
20

Paging: Smaller Tables

We now tackle the second problem that paging introduces: page tables
are too big and thus consume too much memory. Let’s start out with

a linear page table. As you might recall1, linear page tables get pretty
big. Assume again a 32-bit address space (232 bytes), with 4KB (212 byte)
pages and a 4-byte page-table entry. An address space thus has roughly

one million virtual pages in it (2
32

212
); multiply by the page-table entry size

and you see that our page table is 4MB in size. Recall also: we usually
have one page table for every process in the system! With a hundred active
processes (not uncommon on a modern system), we will be allocating
hundreds of megabytes of memory just for page tables! As a result, we
are in search of some techniques to reduce this heavy burden. There are
a lot of them, so let’s get going. But not before our crux:

CRUX: HOW TO MAKE PAGE TABLES SMALLER?
Simple array-based page tables (usually called linear page tables) are

too big, taking up far too much memory on typical systems. How can we
make page tables smaller? What are the key ideas? What inefficiencies
arise as a result of these new data structures?

20.1 Simple Solution: Bigger Pages

We could reduce the size of the page table in one simple way: use
bigger pages. Take our 32-bit address space again, but this time assume
16KB pages. We would thus have an 18-bit VPN plus a 14-bit offset. As-
suming the same size for each PTE (4 bytes), we now have 2

18 entries in
our linear page table and thus a total size of 1MB per page table, a factor

1Or indeed, you might not; this paging thing is getting out of control, no? That said,
always make sure you understand the problem you are solving before moving onto the solution;
indeed, if you understand the problem, you can often derive the solution yourself. Here, the
problem should be clear: simple linear (array-based) page tables are too big.

1

2 PAGING: SMALLER TABLES

ASIDE: MULTIPLE PAGE SIZES

As an aside, do note that many architectures (e.g., MIPS, SPARC, x86-64)
now support multiple page sizes. Usually, a small (4KB or 8KB) page
size is used. However, if a “smart” application requests it, a single large
page (e.g., of size 4MB) can be used for a specific portion of the address
space, enabling such applications to place a frequently-used (and large)
data structure in such a space while consuming only a single TLB en-
try. This type of large page usage is common in database management
systems and other high-end commercial applications. The main reason
for multiple page sizes is not to save page table space, however; it is to
reduce pressure on the TLB, enabling a program to access more of its ad-
dress space without suffering from too many TLB misses. However, as
researchers have shown [N+02], using multiple page sizes makes the OS
virtual memory manager notably more complex, and thus large pages
are sometimes most easily used simply by exporting a new interface to
applications to request large pages directly.

of four reduction in size of the page table (not surprisingly, the reduction
exactly mirrors the factor of four increase in page size).

The major problem with this approach, however, is that big pages lead
to waste within each page, a problem known as internal fragmentation
(as the waste is internal to the unit of allocation). Applications thus end
up allocating pages but only using little bits and pieces of each, and mem-
ory quickly fills up with these overly-large pages. Thus, most systems use
relatively small page sizes in the common case: 4KB (as in x86) or 8KB (as
in SPARCv9). Our problem will not be solved so simply, alas.

20.2 Hybrid Approach: Paging and Segments

Whenever you have two reasonable but different approaches to some-
thing in life, you should always examine the combination of the two to
see if you can obtain the best of both worlds. We call such a combination a
hybrid. For example, why eat just chocolate or plain peanut butter when
you can instead combine the two in a lovely hybrid known as the Reese’s
Peanut Butter Cup [M28]?

Years ago, the creators of Multics (in particular Jack Dennis) chanced
upon such an idea in the construction of the Multics virtual memory sys-
tem [M07]. Specifically, Dennis had the idea of combining paging and
segmentation in order to reduce the memory overhead of page tables.
We can see why this might work by examining a typical linear page ta-
ble in more detail. Assume we have an address space in which the used
portions of the heap and stack are small. For the example, we use a tiny
16KB address space with 1KB pages (Figure 20.1); the page table for this
address space is in Figure 20.2.

OPERATING

SYSTEMS

[VERSION 0.90] WWW.OSTEP.ORG

PAGING: SMALLER TABLES 3

code

heap

stack

Virtual Address Space Physical Memory

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Figure 20.1: A 16KB Address Space With 1KB Pages

This example assumes the single code page (VPN 0) is mapped to
physical page 10, the single heap page (VPN 4) to physical page 23, and
the two stack pages at the other end of the address space (VPNs 14 and
15) are mapped to physical pages 28 and 4, respectively. As you can see
from the picture, most of the page table is unused, full of invalid entries.
What a waste! And this is for a tiny 16KB address space. Imagine the
page table of a 32-bit address space and all the potential wasted space in
there! Actually, don’t imagine such a thing; it’s far too gruesome.

