
13

The Abstraction: Address Spaces

In the early days, building computer systems was easy. Why, you ask?
Because users didn’t expect much. It is those darned users with their
expectations of “ease of use”, “high performance”, “reliability”, etc., that
really have led to all these headaches. Next time you meet one of those
computer users, thank them for all the problems they have caused.

13.1 Early Systems

From the perspective of memory, early machines didn’t provide much
of an abstraction to users. Basically, the physical memory of the machine
looked something like what you see in Figure 13.1.

The OS was a set of routines (a library, really) that sat in memory (start-
ing at physical address 0 in this example), and there would be one run-
ning program (a process) that currently sat in physical memory (starting
at physical address 64k in this example) and used the rest of memory.
There were few illusions here, and the user didn’t expect much from the
OS. Life was sure easy for OS developers in those days, wasn’t it?

max

64KB

0KB

Current Program
(code, data, etc.)

Operating System
(code, data, etc.)

Figure 13.1: Operating Systems: The Early Days

1



2 THE ABSTRACTION: ADDRESS SPACES

512KB

448KB

384KB

320KB

256KB

192KB

128KB

64KB

0KB

(free)

(free)

(free)

(free)

Operating System
(code, data, etc.)

Process A
(code, data, etc.)

Process B
(code, data, etc.)

Process C
(code, data, etc.)

Figure 13.2: Three Processes: Sharing Memory

13.2 Multiprogramming and Time Sharing

After a time, because machines were expensive, people began to share
machines more effectively. Thus the era of multiprogramming was born
[DV66], in which multiple processes were ready to run at a given time,
and the OS would switch between them, for example when one decided
to perform an I/O. Doing so increased the effective utilization of the
CPU. Such increases in efficiency were particularly important in those
days where each machine cost hundreds of thousands or even millions of
dollars (and you thought your Mac was expensive!).

Soon enough, however, people began demanding more of machines,
and the era of time sharing was born [S59, L60, M62, M83]. Specifically,
many realized the limitations of batch computing, particularly on pro-
grammers themselves [CV65], who were tired of long (and hence ineffec-
tive) program-debug cycles. The notion of interactivity became impor-
tant, as many users might be concurrently using a machine, each waiting
for (or hoping for) a timely response from their currently-executing tasks.

One way to implement time sharing would be to run one process for a
short while, giving it full access to all memory (Figure 13.1, page 1), then
stop it, save all of its state to some kind of disk (including all of physical
memory), load some other process’s state, run it for a while, and thus
implement some kind of crude sharing of the machine [M+63].

Unfortunately, this approach has a big problem: it is way too slow,
particularly as memory grows. While saving and restoring register-level
state (the PC, general-purpose registers, etc.) is relatively fast, saving the
entire contents of memory to disk is brutally non-performant. Thus, what
we’d rather do is leave processes in memory while switching between
them, allowing the OS to implement time sharing efficiently (Figure 13.2).

OPERATING

SYSTEMS

[VERSION 0.90] WWW.OSTEP.ORG



THE ABSTRACTION: ADDRESS SPACES 3

16KB

15KB

2KB

1KB

0KB

Stack

(free)

Heap

Program Code
the code segment:

where instructions live

the heap segment:
contains malloc’d data

dynamic data structures
(it grows downward)

(it grows upward)
the stack segment:

contains local variables
arguments to routines, 

return values, etc.

Figure 13.3: An Example Address Space

In the diagram, there are three processes (A, B, and C) and each of
them have a small part of the 512KB physical memory carved out for
them. Assuming a single CPU, the OS chooses to run one of the processes
(say A), while the others (B and C) sit in the ready queue waiting to run.

As time sharing became more popular, you can probably guess that
new demands were placed on the operating system. In particular, allow-
ing multiple programs to reside concurrently in memory makes protec-
tion an important issue; you don’t want a process to be able to read, or
worse, write some other process’s memory.

