
49

The Andrew File System (AFS)

The Andrew File System was introduced by researchers at Carnegie-Mellon
University (CMU) in the 1980’s [H+88]. Led by the well-known Profes-
sor M. Satyanarayanan of Carnegie-Mellon University (“Satya” for short),
the main goal of this project was simple: scale. Specifically, how can one
design a distributed file system such that a server can support as many
clients as possible?

Interestingly, there are numerous aspects of design and implementa-
tion that affect scalability. Most important is the design of the protocol be-
tween clients and servers. In NFS, for example, the protocol forces clients
to check with the server periodically to determine if cached contents have
changed; because each check uses server resources (including CPU and
network bandwidth), frequent checks like this will limit the number of
clients a server can respond to and thus limit scalability.

AFS also differs from NFS in that from the beginning, reasonable user-
visible behavior was a first-class concern. In NFS, cache consistency is
hard to describe because it depends directly on low-level implementa-
tion details, including client-side cache timeout intervals. In AFS, cache
consistency is simple and readily understood: when the file is opened, a
client will generally receive the latest consistent copy from the server.

49.1 AFS Version 1

We will discuss two versions of AFS [H+88, S+85]. The first version
(which we will call AFSv1, but actually the original system was called
the ITC distributed file system [S+85]) had some of the basic design in
place, but didn’t scale as desired, which led to a re-design and the final
protocol (which we will call AFSv2, or just AFS) [H+88]. We now discuss
the first version.

One of the basic tenets of all versions of AFS is whole-file caching on
the local disk of the client machine that is accessing a file. When you
open() a file, the entire file (if it exists) is fetched from the server and
stored in a file on your local disk. Subsequent application read() and
write() operations are redirected to the local file system where the file is

1



2 THE ANDREW FILE SYSTEM (AFS)

TestAuth Test whether a file has changed

(used to validate cached entries)

GetFileStat Get the stat info for a file

Fetch Fetch the contents of file

Store Store this file on the server

SetFileStat Set the stat info for a file

ListDir List the contents of a directory

Figure 49.1: AFSv1 Protocol Highlights

stored; thus, these operations require no network communication and are
fast. Finally, upon close(), the file (if it has been modified) is flushed
back to the server. Note the obvious contrasts with NFS, which caches
blocks (not whole files, although NFS could of course cache every block of
an entire file) and does so in client memory (not local disk).

Let’s get into the details a bit more. When a client application first calls
open(), the AFS client-side code (which the AFS designers call Venus)
would send a Fetch protocol message to the server. The Fetch protocol
message would pass the entire pathname of the desired file (for exam-
ple, /home/remzi/notes.txt) to the file server (the group of which
they called Vice), which would then traverse the pathname, find the de-
sired file, and ship the entire file back to the client. The client-side code
would then cache the file on the local disk of the client (by writing it to
local disk). As we said above, subsequent read() and write() system
calls are strictly local in AFS (no communication with the server occurs);
they are just redirected to the local copy of the file. Because the read()
and write() calls act just like calls to a local file system, once a block
is accessed, it also may be cached in client memory. Thus, AFS also uses
client memory to cache copies of blocks that it has in its local disk. Fi-
nally, when finished, the AFS client checks if the file has been modified
(i.e., that it has been opened for writing); if so, it flushes the new version
back to the server with a Store protocol message, sending the entire file
and pathname to the server for permanent storage.

The next time the file is accessed, AFSv1 does so much more effi-
ciently. Specifically, the client-side code first contacts the server (using
the TestAuth protocol message) in order to determine whether the file
has changed. If not, the client would use the locally-cached copy, thus
improving performance by avoiding a network transfer. The figure above
shows some of the protocol messages in AFSv1. Note that this early ver-
sion of the protocol only cached file contents; directories, for example,
were only kept at the server.

