
5

Interlude: Process API

ASIDE: INTERLUDES

Interludes will cover more practical aspects of systems, including a par-
ticular focus on operating system APIs and how to use them. If you don’t
like practical things, you could skip these interludes. But you should like
practical things, because, well, they are generally useful in real life; com-
panies, for example, don’t usually hire you for your non-practical skills.

In this interlude, we discuss process creation in UNIX systems. UNIX

presents one of the most intriguing ways to create a new process with
a pair of system calls: fork() and exec(). A third routine, wait(),
can be used by a process wishing to wait for a process it has created to
complete. We now present these interfaces in more detail, with a few
simple examples to motivate us. And thus, our problem:

CRUX: HOW TO CREATE AND CONTROL PROCESSES

What interfaces should the OS present for process creation and con-
trol? How should these interfaces be designed to enable ease of use as
well as utility?

5.1 The fork() System Call

The fork() system call is used to create a new process [C63]. How-
ever, be forewarned: it is certainly the strangest routine you will ever

call1. More specifically, you have a running program whose code looks
like what you see in Figure 5.1; examine the code, or better yet, type it in
and run it yourself!

1Well, OK, we admit that we don’t know that for sure; who knows what routines you
call when no one is looking? But fork() is pretty odd, no matter how unusual your routine-
calling patterns are.

1

2 INTERLUDE: PROCESS API

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <unistd.h>

4

5 int

6 main(int argc, char *argv[])

7 {

8 printf("hello world (pid:%d)\n", (int) getpid());

9 int rc = fork();

10 if (rc < 0) { // fork failed; exit

11 fprintf(stderr, "fork failed\n");

12 exit(1);

13 } else if (rc == 0) { // child (new process)

14 printf("hello, I am child (pid:%d)\n", (int) getpid());

15 } else { // parent goes down this path (main)

16 printf("hello, I am parent of %d (pid:%d)\n",

17 rc, (int) getpid());

18 }

19 return 0;

20 }

Figure 5.1: Calling fork() (p1.c)

When you run this program (called p1.c), you’ll see the following:

prompt> ./p1

hello world (pid:29146)

hello, I am parent of 29147 (pid:29146)

hello, I am child (pid:29147)

prompt>

Let us understand what happened in more detail in p1.c. When it
first started running, the process prints out a hello world message; in-
cluded in that message is its process identifier, also known as a PID. The
process has a PID of 29146; in UNIX systems, the PID is used to name
the process if one wants to do something with the process, such as (for
example) stop it from running. So far, so good.

Now the interesting part begins. The process calls the fork() system
call, which the OS provides as a way to create a new process. The odd
part: the process that is created is an (almost) exact copy of the calling pro-
cess. That means that to the OS, it now looks like there are two copies of
the program p1 running, and both are about to return from the fork()
system call. The newly-created process (called the child, in contrast to the
creating parent) doesn’t start running at main(), like you might expect
(note, the “hello, world” message only got printed out once); rather, it
just comes into life as if it had called fork() itself.

You might have noticed: the child isn’t an exact copy. Specifically, al-
though it now has its own copy of the address space (i.e., its own private
memory), its own registers, its own PC, and so forth, the value it returns
to the caller of fork() is different. Specifically, while the parent receives
the PID of the newly-created child, the child is simply returned a 0. This
differentiation is useful, because it is simple then to write the code that
handles the two different cases (as above).

OPERATING

SYSTEMS

[VERSION 0.90] WWW.OSTEP.ORG

INTERLUDE: PROCESS API 3

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <unistd.h>

4 #include <sys/wait.h>

5

6 int

7 main(int argc, char *argv[])

8 {

9 printf("hello world (pid:%d)\n", (int) getpid());

10 int rc = fork();

11 if (rc < 0) { // fork failed; exit

12 fprintf(stderr, "fork failed\n");

13 exit(1);

14 } else if (rc == 0) { // child (new process)

15 printf("hello, I am child (pid:%d)\n", (int) getpid());

16 } else { // parent goes down this path (main)