13.3 The Address Space

However, we have to keep those pesky users in mind, and doing so
requires the OS to create an easy to use abstraction of physical memory.
We call this abstraction the address space, and it is the running program’s
view of memory in the system. Understanding this fundamental OS ab-
straction of memory is key to understanding how memory is virtualized.

The address space of a process contains all of the memory state of the
running program. For example, the code of the program (the instruc-
tions) have to live in memory somewhere, and thus they are in the ad-
dress space. The program, while it is running, uses a stack to keep track
of where it is in the function call chain as well as to allocate local variables
and pass parameters and return values to and from routines. Finally, the
heap is used for dynamically-allocated, user-managed memory, such as
that you might receive from a call to malloc() in C or new in an object-
oriented language such as C++ or Java. Of course, there are other things
in there too (e.g., statically-initialized variables), but for now let us just
assume those three components: code, stack, and heap.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES



4 THE ABSTRACTION: ADDRESS SPACES

In the example in Figure 13.3 (page 3), we have a tiny address space

(only 16KB)1. The program code lives at the top of the address space
(starting at 0 in this example, and is packed into the first 1K of the ad-
dress space). Code is static (and thus easy to place in memory), so we can
place it at the top of the address space and know that it won’t need any
more space as the program runs.

Next, we have the two regions of the address space that may grow
(and shrink) while the program runs. Those are the heap (at the top) and
the stack (at the bottom). We place them like this because each wishes to
be able to grow, and by putting them at opposite ends of the address
space, we can allow such growth: they just have to grow in opposite
directions. The heap thus starts just after the code (at 1KB) and grows
downward (say when a user requests more memory via malloc()); the
stack starts at 16KB and grows upward (say when a user makes a proce-
dure call). However, this placement of stack and heap is just a convention;
you could arrange the address space in a different way if you’d like (as
we’ll see later, when multiple threads co-exist in an address space, no
nice way to divide the address space like this works anymore, alas).

Of course, when we describe the address space, what we are describ-
ing is the abstraction that the OS is providing to the running program.
The program really isn’t in memory at physical addresses 0 through 16KB;
rather it is loaded at some arbitrary physical address(es). Examine pro-
cesses A, B, and C in Figure 13.2; there you can see how each process is
loaded into memory at a different address. And hence the problem:

THE CRUX: HOW TO VIRTUALIZE MEMORY

How can the OS build this abstraction of a private, potentially large
address space for multiple running processes (all sharing memory) on
top of a single, physical memory?

When the OS does this, we say the OS is virtualizing memory, because
the running program thinks it is loaded into memory at a particular ad-
dress (say 0) and has a potentially very large address space (say 32-bits or
64-bits); the reality is quite different.

When, for example, process A in Figure 13.2 tries to perform a load
at address 0 (which we will call a virtual address), somehow the OS, in
tandem with some hardware support, will have to make sure the load
doesn’t actually go to physical address 0 but rather to physical address
320KB (where A is loaded into memory). This is the key to virtualization
of memory, which underlies every modern computer system in the world.

1We will often use small examples like this because (a) it is a pain to represent a 32-bit
address space and (b) the math is harder. We like simple math.

OPERATING

SYSTEMS

[VERSION 0.90] WWW.OSTEP.ORG



THE ABSTRACTION: ADDRESS SPACES 5

TIP: THE PRINCIPLE OF ISOLATION

Isolation is a key principle in building reliable systems. If two entities are
properly isolated from one another, this implies that one can fail with-
out affecting the other. Operating systems strive to isolate processes from
each other and in this way prevent one from harming the other. By using
memory isolation, the OS further ensures that running programs cannot
affect the operation of the underlying OS. Some modern OS’s take iso-
lation even further, by walling off pieces of the OS from other pieces of
the OS. Such microkernels [BH70, R+89, S+03] thus may provide greater
reliability than typical monolithic kernel designs.

13.4 Goals

Thus we arrive at the job of the OS in this set of notes: to virtualize
memory. The OS will not only virtualize memory, though; it will do so
with style. To make sure the OS does so, we need some goals to guide us.
We have seen these goals before (think of the Introduction), and we’ll see
them again, but they are certainly worth repeating.

