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Beyond Physical Memory: Policies

In a virtual memory manager, life is easy when you have a lot of free
memory. A page fault occurs, you find a free page on the free-page list,
and assign it to the faulting page. Hey, Operating System, congratula-
tions! You did it again.

Unfortunately, things get a little more interesting when little memory
is free. In such a case, this memory pressure forces the OS to start paging
out pages to make room for actively-used pages. Deciding which page
(or pages) to evict is encapsulated within the replacement policy of the
OS; historically, it was one of the most important decisions the early vir-
tual memory systems made, as older systems had little physical memory.
Minimally, it is an interesting set of policies worth knowing a little more
about. And thus our problem:

THE CRUX: HOW TO DECIDE WHICH PAGE TO EVICT

How can the OS decide which page (or pages) to evict from memory?
This decision is made by the replacement policy of the system, which usu-
ally follows some general principles (discussed below) but also includes
certain tweaks to avoid corner-case behaviors.

22.1 Cache Management

Before diving into policies, we first describe the problem we are trying
to solve in more detail. Given that main memory holds some subset of
all the pages in the system, it can rightly be viewed as a cache for virtual
memory pages in the system. Thus, our goal in picking a replacement
policy for this cache is to minimize the number of cache misses, i.e., to
minimize the number of times that we have fetch a page from disk. Al-
ternately, one can view our goal as maximizing the number of cache hits,
i.e., the number of times a page that is accessed is found in memory.

Knowing the number of cache hits and misses let us calculate the av-
erage memory access time (AMAT) for a program (a metric computer
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2 BEYOND PHYSICAL MEMORY: POLICIES

architects compute for hardware caches [HP06]). Specifically, given these
values, we can compute the AMAT of a program as follows:

AMAT = (PHit · TM ) + (PMiss · TD) (22.1)

where TM represents the cost of accessing memory, TD the cost of access-
ing disk, PHit the probability of finding the data item in the cache (a hit),
and PMiss the probability of not finding the data in the cache (a miss).
PHit and PMiss each vary from 0.0 to 1.0, and PMiss + PHit = 1.0.

For example, let us imagine a machine with a (tiny) address space:
4KB, with 256-byte pages. Thus, a virtual address has two components: a
4-bit VPN (the most-significant bits) and an 8-bit offset (the least-significant
bits). Thus, a process in this example can access 24 or 16 total virtual
pages. In this example, the process generates the following memory ref-
erences (i.e., virtual addresses): 0x000, 0x100, 0x200, 0x300, 0x400, 0x500,
0x600, 0x700, 0x800, 0x900. These virtual addresses refer to the first byte
of each of the first ten pages of the address space (the page number being
the first hex digit of each virtual address).

Let us further assume that every page except virtual page 3 is already
in memory. Thus, our sequence of memory references will encounter the
following behavior: hit, hit, hit, miss, hit, hit, hit, hit, hit, hit. We can
compute the hit rate (the percent of references found in memory): 90%
(PHit = 0.9), as 9 out of 10 references are in memory. The miss rate is
obviously 10% (PMiss = 0.1).

To calculate AMAT, we simply need to know the cost of accessing
memory and the cost of accessing disk. Assuming the cost of access-
ing memory (TM ) is around 100 nanoseconds, and the cost of access-
ing disk (TD) is about 10 milliseconds, we have the following AMAT:
0.9 · 100ns + 0.1 · 10ms, which is 90ns + 1ms, or 1.00009 ms, or about
1 millisecond. If our hit rate had instead been 99.9%, the result is quite
different: AMAT is 10.1 microseconds, or roughly 100 times faster. As the
hit rate approaches 100%, AMAT approaches 100 nanoseconds.

Unfortunately, as you can see in this example, the cost of disk access
is so high in modern systems that even a tiny miss rate will quickly dom-
inate the overall AMAT of running programs. Clearly, we need to avoid
as many misses as possible or run slowly, at the rate of the disk. One way
to help with this is to carefully develop a smart policy, as we now do.

22.2 The Optimal Replacement Policy

To better understand how a particular replacement policy works, it
would be nice to compare it to the best possible replacement policy. As it
turns out, such an optimal policy was developed by Belady many years
ago [B66] (he originally called it MIN). The optimal replacement policy
leads to the fewest number of misses overall. Belady showed that a sim-
ple (but, unfortunately, difficult to implement!) approach that replaces
the page that will be accessed furthest in the future is the optimal policy,
resulting in the fewest-possible cache misses.