17 int wc = wait(NULL);

18 printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",

19 rc, wc, (int) getpid());

20 }

21 return 0;

22 }

Figure 5.2: Calling fork() And wait() (p2.c)

You might also have noticed: the output is not deterministic. When
the child process is created, there are now two active processes in the sys-
tem that we care about: the parent and the child. Assuming we are run-
ning on a system with a single CPU (for simplicity), then either the child
or the parent might run at that point. In our example (above), the parent
did and thus printed out its message first. In other cases, the opposite
might happen, as we show in this output trace:

prompt> ./p1

hello world (pid:29146)

hello, I am child (pid:29147)

hello, I am parent of 29147 (pid:29146)

prompt>

The CPU scheduler, a topic we’ll discuss in great detail soon, deter-
mines which process runs at a given moment in time; because the sched-
uler is complex, we cannot usually make strong assumptions about what
it will choose to do, and hence which process will run first. This non-
determinism, as it turns out, leads to some interesting problems, par-
ticularly in multi-threaded programs; hence, we’ll see a lot more non-
determinism when we study concurrency in the second part of the book.

5.2 The wait() System Call

So far, we haven’t done much: just created a child that prints out a
message and exits. Sometimes, as it turns out, it is quite useful for a
parent to wait for a child process to finish what it has been doing. This
task is accomplished with the wait() system call (or its more complete
sibling waitpid()); see Figure 5.2 for details.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

4 INTERLUDE: PROCESS API

In this example (p2.c), the parent process calls wait() to delay its
execution until the child finishes executing. When the child is done,
wait() returns to the parent.

Adding a wait() call to the code above makes the output determin-
istic. Can you see why? Go ahead, think about it.

(waiting for you to think and done)

Now that you have thought a bit, here is the output:

prompt> ./p2

hello world (pid:29266)

hello, I am child (pid:29267)

hello, I am parent of 29267 (wc:29267) (pid:29266)

prompt>

With this code, we now know that the child will always print first.
Why do we know that? Well, it might simply run first, as before, and
thus print before the parent. However, if the parent does happen to run
first, it will immediately call wait(); this system call won’t return until

the child has run and exited2. Thus, even when the parent runs first, it
politely waits for the child to finish running, then wait() returns, and
then the parent prints its message.

5.3 Finally, The exec() System Call

A final and important piece of the process creation API is the exec()

system call3. This system call is useful when you want to run a program
that is different from the calling program. For example, calling fork()

in p2.c is only useful if you want to keep running copies of the same
program. However, often you want to run a different program; exec()
does just that (Figure 5.3, page 5).

In this example, the child process calls execvp() in order to run the
program wc, which is the word counting program. In fact, it runs wc on
the source file p3.c, thus telling us how many lines, words, and bytes are
found in the file:

prompt> ./p3

hello world (pid:29383)

hello, I am child (pid:29384)

29 107 1030 p3.c

hello, I am parent of 29384 (wc:29384) (pid:29383)

prompt>

2There are a few cases where wait() returns before the child exits; read the man page
for more details, as always. And beware of any absolute and unqualified statements this book
makes, such as “the child will always print first” or “UNIX is the best thing in the world, even
better than ice cream.”

3Actually, there are six variants of exec(): execl(), execle(), execlp(), execv(),
and execvp(). Read the man pages to learn more.

OPERATING

SYSTEMS

[VERSION 0.90] WWW.OSTEP.ORG

INTERLUDE: PROCESS API 5

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <unistd.h>

4 #include <string.h>

5 #include <sys/wait.h>

6

7 int

8 main(int argc, char *argv[])

9 {

10 printf("hello world (pid:%d)\n", (int) getpid());

11 int rc = fork();

12 if (rc < 0) { // fork failed; exit

13 fprintf(stderr, "fork failed\n");

14 exit(1);

15 } else if (rc == 0) { // child (new process)

16 printf("hello, I am child (pid:%d)\n", (int) getpid());

17 char *myargs[3];