One major goal of a virtual memory (VM) system is transparency2.
The OS should implement virtual memory in a way that is invisible to
the running program. Thus, the program shouldn’t be aware of the fact
that memory is virtualized; rather, the program behaves as if it has its
own private physical memory. Behind the scenes, the OS (and hardware)
does all the work to multiplex memory among many different jobs, and
hence implements the illusion.

Another goal of VM is efficiency. The OS should strive to make the
virtualization as efficient as possible, both in terms of time (i.e., not mak-
ing programs run much more slowly) and space (i.e., not using too much
memory for structures needed to support virtualization). In implement-
ing time-efficient virtualization, the OS will have to rely on hardware
support, including hardware features such as TLBs (which we will learn
about in due course).

Finally, a third VM goal is protection. The OS should make sure to
protect processes from one another as well as the OS itself from pro-
cesses. When one process performs a load, a store, or an instruction fetch,
it should not be able to access or affect in any way the memory contents
of any other process or the OS itself (that is, anything outside its address
space). Protection thus enables us to deliver the property of isolation
among processes; each process should be running in its own isolated co-
coon, safe from the ravages of other faulty or even malicious processes.

2This usage of transparency is sometimes confusing; some students think that “being
transparent” means keeping everything out in the open, i.e., what government should be like.
Here, it means the opposite: that the illusion provided by the OS should not be visible to ap-
plications. Thus, in common usage, a transparent system is one that is hard to notice, not one
that responds to requests as stipulated by the Freedom of Information Act.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES



6 THE ABSTRACTION: ADDRESS SPACES

ASIDE: EVERY ADDRESS YOU SEE IS VIRTUAL

Ever write a C program that prints out a pointer? The value you see
(some large number, often printed in hexadecimal), is a virtual address.
Ever wonder where the code of your program is found? You can print
that out too, and yes, if you can print it, it also is a virtual address. In
fact, any address you can see as a programmer of a user-level program
is a virtual address. It’s only the OS, through its tricky techniques of
virtualizing memory, that knows where in the physical memory of the
machine these instructions and data values lie. So never forget: if you
print out an address in a program, it’s a virtual one, an illusion of how
things are laid out in memory; only the OS (and the hardware) knows the
real truth.

Here’s a little program that prints out the locations of the main() rou-
tine (where code lives), the value of a heap-allocated value returned from
malloc(), and the location of an integer on the stack:

1 #include <stdio.h>

2 #include <stdlib.h>

3 int main(int argc, char *argv[]) {

4 printf("location of code : %p\n", (void *) main);

5 printf("location of heap : %p\n", (void *) malloc(1));

6 int x = 3;

7 printf("location of stack : %p\n", (void *) &x);

8 return x;

9 }

When run on a 64-bit Mac OS X machine, we get the following output:

location of code : 0x1095afe50

location of heap : 0x1096008c0

location of stack : 0x7fff691aea64

From this, you can see that code comes first in the address space, then
the heap, and the stack is all the way at the other end of this large virtual
space. All of these addresses are virtual, and will be translated by the OS
and hardware in order to fetch values from their true physical locations.

In the next chapters, we’ll focus our exploration on the basic mecha-
nisms needed to virtualize memory, including hardware and operating
systems support. We’ll also investigate some of the more relevant poli-
cies that you’ll encounter in operating systems, including how to manage
free space and which pages to kick out of memory when you run low on
space. In doing so, we’ll build up your understanding of how a modern

virtual memory system really works3.

3Or, we’ll convince you to drop the course. But hold on; if you make it through VM, you’ll
likely make it all the way!

