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Multiprocessor Scheduling (Advanced)

This chapter will introduce the basics of multiprocessor scheduling. As
this topic is relatively advanced, it may be best to cover it after you have
studied the topic of concurrency in some detail (i.e., the second major
“easy piece” of the book).

After years of existence only in the high-end of the computing spec-
trum, multiprocessor systems are increasingly commonplace, and have
found their way into desktop machines, laptops, and even mobile de-
vices. The rise of the multicore processor, in which multiple CPU cores
are packed onto a single chip, is the source of this proliferation; these
chips have become popular as computer architects have had a difficult
time making a single CPU much faster without using (way) too much
power. And thus we all now have a few CPUs available to us, which is a
good thing, right?

Of course, there are many difficulties that arise with the arrival of more
than a single CPU. A primary one is that a typical application (i.e., some C
program you wrote) only uses a single CPU; adding more CPUs does not
make that single application run faster. To remedy this problem, you’ll
have to rewrite your application to run in parallel, perhaps using threads
(as discussed in great detail in the second piece of this book). Multi-
threaded applications can spread work across multiple CPUs and thus
run faster when given more CPU resources.

ASIDE: ADVANCED CHAPTERS

Advanced chapters require material from a broad swath of the book to
truly understand, while logically fitting into a section that is earlier than
said set of prerequisite materials. For example, this chapter on multipro-
cessor scheduling makes much more sense if you’ve first read the middle
piece on concurrency; however, it logically fits into the part of the book
on virtualization (generally) and CPU scheduling (specifically). Thus, it
is recommended such chapters be covered out of order; in this case, after
the second piece of the book.
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Figure 10.1: Single CPU With Cache

Beyond applications, a new problem that arises for the operating sys-
tem is (not surprisingly!) that of multiprocessor scheduling. Thus far
we’ve discussed a number of principles behind single-processor schedul-
ing; how can we extend those ideas to work on multiple CPUs? What
new problems must we overcome? And thus, our problem:

CRUX: HOW TO SCHEDULE JOBS ON MULTIPLE CPUS

How should the OS schedule jobs on multiple CPUs? What new prob-
lems arise? Do the same old techniques work, or are new ideas required?

10.1 Background: Multiprocessor Architecture

To understand the new issues surrounding multiprocessor schedul-
ing, we have to understand a new and fundamental difference between
single-CPU hardware and multi-CPU hardware. This difference centers
around the use of hardware caches (e.g., Figure 10.1), and exactly how
data is shared across multiple processors. We now discuss this issue fur-
ther, at a high level. Details are available elsewhere [CSG99], in particular
in an upper-level or perhaps graduate computer architecture course.

In a system with a single CPU, there are a hierarchy of hardware
caches that in general help the processor run programs faster. Caches
are small, fast memories that (in general) hold copies of popular data that
is found in the main memory of the system. Main memory, in contrast,
holds all of the data, but access to this larger memory is slower. By keep-
ing frequently accessed data in a cache, the system can make the large,
slow memory appear to be a fast one.

As an example, consider a program that issues an explicit load instruc-
tion to fetch a value from memory, and a simple system with only a single
CPU; the CPU has a small cache (say 64 KB) and a large main memory.
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Figure 10.2: Two CPUs With Caches Sharing Memory

The first time a program issues this load, the data resides in main mem-
ory, and thus takes a long time to fetch (perhaps in the tens of nanosec-
onds, or even hundreds). The processor, anticipating that the data may
be reused, puts a copy of the loaded data into the CPU cache. If the pro-
gram later fetches this same data item again, the CPU first checks for it in
the cache; because it finds it there, the data is fetched much more quickly
(say, just a few nanoseconds), and thus the program runs faster.

Caches are thus based on the notion of locality, of which there are
two kinds: temporal locality and spatial locality. The idea behind tem-
poral locality is that when a piece of data is accessed, it is likely to be
accessed again in the near future; imagine variables or even instructions
themselves being accessed over and over again in a loop. The idea be-
hind spatial locality is that if a program accesses a data item at address
x, it is likely to access data items near x as well; here, think of a program
streaming through an array, or instructions being executed one after the
other. Because locality of these types exist in many programs, hardware
systems can make good guesses about which data to put in a cache and
thus work well.

Now for the tricky part: what happens when you have multiple pro-
cessors in a single system, with a single shared main memory, as we see
in Figure 10.2?