OPERATING

SYSTEMS

[VERSION 0.90] WWW.OSTEP.ORG



BEYOND PHYSICAL MEMORY: POLICIES 3

TIP: COMPARING AGAINST OPTIMAL IS USEFUL

Although optimal is not very practical as a real policy, it is incredibly
useful as a comparison point in simulation or other studies. Saying that
your fancy new algorithm has a 80% hit rate isn’t meaningful in isolation;
saying that optimal achieves an 82% hit rate (and thus your new approach
is quite close to optimal) makes the result more meaningful and gives it
context. Thus, in any study you perform, knowing what the optimal is
lets you perform a better comparison, showing how much improvement
is still possible, and also when you can stop making your policy better,
because it is close enough to the ideal [AD03].

Hopefully, the intuition behind the optimal policy makes sense. Think
about it like this: if you have to throw out some page, why not throw
out the one that is needed the furthest from now? By doing so, you are
essentially saying that all the other pages in the cache are more important
than the one furthest out. The reason this is true is simple: you will refer
to the other pages before you refer to the one furthest out.

Let’s trace through a simple example to understand the decisions the
optimal policy makes. Assume a program accesses the following stream
of virtual pages: 0, 1, 2, 0, 1, 3, 0, 3, 1, 2, 1. Figure 22.1 shows the behavior
of optimal, assuming a cache that fits three pages.

In the figure, you can see the following actions. Not surprisingly, the
first three accesses are misses, as the cache begins in an empty state; such
a miss is sometimes referred to as a cold-start miss (or compulsory miss).
Then we refer again to pages 0 and 1, which both hit in the cache. Finally,
we reach another miss (to page 3), but this time the cache is full; a re-
placement must take place! Which begs the question: which page should
we replace? With the optimal policy, we examine the future for each page
currently in the cache (0, 1, and 2), and see that 0 is accessed almost imme-
diately, 1 is accessed a little later, and 2 is accessed furthest in the future.
Thus the optimal policy has an easy choice: evict page 2, resulting in
pages 0, 1, and 3 in the cache. The next three references are hits, but then

Resulting
Access Hit/Miss? Evict Cache State

0 Miss 0
1 Miss 0, 1
2 Miss 0, 1, 2
0 Hit 0, 1, 2
1 Hit 0, 1, 2
3 Miss 2 0, 1, 3
0 Hit 0, 1, 3
3 Hit 0, 1, 3
1 Hit 0, 1, 3
2 Miss 3 0, 1, 2
1 Hit 0, 1, 2

Figure 22.1: Tracing The Optimal Policy
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4 BEYOND PHYSICAL MEMORY: POLICIES

ASIDE: TYPES OF CACHE MISSES

In the computer architecture world, architects sometimes find it useful
to characterize misses by type, into one of three categories: compulsory,
capacity, and conflict misses, sometimes called the Three C’s [H87]. A
compulsory miss (or cold-start miss [EF78]) occurs because the cache is
empty to begin with and this is the first reference to the item; in con-
trast, a capacity miss occurs because the cache ran out of space and had
to evict an item to bring a new item into the cache. The third type of
miss (a conflict miss) arises in hardware because of limits on where an
item can be placed in a hardware cache, due to something known as set-
associativity; it does not arise in the OS page cache because such caches
are always fully-associative, i.e., there are no restrictions on where in
memory a page can be placed. See H&P for details [HP06].

we get to page 2, which we evicted long ago, and suffer another miss.
Here the optimal policy again examines the future for each page in the
cache (0, 1, and 3), and sees that as long as it doesn’t evict page 1 (which
is about to be accessed), we’ll be OK. The example shows page 3 getting
evicted, although 0 would have been a fine choice too. Finally, we hit on
page 1 and the trace completes.

We can also calculate the hit rate for the cache: with 6 hits and 5 misses,
the hit rate is Hits

Hits+Misses
which is 6

6+5
or 54.5%. You can also compute

the hit rate modulo compulsory misses (i.e., ignore the first miss to a given
page), resulting in a 85.7% hit rate.

