tasks and other efforts related to handling the request 
(RequestWorkEffort). A request may also have notes (RequestNote)."

As an example a Request may be created for a software bug fix. The request is assigned to 
someone with a RequestParty record. That person creates a task (WorkEffort) which is 
associated with the request using a RequestWorkEffort record. That task may be assigned 
to the same person or someone else, or even a group. Once the task is done its status is 
updated as is the status on the request."

Requirement (mantle.request.requirement) 

A Requirement may be for work, inventory, general customer or internal requirements, etc 
(requirementTypeEnumId). Add your own types with Enumeration records of type 
RequirementType. Its statuses (statusId) include Proposed, Created, Approved, Ordered, 
and Rejected. Inventory requirements and other types as applicable may be for a specific 
Facility (facilityId), and Product (quantity)."

A requirement will typically have a requirementStartDate and a requiredByDate. To 
describe the requirement in detail, especially for software requirements, the useCase and 
reason fields are there for you. Parties may be associated with the requirement using the 
RequirementParty entity."

For automatic inventory replenishment inventory requirements can be created based on the 
ProductStore requirementMethodEnumId setting. Common options include creating a 
requirement based on every order, when ATP or QOH fall below the level configured on the 
relevant ProductFacility record, or for drop-ship third party ordering purposes. After 
requirements are created they can be summarized by Product and Facility then after a 

���   12. Mantle Business Artifacts207                                                      



supplier is selected an order with the total quantity can be created and associated with the 
RequirementOrderItem entity."

Work requirements follow a different path. They may have an order associated with them for 
the labor, but more commonly result in a specific RequestItem (associated with 
RequirementRequestItem) or directly to a WorkEffort (with 
WorkRequirementFulfillment). The work effort can be for Implements, Fixes, Deploys, 
Tests, or Delivers (fulfillmentTypeEnumId)."

The Requirement entity has a simple estimatedBudget field, and for more complex 
budgeting requirements or to include it in a larger budget plan it can be associated with a 
BudgetItem using the RequirementBudgetAllocation entity. "

Sales 

Opportunity (mantle.sales.opportunity) 

As part of sales force automation (SFA) use the SalesOpportunity to keep track of 
opportunities. An opportunity is typically associated with a certain sales stage 
(SalesOpportunityStage), and you can define any series of stages desired."

Mantle Structure and UDM  ���                                                    208

Requirement

requirementTypeEnumId
statusId
facilityId
deliverableId
assetId
productId
description
requirementStartDate
requiredByDate
estimatedBudget
quantity
useCase
reason

requirementId
id
id
id
id
id
id
text-medium
date-time
date-time
currency-amount
number-decimal
text-very-long
text-long

id

RequirementRequestItem
requirementId
requestId
requestItemSeqId

id
id
id

RequirementParty

thruDate

requirementId
partyId
roleTypeId
fromDate

date-time

id
id
id
date-time

RequirementOrderItem

quantity

requirementId
orderId
orderItemSeqId

number-decimal

id
id
id

WorkRequirementFulfillment

fulfillmentTypeEnumId

requirementId
workEffortId

id

id
id

RequestItem

statusId
requiredByDate
description

requestId
requestItemSeqId

id
date-time
text-medium

id
id

WorkEffort

workEffortTypeEnumId
workEffortName

workEffortId
id
text-medium

id



There may be many parties associated with an opportunity including the customer/prospect, 
sales representative, manager, etc. Record these with the SalesOpportunityParty entity. 
You could use this for competitors as well, but generally there is additional information for 
competitors so use the SalesOpportunityCompetitor entity for them."

An opportunity will often be associated with a quote, which may turn into an order. Use 
SalesOpportunityQuote to keep track of these. There may be meetings, other calendar 
events, or tasks associated with an opportunity and use SalesOpportunityWorkEffort to 
associate it with those."

There are a couple of touch points to marketing records. One is to a MarketingCampaign 
using SalesOpportunity.marketingCampaignId. Another is marketing TrackingCode 
records which are associated using the SalesOpportunityTracking entity. See the 
Marketing section for more details about these."

Forecast (mantle.sales.forecast) 

A SalesForecast may be for an entire internal organization (organizationPartyId) or a 
specific Party within that Organization (internalPartyId). It is associated with a 
TimePeriod and has amount fields including quotaAmount, forecastAmount, 
bestCaseAmount, and closedAmount for the final result."

Details about actual Product sold are recorded in SalesForecastDetail with a record with 
the sales amount and quantity sold for each Product and/or ProductCategory."

Need (mantle.sales.need) 

To record when a customer or other Party needs product (could be internal or external) use 
the PartyNeed entity. It can be for a Product and/or ProductCategory for needs that may 
be met by a variety or products, or when the exact product needed is not yet known. It often 
comes from a CommunicationEvent or through a web app with a Visit so there are fields 
for both."

Shipment 

Shipment (mantle.shipment) 

The Shipment and related entities may be used for both Incoming and Outgoing shipments 
(shipmentTypeEnumId), and more specifically for Sales Return, Sales Shipment, Purchase 
Shipment, Purchase Return, Drop Shipment, and Transfer shipments. A Shipment is 
generally from one Party (fromPartyId) and to another (toPartyId). If needed put special 
instructions in the handlingInstructions field."

���   12. Mantle Business Artifacts209                                                      



For planning purposes a shipment may have estimatedReadyDate, estimatedShipDate, 
estimatedArrivalDate, and latestCancelDate values. For further detail or to get the 
shipment in a calendar as an event use the shipWorkEffortId and arrivalWorkEffortId 
fields to point for WorkEffort records. There is typically some sort of estimated cost for the 
shipment, track that in estimatedShipCost with its currency in costUomId. If the cost is 
adjusted use the addtlShippingCharge field along with a description of the additional 
charge in addtlShippingChargeDesc."

For the entire Shipment there is a statusId that may be Input, Scheduled, Picked, Packed, 
Shipped, Delivered, and Cancelled. This field is audit logged for a status history. The Packed 
status is one of the more important as it is the point where the shipment is generally 

Mantle Structure and UDM  ���                                                    210

Shipment

shipmentTypeEnumId
statusId
picklistId
binLocationNumber
estimatedShipDate
estimatedArrivalDate
estimatedShipCost
costUomId
handlingInstructions
fromPartyId
toPartyId

shipmentId
id
id
id
number-integer
date-time
date-time
currency-amount
id
text-medium
id
id

id

ShipmentItem

quantity

shipmentId
productId

number-decimal

id
id

ShipmentItemSource

shipmentId
productId
binLocationNumber
orderId
orderItemSeqId
returnId
returnItemSeqId
statusId
quantity
quantityNotHandled
invoiceId
invoiceItemSeqId

shipmentItemSourceId
id
id
number-integer
id
id
id
id
id
number-decimal
number-decimal
id
id

id

ShipmentPackage

shipmentBoxTypeId
weight
weightUomId

shipmentId
shipmentPackageSeqId

id
number-decimal
id

id
id

ShipmentPackageContent

quantity

shipmentId
shipmentPackageSeqId
productId

number-decimal

id
id
id

ShipmentRouteSegment

deliveryId
originFacilityId
originPostalContactMechId
originTelecomContactMechId
destinationFacilityId
destPostalContactMechId
destTelecomContactMechId
carrierPartyId
shipmentMethodEnumId
statusId

shipmentId
shipmentRouteSegmentSeqId

id
id
id
id
id
id
id
id
id
id

id
id

ShipmentPackageRouteSeg

trackingCode
boxNumber
labelImage
labelPrinted
estimatedAmount
packageTransportAmount
packageServiceAmount
packageOtherAmount
codAmount
insuredAmount
amountUomId

shipmentId
shipmentPackageSeqId
shipmentRouteSegmentSeqId

text-short
text-short
binary-very-long
text-indicator
currency-amount
currency-amount
currency-amount
currency-amount
currency-amount
currency-amount
id

id
id
id



considered fulfilled for billing purposes. The change to the Packed status is used to trigger 
Invoice creation for the order(s) on the shipment, and if applicable automated payment 
processing."

Each shipment has ShipmentItem records with a quantity for each Product (productId) in 
the shipment. "

A Shipment always has one or more packages (ShipmentPackage) and the quantity of 
productId in each package is recorded with ShipmentPackageContent. Each package may 
have the box used (shipmentBoxTypeId pointing to a ShipmentBoxType record), and the 
total shipping weight of the package along with the unit for the weight (weightUomId)."

A Shipment also always has one or more route segments (ShipmentRouteSegment). 
Consumer fulfillment and most simple shipments involve a single route segment with a 
carrier (carrierPartyId) and shipment method (shipmentMethodEnumId) going from a 
certain origin (originPostalContactMechId, originTelecomContactMechId) to a 
destination (destPostalContactMechId, destTelecomContactMechId). A shipment may 
also have other contact information associated with it using the ShipmentContactMech 
entity."

For consumer fulfillment the origin will usually be a warehouse Facility and specified with 
originFacilityId. For consumer returns or inventory purchase shipments they will 
generally go to a Facility, recorded in destinationFacilityId. There are various dates 
associated with a route segment including estimatedStartDate, estimatedArrivalDate, 
actualStartDate and actualArrivalDate."

Each package will have certain details for each route segment (ShipmentPackageRouteSeg) 
including trackingCode, boxNumber (within the shipment, if applicable), and labels/
documents including labelImage, labelIntlSignImage, labelHtml, labelPrinted, and 
internationalInvoice."

For billing purposes each package in a route segment (ShipmentPackageRouteSeg) has an 
estimatedAmount for the estimate before getting a quote or actuals from the carrier, plus 
packageTransportAmount, packageServiceAmount, and packageOtherAmount for actuals 
from the carrier, along with codAmount and insuredAmount for those special situations. All 
of these use the currency specified in amountUomId. "

For all packages in a route segment (i.e., on ShipmentRouteSegment) there are fields for the 
totals in actualTransportCost, actualServiceCost, actualOtherCost, and actualCost 
with the currency in costUomId. The route segment also has a total billingWeight with 
billingWeightUomId that includes the billing weight used from all packages for the route 
segment. A route segment also has a status (statusId) that is mostly used for keeping track 
of communication (usually by integration) with the carrier, including: Not Started, 
Confirmed, Accepted, and Voided."

A Shipment is generally based on one or more orders or returns, and generally results in one 
or more invoices being produced. The ShipmentItemSource entity is used to keep track of 

���   12. Mantle Business Artifacts211                                                      



these, and there may be more than one ShipmentItemSource for each ShipmentItem record. 
More specifically a shipment item may be associated with multiple order items (orderId, 
orderItemSeqId) or return items (returnId, returnItemSeqId) and is generally associated 
with one or more invoice items (invoiceId, invoiceItemSeqId). "

There is a ShipmentItemSource.quantity field to specify how much of the 
ShipmentItem.quantity comes from the specified order or return item. There is also a 
quantityNotHandled field on the source to specify how much of the quantity should have 
been shipped but was not."

Shipment has picklistId and binLocationNumber fields, and ShipmentItemSource has 
binLocationNumber and statusId fields to use for picking and packing in a warehouse. See 
the Picklist (mantle.shipment.picklist) section below for details."

Carrier (mantle.shipment.carrier) 

A carrier is typically a company like UPS or FedEx. Use CarrierShipmentMethod to 
configure which carriers (carrierPartyId) support which shipment methods 
(shipmentMethodEnumId) and the carrier’s service code (carrierServiceCode) and 
Standard Carrier Alpha code (scaCode) for the method."

Similarly CarrierShipmentBoxType is used to configure the ShipmentBoxType (by 
shipmentBoxTypeId) records for a carrier and their corresponding packagingTypeCode and 
if applicable oversizeCode. The method and box codes are all typically used for carrier 
integrations to specify the service level and boxes using codes that the carrier supports."

If a Party has an account with a carrier track that using the PartyCarrierAccount entity. "

The ShippingGatewayConfig entity is used to specify details for an integration with a 
carrier for purposes of shipping estimates, rate quotes, getting labels, voiding labels, tracking 
packages, and even validating addresses. To implement a shipping gateway (carrier 
integration) implement services for each of these and create a record that points to them, then 
associate that with a ProductStore using the ProductStoreShippingGateway entity."

Picklist (mantle.shipment.picklist) 

A Picklist is used to organize pending Shipment records for a pick/pack process. There is 
no separate picklist bin structure, instead Shipment itself is used. Similarly there is no 
picklist item, the ShipmentItemSource is used to track items in a pick "bin" and details 
about the order, return, and invoice that the particular quantity of the item are associated 
with."

For a Shipment in the Input or Scheduled statuses the Shipment.picklistId points to the 
Picklist it is on. A picklist is always associated with a Facility (facilityId) and may be 
associated with a particular shipment method (shipmentMethodEnumId) for planning and 
processing fulfillment by shipment method. For management and historical tracking 

Mantle Structure and UDM  ���                                                    212



purposes Picklist has a date/time it was planned in the picklistDate field. Parties in a 
particular role such as Picker, Packer, Manager, etc may be associated with the picklist using 
PicklistParty."

In a typical picking process multiple shipments are picked at the same time, with the 
contents put into a bin. This is tracked with the Shipment.binLocationNumber field unless 
the shipment is split into multiple bins (like one bin per order on the shipment) and then the 
ShipmentItemSource.binLocationNumber field is used to override the one on the 
Shipment record."

The ShipmentItemSource entity has the OrderItem details (orderId, orderItemSeqId) to 
lookup related AssetReservation records that have the quantity (or quantityNotIssued 
if used) to pick and the corresponding Asset to find the FacilityLocation that the asset is 
stored in for picking."

ShipmentItemSource has a status (statusId) for picking and packing purposes that can be 
Pending, Picked, Packed, Received, or Cancelled. Note that the Received status goes beyond 
the typical pick/pack process to track receipt of items when that data is available and 
needed."

A typical pick sheet will have a list of all facility locations to pick from listed in order of their 
location for easy walking of the floor to pick all shipments on the list. For each location the 
product and quantity to pick are listed along with the pick bin number and the quantity for 
that bin to get the right number of items in the bin for the right shipment (or order). The 
series of entities above is used to get all of those details."

���   12. Mantle Business Artifacts213                                                      

Picklist

description
facilityId
shipmentMethodEnumId
statusId
picklistDate

picklistId
text-medium
id
id
id
date-time

id

PicklistParty

thruDate

picklistId
partyId
roleTypeId
fromDate

date-time

id
id
id
date-time

Shipment

shipmentTypeEnumId
statusId
picklistId
binLocationNumber

shipmentId
id
id
id
number-integer

id

ShipmentItemSource

shipmentId
productId
binLocationNumber
statusId
quantity
quantityNotHandled

shipmentItemSourceId
id
id
number-integer
id
number-decimal
number-decimal

id



Work Effort 

Work Effort (mantle.work.effort) 

The most basic types of WorkEffort task and calendar event. More generally WorkEffort is 
used for projects, milestones, tasks, manufacturing routing, meetings, calls, travel, and even 
time off and work availability. "

These are specified with the type (workEffortTypeEnumId) and purpose (purposeEnumId). 
Types have more automation around them and are more limited, currently including Project, 
Milestone, Task, Event, Available, and Time Off. The purposes are more flexible, there is a 
much larger set, and you can add more with Enumeration records of type 
WorkEffortPurpose."

Work efforts are hierarchical with the rootWorkEffortId to identify the root (such as a 
project) and parentWorkEffortId for the immediate parent in the hierarchy. For example 
with a Project type WorkEffort as the root the top-level tasks are Task type WorkEffort 
records with the rootWorkEffortId pointing to the project and no parentWorkEffortId. 
Sub-tasks have the same rootWorkEffortId value and their parentWorkEffortId field 
points to the top-level task."

WorkEffort has all the basic fields needed for a task or event including name 
(workEffortName), description, location, infoUrl, estimatedStartDate, 
estimatedCompletionDate, percentComplete, and priority. For iCal files and similar 
uses the workEffortId isn’t generally a universally unique identifier so there is a 
universalId field for that. For historical tracking it also has actualStartDate and 
actualCompletionDate fields. "

A work effort may take place in an office, warehouse, or other type of Facility and that is 
tracked with the facilityId field. For additional location and contact information use the 
WorkEffortContactMech entity to associate contact mechs such a postal addresses, 
telephone numbers (for conference calls, etc), email addresses, and so on. To keep track of 
actual communication related to a work effort use the WorkEffortCommEvent entity and 
associated CommunicationEvent records."

A WorkEffort may be internal, sensitive, or totally public and this is specified with 
visibilityEnumId. The OOTB options for it are General (public access), Work Group (group 
only access), Restricted (private access), and Top Secret (confidential access)."

For some types of efforts such as manufacturing tasks more detailed time allowances and 
tracking are needed. There are a few decimal number fields for this: estimatedWorkTime, 
estimatedSetupTime, remainingWorkTime, actualWorkTime, actualSetupTime, and 
totalTimeAllowed. The time unit for these fields is specified in the timeUomId field."

!
Mantle Structure and UDM  ���                                                    214



WorkEffort status (statusId) options include: In Planning, Approved/Scheduled, In 
Progress, Complete, Closed, On Hold and Cancelled. These are the statuses for the Default 
StatusFlow. To use a different StatusFlow use the statusFlowId field on either a particular 
WorkEffort or (depending on implementation) its root WorkEffort pointed to with 
rootWorkEffortId."

���   12. Mantle Business Artifacts215                                                      

WorkEffort

universalId
parentWorkEffortId
rootWorkEffortId
workEffortTypeEnumId
purposeEnumId
visibilityEnumId
resolutionEnumId
statusId
statusFlowId
priority
sendNotificationEmail
percentComplete
revisionNumber
workEffortName
description
location
facilityId
infoUrl
estimatedStartDate
estimatedCompletionDate
actualStartDate
actualCompletionDate

workEffortId
id
id
id
id
id
id
id
id
id
number-integer
text-indicator
number-integer
number-integer
text-medium
text-long
text-medium
id
text-medium
date-time
date-time
date-time
date-time

id

WorkEffortAssoc

thruDate
sequenceNum

workEffortId
toWorkEffortId
workEffortAssocTypeEnumId
fromDate

date-time
number-integer

id
id
id
date-time

WorkEffortParty

thruDate
statusId
availabilityEnumId
delegateReasonEnumId
expectationEnumId
emplPositionClassId
comments
mustRsvp
receiveNotifications

workEffortId
partyId
roleTypeId
fromDate

date-time
id
id
id
id
id
text-medium
text-indicator
text-indicator

id
id
id
date-time

WorkEffortContent

thruDate

workEffortId
contentLocation
contentTypeEnumId
fromDate

date-time

id
id
id
date-time

WorkEffortCommEvent

description
sequenceNum

workEffortId
communicationEventId

text-medium
number-integer

id
id

WorkEffortContactMech

thruDate
extension
comments

workEffortId
contactMechId
contactMechPurposeId
fromDate

date-time
text-short
text-medium

id
id
id
date-time

WorkEffortBilling

percentage

workEffortId
invoiceId
invoiceItemSeqId

number-float

id
id
id

WorkEffortAssetAssign

thruDate
statusId
allocatedCost
comments

workEffortId
assetId
fromDate

date-time
id
currency-amount
text-medium

id
id
date-time

WorkEffortProduct

thruDate
typeEnumId
statusId
estimatedQuantity
estimatedCost

workEffortId
productId
fromDate

date-time
id
id
number-decimal
currency-amount

id
id
date-time

from to

root
  parent



In addition to status WorkEffort has a resolution (resolutionEnumId). OOTB options 
include Unresolved (default), Completed, Incomplete, Won't Complete, Duplicate, Cannot 
Reproduce, and Insufficient Information. Additional resolutions can be added with 
Enumeration records of type WorkEffortResolution."