18 myargs[0] = strdup("wc"); // program: "wc" (word count)

19 myargs[1] = strdup("p3.c"); // argument: file to count

20 myargs[2] = NULL; // marks end of array

21 execvp(myargs[0], myargs); // runs word count

22 printf("this shouldn’t print out");

23 } else { // parent goes down this path (main)

24 int wc = wait(NULL);

25 printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",

26 rc, wc, (int) getpid());

27 }

28 return 0;

29 }

Figure 5.3: Calling fork(), wait(), And exec() (p3.c)

The fork() system call is strange; its partner in crime, exec(), is not
so normal either. What it does: given the name of an executable (e.g., wc),
and some arguments (e.g., p3.c), it loads code (and static data) from that
executable and overwrites its current code segment (and current static
data) with it; the heap and stack and other parts of the memory space of
the program are re-initialized. Then the OS simply runs that program,
passing in any arguments as the argv of that process. Thus, it does not
create a new process; rather, it transforms the currently running program
(formerly p3) into a different running program (wc). After the exec()
in the child, it is almost as if p3.c never ran; a successful call to exec()
never returns.

5.4 Why? Motivating The API

Of course, one big question you might have: why would we build
such an odd interface to what should be the simple act of creating a new
process? Well, as it turns out, the separation of fork() and exec() is
essential in building a UNIX shell, because it lets the shell run code after
the call to fork() but before the call to exec(); this code can alter the
environment of the about-to-be-run program, and thus enables a variety
of interesting features to be readily built.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

6 INTERLUDE: PROCESS API

TIP: GETTING IT RIGHT (LAMPSON’S LAW)
As Lampson states in his well-regarded “Hints for Computer Systems

Design” [L83], “Get it right. Neither abstraction nor simplicity is a substi-
tute for getting it right.” Sometimes, you just have to do the right thing,
and when you do, it is way better than the alternatives. There are lots
of ways to design APIs for process creation; however, the combination
of fork() and exec() are simple and immensely powerful. Here, the
UNIX designers simply got it right. And because Lampson so often “got
it right”, we name the law in his honor.

The shell is just a user program4. It shows you a prompt and then
waits for you to type something into it. You then type a command (i.e.,
the name of an executable program, plus any arguments) into it; in most
cases, the shell then figures out where in the file system the executable
resides, calls fork() to create a new child process to run the command,
calls some variant of exec() to run the command, and then waits for the
command to complete by calling wait(). When the child completes, the
shell returns from wait() and prints out a prompt again, ready for your
next command.

The separation of fork() and exec() allows the shell to do a whole
bunch of useful things rather easily. For example:

prompt> wc p3.c > newfile.txt

In the example above, the output of the program wc is redirected into
the output file newfile.txt (the greater-than sign is how said redirec-
tion is indicated). The way the shell accomplishes this task is quite sim-
ple: when the child is created, before calling exec(), the shell closes
standard output and opens the file newfile.txt. By doing so, any out-
put from the soon-to-be-running program wc are sent to the file instead
of the screen.

Figure 5.4 shows a program that does exactly this. The reason this redi-
rection works is due to an assumption about how the operating system
manages file descriptors. Specifically, UNIX systems start looking for free
file descriptors at zero. In this case, STDOUT FILENO will be the first
available one and thus get assigned when open() is called. Subsequent
writes by the child process to the standard output file descriptor, for ex-
ample by routines such as printf(), will then be routed transparently
to the newly-opened file instead of the screen.

Here is the output of running the p4.c program:

prompt> ./p4

prompt> cat p4.output

32 109 846 p4.c

prompt>

4And there are lots of shells; tcsh, bash, and zsh to name a few. You should pick one,
read its man pages, and learn more about it; all UNIX experts do.