Unfortunately, as we saw before in the development of scheduling
policies, the future is not generally known; you can’t build the optimal

policy for a general-purpose operating system1. Thus, in developing a
real, deployable policy, we will focus on approaches that find some other
way to decide which page to evict. The optimal policy will thus serve
only as a comparison point, to know how close we are to “perfect”.

22.3 A Simple Policy: FIFO

Many early systems avoided the complexity of trying to approach
optimal and employed very simple replacement policies. For example,
some systems used FIFO (first-in, first-out) replacement, where pages
were simply placed in a queue when they enter the system; when a re-
placement occurs, the page on the tail of the queue (the “first-in” page) is
evicted. FIFO has one great strength: it is quite simple to implement.

Let’s examine how FIFO does on our example reference stream (Figure
22.2, page 5). We again begin our trace with three compulsory misses to
pages 0, 1, and 2, and then hit on both 0 and 1. Next, page 3 is referenced,
causing a miss; the replacement decision is easy with FIFO: pick the page

1If you can, let us know! We can become rich together. Or, like the scientists who “discov-
ered” cold fusion, widely scorned and mocked [FP89].
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BEYOND PHYSICAL MEMORY: POLICIES 5

Resulting
Access Hit/Miss? Evict Cache State

0 Miss First-in→ 0
1 Miss First-in→ 0, 1
2 Miss First-in→ 0, 1, 2
0 Hit First-in→ 0, 1, 2
1 Hit First-in→ 0, 1, 2
3 Miss 0 First-in→ 1, 2, 3
0 Miss 1 First-in→ 2, 3, 0
3 Hit First-in→ 2, 3, 0
1 Miss 2 First-in→ 3, 0, 1
2 Miss 3 First-in→ 0, 1, 2
1 Hit First-in→ 0, 1, 2

Figure 22.2: Tracing The FIFO Policy

that was the “first one” in (the cache state in the figure is kept in FIFO
order, with the first-in page on the left), which is page 0. Unfortunately,
our next access is to page 0, causing another miss and replacement (of
page 1). We then hit on page 3, but miss on 1 and 2, and finally hit on 3.

Comparing FIFO to optimal, FIFO does notably worse: a 36.4% hit
rate (or 57.1% excluding compulsory misses). FIFO simply can’t deter-
mine the importance of blocks: even though page 0 had been accessed
a number of times, FIFO still kicks it out, simply because it was the first
one brought into memory.

ASIDE: BELADY’S ANOMALY

Belady (of the optimal policy) and colleagues found an interesting refer-
ence stream that behaved a little unexpectedly [BNS69]. The memory-
reference stream: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5. The replacement policy
they were studying was FIFO. The interesting part: how the cache hit
rate changed when moving from a cache size of 3 to 4 pages.

In general, you would expect the cache hit rate to increase (get better)
when the cache gets larger. But in this case, with FIFO, it gets worse! Cal-
culate the hits and misses yourself and see. This odd behavior is generally
referred to as Belady’s Anomaly (to the chagrin of his co-authors).

Some other policies, such as LRU, don’t suffer from this problem. Can
you guess why? As it turns out, LRU has what is known as a stack prop-
erty [M+70]. For algorithms with this property, a cache of size N + 1
naturally includes the contents of a cache of size N . Thus, when increas-
ing the cache size, hit rate will either stay the same or improve. FIFO and
Random (among others) clearly do not obey the stack property, and thus
are susceptible to anomalous behavior.
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6 BEYOND PHYSICAL MEMORY: POLICIES

Resulting
Access Hit/Miss? Evict Cache State

0 Miss 0
1 Miss 0, 1
2 Miss 0, 1, 2
0 Hit 0, 1, 2
1 Hit 0, 1, 2
3 Miss 0 1, 2, 3
0 Miss 1 2, 3, 0
3 Hit 2, 3, 0
1 Miss 3 2, 0, 1
2 Hit 2, 0, 1
1 Hit 2, 0, 1

Figure 22.3: Tracing The Random Policy

22.4 Another Simple Policy: Random

Another similar replacement policy is Random, which simply picks a
random page to replace under memory pressure. Random has properties
similar to FIFO; it is simple to implement, but it doesn’t really try to be
too intelligent in picking which blocks to evict. Let’s look at how Random
does on our famous example reference stream (see Figure 22.3).

Of course, how Random does depends entirely upon how lucky (or
unlucky) Random gets in its choices. In the example above, Random does
a little better than FIFO, and a little worse than optimal. In fact, we can
run the Random experiment thousands of times and determine how it
does in general. Figure 22.4 shows how many hits Random achieves over
10,000 trials, each with a different random seed. As you can see, some-
times (just over 40% of the time), Random is as good as optimal, achieving
6 hits on the example trace; sometimes it does much worse, achieving 2
hits or fewer. How Random does depends on the luck of the draw.
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Figure 22.4: Random Performance Over 10,000 Trials
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BEYOND PHYSICAL MEMORY: POLICIES 7

Resulting
Access Hit/Miss? Evict Cache State

0 Miss LRU→ 0
1 Miss LRU→ 0, 1
2 Miss LRU→ 0, 1, 2
0 Hit LRU→ 1, 2, 0
1 Hit LRU→ 2, 0, 1
3 Miss 2 LRU→ 0, 1, 3
0 Hit LRU→ 1, 3, 0
3 Hit LRU→ 1, 0, 3
1 Hit LRU→ 0, 3, 1
2 Miss 0 LRU→ 3, 1, 2
1 Hit LRU→ 3, 2, 1

Figure 22.5: Tracing The LRU Policy

22.5 Using History: LRU

Unfortunately, any policy as simple as FIFO or Random is likely to
have a common problem: it might kick out an important page, one that
is about to be referenced again. FIFO kicks out the page that was first
brought in; if this happens to be a page with important code or data
structures upon it, it gets thrown out anyhow, even though it will soon be
paged back in. Thus, FIFO, Random, and similar policies are not likely to
approach optimal; something smarter is needed.

As we did with scheduling policy, to improve our guess at the future,
we once again lean on the past and use history as our guide. For example,
if a program has accessed a page in the near past, it is likely to access it
again in the near future.

One type of historical information a page-replacement policy could
use is frequency; if a page has been accessed many times, perhaps it
should not be replaced as it clearly has some value. A more commonly-
used property of a page is its recency of access; the more recently a page
has been accessed, perhaps the more likely it will be accessed again.

This family of policies is based on what people refer to as the prin-
ciple of locality [D70], which basically is just an observation about pro-
grams and their behavior. What this principle says, quite simply, is that
programs tend to access certain code sequences (e.g., in a loop) and data
structures (e.g., an array accessed by the loop) quite frequently; we should
thus try to use history to figure out which pages are important, and keep
those pages in memory when it comes to eviction time.

And thus, a family of simple historically-based algorithms are born.
The Least-Frequently-Used (LFU) policy replaces the least-frequently-
used page when an eviction must take place. Similarly, the Least-Recently-
Used (LRU) policy replaces the least-recently-used page. These algo-
rithms are easy to remember: once you know the name, you know exactly
what it does, which is an excellent property for a name.

To better understand LRU, let’s examine how LRU does on our exam-
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8 BEYOND PHYSICAL MEMORY: POLICIES

ASIDE: TYPES OF LOCALITY

There are two types of locality that programs tend to exhibit. The first
is known as spatial locality, which states that if a page P is accessed,
it is likely the pages around it (say P − 1 or P + 1) will also likely be
accessed. The second is temporal locality, which states that pages that
have been accessed in the near past are likely to be accessed again in the
near future. The assumption of the presence of these types of locality
plays a large role in the caching hierarchies of hardware systems, which
deploy many levels of instruction, data, and address-translation caching
to help programs run fast when such locality exists.

Of course, the principle of locality, as it is often called, is no hard-and-
fast rule that all programs must obey. Indeed, some programs access
memory (or disk) in rather random fashion and don’t exhibit much or
any locality in their access streams. Thus, while locality is a good thing to
keep in mind while designing caches of any kind (hardware or software),
it does not guarantee success. Rather, it is a heuristic that often proves
useful in the design of computer systems.

ple reference stream. Figure 22.5 (page 7) shows the results. From the
figure, you can see how LRU can use history to do better than stateless
policies such as Random or FIFO. In the example, LRU evicts page 2 when
it first has to replace a page, because 0 and 1 have been accessed more re-
cently. It then replaces page 0 because 1 and 3 have been accessed more
recently. In both cases, LRU’s decision, based on history, turns out to be
correct, and the next references are thus hits. Thus, in our simple exam-

ple, LRU does as well as possible, matching optimal in its performance2.
We should also note that the opposites of these algorithms exist: Most-

Frequently-Used (MFU) and Most-Recently-Used (MRU). In most cases
(not all!), these policies do not work well, as they ignore the locality most
programs exhibit instead of embracing it.