In addition to the hierarchical structure of work efforts they may be associated with others 
using the WorkEffortAssoc entity with types such as Depends On, Duplicates, Caused By, 
Independent Of (Concurrent), Routing Component, and Milestone. Note that milestones are 
associated with tasks through an association and are not as a parent WorkEffort. This is 
because a task may be associated with multiple milestones over time so we have a history 
and forward planning options. Additional association types can be added with Enumeration 
records of type WorkEffortAssocType."

For equipment or other types of Asset used (but not consumed) for a work effort use the 
WorkEffortAssetAssign entity. Asset records assigned this way are generally considered 
busy (otherwise unavailable) for the duration of the WorkEffort. To plan for a type of asset 
needed by the Product (assetProductId) that represents a type of asset, use the 
WorkEffortAssetNeeded entity. Product records may be associated with a WorkEffort for 
other reasons using WorkEffortProduct. Assets such as materials and supplies that are used 
(consumed) for a work effort are tracked with WorkEffortAssetUsed and asset produced by 
the work effort with WorkEffortAssetProduced."

Sometimes it is useful for organize work efforts by a more general Deliverable. Associate 
work efforts with it using WorkEffortDeliverableProd. "

Use WorkEffortSkillStandard to record the skills (Enumeration of type SkillType from 
the HR/humanres entities) needed for a WorkEffort, usually as part of selection of parties to 
assign to the effort."

There are various reasons to associate a Party with a WorkEffort, and the party’s 
involvement with the work effort (just as a party’s association with other entities) is 
determined by the role (roleTypeId). This may be Manager, Worker, Operator, or any other 
role (including Not Applicable). For billing reasons a EmplPositionClass may be specified 
on the WorkEffortParty with the emplPositionClassId field."

Each Party association with a WorkEffort has a status (statusId; Offered, Assigned, 
Declined, Unassigned), availability (availabilityEnumId; Available, Busy, Away), 
expectation (expectationEnumId; For Your Information, Involvement Required, 
Involvement Requested, Immediate Response Requested) and in the case of delegation a 
reason for it (delegateReasonEnumId; Need Support or Help, My Part Finished, Completely 
Finished)."

To associated a higher-level WorkEffort (such as a Project) with an Invoice using the 
WorkEffortInvoice entity. For more detail billing of particular tasks or other lower-level 
work efforts, or even a percentage of one, use the WorkEffortBilling entity."

Mantle Structure and UDM  ���                                                    216



General Resource Facade content and documents may be associated with a WorkEffort 
using the WorkEffortContent. Notes may be recorded for an effort using WorkEffortNote. "

Time Entry (mantle.work.time) 

Use the TimeEntry entity to record the time worked (hours) on a task or other type of 
WorkEffort (by workEffortId) by a particular Party (partyId). The working time falls 
between the fromDate and thruDate, and if any time within that range was not spent 
working it can be recorded in breakHours. Generally hours + breakHours, if both specified, 
should match the time duration between fromDate and thruDate."

For billing purposes a RateType will generally be specified in rateTypeId. Common types 
include Standard, Discounted, Overtime, and On-site Work. This is used to lookup a 
RateAmount record along with other data applicable (may include partyId, workEffortId, 
emplPositionClassId, and ratePurposeEnumId as Client or Vendor). This may be done 
twice, once for the Client rate (client pays to vendor) and once for the Vendor rate (vendor 
pays to worker) and recorded in rateAmountId and vendorRateAmountId."

Once a TimeEntry is billed the relevant InvoiceItem is referenced with the invoiceId and 
invoiceItemSeqId fields for the invoice from vendor to client, and with the 

���   12. Mantle Business Artifacts217                                                      

WorkEffort

workEffortTypeEnumId
purposeEnumId
statusId
percentComplete
workEffortName
estimatedWorkTime
remainingWorkTime
actualWorkTime

workEffortId
id
id
id
number-integer
text-medium
number-decimal
number-decimal
number-decimal

id

TimeEntry

timesheetId
partyId
rateTypeEnumId
rateAmountId
vendorRateAmountId
fromDate
thruDate
hours
breakHours
comments
workEffortId
invoiceId
invoiceItemSeqId
vendorInvoiceId
vendorInvoiceItemSeqId

timeEntryId
id
id
id
id
id
date-time
date-time
number-decimal
number-decimal
text-long
id
id
id
id
id

id

Timesheet

partyId
clientPartyId
fromDate
thruDate
statusId
comments

timesheetId
id
id
date-time
date-time
id
text-medium

id

TimesheetParty
timesheetId
partyId
roleTypeId

id
id
id

InvoiceItem

itemTypeEnumId
productId
description
quantity
quantityUomId
amount

invoiceId
invoiceItemSeqId

id
id
text-medium
number-decimal
id
currency-precise

id
id

vendor



vendorInvoiceId and vendorInvoiceItemSeqId fields for the invoice from worker to 
vendor. When these are populated it means the time entry has been billed."

A Timesheet may be used to organize TimeEntry records, or to make time entry easier. 
There are generally two parties associated with a timesheet, the worker Party (partyId) and 
the client Party (clientPartyId). Other parties may be associated with it using 
TimesheetParty."

A Timesheet is generally used for just a specific date range (fromDate, thruDate). During 
its lifecycle a timesheet has a status (statusId) which is typically In-Process (work being 
done, time being recorded), Completed (all relevant work done and time recorded), or 
Approved (approved for billing)."

!

Mantle Structure and UDM  ���                                                    218



!
!
USL Business Processes 

This section contains overviews of the main high-level business processes supported in 
Mantle. This is an introduction to the business process concepts and the specific services and 
entities involved with each process. There are other services and entities not covered here, or 
in other words this is not a complete reference of all services and options available. This will 
give you a good idea of the general functionality that exists and how it is structured, and 
from there you can easily review the source or references to find related artifacts."

Mantle Business Artifacts has a wide variety of functionality, including the procure to pay, 
order to cash, and work plan to cash processes, with:"

• Purchase and Sales Orders (for goods, services, materials, etc; POs for inventory and 
equipment/supplies/etc)"

• Project, Task, and Request management with time and expense recording, billable/
payable rates by project/task/client/worker/etc"

• Incoming and Outgoing Invoices with a wide variety of item types and an XSL:FO 
template for print or email"

• Automatic invoice generation for purchase orders (AP), sales orders (AR), project client 
time and expenses (AR), project vendor/worker time and expenses (AP)"

• Payments, both manually recorded and automatic through payment processing 
interfaces; applying payments to invoices"

• Fulfillment of sales orders (including basic picking and packing) and receiving of 
purchase orders"

• Inventory management including issuance and receipt, and inventory reservation for 
sales orders"

• Automated GL account posting of incoming and outgoing invoices, outgoing and 
incoming payments, payment application, and inventory receipt and issuance"

• General GL functionality for time periods, validation of transactions to post, time 
period closing"

• Balance Sheet and Income Statement reports (and basic posted amounts and account 
balance by time period summaries)"

• Drools rules for product pricing, shipping charge calculation, and tax calculation"

Procure to Pay 

The Spock test suite for this process is in the OrderProcureToPayBasicFlow.groovy file."

���   12. Mantle Business Artifacts219                                                      



Some of the more relevant setup data is shown in the examples below but you can find the 
rest of it in the ZzaGlAccountsDemoData.xml, ZzbOrganizationDemoData.xml, and 
ZzcProductDemoData.xml files."

Supplier Product Pricing 

Here are some test calls to get pricing for the DEMO_1_1 product from the external supplier 
(vendor) Party MiddlemanInc (vendorPartyId) for the internal organization 
ORG_BIZI_RETAIL (customerPartyId) with quantities of 1 and 100 to test quantity breaks:"
String vendorPartyId = 'MiddlemanInc', customerPartyId = 'ORG_BIZI_RETAIL'!
String priceUomId = 'USD', currencyUomId = 'USD'!
String facilityId = 'ORG_BIZI_RETAIL_WH'!!
Map priceMap = ec.service.sync()!
    .name("mantle.product.PriceServices.get#ProductPrice")!
    .parameters([productId:'DEMO_1_1', priceUomId:priceUomId, quantity:1,!
        vendorPartyId:vendorPartyId, !
        customerPartyId:customerPartyId]).call()!
Map priceMap2 = ec.service.sync()!
    .name("mantle.product.PriceServices.get#ProductPrice")!
    .parameters([productId:'DEMO_1_1', priceUomId:priceUomId, quantity:100,!
        vendorPartyId:vendorPartyId, !
        customerPartyId:customerPartyId]).call()!

Here is the demo Product record and the demo ProductPrice records used to configure 
these supplier prices:"
<mantle.product.Product productId="DEMO_1_1" !
    productTypeEnumId="PtFinishedGood" chargeShipping="Y"!
    returnable="Y" productName="Demo Product One-One" description=""/>!
<mantle.product.ProductPrice productPriceId="DEMO_1_1_CS1" !
    productId="DEMO_1_1" vendorPartyId="MiddlemanInc"!
    pricePurposeEnumId="PppPurchase" priceTypeEnumId="PptCurrent"!
    fromDate="2010-02-03 00:00:00" minQuantity="1" price="9.00" !
    priceUomId="USD"/>!
<mantle.product.ProductPrice productPriceId="DEMO_1_1_CS100" !
    productId="DEMO_1_1" vendorPartyId="MiddlemanInc"!
    pricePurposeEnumId="PppPurchase" priceTypeEnumId="PptCurrent"!
    fromDate="2010-02-03 00:00:00" minQuantity="100" price="8.00" !
    priceUomId="USD"/>!

The results are validated like this, note the 9.00 for quantity of 1 and 8.00 for quantity of 100:"
priceMap.price == 9.00!
priceMap2.price == 8.00!
priceMap.priceUomId == 'USD'!

USL Business Processes  ���                                                          220



Place and Approve Purchase Order 

For purchase orders there is no ProductStore, so we have no payment, shipping, party, and 
other settings to use from configuration. In this create#Order call we explicitly set the 
customer and vendor. Here is a code snippet with service calls to create the order, add 
product items to the order, add a shipping charge item to the order, set billing and shipping 
info for the order, place the order, and then approve the order."
Map orderOut = ec.service.sync()!
    .name("mantle.order.OrderServices.create#Order")!
    .parameters([customerPartyId:customerPartyId, !
        vendorPartyId:vendorPartyId, currencyUomId:currencyUomId]).call()!!
purchaseOrderId = orderOut.orderId!
orderPartSeqId = orderOut.orderPartSeqId!!
ec.service.sync()!
    .name("mantle.order.OrderServices.add#OrderProductQuantity")!
    .parameters([orderId:purchaseOrderId, orderPartSeqId:orderPartSeqId, !
        productId:'DEMO_1_1', quantity:150,!
        itemTypeEnumId:'ItemProduct']).call()!
ec.service.sync()!
    .name("mantle.order.OrderServices.add#OrderProductQuantity")!
    .parameters([orderId:purchaseOrderId, orderPartSeqId:orderPartSeqId, !
        productId:'DEMO_3_1', quantity:100,!
        itemTypeEnumId:'ItemProduct']).call()!
ec.service.sync()!
    .name("mantle.order.OrderServices.add#OrderProductQuantity")!
    .parameters([orderId:purchaseOrderId, orderPartSeqId:orderPartSeqId, !
        productId:'EQUIP_1', quantity:1,!
        itemTypeEnumId:'ItemAsset', unitAmount:10000]).call()!!
// add shipping charge!
ec.service.sync()!
    .name("mantle.order.OrderServices.create#OrderItem")!
    .parameters([orderId:purchaseOrderId, orderPartSeqId:orderPartSeqId, !
        unitAmount:145.00, itemTypeEnumId:'ItemShipping', !
        itemDescription:'Incoming Freight']).call()!
// set billing and shipping info!
setInfoOut = ec.service.sync()!
    .name("mantle.order.OrderServices.set#OrderBillingShippingInfo")!
    .parameters([orderId:purchaseOrderId, orderPartSeqId:orderPartSeqId,!
        paymentMethodTypeEnumId:'PmtCompanyCheck',   !
        shippingPostalContactMechId:'ORG_BIZI_RTL_SA',!
        shippingTelecomContactMechId:'ORG_BIZI_RTL_PT',  !
        shipmentMethodEnumId:'ShMthNoShipping']).call()!!
// one person will place the PO!
ec.service.sync()!

���   12. Mantle Business Artifacts221                                                      



    .name("mantle.order.OrderServices.place#Order")!
    .parameters([orderId:purchaseOrderId]).call()!
// typically another person will approve the PO!
ec.service.sync()!
    .name("mantle.order.OrderServices.approve#Order")!
    .parameters([orderId:purchaseOrderId]).call()!

Once this process is done the PO is somehow sent to the supplier (vendor). Below is the 
entity XML for the order that is created. Note that much of the detail is in the OrderPart 
record including the vendor and customer parties, the payment and shipping info, and so on. 
Also note that effectiveTime is set to on ec.user as the effective time with a line like this 
(before the code above runs):"
long effectiveTime = System.currentTimeMillis()!
ec.user.setEffectiveTime(new Timestamp(effectiveTime))!

Here is the XML for the order:"
<mantle.order.OrderHeader orderId="${purchaseOrderId}" !
    entryDate="${effectiveTime}" placedDate="${effectiveTime}" !
    statusId="OrderApproved" currencyUomId="USD" grandTotal="11795.00"/>!
<mantle.order.OrderPart orderId="${purchaseOrderId}" orderPartSeqId="01" !
    vendorPartyId="MiddlemanInc" customerPartyId="ORG_BIZI_RETAIL" !
    shipmentMethodEnumId="ShMthNoShipping" !
    postalContactMechId="ORG_BIZI_RTL_SA"!
    telecomContactMechId="ORG_BIZI_RTL_PT" partTotal="11795.00"/>!
<mantle.account.payment.Payment paymentId="${setInfoOut.paymentId}"!
    paymentMethodTypeEnumId="PmtCompanyCheck" orderId="${purchaseOrderId}" !
    orderPartSeqId="01" statusId="PmntPromised" amount="11795.00" !
    amountUomId="USD"/>!!
<mantle.order.OrderItem orderId="${purchaseOrderId}" orderItemSeqId="01" !
    orderPartSeqId="01" itemTypeEnumId="ItemProduct" productId="DEMO_1_1" !
    itemDescription="Demo Product One-One" quantity="150" unitAmount="8.00" !
    isModifiedPrice="N"/>!
<mantle.order.OrderItem orderId="${purchaseOrderId}" orderItemSeqId="02" !
    orderPartSeqId="01" itemTypeEnumId="ItemProduct" productId="DEMO_3_1" !
    itemDescription="Demo Product Three-One" quantity="100" !
    unitAmount="4.50" isModifiedPrice="N"/>!
<mantle.order.OrderItem orderId="${purchaseOrderId}" orderItemSeqId="03" !
    orderPartSeqId="01" itemTypeEnumId="ItemAsset" productId="EQUIP_1" !
    itemDescription="Picker Bot 2000" quantity="1" unitAmount="10000" !
    isModifiedPrice="Y"/>!
<mantle.order.OrderItem orderId="${purchaseOrderId}" orderItemSeqId="04" !
    orderPartSeqId="01" itemTypeEnumId="ItemShipping" !
    itemDescription="Incoming Freight" quantity="1" unitAmount="145.00"/>!

USL Business Processes  ���                                                          222



Create Incoming Shipment and Purchase Invoice 

The code below creates a Shipment for the OrderPart (and there is just one order part, so we 
just create one), then marks the Shipment as Shipped, and then creates an Invoice for the 
entire OrderPart. "

In real-world scenarios the invoice received may not match what is expected, or may even be 
for multiple or partial purchase orders. For this example we'll simply create an invoice 
automatically from the order to somewhat simulate a real-world scenario. In a real process 
we would more likely create the Invoice in the InvoiceIncoming status and then change it 
to InvoiceReceived to allow for manual changes between based on the invoice document 
received from the suppler (vendor)."
shipResult = ec.service.sync()!
    .name("mantle.shipment.ShipmentServices.create#OrderPartShipment")!
    .parameters([orderId:purchaseOrderId, orderPartSeqId:orderPartSeqId, !
        destinationFacilityId:facilityId]).call()!
ec.service.sync()!
    .name("mantle.shipment.ShipmentServices.ship#Shipment")!
    .parameters([shipmentId:shipResult.shipmentId]).call()!
invResult = ec.service.sync()!
    .name("mantle.account.InvoiceServices.create#EntireOrderPartInvoice")!
    .parameters([orderId:purchaseOrderId, orderPartSeqId:orderPartSeqId, !
        statusId:'InvoiceReceived']).call()!