PFN valid prot present dirty
10 1 r-x 1 0

- 0 — - -
- 0 — - -
- 0 — - -

23 1 rw- 1 1
- 0 — - -
- 0 — - -
- 0 — - -
- 0 — - -
- 0 — - -
- 0 — - -
- 0 — - -
- 0 — - -
- 0 — - -

28 1 rw- 1 1
4 1 rw- 1 1

Figure 20.2: A Page Table For 16KB Address Space

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

4 PAGING: SMALLER TABLES

Thus, our hybrid approach: instead of having a single page table for
the entire address space of the process, why not have one per logical seg-
ment? In this example, we might thus have three page tables, one for the
code, heap, and stack parts of the address space.

Now, remember with segmentation, we had a base register that told
us where each segment lived in physical memory, and a bound or limit
register that told us the size of said segment. In our hybrid, we still have
those structures in the MMU; here, we use the base not to point to the
segment itself but rather to hold the physical address of the page table of that
segment. The bounds register is used to indicate the end of the page table
(i.e., how many valid pages it has).

Let’s do a simple example to clarify. Assume a 32-bit virtual address
space with 4KB pages, and an address space split into four segments.
We’ll only use three segments for this example: one for code, one for
heap, and one for stack.

To determine which segment an address refers to, we’ll use the top
two bits of the address space. Let’s assume 00 is the unused segment,
with 01 for code, 10 for the heap, and 11 for the stack. Thus, a virtual
address looks like this:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Seg VPN Offset

In the hardware, assume that there are thus three base/bounds pairs,
one each for code, heap, and stack. When a process is running, the base
register for each of these segments contains the physical address of a lin-
ear page table for that segment; thus, each process in the system now has
three page tables associated with it. On a context switch, these registers
must be changed to reflect the location of the page tables of the newly-
running process.

On a TLB miss (assuming a hardware-managed TLB, i.e., where the
hardware is responsible for handling TLB misses), the hardware uses the
segment bits (SN) to determine which base and bounds pair to use. The
hardware then takes the physical address therein and combines it with
the VPN as follows to form the address of the page table entry (PTE):

SN = (VirtualAddress & SEG_MASK) >> SN_SHIFT

VPN = (VirtualAddress & VPN_MASK) >> VPN_SHIFT

AddressOfPTE = Base[SN] + (VPN * sizeof(PTE))

This sequence should look familiar; it is virtually identical to what we
saw before with linear page tables. The only difference, of course, is the
use of one of three segment base registers instead of the single page table
base register.

The critical difference in our hybrid scheme is the presence of a bounds
register per segment; each bounds register holds the value of the maxi-
mum valid page in the segment. For example, if the code segment is
using its first three pages (0, 1, and 2), the code segment page table will
only have three entries allocated to it and the bounds register will be set

OPERATING

SYSTEMS

[VERSION 0.90] WWW.OSTEP.ORG

PAGING: SMALLER TABLES 5

TIP: USE HYBRIDS

When you have two good and seemingly opposing ideas, you should
always see if you can combine them into a hybrid that manages to achieve
the best of both worlds. Hybrid corn species, for example, are known to
be more robust than any naturally-occurring species. Of course, not all
hybrids are a good idea; see the Zeedonk (or Zonkey), which is a cross of
a Zebra and a Donkey. If you don’t believe such a creature exists, look it
up, and prepare to be amazed.

to 3; memory accesses beyond the end of the segment will generate an ex-
ception and likely lead to the termination of the process. In this manner,
our hybrid approach realizes a significant memory savings compared to
the linear page table; unallocated pages between the stack and the heap
no longer take up space in a page table (just to mark them as not valid).

However, as you might notice, this approach is not without problems.
First, it still requires us to use segmentation; as we discussed before, seg-
mentation is not quite as flexible as we would like, as it assumes a certain
usage pattern of the address space; if we have a large but sparsely-used
heap, for example, we can still end up with a lot of page table waste.
Second, this hybrid causes external fragmentation to arise again. While
most of memory is managed in page-sized units, page tables now can be
of arbitrary size (in multiples of PTEs). Thus, finding free space for them
in memory is more complicated. For these reasons, people continued to
look for better ways to implement smaller page tables.

