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Scheduling: Introduction

By now low-level mechanisms of running processes (e.g., context switch-
ing) should be clear; if they are not, go back a chapter or two, and read the
description of how that stuff works again. However, we have yet to un-
derstand the high-level policies that an OS scheduler employs. We will
now do just that, presenting a series of scheduling policies (sometimes
called disciplines) that various smart and hard-working people have de-
veloped over the years.

The origins of scheduling, in fact, predate computer systems; early
approaches were taken from the field of operations management and ap-
plied to computers. This reality should be no surprise: assembly lines
and many other human endeavors also require scheduling, and many of
the same concerns exist therein, including a laser-like desire for efficiency.
And thus, our problem:

THE CRUX: HOW TO DEVELOP SCHEDULING POLICY

How should we develop a basic framework for thinking about
scheduling policies? What are the key assumptions? What metrics are
important? What basic approaches have been used in the earliest of com-
puter systems?

7.1 Workload Assumptions

Before getting into the range of possible policies, let us first make a
number of simplifying assumptions about the processes running in the
system, sometimes collectively called the workload. Determining the
workload is a critical part of building policies, and the more you know
about workload, the more fine-tuned your policy can be.

The workload assumptions we make here are mostly unrealistic, but
that is alright (for now), because we will relax them as we go, and even-
tually develop what we will refer to as ... (dramatic pause) ...

1



2 SCHEDULING: INTRODUCTION

a fully-operational scheduling discipline1.
We will make the following assumptions about the processes, some-

times called jobs, that are running in the system:

1. Each job runs for the same amount of time.
2. All jobs arrive at the same time.
3. Once started, each job runs to completion.
4. All jobs only use the CPU (i.e., they perform no I/O)
5. The run-time of each job is known.

We said many of these assumptions were unrealistic, but just as some
animals are more equal than others in Orwell’s Animal Farm [O45], some
assumptions are more unrealistic than others in this chapter. In particu-
lar, it might bother you that the run-time of each job is known: this would
make the scheduler omniscient, which, although it would be great (prob-
ably), is not likely to happen anytime soon.

7.2 Scheduling Metrics

Beyond making workload assumptions, we also need one more thing
to enable us to compare different scheduling policies: a scheduling met-
ric. A metric is just something that we use to measure something, and
there are a number of different metrics that make sense in scheduling.

For now, however, let us also simplify our life by simply having a sin-
gle metric: turnaround time. The turnaround time of a job is defined
as the time at which the job completes minus the time at which the job
arrived in the system. More formally, the turnaround time Tturnaround is:

Tturnaround = Tcompletion − Tarrival (7.1)

Because we have assumed that all jobs arrive at the same time, for now
Tarrival = 0 and hence Tturnaround = Tcompletion. This fact will change
as we relax the aforementioned assumptions.

You should note that turnaround time is a performance metric, which
will be our primary focus this chapter. Another metric of interest is fair-
ness, as measured (for example) by Jain’s Fairness Index [J91]. Perfor-
mance and fairness are often at odds in scheduling; a scheduler, for ex-
ample, may optimize performance but at the cost of preventing a few jobs
from running, thus decreasing fairness. This conundrum shows us that
life isn’t always perfect.

7.3 First In, First Out (FIFO)

The most basic algorithm we can implement is known as First In, First
Out (FIFO) scheduling or sometimes First Come, First Served (FCFS).

1Said in the same way you would say “A fully-operational Death Star.”

OPERATING

SYSTEMS

[VERSION 0.90] WWW.OSTEP.ORG



SCHEDULING: INTRODUCTION 3

FIFO has a number of positive properties: it is clearly simple and thus
easy to implement. And, given our assumptions, it works pretty well.

Let’s do a quick example together. Imagine three jobs arrive in the
system, A, B, and C, at roughly the same time (Tarrival = 0). Because
FIFO has to put some job first, let’s assume that while they all arrived
simultaneously, A arrived just a hair before B which arrived just a hair
before C. Assume also that each job runs for 10 seconds. What will the
average turnaround time be for these jobs?