The Shipment created looks like this:"
<mantle.shipment.Shipment shipmentId="${shipResult.shipmentId}" !
    shipmentTypeEnumId="ShpTpPurchase" statusId="ShipInput" !
    fromPartyId="MiddlemanInc" toPartyId="ORG_BIZI_RETAIL"/>!
<mantle.shipment.ShipmentPackage shipmentId="${shipResult.shipmentId}" !
    shipmentPackageSeqId="01"/>!
<mantle.shipment.ShipmentRouteSegment shipmentId="${shipResult.shipmentId}" !
    shipmentRouteSegmentSeqId="01"    !
    destPostalContactMechId="ORG_BIZI_RTL_SA" !
    destTelecomContactMechId="ORG_BIZI_RTL_PT"/>!
<mantle.shipment.ShipmentPackageRouteSeg !
    shipmentId="${shipResult.shipmentId}" shipmentPackageSeqId="01"!
    shipmentRouteSegmentSeqId="01"/>!!
<mantle.shipment.ShipmentItem shipmentId="${shipResult.shipmentId}" !
    productId="DEMO_1_1" quantity="150"/>!
<mantle.shipment.ShipmentItemSource shipmentItemSourceId="55400" !
    shipmentId="${shipResult.shipmentId}" productId="DEMO_1_1" !
    orderId="${purchaseOrderId}" orderItemSeqId="01" statusId="SisPending"!
    quantity="150" quantityNotHandled="150" invoiceId="" !
    invoiceItemSeqId=""/>!!
<mantle.shipment.ShipmentItem shipmentId="${shipResult.shipmentId}" !
    productId="DEMO_3_1" quantity="100"/>!

���   12. Mantle Business Artifacts223                                                      



<mantle.shipment.ShipmentItemSource shipmentItemSourceId="55401" !
    shipmentId="${shipResult.shipmentId}" productId="DEMO_3_1" !
    orderId="${purchaseOrderId}" orderItemSeqId="02" statusId="SisPending"!
    quantity="100" quantityNotHandled="100" invoiceId="" !
    invoiceItemSeqId=""/>!!
<mantle.shipment.ShipmentItem shipmentId="${shipResult.shipmentId}" !
    productId="EQUIP_1" quantity="1"/>!
<mantle.shipment.ShipmentItemSource shipmentItemSourceId="55402" !
    shipmentId="${shipResult.shipmentId}" productId="EQUIP_1" !
    orderId="${purchaseOrderId}" orderItemSeqId="03" statusId="SisPending" !
    quantity="1" quantityNotHandled="1" invoiceId="" invoiceItemSeqId=""/>!

After the ship#Shipment call the Shipment record looks like this:"
<mantle.shipment.Shipment shipmentId="${shipResult.shipmentId}" !
    shipmentTypeEnumId="ShpTpPurchase" statusId="ShipShipped" !
    fromPartyId="MiddlemanInc" toPartyId="ORG_BIZI_RETAIL"/>!

The XML below is what the Invoice looks like. Note that each InvoiceItem has a 
corresponding OrderItemBilling record to associated it with the OrderItem it is based on."
<!-- Invoice created and received, not yet approved/etc -->!
<mantle.account.invoice.Invoice invoiceId="${invResult.invoiceId}" !
    invoiceTypeEnumId="InvoiceSales" fromPartyId="MiddlemanInc" !
    toPartyId="ORG_BIZI_RETAIL" statusId="InvoiceReceived"!
    invoiceDate="${effectiveTime}" !
    description="Invoice for Order ${purchaseOrderId} part 01"!
    currencyUomId="USD"/>!!
<mantle.account.invoice.InvoiceItem invoiceId="${invResult.invoiceId}" !
    invoiceItemSeqId="01" itemTypeEnumId="ItemProduct" productId="DEMO_1_1" !
    quantity="150" amount="8.00" description="Demo Product One-One" !
    itemDate="${effectiveTime}"/>!
<mantle.order.OrderItemBilling orderItemBillingId="55400" !
    orderId="${purchaseOrderId}" orderItemSeqId="01"!
    invoiceId="${invResult.invoiceId}" invoiceItemSeqId="01" quantity="150" !
    amount="8.00" shipmentId="${shipResult.shipmentId}"/>!!
<mantle.account.invoice.InvoiceItem invoiceId="${invResult.invoiceId}" !
    invoiceItemSeqId="02" itemTypeEnumId="ItemProduct" productId="DEMO_3_1" !
    quantity="100" amount="4.50" description="Demo Product Three-One" !
    itemDate="${effectiveTime}"/>!
<mantle.order.OrderItemBilling orderItemBillingId="55401" !
    orderId="${purchaseOrderId}" orderItemSeqId="02"!
    invoiceId="${invResult.invoiceId}" invoiceItemSeqId="02" quantity="100" !
    amount="4.50" shipmentId="${shipResult.shipmentId}"/>!!
<mantle.account.invoice.InvoiceItem invoiceId="${invResult.invoiceId}" !
    invoiceItemSeqId="03" itemTypeEnumId="ItemAsset" productId="EQUIP_1"  !
    quantity="1" amount="10,000" description="Picker Bot 2000"!

USL Business Processes  ���                                                          224



    itemDate="${effectiveTime}"/>!
<mantle.order.OrderItemBilling orderItemBillingId="55402" !
    orderId="${purchaseOrderId}" orderItemSeqId="03"!
    invoiceId="${invResult.invoiceId}" invoiceItemSeqId="03" quantity="1" !
    amount="10,000" shipmentId="${shipResult.shipmentId}"/>!!
<mantle.account.invoice.InvoiceItem invoiceId="${invResult.invoiceId}" !
    invoiceItemSeqId="04" itemTypeEnumId="ItemShipping" quantity="1" !
    amount="145" description="Incoming Freight" !
    itemDate="${effectiveTime}"/>!
<mantle.order.OrderItemBilling orderItemBillingId="55403" !
    orderId="${purchaseOrderId}" orderItemSeqId="04"!
    invoiceId="${invResult.invoiceId}" invoiceItemSeqId="04" quantity="1" !
    amount="145"/>!!
<!-- ShipmentItemSource now has invoiceId and invoiceItemSeqId -->!
<mantle.shipment.ShipmentItemSource shipmentItemSourceId="55400" !
    invoiceId="${invResult.invoiceId}" invoiceItemSeqId="01"/>!
<mantle.shipment.ShipmentItemSource shipmentItemSourceId="55401" !
    invoiceId="${invResult.invoiceId}" invoiceItemSeqId="02"/>!
<mantle.shipment.ShipmentItemSource shipmentItemSourceId="55402" !
    invoiceId="${invResult.invoiceId}" invoiceItemSeqId="03"/>!

Receive Shipment 

There is a receive#EntireShipment service but in this case we want to receive an item at a 
time to show how to specify more details, and to handle the equipment product telling the 
system it is equipment and not inventory (assetTypeEnumId=AstTpEquipment) and 
recording the serialNumber."
ec.service.sync()!
    .name("mantle.shipment.ShipmentServices.receive#ShipmentProduct")!
    .parameters([shipmentId:shipResult.shipmentId, productId:'DEMO_1_1',!
        quantityAccepted:150, facilityId:facilityId]).call()!
ec.service.sync()!
    .name("mantle.shipment.ShipmentServices.receive#ShipmentProduct")!
    .parameters([shipmentId:shipResult.shipmentId, productId:'DEMO_3_1',!
        quantityAccepted:100, facilityId:facilityId]).call()!
ec.service.sync()!
    .name("mantle.shipment.ShipmentServices.receive#ShipmentProduct")!
    .parameters([shipmentId:shipResult.shipmentId, productId:'EQUIP_1',!
        quantityAccepted:1, facilityId:facilityId, !
        serialNumber:’PB2000AZQRTFP’, !
        assetTypeEnumId:'AstTpEquipment']).call()!

This produces quite a bit of data including Asset records, AssetReceipt records to show the 
inventory and equipment received, and AssetDetail records to show the quantity change 
on the Asset records and why the quantity changed:"

���   12. Mantle Business Artifacts225                                                      



<mantle.product.asset.Asset assetId="55400" !
    assetTypeEnumId="AstTpInventory" statusId="AstAvailable"!
    ownerPartyId="ORG_BIZI_RETAIL" productId="DEMO_1_1" hasQuantity="Y" !
    quantityOnHandTotal="150" availableToPromiseTotal="150" !
    assetName="Demo Product One-One" receivedDate="${effectiveTime}"!
    acquiredDate="${effectiveTime}" facilityId="ORG_BIZI_RETAIL_WH" !
    acquireOrderId="${purchaseOrderId}" acquireOrderItemSeqId="01" !
    acquireCost="8" acquireCostUomId="USD"/>!
<mantle.product.receipt.AssetReceipt assetReceiptId="55400" assetId="55400" !
    productId="DEMO_1_1" orderId="${purchaseOrderId}" orderItemSeqId="01" !
    shipmentId="${shipResult.shipmentId}" receivedByUserId="EX_JOHN_DOE" !
    receivedDate="${effectiveTime}" quantityAccepted="150"/>!
<mantle.product.asset.AssetDetail assetDetailId="55400" assetId="55400" !
    effectiveDate="${effectiveTime}" quantityOnHandDiff="150" !
    availableToPromiseDiff="150" unitCost="8" !
    shipmentId="${shipResult.shipmentId}" productId="DEMO_1_1" !
    assetReceiptId="55400"/>!!
<mantle.product.asset.Asset assetId="55401"    !
    assetTypeEnumId="AstTpInventory" statusId="AstAvailable"!
    ownerPartyId="ORG_BIZI_RETAIL" productId="DEMO_3_1" hasQuantity="Y" !
    quantityOnHandTotal="100" availableToPromiseTotal="100" !
    assetName="Demo Product Three-One" receivedDate="${effectiveTime}"!
    acquiredDate="${effectiveTime}" facilityId="ORG_BIZI_RETAIL_WH" !
    acquireOrderId="${purchaseOrderId}" acquireOrderItemSeqId="02" !
    acquireCost="4.5" acquireCostUomId="USD"/>!
<mantle.product.receipt.AssetReceipt assetReceiptId="55401" assetId="55401" !
    productId="DEMO_3_1" orderId="${purchaseOrderId}" orderItemSeqId="02" !
    shipmentId="${shipResult.shipmentId}" receivedByUserId="EX_JOHN_DOE" !
    receivedDate="${effectiveTime}" quantityAccepted="100"/>!
<mantle.product.asset.AssetDetail assetDetailId="55401" assetId="55401" !
    effectiveDate="${effectiveTime}" quantityOnHandDiff="100" !
    availableToPromiseDiff="100" unitCost="4.5" !
    shipmentId="${shipResult.shipmentId}" productId="DEMO_3_1" !
    assetReceiptId="55401"/>!!
<mantle.product.asset.Asset assetId="55402" !
    assetTypeEnumId="AstTpEquipment" statusId="AstInStorage"!
    ownerPartyId="ORG_BIZI_RETAIL" productId="EQUIP_1" hasQuantity="N" !
    quantityOnHandTotal="1" availableToPromiseTotal="0" !
    assetName="Picker Bot 2000" serialNumber="PB2000AZQRTFP"!
    receivedDate="${effectiveTime}" acquiredDate="${effectiveTime}" !
    facilityId="ORG_BIZI_RETAIL_WH" acquireOrderId="${purchaseOrderId}" !
    acquireOrderItemSeqId="03" acquireCost="10,000" !
    acquireCostUomId="USD"/>!
<mantle.product.receipt.AssetReceipt assetReceiptId="55402" assetId="55402" !
    productId="EQUIP_1" orderId="${purchaseOrderId}" orderItemSeqId="03" !
    shipmentId="${shipResult.shipmentId}" receivedByUserId="EX_JOHN_DOE" !
    receivedDate="${effectiveTime}" quantityAccepted="1"/>!
<mantle.product.asset.AssetDetail assetDetailId="55402" assetId="55402" !

USL Business Processes  ���                                                          226



    effectiveDate="${effectiveTime}" quantityOnHandDiff="1" !
    availableToPromiseDiff="0" unitCost="10,000" !
    shipmentId="${shipResult.shipmentId}" productId="EQUIP_1" !
    assetReceiptId="55402"/>!

Two other entities that is updated automatically when records exist are OrderItemBilling 
to have the assetReceiptId, and ShipmentItemSource now has quantityNotHandled="0" and 
statusId is set to SisReceived:"
<mantle.order.OrderItemBilling orderItemBillingId="55400"  !
    assetReceiptId="55400"/>!
<mantle.order.OrderItemBilling orderItemBillingId="55401" !
    assetReceiptId="55401"/>!
<mantle.order.OrderItemBilling orderItemBillingId="55402" !
    assetReceiptId="55402"/>!
<mantle.shipment.ShipmentItemSource shipmentItemSourceId="55400" !
    statusId="SisReceived" quantity="150" quantityNotHandled="0"/>!
<mantle.shipment.ShipmentItemSource shipmentItemSourceId="55401" !
    statusId="SisReceived" quantity="100" quantityNotHandled="0"/>!
<mantle.shipment.ShipmentItemSource shipmentItemSourceId="55402" !
    statusId="SisReceived" quantity="1" quantityNotHandled="0"/>!

Inventory receipt also triggers accounting transactions with balancing entries for the COGS 
and inventory accounts:"
<mantle.ledger.transaction.AcctgTrans acctgTransId="55400" !
    acctgTransTypeEnumId="AttInventoryReceipt"!
    organizationPartyId="ORG_BIZI_RETAIL" !
    transactionDate="${effectiveTime}" isPosted="Y"!
    postedDate="${effectiveTime}" glFiscalTypeEnumId="GLFT_ACTUAL" !
    amountUomId="USD" assetId="55400" assetReceiptId="55400"/>!
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55400" !
    acctgTransEntrySeqId="01" debitCreditFlag="C" amount="1,200" !
    glAccountTypeEnumId="COGS_ACCOUNT" glAccountId="501000"!
    reconcileStatusId="AES_NOT_RECONCILED" isSummary="N" !
    productId="DEMO_1_1"/>!
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55400" !
    acctgTransEntrySeqId="02" debitCreditFlag="D" amount="1,200" !
    glAccountTypeEnumId="INVENTORY_ACCOUNT" glAccountId="140000"!
    reconcileStatusId="AES_NOT_RECONCILED" isSummary="N" !
    productId="DEMO_1_1"/>!!
<mantle.ledger.transaction.AcctgTrans acctgTransId="55401" !
    acctgTransTypeEnumId="AttInventoryReceipt"!
    organizationPartyId="ORG_BIZI_RETAIL" !
    transactionDate="${effectiveTime}" isPosted="Y" !
    postedDate="${effectiveTime}" glFiscalTypeEnumId="GLFT_ACTUAL" !
    amountUomId="USD" assetId="55401" assetReceiptId="55401"/>!
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55401" !
    acctgTransEntrySeqId="01" debitCreditFlag="C" amount="450" !
    glAccountTypeEnumId="COGS_ACCOUNT" glAccountId="501000"!

���   12. Mantle Business Artifacts227                                                      



    reconcileStatusId="AES_NOT_RECONCILED" isSummary="N" !
    productId="DEMO_3_1"/>!
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55401" !
    acctgTransEntrySeqId="02" debitCreditFlag="D" amount="450" !
    glAccountTypeEnumId="INVENTORY_ACCOUNT" glAccountId="140000"!
    reconcileStatusId="AES_NOT_RECONCILED" isSummary="N" !
    productId="DEMO_3_1"/>!

Next to wrap things up with the order and shipment we record that the Shipment is 
Delivered and that the OrderPart is Complete:"
ec.service.sync().name("update#mantle.shipment.Shipment")!
    .parameters([shipmentId:shipResult.shipmentId, !
        statusId:’ShipDelivered']).call()       
ec.service.sync().name("mantle.order.OrderServices.complete#OrderPart")!
    .parameters([orderId:purchaseOrderId, orderPartSeqId:orderPartSeqId])!
    .call()!

Because there is only one OrderPart on the order the status is updated on the OrderHeader 
as well. This data shows that and the updated Shipment status:"
<mantle.shipment.Shipment shipmentId="${shipResult.shipmentId}"!
    statusId="ShipDelivered"/>!
<mantle.order.OrderHeader orderId="${purchaseOrderId}"    !
    statusId="OrderCompleted"/>!

Approve Purchase Invoice and Send Payment 

Now that the Shipment is received it’s time to approve the Invoice for payment. Here is the 
service call to do that, note the pattern of using the implicit entity-auto service to change 
status (this is how ALL status changes are done to facilitate a consistent place to attach SECA 
rules):"
ec.service.sync().name("update#mantle.account.invoice.Invoice")!
   .parameters([invoiceId:invResult.invoiceId, statusId:'InvoiceApproved'])!
   .call()!

Here is the updated Invoice record:"
<mantle.account.invoice.Invoice invoiceId="${invResult.invoiceId}" !
    statusId="InvoiceApproved"/>!

When an Invoice goes into the InvoiceApproved status it triggers the posting of the 
accounting transaction for the Invoice. The XML below has the AcctgTrans record and the 
corresponding AcctgTransEntry records, one for each InvoiceItem and the last one (05) for 
the balancing entry to GlAccount 210000 which is the Accounts Payable account."
<mantle.ledger.transaction.AcctgTrans acctgTransId="55402" !
    acctgTransTypeEnumId="AttPurchaseInvoice"!
    organizationPartyId="ORG_BIZI_RETAIL" !
    transactionDate="${effectiveTime}" isPosted="Y" !

USL Business Processes  ���                                                          228



    postedDate="${effectiveTime}" glFiscalTypeEnumId="GLFT_ACTUAL" !
    amountUomId="USD" otherPartyId="MiddlemanInc" !
    invoiceId="${invResult.invoiceId}"/>!
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55402" !
    acctgTransEntrySeqId="01" debitCreditFlag="D" amount="1200" !
    glAccountId="501000" reconcileStatusId="AES_NOT_RECONCILED" !
    isSummary="N" productId="DEMO_1_1" invoiceItemSeqId="01"/>!
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55402" !
    acctgTransEntrySeqId="02" debitCreditFlag="D" amount="450" !
    glAccountId="501000" reconcileStatusId="AES_NOT_RECONCILED" !
    isSummary="N" productId="DEMO_3_1" invoiceItemSeqId="02"/>!
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55402" !
    acctgTransEntrySeqId="03" debitCreditFlag="D" amount="10,000" !
    glAccountTypeEnumId="FIXED_ASSET" glAccountId="171000"!
    reconcileStatusId="AES_NOT_RECONCILED" isSummary="N"  !
    productId="EQUIP_1" invoiceItemSeqId="03"/>!
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55402" !
    acctgTransEntrySeqId="04" debitCreditFlag="D" amount="145" !
    glAccountTypeEnumId="" glAccountId="509000" !
    reconcileStatusId="AES_NOT_RECONCILED" isSummary="N" !
    invoiceItemSeqId="04"/>!
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55402" !
    acctgTransEntrySeqId="05" debitCreditFlag="C" amount="11795" !
    glAccountTypeEnumId="ACCOUNTS_PAYABLE" glAccountId="210000"!
    reconcileStatusId="AES_NOT_RECONCILED" isSummary="N"/>!