22.6 Workload Examples

Let’s look at a few more examples in order to better understand how
some of these policies behave. Here, we’ll examine more complex work-
loads instead of small traces. However, even these workloads are greatly
simplified; a better study would include application traces.

Our first workload has no locality, which means that each reference
is to a random page within the set of accessed pages. In this simple ex-
ample, the workload accesses 100 unique pages over time, choosing the
next page to refer to at random; overall, 10,000 pages are accessed. In the
experiment, we vary the cache size from very small (1 page) to enough
to hold all the unique pages (100 page), in order to see how each policy
behaves over the range of cache sizes.

2OK, we cooked the results. But sometimes cooking is necessary to prove a point.
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Figure 22.6: The No-Locality Workload

Figure 22.6 plots the results of the experiment for optimal, LRU, Ran-
dom, and FIFO. The y-axis of the figure shows the hit rate that each policy
achieves; the x-axis varies the cache size as described above.

We can draw a number of conclusions from the graph. First, when
there is no locality in the workload, it doesn’t matter much which realistic
policy you are using; LRU, FIFO, and Random all perform the same, with
the hit rate exactly determined by the size of the cache. Second, when
the cache is large enough to fit the entire workload, it also doesn’t matter
which policy you use; all policies (even Random) converge to a 100% hit
rate when all the referenced blocks fit in cache. Finally, you can see that
optimal performs noticeably better than the realistic policies; peeking into
the future, if it were possible, does a much better job of replacement.

The next workload we examine is called the “80-20” workload, which
exhibits locality: 80% of the references are made to 20% of the pages (the
“hot” pages); the remaining 20% of the references are made to the re-
maining 80% of the pages (the “cold” pages). In our workload, there are
a total 100 unique pages again; thus, “hot” pages are referred to most of
the time, and “cold” pages the remainder. Figure 22.7 (page 10) shows
how the policies perform with this workload.

As you can see from the figure, while both random and FIFO do rea-
sonably well, LRU does better, as it is more likely to hold onto the hot
pages; as those pages have been referred to frequently in the past, they
are likely to be referred to again in the near future. Optimal once again
does better, showing that LRU’s historical information is not perfect.
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Figure 22.7: The 80-20 Workload

You might now be wondering: is LRU’s improvement over Random
and FIFO really that big of a deal? The answer, as usual, is “it depends.” If
each miss is very costly (not uncommon), then even a small increase in hit
rate (reduction in miss rate) can make a huge difference on performance.
If misses are not so costly, then of course the benefits possible with LRU
are not nearly as important.

Let’s look at one final workload. We call this one the “looping sequen-
tial” workload, as in it, we refer to 50 pages in sequence, starting at 0,
then 1, ..., up to page 49, and then we loop, repeating those accesses, for a
total of 10,000 accesses to 50 unique pages. The last graph in Figure 22.8
shows the behavior of the policies under this workload.

This workload, common in many applications (including important
commercial applications such as databases [CD85]), represents a worst-
case for both LRU and FIFO. These algorithms, under a looping-sequential
workload, kick out older pages; unfortunately, due to the looping nature
of the workload, these older pages are going to be accessed sooner than
the pages that the policies prefer to keep in cache. Indeed, even with
a cache of size 49, a looping-sequential workload of 50 pages results in
a 0% hit rate. Interestingly, Random fares notably better, not quite ap-
proaching optimal, but at least achieving a non-zero hit rate. Turns out
that random has some nice properties; one such property is not having
weird corner-case behaviors.
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Figure 22.8: The Looping Workload

22.7 Implementing Historical Algorithms

As you can see, an algorithm such as LRU can generally do a better
job than simpler policies like FIFO or Random, which may throw out
important pages. Unfortunately, historical policies present us with a new
challenge: how do we implement them?

Let’s take, for example, LRU. To implement it perfectly, we need to
do a lot of work. Specifically, upon each page access (i.e., each memory
access, whether an instruction fetch or a load or store), we must update
some data structure to move this page to the front of the list (i.e., the
MRU side). Contrast this to FIFO, where the FIFO list of pages is only
accessed when a page is evicted (by removing the first-in page) or when a
new page is added to the list (to the last-in side). To keep track of which
pages have been least- and most-recently used, the system has to do some
accounting work on every memory reference. Clearly, without great care,
such accounting could greatly reduce performance.

One method that could help speed this up is to add a little bit of hard-
ware support. For example, a machine could update, on each page access,
a time field in memory (for example, this could be in the per-process page
table, or just in some separate array in memory, with one entry per phys-
ical page of the system). Thus, when a page is accessed, the time field
would be set, by hardware, to the current time. Then, when replacing a
page, the OS could simply scan all the time fields in the system to find the
least-recently-used page.
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12 BEYOND PHYSICAL MEMORY: POLICIES

Unfortunately, as the number of pages in a system grows, scanning a
huge array of times just to find the absolute least-recently-used page is
prohibitively expensive. Imagine a modern machine with 4GB of mem-
ory, chopped into 4KB pages. This machine has 1 million pages, and thus
finding the LRU page will take a long time, even at modern CPU speeds.
Which begs the question: do we really need to find the absolute oldest
page to replace? Can we instead survive with an approximation?

CRUX: HOW TO IMPLEMENT AN LRU REPLACEMENT POLICY

Given that it will be expensive to implement perfect LRU, can we ap-
proximate it in some way, and still obtain the desired behavior?

22.8 Approximating LRU

As it turns out, the answer is yes: approximating LRU is more fea-
sible from a computational-overhead standpoint, and indeed it is what
many modern systems do. The idea requires some hardware support,
in the form of a use bit (sometimes called the reference bit), the first of
which was implemented in the first system with paging, the Atlas one-
level store [KE+62]. There is one use bit per page of the system, and the
use bits live in memory somewhere (they could be in the per-process page
tables, for example, or just in an array somewhere). Whenever a page is
referenced (i.e., read or written), the use bit is set by hardware to 1. The
hardware never clears the bit, though (i.e., sets it to 0); that is the respon-
sibility of the OS.

How does the OS employ the use bit to approximate LRU? Well, there
could be a lot of ways, but with the clock algorithm [C69], one simple
approach was suggested. Imagine all the pages of the system arranged in
a circular list. A clock hand points to some particular page to begin with
(it doesn’t really matter which). When a replacement must occur, the OS
checks if the currently-pointed to page P has a use bit of 1 or 0. If 1, this
implies that page P was recently used and thus is not a good candidate
for replacement. Thus, the clock hand is incremented to the next page
P + 1, and the use bit for P set to 0 (cleared). The algorithm continues
until it finds a use bit that is set to 0, implying this page has not been
recently used (or, in the worst case, that all pages have been and that we
have now searched through the entire set of pages, clearing all the bits).

Note that this approach is not the only way to employ a use bit to
approximate LRU. Indeed, any approach which periodically clears the
use bits and then differentiates between which pages have use bits of 1
versus 0 to decide which to replace would be fine. The clock algorithm of
Corbato’s was just one early approach which met with some success, and
had the nice property of not repeatedly scanning through all of memory
looking for an unused page.
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Figure 22.9: The 80-20 Workload With Clock

The behavior of a clock algorithm variant is shown in Figure 22.9. This
variant randomly scans pages when doing a replacement; when it en-
counters a page with a reference bit set to 1, it clears the bit (i.e., sets it
to 0); when it finds a page with the reference bit set to 0, it chooses it as
its victim. As you can see, although it doesn’t do quite as well as perfect
LRU, it does better than approaches that don’t consider history at all.

22.9 Considering Dirty Pages

One small modification to the clock algorithm (also originally sug-
gested by Corbato [C69]) that is commonly made is the additional con-
sideration of whether a page has been modified or not while in memory.
The reason for this: if a page has been modified and is thus dirty, it must
be written back to disk to evict it, which is expensive. If it has not been
modified (and is thus clean), the eviction is free; the physical frame can
simply be reused for other purposes without additional I/O. Thus, some
VM systems prefer to evict clean pages over dirty pages.

To support this behavior, the hardware should include a modified bit
(a.k.a. dirty bit). This bit is set any time a page is written, and thus can be
incorporated into the page-replacement algorithm. The clock algorithm,
for example, could be changed to scan for pages that are both unused
and clean to evict first; failing to find those, then for unused pages that
are dirty, and so forth.
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22.10 Other VM Policies

Page replacement is not the only policy the VM subsystem employs
(though it may be the most important). For example, the OS also has to
decide when to bring a page into memory. This policy, sometimes called
the page selection policy (as it was called by Denning [D70]), presents
the OS with some different options.