49.2 Problems with Version 1

A few key problems with this first version of AFS motivated the de-
signers to rethink their file system. To study the problems in detail, the
designers of AFS spent a great deal of time measuring their existing pro-
totype to find what was wrong. Such experimentation is a good thing;

OPERATING

SYSTEMS

[VERSION 0.90] WWW.OSTEP.ORG



THE ANDREW FILE SYSTEM (AFS) 3

TIP: MEASURE THEN BUILD (PATTERSON’S LAW)
One of our advisors, David Patterson (of RISC and RAID fame), used to
always encourage us to measure a system and demonstrate a problem
before building a new system to fix said problem. By using experimen-
tal evidence, rather than gut instinct, you can turn the process of system
building into a more scientific endeavor. Doing so also has the fringe ben-
efit of making you think about how exactly to measure the system before
your improved version is developed. When you do finally get around to
building the new system, two things are better as a result: first, you have
evidence that shows you are solving a real problem; second, you now
have a way to measure your new system in place, to show that it actually
improves upon the state of the art. And thus we call this Patterson’s Law.

measurement is the key to understanding how systems work and how to
improve them. Hard data helps take intuition and make into a concrete
science of deconstructing systems. In their study, the authors found two
main problems with AFSv1:

• Path-traversal costs are too high: When performing a Fetch or Store
protocol request, the client passes the entire pathname (e.g., /home/
remzi/notes.txt) to the server. The server, in order to access the
file, must perform a full pathname traversal, first looking in the root
directory to find home, then in home to find remzi, and so forth,
all the way down the path until finally the desired file is located.
With many clients accessing the server at once, the designers of AFS
found that the server was spending much of its CPU time simply
walking down directory paths.

• The client issues too many TestAuth protocol messages: Much
like NFS and its overabundance of GETATTR protocol messages,
AFSv1 generated a large amount of traffic to check whether a lo-
cal file (or its stat information) was valid with the TestAuth proto-
col message. Thus, servers spent much of their time telling clients
whether it was OK to used their cached copies of a file. Most of the
time, the answer was that the file had not changed.

There were actually two other problems with AFSv1: load was not
balanced across servers, and the server used a single distinct process per
client thus inducing context switching and other overheads. The load
imbalance problem was solved by introducing volumes, which an ad-
ministrator could move across servers to balance load; the context-switch
problem was solved in AFSv2 by building the server with threads instead
of processes. However, for the sake of space, we focus here on the main
two protocol problems above that limited the scale of the system.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES



4 THE ANDREW FILE SYSTEM (AFS)

49.3 Improving the Protocol

The two problems above limited the scalability of AFS; the server CPU
became the bottleneck of the system, and each server could only ser-
vice 20 clients without becoming overloaded. Servers were receiving too
many TestAuth messages, and when they received Fetch or Store mes-
sages, were spending too much time traversing the directory hierarchy.
Thus, the AFS designers were faced with a problem:

THE CRUX: HOW TO DESIGN A SCALABLE FILE PROTOCOL

How should one redesign the protocol to minimize the number of
server interactions, i.e., how could they reduce the number of TestAuth
messages? Further, how could they design the protocol to make these
server interactions efficient? By attacking both of these issues, a new pro-
tocol would result in a much more scalable version AFS.

49.4 AFS Version 2

AFSv2 introduced the notion of a callback to reduce the number of
client/server interactions. A callback is simply a promise from the server
to the client that the server will inform the client when a file that the
client is caching has been modified. By adding this state to the server, the
client no longer needs to contact the server to find out if a cached file is
still valid. Rather, it assumes that the file is valid until the server tells it
otherwise; insert analogy to polling versus interrupts here.

AFSv2 also introduced the notion of a file identifier (FID) (similar to
the NFS file handle) instead of pathnames to specify which file a client
was interested in. An FID in AFS consists of a volume identifier, a file
identifier, and a “uniquifier” (to enable reuse of the volume and file IDs
when a file is deleted). Thus, instead of sending whole pathnames to
the server and letting the server walk the pathname to find the desired
file, the client would walk the pathname, one piece at a time, caching the
results and thus hopefully reducing the load on the server.

For example, if a client accessed the file /home/remzi/notes.txt,
and homewas the AFS directory mounted onto / (i.e., /was the local root
directory, but home and its children were in AFS), the client would first
Fetch the directory contents of home, put them in the local-disk cache,
and setup a callback on home. Then, the client would Fetch the directory
remzi, put it in the local-disk cache, and setup a callback on the server
on remzi. Finally, the client would Fetch notes.txt, cache this regular
file in the local disk, setup a callback, and finally return a file descriptor
to the calling application. See Figure 49.2 for a summary.