OPERATING

SYSTEMS

[VERSION 0.90] WWW.OSTEP.ORG



THE ABSTRACTION: ADDRESS SPACES 7

13.5 Summary

We have seen the introduction of a major OS subsystem: virtual mem-
ory. The VM system is responsible for providing the illusion of a large,
sparse, private address space to programs, which hold all of their instruc-
tions and data therein. The OS, with some serious hardware help, will
take each of these virtual memory references, and turn them into physi-
cal addresses, which can be presented to the physical memory in order to
fetch the desired information. The OS will do this for many processes at
once, making sure to protect programs from one another, as well as pro-
tect the OS. The entire approach requires a great deal of mechanism (lots
of low-level machinery) as well as some critical policies to work; we’ll
start from the bottom up, describing the critical mechanisms first. And
thus we proceed!

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES



8 THE ABSTRACTION: ADDRESS SPACES

References

[BH70] “The Nucleus of a Multiprogramming System”
Per Brinch Hansen
Communications of the ACM, 13:4, April 1970
The first paper to suggest that the OS, or kernel, should be a minimal and flexible substrate for building
customized operating systems; this theme is revisited throughout OS research history.

[CV65] “Introduction and Overview of the Multics System”
F. J. Corbato and V. A. Vyssotsky
Fall Joint Computer Conference, 1965
A great early Multics paper. Here is the great quote about time sharing: “The impetus for time-sharing
first arose from professional programmers because of their constant frustration in debugging programs
at batch processing installations. Thus, the original goal was to time-share computers to allow simulta-
neous access by several persons while giving to each of them the illusion of having the whole machine at
his disposal.”

[DV66] “Programming Semantics for Multiprogrammed Computations”
Jack B. Dennis and Earl C. Van Horn
Communications of the ACM, Volume 9, Number 3, March 1966
An early paper (but not the first) on multiprogramming.

[L60] “Man-Computer Symbiosis”
J. C. R. Licklider
IRE Transactions on Human Factors in Electronics, HFE-1:1, March 1960
A funky paper about how computers and people are going to enter into a symbiotic age; clearly well
ahead of its time but a fascinating read nonetheless.

[M62] “Time-Sharing Computer Systems”
J. McCarthy
Management and the Computer of the Future, MIT Press, Cambridge, Mass, 1962
Probably McCarthy’s earliest recorded paper on time sharing. However, in another paper [M83], he
claims to have been thinking of the idea since 1957. McCarthy left the systems area and went on to be-
come a giant in Artificial Intelligence at Stanford, including the creation of the LISP programming lan-
guage. See McCarthy’s home page for more info: http://www-formal.stanford.edu/jmc/

[M+63] “A Time-Sharing Debugging System for a Small Computer”
J. McCarthy, S. Boilen, E. Fredkin, J. C. R. Licklider
AFIPS ’63 (Spring), May, 1963, New York, USA
A great early example of a system that swapped program memory to the “drum” when the program
wasn’t running, and then back into “core” memory when it was about to be run.

[M83] “Reminiscences on the History of Time Sharing”
John McCarthy
Winter or Spring of 1983
Available: http://www-formal.stanford.edu/jmc/history/timesharing/timesharing.html
A terrific historical note on where the idea of time-sharing might have come from, including some doubts
towards those who cite Strachey’s work [S59] as the pioneering work in this area.

[R+89] “Mach: A System Software kernel”
Richard Rashid, Daniel Julin, Douglas Orr, Richard Sanzi, Robert Baron, Alessandro Forin,
David Golub, Michael Jones
COMPCON 89, February 1989
Although not the first project on microkernels per se, the Mach project at CMU was well-known and
influential; it still lives today deep in the bowels of Mac OS X.

OPERATING

SYSTEMS

[VERSION 0.90] WWW.OSTEP.ORG



THE ABSTRACTION: ADDRESS SPACES 9

[S59] “Time Sharing in Large Fast Computers”
C. Strachey
Proceedings of the International Conference on Information Processing, UNESCO, June 1959
One of the earliest references on time sharing.

[S+03] “Improving the Reliability of Commodity Operating Systems”
Michael M. Swift, Brian N. Bershad, Henry M. Levy
SOSP 2003
The first paper to show how microkernel-like thinking can improve operating system reliability.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES


