
23

The VAX/VMS Virtual Memory System

Before we end our study of virtual memory, let us take a closer look at one
particularly clean and well done virtual memory manager, that found in
the VAX/VMS operating system [LL82]. In this note, we will discuss the
system to illustrate how some of the concepts brought forth in earlier
chapters together in a complete memory manager.

23.1 Background

The VAX-11 minicomputer architecture was introduced in the late 1970’s
by Digital Equipment Corporation (DEC). DEC was a massive player
in the computer industry during the era of the mini-computer; unfortu-
nately, a series of bad decisions and the advent of the PC slowly (but
surely) led to their demise [C03]. The architecture was realized in a num-
ber of implementations, including the VAX-11/780 and the less powerful
VAX-11/750.

The OS for the system was known as VAX/VMS (or just plain VMS),
one of whose primary architects was Dave Cutler, who later led the effort
to develop Microsoft’s Windows NT [C93]. VMS had the general prob-
lem that it would be run on a broad range of machines, including very
inexpensive VAXen (yes, that is the proper plural) to extremely high-end
and powerful machines in the same architecture family. Thus, the OS had
to have mechanisms and policies that worked (and worked well) across
this huge range of systems.

THE CRUX: HOW TO AVOID THE CURSE OF GENERALITY

Operating systems often have a problem known as “the curse of gen-
erality”, where they are tasked with general support for a broad class of
applications and systems. The fundamental result of the curse is that the
OS is not likely to support any one installation very well. In the case of
VMS, the curse was very real, as the VAX-11 architecture was realized in
a number of different implementations. Thus, how can an OS be built so
as to run effectively on a wide range of systems?

1



2 THE VAX/VMS VIRTUAL MEMORY SYSTEM

As an additional issue, VMS is an excellent example of software inno-
vations used to hide some of the inherent flaws of the architecture. Al-
though the OS often relies on the hardware to build efficient abstractions
and illusions, sometimes the hardware designers don’t quite get every-
thing right; in the VAX hardware, we’ll see a few examples of this, and
what the VMS operating system does to build an effective, working sys-
tem despite these hardware flaws.

23.2 Memory Management Hardware

The VAX-11 provided a 32-bit virtual address space per process, di-
vided into 512-byte pages. Thus, a virtual address consisted of a 23-bit
VPN and a 9-bit offset. Further, the upper two bits of the VPN were used
to differentiate which segment the page resided within; thus, the system
was a hybrid of paging and segmentation, as we saw previously.

The lower-half of the address space was known as “process space” and
is unique to each process. In the first half of process space (known as P0),
the user program is found, as well as a heap which grows downward.
In the second half of process space (P1), we find the stack, which grows
upwards. The upper-half of the address space is known as system space
(S), although only half of it is used. Protected OS code and data reside
here, and the OS is in this way shared across processes.

One major concern of the VMS designers was the incredibly small size
of pages in the VAX hardware (512 bytes). This size, chosen for historical
reasons, has the fundamental problem of making simple linear page ta-
bles excessively large. Thus, one of the first goals of the VMS designers
was to make sure that VMS would not overwhelm memory with page
tables.

The system reduced the pressure page tables place on memory in two
ways. First, by segmenting the user address space into two, the VAX-11
provides a page table for each of these regions (P0 and P1) per process;
thus, no page-table space is needed for the unused portion of the address
space between the stack and the heap. The base and bounds registers
are used as you would expect; a base register holds the address of the
page table for that segment, and the bounds holds its size (i.e., number of
page-table entries).

Second, the OS reduces memory pressure even further by placing user
page tables (for P0 and P1, thus two per process) in kernel virtual mem-
ory. Thus, when allocating or growing a page table, the kernel allocates
space out of its own virtual memory, in segment S. If memory comes un-
der severe pressure, the kernel can swap pages of these page tables out to
disk, thus making physical memory available for other uses.

Putting page tables in kernel virtual memory means that address trans-
lation is even further complicated. For example, to translate a virtual ad-
dress in P0 or P1, the hardware has to first try to look up the page-table
entry for that page in its page table (the P0 or P1 page table for that pro-

OPERATING

SYSTEMS

[VERSION 0.90] WWW.OSTEP.ORG



THE VAX/VMS VIRTUAL MEMORY SYSTEM 3

Page 0: Invalid

User Code

User Heap

User Stack

Trap Tables

Kernel Data

Kernel Code

Kernel Heap

Unused

System (S)

User (P1)

User (P0)

0

230

231

232

Figure 23.1: The VAX/VMS Address Space

cess); in doing so, however, the hardware may first have to consult the
system page table (which lives in physical memory); with that transla-
tion complete, the hardware can learn the address of the page of the page
table, and then finally learn the address of the desired memory access.
All of this, fortunately, is made faster by the VAX’s hardware-managed
TLBs, which usually (hopefully) circumvent this laborious lookup.

23.3 A Real Address Space

One neat aspect of studying VMS is that we can see how a real address
space is constructed (Figure 23.1. Thus far, we have assumed a simple
address space of just user code, user data, and user heap, but as we can
see above, a real address space is notably more complex.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES



4 THE VAX/VMS VIRTUAL MEMORY SYSTEM

ASIDE: WHY NULL POINTER ACCESSES CAUSE SEG FAULTS

You should now have a good understanding of exactly what happens on
a null-pointer dereference. A process generates a virtual address of 0, by
doing something like this:

int *p = NULL; // set p = 0

*p = 10; // try to store value 10 to virtual address 0

The hardware tries to look up the VPN (also 0 here) in the TLB, and suf-
fers a TLB miss. The page table is consulted, and the entry for VPN 0
is found to be marked invalid. Thus, we have an invalid access, which
transfers control to the OS, which likely terminates the process (on UNIX

systems, processes are sent a signal which allows them to react to such a
fault; if uncaught, however, the process is killed).

For example, the code segment never begins at page 0. This page,
instead, is marked inaccessible, in order to provide some support for de-
tecting null-pointer accesses. Thus, one concern when designing an ad-
dress space is support for debugging, which the inaccessible zero page
provides here in some form.

Perhaps more importantly, the kernel virtual address space (i.e., its
data structures and code) is a part of each user address space. On a con-
text switch, the OS changes the P0 and P1 registers to point to the ap-
propriate page tables of the soon-to-be-run process; however, it does not
change the S base and bound registers, and as a result the “same” kernel
structures are mapped into each user address space.

The kernel is mapped into each address space for a number of reasons.
This construction makes life easier for the kernel; when, for example, the
OS is handed a pointer from a user program (e.g., on a write() system
call), it is easy to copy data from that pointer to its own structures. The
OS is naturally written and compiled, without worry of where the data
it is accessing comes from. If in contrast the kernel were located entirely
in physical memory, it would be quite hard to do things like swap pages
of the page table to disk; if the kernel were given its own address space,
moving data between user applications and the kernel would again be
complicated and painful. With this construction (now used widely), the
kernel appears almost as a library to applications, albeit a protected one.

One last point about this address space relates to protection. Clearly,
the OS does not want user applications reading or writing OS data or
code. Thus, the hardware must support different protection levels for
pages to enable this. The VAX did so by specifying, in protection bits
in the page table, what privilege level the CPU must be at in order to
access a particular page. Thus, system data and code are set to a higher
level of protection than user data and code; an attempted access to such
information from user code will generate a trap into the OS, and (you
guessed it) the likely termination of the offending process.

OPERATING

SYSTEMS

[VERSION 0.90] WWW.OSTEP.ORG



THE VAX/VMS VIRTUAL MEMORY SYSTEM 5

23.4 Page Replacement

The page table entry (PTE) in VAX contains the following bits: a valid
bit, a protection field (4 bits), a modify (or dirty) bit, a field reserved for
OS use (5 bits), and finally a physical frame number (PFN) to store the
location of the page in physical memory. The astute reader might note:
no reference bit! Thus, the VMS replacement algorithm must make do
without hardware support for determining which pages are active.

The developers were also concerned about memory hogs, programs
that use a lot of memory and make it hard for other programs to run.
Most of the policies we have looked at thus far are susceptible to such
hogging; for example, LRU is a global policy that doesn’t share memory
fairly among processes.

Segmented FIFO

To address these two problems, the developers came up with the seg-
mented FIFO replacement policy [RL81]. The idea is simple: each pro-
cess has a maximum number of pages it can keep in memory, known as
its resident set size (RSS). Each of these pages is kept on a FIFO list; when
a process exceeds its RSS, the “first-in” page is evicted. FIFO clearly does
not need any support from the hardware, and is thus easy to implement.

Of course, pure FIFO does not perform particularly well, as we saw
earlier. To improve FIFO’s performance, VMS introduced two second-
chance lists where pages are placed before getting evicted from memory,
specifically a global clean-page free list and dirty-page list. When a process
P exceeds its RSS, a page is removed from its per-process FIFO; if clean
(not modified), it is placed on the end of the clean-page list; if dirty (mod-
ified), it is placed on the end of the dirty-page list.

If another process Q needs a free page, it takes the first free page off
of the global clean list. However, if the original process P faults on that
page before it is reclaimed, P reclaims it from the free (or dirty) list, thus
avoiding a costly disk access. The bigger these global second-chance lists
are, the closer the segmented FIFO algorithm performs to LRU [RL81].

Page Clustering

Another optimization used in VMS also helps overcome the small page
size in VMS. Specifically, with such small pages, disk I/O during swap-
ping could be highly inefficient, as disks do better with large transfers.
To make swapping I/O more efficient, VMS adds a number of optimiza-
tions, but most important is clustering. With clustering, VMS groups
large batches of pages together from the global dirty list, and writes them
to disk in one fell swoop (thus making them clean). Clustering is used
in most modern systems, as the freedom to place pages anywhere within
swap space lets the OS group pages, perform fewer and bigger writes,
and thus improve performance.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES



6 THE VAX/VMS VIRTUAL MEMORY SYSTEM

ASIDE: EMULATING REFERENCE BITS

As it turns out, you don’t need a hardware reference bit in order to get
some notion of which pages are in use in a system. In fact, in the early
1980’s, Babaoglu and Joy showed that protection bits on the VAX can be
used to emulate reference bits [BJ81]. The basic idea: if you want to gain
some understanding of which pages are actively being used in a system,
mark all of the pages in the page table as inaccessible (but keep around
the information as to which pages are really accessible by the process,
perhaps in the “reserved OS field” portion of the page table entry). When
a process accesses a page, it will generate a trap into the OS; the OS will
then check if the page really should be accessible, and if so, revert the
page to its normal protections (e.g., read-only, or read-write). At the time
of a replacement, the OS can check which pages remain marked inacces-
sible, and thus get an idea of which pages have not been recently used.

The key to this “emulation” of reference bits is reducing overhead while
still obtaining a good idea of page usage. The OS must not be too aggres-
sive in marking pages inaccessible, or overhead would be too high. The
OS also must not be too passive in such marking, or all pages will end up
referenced; the OS will again have no good idea which page to evict.

23.5 Other Neat VM Tricks

VMS had two other now-standard tricks: demand zeroing and copy-
on-write. We now describe these lazy optimizations.

One form of laziness in VMS (and most modern systems) is demand
zeroing of pages. To understand this better, let’s consider the example
of adding a page to your address space, say in your heap. In a naive
implementation, the OS responds to a request to add a page to your heap
by finding a page in physical memory, zeroing it (required for security;
otherwise you’d be able to see what was on the page from when some
other process used it!), and then mapping it into your address space (i.e.,
setting up the page table to refer to that physical page as desired). But the
naive implementation can be costly, particularly if the page does not get
used by the process.

With demand zeroing, the OS instead does very little work when the
page is added to your address space; it puts an entry in the page table
that marks the page inaccessible. If the process then reads or writes the
page, a trap into the OS takes place. When handling the trap, the OS no-
tices (usually through some bits marked in the “reserved for OS” portion
of the page table entry) that this is actually a demand-zero page; at this
point, the OS then does the needed work of finding a physical page, ze-
roing it, and mapping it into the process’s address space. If the process
never accesses the page, all of this work is avoided, and thus the virtue of
demand zeroing.

OPERATING

SYSTEMS

[VERSION 0.90] WWW.OSTEP.ORG



THE VAX/VMS VIRTUAL MEMORY SYSTEM 7

TIP: BE LAZY

Being lazy can be a virtue in both life as well as in operating systems.
Laziness can put off work until later, which is beneficial within an OS for
a number of reasons. First, putting off work might reduce the latency of
the current operation, thus improving responsiveness; for example, op-
erating systems often report that writes to a file succeeded immediately,
and only write them to disk later in the background. Second, and more
importantly, laziness sometimes obviates the need to do the work at all;
for example, delaying a write until the file is deleted removes the need to
do the write at all. Laziness is also good in life: for example, by putting
off your OS project, you may find that the project specification bugs are
worked out by your fellow classmates; however, the class project is un-
likely to get canceled, so being too lazy may be problematic, leading to a
late project, bad grade, and a sad professor. Don’t make professors sad!