The key difference, however, from NFS, is that with each fetch of a
directory or file, the AFS client would establish a callback with the server,
thus ensuring that the server would notify the client of a change in its

OPERATING

SYSTEMS

[VERSION 0.90] WWW.OSTEP.ORG



THE ANDREW FILE SYSTEM (AFS) 5

Client (C1) Server

fd = open(“/home/remzi/notes.txt”, ...);
Send Fetch (home FID, “remzi”)

Receive Fetch request
look for remzi in home dir
establish callback(C1) on remzi
return remzi’s content and FID

Receive Fetch reply
write remzi to local disk cache
record callback status of remzi

Send Fetch (remzi FID, “notes.txt”)
Receive Fetch request

look for notes.txt in remzi dir
establish callback(C1) on notes.txt
return notes.txt’s content and FID

Receive Fetch reply
write notes.txt to local disk cache
record callback status of notes.txt
local open() of cached notes.txt
return file descriptor to application

read(fd, buffer, MAX);
perform local read() on cached copy

close(fd);
do local close() on cached copy
if file has changed, flush to server

fd = open(“/home/remzi/notes.txt”, ...);
Foreach dir (home, remzi)

if (callback(dir) == VALID)
use local copy for lookup(dir)

else
Fetch (as above)

if (callback(notes.txt) == VALID)
open local cached copy
return file descriptor to it

else
Fetch (as above) then open and return fd

Figure 49.2: Reading A File: Client-side And File Server Actions

cached state. The benefit is obvious: although the first access to /home/

remzi/notes.txt generates many client-server messages (as described
above), it also establishes callbacks for all the directories as well as the
file notes.txt, and thus subsequent accesses are entirely local and require
no server interaction at all. Thus, in the common case where a file is
cached at the client, AFS behaves nearly identically to a local disk-based
file system. If one accesses a file more than once, the second access should
be just as fast as accessing a file locally.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES



6 THE ANDREW FILE SYSTEM (AFS)

ASIDE: CACHE CONSISTENCY IS NOT A PANACEA

When discussing distributed file systems, much is made of the cache con-
sistency the file systems provide. However, this baseline consistency does
not solve all problems with regards to file access from multiple clients.
For example, if you are building a code repository, with multiple clients
performing check-ins and check-outs of code, you can’t simply rely on
the underlying file system to do all of the work for you; rather, you have
to use explicit file-level locking in order to ensure that the “right” thing
happens when such concurrent accesses take place. Indeed, any applica-
tion that truly cares about concurrent updates will add extra machinery
to handle conflicts. The baseline consistency described in this chapter and
the previous one are useful primarily for casual usage, i.e., when a user
logs into a different client, they expect some reasonable version of their
files to show up there. Expecting more from these protocols is setting
yourself up for failure, disappointment, and tear-filled frustration.

49.5 Cache Consistency

When we discussed NFS, there were two aspects of cache consistency
we considered: update visibility and cache staleness. With update visi-
bility, the question is: when will the server be updated with a new version
of a file? With cache staleness, the question is: once the server has a new
version, how long before clients see the new version instead of an older
cached copy?

Because of callbacks and whole-file caching, the cache consistency pro-
vided by AFS is easy to describe and understand. There are two im-
portant cases to consider: consistency between processes on different ma-
chines, and consistency between processes on the same machine.

Between different machines, AFS makes updates visible at the server
and invalidates cached copies at the exact same time, which is when the
updated file is closed. A client opens a file, and then writes to it (perhaps
repeatedly). When it is finally closed, the new file is flushed to the server
(and thus visibile); the server then breaks callbacks for any clients with
cached copies, thus ensuring that clients will no longer read stale copies
of the file; subsequent opens on those clients will require a re-fetch of the
new version of the file from the server.

AFS makes an exception to this simple model between processes on
the same machine. In this case, writes to a file are immediately visible to
other local processes (i.e., a process does not have to wait until a file is
closed to see its latest updates). This makes using a single machine be-
have exactly as you would expect, as this behavior is based upon typical
UNIX semantics. Only when switching to a different machine would you
be able to detect the more general AFS consistency mechanism.