The Payment was created above with the order as the promised payment (see the Place and 
Approve Purchase Order section). Now we call a service to mark that promised payment as 
sent. This service will also apply the Payment to the Invoice, creating a 
PaymentApplication record. Once a Payment is applied to a purchase Invoice its status 
gets changed to payment sent (InvoicePmtSent)."
sendPmtResult = ec.service.sync()!
    .name("mantle.account.PaymentServices.send#PromisedPayment")!
    .parameters([invoiceId:invResult.invoiceId, !
        paymentId:setInfoOut.paymentId]).call()!

Here is the PaymentApplication just created, the Payment record with a statusId of 
PmntDelivered and the effectiveDate field set, and the Invoice updated to the 
InvoicePmtSent status:"
<mantle.account.payment.PaymentApplication !
    paymentApplicationId="${sendPmtResult.paymentApplicationId}"!
    paymentId="${setInfoOut.paymentId}" invoiceId="${invResult.invoiceId}" !
    amountApplied="11795.00" appliedDate="${effectiveTime}"/>!
<mantle.account.payment.Payment paymentId="${setInfoOut.paymentId}" !
    statusId="PmntDelivered" effectiveDate="${effectiveTime}"/>!
<mantle.account.invoice.Invoice invoiceId="${invResult.invoiceId}"  !
    statusId="InvoicePmtSent"/>!

���   12. Mantle Business Artifacts229                                                      



The Payment status change to Delivered triggers its GL posting. Because it is a check received 
and the automated posting is configured this way the Payment comes from (credited to) the 
General Checking Account GL account (111100):"
<mantle.ledger.transaction.AcctgTrans acctgTransId="55403" !
    acctgTransTypeEnumId="AttOutgoingPayment"!
    organizationPartyId="ORG_BIZI_RETAIL" !
    transactionDate="${effectiveTime}" isPosted="Y"!
    postedDate="${effectiveTime}" glFiscalTypeEnumId="GLFT_ACTUAL" !
    amountUomId="USD" otherPartyId="MiddlemanInc" !
    paymentId="${setInfoOut.paymentId}"/>!
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55403" !
    acctgTransEntrySeqId="01" debitCreditFlag="D" amount="11795" !
    glAccountId="216000" reconcileStatusId="AES_NOT_RECONCILED" !
    isSummary="N"/>!
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55403" !
    acctgTransEntrySeqId="02" debitCreditFlag="C" amount="11795" !
    glAccountId="111100" reconcileStatusId="AES_NOT_RECONCILED" !
    isSummary="N"/>!

Because the Payment was posted (from the status update) before it was applied to the 
Invoice it was posted to the Accounts Payable Unapplied Payments account (216000). 
When the PaymentApplication is created this triggers another GL posting for the 
PaymentApplication to credit those funds back to the unapplied payments account and 
debit them from the main Accounts Payable account (210000). Here is that transaction:"
<mantle.ledger.transaction.AcctgTrans acctgTransId="55404" !
    acctgTransTypeEnumId="AttOutgoingPaymentAp"!
    organizationPartyId="ORG_BIZI_RETAIL" !
    transactionDate="${effectiveTime}" isPosted="Y"!
    postedDate="${effectiveTime}" glFiscalTypeEnumId="GLFT_ACTUAL" !
    amountUomId="USD" otherPartyId="MiddlemanInc" !
    paymentId="${setInfoOut.paymentId}"!
    paymentApplicationId="${sendPmtResult.paymentApplicationId}"/>!
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55404" !
    acctgTransEntrySeqId="01" debitCreditFlag="D" amount="11795" !
    glAccountId="210000" reconcileStatusId="AES_NOT_RECONCILED" !
    isSummary="N"/>!
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55404" !
    acctgTransEntrySeqId="02" debitCreditFlag="C" amount="11795" !
    glAccountId="216000" reconcileStatusId="AES_NOT_RECONCILED" !
    isSummary="N"/>!

With the assets received, the invoice paid, and the everything posted to the general ledger 
the Procure to Pay process is complete. The net effect of the GL postings is the outgoing 
payment is credited to the General Checking Account GL account (111100), the price of the 
inventory purchase is debited to the Inventory asset account (140000),  the price of the 
equipment is debited to the Equipment asset account (171000), and the shipping cost to the 

USL Business Processes  ���                                                          230



Freight In cost of sales account (509000). The entries posted to all other accounts balance 
each other out to zero, including the Accounts Payable account (210000)."

Order to Cash 

The Spock test suite for this process is in the OrderToCashBasicFlow.groovy file and that is 
the file covered in this section. There are related test suites for placing a sales order for tenant 
subscription and provisioning in OrderTenantAccess.groovy and for testing the time it 
takes to place sales orders in OrderToCashTime.groovy."

Some of the more relevant setup data is shown in the examples below but you can find the 
rest of it in the ZzaGlAccountsDemoData.xml, ZzbOrganizationDemoData.xml, and 
ZzcProductDemoData.xml files."

Place a Sales Order as a Customer 

This process is a basic ecommerce process. The order is placed by a customer 
(joe@public.com) so the first step in the code below is to login that user, and the last step is to 
logout that user, then an internal user does the shipping which triggers automated payment 
processing and so on."

The code below uses the POPC_DEFAULT demo ProductStore, which uses the 
ORG_BIZI_RETAIL_WH Facility for inventory, a test payment processor, and local services 
for tax and shipping calculation. Here are the records that define these (from the 
ZzcProductDemoData.xml file):"
<mantle.facility.Facility facilityId="ORG_BIZI_RETAIL_WH" !
    facilityTypeEnumId="FcTpWarehouse" ownerPartyId="ORG_BIZI_RETAIL" !
    facilityName="Biziwork Retail Warehouse"/>!
<mantle.product.store.ProductStore productStoreId="POPC_DEFAULT" !
    storeName="Biziwork Retail Store" organizationPartyId="ORG_BIZI_RETAIL" !
    inventoryFacilityId="ORG_BIZI_RETAIL_WH"!
    reservationOrderEnumId="AsResOrdFifoRec" requirementMethodEnumId=""!
    defaultLocale="en_US" defaultCurrencyUomId="USD" !
    taxGatewayConfigId="LOCAL"/>!
<mantle.product.store.ProductStorePaymentGateway !
    productStoreId="POPC_DEFAULT" paymentMethodTypeEnumId="PmtCreditCard" !
    paymentGatewayConfigId="TEST_APPROVE"/>!
<mantle.product.store.ProductStoreShippingGateway !
    productStoreId="POPC_DEFAULT" carrierPartyId="_NA_"!
    shippingGatewayConfigId="NA_LOCAL"/>!

In the code below the get#ProductPrice service is used to get (calculate) the price for a 
Product and is called here on its own for demonstration. When adding to the order it calls 
this service on its own to get the price."

���   12. Mantle Business Artifacts231                                                      



Note that the first call to the add#OrderProductQuantity service results in a new order 
being created, so we get the "cart" orderId from the results of that service call. Subsequent 
calls pass in an orderId parameter so that the product quantities are added to the same order."

Next it calls the set#OrderBillingShippingInfo service to set the billing and shipping info 
on the order, using a payment method and contact mechs from the customer’s profile. Finally 
it calls the place#Order service which is what would happen when a customer does a final 
order review and confirms the order."
ec.user.loginUser("joe@public.com", "moqui", null)!
long effectiveTime = System.currentTimeMillis()!
ec.user.setEffectiveTime(new Timestamp(effectiveTime))!!
String productStoreId = "POPC_DEFAULT"!
EntityValue productStore = !
    ec.entity.makeFind("mantle.product.store.ProductStore")!
        .condition("productStoreId", productStoreId).one()!
String currencyUomId = productStore.defaultCurrencyUomId!
String priceUomId = productStore.defaultCurrencyUomId!
String vendorPartyId = productStore.organizationPartyId!
String customerPartyId = ec.user.userAccount.partyId!!
Map priceMap = ec.service.sync()!
    .name("mantle.product.PriceServices.get#ProductPrice")!
    .parameters([productId:’DEMO_1_1', priceUomId:priceUomId, !
        productStoreId:productStoreId, vendorPartyId:vendorPartyId, !
        customerPartyId:customerPartyId]).call()!!
Map addOut1 = ec.service.sync()!
    .name("mantle.order.OrderServices.add#OrderProductQuantity")!
    .parameters([productId:'DEMO_1_1', quantity:1, !
        customerPartyId:customerPartyId, currencyUomId:currencyUomId, !
        productStoreId:productStoreId]).call()!!
cartOrderId = addOut1.orderId!
orderPartSeqId = addOut1.orderPartSeqId!!
ec.service.sync()!
    .name("mantle.order.OrderServices.add#OrderProductQuantity")!
    .parameters([orderId:cartOrderId, productId:'DEMO_3_1', quantity:5, !
        customerPartyId:customerPartyId, currencyUomId:currencyUomId, !
        productStoreId:productStoreId]).call()!
ec.service.sync()!
    .name("mantle.order.OrderServices.add#OrderProductQuantity")!
    .parameters([orderId:cartOrderId, orderPartSeqId:orderPartSeqId, !
        productId:'DEMO_2_1', quantity:7, customerPartyId:customerPartyId,  !
        currencyUomId:currencyUomId, productStoreId:productStoreId])!
    .call()!!
setInfoOut = ec.service.sync()!

USL Business Processes  ���                                                          232



    .name("mantle.order.OrderServices.set#OrderBillingShippingInfo")!
    .parameters([orderId:cartOrderId, paymentMethodId:'CustJqpCc', !
        shippingPostalContactMechId:'CustJqpAddr',!
        shippingTelecomContactMechId:'CustJqpTeln', carrierPartyId:'_NA_', !
        shipmentMethodEnumId:'ShMthGround']).call()!
ec.service.sync().name("mantle.order.OrderServices.place#Order")!
    .parameters([orderId:cartOrderId]).call()!!
ec.user.logoutUser()!

The place#Order service call triggers payment authorization, which then updates the order 
status to Approved so that is the status at this point. We also have a Payment record with the 
billing settings set#OrderBillingShippingInfo and the rest are on the OrderPart record. 
There is a PaymentGatewayResponse record from the credit card authorization. To wrap it 
up we have three OrderItem records, one for each call to add#OrderProductQuantity with 
a different productId."
<mantle.order.OrderHeader orderId="${cartOrderId}" !
    entryDate="${effectiveTime}" placedDate="${effectiveTime}"!
    statusId="OrderApproved" currencyUomId="USD" !
    productStoreId="POPC_DEFAULT" grandTotal="145.68"/>!
<mantle.account.payment.Payment paymentId="${setInfoOut.paymentId}" !
    paymentTypeEnumId="PtInvoicePayment" paymentMethodId="CustJqpCc" !
    paymentMethodTypeEnumId="PmtCreditCard" orderId="${cartOrderId}"!
    orderPartSeqId="01" statusId="PmntAuthorized" amount="145.68" !
    amountUomId="USD" fromPartyId="CustJqp" toPartyId="ORG_BIZI_RETAIL"/>!
<mantle.account.method.PaymentGatewayResponse !
    paymentGatewayResponseId="55500" paymentOperationEnumId="PgoAuthorize"!
    paymentId="${setInfoOut.paymentId}" paymentMethodId="CustJqpCc" !
    amount="145.68" amountUomId="USD" transactionDate="${effectiveTime}" !
    resultSuccess="Y" resultDeclined="N" resultNsf="N" resultBadExpire="N" !
    resultBadCardNumber="N"/>!!
<mantle.order.OrderPart orderId="${cartOrderId}" orderPartSeqId="01" !
    vendorPartyId="ORG_BIZI_RETAIL" customerPartyId="CustJqp" !
    shipmentMethodEnumId="ShMthGround" postalContactMechId="CustJqpAddr"!
    telecomContactMechId="CustJqpTeln" partTotal="145.68"/>!
<mantle.order.OrderItem orderId="${cartOrderId}" orderItemSeqId="01" !
    orderPartSeqId="01" itemTypeEnumId="ItemProduct" productId="DEMO_1_1" !
    itemDescription="Demo Product One-One" quantity="1" unitAmount="16.99"!
    unitListPrice="19.99" isModifiedPrice="N"/>!
<mantle.order.OrderItem orderId="${cartOrderId}" orderItemSeqId="02" !
    orderPartSeqId="01" itemTypeEnumId="ItemProduct" productId="DEMO_3_1" !
    itemDescription="Demo Product Three-One" quantity="5" unitAmount="7.77"!
    unitListPrice="" isModifiedPrice="N"/>!
<mantle.order.OrderItem orderId="${cartOrderId}" orderItemSeqId="03" !
    orderPartSeqId="01" itemTypeEnumId="ItemProduct" productId="DEMO_2_1" !
    itemDescription="Demo Product Two-One" quantity="7" unitAmount="12.12"!
    unitListPrice="" isModifiedPrice="N"/>!

���   12. Mantle Business Artifacts233                                                      



The other main thing that happens when an order is placed is that inventory (in the Asset 
entity) is reserved for the items on the order. Inventory reservations are tracked with the 
AssetReservation entity, so we have 3 records for it (one for each Product on the order). "

The first 2 Asset records are from demo data in the ZzcProductDemoData.xml file. They 
already have inventory available to the AssetDetail records for those that adjust the 
Asset.availableToPromiseTotal using a negative 
AssetDetail.availableToPromiseDiff value. "

The last Asset record has a sequenced ID because there was no inventory for this product 
and the Asset record was created on the fly with an ATP and QOH of 0. After the 
AssetDetail record is created the availableToPromiseTotal is set to "-7" meaning there is 
a quantity of 7 on backorder. This is also tracked in the 
AssetReservation.quantityNotAvailable field, as this is the quantity "reserved" that is 
not available to promise."
<mantle.product.asset.Asset assetId="DEMO_1_1A" !
    assetTypeEnumId="AstTpInventory" statusId="AstAvailable"!
    ownerPartyId="ORG_BIZI_RETAIL" productId="DEMO_1_1" hasQuantity="Y"!
    quantityOnHandTotal="100" availableToPromiseTotal="99" !
    receivedDate="1265184000000" facilityId="ORG_BIZI_RETAIL_WH"/>!
<mantle.product.issuance.AssetReservation assetReservationId="55500" !
    assetId="DEMO_1_1A" productId="DEMO_1_1" orderId="${cartOrderId}" !
    orderItemSeqId="01" reservationOrderEnumId="AsResOrdFifoRec" !
    quantity="1" reservedDate="${effectiveTime}" sequenceNum="0"/>!
<mantle.product.asset.AssetDetail assetDetailId="55500" assetId="DEMO_1_1A" !
    effectiveDate="${effectiveTime}" availableToPromiseDiff="-1" !
    assetReservationId="55500" productId="DEMO_1_1"/>!!
<mantle.product.asset.Asset assetId="DEMO_3_1A" !
    assetTypeEnumId="AstTpInventory" statusId="AstAvailable"!
    ownerPartyId="ORG_BIZI_RETAIL" productId="DEMO_3_1" hasQuantity="Y" !
    quantityOnHandTotal="5" availableToPromiseTotal="0" !
    receivedDate="1265184000000" facilityId="ORG_BIZI_RETAIL_WH"/>!
<mantle.product.issuance.AssetReservation assetReservationId="55501" !
    assetId="DEMO_3_1A" productId="DEMO_3_1" orderId="${cartOrderId}" !
    orderItemSeqId="02" reservationOrderEnumId="AsResOrdFifoRec" !
    quantity="5" reservedDate="${effectiveTime}" sequenceNum="0"/>!
<mantle.product.asset.AssetDetail assetDetailId="55501" assetId="DEMO_3_1A" !
    effectiveDate="${effectiveTime}" availableToPromiseDiff="-5" !
    assetReservationId="55501" productId="DEMO_3_1"/>!!
<mantle.product.asset.Asset assetId="55500" !
    assetTypeEnumId="AstTpInventory" statusId="AstAvailable"!
    ownerPartyId="ORG_BIZI_RETAIL" productId="DEMO_2_1" hasQuantity="Y" !
    quantityOnHandTotal="0" availableToPromiseTotal="-7" !
    receivedDate="${effectiveTime}" facilityId="ORG_BIZI_RETAIL_WH"/>!
<mantle.product.issuance.AssetReservation assetReservationId="55502" !
    assetId="55500" productId="DEMO_2_1" orderId="${cartOrderId}" !

USL Business Processes  ���                                                          234



    orderItemSeqId="03" reservationOrderEnumId="AsResOrdFifoRec"!
    quantity="7" quantityNotAvailable="7" reservedDate="${effectiveTime}"/>!
<mantle.product.asset.AssetDetail assetDetailId="55502" assetId="55500" !
    effectiveDate="${effectiveTime}" availableToPromiseDiff="-7" !
    assetReservationId="55502" productId="DEMO_2_1"/>!

Ship Sales Order 

There is a single service call that can be used to ship an entire OrderPart: ship#OrderPart. "
shipResult = ec.service.sync()!
    .name("mantle.shipment.ShipmentServices.ship#OrderPart")!
    .parameters([orderId:cartOrderId, orderPartSeqId:orderPartSeqId])!
    .call()!

This service does a few things and when implementing a real-world system the services it 
calls, or even the services they call, will have more granular options and be more useful:"

• mantle.shipment.ShipmentServices.create#OrderPartShipment (created a 
Shipment, adds ShipmentItem records for all products on the order, creates a package 
and route segment, and ties it all together)"

• mantle.shipment.ShipmentServices.pack#ShipmentProduct (with the productId 
and quantity from each OrderItem)"

• mantle.shipment.ShipmentServices.pack#Shipment (the Shipment going to the 
Packed status triggers invoicing with the 
mantle.account.InvoiceServices.create#SalesShipmentInvoices service and 
credit card payment capture)"

• mantle.order.OrderServices.checkComplete#OrderPart (if all items in the order 
part have been fulfilled change its status to Complete)"

• mantle.shipment.ShipmentServices.ship#Shipment!

Here is the XML for the Shipment and related entities. There is a ShipmentItem record for 
each productId, and a ShipmentItemSource record to associate it with the OrderItem and 
InvoiceItem, and to keep track of pick/pack status (in this case Packed as we called the 
pack#ShipmentProduct service). There is also a ShipmentPackage plus a 
ShipmentPackageContent record for each shipment item to associate it with the package. 
Finally there is a ShipmentRouteSegment record and a ShipmentPackageRouteSeg to 
associate it with the package."
<mantle.shipment.Shipment shipmentId="${shipResult.shipmentId}" !
    shipmentTypeEnumId="ShpTpSales" statusId="ShipShipped" !
    fromPartyId="ORG_BIZI_RETAIL" toPartyId="CustJqp"/>!
<mantle.shipment.ShipmentPackage shipmentId="${shipResult.shipmentId}" !
    shipmentPackageSeqId="01"/>!!
<mantle.shipment.ShipmentItem shipmentId="${shipResult.shipmentId}" !
    productId="DEMO_1_1" quantity="1"/>!
<mantle.shipment.ShipmentItemSource shipmentItemSourceId="55500" !