As it turns out, caching with multiple CPUs is much more compli-
cated. Imagine, for example, that a program running on CPU 1 reads
a data item (with value D) at address A; because the data is not in the
cache on CPU 1, the system fetches it from main memory, and gets the
value D. The program then modifies the value at address A, just updat-
ing its cache with the new value D

′; writing the data through all the way
to main memory is slow, so the system will (usually) do that later. Then
assume the OS decides to stop running the program and move it to CPU
2. The program then re-reads the value at address A; there is no such data
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CPU 2’s cache, and thus the system fetches the value from main memory,
and gets the old value D instead of the correct value D

′. Oops!
This general problem is called the problem of cache coherence, and

there is a vast research literature that describes many different subtleties
involved with solving the problem [SHW11]. Here, we will skip all of the
nuance and make some major points; take a computer architecture class
(or three) to learn more.

The basic solution is provided by the hardware: by monitoring mem-
ory accesses, hardware can ensure that basically the “right thing” hap-
pens and that the view of a single shared memory is preserved. One way
to do this on a bus-based system (as described above) is to use an old
technique known as bus snooping [G83]; each cache pays attention to
memory updates by observing the bus that connects them to main mem-
ory. When a CPU then sees an update for a data item it holds in its cache,
it will notice the change and either invalidate its copy (i.e., remove it
from its own cache) or update it (i.e., put the new value into its cache
too). Write-back caches, as hinted at above, make this more complicated
(because the write to main memory isn’t visible until later), but you can
imagine how the basic scheme might work.

10.2 Don’t Forget Synchronization

Given that the caches do all of this work to provide coherence, do pro-
grams (or the OS itself) have to worry about anything when they access
shared data? The answer, unfortunately, is yes, and is documented in
great detail in the second piece of this book on the topic of concurrency.
While we won’t get into the details here, we’ll sketch/review some of the
basic ideas here (assuming you’re familiar with concurrency).

When accessing (and in particular, updating) shared data items or
structures across CPUs, mutual exclusion primitives (such as locks) should
likely be used to guarantee correctness (other approaches, such as build-
ing lock-free data structures, are complex and only used on occasion;
see the chapter on deadlock in the piece on concurrency for details). For
example, assume we have a shared queue being accessed on multiple
CPUs concurrently. Without locks, adding or removing elements from
the queue concurrently will not work as expected, even with the under-
lying coherence protocols; one needs locks to atomically update the data
structure to its new state.

To make this more concrete, imagine this code sequence, which is used
to remove an element from a shared linked list, as we see in Figure 10.3.
Imagine if threads on two CPUs enter this routine at the same time. If
Thread 1 executes the first line, it will have the current value of head
stored in its tmp variable; if Thread 2 then executes the first line as well,
it also will have the same value of head stored in its own private tmp

variable (tmp is allocated on the stack, and thus each thread will have
its own private storage for it). Thus, instead of each thread removing
an element from the head of the list, each thread will try to remove the
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1 typedef struct __Node_t {

2 int value;

3 struct __Node_t *next;

4 } Node_t;

5

6 int List_Pop() {

7 Node_t *tmp = head; // remember old head ...

8 int value = head->value; // ... and its value

9 head = head->next; // advance head to next pointer

10 free(tmp); // free old head

11 return value; // return value at head

12 }

Figure 10.3: Simple List Delete Code

same head element, leading to all sorts of problems (such as an attempted
double free of the head element at line 4, as well as potentially returning
the same data value twice).

The solution, of course, is to make such routines correct via lock-
ing. In this case, allocating a simple mutex (e.g., pthread mutex t

m;) and then adding a lock(&m) at the beginning of the routine and
an unlock(&m) at the end will solve the problem, ensuring that the code
will execute as desired. Unfortunately, as we will see, such an approach is
not without problems, in particular with regards to performance. Specifi-
cally, as the number of CPUs grows, access to a synchronized shared data
structure becomes quite slow.

10.3 One Final Issue: Cache Affinity

One final issue arises in building a multiprocessor cache scheduler,
known as cache affinity. This notion is simple: a process, when run on a
particular CPU, builds up a fair bit of state in the caches (and TLBs) of the
CPU. The next time the process runs, it is often advantageous to run it on
the same CPU, as it will run faster if some of its state is already present in
the caches on that CPU. If, instead, one runs a process on a different CPU
each time, the performance of the process will be worse, as it will have to
reload the state each time it runs (note it will run correctly on a different
CPU thanks to the cache coherence protocols of the hardware). Thus, a
multiprocessor scheduler should consider cache affinity when making its
scheduling decisions, perhaps preferring to keep a process on the same
CPU if at all possible.