There is one interesting cross-machine case that is worthy of further
discussion. Specifically, in the rare case that processes on different ma-

OPERATING

SYSTEMS

[VERSION 0.90] WWW.OSTEP.ORG



THE ANDREW FILE SYSTEM (AFS) 7

Client1 Client2 Server Comments
P1 P2 Cache P3 Cache Disk
open(F) - - - File created
write(A) A - -
close() A - A

open(F) A - A
read() → A A - A
close() A - A

open(F) A - A
write(B) B - A

open(F) B - A Local processes
read() → B B - A see writes immediately
close() B - A

B open(F) A A Remote processes
B read() → A A A do not see writes...
B close() A A

close() B ✁A B ... until close()
B open(F) B B has taken place
B read() → B B B
B close() B B
B open(F) B B

open(F) B B B
write(D) D B B

D write(C) C B
D close() C C

close() D ✁C D
D open(F) D D Unfortunately for P3

D read() → D D D the last writer wins
D close() D D

Figure 49.3: Cache Consistency Timeline

chines are modifying a file at the same time, AFS naturally employs what
is known as a last writer wins approach (which perhaps should be called
last closer wins). Specifically, whichever client calls close() last will
update the entire file on the server last and thus will be the “winning”
file, i.e., the file that remains on the server for others to see. The result is
a file that was generated in its entirety either by one client or the other.
Note the difference from a block-based protocol like NFS: in NFS, writes
of individual blocks may be flushed out to the server as each client is up-
dating the file, and thus the final file on the server could end up as a mix
of updates from both clients. In many cases, such a mixed file output
would not make much sense, i.e., imagine a JPEG image getting modi-
fied by two clients in pieces; the resulting mix of writes would not likely
constitute a valid JPEG.

A timeline showing a few of these different scenarios can be seen in
Figure 49.3. The columns show the behavior of two processes (P1 and P2)
on Client1 and its cache state, one process (P3) on Client2 and its cache
state, and the server (Server), all operating on a single file called, imag-
inatively, F. For the server, the figure simply shows the contents of the
file after the operation on the left has completed. Read through it and see
if you can understand why each read returns the results that it does. A
commentary field on the right will help you if you get stuck.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES



8 THE ANDREW FILE SYSTEM (AFS)

49.6 Crash Recovery

From the description above, you might sense that crash recovery is
more involved than with NFS. You would be right. For example, imagine
there is a short period of time where a server (S) is not able to contact
a client (C1), for example, while the client C1 is rebooting. While C1
is not available, S may have tried to send it one or more callback recall
messages; for example, imagine C1 had file F cached on its local disk, and
then C2 (another client) updated F, thus causing S to send messages to all
clients caching the file to remove it from their local caches. Because C1
may miss those critical messages when it is rebooting, upon rejoining the
system, C1 should treat all of its cache contents as suspect. Thus, upon
the next access to file F, C1 should first ask the server (with a TestAuth
protocol message) whether its cached copy of file F is still valid; if so, C1
can use it; if not, C1 should fetch the newer version from the server.

Server recovery after a crash is also more complicated. The problem
that arises is that callbacks are kept in memory; thus, when a server re-
boots, it has no idea which client machine has which files. Thus, upon
server restart, each client of the server must realize that the server has
crashed and treat all of their cache contents as suspect, and (as above)
reestablish the validity of a file before using it. Thus, a server crash is a
big event, as one must ensure that each client is aware of the crash in a
timely manner, or risk a client accessing a stale file. There are many ways
to implement such recovery; for example, by having the server send a
message (saying “don’t trust your cache contents!”) to each client when
it is up and running again, or by having clients check that the server is
alive periodically (with a heartbeat message, as it is called). As you can
see, there is a cost to building a more scalable and sensible caching model;
with NFS, clients hardly noticed a server crash.

49.7 Scale And Performance Of AFSv2

With the new protocol in place, AFSv2 was measured and found to be
much more scalable that the original version. Indeed, each server could
support about 50 clients (instead of just 20). A further benefit was that
client-side performance often came quite close to local performance, be-
cause in the common case, all file accesses were local; file reads usually
went to the local disk cache (and potentially, local memory). Only when a
client created a new file or wrote to an existing one was there need to send
a Store message to the server and thus update the file with new contents.