For most pages, the OS simply uses demand paging, which means the
OS brings the page into memory when it is accessed, “on demand” as
it were. Of course, the OS could guess that a page is about to be used,
and thus bring it in ahead of time; this behavior is known as prefetching
and should only be done when there is reasonable chance of success. For
example, some systems will assume that if a code page P is brought into
memory, that code page P+1 will likely soon be accessed and thus should
be brought into memory too.

Another policy determines how the OS writes pages out to disk. Of
course, they could simply be written out one at a time; however, many
systems instead collect a number of pending writes together in memory
and write them to disk in one (more efficient) write. This behavior is
usually called clustering or simply grouping of writes, and is effective
because of the nature of disk drives, which perform a single large write
more efficiently than many small ones.

22.11 Thrashing

Before closing, we address one final question: what should the OS do
when memory is simply oversubscribed, and the memory demands of the
set of running processes simply exceeds the available physical memory?
In this case, the system will constantly be paging, a condition sometimes
referred to as thrashing [D70].

Some earlier operating systems had a fairly sophisticated set of mech-
anisms to both detect and cope with thrashing when it took place. For
example, given a set of processes, a system could decide not to run a sub-
set of processes, with the hope that the reduced set of processes working
sets (the pages that they are using actively) fit in memory and thus can
make progress. This approach, generally known as admission control,
states that it is sometimes better to do less work well than to try to do
everything at once poorly, a situation we often encounter in real life as
well as in modern computer systems (sadly).

Some current systems take more a draconian approach to memory
overload. For example, some versions of Linux run an out-of-memory
killer when memory is oversubscribed; this daemon chooses a memory-
intensive process and kills it, thus reducing memory in a none-too-subtle
manner. While successful at reducing memory pressure, this approach
can have problems, if, for example, it kills the X server and thus renders
any applications requiring the display unusable.
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22.12 Summary

We have seen the introduction of a number of page-replacement (and
other) policies, which are part of the VM subsystem of all modern operat-
ing systems. Modern systems add some tweaks to straightforward LRU
approximations like clock; for example, scan resistance is an important
part of many modern algorithms, such as ARC [MM03]. Scan-resistant al-
gorithms are usually LRU-like but also try to avoid the worst-case behav-
ior of LRU, which we saw with the looping-sequential workload. Thus,
the evolution of page-replacement algorithms continues.

However, in many cases the importance of said algorithms has de-
creased, as the discrepancy between memory-access and disk-access times
has increased. Because paging to disk is so expensive, the cost of frequent
paging is prohibitive. Thus, the best solution to excessive paging is often
a simple (if intellectually dissatisfying) one: buy more memory.
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Homework

This simulator, paging-policy.py, allows you to play around with
different page-replacement policies. See the README for details.

Questions

• Generate random addresses with the following arguments: -s 0

-n 10, -s 1 -n 10, and -s 2 -n 10. Change the policy from
FIFO, to LRU, to OPT. Compute whether each access in said address
traces are hits or misses.

• For a cache of size 5, generate worst-case address reference streams
for each of the following policies: FIFO, LRU, and MRU (worst-case
reference streams cause the most misses possible. For the worst case
reference streams, how much bigger of a cache is needed to improve
performance dramatically and approach OPT?

• Generate a random trace (use python or perl). How would you
expect the different policies to perform on such a trace?

• Now generate a trace with some locality. How can you generate
such a trace? How does LRU perform on it? How much better than
RAND is LRU? How does CLOCK do? How about CLOCK with
different numbers of clock bits?

• Use a program like valgrind to instrument a real application and
generate a virtual page reference stream. For example, running
valgrind --tool=lackey --trace-mem=yes lswill output
a nearly-complete reference trace of every instruction and data ref-
erence made by the program ls. To make this useful for the sim-
ulator above, you’ll have to first transform each virtual memory
reference into a virtual page-number reference (done by masking
off the offset and shifting the resulting bits downward). How big
of a cache is needed for your application trace in order to satisfy a
large fraction of requests? Plot a graph of its working set as the size
of the cache increases.
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