10.4 Single-Queue Scheduling

With this background in place, we now discuss how to build a sched-
uler for a multiprocessor system. The most basic approach is to simply
reuse the basic framework for single processor scheduling, by putting all
jobs that need to be scheduled into a single queue; we call this single-
queue multiprocessor scheduling or SQMS for short. This approach
has the advantage of simplicity; it does not require much work to take an
existing policy that picks the best job to run next and adapt it to work on
more than one CPU (where it might pick the best two jobs to run, if there
are two CPUs, for example).
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6 MULTIPROCESSOR SCHEDULING (ADVANCED)

However, SQMS has obvious shortcomings. The first problem is a lack
of scalability. To ensure the scheduler works correctly on multiple CPUs,
the developers will have inserted some form of locking into the code, as
described above. Locks ensure that when SQMS code accesses the single
queue (say, to find the next job to run), the proper outcome arises.

Locks, unfortunately, can greatly reduce performance, particularly as
the number of CPUs in the systems grows [A91]. As contention for such
a single lock increases, the system spends more and more time in lock
overhead and less time doing the work the system should be doing (note:
it would be great to include a real measurement of this in here someday).

The second main problem with SQMS is cache affinity. For example,
let us assume we have five jobs to run (A, B, C, D, E) and four processors.
Our scheduling queue thus looks like this:

Queue A B C D E NULL

Over time, assuming each job runs for a time slice and then another
job is chosen, here is a possible job schedule across CPUs:

CPU 3

CPU 2

CPU 1

CPU 0

D C B A E

C B A E D

B A E D C

A E D C B

 ... (repeat) ...

 ... (repeat) ...

 ... (repeat) ...

 ... (repeat) ...

Because each CPU simply picks the next job to run from the globally-
shared queue, each job ends up bouncing around from CPU to CPU, thus
doing exactly the opposite of what would make sense from the stand-
point of cache affinity.

To handle this problem, most SQMS schedulers include some kind of
affinity mechanism to try to make it more likely that process will continue
to run on the same CPU if possible. Specifically, one might provide affin-
ity for some jobs, but move others around to balance load. For example,
imagine the same five jobs scheduled as follows:

CPU 3

CPU 2

CPU 1

CPU 0

D D D D E

C C C E C

B B E B B

A E A A A

 ... (repeat) ...

 ... (repeat) ...

 ... (repeat) ...

 ... (repeat) ...
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In this arrangement, jobs A through D are not moved across proces-
sors, with only job E migrating from CPU to CPU, thus preserving affin-
ity for most. You could then decide to migrate a different job the next
time through, thus achieving some kind of affinity fairness as well. Im-
plementing such a scheme, however, can be complex.

Thus, we can see the SQMS approach has its strengths and weak-
nesses. It is straightforward to implement given an existing single-CPU
scheduler, which by definition has only a single queue. However, it does
not scale well (due to synchronization overheads), and it does not readily
preserve cache affinity.

10.5 Multi-Queue Scheduling

Because of the problems caused in single-queue schedulers, some sys-
tems opt for multiple queues, e.g., one per CPU. We call this approach
multi-queue multiprocessor scheduling (or MQMS).

In MQMS, our basic scheduling framework consists of multiple schedul-
ing queues. Each queue will likely follow a particular scheduling disci-
pline, such as round robin, though of course any algorithm can be used.
When a job enters the system, it is placed on exactly one scheduling
queue, according to some heuristic (e.g., random, or picking one with
fewer jobs than others). Then it is scheduled essentially independently,
thus avoiding the problems of information sharing and synchronization
found in the single-queue approach.

For example, assume we have a system where there are just two CPUs
(labeled CPU 0 and CPU 1), and some number of jobs enter the system:
A, B, C, and D for example. Given that each CPU has a scheduling queue
now, the OS has to decide into which queue to place each job. It might do
something like this:

Q0 A C Q1 B D

Depending on the queue scheduling policy, each CPU now has two
jobs to choose from when deciding what should run. For example, with
round robin, the system might produce a schedule that looks like this:

CPU 1

CPU 0 A A C C A A C C A A C C

B B D D B B D D B B D D  ... 

 ... 

MQMS has a distinct advantage of SQMS in that it should be inher-
ently more scalable. As the number of CPUs grows, so too does the num-
ber of queues, and thus lock and cache contention should not become a
central problem. In addition, MQMS intrinsically provides cache affinity;
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jobs stay on the same CPU and thus reap the advantage of reusing cached
contents therein.

But, if you’ve been paying attention, you might see that we have a new
problem, which is fundamental in the multi-queue based approach: load
imbalance. Let’s assume we have the same set up as above (four jobs,
two CPUs), but then one of the jobs (say C) finishes. We now have the
following scheduling queues:

Q0 A Q1 B D

If we then run our round-robin policy on each queue of the system, we
will see this resulting schedule:

CPU 1

CPU 0 A A A A A A A A A A A A

B B D D B B D D B B D D  ... 

 ... 