Let us also gain some perspective on AFS performance by compar-
ing common file-system access scenarios with NFS. Figure 49.4 (page 9)
shows the results of our qualitative comparison.

In the figure, we examine typical read and write patterns analytically,
for files of different sizes. Small files have Ns blocks in them; medium
files have Nm blocks; large files have NL blocks. We assume that small

OPERATING

SYSTEMS

[VERSION 0.90] WWW.OSTEP.ORG



THE ANDREW FILE SYSTEM (AFS) 9

Workload NFS AFS AFS/NFS

1. Small file, sequential read Ns · Lnet Ns · Lnet 1

2. Small file, sequential re-read Ns · Lmem Ns · Lmem 1

3. Medium file, sequential read Nm · Lnet Nm · Lnet 1

4. Medium file, sequential re-read Nm · Lmem Nm · Lmem 1

5. Large file, sequential read NL · Lnet NL · Lnet 1

6. Large file, sequential re-read NL · Lnet NL · Ldisk

Ldisk

Lnet

7. Large file, single read Lnet NL · Lnet NL

8. Small file, sequential write Ns · Lnet Ns · Lnet 1

9. Large file, sequential write NL · Lnet NL · Lnet 1

10. Large file, sequential overwrite NL · Lnet 2 ·NL · Lnet 2

11. Large file, single write Lnet 2 ·NL · Lnet 2 ·NL

Figure 49.4: Comparison: AFS vs. NFS

and medium files fit into the memory of a client; large files fit on a local
disk but not in client memory.

We also assume, for the sake of analysis, that an access across the net-
work to the remote server for a file block takes Lnet time units. Access
to local memory takes Lmem, and access to local disk takes Ldisk. The
general assumption is that Lnet > Ldisk > Lmem.

Finally, we assume that the first access to a file does not hit in any
caches. Subsequent file accesses (i.e., “re-reads”) we assume will hit in
caches, if the relevant cache has enough capacity to hold the file.

The columns of the figure show the time a particular operation (e.g., a
small file sequential read) roughly takes on either NFS or AFS. The right-
most column displays the ratio of AFS to NFS.

We make the following observations. First, in many cases, the per-
formance of each system is roughly equivalent. For example, when first
reading a file (e.g., Workloads 1, 3, 5), the time to fetch the file from the re-
mote server dominates, and is similar on both systems. You might think
AFS would be slower in this case, as it has to write the file to local disk;
however, those writes are buffered by the local (client-side) file system
cache and thus said costs are likely hidden. Similarly, you might think
that AFS reads from the local cached copy would be slower, again be-
cause AFS stores the cached copy on disk. However, AFS again benefits
here from local file system caching; reads on AFS would likely hit in the
client-side memory cache, and performance would be similar to NFS.

Second, an interesting difference arises during a large-file sequential
re-read (Workload 6). Because AFS has a large local disk cache, it will
access the file from there when the file is accessed again. NFS, in contrast,
only can cache blocks in client memory; as a result, if a large file (i.e., a file
bigger than local memory) is re-read, the NFS client will have to re-fetch
the entire file from the remote server. Thus, AFS is faster than NFS in this
case by a factor of Lnet

Ldisk

, assuming that remote access is indeed slower

than local disk. We also note that NFS in this case increases server load,
which has an impact on scale as well.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES



10 THE ANDREW FILE SYSTEM (AFS)

Third, we note that sequential writes (of new files) should perform
similarly on both systems (Workloads 8, 9). AFS, in this case, will write
the file to the local cached copy; when the file is closed, the AFS client
will force the writes to the server, as per the protocol. NFS will buffer
writes in client memory, perhaps forcing some blocks to the server due
to client-side memory pressure, but definitely writing them to the server
when the file is closed, to preserve NFS flush-on-close consistency. You
might think AFS would be slower here, because it writes all data to local
disk. However, realize that it is writing to a local file system; those writes
are first committed to the page cache, and only later (in the background)
to disk, and thus AFS reaps the benefits of the client-side OS memory
caching infrastructure to improve performance.