0 20 40 60 80 100 120

Time

A B C

Figure 7.1: FIFO Simple Example

From Figure 7.1, you can see that A finished at 10, B at 20, and C at 30.
Thus, the average turnaround time for the three jobs is simply 10+20+30

3
=

20. Computing turnaround time is as easy as that.
Now let’s relax one of our assumptions. In particular, let’s relax as-

sumption 1, and thus no longer assume that each job runs for the same
amount of time. How does FIFO perform now? What kind of workload
could you construct to make FIFO perform poorly?

(think about this before reading on ... keep thinking ... got it?!)
Presumably you’ve figured this out by now, but just in case, let’s do

an example to show how jobs of different lengths can lead to trouble for
FIFO scheduling. In particular, let’s again assume three jobs (A, B, and
C), but this time A runs for 100 seconds while B and C run for 10 each.

0 20 40 60 80 100 120

Time

A B C

Figure 7.2: Why FIFO Is Not That Great

As you can see in Figure 7.2, Job A runs first for the full 100 seconds
before B or C even get a chance to run. Thus, the average turnaround
time for the system is high: a painful 110 seconds ( 100+110+120

3
= 110).

This problem is generally referred to as the convoy effect [B+79], where
a number of relatively-short potential consumers of a resource get queued
behind a heavyweight resource consumer. This scheduling scenario might
remind you of a single line at a grocery store and what you feel like when
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4 SCHEDULING: INTRODUCTION

TIP: THE PRINCIPLE OF SJF
Shortest Job First represents a general scheduling principle that can be
applied to any system where the perceived turnaround time per customer
(or, in our case, a job) matters. Think of any line you have waited in: if
the establishment in question cares about customer satisfaction, it is likely
they have taken SJF into account. For example, grocery stores commonly
have a “ten-items-or-less” line to ensure that shoppers with only a few
things to purchase don’t get stuck behind the family preparing for some
upcoming nuclear winter.

you see the person in front of you with three carts full of provisions and

a checkbook out; it’s going to be a while2.
So what should we do? How can we develop a better algorithm to

deal with our new reality of jobs that run for different amounts of time?
Think about it first; then read on.

7.4 Shortest Job First (SJF)

It turns out that a very simple approach solves this problem; in fact
it is an idea stolen from operations research [C54,PV56] and applied to
scheduling of jobs in computer systems. This new scheduling discipline
is known as Shortest Job First (SJF), and the name should be easy to
remember because it describes the policy quite completely: it runs the
shortest job first, then the next shortest, and so on.

0 20 40 60 80 100 120

Time

B C A

Figure 7.3: SJF Simple Example

Let’s take our example above but with SJF as our scheduling policy.
Figure 7.3 shows the results of running A, B, and C. Hopefully the dia-
gram makes it clear why SJF performs much better with regards to aver-
age turnaround time. Simply by running B and C before A, SJF reduces
average turnaround from 110 seconds to 50 ( 10+20+120

3
= 50), more than

a factor of two improvement.
In fact, given our assumptions about jobs all arriving at the same time,

we could prove that SJF is indeed an optimal scheduling algorithm. How-

2Recommended action in this case: either quickly switch to a different line, or take a long,
deep, and relaxing breath. That’s right, breathe in, breathe out. It will be OK, don’t worry.
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SCHEDULING: INTRODUCTION 5

ASIDE: PREEMPTIVE SCHEDULERS

In the old days of batch computing, a number of non-preemptive sched-
ulers were developed; such systems would run each job to completion
before considering whether to run a new job. Virtually all modern sched-
ulers are preemptive, and quite willing to stop one process from run-
ning in order to run another. This implies that the scheduler employs the
mechanisms we learned about previously; in particular, the scheduler can
perform a context switch, stopping one running process temporarily and
resuming (or starting) another.

ever, you are in a systems class, not theory or operations research; no
proofs are allowed.

Thus we arrive upon a good approach to scheduling with SJF, but our
assumptions are still fairly unrealistic. Let’s relax another. In particular,
we can target assumption 2, and now assume that jobs can arrive at any
time instead of all at once. What problems does this lead to?