20.3 Multi-level Page Tables

A different approach doesn’t rely on segmentation but attacks the same
problem: how to get rid of all those invalid regions in the page table in-
stead of keeping them all in memory? We call this approach a multi-level
page table, as it turns the linear page table into something like a tree. This
approach is so effective that many modern systems employ it (e.g., x86
[BOH10]). We now describe this approach in detail.

The basic idea behind a multi-level page table is simple. First, chop up
the page table into page-sized units; then, if an entire page of page-table
entries (PTEs) is invalid, don’t allocate that page of the page table at all.
To track whether a page of the page table is valid (and if valid, where it
is in memory), use a new structure, called the page directory. The page
directory thus either can be used to tell you where a page of the page
table is, or that the entire page of the page table contains no valid pages.

Figure 20.3 shows an example. On the left of the figure is the classic
linear page table; even though most of the middle regions of the address
space are not valid, we still require page-table space allocated for those
regions (i.e., the middle two pages of the page table). On the right is a
multi-level page table. The page directory marks just two pages of the

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

6 PAGING: SMALLER TABLES

v
a

lid

p
ro

t

PFN
1 rx 12

1 rx 13

0 - -

1 rw 100

0 - -

0 - -

0 - -

0 - -

0 - -

0 - -

0 - -

0 - -

0 - -

0 - -

1 rw 86

1 rw 15

Linear Page Table

PTBR 201

P
F

N
 2

0
1

P
F

N
 2

0
2

P
F

N
 2

0
3

P
F

N
 2

0
4

v
a

lid

p
ro

t

PFN
1 rx 12

1 rx 13

0 - -

1 rw 100

0 - -

0 - -

1 rw 86

1 rw 15

[Page 1 of PT: Not Allocated]

[Page 2 of PT: Not Allocated]

P
F

N
 2

0
1

P
F

N
 2

0
4

Multi-level Page Table

PDBR 200

v
a

lid

PFN
1 201

0 -

0 -

1 204

P
F

N
 2

0
0

The Page Directory

Figure 20.3: Linear (Left) And Multi-Level (Right) Page Tables

page table as valid (the first and last); thus, just those two pages of the
page table reside in memory. And thus you can see one way to visualize
what a multi-level table is doing: it just makes parts of the linear page
table disappear (freeing those frames for other uses), and tracks which
pages of the page table are allocated with the page directory.

The page directory, in a simple two-level table, contains one entry per
page of the page table. It consists of a number of page directory entries
(PDE). A PDE (minimally) has a valid bit and a page frame number
(PFN), similar to a PTE. However, as hinted at above, the meaning of
this valid bit is slightly different: if the PDE entry is valid, it means that
at least one of the pages of the page table that the entry points to (via the
PFN) is valid, i.e., in at least one PTE on that page pointed to by this PDE,
the valid bit in that PTE is set to one. If the PDE entry is not valid (i.e.,
equal to zero), the rest of the PDE is not defined.

Multi-level page tables have some obvious advantages over approaches
we’ve seen thus far. First, and perhaps most obviously, the multi-level ta-
ble only allocates page-table space in proportion to the amount of address
space you are using; thus it is generally compact and supports sparse ad-
dress spaces.

Second, if carefully constructed, each portion of the page table fits
neatly within a page, making it easier to manage memory; the OS can
simply grab the next free page when it needs to allocate or grow a page

table. Contrast this to a simple (non-paged) linear page table2, which
is just an array of PTEs indexed by VPN; with such a structure, the en-
tire linear page table must reside contiguously in physical memory. For
a large page table (say 4MB), finding such a large chunk of unused con-
tiguous free physical memory can be quite a challenge. With a multi-level

2We are making some assumptions here, i.e., that all page tables reside in their entirety in
physical memory (i.e., they are not swapped to disk); we’ll soon relax this assumption.

OPERATING

SYSTEMS

[VERSION 0.90] WWW.OSTEP.ORG

PAGING: SMALLER TABLES 7

TIP: UNDERSTAND TIME-SPACE TRADE-OFFS

When building a data structure, one should always consider time-space
trade-offs in its construction. Usually, if you wish to make access to a par-
ticular data structure faster, you will have to pay a space-usage penalty
for the structure.

structure, we add a level of indirection through use of the page directory,
which points to pieces of the page table; that indirection allows us to place
page-table pages wherever we would like in physical memory.