Fourth, we note that AFS performs worse on a sequential file over-
write (Workload 10). Thus far, we have assumed that the workloads that
write are also creating a new file; in this case, the file exists, and is then
over-written. Overwrite can be a particularly bad case for AFS, because
the client first fetches the old file in its entirety, only to subsequently over-
write it. NFS, in contrast, will simply overwrite blocks and thus avoid the

initial (useless) read1.
Finally, workloads that access a small subset of data within large files

perform much better on NFS than AFS (Workloads 7, 11). In these cases,
the AFS protocol fetches the entire file when the file is opened; unfortu-
nately, only a small read or write is performed. Even worse, if the file is
modified, the entire file is written back to the server, doubling the per-
formance impact. NFS, as a block-based protocol, performs I/O that is
proportional to the size of the read or write.

Overall, we see that NFS and AFS make different assumptions and not
surprisingly realize different performance outcomes as a result. Whether
these differences matter is, as always, a question of workload.

49.8 AFS: Other Improvements

Like we saw with the introduction of Berkeley FFS (which added sym-
bolic links and a number of other features), the designers of AFS took the
opportunity when building their system to add a number of features that
made the system easier to use and manage. For example, AFS provides a
true global namespace to clients, thus ensuring that all files were named
the same way on all client machines. NFS, in contrast, allows each client
to mount NFS servers in any way that they please, and thus only by con-
vention (and great administrative effort) would files be named similarly
across clients.

1We assume here that NFS reads are block-sized and block-aligned; if they were not, the
NFS client would also have to read the block first. We also assume the file was not opened
with the O TRUNC flag; if it had been, the initial open in AFS would not fetch the soon to be
truncated file’s contents.

OPERATING

SYSTEMS

[VERSION 0.90] WWW.OSTEP.ORG



THE ANDREW FILE SYSTEM (AFS) 11

ASIDE: THE IMPORTANCE OF WORKLOAD

One challenge of evaluating any system is the choice of workload. Be-
cause computer systems are used in so many different ways, there are a
large variety of workloads to choose from. How should the storage sys-
tem designer decide which workloads are important, in order to make
reasonable design decisions?
The designers of AFS, given their experience in measuring how file sys-
tems were used, made certain workload assumptions; in particular, they
assumed that most files were not frequently shared, and accessed sequen-
tially in their entirety. Given those assumptions, the AFS design makes
perfect sense.
However, these assumptions are not always correct. For example, imag-
ine an application that appends information, periodically, to a log. These
little log writes, which add small amounts of data to an existing large file,
are quite problematic for AFS. Many other difficult workloads exist as
well, e.g., random updates in a transaction database.
One place to get some information about what types of workloads are
common are through various research studies that have been performed.
See any of these studies for good examples of workload analysis [B+91,
H+11, R+00, V99], including the AFS retrospective [H+88].

AFS also takes security seriously, and incorporates mechanisms to au-
thenticate users and ensure that a set of files could be kept private if a
user so desired. NFS, in contrast, had quite primitive support for security
for many years.

AFS also includes facilities for flexible user-managed access control.
Thus, when using AFS, a user has a great deal of control over who exactly
can access which files. NFS, like most UNIX file systems, has much less
support for this type of sharing.

Finally, as mentioned before, AFS adds tools to enable simpler man-
agement of servers for the administrators of the system. In thinking about
system management, AFS was light years ahead of the field.

49.9 Summary

AFS shows us how distributed file systems can be built quite differ-
ently than what we saw with NFS. The protocol design of AFS is partic-
ularly important; by minimizing server interactions (through whole-file
caching and callbacks), each server can support many clients and thus
reduce the number of servers needed to manage a particular site. Many
other features, including the single namespace, security, and access-control
lists, make AFS quite nice to use. The consistency model provided by AFS
is simple to understand and reason about, and does not lead to the occa-
sional weird behavior as one sometimes observes in NFS.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES



12 THE ANDREW FILE SYSTEM (AFS)

Perhaps unfortunately, AFS is likely on the decline. Because NFS be-
came an open standard, many different vendors supported it, and, along
with CIFS (the Windows-based distributed file system protocol), NFS
dominates the marketplace. Although one still sees AFS installations
from time to time (such as in various educational institutions, including
Wisconsin), the only lasting influence will likely be from the ideas of AFS
rather than the actual system itself. Indeed, NFSv4 now adds server state
(e.g., an “open” protocol message), and thus bears an increasing similar-
ity to the basic AFS protocol.