OPERATING

SYSTEMS

[VERSION 0.90] WWW.OSTEP.ORG

INTERLUDE: PROCESS API 7

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <unistd.h>

4 #include <string.h>

5 #include <fcntl.h>

6 #include <sys/wait.h>

7

8 int

9 main(int argc, char *argv[])

10 {

11 int rc = fork();

12 if (rc < 0) { // fork failed; exit

13 fprintf(stderr, "fork failed\n");

14 exit(1);

15 } else if (rc == 0) { // child: redirect standard output to a file

16 close(STDOUT_FILENO);

17 open("./p4.output", O_CREAT|O_WRONLY|O_TRUNC, S_IRWXU);

18

19 // now exec "wc"...

20 char *myargs[3];

21 myargs[0] = strdup("wc"); // program: "wc" (word count)

22 myargs[1] = strdup("p4.c"); // argument: file to count

23 myargs[2] = NULL; // marks end of array

24 execvp(myargs[0], myargs); // runs word count

25 } else { // parent goes down this path (main)

26 int wc = wait(NULL);

27 }

28 return 0;

29 }

Figure 5.4: All Of The Above With Redirection (p4.c)

You’ll notice (at least) two interesting tidbits about this output. First,
when p4 is run, it looks as if nothing has happened; the shell just prints
the command prompt and is immediately ready for your next command.
However, that is not the case; the program p4 did indeed call fork() to
create a new child, and then run the wc program via a call to execvp().
You don’t see any output printed to the screen because it has been redi-
rected to the file p4.output. Second, you can see that when we cat the
output file, all the expected output from running wc is found. Cool, right?

UNIX pipes are implemented in a similar way, but with the pipe()

system call. In this case, the output of one process is connected to an in-
kernel pipe (i.e., queue), and the input of another process is connected
to that same pipe; thus, the output of one process seamlessly is used as
input to the next, and long and useful chains of commands can be strung
together. As a simple example, consider the looking for a word in a file,
and then counting how many times said word occurs; with pipes and the
utilities grep and wc, it is easy — just type grep foo file | wc -l

into the command prompt and marvel at the result.
Finally, while we just have sketched out the process API at a high level,

there is a lot more detail about these calls out there to be learned and
digested; we’ll learn more, for example, about file descriptors when we
talk about file systems in the third part of the book. For now, suffice it
to say that the fork()/exec() combination is a powerful way to create
and manipulate processes.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

8 INTERLUDE: PROCESS API

ASIDE: RTFM — READ THE MAN PAGES

Many times in this book, when referring to a particular system call or
library call, we’ll tell you to read the manual pages, or man pages for
short. Man pages are the original form of documentation that exist on
UNIX systems; realize that they were created before the thing called the
web existed.

Spending some time reading man pages is a key step in the growth of
a systems programmer; there are tons of useful tidbits hidden in those
pages. Some particularly useful pages to read are the man pages for
whichever shell you are using (e.g., tcsh, or bash), and certainly for any
system calls your program makes (in order to see what return values and
error conditions exist).

Finally, reading the man pages can save you some embarrassment. When
you ask colleagues about some intricacy of fork(), they may simply
reply: “RTFM.” This is your colleagues’ way of gently urging you to Read
The Man pages. The F in RTFM just adds a little color to the phrase...

5.5 Other Parts Of The API

Beyond fork(), exec(), and wait(), there are a lot of other inter-
faces for interacting with processes in UNIX systems. For example, the
kill() system call is used to send signals to a process, including direc-
tives to go to sleep, die, and other useful imperatives. In fact, the entire
signals subsystem provides a rich infrastructure to deliver external events
to processes, including ways to receive and process those signals.

There are many command-line tools that are useful as well. For exam-
ple, using the ps command allows you to see which processes are run-
ning; read the man pages for some useful flags to pass to ps. The tool
top is also quite helpful, as it displays the processes of the system and
how much CPU and other resources they are eating up. Humorously,
many times when you run it, top claims it is the top resource hog; per-
haps it is a bit of an egomaniac. Finally, there are many different kinds of
CPU meters you can use to get a quick glance understanding of the load
on your system; for example, we always keep MenuMeters (from Raging
Menace software) running on our Macintosh toolbars, so we can see how
much CPU is being utilized at any moment in time. In general, the more
information about what is going on, the better.