It should be noted that there is a cost to multi-level tables; on a TLB
miss, two loads from memory will be required to get the right translation
information from the page table (one for the page directory, and one for
the PTE itself), in contrast to just one load with a linear page table. Thus,
the multi-level table is a small example of a time-space trade-off. We
wanted smaller tables (and got them), but not for free; although in the
common case (TLB hit), performance is obviously identical, a TLB miss
suffers from a higher cost with this smaller table.

Another obvious negative is complexity. Whether it is the hardware or
OS handling the page-table lookup (on a TLB miss), doing so is undoubt-
edly more involved than a simple linear page-table lookup. Often we are
willing to increase complexity in order to improve performance or reduce
overheads; in the case of a multi-level table, we make page-table lookups
more complicated in order to save valuable memory.

A Detailed Multi-Level Example

To understand the idea behind multi-level page tables better, let’s do an
example. Imagine a small address space of size 16KB, with 64-byte pages.
Thus, we have a 14-bit virtual address space, with 8 bits for the VPN and
6 bits for the offset. A linear page table would have 2

8 (256) entries, even
if only a small portion of the address space is in use. Figure 20.4 presents
one example of such an address space.

stack

stack

(free)

(free)

... all free ...

(free)

(free)

heap

heap

(free)

(free)

code

code

1111 1111

1111 1110

1111 1101

1111 1100

0000 0111

0000 0110

0000 0101

0000 0100

0000 0011

0000 0010

0000 0001

0000 0000

................

Figure 20.4: A 16KB Address Space With 64-byte Pages

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

8 PAGING: SMALLER TABLES

TIP: BE WARY OF COMPLEXITY

System designers should be wary of adding complexity into their sys-
tem. What a good systems builder does is implement the least complex
system that achieves the task at hand. For example, if disk space is abun-
dant, you shouldn’t design a file system that works hard to use as few
bytes as possible; similarly, if processors are fast, it is better to write a
clean and understandable module within the OS than perhaps the most
CPU-optimized, hand-assembled code for the task at hand. Be wary of
needless complexity, in prematurely-optimized code or other forms; such
approaches make systems harder to understand, maintain, and debug.
As Antoine de Saint-Exupery famously wrote: “Perfection is finally at-
tained not when there is no longer anything to add, but when there is no
longer anything to take away.” What he didn’t write: “It’s a lot easier to
say something about perfection than to actually achieve it.”

In this example, virtual pages 0 and 1 are for code, virtual pages 4 and
5 for the heap, and virtual pages 254 and 255 for the stack; the rest of the
pages of the address space are unused.

To build a two-level page table for this address space, we start with
our full linear page table and break it up into page-sized units. Recall our
full table (in this example) has 256 entries; assume each PTE is 4 bytes
in size. Thus, our page table is 1KB (256 × 4 bytes) in size. Given that
we have 64-byte pages, the 1KB page table can be divided into 16 64-byte
pages; each page can hold 16 PTEs.

What we need to understand now is how to take a VPN and use it to
index first into the page directory and then into the page of the page table.
Remember that each is an array of entries; thus, all we need to figure out
is how to construct the index for each from pieces of the VPN.

Let’s first index into the page directory. Our page table in this example
is small: 256 entries, spread across 16 pages. The page directory needs one
entry per page of the page table; thus, it has 16 entries. As a result, we
need four bits of the VPN to index into the directory; we use the top four
bits of the VPN, as follows:

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPN offset

Page Directory Index

Once we extract the page-directory index (PDIndex for short) from
the VPN, we can use it to find the address of the page-directory entry
(PDE) with a simple calculation: PDEAddr = PageDirBase + (PDIndex

* sizeof(PDE)). This results in our page directory, which we now ex-
amine to make further progress in our translation.

If the page-directory entry is marked invalid, we know that the access
is invalid, and thus raise an exception. If, however, the PDE is valid,

OPERATING

SYSTEMS

[VERSION 0.90] WWW.OSTEP.ORG

PAGING: SMALLER TABLES 9

we have more work to do. Specifically, we now have to fetch the page-
table entry (PTE) from the page of the page table pointed to by this page-
directory entry. To find this PTE, we have to index into the portion of the
page table using the remaining bits of the VPN:

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPN offset

Page Directory Index Page Table Index

This page-table index (PTIndex for short) can then be used to index
into the page table itself, giving us the address of our PTE:
PTEAddr = (PDE.PFN << SHIFT) + (PTIndex * sizeof(PTE))

Note that the page-frame number (PFN) obtained from the page-directory
entry must be left-shifted into place before combining it with the page-
table index to form the address of the PTE.

To see if this all makes sense, we’ll now fill in a multi-level page ta-
ble with some actual values, and translate a single virtual address. Let’s
begin with the page directory for this example (left side of Figure 20.5).

In the figure, you can see that each page directory entry (PDE) de-
scribes something about a page of the page table for the address space.
In this example, we have two valid regions in the address space (at the
beginning and end), and a number of invalid mappings in-between.

In physical page 100 (the physical frame number of the 0th page of the
page table), we have the first page of 16 page table entries for the first 16
VPNs in the address space. See Figure 20.5 (middle part) for the contents
of this portion of the page table.

Page Directory Page of PT (@PFN:100) Page of PT (@PFN:101)
PFN valid? PFN valid prot PFN valid prot
100 1 10 1 r-x — 0 —
— 0 23 1 r-x — 0 —
— 0 — 0 — — 0 —
— 0 — 0 — — 0 —
— 0 80 1 rw- — 0 —
— 0 59 1 rw- — 0 —
— 0 — 0 — — 0 —
— 0 — 0 — — 0 —
— 0 — 0 — — 0 —
— 0 — 0 — — 0 —
— 0 — 0 — — 0 —
— 0 — 0 — — 0 —
— 0 — 0 — — 0 —
— 0 — 0 — — 0 —
— 0 — 0 — 55 1 rw-

101 1 — 0 — 45 1 rw-

Figure 20.5: A Page Directory, And Pieces Of Page Table

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

10 PAGING: SMALLER TABLES

This page of the page table contains the mappings for the first 16
VPNs; in our example, VPNs 0 and 1 are valid (the code segment), as
are 4 and 5 (the heap). Thus, the table has mapping information for each
of those pages. The rest of the entries are marked invalid.

The other valid page of page table is found inside PFN 101. This page
contains mappings for the last 16 VPNs of the address space; see Figure
20.5 (right) for details.

In the example, VPNs 254 and 255 (the stack) have valid mappings.
Hopefully, what we can see from this example is how much space savings
are possible with a multi-level indexed structure. In this example, instead
of allocating the full sixteen pages for a linear page table, we allocate only
three: one for the page directory, and two for the chunks of the page table
that have valid mappings. The savings for large (32-bit or 64-bit) address
spaces could obviously be much greater.

Finally, let’s use this information in order to perform a translation.
Here is an address that refers to the 0th byte of VPN 254: 0x3F80, or
11 1111 1000 0000 in binary.

Recall that we will use the top 4 bits of the VPN to index into the
page directory. Thus, 1111 will choose the last (15th, if you start at the
0th) entry of the page directory above. This points us to a valid page
of the page table located at address 101. We then use the next 4 bits
of the VPN (1110) to index into that page of the page table and find
the desired PTE. 1110 is the next-to-last (14th) entry on the page, and
tells us that page 254 of our virtual address space is mapped at physi-
cal page 55. By concatenating PFN=55 (or hex 0x37) with offset=000000,
we can thus form our desired physical address and issue the request to
the memory system: PhysAddr = (PTE.PFN << SHIFT) + offset

= 00 1101 1100 0000 = 0x0DC0.
You should now have some idea of how to construct a two-level page

table, using a page directory which points to pages of the page table. Un-
fortunately, however, our work is not done. As we’ll now discuss, some-
times two levels of page table is not enough!

More Than Two Levels

In our example thus far, we’ve assumed that multi-level page tables only
have two levels: a page directory and then pieces of the page table. In
some cases, a deeper tree is possible (and indeed, needed).

Let’s take a simple example and use it to show why a deeper multi-
level table can be useful. In this example, assume we have a 30-bit virtual
address space, and a small (512 byte) page. Thus our virtual address has
a 21-bit virtual page number component and a 9-bit offset.

Remember our goal in constructing a multi-level page table: to make
each piece of the page table fit within a single page. Thus far, we’ve only
considered the page table itself; however, what if the page directory gets
too big?