As you can see from this diagram, A gets twice as much CPU as B and
D, which is not the desired outcome. Even worse, let’s imagine that both
A and C finish, leaving just jobs B and D in the system. The scheduling
queues will look like this:

Q0 Q1 B D

As a result, CPU 0 will be left idle! (insert dramatic and sinister music here)
And hence our CPU usage timeline looks sad:

CPU 0

CPU 1 B B D D B B D D B B D D  ... 

So what should a poor multi-queue multiprocessor scheduler do? How
can we overcome the insidious problem of load imbalance and defeat the

evil forces of ... the Decepticons1? How do we stop asking questions that
are hardly relevant to this otherwise wonderful book?

1Little known fact is that the home planet of Cybertron was destroyed by bad CPU
scheduling decisions. And now let that be the first and last reference to Transformers in this
book, for which we sincerely apologize.
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CRUX: HOW TO DEAL WITH LOAD IMBALANCE

How should a multi-queue multiprocessor scheduler handle load im-
balance, so as to better achieve its desired scheduling goals?

The obvious answer to this query is to move jobs around, a technique
which we (once again) refer to as migration. By migrating a job from one
CPU to another, true load balance can be achieved.

Let’s look at a couple of examples to add some clarity. Once again, we
have a situation where one CPU is idle and the other has some jobs.

Q0 Q1 B D

In this case, the desired migration is easy to understand: the OS should
simply move one of B or D to CPU 0. The result of this single job migra-
tion is evenly balanced load and everyone is happy.

A more tricky case arises in our earlier example, where A was left
alone on CPU 0 and B and D were alternating on CPU 1:

Q0 A Q1 B D

In this case, a single migration does not solve the problem. What
would you do in this case? The answer, alas, is continuous migration
of one or more jobs. One possible solution is to keep switching jobs, as
we see in the following timeline. In the figure, first A is alone on CPU 0,
and B and D alternate on CPU 1. After a few time slices, B is moved to
compete with A on CPU 0, while D enjoys a few time slices alone on CPU
1. And thus load is balanced:

CPU 0

CPU 1

A A A A B A B A B B B B

B D B D D D D D A D A D  ... 

 ... 

Of course, many other possible migration patterns exist. But now for
the tricky part: how should the system decide to enact such a migration?

One basic approach is to use a technique known as work stealing
[FLR98]. With a work-stealing approach, a (source) queue that is low
on jobs will occasionally peek at another (target) queue, to see how full
it is. If the target queue is (notably) more full than the source queue, the
source will “steal” one or more jobs from the target to help balance load.

Of course, there is a natural tension in such an approach. If you look
around at other queues too often, you will suffer from high overhead
and have trouble scaling, which was the entire purpose of implementing
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the multiple queue scheduling in the first place! If, on the other hand,
you don’t look at other queues very often, you are in danger of suffering
from severe load imbalances. Finding the right threshold remains, as is
common in system policy design, a black art.

10.6 Linux Multiprocessor Schedulers

Interestingly, in the Linux community, no common solution has ap-
proached to building a multiprocessor scheduler. Over time, three dif-
ferent schedulers arose: the O(1) scheduler, the Completely Fair Sched-

uler (CFS), and the BF Scheduler (BFS)2. See Meehean’s dissertation for
an excellent overview of the strengths and weaknesses of said schedulers
[M11]; here we just summarize a few of the basics.

Both O(1) and CFS uses multiple queues, whereas BFS uses a single
queue, showing that both approaches can be successful. Of course, there
are many other details which separate these schedulers. For example, the
O(1) scheduler is a priority-based scheduler (similar to the MLFQ dis-
cussed before), changing a process’s priority over time and then schedul-
ing those with highest priority in order to meet various scheduling objec-
tives; interactivity is a particular focus. CFS, in contrast, is a deterministic
proportional-share approach (more like Stride scheduling, as discussed
earlier). BFS, the only single-queue approach among the three, is also
proportional-share, but based on a more complicated scheme known as
Earliest Eligible Virtual Deadline First (EEVDF) [SA96]. Read more about
these modern algorithms on your own; you should be able to understand
how they work now!

10.7 Summary

We have seen various approaches to multiprocessor scheduling. The
single-queue approach (SQMS) is rather straightforward to build and bal-
ances load well but inherently has difficulty with scaling to many pro-
cessors and cache affinity. The multiple-queue approach (MQMS) scales
better and handles cache affinity well, but has trouble with load imbal-
ance and is more complicated. Whichever approach you take, there is no
simple answer: building a general purpose scheduler remains a daunting
task, as small code changes can lead to large behavioral differences. Only
undertake such an exercise if you know exactly what you are doing, or,
at least, are getting paid a large amount of money to do so.

2Look up what BF stands for on your own; be forewarned, it is not for the faint of heart.
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