5.6 Summary

We have introduced some of the APIs dealing with UNIX process cre-
ation: fork(), exec(), and wait(). However, we have just skimmed
the surface. For more detail, read Stevens and Rago [SR05], of course,
particularly the chapters on Process Control, Process Relationships, and
Signals. There is much to extract from the wisdom therein.

OPERATING

SYSTEMS

[VERSION 0.90] WWW.OSTEP.ORG

INTERLUDE: PROCESS API 9

References

[C63] “A Multiprocessor System Design”
Melvin E. Conway
AFIPS ’63 Fall Joint Computer Conference
New York, USA 1963
An early paper on how to design multiprocessing systems; may be the first place the term fork() was
used in the discussion of spawning new processes.

[DV66] “Programming Semantics for Multiprogrammed Computations”
Jack B. Dennis and Earl C. Van Horn
Communications of the ACM, Volume 9, Number 3, March 1966
A classic paper that outlines the basics of multiprogrammed computer systems. Undoubtedly had great
influence on Project MAC, Multics, and eventually UNIX.

[L83] “Hints for Computer Systems Design”
Butler Lampson
ACM Operating Systems Review, 15:5, October 1983
Lampson’s famous hints on how to design computer systems. You should read it at some point in your
life, and probably at many points in your life.

[SR05] “Advanced Programming in the UNIX Environment”
W. Richard Stevens and Stephen A. Rago
Addison-Wesley, 2005
All nuances and subtleties of using UNIX APIs are found herein. Buy this book! Read it! And most
importantly, live it.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

10 INTERLUDE: PROCESS API

ASIDE: CODING HOMEWORKS

Coding homeworks are small exercises where you write code to run on
a real machine to get some experience with some of the basic APIs that
modern operating systems have to offer. After all, you are (probably) a
computer scientist, and therefore should like to code, right? Of course, to
truly become an expert, you have to spend more than a little time hacking
away at the machine; indeed, find every excuse you can to write some
code and see how it works. Spend the time, and become the wise master
you know you can be.

Homework (Code)

In this homework, you are to gain some familiarity with the process
management APIs about which you just read. Don’t worry – it’s even
more fun than it sounds! You’ll in general be much better off if you find

as much time as you can to write some code5, so why not start now?

Questions

• Write a program that calls fork(). Before calling fork(), have the
main process access a variable (e.g., x) and set its value to some-
thing (e.g., 100). What value is the variable in the child process?
What happens to the variable when both the child and parent change
the value of x?

• Write a program that opens a file (with the open() system call)
and then calls fork() to create a new process. Can both the child
and parent access the file descriptor returned by open()? What
happens when they are writing to the file concurrently, i.e., at the
same time?

• Write another program using fork(). The child process should
print “hello”; the parent process should print “goodbye”. You should
try to ensure that the child process always prints first; can you do
this without calling wait() in the parent?

• Write a program that calls fork() and then calls some form of
exec() to run the program /bin/ls. See if you can try all of the
variants of exec(), including execl(), execle(), execlp(),

execv(), execvp(), and execvP(). Why do you think there
are so many variants of the same basic call?

• Now write a program that uses wait() to wait for the child process
to finish in the parent. What does wait() return? What happens if
you use wait() in the child?

5If you don’t like to code, but want to become a computer scientist, this means you need
to either (a) become really good at the theory of computer science, or (b) perhaps rethink this
whole “computer science” thing you’ve been telling everyone about.

OPERATING

SYSTEMS

[VERSION 0.90] WWW.OSTEP.ORG

INTERLUDE: PROCESS API 11

• Write a slight modification of the previous program, this time us-
ing waitpid() instead of wait(). When would waitpid() be
useful?

• Write a program that creates a child process, and then in the child
closes standard output (STDOUT FILENO). What happens if the child
calls printf() to print some output after closing the descriptor?

• Write a program that creates two children, and connects the stan-
dard output of one to the standard input of the other, using the
pipe() system call.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