OPERATING

SYSTEMS

[VERSION 0.90] WWW.OSTEP.ORG

PAGING: SMALLER TABLES 11

To determine how many levels are needed in a multi-level table to
make all pieces of the page table fit within a page, we start by determining
how many page-table entries fit within a page. Given our page size of 512
bytes, and assuming a PTE size of 4 bytes, you should see that you can fit
128 PTEs on a single page. When we index into a page of the page table,
we can thus conclude we’ll need the least significant 7 bits (log2128) of
the VPN as an index:

29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPN offset

Page Directory Index Page Table Index

What you also might notice from the diagram above is how many bits
are left into the (large) page directory: 14. If our page directory has 2

14

entries, it spans not one page but 128, and thus our goal of making every
piece of the multi-level page table fit into a page vanishes.

To remedy this problem, we build a further level of the tree, by split-
ting the page directory itself into multiple pages, and then adding another
page directory on top of that, to point to the pages of the page directory.
We can thus split up our virtual address as follows:

29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPN offset

PD Index 0 PD Index 1 Page Table Index

Now, when indexing the upper-level page directory, we use the very
top bits of the virtual address (PD Index 0 in the diagram); this index
can be used to fetch the page-directory entry from the top-level page di-
rectory. If valid, the second level of the page directory is consulted by
combining the physical frame number from the top-level PDE and the
next part of the VPN (PD Index 1). Finally, if valid, the PTE address
can be formed by using the page-table index combined with the address
from the second-level PDE. Whew! That’s a lot of work. And all just to
look something up in a multi-level table.

The Translation Process: Remember the TLB

To summarize the entire process of address translation using a two-level
page table, we once again present the control flow in algorithmic form
(Figure 20.6). The figure shows what happens in hardware (assuming a
hardware-managed TLB) upon every memory reference.

As you can see from the figure, before any of the complicated multi-
level page table access occurs, the hardware first checks the TLB; upon

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

12 PAGING: SMALLER TABLES

1 VPN = (VirtualAddress & VPN_MASK) >> SHIFT

2 (Success, TlbEntry) = TLB_Lookup(VPN)

3 if (Success == True) // TLB Hit

4 if (CanAccess(TlbEntry.ProtectBits) == True)

5 Offset = VirtualAddress & OFFSET_MASK

6 PhysAddr = (TlbEntry.PFN << SHIFT) | Offset

7 Register = AccessMemory(PhysAddr)

8 else

9 RaiseException(PROTECTION_FAULT)

10 else // TLB Miss

11 // first, get page directory entry

12 PDIndex = (VPN & PD_MASK) >> PD_SHIFT

13 PDEAddr = PDBR + (PDIndex * sizeof(PDE))

14 PDE = AccessMemory(PDEAddr)

15 if (PDE.Valid == False)

16 RaiseException(SEGMENTATION_FAULT)

17 else

18 // PDE is valid: now fetch PTE from page table

19 PTIndex = (VPN & PT_MASK) >> PT_SHIFT

20 PTEAddr = (PDE.PFN << SHIFT) + (PTIndex * sizeof(PTE))

21 PTE = AccessMemory(PTEAddr)

22 if (PTE.Valid == False)

23 RaiseException(SEGMENTATION_FAULT)

24 else if (CanAccess(PTE.ProtectBits) == False)

25 RaiseException(PROTECTION_FAULT)

26 else

27 TLB_Insert(VPN, PTE.PFN, PTE.ProtectBits)

28 RetryInstruction()

Figure 20.6: Multi-level Page Table Control Flow

a hit, the physical address is formed directly without accessing the page
table at all, as before. Only upon a TLB miss does the hardware need to
perform the full multi-level lookup. On this path, you can see the cost of
our traditional two-level page table: two additional memory accesses to
look up a valid translation.

20.4 Inverted Page Tables

An even more extreme space savings in the world of page tables is
found with inverted page tables. Here, instead of having many page
tables (one per process of the system), we keep a single page table that
has an entry for each physical page of the system. The entry tells us which
process is using this page, and which virtual page of that process maps to
this physical page.

Finding the correct entry is now a matter of searching through this
data structure. A linear scan would be expensive, and thus a hash table is
often built over the base structure to speed lookups. The PowerPC is one
example of such an architecture [JM98].

More generally, inverted page tables illustrate what we’ve said from
the beginning: page tables are just data structures. You can do lots of
crazy things with data structures, making them smaller or bigger, making
them slower or faster. Multi-level and inverted page tables are just two
examples of the many things one could do.

OPERATING

SYSTEMS

[VERSION 0.90] WWW.OSTEP.ORG

PAGING: SMALLER TABLES 13

20.5 Swapping the Page Tables to Disk

Finally, we discuss the relaxation of one final assumption. Thus far,
we have assumed that page tables reside in kernel-owned physical mem-
ory. Even with our many tricks to reduce the size of page tables, it is still
possible, however, that they may be too big to fit into memory all at once.
Thus, some systems place such page tables in kernel virtual memory,
thereby allowing the system to swap some of these page tables to disk
when memory pressure gets a little tight. We’ll talk more about this in
a future chapter (namely, the case study on VAX/VMS), once we under-
stand how to move pages in and out of memory in more detail.

20.6 Summary

We have now seen how real page tables are built; not necessarily just
as linear arrays but as more complex data structures. The trade-offs such
tables present are in time and space — the bigger the table, the faster a
TLB miss can be serviced, as well as the converse — and thus the right
choice of structure depends strongly on the constraints of the given envi-
ronment.

In a memory-constrained system (like many older systems), small struc-
tures make sense; in a system with a reasonable amount of memory and
with workloads that actively use a large number of pages, a bigger ta-
ble that speeds up TLB misses might be the right choice. With software-
managed TLBs, the entire space of data structures opens up to the delight
of the operating system innovator (hint: that’s you). What new struc-
tures can you come up with? What problems do they solve? Think of
these questions as you fall asleep, and dream the big dreams that only
operating-system developers can dream.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

14 PAGING: SMALLER TABLES

References

[BOH10] “Computer Systems: A Programmer’s Perspective”
Randal E. Bryant and David R. O’Hallaron
Addison-Wesley, 2010
We have yet to find a good first reference to the multi-level page table. However, this great textbook by
Bryant and O’Hallaron dives into the details of x86, which at least is an early system that used such
structures. It’s also just a great book to have.

[JM98] “Virtual Memory: Issues of Implementation”
Bruce Jacob and Trevor Mudge
IEEE Computer, June 1998
An excellent survey of a number of different systems and their approach to virtualizing memory. Plenty
of details on x86, PowerPC, MIPS, and other architectures.

[LL82] “Virtual Memory Management in the VAX/VMS Operating System”
Hank Levy and P. Lipman
IEEE Computer, Vol. 15, No. 3, March 1982
A terrific paper about a real virtual memory manager in a classic operating system, VMS. So terrific, in
fact, that we’ll use it to review everything we’ve learned about virtual memory thus far a few chapters
from now.

[M28] “Reese’s Peanut Butter Cups”
Mars Candy Corporation.
Apparently these fine confections were invented in 1928 by Harry Burnett Reese, a former dairy farmer
and shipping foreman for one Milton S. Hershey. At least, that is what it says on Wikipedia. If true,
Hershey and Reese probably hated each other’s guts, as any two chocolate barons should.

[N+02] “Practical, Transparent Operating System Support for Superpages”
Juan Navarro, Sitaram Iyer, Peter Druschel, Alan Cox
OSDI ’02, Boston, Massachusetts, October 2002
A nice paper showing all the details you have to get right to incorporate large pages, or superpages,
into a modern OS. Not as easy as you might think, alas.

[M07] “Multics: History”
Available: http://www.multicians.org/history.html
This amazing web site provides a huge amount of history on the Multics system, certainly one of the
most influential systems in OS history. The quote from therein: “Jack Dennis of MIT contributed
influential architectural ideas to the beginning of Multics, especially the idea of combining paging and
segmentation.” (from Section 1.2.1)

OPERATING

SYSTEMS

[VERSION 0.90] WWW.OSTEP.ORG

PAGING: SMALLER TABLES 15

Homework

This fun little homework tests if you understand how a multi-level
page table works. And yes, there is some debate over the use of the term
“fun” in the previous sentence. The program is called, perhaps unsur-
prisingly: paging-multilevel-translate.py; see the README for
details.

Questions

• With a linear page table, you need a single register to locate the
page table, assuming that hardware does the lookup upon a TLB
miss. How many registers do you need to locate a two-level page
table? A three-level table?

• Use the simulator to perform translations given random seeds 0,
1, and 2, and check your answers using the -c flag. How many
memory references are needed to perform each lookup?

• Given your understanding of how cache memory works, how do
you think memory references to the page table will behave in the
cache? Will they lead to lots of cache hits (and thus fast accesses?)
Or lots of misses (and thus slow accesses)?

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