(Another pause to think ... are you thinking? Come on, you can do it)
Here we can illustrate the problem again with an example. This time,

assume A arrives at t = 0 and needs to run for 100 seconds, whereas B
and C arrive at t = 10 and each need to run for 10 seconds. With pure
SJF, we’d get the schedule seen in Figure 7.4.

0 20 40 60 80 100 120

Time

A B C
[B,C arrive]

Figure 7.4: SJF With Late Arrivals From B and C

As you can see from the figure, even though B and C arrived shortly
after A, they still are forced to wait until A has completed, and thus suffer
the same convoy problem. Average turnaround time for these three jobs

is 103.33 seconds ( 100+(110−10)+(120−10)
3

). What can a scheduler do?

7.5 Shortest Time-to-Completion First (STCF)

To address this concern, we need to relax assumption 3 (that jobs must
run to completion), so let’s do that. We also need some machinery within
the scheduler itself. As you might have guessed, given our previous dis-
cussion about timer interrupts and context switching, the scheduler can
certainly do something else when B and C arrive: it can preempt job A
and decide to run another job, perhaps continuing A later. SJF by our defi-
nition is a non-preemptive scheduler, and thus suffers from the problems
described above.
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6 SCHEDULING: INTRODUCTION

0 20 40 60 80 100 120

Time

A B C A
[B,C arrive]

Figure 7.5: STCF Simple Example

Fortunately, there is a scheduler which does exactly that: add preemp-
tion to SJF, known as the Shortest Time-to-Completion First (STCF) or
Preemptive Shortest Job First (PSJF) scheduler [CK68]. Any time a new
job enters the system, it determines of the remaining jobs and new job,
which has the least time left, and then schedules that one. Thus, in our
example, STCF would preempt A and run B and C to completion; only
when they are finished would A’s remaining time be scheduled. Figure
7.5 shows an example.

The result is a much-improved average turnaround time: 50 seconds

( (120−0)+(20−10)+(30−10)
3

). And as before, given our new assumptions,
STCF is provably optimal; given that SJF is optimal if all jobs arrive at
the same time, you should probably be able to see the intuition behind
the optimality of STCF.

7.6 A New Metric: Response Time

Thus, if we knew job lengths, and that jobs only used the CPU, and our
only metric was turnaround time, STCF would be a great policy. In fact,
for a number of early batch computing systems, these types of scheduling
algorithms made some sense. However, the introduction of time-shared
machines changed all that. Now users would sit at a terminal and de-
mand interactive performance from the system as well. And thus, a new
metric was born: response time.

Response time is defined as the time from when the job arrives in a
system to the first time it is scheduled. More formally:

Tresponse = Tfirstrun − Tarrival (7.2)

For example, if we had the schedule above (with A arriving at time 0,
and B and C at time 10), the response time of each job is as follows: 0 for
job A, 0 for B, and 10 for C (average: 3.33).

As you might be thinking, STCF and related disciplines are not par-
ticularly good for response time. If three jobs arrive at the same time,
for example, the third job has to wait for the previous two jobs to run in
their entirety before being scheduled just once. While great for turnaround
time, this approach is quite bad for response time and interactivity. In-
deed, imagine sitting at a terminal, typing, and having to wait 10 seconds
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Figure 7.6: SJF Again (Bad for Response Time)

0 5 10 15 20 25 30

Time
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Figure 7.7: Round Robin (Good for Response Time)

to see a response from the system just because some other job got sched-
uled in front of yours: not too pleasant.

Thus, we are left with another problem: how can we build a scheduler
that is sensitive to response time?

7.7 Round Robin

To solve this problem, we will introduce a new scheduling algorithm,
classically referred to as Round-Robin (RR) scheduling [K64]. The basic
idea is simple: instead of running jobs to completion, RR runs a job for a
time slice (sometimes called a scheduling quantum) and then switches
to the next job in the run queue. It repeatedly does so until the jobs are
finished. For this reason, RR is sometimes called time-slicing. Note that
the length of a time slice must be a multiple of the timer-interrupt period;
thus if the timer interrupts every 10 milliseconds, the time slice could be
10, 20, or any other multiple of 10 ms.

To understand RR in more detail, let’s look at an example. Assume
three jobs A, B, and C arrive at the same time in the system, and that
they each wish to run for 5 seconds. An SJF scheduler runs each job to
completion before running another (Figure 7.6). In contrast, RR with a
time-slice of 1 second would cycle through the jobs quickly (Figure 7.7).

The average response time of RR is: 0+1+2
3

= 1; for SJF, average re-

sponse time is: 0+5+10
3

= 5.
As you can see, the length of the time slice is critical for RR. The shorter

it is, the better the performance of RR under the response-time metric.
However, making the time slice too short is problematic: suddenly the
cost of context switching will dominate overall performance. Thus, de-
ciding on the length of the time slice presents a trade-off to a system de-
signer, making it long enough to amortize the cost of switching without
making it so long that the system is no longer responsive.
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8 SCHEDULING: INTRODUCTION

TIP: AMORTIZATION CAN REDUCE COSTS

The general technique of amortization is commonly used in systems
when there is a fixed cost to some operation. By incurring that cost less
often (i.e., by performing the operation fewer times), the total cost to the
system is reduced. For example, if the time slice is set to 10 ms, and the
context-switch cost is 1 ms, roughly 10% of time is spent context switch-
ing and is thus wasted. If we want to amortize this cost, we can increase
the time slice, e.g., to 100 ms. In this case, less than 1% of time is spent
context switching, and thus the cost of time-slicing has been amortized.

Note that the cost of context switching does not arise solely from the
OS actions of saving and restoring a few registers. When programs run,
they build up a great deal of state in CPU caches, TLBs, branch predictors,
and other on-chip hardware. Switching to another job causes this state
to be flushed and new state relevant to the currently-running job to be
brought in, which may exact a noticeable performance cost [MB91].

RR, with a reasonable time slice, is thus an excellent scheduler if re-
sponse time is our only metric. But what about our old friend turnaround
time? Let’s look at our example above again. A, B, and C, each with run-
ning times of 5 seconds, arrive at the same time, and RR is the scheduler
with a (long) 1-second time slice. We can see from the picture above that
A finishes at 13, B at 14, and C at 15, for an average of 14. Pretty awful!

It is not surprising, then, that RR is indeed one of the worst policies if
turnaround time is our metric. Intuitively, this should make sense: what
RR is doing is stretching out each job as long as it can, by only running
each job for a short bit before moving to the next. Because turnaround
time only cares about when jobs finish, RR is nearly pessimal, even worse
than simple FIFO in many cases.

More generally, any policy (such as RR) that is fair, i.e., that evenly di-
vides the CPU among active processes on a small time scale, will perform
poorly on metrics such as turnaround time. Indeed, this is an inherent
trade-off: if you are willing to be unfair, you can run shorter jobs to com-
pletion, but at the cost of response time; if you instead value fairness,
response time is lowered, but at the cost of turnaround time. This type of

trade-off is common in systems; you can’t have your cake and eat it too3.
We have developed two types of schedulers. The first type (SJF, STCF)

optimizes turnaround time, but is bad for response time. The second type
(RR) optimizes response time but is bad for turnaround. And we still
have two assumptions which need to be relaxed: assumption 4 (that jobs
do no I/O), and assumption 5 (that the run-time of each job is known).
Let’s tackle those assumptions next.

3A saying that confuses people, because it should be “You can’t keep your
cake and eat it too” (which is kind of obvious, no?). Amazingly, there is a
wikipedia page about this saying; even more amazingly, it is kind of fun to read:
http://en.wikipedia.org/wiki/You can’t have your cake and eat it.
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SCHEDULING: INTRODUCTION 9

TIP: OVERLAP ENABLES HIGHER UTILIZATION

When possible, overlap operations to maximize the utilization of sys-
tems. Overlap is useful in many different domains, including when per-
forming disk I/O or sending messages to remote machines; in either case,
starting the operation and then switching to other work is a good idea,
and improves the overall utilization and efficiency of the system.

7.8 Incorporating I/O

First we will relax assumption 4 — of course all programs perform
I/O. Imagine a program that didn’t take any input: it would produce the
same output each time. Imagine one without output: it is the proverbial
tree falling in the forest, with no one to see it; it doesn’t matter that it ran.

A scheduler clearly has a decision to make when a job initiates an I/O
request, because the currently-running job won’t be using the CPU dur-
ing the I/O; it is blocked waiting for I/O completion. If the I/O is sent to
a hard disk drive, the process might be blocked for a few milliseconds or
longer, depending on the current I/O load of the drive. Thus, the sched-
uler should probably schedule another job on the CPU at that time.

The scheduler also has to make a decision when the I/O completes.
When that occurs, an interrupt is raised, and the OS runs and moves
the process that issued the I/O from blocked back to the ready state. Of
course, it could even decide to run the job at that point. How should the
OS treat each job?

To understand this issue better, let us assume we have two jobs, A and
B, which each need 50 ms of CPU time. However, there is one obvious
difference: A runs for 10 ms and then issues an I/O request (assume here
that I/Os each take 10 ms), whereas B simply uses the CPU for 50 ms and
performs no I/O. The scheduler runs A first, then B after (Figure 7.8).

0 20 40 60 80 100 120 140

Time

A A A A A B B B B B

CPU

Disk

Figure 7.8: Poor Use of Resources

Assume we are trying to build a STCF scheduler. How should such a
scheduler account for the fact that A is broken up into 5 10-ms sub-jobs,
whereas B is just a single 50-ms CPU demand? Clearly, just running one
job and then the other without considering how to take I/O into account
makes little sense.

A common approach is to treat each 10-ms sub-job of A as an indepen-
dent job. Thus, when the system starts, its choice is whether to schedule
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Figure 7.9: Overlap Allows Better Use of Resources

a 10-ms A or a 50-ms B. With STCF, the choice is clear: choose the shorter
one, in this case A. Then, when the first sub-job of A has completed, only
B is left, and it begins running. Then a new sub-job of A is submitted,
and it preempts B and runs for 10 ms. Doing so allows for overlap, with
the CPU being used by one process while waiting for the I/O of another
process to complete; the system is thus better utilized (see Figure 7.9).

And thus we see how a scheduler might incorporate I/O. By treating
each CPU burst as a job, the scheduler makes sure processes that are “in-
teractive” get run frequently. While those interactive jobs are performing
I/O, other CPU-intensive jobs run, thus better utilizing the processor.

7.9 No More Oracle

With a basic approach to I/O in place, we come to our final assump-
tion: that the scheduler knows the length of each job. As we said before,
this is likely the worst assumption we could make. In fact, in a general-
purpose OS (like the ones we care about), the OS usually knows very little
about the length of each job. Thus, how can we build an approach that be-
haves like SJF/STCF without such a priori knowledge? Further, how can
we incorporate some of the ideas we have seen with the RR scheduler so
that response time is also quite good?

7.10 Summary

We have introduced the basic ideas behind scheduling and developed
two families of approaches. The first runs the shortest job remaining and
thus optimizes turnaround time; the second alternates between all jobs
and thus optimizes response time. Both are bad where the other is good,
alas, an inherent trade-off common in systems. We have also seen how we
might incorporate I/O into the picture, but have still not solved the prob-
lem of the fundamental inability of the OS to see into the future. Shortly,
we will see how to overcome this problem, by building a scheduler that
uses the recent past to predict the future. This scheduler is known as the
multi-level feedback queue, and it is the topic of the next chapter.
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Homework

This program, scheduler.py, allows you to see how different sched-
ulers perform under scheduling metrics such as response time, turnaround
time, and total wait time. See the README for details.

Questions

1. Compute the response time and turnaround time when running
three jobs of length 200 with the SJF and FIFO schedulers.

2. Now do the same but with jobs of different lengths: 100, 200, and
300.

3. Now do the same, but also with the RR scheduler and a time-slice
of 1.

4. For what types of workloads does SJF deliver the same turnaround
times as FIFO?

5. For what types of workloads and quantum lengths does SJF deliver
the same response times as RR?

6. What happens to response time with SJF as job lengths increase?
Can you use the simulator to demonstrate the trend?

7. What happens to response time with RR as quantum lengths in-
crease? Can you write an equation that gives the worst-case re-
sponse time, given N jobs?
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