OPERATING

SYSTEMS

[VERSION 0.90] WWW.OSTEP.ORG



THE ANDREW FILE SYSTEM (AFS) 13

References

[B+91] “Measurements of a Distributed File System”
Mary Baker, John Hartman, Martin Kupfer, Ken Shirriff, John Ousterhout
SOSP ’91, Pacific Grove, California, October 1991
An early paper measuring how people use distributed file systems. Matches much of the intuition found
in AFS.

[H+11] “A File is Not a File: Understanding the I/O Behavior of Apple Desktop Applications”
Tyler Harter, Chris Dragga, Michael Vaughn,
Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau
SOSP ’11, New York, New York, October 2011
Our own paper studying the behavior of Apple Desktop workloads; turns out they are a bit different
than many of the server-based workloads the systems research community usually focuses upon. Also a
good recent reference which points to a lot of related work.

[H+88] “Scale and Performance in a Distributed File System”
John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols, M. Satyanarayanan,
Robert N. Sidebotham, Michael J. West
ACM Transactions on Computing Systems (ACM TOCS), page 51-81, Volume 6, Number 1,
February 1988
The long journal version of the famous AFS system, still in use in a number of places throughout the
world, and also probably the earliest clear thinking on how to build distributed file systems. A wonderful
combination of the science of measurement and principled engineering.

[R+00] “A Comparison of File System Workloads”
Drew Roselli, Jacob R. Lorch, Thomas E. Anderson
USENIX ’00, San Diego, California, June 2000
A more recent set of traces as compared to the Baker paper [B+91], with some interesting twists.

[S+85] “The ITC Distributed File System: Principles and Design”
M. Satyanarayanan, J.H. Howard, D.A. Nichols, R.N. Sidebotham, A. Spector, M.J. West
SOSP ’85, Orcas Island, Washington, December 1985
The older paper about a distributed file system. Much of the basic design of AFS is in place in this older
system, but not the improvements for scale.

[V99] “File system usage in Windows NT 4.0”
Werner Vogels
SOSP ’99, Kiawah Island Resort, South Carolina, December 1999
A cool study of Windows workloads, which are inherently different than many of the UNIX-based studies
that had previously been done.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES



14 THE ANDREW FILE SYSTEM (AFS)

Homework

This section introduces afs.py, a simple AFS simulator you can use
to shore up your knowledge of how the Andrew File System works. Read
the README file for more details.

Questions

1. Run a few simple cases to make sure you can predict what values
will be read by clients. Vary the random seed flag (-s) and see
if you can trace through and predict both intermediate values as
well as the final values stored in the files. Also vary the number of
files (-f), the number of clients (-C), and the read ratio (-r, from
between 0 to 1) to make it a bit more challenging. You might also
want to generate slightly longer traces to make for more interesting
interactions, e.g., (-n 2 or higher).

2. Now do the same thing and see if you can predict each callback that
the AFS server initiates. Try different random seeds, and make sure
to use a high level of detailed feedback (e.g., -d 3) to see when call-
backs occur when you have the program compute the answers for
you (with -c). Can you guess exactly when each callback occurs?
What is the precise condition for one to take place?

3. Similar to above, run with some different random seeds and see if
you can predict the exact cache state at each step. Cache state can
be observed by running with -c and -d 7.

4. Now let’s construct some specific workloads. Run the simulation
with -A oa1:w1:c1,oa1:r1:c1 flag. What are different possi-
ble values observed by client 1 when it reads the file a, when run-
ning with the random scheduler? (try different random seeds to
see different outcomes)? Of all the possible schedule interleavings
of the two clients’ operations, how many of them lead to client 1
reading the value 1, and how many reading the value 0?

5. Now let’s construct some specific schedules. When running with
the -A oa1:w1:c1,oa1:r1:c1 flag, also run with the following
schedules: -S 01, -S 100011, -S 011100, and others of which
you can think. What value will client 1 read?

6. Now run with this workload: -A oa1:w1:c1,oa1:w1:c1, and
vary the schedules as above. What happens when you run with -S

011100? What about when you run with -S 010011? What is
important in determining the final value of the file?

OPERATING

SYSTEMS

[VERSION 0.90] WWW.OSTEP.ORG