���   12. Mantle Business Artifacts235                                                      



    shipmentId="${shipResult.shipmentId}" productId="DEMO_1_1" !
    orderId="${cartOrderId}" orderItemSeqId="01" statusId="SisPacked" !
    quantity="1" invoiceId="55500" invoiceItemSeqId="01"/>!
<mantle.shipment.ShipmentPackageContent !
    shipmentId="${shipResult.shipmentId}" shipmentPackageSeqId="01"!
    productId="DEMO_1_1" quantity="1"/>!!
<mantle.shipment.ShipmentItem shipmentId="${shipResult.shipmentId}" !
    productId="DEMO_3_1" quantity="5"/>!
<mantle.shipment.ShipmentItemSource shipmentItemSourceId="55501" !
    shipmentId="${shipResult.shipmentId}" productId="DEMO_3_1" !
    orderId="${cartOrderId}" orderItemSeqId="02" statusId="SisPacked"   !
    quantity="5" invoiceId="55500" invoiceItemSeqId="02"/>!
<mantle.shipment.ShipmentPackageContent !
    shipmentId="${shipResult.shipmentId}" shipmentPackageSeqId="01"!
    productId="DEMO_3_1" quantity="5"/>!!
<mantle.shipment.ShipmentItem shipmentId="${shipResult.shipmentId}" !
    productId="DEMO_2_1" quantity="7"/>!
<mantle.shipment.ShipmentItemSource shipmentItemSourceId="55502" !
    shipmentId="${shipResult.shipmentId}" productId="DEMO_2_1" !
    orderId="${cartOrderId}" orderItemSeqId="03" statusId="SisPacked" !
    quantity="7" invoiceId="55500" invoiceItemSeqId="03"/>!
<mantle.shipment.ShipmentPackageContent !
    shipmentId="${shipResult.shipmentId}" shipmentPackageSeqId="01"!
    productId="DEMO_2_1" quantity="7"/>!!
<mantle.shipment.ShipmentRouteSegment shipmentId="${shipResult.shipmentId}" !
    shipmentRouteSegmentSeqId="01" destPostalContactMechId="CustJqpAddr" !
    destTelecomContactMechId="CustJqpTeln"/>!
<mantle.shipment.ShipmentPackageRouteSeg !
    shipmentId="${shipResult.shipmentId}" shipmentPackageSeqId="01"!
    shipmentRouteSegmentSeqId="01"/>!

Here is the OrderHeader with its status updated based on the Complete OrderPart:"
<mantle.order.OrderHeader orderId="${cartOrderId}" !
    statusId="OrderCompleted"/>!

When an ShipmentItem (or more specifically a ShipmentItemSource) is packed the 
inventory, usually reserved so having a AssetReservation record, is issued to the shipment 
and recorded in a AssetIssuance record plus a AssetDetail record with a 
quantityOnHandDiff to adjust the Asset.quantityOnHandTotal. Here are those records 
for this shipment:"
<mantle.product.asset.Asset assetId="DEMO_1_1A" quantityOnHandTotal="99" !
    availableToPromiseTotal="99"/>!
<mantle.product.issuance.AssetIssuance assetIssuanceId="55500" !
    assetId="DEMO_1_1A" assetReservationId="55500"!
    orderId="${cartOrderId}" orderItemSeqId="01" !
    shipmentId="${shipResult.shipmentId}" productId="DEMO_1_1"!

USL Business Processes  ���                                                          236



    quantity="1"/>!
<mantle.product.asset.AssetDetail assetDetailId="55503" assetId="DEMO_1_1A" !
    effectiveDate="${effectiveTime}" quantityOnHandDiff="-1" !
    assetReservationId="55500" shipmentId="${shipResult.shipmentId}"!
    productId="DEMO_1_1" assetIssuanceId="55500"/>!!
<mantle.product.asset.Asset assetId="DEMO_3_1A" quantityOnHandTotal="0" !
    availableToPromiseTotal="0"/>!
<mantle.product.issuance.AssetIssuance assetIssuanceId="55501" !
    assetId="DEMO_3_1A" assetReservationId="55501"!
    orderId="${cartOrderId}" orderItemSeqId="02" !
    shipmentId="${shipResult.shipmentId}" productId="DEMO_3_1"!
    quantity="5"/>!
<mantle.product.asset.AssetDetail assetDetailId="55504" assetId="DEMO_3_1A" !
    effectiveDate="${effectiveTime}" quantityOnHandDiff="-5" !
    assetReservationId="55501" shipmentId="${shipResult.shipmentId}"!
    productId="DEMO_3_1" assetIssuanceId="55501"/>!!
<mantle.product.asset.Asset assetId="55500" quantityOnHandTotal="-7" !
    availableToPromiseTotal="-7"/>!
<mantle.product.issuance.AssetIssuance assetIssuanceId="55502" !
    assetId="55500" assetReservationId="55502" orderId="${cartOrderId}" !
    orderItemSeqId="03" shipmentId="${shipResult.shipmentId}" !
    productId="DEMO_2_1" quantity="7"/>!
<mantle.product.asset.AssetDetail assetDetailId="55505" assetId="55500" !
    effectiveDate="${effectiveTime}" quantityOnHandDiff="-7" !
    assetReservationId="55502" shipmentId="${shipResult.shipmentId}"!
    productId="DEMO_2_1" assetIssuanceId="55502"/>!

Asset issuance is a business activity that has a financial impact, so there are accounting 
transactions posted to the GL for it. The one exception is there is no AcctgTrans for assetId 
55500, productId DEMO_2_1 because it is auto-created and has no acquireCost. For most 
organizations you wouldn’t want to do this, i.e. the acquireCost field should always be 
populated, but for simpler system needs where you don’t want to track the cost and 
inventory value this is what is expected."
<mantle.ledger.transaction.AcctgTrans acctgTransId="55500" !
    acctgTransTypeEnumId="AttInventoryIssuance"!
    organizationPartyId="ORG_BIZI_RETAIL" !
    transactionDate="${effectiveTime}" isPosted="Y" !
    postedDate="${effectiveTime}" glFiscalTypeEnumId="GLFT_ACTUAL" !
    amountUomId="USD" assetId="DEMO_1_1A" assetIssuanceId="55500"/>!
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55500" !
    acctgTransEntrySeqId="01" debitCreditFlag="C" amount="7.5" !
    glAccountTypeEnumId="INVENTORY_ACCOUNT" glAccountId="140000"!
    reconcileStatusId="AES_NOT_RECONCILED" isSummary="N" !
    productId="DEMO_1_1"/>!
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55500" !
    acctgTransEntrySeqId="02" debitCreditFlag="D" amount="7.5" !
    glAccountTypeEnumId="COGS_ACCOUNT" glAccountId="501000"!

���   12. Mantle Business Artifacts237                                                      



    reconcileStatusId="AES_NOT_RECONCILED" isSummary="N" !
    productId="DEMO_1_1"/>!!
<mantle.ledger.transaction.AcctgTrans acctgTransId="55501" !
    acctgTransTypeEnumId="AttInventoryIssuance"!
    organizationPartyId="ORG_BIZI_RETAIL" !
    transactionDate="${effectiveTime}" isPosted="Y"!
    postedDate="${effectiveTime}" glFiscalTypeEnumId="GLFT_ACTUAL" !
    amountUomId="USD" assetId="DEMO_3_1A" assetIssuanceId="55501"/>!
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55501" !
    acctgTransEntrySeqId="01" debitCreditFlag="C" amount="20" !
    glAccountTypeEnumId="INVENTORY_ACCOUNT" glAccountId="140000"!
    reconcileStatusId="AES_NOT_RECONCILED" isSummary="N" !
    productId="DEMO_3_1"/>!
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55501" !
    acctgTransEntrySeqId="02" debitCreditFlag="D" amount="20" !
    glAccountTypeEnumId="COGS_ACCOUNT" glAccountId="501000"!
    reconcileStatusId="AES_NOT_RECONCILED" isSummary="N" !
    productId="DEMO_3_1"/>!

As mentioned above when a Shipment goes into the Packed status it triggers the creation of 
an Invoice for the order items on the Shipment. Here is what that Invoice looks like with 
its InvoiceItem records and OrderItemBilling records that associate InvoiceItem records 
with their corresponding OrderItem records:"
<mantle.account.invoice.Invoice invoiceId="55500" !
    invoiceTypeEnumId="InvoiceSales" fromPartyId="ORG_BIZI_RETAIL" !
    toPartyId="CustJqp" statusId="InvoicePmtRecvd" !
    invoiceDate="${effectiveTime}"!
    description="Invoice for Order ${cartOrderId} part 01 and Shipment !
        ${shipResult.shipmentId}" currencyUomId="USD"/>!!
<mantle.account.invoice.InvoiceItem invoiceId="55500" invoiceItemSeqId="01" !
    itemTypeEnumId="ItemProduct" productId="DEMO_1_1" quantity="1" !
    amount="16.99" description="Demo Product One-One" !
    itemDate="${effectiveTime}"/>!
<mantle.order.OrderItemBilling orderItemBillingId="55500" !
    orderId="${cartOrderId}" orderItemSeqId="01" invoiceId="55500" !
    invoiceItemSeqId="01" assetIssuanceId="55500" !
    shipmentId="${shipResult.shipmentId}" quantity="1" amount="16.99"/>!!
<mantle.account.invoice.InvoiceItem invoiceId="55500" invoiceItemSeqId="02" !
    itemTypeEnumId="ItemProduct" productId="DEMO_3_1" quantity="5" !
    amount="7.77" description="Demo Product Three-One" !
    itemDate="${effectiveTime}"/>!
<mantle.order.OrderItemBilling orderItemBillingId="55501" !
    orderId="${cartOrderId}" orderItemSeqId="02" invoiceId="55500" !
    invoiceItemSeqId="02" assetIssuanceId="55501" !
    shipmentId="${shipResult.shipmentId}" quantity="5" amount="7.77"/>!!

USL Business Processes  ���                                                          238



<mantle.account.invoice.InvoiceItem invoiceId="55500" invoiceItemSeqId="03" !
    itemTypeEnumId="ItemProduct" productId="DEMO_2_1" quantity="7" !
    amount="12.12" description="Demo Product Two-One" !
    itemDate="${effectiveTime}"/>!
<mantle.order.OrderItemBilling orderItemBillingId="55502" !
    orderId="${cartOrderId}" orderItemSeqId="03" invoiceId="55500" !
    invoiceItemSeqId="03" assetIssuanceId="55502" !
    shipmentId="${shipResult.shipmentId}" quantity="7" amount="12.12"/>!!
<mantle.account.invoice.InvoiceItem invoiceId="55500" invoiceItemSeqId="04" !
    itemTypeEnumId="ItemShipping" quantity="1" amount="5" !
    description="Ground" itemDate="${effectiveTime}"/>!
<mantle.order.OrderItemBilling orderItemBillingId="55503" !
    orderId="${cartOrderId}" orderItemSeqId="04" invoiceId="55500" !
    invoiceItemSeqId="04" shipmentId="${shipResult.shipmentId}" !
    quantity="1" amount="5"/>!

Invoices are records with a financial impact so they also have accounting transactions posted 
to the GL. There is one transaction entry (AcctgTransEntry) per InvoiceItem to credit the 
applicable sales account (or shipping/handling received account), and one balancing entry to 
debit the Accounts Receivable account."
<mantle.ledger.transaction.AcctgTrans acctgTransId="55502" !
    acctgTransTypeEnumId="AttSalesInvoice"!
    organizationPartyId="ORG_BIZI_RETAIL" !
    transactionDate="${effectiveTime}" isPosted="Y" !
    postedDate="${effectiveTime}" glFiscalTypeEnumId="GLFT_ACTUAL" !
    amountUomId="USD" otherPartyId="CustJqp" invoiceId="55500"/>!
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55502" !
    acctgTransEntrySeqId="01" debitCreditFlag="C" amount="16.99" !
    glAccountId="401000" reconcileStatusId="AES_NOT_RECONCILED" !
    isSummary="N" productId="DEMO_1_1" invoiceItemSeqId="01"/>!
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55502" !
    acctgTransEntrySeqId="02" debitCreditFlag="C" amount="38.85" !
    glAccountId="401000" reconcileStatusId="AES_NOT_RECONCILED" !
    isSummary="N" productId="DEMO_3_1" invoiceItemSeqId="02"/>!
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55502" !
    acctgTransEntrySeqId="03" debitCreditFlag="C" amount="84.84" !
    glAccountId="401000" reconcileStatusId="AES_NOT_RECONCILED" !
    isSummary="N" productId="DEMO_2_1" invoiceItemSeqId="03"/>!
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55502" !
    acctgTransEntrySeqId="04" debitCreditFlag="C" amount="5" !
    glAccountId="731200" reconcileStatusId="AES_NOT_RECONCILED" !
    isSummary="N" invoiceItemSeqId="04"/>!
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55502" !
    acctgTransEntrySeqId="05" debitCreditFlag="D" amount="145.68" !
    glAccountTypeEnumId="ACCOUNTS_RECEIVABLE" glAccountId="120000"!
    reconcileStatusId="AES_NOT_RECONCILED" isSummary="N"/>!

���   12. Mantle Business Artifacts239                                                      



The final operation is to capture the credit card payment resulting in a 
PaymentGatewayResponse record and an update of the Payment status to Delivered. This 
also has an AcctgTrans record with entries for the cash account and accounts receivable 
account."
<mantle.account.payment.Payment paymentId="${setInfoOut.paymentId}" !
    statusId="PmntDelivered"/>!
<mantle.account.payment.PaymentApplication paymentApplicationId="55500" !
    paymentId="${setInfoOut.paymentId}" invoiceId="55500" !
    amountApplied="145.68" appliedDate="${effectiveTime}"/>!
<mantle.account.method.PaymentGatewayResponse !
    paymentGatewayResponseId="55501" paymentOperationEnumId="PgoCapture"!
    paymentId="${setInfoOut.paymentId}" paymentMethodId="CustJqpCc" !
    amount="145.68" amountUomId="USD" transactionDate="${effectiveTime}" !
    resultSuccess="Y" resultDeclined="N" resultNsf="N"!
    resultBadExpire="N" resultBadCardNumber="N"/>!!
<mantle.ledger.transaction.AcctgTrans acctgTransId="55503" !
    acctgTransTypeEnumId="AttIncomingPayment"!
    organizationPartyId="ORG_BIZI_RETAIL" !
    transactionDate="${effectiveTime}" isPosted="Y"!
    glFiscalTypeEnumId="GLFT_ACTUAL" amountUomId="USD" !
    otherPartyId="CustJqp" paymentId="${setInfoOut.paymentId}"/>!
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55503" !
    acctgTransEntrySeqId="01" debitCreditFlag="C" amount="145.68" !
    glAccountId="120000" reconcileStatusId="AES_NOT_RECONCILED" !
    isSummary="N"/>!
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55503" !
    acctgTransEntrySeqId="02" debitCreditFlag="D" amount="145.68" !
    glAccountId="122000" reconcileStatusId="AES_NOT_RECONCILED" !
    isSummary="N"/>!

With the items shipped, payment received, and everything posted to the general ledger the 
Order to Cash process is complete."

Work Plan to Cash 

The Spock test suite for this process is in the WorkPlanToCashBasicFlow.groovy file. This is 
the main process supported by the HiveMind Project Manager application."

Some of the more relevant setup data is shown in the examples below but you can find the 
rest of it in the ZzaGlAccountsDemoData.xml, ZzbOrganizationDemoData.xml, and 
ZzcProductDemoData.xml files."

Vendor 

The first thing to setup in a system for a services organization is the vendor, the services 
organization itself. This is an Organization type Party with the role of Internal 

USL Business Processes  ���                                                          240



Organization (OrgInternal). It is also in the vendor (VendorBillFrom) role.  It also has a 
full accounting configuration copied from the 'DefaultSettings' Party (defined in the 
ZzaGlAccountsDemoData.xml file) using the init#PartyAccountingConfiguration 
service. This also uses the create#Account service to create a representative (for AR/AP/
etc) of the vendor organization that is a Person type Party with a UserAccount."
long effectiveTime = System.currentTimeMillis()!
ec.user.loginUser("john.doe", "moqui", null)!
// set an effective date so data check works, etc!
ec.user.setEffectiveTime(new Timestamp(effectiveTime))!
effectiveThruDate = ec.l10n.parseTimestamp(!
    ec.l10n.formatValue(ec.user.nowTimestamp,'yyyy-MM-dd HH:mm'), !
        'yyyy-MM-dd HH:mm')!
Map vendorResult = ec.service.sync()!
    .name("mantle.party.PartyServices.create#Organization")!
    .parameters([roleTypeId:'VendorBillFrom', !
        organizationName:'Test Vendor']).call()!
Map vendorCiResult = ec.service.sync()!
    .name("mantle.party.ContactServices.store#PartyContactInfo")!
    .parameters([partyId:vendorResult.partyId, !
        postalContactMechPurposeId:'PostalPayment',!
        telecomContactMechPurposeId:'PhonePayment', !
        emailContactMechPurposeId:'EmailPayment', countryGeoId:'USA',!
        address1:'51 W. Center St.', unitNumber:'1234', city:'Orem', !
        stateProvinceGeoId:'USA_UT', postalCode:'84057', !
        postalCodeExt:'4605', countryCode:'+1', areaCode:'801', !
        contactNumber:'123-4567', emailAddress:'vendor.ar@test.com'])!
     .call()!
ec.service.sync().name("create#mantle.party.PartyRole")!
    .parameters([partyId:vendorResult.partyId, roleTypeId:'OrgInternal'])!
    .call()!
ec.service.sync()!
    .name("mantle.ledger.LedgerServices.init#PartyAccountingConfiguration")!
    .parameters([sourcePartyId:'DefaultSettings',!
        organizationPartyId:vendorResult.partyId]).call()!!
Map vendorRepResult = ec.service.sync()!
    .name("mantle.party.PartyServices.create#Account")!
    .parameters([firstName:'Vendor', lastName:'TestRep',!
        emailAddress:'vendor.rep@test.com', username:'vendor.rep', !
        newPassword:'moqui1!', newPasswordVerify:'moqui1!', !
        loginAfterCreate:'false']).call()!
Map repRelResult = ec.service.sync()!
    .name("create#mantle.party.PartyRelationship")!
    .parameters([relationshipTypeEnumId:'PrtRepresentative', !
        fromPartyId:vendorRepResult.partyId, fromRoleTypeId:'Manager', !
        toPartyId:vendorResult.partyId, toRoleTypeId:'VendorBillFrom',!
        fromDate:ec.user.nowTimestamp]).call()!

Here are the records for the vendor Organization and its contact information:"

���   12. Mantle Business Artifacts241                                                      



<mantle.party.Party partyId="${vendorResult.partyId}" !
    partyTypeEnumId="PtyOrganization"/>!
<mantle.party.Organization partyId="${vendorResult.partyId}" !
    organizationName="Test Vendor"/>!
<mantle.party.PartyRole partyId="${vendorResult.partyId}" !
    roleTypeId="OrgInternal"/>!
<mantle.party.PartyRole partyId="${vendorResult.partyId}" !
    roleTypeId="VendorBillFrom"/>!!
<mantle.party.contact.ContactMech !
    contactMechId="${vendorCiResult.postalContactMechId}" !
    contactMechTypeEnumId="CmtPostalAddress"/>!
<mantle.party.contact.PostalAddress !
    contactMechId="${vendorCiResult.postalContactMechId}" !
    address1="51 W. Center St." unitNumber="1234" city="Orem" !
    stateProvinceGeoId="USA_UT" countryGeoId="USA" postalCode="84057" !
    postalCodeExt="4605"/>!
<mantle.party.contact.PartyContactMech partyId="${vendorResult.partyId}" !
    contactMechId="${vendorCiResult.postalContactMechId}"!
    contactMechPurposeId="PostalPayment" fromDate="${effectiveTime}"/>!
<mantle.party.contact.ContactMech !
    contactMechId="${vendorCiResult.telecomContactMechId}" !
    contactMechTypeEnumId="CmtTelecomNumber"/>!
<mantle.party.contact.PartyContactMech partyId="${vendorResult.partyId}" !
    contactMechId="${vendorCiResult.telecomContactMechId}"!
    contactMechPurposeId="PhonePayment" fromDate="${effectiveTime}"/>!
<mantle.party.contact.TelecomNumber !
    contactMechId="${vendorCiResult.telecomContactMechId}" countryCode="+1"!
    areaCode="801" contactNumber="123-4567"/>!
<mantle.party.contact.ContactMech !
    contactMechId="${vendorCiResult.emailContactMechId}"!
    contactMechTypeEnumId="CmtEmailAddress"  !
    infoString="vendor.ar@test.com"/>!
<mantle.party.contact.PartyContactMech partyId="${vendorResult.partyId}"!
    contactMechId="${vendorCiResult.emailContactMechId}" !
    contactMechPurposeId="EmailPayment" fromDate="${effectiveTime}"/>!

Here are the records for the accounting configuration for the vendor. The various 
configuration records (GlAccountTypeDefault, ItemTypeGlAccount, GlAccountOrganization, 
PaymentTypeGlAccount, etc) are a small selection and there are many others copied from the 
'DefaultSettings' Party. "
<mantle.ledger.transaction.GlJournal !
    glJournalId="${vendorResult.partyId}Error"!
    glJournalName="Error Journal for ${vendorResult.partyId}" !
    organizationPartyId="${vendorResult.partyId}"/>!
<mantle.ledger.config.PartyAcctgPreference !
    organizationPartyId="${vendorResult.partyId}"!
    taxFormEnumId="TxfUsIrs1120" cogsMethodEnumId="CogsActualCost" !
    baseCurrencyUomId="USD" invoiceSequenceEnumId="InvSqStandard" !

USL Business Processes  ���                                                          242



    orderSequenceEnumId="OrdSqStandard"!
    errorGlJournalId="${vendorResult.partyId}Error"/>!
<mantle.ledger.config.GlAccountTypeDefault !
    glAccountTypeEnumId="ACCOUNTS_RECEIVABLE"!
    organizationPartyId="${vendorResult.partyId}" glAccountId="120000"/>!
<mantle.ledger.config.GlAccountTypeDefault !
    glAccountTypeEnumId="ACCOUNTS_PAYABLE"!
    organizationPartyId="${vendorResult.partyId}" glAccountId="210000"/>!
<mantle.ledger.config.PaymentMethodTypeGlAccount !
    paymentMethodTypeEnumId="PmtCompanyCheck"!
    organizationPartyId="${vendorResult.partyId}" glAccountId="111100"/>!
<mantle.ledger.config.ItemTypeGlAccount glAccountId="402000" direction="O" !
    itemTypeEnumId="ItemTimeEntry" !
    organizationPartyId="${vendorResult.partyId}"/>!
<mantle.ledger.config.ItemTypeGlAccount glAccountId="550000" direction="I" !
    itemTypeEnumId="ItemTimeEntry" !
    organizationPartyId="${vendorResult.partyId}"/>!
<mantle.ledger.config.ItemTypeGlAccount itemTypeEnumId="ItemExpTravAir" !
    direction="E" glAccountId="681000"!
    organizationPartyId="${vendorResult.partyId}"/>!
<mantle.ledger.account.GlAccountOrganization glAccountId="120000" !
    organizationPartyId="${vendorResult.partyId}"/>!
<mantle.ledger.account.GlAccountOrganization glAccountId="210000" !
    organizationPartyId="${vendorResult.partyId}"/>!
<mantle.ledger.config.PaymentTypeGlAccount !
    paymentTypeEnumId="PtInvoicePayment"!
    organizationPartyId="${vendorResult.partyId}" isPayable="N" !
    isApplied="Y" glAccountId="120000"/>!
<mantle.ledger.config.PaymentTypeGlAccount !
    paymentTypeEnumId="PtInvoicePayment"!
    organizationPartyId="${vendorResult.partyId}" isPayable="Y" !
    isApplied="Y" glAccountId="210000"/>!

Here are the records for the vendor representative Person and its contact information. Note 
that the passwordSalt is randomly generated so the SHA-256 encrypted password will be 
different from any other run."
<mantle.party.Party partyId="${vendorRepResult.partyId}" !
    partyTypeEnumId="PtyPerson" disabled="N"/>!
<mantle.party.Person partyId="${vendorRepResult.partyId}" !
    firstName="Vendor" lastName="TestRep"/>!
<moqui.security.UserAccount userId="${vendorRepResult.userId}" !
    username="vendor.rep" userFullName="Vendor TestRep"!
    passwordHashType="SHA-256" passwordSetDate="${effectiveTime}" !
    disabled="N" requirePasswordChange="N" !
    emailAddress="vendor.rep@test.com" passwordSalt="{.rqlPt8x"!
    partyId="${vendorRepResult.partyId}" currentPassword="32ce60c14d9e72c1!
        fb17938ede30fe9de04390409cce7310743c2716a2c7bf89"/>!
<mantle.party.contact.ContactMech !
    contactMechId="${vendorRepResult.emailContactMechId}"!

���   12. Mantle Business Artifacts243                                                      



    contactMechTypeEnumId="CmtEmailAddress" !
    infoString="vendor.rep@test.com"/>!
<mantle.party.contact.PartyContactMech partyId="${vendorRepResult.partyId}"!
    contactMechId="${vendorRepResult.emailContactMechId}" !
    contactMechPurposeId="EmailPrimary" fromDate="${effectiveTime}"/>!
<mantle.party.PartyRelationship !
    partyRelationshipId="${repRelResult.partyRelationshipId}"!
    relationshipTypeEnumId="PrtRepresentative" !
    fromPartyId="${vendorRepResult.partyId}" fromRoleTypeId="Manager"!
    toPartyId="${vendorResult.partyId}" toRoleTypeId="VendorBillFrom" !
    fromDate="${effectiveTime}"/>!

Worker and Rates 

The code below creates a Person type Party and UserAccount for a worker, i.e. someone to 
work on tasks. It also creates two RateAmount records, one for the $60 rate the vendor (the 
internal organization, i.e. the org running the system) will bill the client, and another for the 
$40 rate the worker as an external contractor will bill to the vendor. The worker is related to 
the vendor as an agent with a PartyRelationship record of type PrtAgent."
Map workerResult = ec.service.sync()!
    .name("mantle.party.PartyServices.create#Account")!
    .parameters([firstName:'Test', lastName:'Worker', !
        emailAddress:'worker@test.com', username:'worker', !
        newPassword:'moqui1!', newPasswordVerify:'moqui1!', !
        loginAfterCreate:'false']).call()!
Map workerRelResult = ec.service.sync()!
    .name("create#mantle.party.PartyRelationship")!
    .parameters([relationshipTypeEnumId:'PrtAgent', !
        fromPartyId:workerResult.partyId, fromRoleTypeId:'Worker', !
        toPartyId:vendorResult.partyId, toRoleTypeId:'VendorBillFrom',!
        fromDate:ec.user.nowTimestamp]).call()!
Map clientRateResult = ec.service.sync()!
    .name("create#mantle.humanres.rate.RateAmount")!
    .parameters([rateTypeEnumId:'RatpStandard', !
        ratePurposeEnumId:'RaprClient', timePeriodUomId:'TF_hr',!
        emplPositionClassId:'Programmer', fromDate:'2010-02-03 00:00:00', !
        rateAmount:'60.00', rateCurrencyUomId:'USD', !
        partyId:workerResult.partyId]).call()!
Map vendorRateResult = ec.service.sync()!
    .name("create#mantle.humanres.rate.RateAmount")!
    .parameters([rateTypeEnumId:'RatpStandard', !
        ratePurposeEnumId:'RaprVendor', timePeriodUomId:'TF_hr',!
        emplPositionClassId:'Programmer', fromDate:'2010-02-03 00:00:00', !
        rateAmount:'40.00', rateCurrencyUomId:'USD', !
        partyId:workerResult.partyId]).call()!

Here are the records for the worker Party and the billing rates:"
<mantle.party.Party partyId="${workerResult.partyId}" !

USL Business Processes  ���                                                          244



    partyTypeEnumId="PtyPerson" disabled="N"/>!
<mantle.party.Person partyId="${workerResult.partyId}" firstName="Test" !
    lastName="Worker"/>!
<moqui.security.UserAccount userId="${workerResult.userId}" !
    username="worker" userFullName="Test Worker" passwordHashType="SHA-256" !
    passwordSetDate="${effectiveTime}" disabled="N" !
    requirePasswordChange="N" emailAddress="worker@test.com" !
    partyId="${workerResult.partyId}" passwordSalt="{.rqlPt8x"!
    currentPassword="32ce60c14d9e72c1fb17938ede30fe9de04390409cce7310743!
        c2716a2c7bf89"/>!
<mantle.party.contact.ContactMech !
    contactMechId="${workerResult.emailContactMechId}"!
    contactMechTypeEnumId="CmtEmailAddress" infoString="worker@test.com"/>!
<mantle.party.contact.PartyContactMech partyId="${workerResult.partyId}"!
    contactMechId="${workerResult.emailContactMechId}" !
    contactMechPurposeId="EmailPrimary" fromDate="${effectiveTime}"/>!
<mantle.party.PartyRelationship !
    partyRelationshipId="${workerRelResult.partyRelationshipId}"!
    relationshipTypeEnumId="PrtAgent" fromPartyId="${workerResult.partyId}" !
    fromRoleTypeId="Worker" toPartyId="${vendorResult.partyId}" !
    toRoleTypeId="VendorBillFrom" fromDate="${effectiveTime}"/>!!
<mantle.humanres.rate.RateAmount !
    rateAmountId="${clientRateResult.rateAmountId}" !
    rateTypeEnumId="RatpStandard" ratePurposeEnumId="RaprClient" !
    timePeriodUomId="TF_hr" partyId="${workerResult.partyId}"!
    emplPositionClassId="Programmer" fromDate="2010-02-03 00:00:00" !
    rateAmount="60.00" rateCurrencyUomId="USD"/>!
<mantle.humanres.rate.RateAmount !
    rateAmountId="${vendorRateResult.rateAmountId}" !
    rateTypeEnumId="RatpStandard" ratePurposeEnumId="RaprVendor" !
    timePeriodUomId="TF_hr" partyId="${workerResult.partyId}"!
    emplPositionClassId="Programmer" fromDate="2010-02-03 00:00:00" !
    rateAmount="40.00" rateCurrencyUomId="USD"/>!

Client 

Below is the code that create the client (CustomerBillTo) Organization, and a Person that 
is a representative (with a PartyRelationship of type PrtRepresentative) of the client 
along with contact information, etc."
Map clientResult = ec.service.sync()!
    .name("mantle.party.PartyServices.create#Organization")!
    .parameters([roleTypeId:'CustomerBillTo', !
        organizationName:'Test Client']).call()!
Map clientCiResult = ec.service.sync()!
    .name("mantle.party.ContactServices.store#PartyContactInfo")!
    .parameters([partyId:clientResult.partyId, !
        postalContactMechPurposeId:'PostalBilling',!

���   12. Mantle Business Artifacts245                                                      



        telecomContactMechPurposeId:'PhoneBilling',  !
        emailContactMechPurposeId:'EmailBilling', countryGeoId:'USA',!
        address1:'1350 E. Flamingo Rd.', unitNumber:'1234', !
        city:'Las Vegas', stateProvinceGeoId:'USA_NV', postalCode:'89119', !
        postalCodeExt:'5263', countryCode:'+1', areaCode:'702', !
        contactNumber:'123-4567',   emailAddress:'client.ap@test.com'])!
    .call()!!
Map clientRepResult = ec.service.sync()!
    .name("mantle.party.PartyServices.create#Account")!
    .parameters([firstName:'Client', lastName:'TestRep', !
        emailAddress:'client.rep@test.com', username:'client.rep', !
        newPassword:'moqui1!', newPasswordVerify:'moqui1!', !
        loginAfterCreate:'false']).call()!
Map repRelResult = ec.service.sync()!
    .name("create#mantle.party.PartyRelationship")!
    .parameters([relationshipTypeEnumId:'PrtRepresentative', !
        fromPartyId:clientRepResult.partyId, !
        fromRoleTypeId:'ClientBilling', toPartyId:clientResult.partyId, !
        toRoleTypeId:'CustomerBillTo', fromDate:ec.user.nowTimestamp])!
    .call()!

Here are the records for the client, contact info, and client representative:"
<mantle.party.Party partyId="${clientResult.partyId}" !
    partyTypeEnumId="PtyOrganization"/>!
<mantle.party.Organization partyId="${clientResult.partyId}" !
    organizationName="Test Client"/>!
<mantle.party.PartyRole partyId="${clientResult.partyId}" !
    roleTypeId="CustomerBillTo"/>!!
<mantle.party.contact.ContactMech !
    contactMechId="${clientCiResult.postalContactMechId}" !
    contactMechTypeEnumId="CmtPostalAddress"/>!
<mantle.party.contact.PostalAddress !
    contactMechId="${clientCiResult.postalContactMechId}"!
    address1="1350 E. Flamingo Rd." unitNumber="1234" city="Las Vegas" !
    stateProvinceGeoId="USA_NV" countryGeoId="USA" postalCode="89119" !
    postalCodeExt="5263"/>!
<mantle.party.contact.PartyContactMech partyId="${clientResult.partyId}" !
    contactMechId="${clientCiResult.postalContactMechId}"!
    contactMechPurposeId="PostalBilling" fromDate="${effectiveTime}"/>!
<mantle.party.contact.ContactMech !
    contactMechId="${clientCiResult.telecomContactMechId}"    !
    contactMechTypeEnumId="CmtTelecomNumber"/>!
<mantle.party.contact.PartyContactMech partyId="${clientResult.partyId}" !
    contactMechId="${clientCiResult.telecomContactMechId}"!
    contactMechPurposeId="PhoneBilling" fromDate="${effectiveTime}"/>!
<mantle.party.contact.TelecomNumber !
    contactMechId="${clientCiResult.telecomContactMechId}" countryCode="+1"!
    areaCode="702" contactNumber="123-4567"/>!

USL Business Processes  ���                                                          246



<mantle.party.contact.ContactMech !
    contactMechId="${clientCiResult.emailContactMechId}"!
    contactMechTypeEnumId="CmtEmailAddress" !
    infoString="client.ap@test.com"/>!
<mantle.party.contact.PartyContactMech partyId="${clientResult.partyId}"!
    contactMechId="${clientCiResult.emailContactMechId}" !
    contactMechPurposeId="EmailBilling" fromDate="${effectiveTime}"/>!!
<mantle.party.Party partyId="${clientRepResult.partyId}" !
    partyTypeEnumId="PtyPerson" disabled="N"/>!
<mantle.party.Person partyId="${clientRepResult.partyId}" !
    firstName="Client" lastName="TestRep"/>!
<moqui.security.UserAccount userId="${clientRepResult.userId}" !
    username="client.rep" userFullName="Client TestRep"!
    passwordHashType="SHA-256" passwordSetDate="${effectiveTime}" !
    disabled="N" requirePasswordChange="N"   !
    emailAddress="client.rep@test.com" !
    partyId="${clientRepResult.partyId}" passwordSalt="{.rqlPt8x"!
    currentPassword="32ce60c14d9e72c1fb17938ede30fe9de04390409cce7310743!
        c2716a2c7bf89"/>!
<mantle.party.contact.ContactMech !
    contactMechId="${clientRepResult.emailContactMechId}"!
    contactMechTypeEnumId="CmtEmailAddress" !
    infoString="client.rep@test.com"/>!
<mantle.party.contact.PartyContactMech partyId="${clientRepResult.partyId}"!
    contactMechId="${clientRepResult.emailContactMechId}" !
    contactMechPurposeId="EmailPrimary" fromDate="${effectiveTime}"/>!
<mantle.party.PartyRelationship !
    partyRelationshipId="${repRelResult.partyRelationshipId}"!
    relationshipTypeEnumId="PrtRepresentative" !
    fromPartyId="${clientRepResult.partyId}" fromRoleTypeId="ClientBilling" !
    toPartyId="${clientResult.partyId}" toRoleTypeId="CustomerBillTo" !
    fromDate="${effectiveTime}"/>!

Project and Milestone 

This code creates a Project type WorkEffort with the client and vendor set, and assigns the 
worker Person created above as a Worker. Note that the WorkEffortParty record for the 
assignment has a emplPositionClassId of Programmer which is used for looking up the 
RateAmount record create above for the billing rate."
ec.service.sync().name("mantle.work.ProjectServices.create#Project")!
    .parameters([workEffortId:'TEST', workEffortName:'Test Project', !
        statusId:'WeInProgress', clientPartyId:clientResult.partyId, !
        vendorPartyId:vendorResult.partyId]).call()!
ec.service.sync().name("create#mantle.work.effort.WorkEffortParty")!
    .parameters([workEffortId:'TEST', partyId:workerResult.partyId, !
        roleTypeId:'Worker', emplPositionClassId:'Programmer',!
        fromDate:'2013-11-01', statusId:'PRTYASGN_ASSIGNED']).call()!

���   12. Mantle Business Artifacts247                                                      



Here are the records for the project and the client (CustomerBillTo), vendor 
(VendorBillFrom) and worker (Worker) associated with it:"
<mantle.work.effort.WorkEffort workEffortId="TEST" !
    workEffortTypeEnumId="WetProject" statusId="WeInProgress" !
    workEffortName="Test Project"/>!
<mantle.work.effort.WorkEffortParty workEffortId="TEST" !
    partyId="EX_JOHN_DOE" roleTypeId="Manager" fromDate="${effectiveTime}" !
    statusId="PRTYASGN_ASSIGNED"/>!
<mantle.work.effort.WorkEffortParty workEffortId="TEST" !
    partyId="${clientResult.partyId}" roleTypeId="CustomerBillTo" !
    fromDate="${effectiveTime}"/>!
<mantle.work.effort.WorkEffortParty workEffortId="TEST" !
    partyId="${vendorResult.partyId}" roleTypeId="VendorBillFrom" !
    fromDate="${effectiveTime}"/>!
<mantle.work.effort.WorkEffortParty workEffortId="TEST" !
    partyId="${workerResult.partyId}" roleTypeId="Worker"!
    fromDate="1383282000000" statusId="PRTYASGN_ASSIGNED" !
    emplPositionClassId="Programmer"/>!

The WorkEffort.statusId field is audit logged and here is the EntityAuditLog record for 
the status change from In Planning to In Progress:"
<moqui.entity.EntityAuditLog auditHistorySeqId="55911" !
    changedEntityName="mantle.work.effort.WorkEffort"!
    changedFieldName="statusId" pkPrimaryValue="TEST" !
    oldValueText="WeInPlanning" newValueText="WeInProgress"!
    changedDate="${effectiveTime}" changedByUserId="EX_JOHN_DOE"/>!

Next we’ll create a couple of milestones for the project:"
ec.service.sync().name("mantle.work.ProjectServices.create#Milestone")!
    .parameters([rootWorkEffortId:'TEST', workEffortId:'TEST-MS-01', !
        workEffortName:'Test Milestone 1', estimatedStartDate:'2013-11-01', !
        estimatedCompletionDate:'2013-11-30', statusId:'WeInProgress'])!
    .call()!
        
ec.service.sync().name("mantle.work.ProjectServices.create#Milestone")!
    .parameters([rootWorkEffortId:'TEST', workEffortId:'TEST-MS-02', !
        workEffortName:'Test Milestone 2', estimatedStartDate:'2013-12-01', !
        estimatedCompletionDate:'2013-12-31', statusId:'WeApproved'])!
    .call()!

Here are the milestone records. They are of type WetMilestone and are associated with the 
project using the rootWorkEffortId field."
<mantle.work.effort.WorkEffort workEffortId="TEST-MS-01" !
    rootWorkEffortId="TEST" workEffortTypeEnumId="WetMilestone"!
    statusId="WeInProgress" workEffortName="Test Milestone 1" !
    estimatedStartDate="2013-11-01 00:00:00.0" !
    estimatedCompletionDate="2013-11-30 00:00:00.0"/>!
<mantle.work.effort.WorkEffort workEffortId="TEST-MS-02" !

USL Business Processes  ���                                                          248



    rootWorkEffortId="TEST" workEffortTypeEnumId="WetMilestone"!
    statusId="WeApproved" workEffortName="Test Milestone 2" !
    estimatedStartDate="2013-12-01 00:00:00.0" !
    estimatedCompletionDate="2013-12-31 00:00:00.0"/>!

Tasks and Time Entries 

These service calls create 3 tasks with their own purpose, status, priority, estimated work 
time, etc:"
ec.service.sync().name("mantle.work.TaskServices.create#Task")!
    .parameters([rootWorkEffortId:'TEST', parentWorkEffortId:null, !
        workEffortId:'TEST-001', milestoneWorkEffortId:'TEST-MS-01',!
        workEffortName:'Test Task 1', estimatedCompletionDate:'2013-11-15', !
        statusId:'WeApproved', assignToPartyId:workerResult.partyId, !
        priority:3, purposeEnumId:'WepTask', estimatedWorkTime:10,!
        description:'Will be really great when it\'s done'])!
    .call()!
ec.service.sync().name("mantle.work.TaskServices.create#Task")!
    .parameters([rootWorkEffortId:’TEST', parentWorkEffortId:'TEST-001', !
        workEffortId:'TEST-001A', milestoneWorkEffortId:'TEST-MS-01',!
        workEffortName:'Test Task 1A',  !
        estimatedCompletionDate:'2013-11-15', statusId:'WeInPlanning',!
        assignToPartyId:workerResult.partyId, priority:4, !
        purposeEnumId:'WepNewFeature', estimatedWorkTime:2,!
        description:'One piece of the puzzle'])!
    .call()!
ec.service.sync().name("mantle.work.TaskServices.create#Task")!
    .parameters([rootWorkEffortId:'TEST', parentWorkEffortId:'TEST-001', !
        workEffortId:'TEST-001B', milestoneWorkEffortId:'TEST-MS-01',!
        workEffortName:'Test Task 1B', !
        estimatedCompletionDate:'2013-11-15', statusId:'WeApproved',!
        assignToPartyId:workerResult.partyId, priority:4, !
        purposeEnumId:'WepFix', estimatedWorkTime:2,!
        description:'Broken piece of the puzzle'])!
    .call()!

Here are the records produced by those service calls including a WorkEffort record with a 
rootWorkEffortId connection it to the product and a WorkEffortAssoc record connecting it to 
the milestone. There is also a WorkEffortParty record for each task for the worker that is 
associated with it. Note that the estimatedCompletionDate is in the milliseconds since epoch 
format. This is the case for all entity XML exported data to avoid issues with time zones and 
such."
<mantle.work.effort.WorkEffort workEffortId="TEST-001" !
    rootWorkEffortId="TEST" workEffortTypeEnumId="WetTask"!
    purposeEnumId="WepTask" resolutionEnumId="WerUnresolved" !
    statusId="WeApproved" priority="3" workEffortName="Test Task 1" !
    description="Will be really great when it's done"!

���   12. Mantle Business Artifacts249                                                      



    estimatedCompletionDate="1384495200000" estimatedWorkTime="10" !
    remainingWorkTime="10" timeUomId="TF_hr"/>!
<mantle.work.effort.WorkEffortParty workEffortId="TEST-001" !
    partyId="${workerResult.partyId}" roleTypeId="Worker"!
    fromDate="${effectiveTime}" statusId="PRTYASGN_ASSIGNED"/>!
<mantle.work.effort.WorkEffortAssoc workEffortId="TEST-MS-01" !
    toWorkEffortId="TEST-001" workEffortAssocTypeEnumId="WeatMilestone" !
    fromDate="${effectiveTime}"/>!!
<mantle.work.effort.WorkEffort workEffortId="TEST-001A" !
    parentWorkEffortId="TEST-001" rootWorkEffortId="TEST"!
    workEffortTypeEnumId="WetTask" purposeEnumId="WepNewFeature" !
    resolutionEnumId="WerUnresolved" statusId="WeInPlanning" priority="4" !
    workEffortName="Test Task 1A" description="One piece of the puzzle"!
    estimatedCompletionDate="1384495200000" estimatedWorkTime="2" !
    remainingWorkTime="2" timeUomId="TF_hr"/>!
<mantle.work.effort.WorkEffortParty workEffortId="TEST-001A" !
    partyId="${workerResult.partyId}" roleTypeId="Worker"!
    fromDate="${effectiveTime}" statusId="PRTYASGN_ASSIGNED"/>!
<mantle.work.effort.WorkEffortAssoc workEffortId="TEST-MS-01" !
    toWorkEffortId="TEST-001A" workEffortAssocTypeEnumId="WeatMilestone" !
    fromDate="${effectiveTime}"/>!!
<mantle.work.effort.WorkEffort workEffortId="TEST-001B" !
    parentWorkEffortId="TEST-001" rootWorkEffortId="TEST"!
    workEffortTypeEnumId="WetTask" purposeEnumId="WepFix" !
    resolutionEnumId="WerUnresolved" statusId="WeApproved" priority="4" !
    workEffortName="Test Task 1B" description="Broken piece of the puzzle"!
    estimatedCompletionDate="1384495200000" estimatedWorkTime="2" !
    remainingWorkTime="2" timeUomId="TF_hr"/>!
<mantle.work.effort.WorkEffortParty workEffortId="TEST-001B" !
    partyId="${workerResult.partyId}" roleTypeId="Worker"!
    fromDate="${effectiveTime}" statusId="PRTYASGN_ASSIGNED"/>!
<mantle.work.effort.WorkEffortAssoc workEffortId="TEST-MS-01" !
    toWorkEffortId="TEST-001B" workEffortAssocTypeEnumId="WeatMilestone" !
    fromDate="${effectiveTime}"/>!

This code first updates the status of the 3 tasks to In Progress. "

Then there are 3 different examples of recording time worked on a task for common options 
that a user recording time might use. The first specifies the hours worked and the 
remainingWorkTime, and the from and thru dates for the TimeEntry are calculated based on 
the thruDate being set to the current date/time. The second call has hours worked and 
breakHours, and again no from/thru dates and in this case the thruDate is the current 
date/time and the fromDate is the thruDate minus (hours + breakHours). In the third call 
it specifies the breakHours, the fromDate and the thruDate and the hours are calculated 
based on that."

Finally it sets the status of all 3 tasks to Completed."

USL Business Processes  ���                                                          250



ec.service.sync().name("mantle.work.TaskServices.update#Task")!
    .parameters([workEffortId:'TEST-001', statusId:'WeInProgress']).call()!
ec.service.sync().name("mantle.work.TaskServices.update#Task")!
    .parameters([workEffortId:'TEST-001A', statusId:'WeInProgress']).call()!
ec.service.sync().name("mantle.work.TaskServices.update#Task")!
    .parameters([workEffortId:'TEST-001B', statusId:'WeInProgress']).call()!!!
ec.service.sync().name("mantle.work.TaskServices.add#TaskTime")!
    .parameters([workEffortId:'TEST-001', partyId:workerResult.partyId, !
        rateTypeEnumId:'RatpStandard', remainingWorkTime:3, hours:6, !
        fromDate:null, thruDate:null, breakHours:null]).call()!!
ec.service.sync().name("mantle.work.TaskServices.add#TaskTime")!
    .parameters([workEffortId:'TEST-001A', partyId:workerResult.partyId, !
        rateTypeEnumId:'RatpStandard', remainingWorkTime:1, hours:1.5, !
        fromDate:null, thruDate:null, breakHours:0.5]).call()!!
ec.service.sync().name("mantle.work.TaskServices.add#TaskTime")!
    .parameters([workEffortId:'TEST-001B', partyId:workerResult.partyId, !
        rateTypeEnumId:'RatpStandard', remainingWorkTime:0.5, hours:null, !
        fromDate:"2013-11-03 12:00:00", thruDate:"2013-11-03 15:00:00", !
        breakHours:1]).call()!!
ec.service.sync().name("mantle.work.TaskServices.update#Task")!
    .parameters([workEffortId:'TEST-001', statusId:'WeComplete', !
        resolutionEnumId:'WerCompleted']).call()!
ec.service.sync().name("mantle.work.TaskServices.update#Task")!
    .parameters([workEffortId:'TEST-001A', statusId:'WeComplete', !
        resolutionEnumId:'WerCompleted']).call()!
ec.service.sync().name("mantle.work.TaskServices.update#Task")!
    .parameters([workEffortId:'TEST-001B', statusId:'WeComplete', !
        resolutionEnumId:'WerCompleted']).call()!

Below are the updated WorkEffort records with the fields that were changed including 
resolution, status, and remaining and actual work times. Also below are the TimeEntry 
records for each task. Note that the rateAmountId field gets filled in automatically based on 
the most relevant RateAmount record for the worker Party. That rate is used for displaying 
the rate and total cost for the TimeEntry, and as the amount on the InvoiceItem records later 
on when they are created for worker and client (as shown in the 2 invoice and payment 
sections below)."
<mantle.work.effort.WorkEffort workEffortId="TEST-001" !
    resolutionEnumId="WerCompleted" statusId="WeComplete" !
    estimatedWorkTime="10" remainingWorkTime="3" actualWorkTime="6"/>!
<mantle.work.time.TimeEntry timeEntryId="55900" !
    partyId="${workerResult.partyId}" rateTypeEnumId="RatpStandard"!
    rateAmountId="${clientRateResult.rateAmountId}" !
    vendorRateAmountId="${vendorRateResult.rateAmountId}"!
    fromDate="${effectiveThruDate.time-(6*60*60*1000)}" !

���   12. Mantle Business Artifacts251                                                      



    thruDate="${effectiveThruDate.time}" hours="6" !
    workEffortId="TEST-001"/>!!
<mantle.work.effort.WorkEffort workEffortId="TEST-001A" !
    resolutionEnumId="WerCompleted" statusId="WeComplete"!
    estimatedWorkTime="2" remainingWorkTime="1" actualWorkTime="1.5"/>!
<mantle.work.time.TimeEntry timeEntryId="55901" !
    partyId="${workerResult.partyId}" rateTypeEnumId="RatpStandard"!
    rateAmountId="${clientRateResult.rateAmountId}" !
    vendorRateAmountId="${vendorRateResult.rateAmountId}"!
    fromDate="${effectiveThruDate.time-(2*60*60*1000)}" !
    thruDate="${effectiveThruDate.time}" hours="1.5" breakHours="0.5" !
    workEffortId="TEST-001A"/>!!
<mantle.work.effort.WorkEffort workEffortId="TEST-001B" !
    resolutionEnumId="WerCompleted" statusId="WeComplete"!
    estimatedWorkTime="2" remainingWorkTime="0.5" actualWorkTime="2"/>!
<mantle.work.time.TimeEntry timeEntryId="55902" !
    partyId="${workerResult.partyId}" rateTypeEnumId="RatpStandard"!
    rateAmountId="${clientRateResult.rateAmountId}" !
    vendorRateAmountId="${vendorRateResult.rateAmountId}"!
    fromDate="1383501600000" thruDate="1383512400000" hours="2" !
    breakHours="1" workEffortId="TEST-001B"/>!

Request and Task for Request 

This code shows how to create a support request assigned to the worker, update its status 
from submitted to reviewed, create a task for the request, complete the task, and then 
complete the request."
Map createReqResult = ec.service.sync()!
    .name("mantle.request.RequestServices.create#Request")!
    .parameters([clientPartyId:clientResult.partyId, !
        assignToPartyId:workerResult.partyId, requestName:'Test Request 1',!
        description:'Description of Test Request 1', priority:7, !
        requestTypeEnumId:'RqtSupport', statusId:'ReqSubmitted', !
        responseRequiredDate:'2013-11-15 15:00:00']).call()!
ec.service.sync().name("mantle.request.RequestServices.update#Request")!
    .parameters([requestId:createReqResult.requestId, !
        statusId:'ReqReviewed']).call()!!
Map createReqTskResult = ec.service.sync()!
    .name("mantle.work.TaskServices.create#Task")!
    .parameters([rootWorkEffortId:'TEST', !
        workEffortName:'Test Request 1 Task',!
        estimatedCompletionDate:'2013-11-15', statusId:'WeApproved', !
        assignToPartyId:workerResult.partyId, priority:7, !
        purposeEnumId:'WepTask', estimatedWorkTime:2, !
        description:'']).call()!

USL Business Processes  ���                                                          252



ec.service.sync().name("create#mantle.request.RequestWorkEffort")!
    .parameters([workEffortId:createReqTskResult.workEffortId, !
        requestId:createReqResult.requestId]).call()!
ec.service.sync().name("mantle.work.TaskServices.update#Task")!
    .parameters([workEffortId:createReqTskResult.workEffortId, !
        statusId:'WeComplete', resolutionEnumId:'WerCompleted']).call()!!
ec.service.sync().name("mantle.request.RequestServices.update#Request")!
    .parameters([requestId:createReqResult.requestId, !
        statusId:'ReqCompleted']).call()!

Here is the Request record and the RequestParty records to associate it with worker and 
client (customer). Here is also the task WorkEffort, the WorkEffortParty record for the 
worker, and the RequestWorkEffort record to associate it with the Request."
<mantle.request.Request requestId="${createReqResult.requestId}" !
    requestTypeEnumId="RqtSupport" statusId="ReqCompleted" !
    requestName="Test Request 1" !
    description="Description of Test Request 1" priority="7"!
    responseRequiredDate="1384549200000" !
    requestResolutionEnumId="RrUnresolved" filedByPartyId="EX_JOHN_DOE"/>!
<mantle.request.RequestParty requestId="${createReqResult.requestId}" !
    partyId="${workerResult.partyId}" roleTypeId="Worker" !
    fromDate="${effectiveTime}"/>!
<mantle.request.RequestParty requestId="${createReqResult.requestId}" !
    partyId="${clientResult.partyId}" roleTypeId="CustomerBillTo" !
    fromDate="${effectiveTime}"/>!!
<mantle.work.effort.WorkEffort !
    workEffortId="${createReqTskResult.workEffortId}" !
    rootWorkEffortId="TEST" workEffortTypeEnumId="WetTask" !
    purposeEnumId="WepTask" resolutionEnumId="WerCompleted" !
    statusId="WeComplete" priority="7" workEffortName="Test Request 1 Task" !
    estimatedCompletionDate="1384495200000" estimatedWorkTime="2" !
    remainingWorkTime="2" timeUomId="TF_hr"/>!
<mantle.work.effort.WorkEffortParty !
    workEffortId="${createReqTskResult.workEffortId}" !
    partyId="${workerResult.partyId}" roleTypeId="Worker" !
    fromDate="${effectiveTime}" statusId="PRTYASGN_ASSIGNED"/>!
<mantle.request.RequestWorkEffort requestId="${createReqResult.requestId}"!
    workEffortId="${createReqTskResult.workEffortId}"/>!

Worker Invoice and Payment 

The Invoice from the worker to the services vendor (the internal organization running the 
system) has both expenses and time entries. The create#ProjectExpenseInvoice service 
gets most of the settings for the Invoice (including the vendor, bill-to, party) from the 
project WorkEffort (ID: TEST) and specifies the worker as the fromPartyId."

���   12. Mantle Business Artifacts253                                                      



Once the invoice is created the next two service calls add expense invoice items and then call 
the create#ProjectInvoiceItems service to add invoice items for all time entries for the 
worker party in the TEST project, with ratePurposeEnumId of RaprVendor so that the rates 
and other details are for a worker to vendor invoice (as opposed to a vendor to client 
invoice). Next we mark the invoice as Received. This is something that would be done by a 
representative of the vendor organization, i.e., the bill-to party for the invoice."

The last service call, to create#InvoicePayment, records a delivered check payment for the 
invoice."
expInvResult = ec.service.sync()!
    .name("mantle.account.InvoiceServices.create#ProjectExpenseInvoice")!
    .parameters([workEffortId:'TEST', fromPartyId:workerResult.partyId])!
    .call()!
ec.service.sync().name("create#mantle.account.invoice.InvoiceItem")!
    .parameters([invoiceId:expInvResult.invoiceId,   !
        itemTypeEnumId:'ItemExpTravAir', description:'United SFO-LAX', !
        itemDate:'2013-11-02', quantity:1, amount:345.67]).call()!
ec.service.sync().name("create#mantle.account.invoice.InvoiceItem")!
    .parameters([invoiceId:expInvResult.invoiceId, !
        itemTypeEnumId:'ItemExpTravLodging',!
        description:'Fleabag Inn 2 nights', itemDate:'2013-11-04', !
        quantity:1, amount:123.45]).call()!!
ec.service.sync()!
    .name("mantle.account.InvoiceServices.create#ProjectInvoiceItems")!
    .parameters([invoiceId:expInvResult.invoiceId, !
        workerPartyId:workerResult.partyId, ratePurposeEnumId:'RaprVendor', !
        workEffortId:'TEST', !
        thruDate:new Timestamp(effectiveTime + 1)]).call()!!
ec.service.sync().name("update#mantle.account.invoice.Invoice")!
    .parameters([invoiceId:expInvResult.invoiceId, !
        statusId:'InvoiceReceived']).call()!!
Map expPmtResult = ec.service.sync()!
    .name("mantle.account.PaymentServices.create#InvoicePayment")!
    .parameters([invoiceId:expInvResult.invoiceId, !
        statusId:'PmntDelivered', amount:'849.12',!
        paymentMethodTypeEnumId:'PmtCompanyCheck', !
        effectiveDate:'2013-11-10 12:00:00', paymentRefNum:'1234', !
        comments:'Delivered by Fedex']).call()!

Here are the records created for the invoice, including the expense items and three time entry 
items (one for each of the task time entries):"
<mantle.account.invoice.Invoice invoiceId="${expInvResult.invoiceId}" !
    invoiceTypeEnumId="InvoiceSales" fromPartyId="${workerResult.partyId}"!
    toPartyId="${vendorResult.partyId}" statusId="InvoicePmtSent" !
    invoiceDate="${effectiveTime}" currencyUomId="USD"/>!

USL Business Processes  ���                                                          254



<mantle.account.invoice.InvoiceItem invoiceId="${expInvResult.invoiceId}" !
    invoiceItemSeqId="01" itemTypeEnumId="ItemExpTravAir" quantity="1" !
    amount="345.67" description="United SFO-LAX" itemDate="1383368400000"/>!
<mantle.account.invoice.InvoiceItem invoiceId="${expInvResult.invoiceId}" !
    invoiceItemSeqId="02" itemTypeEnumId="ItemExpTravLodging" quantity="1" !
    amount="123.45" description="Fleabag Inn 2 nights" !
    itemDate="1383544800000"/>!
<mantle.account.invoice.InvoiceItem invoiceId="${expInvResult.invoiceId}" !
    invoiceItemSeqId="03" itemTypeEnumId="ItemTimeEntry" quantity="6" !
    amount="40" itemDate="${effectiveThruDate.time-(6*60*60*1000)}"/>!
<mantle.work.time.TimeEntry timeEntryId="55900" !
    vendorInvoiceId="${expInvResult.invoiceId}" !
    vendorInvoiceItemSeqId="03"/>!
<mantle.account.invoice.InvoiceItem invoiceId="${expInvResult.invoiceId}" !
    invoiceItemSeqId="04" itemTypeEnumId="ItemTimeEntry" quantity="1.5" !
    amount="40" itemDate="${effectiveThruDate.time-(2*60*60*1000)}"/>!
<mantle.work.time.TimeEntry timeEntryId="55901" !
    vendorInvoiceId="${expInvResult.invoiceId}" !
    vendorInvoiceItemSeqId="04"/>!
<mantle.account.invoice.InvoiceItem invoiceId="${expInvResult.invoiceId}" !
    invoiceItemSeqId="05" itemTypeEnumId="ItemTimeEntry" quantity="2" !
    amount="40" itemDate="1383501600000"/>!
<mantle.work.time.TimeEntry timeEntryId="55902" !
    vendorInvoiceId="${expInvResult.invoiceId}" !
    vendorInvoiceItemSeqId="05"/>!

This is the accounting transaction for the GL posting of the invoice with one entry for each 
invoice item, and the balancing entry to the accounts payable account:"
<mantle.ledger.transaction.AcctgTrans acctgTransId="55900" !
    acctgTransTypeEnumId="AttPurchaseInvoice"!
    organizationPartyId="${vendorResult.partyId}" !
    transactionDate="${effectiveTime}" isPosted="Y" !
    postedDate="${effectiveTime}" glFiscalTypeEnumId="GLFT_ACTUAL" !
    amountUomId="USD" otherPartyId="${workerResult.partyId}" !
    invoiceId="${expInvResult.invoiceId}"/>!
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55900" !
    acctgTransEntrySeqId="01" debitCreditFlag="D" amount="345.67" !
    glAccountId="681000" reconcileStatusId="AES_NOT_RECONCILED" !
    isSummary="N" invoiceItemSeqId="01"/>!
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55900" !
    acctgTransEntrySeqId="02" debitCreditFlag="D" amount="123.45" !
    glAccountId="681000" reconcileStatusId="AES_NOT_RECONCILED" !
    isSummary="N" invoiceItemSeqId="02"/>!
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55900" !
    acctgTransEntrySeqId="03" debitCreditFlag="D" amount="240" !
    glAccountId="550000" reconcileStatusId="AES_NOT_RECONCILED" !
    isSummary="N" invoiceItemSeqId="03"/>!
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55900" !
    acctgTransEntrySeqId="04" debitCreditFlag="D" amount="60" !
    glAccountId="550000" reconcileStatusId="AES_NOT_RECONCILED" !

���   12. Mantle Business Artifacts255                                                      



    isSummary="N" invoiceItemSeqId="04"/>!
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55900" !
    acctgTransEntrySeqId="05" debitCreditFlag="D" amount="80" !
    glAccountId="550000" reconcileStatusId="AES_NOT_RECONCILED" !
    isSummary="N" invoiceItemSeqId="05"/>!
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55900" !
    acctgTransEntrySeqId="06" debitCreditFlag="C" amount="849.12" !
    glAccountTypeEnumId="ACCOUNTS_PAYABLE" glAccountId="210000" !
    reconcileStatusId="AES_NOT_RECONCILED" isSummary="N"/>!
<mantle.work.effort.WorkEffortInvoice invoiceId="${expInvResult.invoiceId}" !
    workEffortId="TEST"/>!

Here is the payment record for the check from the vendor (internal organization) to the 
worker, the payment application to apply it to the invoice, and the accounting transition for 
the payment:"
<mantle.account.payment.Payment paymentId="${expPmtResult.paymentId}" !
    paymentTypeEnumId="PtInvoicePayment" !
    fromPartyId="${vendorResult.partyId}" !
    toPartyId="${workerResult.partyId}"    !
    paymentMethodTypeEnumId="PmtCompanyCheck" statusId="PmntDelivered" !
    effectiveDate="1384106400000" paymentRefNum="1234" !
    comments="Delivered by Fedex" amount="849.12" amountUomId="USD"/>!
<mantle.account.payment.PaymentApplication !
    paymentApplicationId="${expPmtResult.paymentApplicationId}"!
    paymentId="${expPmtResult.paymentId}" !
    invoiceId="${expInvResult.invoiceId}" amountApplied="849.12"!
    appliedDate="${effectiveTime}"/>!!
<mantle.ledger.transaction.AcctgTrans acctgTransId="55901" !
    acctgTransTypeEnumId="AttOutgoingPayment"!
    organizationPartyId="${vendorResult.partyId}" !
    transactionDate="${effectiveTime}" isPosted="Y"!
    postedDate="${effectiveTime}" glFiscalTypeEnumId="GLFT_ACTUAL" !
    amountUomId="USD" otherPartyId="${workerResult.partyId}"!
    paymentId="${expPmtResult.paymentId}"/>!
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55901" !
    acctgTransEntrySeqId="01" debitCreditFlag="D" amount="849.12" !
    glAccountId="210000" reconcileStatusId="AES_NOT_RECONCILED" !
    isSummary="N"/>!
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55901" !
    acctgTransEntrySeqId="02" debitCreditFlag="C" amount="849.12" !
    glAccountId="111100" reconcileStatusId="AES_NOT_RECONCILED" !
    isSummary="N"/>!

Client Invoice and Payment 

With everything setup already, including the worker expenses and project settings, call the 
create#ProjectInvoiceItems service to add invoice items for all time entries for the 

USL Business Processes  ���                                                          256



worker party in the TEST project, with ratePurposeEnumId of RaprClient so that the rates 
and other details are for a vendor to client invoice (as opposed to a worker to vendor 
invoice). The thruDate passed to the service tells it to get all expenses and time entries for 
the project that are not yet billed up to that date/time. Next we mark the invoice as 
Finalized, which triggers GL posting for the invoice."
clientInvResult = ec.service.sync()!
    .name("mantle.account.InvoiceServices.create#ProjectInvoiceItems")!
    .parameters([ratePurposeEnumId:'RaprClient', workEffortId:'TEST', !
        thruDate:new Timestamp(effectiveTime + 1)]).call()!
ec.service.sync().name("update#mantle.account.invoice.Invoice")!
    .parameters([invoiceId:clientInvResult.invoiceId, !
        statusId:'InvoiceFinalized']).call()!

Below are the records for the vendor to client invoice with the time entry and expense 
invoice items, and InvoiceItemAssoc records to associate the expense items on this vendor 
to client invoice with the expense items as originally recorded on the worker to vendor 
invoice (which is how expenses are recorded, and this is how they are marked as billed 
through)."
<mantle.account.invoice.Invoice invoiceId="${clientInvResult.invoiceId}" !
    invoiceTypeEnumId="InvoiceSales" fromPartyId="${vendorResult.partyId}" !
    toPartyId="${clientResult.partyId}" statusId="InvoiceFinalized" !
    invoiceDate="${effectiveTime}" currencyUomId="USD"!
    description="Invoice for projectTest Project [TEST] "/>!
<mantle.account.invoice.InvoiceItem !
    invoiceId="${clientInvResult.invoiceId}" invoiceItemSeqId="01"!
    itemTypeEnumId="ItemTimeEntry" quantity="6" amount="60" !
    itemDate="${effectiveThruDate.time-(6*60*60*1000)}"/>!
<mantle.work.time.TimeEntry timeEntryId="55900" !
    invoiceId="${clientInvResult.invoiceId}" invoiceItemSeqId="01"/>!
<mantle.account.invoice.InvoiceItem !
    invoiceId="${clientInvResult.invoiceId}" invoiceItemSeqId="02"!
    itemTypeEnumId="ItemTimeEntry" quantity="1.5" amount="60" !
    itemDate="${effectiveThruDate.time-(2*60*60*1000)}"/>!
<mantle.work.time.TimeEntry timeEntryId="55901" !
    invoiceId="${clientInvResult.invoiceId}" invoiceItemSeqId="02"/>!
<mantle.account.invoice.InvoiceItem !
    invoiceId="${clientInvResult.invoiceId}" invoiceItemSeqId="03"!
    itemTypeEnumId="ItemTimeEntry" quantity="2" amount="60" !
    itemDate="1383501600000"/>!
<mantle.work.time.TimeEntry timeEntryId="55902" !
    invoiceId="${clientInvResult.invoiceId}" invoiceItemSeqId="03"/>!
<mantle.account.invoice.InvoiceItem !
    invoiceId="${clientInvResult.invoiceId}" invoiceItemSeqId="04"!
    itemTypeEnumId="ItemExpTravAir" quantity="1" amount="345.67" !
    description="United SFO-LAX" itemDate="1383368400000"/>!
<mantle.account.invoice.InvoiceItemAssoc invoiceItemAssocId="55900" !
    invoiceId="${expInvResult.invoiceId}" invoiceItemSeqId="01"!
    toInvoiceId="${clientInvResult.invoiceId}" toInvoiceItemSeqId="04" !

���   12. Mantle Business Artifacts257                                                      



    invoiceItemAssocTypeEnumId="IiatBillThrough" quantity="1" !
    amount="345.67"/>!
<mantle.account.invoice.InvoiceItem !
    invoiceId="${clientInvResult.invoiceId}" invoiceItemSeqId="05"!
    itemTypeEnumId="ItemExpTravLodging" quantity="1" amount="123.45" !
    description="Fleabag Inn 2 nights" itemDate="1383544800000"/>!
<mantle.account.invoice.InvoiceItemAssoc invoiceItemAssocId="55901" !
    invoiceId="${expInvResult.invoiceId}" invoiceItemSeqId="02"!
    toInvoiceId="${clientInvResult.invoiceId}" toInvoiceItemSeqId="05" !
    invoiceItemAssocTypeEnumId="IiatBillThrough" quantity="1" !
    amount="123.45"/>!

These are the records for the accounting transaction posted to the GL for the invoice, with 
one entry for each invoice item and the balancing entry in the accounts receivable account. 
Note the different glAccountId values for the time entry and expense entries."
<mantle.ledger.transaction.AcctgTrans acctgTransId="55902" !
    acctgTransTypeEnumId="AttSalesInvoice"!
    organizationPartyId="${vendorResult.partyId}" !
    transactionDate="${effectiveTime}" isPosted="Y" !
    postedDate="${effectiveTime}" glFiscalTypeEnumId="GLFT_ACTUAL" !
    amountUomId="USD" otherPartyId="${clientResult.partyId}" !
    invoiceId="${clientInvResult.invoiceId}"/>!
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55902" !
    acctgTransEntrySeqId="01" debitCreditFlag="C" amount="360" !
    glAccountId="402000" reconcileStatusId="AES_NOT_RECONCILED" !
    isSummary="N" invoiceItemSeqId="01"/>!
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55902" !
    acctgTransEntrySeqId="02" debitCreditFlag="C" amount="90" !
    glAccountId="402000" reconcileStatusId="AES_NOT_RECONCILED" !
    isSummary="N" invoiceItemSeqId="02"/>!
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55902" !
    acctgTransEntrySeqId="03" debitCreditFlag="C" amount="120" !
    glAccountId="402000" reconcileStatusId="AES_NOT_RECONCILED" !
    isSummary="N" invoiceItemSeqId="03"/>!
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55902" !
    acctgTransEntrySeqId="04" debitCreditFlag="C" amount="345.67" !
    glAccountId="681000" reconcileStatusId="AES_NOT_RECONCILED" !
    isSummary="N" invoiceItemSeqId="04"/>!
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55902" !
    acctgTransEntrySeqId="05" debitCreditFlag="C" amount="123.45" !
    glAccountId="681000" reconcileStatusId="AES_NOT_RECONCILED" !
    isSummary="N" invoiceItemSeqId="05"/>!
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55902" !
    acctgTransEntrySeqId="06" debitCreditFlag="D" amount="1,039.12" !
    glAccountTypeEnumId="ACCOUNTS_RECEIVABLE" glAccountId="120000" !
    reconcileStatusId="AES_NOT_RECONCILED" isSummary="N"/>!

This is the service call to record a delivered payment by company check for the invoice, 
which automatically makes it from the client to the vendor:"

USL Business Processes  ���                                                          258



Map clientPmtResult = ec.service.sync()!
    .name("mantle.account.PaymentServices.create#InvoicePayment")!
    .parameters([invoiceId:clientInvResult.invoiceId, !
        statusId:'PmntDelivered', amount:1039.12,!
        paymentMethodTypeEnumId:'PmtCompanyCheck', !
        effectiveDate:'2013-11-12 12:00:00', paymentRefNum:'54321'])!
    .call()!

The first record here shows the status update on the invoice to payment received. Then we 
have the payment record and the application of the payment to the invoice. After that is the 
accounting transaction to post the payment to the general ledger."
<mantle.account.invoice.Invoice invoiceId="${clientInvResult.invoiceId}" !
    statusId="InvoicePmtRecvd"/>!
<mantle.account.payment.Payment paymentId="${clientPmtResult.paymentId}" !
    paymentTypeEnumId="PtInvoicePayment"!
    fromPartyId="${clientResult.partyId}" !
    toPartyId="${vendorResult.partyId}"  !
    paymentMethodTypeEnumId="PmtCompanyCheck" statusId="PmntDelivered" !
    effectiveDate="1384279200000" paymentRefNum="54321" amount="1,039.12" !
    amountUomId="USD"/>!
<mantle.account.payment.PaymentApplication !
    paymentApplicationId="${clientPmtResult.paymentApplicationId}"!
    paymentId="${clientPmtResult.paymentId}" !
    invoiceId="${clientInvResult.invoiceId}" amountApplied="1,039.12" !
    appliedDate="${effectiveTime}"/>!!
<mantle.ledger.transaction.AcctgTrans acctgTransId="55903" !
    acctgTransTypeEnumId="AttIncomingPayment"!
    organizationPartyId="${vendorResult.partyId}" !
    transactionDate="${effectiveTime}" isPosted="Y" !
    postedDate="${effectiveTime}" glFiscalTypeEnumId="GLFT_ACTUAL" !
    amountUomId="USD" otherPartyId="${clientResult.partyId}" !
    paymentId="${clientPmtResult.paymentId}"/>!
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55903" !
    acctgTransEntrySeqId="01" debitCreditFlag="C" amount="1,039.12" !
    glAccountId="120000" reconcileStatusId="AES_NOT_RECONCILED" !
    isSummary="N"/>!
<mantle.ledger.transaction.AcctgTransEntry acctgTransId="55903" !
    acctgTransEntrySeqId="02" debitCreditFlag="D" amount="1,039.12" !
    glAccountId="111100" reconcileStatusId="AES_NOT_RECONCILED" !
    isSummary="N"/>!

!

���   12. Mantle Business Artifacts259                                                      