Another cool optimization found in VMS (and again, in virtually every
modern OS) is copy-on-write (COW for short). The idea, which goes at
least back to the TENEX operating system [BB+72], is simple: when the
OS needs to copy a page from one address space to another, instead of
copying it, it can map it into the target address space and mark it read-
only in both address spaces. If both address spaces only read the page, no
further action is taken, and thus the OS has realized a fast copy without
actually moving any data.

If, however, one of the address spaces does indeed try to write to the
page, it will trap into the OS. The OS will then notice that the page is a
COW page, and thus (lazily) allocate a new page, fill it with the data, and
map this new page into the address space of the faulting process. The
process then continues and now has its own private copy of the page.

COW is useful for a number of reasons. Certainly any sort of shared
library can be mapped copy-on-write into the address spaces of many
processes, saving valuable memory space. In UNIX systems, COW is
even more critical, due to the semantics of fork() and exec(). As
you might recall, fork() creates an exact copy of the address space of
the caller; with a large address space, making such a copy is slow and
data intensive. Even worse, most of the address space is immediately
over-written by a subsequent call to exec(), which overlays the calling
process’s address space with that of the soon-to-be-exec’d program. By
instead performing a copy-on-write fork(), the OS avoids much of the
needless copying and thus retains the correct semantics while improving
performance.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES



8 THE VAX/VMS VIRTUAL MEMORY SYSTEM

23.6 Summary

You have now seen a top-to-bottom review of an entire virtual mem-
ory system. Hopefully, most of the details were easy to follow, as you
should have already had a good understanding of most of the basic mech-
anisms and policies. More detail is available in the excellent (and short)
paper by Levy and Lipman [LL82]; we encourage you to read it, a great
way to see what the source material behind these chapters is like.

You should also learn more about the state of the art by reading about
Linux and other modern systems when possible. There is a lot of source
material out there, including some reasonable books [BC05]. One thing
that will amaze you: how classic ideas, found in old papers such as
this one on VAX/VMS, still influence how modern operating systems are
built.

OPERATING

SYSTEMS

[VERSION 0.90] WWW.OSTEP.ORG



THE VAX/VMS VIRTUAL MEMORY SYSTEM 9

References

[BB+72] “TENEX, A Paged Time Sharing System for the PDP-10”
Daniel G. Bobrow, Jerry D. Burchfiel, Daniel L. Murphy, Raymond S. Tomlinson
Communications of the ACM, Volume 15, March 1972
An early time-sharing OS where a number of good ideas came from. Copy-on-write was just one of
those; inspiration for many other aspects of modern systems, including process management, virtual
memory, and file systems are found herein.

[BJ81] “Converting a Swap-Based System to do Paging
in an Architecture Lacking Page-Reference Bits”
Ozalp Babaoglu and William N. Joy
SOSP ’81, Pacific Grove, California, December 1981
A clever idea paper on how to exploit existing protection machinery within a machine in order to emulate
reference bits. The idea came from the group at Berkeley working on their own version of UNIX, known
as the Berkeley Systems Distribution, or BSD. The group was heavily influential in the development of
UNIX, in virtual memory, file systems, and networking.

[BC05] “Understanding the Linux Kernel (Third Edition)”
Daniel P. Bovet and Marco Cesati
O’Reilly Media, November 2005
One of the many books you can find on Linux. They go out of date quickly, but many of the basics
remain and are worth reading about.

[C03] “The Innovator’s Dilemma”
Clayton M. Christenson
Harper Paperbacks, January 2003
A fantastic book about the disk-drive industry and how new innovations disrupt existing ones. A good
read for business majors and computer scientists alike. Provides insight on how large and successful
companies completely fail.

[C93] “Inside Windows NT”
Helen Custer and David Solomon
Microsoft Press, 1993
The book about Windows NT that explains the system top to bottom, in more detail than you might like.
But seriously, a pretty good book.

[LL82] “Virtual Memory Management in the VAX/VMS Operating System”
Henry M. Levy, Peter H. Lipman
IEEE Computer, Volume 15, Number 3 (March 1982) Read the original source of most of this ma-
terial; it is a concise and easy read. Particularly important if you wish to go to graduate school, where
all you do is read papers, work, read some more papers, work more, eventually write a paper, and then
work some more. But it is fun!

[RL81] “Segmented FIFO Page Replacement”
Rollins Turner and Henry Levy
SIGMETRICS ’81, Las Vegas, Nevada, September 1981
A short paper that shows for some workloads, segmented FIFO can approach the performance of LRU.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES


