

Alternative DNS Servers

Alternative DNS Servers
Choice and deployment, and optional SQL/LDAP back-ends

Jan-Piet Mens

UIT CAMBRIDGE LTD.
CAMBRIDGE, ENGLAND

First published in England in 2009.
UIT Cambridge Ltd.
PO Box 145
Cambridge
CB4 1GQ
England

Tel: +44 1223 302 041
Web: www.uit.co.uk

Copyright © 2009 UIT Cambridge Ltd.
All rights reserved.

ISBN 978-0-9544529-9-5

The right of Jan-Piet Mens to be identified as the author of this work
has been asserted by him in accordance with the Copyright, Designs

and Patents Act 1988.

The programs and instructions in this book have been included for
their instructional value. Neither the publisher nor the author offers
any warranties or representations in respect of their fitness for a
particular purpose, nor do they accept accept any liability for any

loss or damage arising from their use.

The publication is designed to provide accurate and authoritative
information in regard to the subject matter covered. Neither the
publisher nor the author makes any representation, express or
implied, with regard to the accuracy of information contained in
this book, nor do they accept any legal responsibility or liability for
any errors or omissions that may be made. This work is supplied
with the understanding that UIT Cambridge Ltd and its authors are
supplying information, but are not attempting to render engineering
or other professional services. If such services are required, the
assistance of an appropriate professional should be sought.

Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trade-marks. UIT

Cambridge Ltd acknowledges trademarks as the property of their
respective owners.

10 9 8 7 6 5 4 3 2 1

To Alexandra

For your interest, support, and enthusiasm (as well as relentless
page-count-checking) during this project, and for being my greatest

fan.

Related Titles

Practical TCP/IP – Designing, using, and troubleshooting TCP/IP
networks on Linux andWindows, (Second edition)NiallMansfield

The Exim SMTPMail Server – Official Guide for Release 4, (Second
edition) Philip Hazel

The Joy of X – The architecture of the X window system, Niall
Mansfield

Contents at a glance
Part I Preparation 1
1 Introduction to the DNS 3

2 How to represent zone data and where to store it 29

3 Preparing for your implementation 59

Part II The DNS servers 73
4 MaraDNS 75

5 MyDNS 95

6 PowerDNS Authoritative Server 113

7 An overview of BIND 167

8 BIND’s Simplified Database Interface 187

9 Bind DLZ 213

10 Name Server Daemon (NSD) 261

11 tinydns 283

12 ldapdns 315

13 dnsmasq 331

14 DNS on Microsoft Windows 349

15 DNS and Perl 357

16 DNS blacklists 371

17 Caching name servers 387

18 Delegation and private DNS roots 435

Part III Operational Issues 453
19 Updating DNS zones and their associated records 455

20 The Name Service Switch 487

21 Internationalized Domain Names 497

22 Introducing DNSSEC 505

23 Performance 545

24 Securing and monitoring your DNS servers 563

Appendixes 579
A Getting started with (Open)LDAP 579

B Use $INCLUDEand fix your SOA 604

C BIND SDB 607

D Bind DLZ 615

E Perl DNS name servers 621

F User Defined Functions in MySQL 629

G Bits and pieces 637

H Scripting PowerDNS Recursorwith the Lua programming language 645

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Contents

Preface xxxi

Acknowledgments xxxv

Part I Preparation 1

1 Introduction to the DNS 3
1.1 The Domain Name System – overview and terminology 4

1.1.1 The DNS tree . 4
How domains are named in the DNS 4
Subdomains . 6

1.1.2 Name resolution . 6
1.1.3 DNS packets . 6
1.1.4 An example – translating domain name www.qupps.biz to an address . 7
1.1.5 Step 1 – the resolver . 9
1.1.6 Step 1, contd. – caching DNS servers . 10
1.1.7 Step 2 – root DNS servers . 10
1.1.8 Step 3 – authoritative DNS servers . 11

Distribution of responsibility . 12
1.1.9 Steps 1&5 v. 2-4 – authoritative and caching servers contrasted 12

Recursive v. iterative queries . 14
1.2 Deployment issues with DNS servers . 14

1.2.1 Where domain information is stored – “zones” 15
1.2.2 Creating redundancy – master/slave, primary/secondary servers . . . 16

A. Master and slave name servers . 16
B. File or database replication . 18

1.2.3 Special authoritative server configurations – split horizon and hidden
servers . 18
Split horizon servers . 18
Hidden name servers . 19

1.2.4 Special caching server configurations – forwarding, forwarder, proxy . 20
1.2.5 Special authoritative and caching server configurations 21

1.3 Features you might want to have in a name server 21

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

x CONTENTS

1.4 Scenarios of name server deployment . 23
1.4.1 ISP . 23
1.4.2 SOHO network . 24
1.4.3 Corporate environment . 25

Small to medium organizations . 25
Large organizations . 25

2 How to represent zone data and where to store it 29
2.1 dig – a DNS lookup utility . 30

2.1.1 dig overview . 30
2.1.2 Looking up an IP address (A record) . 31
2.1.3 Find version of remote name server, using dig 32
2.1.4 Transfer a zone with dig . 32
2.1.5 Trace recursion using dig . 33

2.2 Contents of a DNS query . 33
2.3 Resource records define information about a domain name 34

2.3.1 The format of a Resource Record . 35
2.3.2 Resource record sets . 36
2.3.3 Resource records in detail . 37

Address (A) resource records . 37
Mail Exchanger (MX) resource records 37
Pointer (PTR) resource records . 38
Forward and reverse queries . 38
Canonical name (CNAME) resource records 39
The Start of Authority (SOA) resource records 41
Name Server (NS) resource records . 43
Text (TXT) resource records . 44
Service (SRV) resource records . 44

2.4 Creating zones from resource records . 45
2.4.1 Define a minimal zone . 46
2.4.2 A more realistic “minimal” zone . 46
2.4.3 Add desktop hosts, and Web and e-mail servers 46
2.4.4 Add a reverse zone . 47
2.4.5 Inconsistencies . 48

Notes on master file syntax . 48
2.5 How and where zone data is stored . 49

2.5.1 Advantages and disadvantages of text files for zone data 49
2.5.2 Zone data in databases and directories 50
2.5.3 SQL databases . 51

Databases supported by DNS servers 51
Replication of zone data stored in an SQL back-end 52
Manipulating records in an SQL database 52

2.5.4 LDAP Directories . 53
DNS servers that support LDAP . 53
Choice of LDAP directory servers . 53

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

CONTENTS xi

Replicating LDAP data . 54
Manipulating entries in an LDAP directory 54

2.5.5 How you maintain zone data stored in a back-end 55
2.5.6 Provisioning text files from a database back-end 57

3 Preparing for your implementation 59
3.1 Planning your implementation . 60

3.1.1 Planning your name server placement 63
3.1.2 Capacity planning . 63
3.1.3 Business continuity . 64

3.2 The programs and why we chose them . 66
3.3 Operating system and software requirements 67

3.3.1 Using pre-built packages . 68
Building software from source . 68

3.4 Back-ends supported by the various servers . 69
3.5 Setting up a test environment . 69

Part II The DNS servers 73

4 MaraDNS 75
4.1 Getting results quickly . 77

4.1.1 Set up MaraDNS as a caching name server 77
4.1.2 Set up MaraDNS as a caching and authoritative server 77
4.1.3 Set up MaraDNS as an authoritative name server 77
4.1.4 Automatic zones . 78

4.2 Format of MaraDNS zone files . 79
Typical resource records . 80
An example zone in csv2 format . 81
Reverse zones . 81

4.3 Launch the maradns daemon . 82
4.4 Configuring MaraDNS behavior with the mararc file 82

4.4.1 Normal variables . 83
4.4.2 Dictionary variables . 85

4.5 Zone transfers . 87
4.5.1 Using MaraDNS as a master DNS server 87
4.5.2 Using MaraDNS as a slave DNS server 89

4.6 Recursion, roots and forwarders . 90
4.6.1 Setting up private root servers . 90
4.6.2 Forwarding queries . 90

4.7 Logging and utilities . 91
4.7.1 Logging and monitoring . 91
4.7.2 Converting BINDmaster zone files to csv2 format 91
4.7.3 The duende utility . 92
4.7.4 Querying DNS servers with askmara . 92

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

xii CONTENTS

5 MyDNS 95
5.1 Getting MyDNS up and running . 96

5.1.1 Creating the MySQL database tables for MyDNS 97
5.1.2 The MyDNS database tables . 97

The soa table . 97
The rr table . 98

5.1.3 Example – Create a zone and its resource records 99
5.2 Changing the way MyDNSworks . 100

5.2.1 Configuration in mydns.conf . 100
Basic database information . 101
Server options . 101
Options to control internal caching . 102
Options that affect the name server . 103

5.3 Replicating zones . 104
5.3.1 Zone transfers . 105

5.4 Dynamic DNS updates in MyDNS . 106
5.4.1 Enable dynamic DNS updates . 106
5.4.2 IP access rules for dynamic DNS updates 106

5.5 Utilities included with MyDNS . 107
5.5.1 Importing zones into MyDNSwith mydnsimport 107
5.5.2 Exporting zones from MyDNSwith mydnsexport 107
5.5.3 The MyDNSWeb interface: admin.php . 108

5.6 Monitoring MyDNS . 109
5.6.1 Logging queries . 109

6 PowerDNS Authoritative Server 113
6.1 How PowerDNS stores zone data . 114

6.1.1 Generic SQL or OpenDBX for SQL back-ends? 116
6.2 Server roles – master/slave, superslave, native 116

6.2.1 Master . 116
6.2.2 Slave . 117
6.2.3 Superslave . 118
6.2.4 Native . 118
6.2.5 Mixing roles . 119

6.3 Getting started quickly . 119
6.3.1 A. Configure the BIND zone file back-end 119

Using the BIND back-end as a slave server 122
6.3.2 B. Configure the generic MySQL back-end 122
6.3.3 Database schema used by the gmysql and opendbx back-ends 124

The domains table . 125
The records table . 126

6.3.4 Managing zones in the database . 126
Create a new master or native zone in the database 127
Adding resource records to the database 127
Automating record inserts . 128

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

CONTENTS xiii

Adding a slave zone . 128
How you configure a Superslave . 129

6.4 The OpenDBX database back-end . 130
6.4.1 Getting started with the OpenDBX back-end 132
6.4.2 Configuration options for the OpenDBX back-end 132
6.4.3 A – General options . 132

6.5 The LDAP directory server back-end . 134
6.5.1 Designing the LDAP directory tree . 134
6.5.2 LDAP schema used by the LDAP back-end 135
6.5.3 Defining an LDAP back-end in pdns.conf 136
6.5.4 The zone2ldap utility . 137
6.5.5 Limitations of the LDAP back-end . 139

6.6 The Pipe back-end . 139
6.6.1 How PowerDNS and the coprocess communicate 140
6.6.2 Directives for the Pipe back-end . 141
6.6.3 An example load balancer coprocess for the Pipe back-end 142

6.7 Global PowerDNS configuration directives . 143
6.8 Monitoring PowerDNS . 149

6.8.1 pdns control . 149
6.8.2 Built-in Web server . 151
6.8.3 pdns init.d script . 152

6.9 Deployment and provisioning scenarios . 153
6.9.1 Don’t create a single point of failure . 153
6.9.2 Domain hoster . 154
6.9.3 Set up NSD or BINDwith a hidden/stealth MySQL PowerDNS 154
6.9.4 Set up BINDwith hidden/stealth PowerDNS and LDAP back-end . . . 156
6.9.5 Create your own provisioning tools . 157

Update your database with PowerDNS::Backend::MySQL 157
6.9.6 Enforce correct CNAME usage in your database 158

Creating the trigger . 158
Viewing the effects of the trigger . 159

7 An overview of BIND 167
7.1 Why use the BIND name server? . 169
7.2 Scenarios for deployment of BIND . 169

7.2.1 Authoritative name server . 169
7.2.2 Caching name server . 169
7.2.3 Front-end to stealth server . 170

7.3 Configuring zones in BIND . 170
7.3.1 A sample configuration of an authoritative BIND name server 170
7.3.2 Defining zones . 173

A,B. Master and slave zones . 174
C. Forwarding zones . 174
D. Stub zones . 175
E. Root hints . 175

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

xiv CONTENTS

7.4 Using TSIG to secure zone transfers and updates 176
1 – Generating TSIG keys . 177
2a – Configure zones with TSIG keys . 178
2b – Protect updatable zones . 178

7.5 Configuring BIND to accept dynamic DNS updates 178
7.5.1 How your zone is updated . 179

7.6 Split-horizon DNS using BIND views . 179
7.7 Aspects of implementing a BIND name server 180

7.7.1 How you create your zone files . 180
7.7.2 Monitoring your BIND name server . 181

Statistics . 181
Query logging . 181
The BIND 9.5 stats Web server . 182

7.8 Points to note when using BIND . 184

8 BIND’s Simplified Database Interface 187
8.1 Overview of BIND SDB . 188

8.1.1 Existing BIND SDB drivers . 189
8.2 Overview of BIND SDB LDAP driver . 190

8.2.1 Limitations of the BIND-sdb-LDAP driver 190
8.3 Installing BIND SDB and configuring your LDAP server 190

8.3.1 A – Compile BIND SDBwith the LDAP driver 191
8.3.2 B – Configure your LDAP directory server 192
8.3.3 C – Indexes required by BIND-sdb-LDAP 192
8.3.4 D – Define the zone in named.conf . 193
8.3.5 E – Creating DNS zones in your LDAP directory server 193

How you organize LDAP entries . 195
8.3.6 F – Adding a zone . 196
8.3.7 G – Adding a host . 197
8.3.8 Watching LDAP queries . 197
8.3.9 Miscellaneous features . 198

LDAP over IPC . 198
Views . 198
Zone transfers . 199
Controlling zone transfers . 199
Create zone clauses for named.conf from LDAP 200
Convert master zone files to LDIF . 201
Performance . 202

8.4 Anatomy of a BIND SDB driver . 202
8.4.1 Writing a Driver . 203

8.5 Load balancing with DNS, implemented using SDB 204
8.5.1 Implementing a simple load-balancer driver 204

Initializing the driver . 205
Performing lookups . 205
Returning all records in a zone transfer 207

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

CONTENTS xv

8.5.2 Adding an SDB zone to named.conf . 207
8.5.3 Building the driver and linking named 207
8.5.4 What happens when named starts? . 210
8.5.5 Querying the new BIND SDB driver . 211
8.5.6 Retrieving a zone transfer from the BIND SDB driver 211

9 Bind DLZ 213
9.1 Architecture of Bind DLZ . 215

9.1.1 How a Bind DLZ driver works . 216
Configuring a Bind DLZ driver – overview 216

9.2 Why should you use Bind DLZ? . 217
9.2.1 Limitations of Bind DLZ . 218

9.3 Order of processing with multiple Bind DLZ back-ends 218
9.4 Choosing a DLZ driver . 219
9.5 Getting started with Bind DLZ . 220
9.6 How Bind DLZ retrieves information from your SQL or LDAP server 220

9.6.1 The five template queries that you have to configure 220
9.6.2 Format of data returned by queries to the DLZ drivers 222
9.6.3 Using tokens in your queries . 224

9.7 The Bind DLZMySQL driver . 224
9.7.1 Configuration . 224
9.7.2 Minimal MySQL schema . 226

Configure the minimal schema in named.conf 227
Observing queries . 228
Adding an in-addr.arpa zone to Bind DLZ 229
Limitations of the minimal schema . 230

9.7.3 MySQL schema proposed by Bind DLZ 231
Adding a zone and resource records with the Bind DLZMySQL schema 231

9.7.4 Alternative database queries with the MySQL driver 233
9.8 The Bind DLZ LDAP driver . 234

9.8.1 Configuring the LDAP driver . 234
Describing the LDAP directory connection 236
Minimal schema . 237
Observing queries . 238
Enabling zone transfers in the minimal schema 238

9.8.2 LDAP schema suggested by the Bind DLZ project 239
9.9 The Berkeley DB High Performance Text (BDBHPT) driver 241

9.9.1 Configuring a BDBHPT zone . 242
9.9.2 BDBHPT operating modes . 243
9.9.3 Layout of the BDBHPT databases . 244
9.9.4 Creating your BDBHPT database . 246
9.9.5 Manipulating data in the BDBHPT databases: dlzdb-util 247
9.9.6 Pushing DNS records into a BDBHPT database 248
9.9.7 Replication with Berkeley DB . 248
9.9.8 Zoned: the BDBHPT replicator . 249

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

xvi CONTENTS

9.10 Implementing Bind DLZ . 250
9.10.1 Split-horizon DNS with views in Bind DLZ 250

An example: two views with different Bind DLZ drivers 250
Using similar Bind DLZ drivers in views 252

9.10.2 Don’t create a single point of failure . 253
9.10.3 High-availability through heterogeneous replication 253
9.10.4 Automatically creating PTR records . 253

9.11 How you can process Dynamic DNS Updates 256

10 Name Server Daemon (NSD) 261
10.1 Overview of NSD . 262

10.1.1 NSD’s architecture . 262
10.1.2 Setting up NSD . 263
10.1.3 A minimal configuration file . 264
10.1.4 Compile your zones . 264
10.1.5 Launch NSD . 264

10.2 Configuring NSDwith its nsd.conf file . 265
a. Server options . 265
b. Zone options . 266
c. Key declarations . 268

10.3 Controlling NSD’s behavior with its utilities . 268
The NSD control script, nsdc . 268
Check and parse the nsd.conf file with nsd-checkconf 270
Manually perform a zone transfer with nsd-xfer 270

10.4 Monitoring NSD . 270
10.5 The different NSD server roles . 271

10.5.1 Running NSD as a master server . 272
Adding a new master zone . 272
Changes in your master zone . 273

10.5.2 Running NSD as a slave server . 273
Adding a new slave zone . 273

10.5.3 Running NSD as a private root server 275
10.6 Securing NSD . 275

10.6.1 Transaction signatures (TSIG) . 276
A – Generate TSIG keys for inclusion in nsd.conf 276
B – Set up ACLs for your zones . 277
C – Test a zone transfer . 277

10.6.2 Using NSD as a master and BIND as slave 278
10.6.3 Using BIND as a master and NSD as slave 279

11 tinydns 283
11.1 An overview of djbdns and its component parts 284
11.2 The tinydns authoritative server . 285

11.2.1 Setting up tinydns . 285
Configuration files and environment variables – overview 285

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

CONTENTS xvii

Creating your configuration files, directories, and startup scripts . . . 286
11.2.2 Where tinydns stores its zone data . 286
11.2.3 Format of information in the data file 287

Line type%(percent) – create a “location” 289
Line type . (period) – create a “complete name server” 289
Line type Z – create “start of authority” 290
Line type & (ampersand) – create a “name server” 291
Line type = (equals) – create a “host” 291
Line type + (plus) – create an “alias” . 292
Line type@(at) – create a “mail exchanger” 292
Line type - (dash) – disable a line . 293
Line type ’ (single-quote) – create a “text” 293
Line type ˆ (circumflex) – create a “pointer” 293
Line type C– create a “canonical name” 294
Line type : (colon) – create “generic record” 294
Notes on data syntax . 294
Using tinydns-edit to add records to the data file 295
Randomizing RR . 295
Wild-cards . 296

11.2.4 Starting tinydns . 296
11.2.5 Controlling tinydnswith environment variables 296
11.2.6 IPv6 . 297
11.2.7 Provisioning DNS information for tinydns’ data file 297
11.2.8 Replication to other tinydns servers . 299
11.2.9 Using AXFR zone transfers . 301
11.2.10 Private root name server . 303
11.2.11 Useful utilities that assist in handling tinydns data files 304

A pre-processor for the data file . 304
Creating the data file from BIND zone files 304
Perl program to create SRV lines in the data file 304

11.3 Logging and statistics . 305
11.3.1 tinystats . 305

11.4 Utilities . 306
11.4.1 Query domain names with dnsip . 307
11.4.2 Qualify and query names with dnsipq 307
11.4.3 Lookup reverse names with dnsname 307
11.4.4 Query TXT records with dnstxt . 308
11.4.5 Query MX records with dnsmx . 308
11.4.6 Resolve addresses from a file with dnsfilter 308
11.4.7 Query a name and type with dnsqr . 309
11.4.8 Tracing queries with dnstrace . 309

11.5 Caching DNS . 309

12 ldapdns 315
12.1 Choosing your LDAP schema . 316

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

xviii CONTENTS

12.2 Setting up ldapdnswith ldapdns-conf . 317
12.3 Environment variables for controlling ldapdns 319
12.4 Configuring zones and resource records . 321

12.4.1 DNS resources supported by ldapdns . 322
12.4.2 Adding a zone to ldapdns . 323

Adding a minimal zone . 323
Adding a zone with more records . 324

12.4.3 Adding an in-addr.arpa zone to ldapdns 325
Create the zone . 325
Create the PTR resource record . 326

12.5 Managing zone data . 326
12.6 Providing DNS over TCP with ldapdns . 326
12.7 Integrate ldapdnswith BIND . 327

13 dnsmasq 331
13.1 Preliminary explorations . 333
13.2 Live running . 335
13.3 Advanced dnsmasq configuration . 335

13.3.1 Interfaces and addresses . 335
13.3.2 Hosts and domains . 336
13.3.3 DNS resolution . 337
13.3.4 DHCP . 340
13.3.5 Debugging . 342

13.4 A complete example . 344
13.4.1 Booting a PC and watching it happen 346

14 DNS on Microsoft Windows 349
14.1 An overview of Microsoft Windows DNS Server 350

14.1.1 Zone types . 351
14.1.2 Forwarders . 351
14.1.3 DNS on the command-line . 352

14.2 Using Open Source DNS servers on Windows 352
14.2.1 DNS servers with native Win32 support 352

Running BIND on Win32 . 352
Running Bind DLZ on Windows . 353
Running MaraDNS on Win32 . 353
Running PowerDNS on Win32 . 354

14.2.2 Cygwin . 355

15 DNS and Perl 357
15.1 Querying the DNS from Perl . 358
15.2 Create your own dynamic name server in Perl 359

15.2.1 Why would I want to create my own name server? 360
15.2.2 Perl tools for creating name servers . 361

15.3 Example – A custom dynamic server using Stanford::DNSserver 362

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

CONTENTS xix

Installing Stanford::DNSserver . 362
Using DNS to find a user’s telephone number 363
The code . 365
Integrate your Perl name server into your organization’s DNS 368

16 DNS blacklists 371
16.1 Why would I want to implement a DNS blacklist? 373
16.2 How to use an existing blacklist in your e-mail server 373
16.3 Implementing a simple DNS blacklist . 375

16.3.1 A – Choose a domain to publish blacklist entries 375
16.3.2 B – Add Address (and optionally Text) records to this zone 376
16.3.3 C – Configure your MTA to query your new DNS blacklist 377

16.4 Serving DNSBL with rbldnsd . 378
16.4.1 Running rbldnsd . 378
16.4.2 Zone file formats in rbldnsd . 379
16.4.3 Running rbldnsd and a caching name server on the same system 380

16.5 Integrate DNS blacklists into your e-mail infrastructure 381
16.5.1 Exim . 381

Telling Exim to use the blacklist . 381
A sample SMTP dialog . 382
Black-lists and white-lists . 382

16.5.2 Sendmail . 382
16.5.3 Postfix . 383
16.5.4 IBM Lotus Domino . 383

17 Caching name servers 387
17.1 Deploying your caching name servers . 388

17.1.1 Where you place your caching name server 388
17.1.2 Checklist for deployment . 389
17.1.3 Don’t forget the stub resolver . 389
17.1.4 Special-case resolution requirements . 390
17.1.5 The recursive caching name servers . 391

17.2 The BIND caching server . 391
17.2.1 Setting up a BIND caching name server 392

A – Create named.conf . 392
B – Create an rndc key . 392
C – Hints file for the root servers . 393
D – Master zones for localhost . 393

17.2.2 Adding features . 394
Reloading named . 395

17.3 The PowerDNS Recursor caching server . 395
17.3.1 Configuration . 396
17.3.2 Controlling PowerDNS Recursor . 400
17.3.3 PowerDNS Recursor statistics . 401
17.3.4 Graphing PowerDNS Recursor . 402

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

xx CONTENTS

17.4 The dnscache caching server . 402
17.4.1 Installing and setting up dnscache . 403
17.4.2 Scenarios for dnscache deployment . 404

Centralized cache on your local network 404
Caching DNS server on a Workstation 404
Workstation as forwarder . 406
Central cache with forwarding . 406
Inbound cache . 407

17.4.3 Detailed dnscache configuration options 408
The run script . 410

17.4.4 Testing dnscache . 410
17.4.5 Implicit answers returned by dnscache 411
17.4.6 Adding a forwarder for one or more domains 411
17.4.7 Configuring client machines to use dnscache 411
17.4.8 Logging dnscache statistics . 411

Analyzing dnscache logs with dlog . 412
17.5 The dnsproxy proxying server . 413

17.5.1 Installing dnsproxy . 414
17.5.2 Configuring dnsproxywith /etc/dnsproxy.conf 414
17.5.3 Sending DNS queries to dnsproxy from “external” hosts 416
17.5.4 Sending DNS queries to dnsproxy from “internal” hosts 416

17.6 The Unbound caching server . 417
17.6.1 Installing Unbound . 418
17.6.2 Setting up Unbound as a caching server 418

Launching Unbound . 419
Signaling and stopping Unbound . 419

17.6.3 Configuring Unboundwith unbound.conf 420
17.6.4 Intercepting domains: serving data locally 425

A – Serving data authoritatively from a local file 425
B – Stub zones . 427
C – Forwarding . 427
Scenarios for using local zones and forwarding 428

17.6.5 Utilities . 431
17.6.6 libunbound . 431

18 Delegation and private DNS roots 435
18.1 The root of the Domain Name System . 436

18.1.1 The root zone file . 436
18.1.2 Querying the root servers . 437

18.2 Delegating a sub-domain to a name server . 438
18.2.1 Name Server (NS) records are used for delegation 439
18.2.2 Delegation in the in-addr.arpa domain 440
18.2.3 A – Normal in-addr.arpa delegation . 440
18.2.4 B – Classless in-addr.arpa delegation . 440
18.2.5 Examples of delegation by different brands of name server 442

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

CONTENTS xxi

Delegation in NSD or BIND . 442
Delegation in MaraDNS . 442
Delegation in PowerDNS . 443
Delegation in MyDNS . 444
Delegation in tinydns . 444
Delegation in ldapdns . 444

18.3 Creating your own private root name servers 445
18.3.1 A – Install your root name servers . 446
18.3.2 B – Configuring name servers to serve the root zone 446

B1 – Using NSD as a root server . 446
B2 – Using MyDNS as a root server . 447
B3 – Using BIND-sdb-LDAP as a root server 448
Create the master “. ” zone in named.conf 448
LDIF for the root zone . 448
How clients query the root zone . 450

18.3.3 C – Configure your caching servers . 450
Configuring Unbound and BIND to access your root servers 450
Configuring dnscache to access your root servers 451

Part III Operational Issues 453

19 Updating DNS zones and their associated records 455
19.1 Using a registry to manage your DNS operations 456

19.1.1 Do you need a registry? . 456
19.1.2 How to set up a registry . 457

19.2 How you update your DNS data . 458
19.3 Managing DNS data in text files . 458

19.3.1 A – Editing by hand with a text editor 458
19.3.2 B – Generating file content from an external data source 459

19.4 Updating name server back-end data stores . 460
19.5 Web-based management . 462

Web-based tools for PowerDNS . 462
Web-based tools for BIND . 462
Web-based tools for Bind DLZ . 463
Web-based tools for tinydns . 463

19.6 Dynamic DNS Updates (RFC 2136) . 464
19.6.1 Dynamic updates from the command-line with nsupdate 465

Commands understood by nsupdate . 465
19.6.2 Using nsupdate to add a host to MyDNS 466

Using nsupdatewith TSIG . 467
19.6.3 Net::DNS . 468

19.7 Dynamic DNS updates performed by DHCP client or server 469
19.7.1 ISC DHCP . 470
19.7.2 ISC’s dhclient . 471

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

xxii CONTENTS

19.7.3 How an IP address is registered in the DNS 471
Configure your DNS server . 472
A – The DHCP server updates the DNS 473
B – dhclient updates the DNS . 474
C – Use dhclient-script to update the DNS 475
D – Processing the dhcpd.leases file 475
E – Updating your DNS the “poor man’s” way 476

19.8 Poor man’s dynamic updates . 476
19.8.1 pmc: the poor man’s dynamic DNS client 478

Invoking pmc on *nix . 480
Invoking pmc on Microsoft Windows 480

19.8.2 pms: a server for pmc . 480

20 The Name Service Switch 487
20.1 How the resolver operates . 488

20.1.1 Unix stub resolver . 488
Configuring the resolver . 488

20.1.2 The lightweight resolver . 489
20.1.3 Microsoft Windows DNS Client . 489

20.2 NSS – the Name Service Switch . 490
20.2.1 How NSS determines where to look for information 491

20.3 Using LDAP (RFC 2307) with the Name Service Switch 492
20.3.1 A – Configure NSS LDAPwith /etc/ldap.conf 492
20.3.2 B – Prepare your LDAP directory server 492
20.3.3 C – Migrating /etc/hosts to NSS LDAP 493
20.3.4 D – Configure nsswitch.conf . 494
20.3.5 E – Testing your NSS LDAP . 494
20.3.6 Points to note when you implement RFC 2307 LDAP in NSS 495

21 Internationalized Domain Names 497
21.1 Converting internationalized domain names to ASCII 498

Homograph attacks on internationalized domain names 499
21.2 Adding internationalized domains to your DNS server 499
21.3 Using IDNA in applications . 501

21.3.1 Using IDNA in Web browsers . 501
21.3.2 Using IDNA in e-mail clients . 502
21.3.3 Programming IDNA applications . 503

22 Introducing DNSSEC 505
22.1 The problem . 506
22.2 A very brief introduction to cryptography . 507

22.2.1 Symmetric encryption . 507
22.2.2 Asymmetric encryption . 508
22.2.3 Using public key encryption . 509

Signatures, hashes and digests – verifying the sender of a message . . 509

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

CONTENTS xxiii

Typical applications of public key cryptography 511
Ensuring public keys are genuine: certificates and authorities 511

22.3 An overview of DNSSEC . 512
22.3.1 The scope of DNS data integrity in DNSSEC 513
22.3.2 How a zone file is signed for DNSSEC 514

22.4 Implementing DNSSEC on an authoritative server 517
22.4.1 A – Generating your keys . 518

Why two separate keys? . 518
22.4.2 B – Sign the zone with your keys . 520
22.4.3 C – Configure your authoritative servers 521
22.4.4 D – Provide your public keys to caching server administrators 523

22.5 Implementing DNSSEC on a caching name server 524
22.5.1 How a caching server validates a DNSSEC-signed answer 525
22.5.2 Trust anchors, and islands of trust . 526
22.5.3 Configuring trust anchors in your caching server – Unbound 527
22.5.4 Configuring trust anchors in your caching server – BIND 528
22.5.5 Example of a DNSSEC validation . 529

22.6 The chain of trust for delegated zones; DS records 530
22.6.1 To configure the chain of trust from parent to child zone 531

22.7 Using DNSSEC automatically – DLV, look-aside validation 533
22.7.1 Authoritative server: create records to include in a DLV registry 534
22.7.2 Caching server: configure to use a DLV registry 534

Testing DLV: off to Brazil . 535
Points to note about DLV . 536

22.8 Housekeeping and DNSSEC key management 536
22.8.1 Organizing your keys to avoid confusion 537
22.8.2 Administering your keys . 537

22.9 Points to note when you deploy DNSSEC . 538

23 Performance 545
23.1 How we carried out the performance tests . 546

23.1.1 Test environment . 546
23.1.2 Creating thousands of zone names . 547

Loading the zones . 547
23.1.3 How we ran the tests . 548
23.1.4 Queries per second . 549
23.1.5 Testing the performance of zone transfers 551
23.1.6 Process sizes . 551

23.2 Performance results for the authoritative name servers 552
23.2.1 Performance results for MaraDNS . 552
23.2.2 Performance results for tinydns . 552
23.2.3 Performance results for MyDNS . 553
23.2.4 Performance results for BIND . 553
23.2.5 Performance results for PowerDNS . 554

A – PowerDNS with the LDAP back-end 554

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

xxiv CONTENTS

B – PowerDNS with the OpenDBX back-end 555
C – PowerDNS with the BIND back-end 555

23.2.6 Performance results for Bind DLZ . 555
A – LDAP driver . 555
B – MySQL driver . 556
C – Berkeley DB High Performance Text driver 556

23.2.7 Performance results for BIND-sdb-LDAP 557
23.2.8 Performance results for NSD . 557
23.2.9 Servers not included in the performance tests 558

23.3 How the back-ends influence performance . 558
23.3.1 Databases and LDAP directories . 558

LDAP . 558
MySQL . 558

23.3.2 Caching . 559
23.4 Performance results for caching name servers 559
23.5 How important is performance? . 560

24 Securing and monitoring your DNS servers 563
24.1 Securing your DNS name servers . 564
24.2 Monitoring . 566

24.2.1 What does the monitoring system do? 566
24.2.2 What should you monitor? . 567

24.3 Gathering statistics about your DNS operation 571
24.3.1 DNS Statistics Collector: dsc . 572
24.3.2 Other interesting programs . 573

collectd . 573
dnstop . 574

Appendixes 579

A Getting started with (Open)LDAP 579
A.1 A brief introduction to directories . 579

A.1.1 LDAP – the Lightweight Directory Access Protocol 579
A.1.2 The Directory Information Tree . 579
A.1.3 Entries in an LDAP directory . 581
A.1.4 Object classes and attribute types . 582
A.1.5 LDAP schema . 583

A.2 The OpenLDAP directory server . 583
A.2.1 Symas OpenLDAP Silver . 584

A – Download Symas OpenLDAP . 584
B – Install Symas OpenLDAP . 585
C – Configure the server with our silverinst.sh script 585

A.3 Manipulating your LDAP directory . 587
Your LDAP directory . 587

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

CONTENTS xxv

A.3.1 LDIF – LDAP Data Interchange Format 588
A.3.2 Loading data into your OpenLDAP directory 588
A.3.3 Access control . 589
A.3.4 Adding entries . 590
A.3.5 Introducing LDAP search filters . 590
A.3.6 Search scopes . 591
A.3.7 Searching entries . 592
A.3.8 Modifying entries . 593
A.3.9 Deleting entries . 593
A.3.10 Interpreting slapd’s log-file . 594
A.3.11 LDAP URLs . 594
A.3.12 Features you will probably want to add to your OpenLDAP server . . 595

Indexes . 595
Access control . 595
Transport Layer Security . 595
Simple Authentication and Security Layer 596
Overlays and back-ends . 596
SLAPI plug-ins . 596
Replication . 596

A.4 Extending your LDAP directory . 597
A.4.1 Objects and identifiers . 598
A.4.2 Extending your schema . 599
A.4.3 A sample schema file for storing songs 600
A.4.4 A song in LDIF format . 601
A.4.5 Loading and finding songs . 602
A.4.6 Finding entries with Perl’s Net::LDAP . 602

B Use $INCLUDE and fix your SOA 604
The fixserial.pl program . 606

C BIND SDB 607
C.1 Generate zone clauses for BIND-sdb-LDAP . 607
C.2 Simple BIND SDB load-balancer driver . 608

C.2.1 load.h . 608
C.2.2 load.c . 609
C.2.3 named.conf . 613

D Bind DLZ 615
D.1 Load BDBHPT from an SQL database . 615
D.2 Helper functions for automatically creating PTR records 619

E Perl DNS name servers 621
E.1 Stanford::DNSserver . 621
E.2 Net::DNS::Nameserver . 625
E.3 Net::DNS::Server . 626

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

xxvi CONTENTS

F User Defined Functions in MySQL 629
F.1 A – Raise an error in a MySQL trigger with a UDF 629

F.1.1 The source code of the raise error () UDF function 629
F.1.2 Install your UDF . 630
F.1.3 Create the trigger . 631
F.1.4 Testing the trigger in PowerDNS . 632

F.2 B – Use a UDF to update a file in the file system 632

G Bits and pieces 637
G.1 Using the DNS to store arbitrary (configuration) strings 637

G.1.1 Use TXT records to configure an application 638
G.1.2 A more sophisticated solution . 638

G.2 A DNSBL to look up country-codes . 639
G.2.1 Mirror and serve the blacklist . 640
G.2.2 Using your new country blacklist . 641

Determine country of origin in Apache log files 641
G.3 Automatic DNS NOTIFY with OpenLDAP and slapi-dnsnotify 643

H Scripting PowerDNS Recursor with the Lua programming language 645
H.1 A (very) short overview of Lua . 645

H.1.1 Example – embedding Lua into your program 646
H.2 Add Lua scripting to PowerDNS Recursor . 647

H.2.1 Configure PowerDNS Recursor to use Lua scripts 648
H.2.2 Writing a Lua function for PowerDNS Recursor 649
H.2.3 Example – Override an NXDOMAIN . 650
H.2.4 Example – Redirect a domain . 650

Glossary 651

Index 655

Index 655

Colophon 695

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

List of Tables

3.1 Back-end support in authoritative name servers 69

4.1 MaraDNS at a glance . 76
4.2 MaraDNS query types and logging codes . 91

5.1 MyDNS at a glance . 96

6.1 PowerDNS at a glance . 114
6.2 Roles in PowerDNS back-ends . 117
6.3 OpenDBX drivers . 131
6.4 Attribute types used by PowerDNS LDAP back-end 135
6.5 pdns control variable (metric) names . 151
6.6 Options that affect OpenDBX queries . 165

7.1 BIND at a glance . 168

8.1 BIND SDB at a glance . 188
8.2 Resource records in the dNSZone& Cosine schemas 194

9.1 Bind DLZ at a glance . 214
9.2 DLZ driver attribute type order . 223
9.3 Format of DNS records in BDBHPT . 245

10.1 NSD at a glance . 262
10.2 NSD statistic codes . 271

11.1 djbdns at a glance . 284
11.2 tinydns-data record syntax . 288

12.1 ldapdns at a glance . 316

13.1 dnsmasq at a glance . 332
13.2 DHCP options supported by dnsmasq’s DHCP server 341

15.1 Perl name servers at a glance . 358

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

xxviii LIST OF TABLES

16.1 rbldnsd at a glance . 372

17.1 BIND caching name server at a glance . 391
17.2 PowerDNS Recursor at a glance . 395
17.3 A selection of rec control variables . 401
17.4 dnscache at a glance . 402
17.5 dnsproxy at a glance . 413
17.6 Unbound at a glance . 417

23.1 Performance results of MaraDNS . 552
23.2 Performance results of tinydns . 552
23.3 Performance results of MyDNS . 553
23.4 Performance results of BIND . 554
23.5 Performance results of PowerDNS . 555
23.6 Performance results of Bind DLZ . 556
23.7 Performance results of BIND SDB LDAP . 557
23.8 Performance results of NSD . 557
23.9 How the caching name servers performed . 559

H.1 Common query types and codes . 649

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

List of Listings

4.1 Safe fetchzone for MaraDNS . 89
6.1 Feed a zone transfer to zone2ldap . 139
6.2 PowerDNS Pipe back-end: load-balancer . 142
6.3 Enumerate zones from MySQL for NSDwith PowerDNS::Backend::MySQL . 155
6.4 Enumerate PowerDNS zones from LDAP for BIND 156
6.5 Create a zone in PowerDNS with PowerDNS::Backend::MySQL 157
6.6 Trigger prevents CNAME and other data . 159
7.1 Parsing the XML produced by BIND’s statistics server 184
9.1 MySQL trigger copies records in Bind DLZ . 255
9.2 Patch to Bind DLZ changes tokens . 259
11.1 isp2tiny.pl creates a tinydns data file from a MySQL database at an ISP 298
11.2 Example of Perl’s Time::TAI64 . 313
12.1 ldapdnsrun: a script to start ldapdns . 319
13.1 dnsmasq configuration . 344
15.1 Query a hostname with Net::DNS . 359
16.1 Zone file with a DNS blacklist . 376
16.2 An example input for rbldnsd . 379
16.3 Adding a forwarder to BIND for rbldnsd . 380
17.1 named.conf for a BIND caching name server . 392
17.2 Master zone file for the domain localhost . 393
17.3 Master zone file for the domain 0.0.127.in-addr.arpa 393
17.4 dnsproxy.conf . 414
17.5 unboundq.c: a sample program for libunbound 432
18.1 Private root zone . 446
19.1 Perform an RFC 2136 Dynamic DNS Update with Net::DNS 468
19.2 Perform an RFC 2136 Dynamic DNS Update with Net::DNS and TSIG 469
19.3 A dhcpd.conf file . 470
19.4 pmc.c: the poor man’s dynamic DNS client (☞D191) 478
19.5 pms.php: the poor man’s dynamic DNS server component (☞D192) 481
20.1 ldap.conf for NSS LDAP . 492
20.2 Migrating /etc/hosts to NSS LDAP . 493
23.1 Generating queryperf.input . 549
23.2 Zone transfers (AXFR) with Net::DNS . 551
24.1 NOTIFY handler with Perl’s Net::DNS::Nameserver 569

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

xxx LIST OF LISTINGS

A.1 A schema file for songs . 600
A.2 Searching the directory for songs with Net::LDAP: songl 602
B.1 Makefile for fixing SOA in zone files automatically 605
B.2 fixserial.pl “fixes” a serial number in a zone file 606
C.1 Generate zone clauses for BIND SDB from LDAP 607
C.2 Sample BIND SDB load balancer: jpload.h . 608
C.3 Sample BIND SDB load balancer: jpload.c . 609
C.4 Sample BIND SDB load balancer: named.conf 613
D.1 Convert SQL data to BDB databases for DLZ’s BDBHPT driver 616
D.2 Custom MySQL function revip4 () in Bind DLZ 619
D.3 Custom MySQL function ip4octet () in Bind DLZ 619
D.4 Custom MySQL function inarpa4 () in Bind DLZ 620
E.1 Perl DNS Nameserver: Stanford::DNSserver . 621
E.2 Handling Service (SRV) queries in Perl . 623
E.3 Perl DNS Nameserver: Net::DNS::Nameserver example 625
E.4 Perl DNS Nameserver: Net::DNS::Server example 626
F.1 User Defined RAISE ERRORFunction for MySQL 630
F.2 Trigger uses raise error () UDF . 631
F.3 UDF that “touches” a file on the file system . 634
G.1 Query TXT RR for pms URL . 639
G.2 Determine geographic location of Apache clients 642
H.1 Lua-enabled getconfig () function retrieves a variable 646
H.2 Example Lua function for nxdomain . 650
H.3 Example Lua function for preresolve . 650

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Preface

What’s different about this book

This book concentrates on two particular aspects of using the DNS:

1. Whereas most DNS documentation discusses only the BIND program (Berkeley Inter-
net Name Daemon), there are other implementations, which might be better suited to
your requirements. For example, MaraDNS is amazingly easy to set up, and NSD has
wonderful performance. We cover all the important alternative programs (and some
special features of BIND as well). We explain what environments they are particularly
suited for, and their advantages and disadvantages, and describe in detail how to im-
plement and manage them.

2. Traditionally, DNS data is kept in flat, plain text, files. Many of the servers we cover,
and the extensions to BIND, let you store your DNS data in SQL databases, LDAP
directories, or other special formats. We explain why you might want to do this –
primarily because it lets you automate your DNS management, and integrate it with
the rest of your systems – and how to implement these back-end data stores.

In addition we cover many other interesting topics, such as secure DNS (DNSSEC), Dy-
namic DNS with DHCP, DNS blacklists especially for mail system administrators, load bal-
ancing with the DNS, and implementing your own DNS servers in Perl.

Who should read this book

This book is aimed at three broad groups of people:

1. Systems administrators setting up a new DNS infrastructure, redesigning an existing
one, or who just want to manage an existing system better.

2. Consultants recommending or implementing DNS solutions for customers, perhaps
running them as an outsourced service.

3. IT or Network managers who need to understand what’s involved in getting a DNS
infrastructure up and running.

We cover the needs of all sizes of organization, from small Small Office / Home Office net-
works requiring simple DNS services, to corporate networks and ISPs requiring high perfor-

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

xxxii PREFACE

mance and very reliable services for public Internet use and for internal systems. Whichever
group you belong to, this book addresses you requirements:

• If you haven’t implemented a DNS server yet, or are considering moving to a different
server:

– We show what’s involved, from installation through to ongoing management.

– We help you choose the server best suited to your environment. For each server
we include a feature chart, showing you at a glance the particular server’s benefits
and drawbacks.

– We show you how to build a simple test environment to evaluate the different
servers. We show how to run the performance tests, and give you our test results.

• If you have an existing DNS system:

– You may be using only basic features, and want to investigate further facilities
that might be useful.

– You may want to investigate whether a change of server would improve perfor-
mance, or streamline your system management or allow you to automate it.

• Installing your chosen server is only the first step – there’s a lot more to running a
professional DNS setup. Whether you are managing a new or existing DNS system:

– You may want to simplify your system administration, or automate it, and/or
integrate your DNS data into a corporate database or LDAP directory. We discuss
the storage schemes used by DNS servers that support relational databases or
LDAP directories, and show you how to add and modify DNS entries

– If you are currently expanding your network, we show you how to configure
standalone internal servers for private networks, as well as providing public DNS
service to users on the Internet connecting to your public services such as Web
and e-mail servers.

– We explain how to implement dynamic DNS, and provide workarounds if the
server software of your choice doesn’t support the standard for updating DNS
directly. We explain how to get Dynamic DNS and DHCP to work together.

– We show you how to implement DNS blacklists, to reduce the spam load on your
e-mail system.

– If you like programming, we show you how you can create your own name
special-purpose servers in Perl.

– In addition to the security requirements of the individual programs, we show you
how to protect your DNS servers by implementing TSIG, and how you protect and
validate DNS replies with DNSSEC.

– We explain how to handle Internationalized Domain Names (IDNA).

All configurations tested are included in the book or on the companion Web site, so you
can use them as a basis for your own implementation. Sample code is provided where
appropriate, as well as detailed configuration descriptions.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

PREFACE xxxiii

Organization of the book

The book is in three parts, as shown in the Figure. On first reading you should read Part I,
i.e. chapters 1–3, in order, although you can skip chapters 1 and 2 if you are a DNS expert.
If you haven’t decided which server to implement, skim through the individual servers in
Part II, to familiarize yourself with what’s available, and then concentrate on the relevant
server(s). Finally, but before you start your implementation – so you’re aware of the whole
picture in advance – read Part III, which tells you about operational issues that you should
factor in right from the beginning.

At the end of each chapter, a section called Related topics points you to other chapters that
relate to what you are currently reading. For example, when we discuss a programmable
back-end for one brand1 of name server, we point you to other brands that have similar
capabilities, or to a chapter where we discuss a different way of solving a similar problem.
Installation instructions for servers are in the Notes sections at the end of each chapter,

rather than in the chapter proper. This is for two reasons. First, many UNIX and GNU/Linux
distributions have pre-built packages for the various brands of server, so you can install us-
ing your distribution’s standard installation manager instead of using server-specific pro-
cedures. Secondly, you’re likely to install only one or two of the servers, so the installation
instructions for most of the servers will be irrelevant to you.

1We use the term “brand” of name server to distinguish between MyDNS, BIND, tinydns etc. Phrases such as “type
of name server” could be ambiguous, perhaps suggesting a particular feature (such as SQL support), rather than
meaning “brand X”.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

xxxiv PREFACE

What you need to know

This isn’t a beginners book. We assume a basic understanding of the Domain Name System,
although we do fast-forward you over the essentials, and scenarios for the many different
types of DNS installation. Also, you need basic to intermediate UNIX or GNU/Linux skills
to work with the programs in this book. For example, you should feel comfortable creating
and editing files, starting and stopping services, checking content of log files, etc.
We cover two broad categories of DNS servers: (a) servers that store their DNS data

in text files. (b) servers that store their DNS data in an SQL database or LDAP directory
back-end. For the servers using flat-file data, you don’t need to know anything about SQL
or LDAP, and you can skip the SQL and LDAP sections completely. For servers with SQL
or LDAP back-ends, you should additionally be familiar with your SQL database system
or LDAP directory server. For SQL, you should be able to create database tables, under-
stand basic SQL statements, and understand how tomanage your SQL database system. For
LDAP, you should be familiar with entries, attribute types and LDIF, be able to add, modify
and delete entries in your directory, and know how to perform the basic administration of
your directory server.
Some servers offer both SQL and LDAP back-ends. You can skip the parts that don’t

interest you: if you’re interested only in SQL, you don’t need to know anything about LDAP
and can skip the LDAP sections, and vice versa. Because of this, we occasionally duplicate
information relevant to both types of back-end, so that each section is complete in itself.
In theNotes and further reading sections of each chapter, we point you to books, good tools

or interesting sites that complement this book.

Platforms supported

The programs discussed in this book run on most modern *nix2 flavors including UNIX,
FreeBSD, GNU/Linux, and Mac OS X. Some of the programs also run natively on Microsoft
Windows and we show you how you implement them.
For some brands of name server, you will need an SQL database (such as PostgreSQL or

MySQL) or an LDAP directory server in which DNS data is stored. We show you how to
obtain a free, pre-packaged OpenLDAP server.

Conventions used in this book

• Sample code, and names of directories, operating system functions and files, are set in
a fixed-width font (e.g. resolv.conf).

• In commands, scripts and files, we indicate a continuation line with a backslash (“\”)
if the shell or whatever allows that syntax; otherwise we use “←֓”. If the output of a
command is too wide, we break it onto more than a single line and indicate the break
with “←֓”.

2We use the term *nix throughout to indicate a UNIX or a GNU/Linux platform.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

PREFACE xxxv

• Command-line invocations are shown with their output (if any), although we do trun-
cate output if necessary. Commands that you run as a non-privileged user have a
dollar prompt:

$ dig www.qupps.biz
...

whereas privileged (root) commands have a hash (sharp) prompt:

mkdir /etc/unbound

• Throughout the book we refer to domain qupps.biz. We registered this for a fictitious
company invented for this book, called Quite Unusual People, Products and Services.

• Throughout the book we discuss tools that we’ve created for demonstration purposes.
You can download a file containing the whole lot at the book’s Web site (http://

www.uit.co.uk/altdns), and we indicate individual files you can download with a
number, for example, (☞D001), that points to a link specifically for that item.

Suggestions and comments on this book

The author and publisher welcome feedback from all readers. If you have any comments
on this book, would like to make a suggestion, or have noticed an error, please e-mail us at
altdns@uit.co.uk

Acknowledgments

This book would not have been possible without the brilliant people who devoted time and
effort to write the software I write about. I’d like to thank all those who have reviewed drafts
of parts of the book, for their help in answering innumerable questions and providing valu-
able feedback: Simon Kelley (author of dnsmasq), Rob Butler (author of Bind DLZ), Bert Hu-
bert (principal author of PowerDNS), Norbert Sendetzky (author of OpenDBX and PowerDNS’
LDAP back-end), Wouter Wijngaards at NLnet Labs (for NSD and Unbound), Sam Trenholme
(author of MaraDNS), and Michael Metz. All omissions and mistakes are mine.
I appreciate the kind assistance of Symas™ Corporation who graciously provided us

with Symas™OpenLDAPDirectory Services, a prepackaged and supported version of OpenL-
DAP. Additionally, they are providing youwith the same (Appendix A).
My family and friends haven’t resented hearing “. . . have to work on the book. . . ”. Their

tremendous support has been encouraging.
All in all, however, it was UIT’s Niall Mansfield who, through determination, technical

expertise, and passion for perfection, brought this project to fruition.

Technical Reviewers

Andrew Findlay is an independent consultant specializing in directory services, mail sys-
tems, networks and systems management. He has worked with LDAP and its forerun-
ners since 1987 and is responsible for the design of central directory services now used

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

xxxvi PREFACE

by a number of large organizations. A collection of published papers can be found at
www.skills-1st.co.uk .
David Jones began programming on the 8-bit micros of the 1980s and has been program-

ming professionally since 1994. He has written garbage collectors, video games, embedded
control software, and the odd language implementation or two. Currently he lives on the
edge of the Peak District National Park in England, and is a senior consultant at Ravenbrook
Limited.

Copyrights etc.

• Firefox® is a registered trademark of theMozilla Foundation. Thunderbird™ is a trade-
mark of the Mozilla Foundation.

• The Figure on page 383 is Courtesy of International Business Machines Corporation,
copyright 2008 © International Business Machines Corporation.

• Linux is a registered trademark of Linus Torwalds.

• Microsoft product screen shots reprintedwith permission fromMicrosoft Corporation.

• UNIX was a footnote of Bell Laboratories. . .As of 2007, the UNIX® trademark owner is
The Open Group.

• All trademarks herein are acknowledged as the property of their respective owners.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Part

I
Preparation

Chapter 1 introduces you to the Domain Name System. Chapter 2 shows you
how DNS resource records are stored. (You can skip these chapters if you are a
DNS expert.) Chapter 3 explains what you will need to set up the name servers
that we cover, and introduces you to dig, the DNS lookup tool.

Chapter

1 Introduction to the DNS

When you have disciplined thought, you
don’t need bureaucracy.

Jim Collins

1.1 The Domain Name System – overview and terminology

1.2 Deployment issues with DNS servers

1.3 Features you might want to have in a name server

1.4 Scenarios of name server deployment

Introduction

This chapter is a quick introduction to the Domain Name System. We fast-forward you over the ter-
minology we’ll need throughout the book, and in particular explain the different types of functions
performed by name servers, how they are commonly named, and where you locate your servers on
your network.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

4 Alternative DNS Servers – Jan-Piet Mens

1.1 The Domain Name System – overview and terminology

The Domain Name System (DNS) denotes both the worldwide system that your computers
use to translate between machine names and network addresses, and also the software that
you use to perform and manage these translations. For example, the name google.commaps
to the address 72.14.207.99 and vice versa; it is the DNS that enables this mapping.
A survey taken in October 2007 (see Notes) estimates that there are over eleven million

DNS name servers on the public Internet, excluding the private name servers on networks
within organizations. DNS is a very important technology.

1.1.1 The DNS tree

Remember what the DNS is all about: we want to refer to machines at remote sites on the
Internet by name rather than IP number, e.g. to connect to the Web site www.tcpdump.org or
send e-mail to fred@example.com . (DNS is also used internally, within your organization,
but we’ll ignore that for now while we concentrate on the big issue of using DNS on the
Internet.)
Before domains were thought of, there was a single file called HOSTS.TXTthat contained

the names and IP numbers of every host on the Internet. This was maintained centrally
by a couple of volunteers. Machine names were simple one-part names without any dots.
When you gave a name to a new machine, it had to be unique across the whole Internet. To
add a new machine to your site you had to coordinate with the HOSTS.TXTfile maintainers,
who entered the changes in the HOSTS.TXTfile for you. Every site on the Internet had to
download a fresh copy of the HOSTS.TXTfile periodically (Figure 1.1). Translating a name to

Figure 1.1: hosts.txt was distributed via FTP

an IP address involved looking up names and IP numbers in this file. As the Internet grew,
this arrangement became unmanageable and the DNS was introduced instead, in the 1980s.

How domains are named in the DNS

DNS names are organized hierarchically in a tree structure (Figure 1.2) like the names of
files and directories on disk. In Unix and Linux, the full “pathname” of a file is the basic
filename (for example readme.txt), combined with the path to the file from the root (e.g.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 1. Introduction to the DNS 5

Figure 1.2: Tree structure of DNS names

/usr/local/doc/readme.txt). DNS naming works in much the same way. The basic name
of a node in the DNS tree is called its simple name.
A node’s fully-qualified domain name (FQDN), i.e. its full name, is its simple name followed

by the names of each of its parents in turn, separated by dots instead of slashes. In Figure
1.2 the FQDN of the node ns is ns.austin.ibm.com. Note that in DNS the most significant parts
are on the right, whereas in a file pathname they are on the left.
An individual node in the DNS tree is also called a label; it’s limited to 63 characters and

must not contain a period (just as in the *nix file system a filenamemust not contain a slash).
The depth of the DNS tree is limited to 127 levels, and a fully qualified domain name is
limited to 255 characters (including the dot separators).
A domain is a node in the naming tree, plus all its children, grandchildren, etc., if it has

any; its domain name is the full name of the node. E.g. ibm.com is the name of the domain
consisting of the whole sub-tree highlighted in gray in Figure 1.2, including the ibm node
itself, right down to the individual machines. Your DNS domain is a specific part of the
name space that is dedicated to you, so you can create your own names without clashing
with anyone else’s.
A hierarchy or tree structure avoids name clashes if you simply insist that no two chil-

dren of the same parent have the same name. E.g. two different children of .com can’t
have the same name, so you’re not allowed to have two separate domains called ibm.com
and ibm.com. However, IBM can have a machine called www and you can have one called

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

6 Alternative DNS Servers – Jan-Piet Mens

www too, because they are not children of the same parent; their full domain names are
www.ibm.com and www.example.com so there’s no ambiguity. (Files name work in exactly the
same way: you can’t have two files of the same name in the same directory. However, you
can have the same basic filename, e.g. readme.txt , in many different directories, because
the full pathname of the file is unique. Pathnames let you refer unambiguously to any file.)
The root of the tree has no name but is sometimes represented as a single dot (which,

in this chapter only, we often show as • to make it more visible), for ease of reference or to
emphasize the “tree-ness” of a name. Similarly, fully-qualified domain names (FQDNs) are
often written with a trailing dot, e.g. “bob.example.com•” to emphasize or indicate that they
are fully-qualified and go all the way back to the root.

Subdomains

Just as a file directory can contain sub-directories, a domain can contains subdomains. The
root domain • contains all the subdomains .com, .edu, .org, .uk, etc. (and therefore contains
the entire DNS tree). In turn, the .com domain has subdomains hp.com, ibm.com, sun.com, etc.
and each of these has its own subdomains too. E.g. ibm.com contains every domain whose
name ends with “.ibm.com”, including zurich.ibm.com, which in turn contains anything that
ends with “.zurich.ibm.com”.
By the way, the name of an individual machine, e.g. mx3.sun.com, is a “domain name”

because the name is a node in the DNS tree. The only thing in this domain is the machine
itself. In practice the name of a single machine isn’t usually referred to as a domain, even
though we frequently do refer to the “domain name of a host”.

1.1.2 Name resolution

When you visit a Web site, you enter the domain name of the site in the browser’s address
bar. The Web site name must be translated to a numeric IP network address for the browser
to be able to connect to the Web server, because, at the lowest level, TCP/IP can use only
numeric addresses. This process of translating a domain name to an address is called resolv-
ing or name resolution; it is performed in a number of steps via a number of DNS servers, as
we’ll see in the example in Section 1.1.4.

1.1.3 DNS packets

One of the DNS standards documents, RFC 1035, requires that DNS messages are sent over
the UDP protocol, and that their data payload is at most 512 octets (8-bit bytes) – to reduce
the chance of fragmentation occurring, which would render the message useless. Because
of this, most modern DNS software will not use larger UDP datagram packets.
However, some queries can require larger answers. (For example, queries that return

multiple address records for a single domain name, or large DNS security keys.) If the an-
swer to a query won’t fit in 512 octets, the server returns whatever will fit, and sets the TC
(content truncated) bit in the answer header. This should cause the DNS client to retry the
query over TCP instead of over UDP. TCP is an “expensive” protocol, in network resource

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 1. Introduction to the DNS 7

terms, to use for a simple thing like a DNS query, and it should be avoided wherever possi-
ble.
We discuss in Chapter 22 that larger UDP datagrams are possible with DNS extensions.

We rarely have to consider whether TCP needs to be used, except when one server is trans-
ferring to a backup server all the data about a whole domain, and we’ll cover that explicitly.

1.1.4 An example – translating domain name www.qupps.biz to an address

To illustrate the various functions and components of the DNS, we’re going to look in detail
at an example of how a client computer uses the DNS to translate a name. After that we’ll
examine each of the steps in more detail, referring back to this example when required.
Assume you want to visit the Web site www.qupps.biz, a site remote from you on the

Internet. Your desktop PC, which has address 192.168.1.11, must translate this name to an
IP address. (For simplicity, we assume that all the client and server programs involved have
just started, so they don’t contain any information cached from previous sessions.) Figure
1.3 shows the steps and the software components involved:

Figure 1.3: The different steps in resolving the name www.qupps.biz

1. Your client PC contains software to send DNS queries to a server. This software is
called the resolver (Section 1.1.5 on page 9). The system administrator (oh: that is you!)
configures the resolver with the address of the DNS server that the client will send its
queries to, to be resolved, i.e. translated from name-to-address, or address-to-name. In

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

8 Alternative DNS Servers – Jan-Piet Mens

our example, the client’s resolver is configured to use the server 192.168.1.164, which is
our internal DNS server, so the client sends to 192.168.1.164 the DNS query requesting
the IP address for name www.qupps.biz.

2a. Server 192.168.1.164 receives the query for name www.qupps.biz. This is a domain name
owned by someone else. Your server has no knowledge of it, so your server has to use
one or more other DNS servers to resolve the query. How does your server go about
this?

We said that all the servers have just started up, so the only information 192.168.1.164
has is whatever is in its configuration files. This includes a list of root servers that know
about the root – the highest level of the DNS.

192.168.1.164 chooses a root server at random from its list, 202.12.27.33, say, and sends
the query for www.qupps.biz to that.

2b. The root servers know about the root domain (•), and very little else. However, what
they do know is addresses of other name servers that handle domains the next level
down from the root – .com, .edu, .biz, .uk, .au, etc. (These are called top level domains,
TLD.) Andwhen queried for any domain ending in biz, for example, while a root server
can’t return the answer (because it doesn’t know it), it will return the addresses of the
name servers that know about .biz

So, root server 202.12.27.33 looks up, in the information its administrators configured
it with, the addresses of name servers that know about .biz, and it returns this list to
the server that sent it the query, i.e. to our internal DNS server 192.168.1.164.

3a. Our server 192.168.1.164 receives the list of servers for domain .biz, and randomly
chooses one from the list, 209.173.53.162, say. Our server sends the same query as
before, for www.qupps.biz, to 209.173.53.162.

3b. 209.173.53.162 knows about .biz, but just as we’ve seen above, it doesn’t know every-
thing about it. However, it certainly does know the addresses of other name servers
that handle domains the next level down, i.e. domains of the form anything.biz. Server
209.173.53.162 looks up, in the information its administrators configured it with, the
addresses of name servers that know about qupps.biz, and it returns this list to our
server.

4a. Once more, our server chooses a server (192.0.2.1, say) from the list it has just received,
and sends to it the query for www.qupps.biz

4b. Server 192.0.2.1 does know about www.qupps.biz. Remember: we said this is one of the
servers that knows about domain qupps.biz; in practice, this is almost certainly a server
that’s run either by the owner of this domain, or by someone on the owner’s behalf,
so it’s not surprising that it knows a lot about the internals (i.e. lower down names) of
qupps.biz.

Server 192.0.2.1 looks up www.qupps.biz in its data and returns the address 192.168.1.20
to our DNS server.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 1. Introduction to the DNS 9

5. Our server 192.68.1.164 sends, to the client in our desktop PC, the address 192.168.1.20
as the answer to the query for domain name www.qupps.biz.

In other words, our server repeatedly sends queries to carefully chosen name servers, and
gets progressively more information about www.qupps.biz each time, until finally it contacts
the server that either has the information or can definitely say that there is no such domain
name. (Looking at it the other way round, the remote servers queried in Steps 2 and 3
replied: “I don’t know what you want, but here’s a man who probably does know – ask him
instead”.)
Now we’re going to go through each of the above steps in more detail, looking at how

the various DNS servers and other components perform their functions.

1.1.5 Step 1 – the resolver

The resolver is the DNS client code that an application program uses to performDNS queries.
“The resolver” is not a separate program. (And later on, when we talk about a “DNS client”,
the client isn’t a separate program either – it’s just the resolver in the application program
that wants to use the DNS.)
Where the resolver code resides depends on the implementation.

• On *nix the resolver is a set of functions in a library linked into the program (Fig-
ure 1.4). The *nix resolver does not remember (or “cache”) any names or addresses
it looked up in the past. When an application program uses the resolver to resolve
www.qupps.biz a name, the resolver sends a query over the network to the DNS server,
and waits for the answer. If the application immediately calls the resolver again to
resolve www.qupps.biz, the resolver will send another query over the network, and wait
for its reply, which might not be what you want on a very busy application. We’ll
see later (Section 1.1.6 on page 10) how you can get over this. This kind of resolver is
called a stub resolver; it doesn’t really do the work of resolution itself but hands it off to
to a DNS server that does.

Figure 1.4: The resolver on *nix is implemented as a library

• On Microsoft Windows, resolution is performed in a similar fashion. An application
invokes functions in a dynamic link library (DLL) which hands off the work of per-
forming resolution to one or more name servers. When the server(s) return an answer,

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

10 Alternative DNS Servers – Jan-Piet Mens

the functions pass that answer back to the application. It is worth noting that although
this stub resolver does not cache, programs such as the Internet Explorer will unfortu-
nately cache results themselves; this can be a cause of woe if you are debugging your
DNS.

Recent versions of Microsoft Windows include a caching resolver service called the
DNS Client, designed to reduce DNS network traffic by providing a local DNS cache
for all applications. If this service is enabled, the library routines attempt to “talk to” it
via an internal communications channel. The DNS Client service itself communicates
with DNS servers, and caches answers, including negative answers, to speed up client
processing. If you disable this service, workstationswill use the stub resolver as before.

Irrespective of how it’s implemented, the resolver is configured with the addresses of one or
more DNS servers, that it should use to perform queries for clients. In the next section we
look more closely at those servers.

1.1.6 Step 1, contd. – caching DNS servers

Your client resolver is, as we said above, configured with the addresses of one or more
DNS servers, that it should use to perform queries for your client. In an organization of
a reasonable size, these are usually internal servers run by the organization itself (and we
show how to set up these servers later in the book). By contrast, for a Small Office / Home
Office network, these are probably servers provided by the ISP, at the ISP’s site (but we show
you that you might want to have your own caching servers in this case also).
As we saw in the example in Section 1.1.4, these servers often have to query many other

servers in succession, to resolve the name for the client. We also saw that the resolution
process is “recursive” – getting information from one server may require the server to issue
another query, and so on. For this reason, servers fulfilling this function are called recursive
servers.
Consider what happens if a different client on our example network queries our recur-

sive server, 192.168.1.164, for the same domain, www.qupps.biz, as before. It would clearly be
very slow, and very wasteful of Internet bandwidth, if our server went through the whole
procedure as before. Instead, our server caches (keeps a note of) the address it got in the
previous answer, and serves up this address immediately, whenever it receives a query for
www.qupps.biz, giving much better performance. All “internal” DNS servers that handle
queries for clients as above, use caching, and so are called caching (name) servers. The terms
“caching server” and “recursive server” are often used synonymously.
Note that the cache is built up from all the queries this server issues, including those

in Step 2, where we got the address of the .biz servers. That means that if our server now
receives a query for ftp.example.biz, it will be able to skip out at least Steps 2a and 2b, because
it has cached the list of .biz servers from earlier.

1.1.7 Step 2 – root DNS servers

In the example, the first external server that our caching server contacted when it began
resolving a name, was a root server. A root name server is one that answers requests for the

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 1. Introduction to the DNS 11

root name-space (which is called •) and in effect “redirects” requests for a particular top-
level domain to the name servers of that domain. In our example, the root server 202.12.27.33
returned the list of servers for the top-level domain .biz, so we could continue resolving
www.qupps.biz.
There are 13 root server installations for the public DNS, called a.root-servers.net. . .m.root-

servers.net. All initial queries are directed to a root server determine the addresses of the
lower level DNS servers. We said 13 “installations”: in fact there are far more than 13 servers
(Figure 1.5); for example, i.root-servers.net consists of servers spread across 31 different sites.
As a matter of interest, at the time of this writing, the total number of DNS queries

arriving at all the root servers, is about 118 000 per second, equivalent to about 10 billion
(1010) per day1.
If you are on an large isolated network (i.e. one without an Internet connection) but need

a working DNS, then you have to fake the infrastructure (root servers, etc.) found on the
Internet. This sounds much more difficult than it actually is; we show you how to set it up
in Chapter 18. But don’t worry: most sites don’t need to do this, and you certainly won’t if
you are on a small network and want to set up DNS for your Small Office / Home Office.

Figure 1.5: Distribution of root name servers

1.1.8 Step 3 – authoritative DNS servers

In our example, the next server that our own server (192.168.1.164) contacted, after the root,
was a server that “knows about” the .biz domain. To be more precise, each of the .biz servers
returned in the list from the root server is authoritative for the .biz domain. This means that
each server can, from its own internal database or configuration files, answer the question:
“does domain something.biz” exist, and if so, what is the associated address?”. (The something
must not contain a dot; if it does, the .biz might have to pass us along to yet another server,
as we saw in Step 4.) The server doesn’t need to ask any other server: if its own database
doesn’t have a record of the requested domain name, then the domain name definitely does

1http://www.isoc.org/briefings/020/

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

12 Alternative DNS Servers – Jan-Piet Mens

not exist, and the authoritative server sends a negative reply saying so. Note that this is not
the same as saying “I don’t know if it exists – go ask someone else”.
In our example, we were querying for www.qupps.biz, which did exist, so the .biz servers

gave us the address, 192.0.2.1, of a server that “knows about” (is authoritative for) qupps.biz.
But how is that authoritative status set up, and who does it? When the domain qupps.biz
was allocated to its owner – the QUPPS company – control over it (and all its sub-domains,
by definition) was given to QUPPS. This assignment of the responsibility for a domain to
someone else is called delegation. Two thing are needed for delegation to work. First, you
must configure your name servers so that they believe themselves authoritative for your
domains, and contain the data for your domain. Secondly, the name server “above” yours
(i.e. your parent server) must be configured with the information that it is your server that is
authoritative for your domain. (This configuration is performed with Name Server records,
which we discuss in Chapter 2.) In our example above, the following chain of events have
made our servers authoritative for the qupps.biz domain:

• The root server operators have made the servers for biz authoritative for biz by config-
uring the root servers to point to the biz-servers whenever queries for biz are issued.

• The operators of the biz domain have made the qupps.biz servers authoritative for
qupps.biz by setting up records on the biz servers which define them to be authoritative.

• We configured our name servers to contain the DNS data for qupps.biz.

QUPPS had to decide whether to run their own authoritative server, or whether they
would get their ISP to make the ISP’s server authoritative for qupps.biz. For simplicity, we
assume QUPPS run their own server, which has address 192.0.2.1. QUPPS informed the .biz
server administrators of this address, and they configured the .biz servers to say that server
192.0.2.1 “knowsmore about” (is authoritative for) qupps.biz. This process of configuring one
server (for .biz) with a list of authoritative domains for a sub-domain (qupps.biz) is also called
delegation. (We discuss the process of delegation and how you delegate in Chapter 18.) Each
and every domain has at least one authoritative server responsible for it.

Distribution of responsibility

Delegation devolves the responsibility and authority for assigning IP addresses to domain
names. For example, if QUPPS want to change the IP address of www.qupps.biz they change
it themselves on their own server (192.0.2.1). They don’t have to tell the .biz server adminis-
trators about this. In other words, responsibility has been devolved to a lower level as part
of the the delegation process, so the worldwide DNS ends up as a hierarchical, distributed
database of information.
The only truly central part of the DNS is the root servers, which provide the initial entry

point into the DNS tree.

1.1.9 Steps 1&5 v. 2-4 – authoritative and caching servers contrasted

There are fundamental differences between authoritative and caching servers, both in their
function and how they operate. Whereas a caching name server will always attempt to find

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 1. Introduction to the DNS 13

the answer to a query, an authoritative server behaves differently. An authoritative name
server will not answer queries for a zone it is not authoritative for, and will not pass the
query to other name servers. As an example, suppose you ask the authoritative2 servers for
qupps.biz a question about google.com. The qupps server cannot answer the query as it has no
knowledge of the content of google.com’s DNS database and can therefore not tell whether
such a name exists or not. How the server responds depends on the implementation:

• Some servers send back a “no error” status packet, but include information telling you
where to go and start looking, by providing additional hints with pointers to the root
name servers.

• Some implementations simply drop the query for zones for which they are not author-
itative, causing the DNS client to time-out waiting for the answer.

Tomake the differences between authoritative and caching name servers clear we’ll consider
things from the point of view QUPPS’s network (Figure 1.6).

Figure 1.6: Different functions of authoritative and caching servers

QUPPS’s internal DNS server is a caching server that all the internal hosts use, to get
the IP addresses of hosts elsewhere on the Internet that they want to access. For example, a
browser on a desktop PC will use this internal server, to resolve the name of the site the user
wants to visit.
By contrast, QUPPS’s authoritative server is used only by outsiders, whowant to find out

addresses of our public servers, so they can connect to smtp.qupps.biz, for example, to send
us e-mail. (If you have been paying attention, you will have noticed that the description

2Here we assume that the authoritative servers are authoritative-only, although you can configure some servers
to be both authoritative and recursive. Even so, what we say is still true of the authoritative part of a server
configured to be both authoritative and recursive.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

14 Alternative DNS Servers – Jan-Piet Mens

is not strictly correct: QUPPS’s caching server will also, by way of referrals from the root
servers, be able to query QUPPS’s authoritative server, but we’ll ignore that for now).
Now reverse the perspective, and consider what happens at a site that a user in qupps.biz

wants to connect to, www.example.com, say. Our caching internal server queries their author-
itative server.

Recursive v. iterative queries

In Step 1 our caching server, 192.168.1.164, received a query from our DNS client. Our
server wasn’t able to answer the query immediately, so it started the recursive procedure of
querying other servers. However, in Step 2, root server 202.12.27.33 received a query that
it couldn’t answer fully and all it did was send back a single partial answer; it did not start
a recursive resolution process. To see why, we need to look at DNS queries in a little more
detail.
There are two different types of DNS query: recursive and non-recursive (iterative). The

application (DNS client) sending the query specifies the type, by setting or clearing a 1-bit
Recursion Desired (RD) flag in the query packet.

• A non-recursive query (iterative query) is typically sent by a caching DNS server acting
as a recursive resolver for local clients. In our example, the queries sent in Steps 2–4
were all iterative, i.e. the RD bit was cleared in all these queries. Note that in each of
these steps, host 192.168.1.164 is acting as a client, whereas in Steps 1 and 5 it is acting
as a server.

As we saw, the answer to an iterative query can be either a definitive one, as in Step 4,
where the server returned the requested IP address, or an incomplete one, as we saw
in Steps 2 and 3, which require our server to ask other servers for progressively more
detail.

• Recursive queries have the RD bit set. They are typically sent by application pro-
grams (strictly, the resolver used by the program) calling the gethostbyname () or
gethostbyaddr () library functions. The recursive query asks the server to do every-
thing possible to determine the answer to the query, including iteratively querying
other servers if need be. The answer to a recursive query is either the final answer to
the original question or a message indicating that the answer couldn’t be found.

In other words, application programs send recursive queries to caching servers, whereas
caching servers send iterative queries to authoritative servers.
There is another reason why we sent non-recursive queries to the authoritative servers

in Steps 2–4. Most authoritative servers are configured not to perform recursion, because
recursive queries would be sent to them only by badly configured or malicious clients or
servers.

1.2 Deployment issues with DNS servers

So far we’ve explained how DNS clients and the various server functions interact. Now
we need to consider how name servers are deployed, and some of the system management

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 1. Introduction to the DNS 15

issues involved.

1.2.1 Where domain information is stored – “zones”

In the example we saw that, to resolve the domain name www.qupps.biz, we had to obtain
information from three different external servers, each of which only held part of the overall
picture. Each server returned only the information that it was authoritative for – information
about its own domains, or delegations direct from its own domains. If we assume that
QUPPS has delegated further internally, as described below, it will be easier to see what
information is stored where.
QUPPS’s head office is in Germany, with subsidiaries in the UK and in Spain. They have

decided to split up their name space (i.e. the part of the DNS tree that they “own”) into
sub-domains for each country. The advantages are:

• DNS maintenance is handled by system administrators who are closer to the relevant
part of the business. Why should, for example, an administrator in Germany have to
maintain DNS data for a machine in Spain?

• By setting up name servers in different geographic regions, the DNS is more resilient.

QUPPS have decided to delegate their sub-domains to name servers in two countries, as
follows:

• es.qupps.biz and uk.qupps.biz are handled by the server in Spain, because there are no
technical staff in the UK.

• The German head office holds information about the rest of the qupps.biz domain,
i.e. anything that isn’t in uk.qupps.biz or es.qupps.biz. This includes corporate wide
resources, such as www,qupps.biz, as well as the German sub-domain de.qupps.biz.

The sub-tree of information that a server holds for a domain is a called a zone. Working
from the bottom up, in Figure 1.7, the es.qupps.biz zone overlaps exactly with the es.qupps.biz
domain. The same is true for uk.qupps.biz. However, there is no de.qupps.biz zone: this
domain wasn’t delegated, so it’s just part of the qupps.biz zone, which consists of everything
apart from the es.qupps.biz and ukqupps.biz zones.
Note that a domain is always a full tree or sub-tree, whereas a zone can have chunks

missing – lower down sub-trees that have been delegated. The missing pieces can be at
different levels (whichwe haven’t shown in Figure 1.7), because you can delegate at different
levels. For instance, example.commight delegate au.example.com to an Australian server, but
delegate sales.alaska.us.example.com to a server in Canada.
A different definition of a zone is that it is the collection of related records for a domain

or sub-domain, and usually stored in a file. Because this is the definitive version of the data
for the zone, the file is called a “master file”. (However, a zone doesn’t have to be stored in
a file: as we show you in later chapters, it can be stored in databases or LDAP directories
instead, but that’s only a detail.)

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

16 Alternative DNS Servers – Jan-Piet Mens

Figure 1.7: DNS domains and zones

1.2.2 Creating redundancy – master/slave, primary/secondary servers

What happens when the authoritative name server for your domain is down and cannot
answer queries? Client hosts elsewhere on the Internet wishing to connect to your Web and
e-mail servers can’t find those servers’ addresses: your site is effectively down, even though
only the DNS server is unavailable.
To provide reliable service you want redundant servers – i.e. more than one server with

identical content. You must also ensure that these servers give identical answers to identical
queries. (Imagine your domain qupps.biz has two DNS name servers, but they supply dif-
ferent addresses as answers to queries for www.qupps.biz!) There are two different ways to
ensure that all servers have the same content and keep in sync:

A. Set up “master” and “slave” name servers, with some mechanism for the primary to
copy its data to the secondary, to keep it in sync.

B. Set up name servers that access a replicated database store. In this case it is the
database software, not the name servers, that replicate the zone data.

Now let’s look at each of these in detail. (Before we go on, remember that this only applies to
authoritative servers; caching servers don’t maintain zone data, so there are no issues about
getting out of sync.)

A. Master and slave name servers

The QUPPS administrators have decided to set up the name server in Spain so it can also
serve the DNS data normally held in the zones in Germany (Figure 1.8), in order to give their
DNS service greater resilience. They do this by configuring the authoritative name server
located in Germany to be a “master” name server and the server in Spain to be a “slave”
name server.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 1. Introduction to the DNS 17

Figure 1.8: Secondary or slave name server

A master name server (or primary name server) is one that holds the definitive copy of in-
formation for one or more zones, which it uses to answer queries from clients. By contrast, a
slave name server or secondary name server is never directly configured with the zone data. In-
stead, all changes to DNS data are made on the master name server, and the slave transfers
this data from its master. A master can have multiple slaves.
In all cases, both master and slave server(s) are authoritative for the zone data. As far as

authority is concerned, there is no difference between the master and the slave server(s) of
a zone.
The data is transferred from master to slave by zone transfer, which duplicates the data

from the master to the slave. A zone transfer is a special type of DNS request named AXFR,
which allowsmaster and slave to use the DNS protocol as the interchange mechanism, with-
out having to add other special transfer facilities. In contrast to most DNS requests which
are performed over UDP, zone transfers are carried out over TCP. Zone transfers performed
by a slave server are called incoming or inward transfers. Zone transfers provided bymaster
servers are called outgoing transfers. Note that whenever we say zone transfer or AXFR we
use the term strictly (i.e. we mean a zone transfer using the DNS AXFR request) and not as a
generic term for replication of DNS data from one name server to another.
There are two ways a zone transfer can be initiated:

1. A slave server periodically checks with its master server whether the zone has
changed, by querying a special DNS record called the Start of Authority (Chapter 2). If
this check indicates that the zone’s content has changed, the slave transfers it by send-
ing an AXFR query to the master server, requesting a copy of the zone data. This zone
is then “downloaded” to the slave server via the DNS. Some server implementations
offer so-called incremental zone transfers, which allow a slave server to receive only the
changed DNS zone data, instead of a full copy of the zone.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

18 Alternative DNS Servers – Jan-Piet Mens

2. Alternatively, when a master server detects that the content of a zone has changed (i.e.
either because an operator has told it so, or because it is able to differentiate between
before and after), it sends out a special DNS query to its slave servers. This request,
called a DNS NOTIFY, instructs the slave servers that a modification has taken place.
The slave servers then proceed as in item 1 above.

B. File or database replication

There are alternatives to zone transfers to replicate zone data between servers. When you
use these, you effectively create not a primary and one or more secondary servers, but rather
a set of primary name servers, because none is more special than any of the others. (Also,
some DNS servers don’t support zone transfers, so you have to use some non-DNS replica-
tion method to keep master and slave servers in sync.)

• MaraDNS and tinydns store zone data in files on a file system. These programs use file
synchronization tools such as rsync to transfer zone data from one authoritative server
to another.

• PowerDNS, ldapdns and Bind DLZ can store their zone data in a back-end LDAP direc-
tory. To keep two such servers in sync, you replicate the LDAP directory. (That’s
purely an LDAP-related operation; the front-end DNS servers don’t know anything
about it.)

• When the zone data is stored in a relational SQL database, such as MySQL, you can
use the database server’s replication facilities to replicate the SQL tables from one SQL
server to another.

We cover each of these in detail in Part II.

1.2.3 Special authoritative server configurations – split horizon and hidden se rvers

Split horizon servers

An authoritative DNS server gives the same answers to queries irrespective of where the
queries come from. However, if you have a name server in your DMZ which you want to
use both for serving DNS data to public clients on the Internet and for use by internal clients,
you might want a query for www.qupps.biz to return different answers depending on where
the client is located. For example, in Figure 1.9, when an external client queries our server
for www.qupps.biz, it should receive the reply 192.0.2.1, which is the “official”, public, address
of our Web server, whereas an internal client should get the reply 192.168.1.20, which is our
Web server’s “internal”, private, address.
A split horizon DNS server lets you do this – it can serve one set of DNS content to one

specified portion of the network, and serves different content to a different portion of the
network. (DNS servers that offer split horizon are often seen in a DMZ, offering “official”
authoritative content to clients on the Internet and “internal” content to clients on the inter-
nal network.)

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 1. Introduction to the DNS 19

Figure 1.9: Split-horizon DNS

Two servers support split-horizon DNS services out of the box: BIND and tinydns. Some
of the other name servers can be coerced into providing split-horizon service.
In all cases, split horizon must be done very carefully, as a small misconfiguration could

publish on the Internet content about internal systems that should only be seen by internal
machines. We recommend you don’t use split horizon. Instead, deploy completely sep-
arate “internal” and “external” content DNS servers. This configuration requires two IP
addresses, but these are easy to obtain. You get a more secure system. Another advantage is
that you can use two different brands of DNS servers, if you have very different performance
and management requirements for your internal server and for your external server.

Hidden name servers

Figure 1.10: Hidden or stealth name server

You may decide to use a brand of name server that stores zone data in an SQL database or

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

20 Alternative DNS Servers – Jan-Piet Mens

in an LDAP directory (e.g. MyDNS or PowerDNS). In order to be as resilient as possible, you
decide that you don’t want to have those accessible on the Internet, and deploy a “front-
line” server which uses the file system as storage for the zone data, so that the front- line
server can continue to operate even if the back-end fails.
You can do this by creating a hidden name server (Figure 1.10). A name server is called

hidden (or stealth) if its address does not appear in the zone data anywhere on the network.
Because no other servers point to the server, the public DNS has no knowledge of its exis-
tence. (However, the server that is slave to the hidden server does know about the hidden
server, because the hidden server’s address is included in the slave’s configuration files, as
opposed to its zone data files.)
Your “front-line” servers (e.g. NSD or BIND) are slave servers to your hidden servers, and

they obtain a copy of the zone data via zone transfers.

1.2.4 Special caching server configurations – forwarding, forwarder, p roxy

Your LAN clients use your own internal or your ISP’s caching server to perform name-to-
address translation. Caching name servers usually talk to authoritative name servers, as we
saw in the example (Section 1.1.4). However, sometimes a caching server will want to talk
to other caching name servers.
Suppose your organization works closely with the QUPPS organization. You have joined

your networks (e.g. via a VPN – Virtual Private Network), and both organizations decide
they need access to each other’s private DNS zones. You configure your DNS server to send
all recursive queries for the QUPPS zones to a selected list of name servers at QUPPS. The
servers at QUPPS provide recursive service for QUPPS-related queries that your DNS server
receives but cannot answer from its own database. In effect, your DNS server behaves like
a DNS client with respect to the QUPPS servers, but normally when querying other non-
QUPPS domains.
Name servers that pass requests on to other (upstream) resolving servers are called for-

warding servers or proxy servers, whereas a forwarder is the server which is forwarded to. In
forwarding mode, a server talks to caching servers only – never directly to authoritative
servers. Forwarding servers usually cache answers to the queries they have processed. Fig-
ure 1.11 shows the forwarding and forwarder servers for the QUPPS example above.
Forwarders are used:

• When you want to forward queries for one or more zones to a specific server for reso-
lution, as we have just seen.

• When access to the DNS is over a slow network link. Using a forwarder can cut down
on traffic, because the (remote) forwarder does most of the DNS work.

• When the forwarder can build up a large cache which speeds up internal queries. For
example, you might use a forwarder at your ISP because then you get the benefit of
the caching of queries from all the ISP’s customers.

• When you have several internal caching servers, but want only one server – the for-
warder – to communicate directly with the Internet, for security reasons.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 1. Introduction to the DNS 21

Figure 1.11: Forwarding/proxy name server

1.2.5 Special authoritative and caching server configurations

The tasks of providing authoritative DNS and caching (recursive) DNS should be clearly
separated. We discuss in Chapter 22 that mixing both roles in a single name server can
cause a carefully crafted malicious DNS query to “pollute” (i.e. corrupt) the authoritative
replies served in a “mixed” server.
Nevertheless, there are cases in which you won’t want to bother with setting up separate

servers. Instead you will want to have both roles in a single name server program, such as
in a branch office or Small Office / Home Office. This is called an internal name server. Your
internal name server is a caching name server for your network, but it also offers a zone
authoritatively, for the devices on your network.

1.3 Features you might want to have in a name server

The different brands of name server we discuss in this book implement some facilities that
you might require. In this section we introduce some of them.

• DNS NOTIFY.

We mentioned above that some brands of name server implement a special request
called a DNS NOTIFY, which is sent by a master name server to its slave servers to
inform them of changes to a zone.

DNS NOTIFY is not easy to implement for two reasons:

1. A master name server that implements NOTIFY needs some way to detect that a
zone’s data has changed. If it cannot detect a difference between “before” and
“after” you’ve changed a zone, it won’t be able to notify a slave server of a zone’s
change.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

22 Alternative DNS Servers – Jan-Piet Mens

2. DNS NOTIFY requests are sent to slave servers but, as we discuss in Chapter 2, a
master server typically only “knows” its slaves by their names in the zone data
(the Name Server records). There may well be slave servers that aren’t mentioned
in a zone, which makes it impossible for a name server to notify them.

Not all brands of name servers with support for being master servers implement DNS
NOTIFY. We discuss that when we discuss the individual name servers.

• Dynamic DNS updates.

Some brands of name server allow DNS data to be modified in real time via a special
DNS protocol called dynamic DNS update. The protocol is defined in RFC 2136, and it
is mainly used by client workstations that use DHCP to obtain their IP address when
starting up, and then “register” the address with the DNS (i.e. they “create” an Ad-
dress record in it). We discuss dynamic updates in Chapter 19, where we also discuss
methods you can use if the brand of name server you choose doesn’t support “proper”
dynamic DNS.

• DNSSEC – DNS Security Extensions.

The Domain Name System is fragile in as much as answers to DNS queries can be
“spoofed” or altered on their path from a name server to a client. DNSSEC adds a
cryptographic layer to the DNS, allowing a client to determine whether the reply it
has received is authentic. This very complex processing is implemented in only a few
brands of name server.

• TSIG – Transaction Signatures.

TSIG provides a means of authenticating zone transfers and Dynamic DNS Updates by
using cryptographic keys exchanged between clients and name servers.

• Database back-ends.

Some brands of name server allow you to choose the type of database you want it to
use for zone data storage. These name servers support some or all of the following
database systems:

– PostgreSQL and MySQL, the two best known Open-Source database systems.

– Berkeley DB (BDB) is an embedded non-relational database that can be used by
applications for persistent storage and fast access to data. In contrast to SQL
databases, that support a query language for accessing or modifying the data,
and that often need a human to administer them, Berkeley DB offers program-
mers a high performance embedded database library with a number of language
bindings, and no administration overhead. Berkeley DB stores arbitrary key/data
pairs and offers a simple yet powerful API with a set of defined function calls for
data manipulation.

– SQLite is a library that implements an embeddable SQL database engine. It sup-
ports many SQL features from much larger systems (such as MySQL and Post-
greSQL). Because it is embeddable into a program, it can give a name server ac-

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 1. Introduction to the DNS 23

cess to a relational database systemwithout having to rely on a separate database
server.

• LDAP back-ends.

Some brands of name server allow DNS data to be retrieved from an LDAP directory
server. If you already store information about people and configuration data in your
organization, you might want to store your DNS data in your LDAP directory server,
and have a DNS server use that as its back-end data source.

• Programmable back-ends.

Some brands of name server allow you to extend them by providing a programming
interface. You can “plug in” some code that receives a DNS query and can produce a
reply to it. We often call this kind of reply a “dynamic answer” or “dynamic reply”
because the code can produce the reply by almost any means, “on the fly”. For exam-
ple, if you are Web hoster you will have “standardized” zones for small customers (i.e.
all zones have a Web server, a mail exchanger, etc.) and you can create code that gives
similar answers irrespective of the zone queried, because all your small customers use
the Web and mail servers that you provide. As another example, you may want the
answer to a query for an Address (A) to depend on the availability of a particular ma-
chine; you can create code to do that, and we show you how to do so in Chapter 8 and
Chapter 15.

Adding code to your name server is not something most sites need to do. On the
contrary, you extend a name server only if it cannot provide a specific functionality
without you having to resort to programming.

1.4 Scenarios of name server deployment

Which DNS server functions you need depends on what your department or organization
does. A corporation has to provide DNS for its presence (Web, e-mail, . . .) on the Internet,
as well as DNS for its private LAN. An ISP, on the other hand, is mainly concerned with
Internet-facing name servers, which are part of the core of its business.
Below we discuss some common combinations of DNS requirements.

1.4.1 ISP

The ISP has several name servers that provide DNS services to its customers (Figure 1.12):

• An ISP providing dial-up services needs caching name servers for its customers to use.
Consider Unbound as a caching name server or any of BIND, dnscache or MaraDNS.

• An ISP providing hosting services will typically have authoritative name servers pro-
viding DNS for the domains owned by its customers. If you allow your customers to
maintain their own DNS data, consider:

– Bind DLZwhich provides a database or LDAP back-end.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

24 Alternative DNS Servers – Jan-Piet Mens

Figure 1.12: An ISP has many name servers

– BINDwith a hidden primarymaster consisting of PowerDNS orMyDNS. This allows
you tomanage zone data in a database or LDAP directory and have BIND perform
zone transfers from your hidden primary server.

Most Internet Service Providers have some sort of database in which they record cus-
tomers, the zones these have, billing numbers, etc. in what is called a “registry” (we
discuss this in Chapter 19). If you have such a system, you typically use it to create or
“generate” zones from it. This is called provisioning. If you have specialized provision-
ing systems for your customer’s DNS data, consider:

– tinydns (Chapter 11) which is a widely-used authoritative-only server.

– NSD (Chapter 10) if performance is very important.

1.4.2 SOHO network

Setting up your own name server in a SOHO (Small Office / Home Office) network might
look like overkill, but many SOHO networks contain a increasing number of IP-addressable
devices such as other computers, a printer, etc. If you want to be able to address these de-
vices, you need a small authoritative name server for a zone or two and we recommend you
install a caching name server too (Figure 1.13). This sounds like a complicated undertaking,
but several of the programs we discuss in Part II make it easy:

• dnsmasq is an excellent choice, as it provides authoritative content from a simple and
easy-to-administer /etc/hosts file, as well as a DNS cache for public DNS queries. It
also provides your Small Office / Home Office network with a DHCP server, which
allows you to configure your networking devices automatically.

• MaraDNS is an authoritative content server which can also be made to recurse.

• If you already have a MySQL or PostgreSQL database on your Small Office / Home
Office network, MyDNS is easy to set up. Adding dnscache as a recursive resolver gives
all the DNS services you need.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 1. Introduction to the DNS 25

Figure 1.13: A possible SOHO scenario

1.4.3 Corporate environment

The corporate environment is the most difficult to describe, because there are so many pos-
sibilities.

Small to medium organizations

In a small to medium organization, you might use a couple of servers for DNS services to
internal users, with separate authoritative servers to handle requests from the Internet for
your public domain names (Figure 1.14).

• BIND can provide different sets of data (split-horizon) depending on whether queries
are internal or external, by using views as we described in Section 1.2.3. Although
we don’t recommend you do so, BIND can simultaneously provide recursion for your
internal clients.

• tinydns also provides split horizon DNS. Deployed together with dnscache it can fulfill
all your DNS needs. If you have only one machine for both, you add dnsproxy to
combine both services behind a single address.

• PowerDNS, with its multiple database back-ends, is the way to go if you want to in-
tegrate DNS services into an existing LDAP directory or SQL database. Its associ-
ated PowerDNS Recursor is a recursive name server which you use to provide recursive
queries to your internal network.

Large organizations

Large organizations typically have many different name servers. As with smaller organiza-
tions (discussed above), they separate caching services from authoritative services. Apart

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

26 Alternative DNS Servers – Jan-Piet Mens

Figure 1.14: A typical setup for a small organization

from spreading their name servers over diverse geographical areas wherever possible, it is
not unusual to find name servers on a departmental level. Large organizations often have
a mixture of name server brands deployed, and many of the programs we discuss in Part II
are sensible choices. Some suggestions:

• Bind DLZ integrates DNS with your LDAP directory server or SQL database environ-
ment.

• Bind DLZ with the Berkeley DB High Performance back-end provides database and
high performance simultaneously.

• PowerDNS offers a large choice of back-end stores for DNS data, and you can also set it
up to be master or slave server.

• Unbound or PowerDNS Recursor installed on separate machines provide your environ-
ment with fast recursive resolvers.

• BIND offers an incredible list of features and is often deployed in large organizations.

• If you require great performance, consider the NSD authoritative server.

A large number of combinations of the programs we discuss are possible, and many of
them make good sense; the choice is yours. As an example, the DNS infrastructure for a
real-life large corporation is shown in detail in the Notes.
This concludes our fast-forwarding over the terminology we’ll be using throughout the

book. In the next chapter, we discuss how you configure zone data and how different brands
of server store it.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 1. Introduction to the DNS 27

Summary

• The Domain Name System is a vital network service on the Internet as well as within
corporate networks.

• Name servers that are configured with “knowledge” about the hosts in a domain are
called authoritative for that domain.

• Caching name servers perform the hard work of query resolution, and they contact
authoritative name servers in sequence to determine whether a queried name exists,
and if it does, to obtain its requested DNS records.

• How you deploy DNS servers depends on the size of your organization, the knowhow
available and the topology of your network.

Notes and further reading

• DNS Survey (see http://dns.measurement-factory.com/surveys/200710.html)

• ICANN’s root-server map (see http://www.icann.org/maps/root-servers.htm)

Example of large corporate DNS implementation

For one of our large corporate customers we designed the following DNS environment.
It consists of a public server that serves authoritative data for the domains owned by the
company, and a separate private DNS environment including a private root, isolated from
the Internet. The environment (Figure 1.15) has the following characteristics:

• Addressing on the internal networks is based on RFC 1918 Private IP addresses. De-
vices on the internal networks cannot communicate directly with the Internet.

Internal users can surf the Internet only via a squid proxy server in the DMZ. User’s
workstations therefore do not require the public DNS. Instead, the squid proxy server
uses a DNS cache to resolve host names.

• A set of BIND name servers with hidden PowerDNS servers provide authoritative pub-
lic DNS services. Another pair of authoritative servers (not shown) are of a different
brand: we do this to lower the risks involved due to possible software bugs and secu-
rity problems.

• Separate dnscache servers provide caching name services to the machines in the DMZ.

• Because Mail Transfer Agents (MTA) on the internal network don’t have access to the
public DNS, they cannot resolve target host names via the DNS. Instead, the internal
MTA use an external MTA in the DMZ as a smart host for transferring e-mail.

• Internal DNS is handled with a private root and a group of PowerDNS servers.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

28 Alternative DNS Servers – Jan-Piet Mens

Figure 1.15: Sample of corporate DNS infrastructure

Practical TCP/IP

We highly recommend the companion book in this series, Practical TCP/IP by Niall Mans-
field. This book is a must-have if you want to have a detailed insight into the workings of
TCP/IP and its related protocols. The author dissects the protocols, shows you the content
of data packets and gives hands-on tips on how to configure individual services on your
network. The book contains three chapters on DNS.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter

2 How to represent zone data
and where to store it

The Internet works because a lot of people
cooperate to do things together.

Jon Postel

2.1 dig – a DNS lookup utility

2.2 Contents of a DNS query

2.3 Resource records defi ne information about a domain name

2.4 Creating zones from resource records

2.5 How and where zone data is stored

Introduction

In the previous chapter we described how a Web browser, and a caching name server, sent DNS
queries to a series of authoritative name servers to resolve the domain name qupps.biz. In this chapter
we explain in detail the information that the client specifies in the query, the information the server
returns in the answer, and how an authoritative server stores the information that it creates the answer
from.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

30 Alternative DNS Servers – Jan-Piet Mens

2.1 dig – a DNS lookup utility

When working with DNS, you need a tool that lets you issue queries to DNS servers. The
commonly used tools are:

• The program of choice in all things DNS is dig.

• host is simpler than dig but written by the same people, isc.org.

• nslookup. This has been deprecated for many years. (Older versions on *nix warn you
that it will be obsoleted; in newer versions of the BIND source distribution, the warning
has been removed.) Don’t use it, because it sometimes gives weird or un-useful error
messages; use dig instead.

• The djbdns package has some nifty command-line tools, which are particularly useful
in scripts. We discuss these in Chapter 11.

• unbound-host, from the Unbound distribution, is similar to host, but it can additionally
verify DNSSEC keys (Chapter 17).

2.1.1 dig overview

dig is the only lookup utility we use throughout this book. It’s readily available on most
*nix platforms; if it’s not already on your system, you can get it free via the BIND utilities
(Chapter 7). In Chapter 14 we tell you how you get dig for Microsoft Windows.

dig is flexible about how it parses options and arguments, and you can pretty much
intermix those however you like. The general syntax is:

dig @server name type class opt

where the arguments are:

server server is the name or address of the server you want dig to send its queries to.
If you omit @server, dig uses the system’s resolver to find the address(es) of the
DNS servers it should send queries to. The system’s resolver typically consults
/etc/resolv.conf to determine the addresses of the name servers it should
use (Chapter 20).

We recommend you specify this as an IP address while testing. (If you specify
a hostname, dig will have to use the system’s resolver, i.e. use the DNS, to look
up server’s IP address before performing the query you asked for, and this may
be confusing.)

name name is the domain name or IP address you want information about.

type type is the type of query you want to perform – A, MX, etc. (Don’t worry if these
types don’t mean a lot to you yet; we explain them fully later in the chapter.)
type defaults to Address (A).

class class is the query class. This is an historical item. It arose before TCP/IP became
the dominant networking system; the class is now always “IN”, for “Internet”,

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 2. How to represent zone data and where to store it 31

which is the default. However, we have to mention it because you will see it all
the time in DNS query listings and server configurations.

options options, which control details of dig’s operation. dig -h lists the available op-
tions. You enable an option by prefixing it with a plus sign (+); you disable an
option by prefixing it with a minus sign (-).

2.1.2 Looking up an IP address (A record)

Use dig to query a name server for an Address. In the following example, we use no special
dig options, and you’ll notice we don’t specify a type either, because dig’s default query type
is for an Address:

$ dig @127.0.0.1 ldap.qupps.biz
; <<>> DiG 9.2.4 <<>> @127.0.0.1 ldap.qupps.biz
; (1 server found)
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 28350
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 2, ADDIT IONAL: 2

;; QUESTION SECTION:
;ldap.qupps.biz. IN A

;; ANSWER SECTION:
ldap.qupps.biz. 86400 IN A 192.168.1.20

;; AUTHORITY SECTION:
qupps.biz. 86400 IN NS ns2.qupps.biz.
qupps.biz. 86400 IN NS ns1.qupps.biz.

;; ADDITIONAL SECTION:
ns1.qupps.biz. 86400 IN A 192.168.1.20
ns2.qupps.biz. 86400 IN A 192.168.1.173

;; Query time: 3 msec
;; SERVER: 127.0.0.1#53(127.0.0.1)
;; WHEN: Sun Jan 27 13:45:43 2008
;; MSG SIZE rcvd: 116

The example above is typical of dig output:

• dig prints results in “master file” format, which is used by the BIND and NSD name
servers, which we discuss later. (This is handy; you can use dig’s output to create those
files if you need to.)

• Lines beginning with a semicolon (;) are of an informative nature only, and indicate
how you invoked dig and which options it used to query the name server. (In a master
file semicolons indicate comments, which is why they indicate “for information only”
here.)

• The answer section contains the answer to a query.

• The authority section shows the authoritative name servers for the queried domain.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

32 Alternative DNS Servers – Jan-Piet Mens

• The additional sectionmay contain additional DNS records supplied by the name server.

dig’s output format is a very close representation of the content of a DNS reply packet. (If you
want to learn in great detail what DNS packets contain, we recommend you read Practical
TCP/IP; see Notes in Chapter 1.) The authority sections are populated by authoritative DNS
servers to inform DNS clients whom to contact for authoritative information, and some
name servers add the “additional section” to the reply, foreseeing that clients will want that
information.
In our examples we often edit dig’s output to show only the sections relevant to what

we’re discussing at the time.

2.1.3 Find version of remote name server, using dig

Most brands of name servers can be made to advertise their brand and version number, via
a special domain called BIND (even on non-BIND name servers). The information is stored
in a Text (TXT) record (page 44). You query this using the DNS to determine the version
information. For historical reasons, the information is provided for the Chaosnet (a protocol
over coax), so you must use the Chaos class (CH) when querying:

$ dig @127.0.0.1 version.bind ch txt
; <<>> DiG 9.2.4 <<>> @127.0.0.1 version.bind ch txt
; (1 server found)
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 11872
;; flags: qr aa rd; QUERY: 1, ANSWER: 1, AUTHORITY: 1, ADDITIO NAL: 0

;; QUESTION SECTION:
;version.bind. CH TXT

;; ANSWER SECTION:
version.bind. 0 CH TXT "9.2.4"

;; AUTHORITY SECTION:
version.bind. 0 CH NS version.bind.

;; Query time: 0 msec
;; SERVER: 127.0.0.1#53(127.0.0.1)
;; WHEN: Sun Jan 27 13:53:38 2008
;; MSG SIZE rcvd: 62

For security purposes, name servers can be, and often are, configured to hide their version
information, so frequently the above will not work.

2.1.4 Transfer a zone with dig

By default, dig uses UDP to send queries to name servers. For testing purposes you can force
dig to use TCP by giving the +tcp switch:

$ dig +tcp @127.0.0.1 domain name qtype

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 2. How to represent zone data and where to store it 33

If you set qtype to AXFR, dig initiates an incoming zone transfer for the specified zone, printing
the result inmaster zone file format to standard output. (AXFR transfers are always done over
TCP, so you don’t have to specify the +tcp switch.)

$ dig @127.0.0.1 qupps.biz axfr
qupps.biz. 86400 IN SOA ns1.qupps.biz. jp.qupps.biz. 1962 05286 10800 900 604800 3600
qupps.biz. 86400 IN NS ns1.qupps.biz.
qupps.biz. 86400 IN NS ns2.qupps.biz.
qupps.biz. 86400 IN A 192.168.1.20
qupps.biz. 86400 IN MX 10 mail.qupps.biz.
...
...

This enables you to test zone transfers from your (or other people’s) name servers. Note
that the name server must support outgoing zone transfers and it must permit1 you to trans-
fer zones. (Most servers are configured not to allow zone transfers except to other servers
owned by the same organization.)

2.1.5 Trace recursion using dig

If you want to trace how a host is resolved recursively, use the +trace option to dig:

$ dig +trace www.fupps.com
; <<>> DiG 9.2.4 <<>> +trace www.fupps.com
;; global options: printcmd
. 343211 IN NS F.ROOT-SERVERS.NET.
. 343211 IN NS E.ROOT-SERVERS.NET.
...
;; Received 512 bytes from 127.0.0.1#53(127.0.0.1) in 0 ms

com. 172800 IN NS F.GTLD-SERVERS.NET.
com. 172800 IN NS E.GTLD-SERVERS.NET.
...
;; Received 491 bytes from 192.5.5.241#53(F.ROOT-SERVERS .NET) in 39 ms

fupps.com. 172800 IN NS ns49.1und1.de.
fupps.com. 172800 IN NS ns50.1und1.de.
;; Received 77 bytes from 192.31.80.30#53(D.GTLD-SERVERS .NET) in 141 ms

www.fupps.com. 10800 IN A 82.165.102.119
;; Received 47 bytes from 195.20.224.149#53(ns49.1und1.d e) in 37 ms

This shows how our caching server queries the various authoritative servers in order: first
the root servers, then the .com servers, and finally the fupps.com servers which return the full
answer we wanted.

2.2 Contents of a DNS query

When a DNS client queries an authoritative server for a domain, it supplies three pieces of
information in the query:

1In 2008 a court in North Dakota, USA, ruled that performing a zone transfer as an unauthorized outsider,
to obtain information that was not publicly accessible, constitutes trespass under U.S. law (see http://www.
spamsuite.com/node/351).

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

34 Alternative DNS Servers – Jan-Piet Mens

1. The domain name of the object it is querying for (e.g. ldap.qupps.biz).

2. The “class” of the object it is querying for. This is the same as the “class” we explained
in Section 2.1.1, so it will always be IN .

3. The type of information it wants about the domain – for example, the A record for the
domain. This type is called the query type or qtype.

These three items are clearly shown in the QUESTION SECTION of dig’s output:

$ dig @127.0.0.1 ldap.qupps.biz
...
;; QUESTION SECTION:
;ldap.qupps.biz. IN A

Now we’ll examine how a name server uses these items when it answers the query.

2.3 Resource records define information about a domain name

When you query a DNS server about a domain name, the server answers with pieces of
information of a particular type about that domain name; each separate piece is shown on
a line on its own in the one of the ANSWER, AUTHORITY, or ADDITIONAL sections of dig’s
output. Each piece describes one characteristic or resource of a node in the DNS tree, and is
stored in a separate record in the the server’s zone data file or database, so it’s known as a
resource record (RR). A zone file is just the set of all the resource records for the zone.
You can consider resource records from a slightly different perspective. Above we im-

plicitly assumed that the resource records in the zone file just describe nodes in the tree that
somehow exist in their own right. In fact, the resource records define the nodes in the tree
(Figure 2.1), as well as containing descriptive information about them. If a node doesn’t
appear in the zone file of the server that’s authoritative for the zone, then the node doesn’t
exist in the DNS tree.
To see how this works, consider dig querying for a particular type of information, MX say,

about qupps.biz. quppz.biz’s authoritative server receives the query, and checks its zone data
as follows:

• If the server isn’t authoritative for qupps.biz, the server returns an error code “I can’t
serve this” in the reply. You can recognize this because dig shows status:REFUSED
in its output.

• If the domain qupps.biz doesn’t exist, i.e. qupps.biz has no RRs anywhere in the zone file,
the server returns an error code “non-existent domain” in the reply. You can recognize
this because dig shows status:NXDOMAIN in its output.

The NXDOMAIN indicates an authoritative negative answer (i.e. “Sorry, but this do-
main is non-existent”).

• If qupps.biz does exist, the server now looks in its database for records that match the
type specified in the query, MX in this case:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 2. How to represent zone data and where to store it 35

Figure 2.1: Resource records in the zone file define the nodes in the DNS tree

– If it finds any matching records, it returns them in the reply. dig shows them, one
per line, in its ANSWER SECTION, and also shows the number of ANSWERs, in its
;; flags output line.

– If there are no matching records, the server returns a reply containing zero AN-
SWERs.

Even if there were no matching records, dig outputs status:NOERROR : the server
successfully found the requested domain, but it happened not to have any RRs of the
type we were interested in.

Now we’re going to explain in detail the types of resource records you’re likely to come
across, their contents, and what they are used for. But before we do that, we need to look at
the format that’s common to all resource records.

2.3.1 The format of a Resource Record

A resource record consists of five fields:

name TTL class type rdata

name The name of the domain that this resource record describes. This name is some-
times called an owner or the origin.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

36 Alternative DNS Servers – Jan-Piet Mens

If name has a trailing period (e.g. qupps.biz.), it is usually taken to be a fully qual-
ified domain name (FQDN, see Section 1.1.1). If you don’t include a trailing
period in name, it’s interpreted as “unqualified” – relative to the current zone
name. For example, in the qupps.biz file, the unqualified name mail is interpreted
as mail.qupps.biz. If you specify a name as mail.qupps.biz (without the trailing pe-
riod) in the qupps.biz zone file, it will be fully qualified for you, so the result will
be a domain mail.qupps.biz.qupps.biz., which is probably not what you wanted.

Different brands of DNS server handle the qualification of name differently: some
consider any name in the zone to be fully qualified, others don’t require the trailing
period. We discuss this wherever it is relevant.

In this chapter we fully qualify all domain names, for clarity. (Later on we relax
the rule, because it will become obvious to you when we mean fully-qualified.)

Note that if you omit the name, the record is a defined with the same name as the
previous record. We show you examples below.

TTL The “Time to Live” of the resource record, in seconds, i.e. how long this record is
valid for. It is primarily used by caching name servers to decide how long they
may cache the resource record for, before they discard it because it is out of date.

If you omit the TTL on a resource record, the zone’s TTL is used (i.e. the TTL of
the zone as defined in the Start of Authority record, see below).

class We already saw this in Section 2.1.1; this is always “IN”, for “Internet”.

type Specifies the kind of information this resource record describes, and has the same
meaning as the qtype of a query. You’ve seen type A records in the dig examples
(Section 2.1.2), and you’re probably familiar with MX and PTR records too. We
cover all the interesting types in the following sections.

rdata The data that describes the resource. The format and content of rdata are specific
to the record type. For example the rdata of an A resource record contains a single
IP address, whereas the rdata for an some other types contain multiple items, as
we’ll see later. Because the rdata field is the last field in a DNS resource, it’s often
referred to as the “right hand side”.

The above specifies the format of records as entered in the flat-text zone data files used
by the BIND and NSD servers. Some other servers can and do use other formats. However
the BIND server has been so closely involved with the growth of the Internet that many of the
DNS RFCs define standards in terms of BIND-specific syntax, and zones are often described
using BIND’s “zone master file” format. Consequently, you need to be familiar with this
format, and it’s what we use in the rest of this chapter. In later chapters, when covering
servers that use different formats, we give full details of those formats.

2.3.2 Resource record sets

We said that a server returns zero or more resource records in reply to a query, and that dig
displays these one per line. A single domain name, i.e. a node in the DNS tree, can have
multiple resource records of the same type, and all of them will be returned in the answer
to a query. For example, a multi-homed host (one with multiple network interfaces, each

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 2. How to represent zone data and where to store it 37

with its own IP address) will often have more than one A record, one for each IP address.
Querying for such a name with dig shows something like:

name TTL class type rdata
www.qupps.biz. 3600 IN A 192.168.1.20
www.qupps.biz. 600 IN A 10.0.12.1
www.qupps.biz. 1800 IN A 192.0.2.40
www.qupps.biz. 3600 IN A 192.168.1.46

We expect the rdata, i.e. the IP addresses, to be different in each of the records, but note that
the TTLs can also differ, although the other three fields of all the RRs are the same. A set of
resource records with the same name, class and type is called a resource record set or RRset.

2.3.3 Resource records in detail

Address (A) resource records

An Address (type A) resource record associates an IP address with a domain name. For many
nodes in the DNS tree, their single A record is the only entry in the zone file, so in these cases
it is the A record that both creates the node (i.e. the domain name or hostname) in the tree,
and gives it its IP address. The rdata portion of the record contains the single address in the
usual dotted-quad notation:

name TTL class type rdata
www.qupps.biz. 3600 IN A 192.168.1.20

A node can have more than one A record, as we saw for a multi-homed host, above. In such
cases, you just add as many A records as necessary for that domain in your zone file. (And
what would the resulting group of records be called? Right: a resource record set.)

Mail Exchanger (MX) resource records

When you e-mail alexi@qupps.biz , your e-mail server (or your ISP’s e-mail server) must
send it to “qupps.biz’s e-mail server”. How does your server find out which server that is, or
even whether qupps.biz have a server? That’s where MX records come in. Your e-mail server
queries the DNS for a Mail Exchanger resource record for the qupps.biz domain. Mail Ex-
changer records define which hosts are willing to receive (and subsequently ensure delivery
of) mail to qupps.biz. This might be one of qupps.biz’s own mail servers on the Internet, or
they might have arranged that their ISP’s server will receive and forward qupps.biz’s mail.
You can have multiple MX records for a domain.
An MX’s rdata consists of two parts: a decimal preference number, and a domain name

of a host willing to accept e-mail for the domain. The host must be a hostname, not an IP
address: an IP address in an MX record is illegal, and will cause conforming servers to ignore
that MX record when they attempt to deliver mail. When there is more than one MX record,
those with a low preference value will be used before those with a high preference. (If there’s
only one MX record for the domain, the preference has no effect.) If you have two or more
records with the same preference, they are typically used in a pseudo-random order (i.e. the
sending mail server uses them on a “first come, first served” basis). The preference is also
called the priority.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

38 Alternative DNS Servers – Jan-Piet Mens

In the example below, two mail servers are willing to handle incoming mail for qupps.biz.
The host bigiron.qupps.biz is preferred (it has a lower preference value) over the mail server
at the ISP. (QUPPS want mail to be delivered to their own server when possible, but if their
server isn’t reachable, mail should be sent to their ISP – who will presumably deliver to
QUPPS later.)

name TTL class type rdata
qupps.biz. 3600 IN MX 70 my-isp.example.net.
qupps.biz. 3600 IN MX 10 bigiron.qupps.biz.

We strongly recommend you choose preference values that are “far apart” (e.g. 10, 20,
30. . . or even 100, 200, 300. . .) rather than “close together” (1, 2, 3. . .). The reason is that you
can then easily “shove” another MX in between those, in case you have to quickly switch
mail servers.
Do note that Mail Exchanger records are not a panacea; you still have to correctly config-

ure your mail server to handle and accept incoming e-mail for domains you set up in Mail
Exchanger records.

Pointer (PTR) resource records

A DNS client queries for a domain’s A record to get the address for that name; this is called
a forward lookup or forward query. A reverse query or inverse query is the opposite: it gets the
domain name for an IP address. Reverse queries are performed by querying for the Pointer
(PTR) resource record in a special domain called the in-addr.arpa domain. A client wishing
to determine the domain name of an IP address reverses the octets of the IP address, and
appends in-addr.arpa to form the domain name to query, and then it queries the DNS for a
PTR record for that domain. For example, to reverse lookup the address 192.168.1.20, the
name queried for is 20.1.168.192.in-addr.arpa:

name TTL class type rdata
20.1.168.192.in-addr.arpa. 3600 IN PTR www.qupps.biz.

With dig you use the -x option to query for a Pointer record, saving you from having to
reverse the address’s octets manually:

$ dig @127.0.0.1 -x 192.168.1.20
...

Because these resource records are in the in-addr.arpa domain and not in the qupps.biz
domain, your authoritative server must be configured for an in-addr.arpa zone, and that must
be delegated to it for reverse lookups to function (Chapter 18).

Forward and reverse queries

Many people think of two different types of queries, forward queries and reverse queries.
However, if you look at the Address (A) and Pointer (PTR) records we discussed above, you
see there is little difference in them:

• A forward query is one that performs name-to-address lookup, by querying the DNS
for an A resource record.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 2. How to represent zone data and where to store it 39

• A reverse query or inverse query is one which performs address-to-name lookup, by
querying the DNS for a PTR resource record.

Both of these search the DNS for a domain name: the difference is which domain is queried
– the domain you specified, or the in-addr.arpa domain.

Canonical name (CNAME) resource records

CNAME records let you create an alias for a machine in your DNS. “CNAME” stands for
“canonical name” – the “real” or “official” name of a host. (This term is a little watery, because
basically any domain name with an A record is a canonical name.) Suppose you have a host
with an Address record of:

name TTL class type rdata
bigiron.qupps.biz. 3600 IN A 192.168.1.17

You can make that domain name available under different names by creating aliases for it:

name TTL class type rdata
imapserver.qupps.biz. 3600 IN CNAME bigiron.qupps.biz.
webserver.qupps.biz. 3600 IN CNAME bigiron.qupps.biz.

In the example above, bigiron.qupps.biz is the canonical name, and imapserver.qupps.biz and
webserver.qupps.biz are aliases for it.
When a server is queried for a domain name and finds a CNAME for that name, the server

replaces the name with the canonical (“real”) name and looks up the new name instead,
repeating this step as often as needed until the server finds an A record rather than a CNAME,
and it replies with the canonical names, and the A records of those names. For example, a
query of webserver.qupps.biz results in:

$ dig webserver.qupps.biz.
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 9628
;; flags: qr aa rd; QUERY: 1, ANSWER: 2, AUTHORITY: 2, ADDITIO NAL: 2

;; ANSWER SECTION:
webserver.qupps.biz. 3600 IN CNAME bigiron.qupps.biz.
bigiron.qupps.biz. 86400 IN A 192.168.1.17

Common uses of CNAME records are:

• To give “nicer-looking” names to hosts.

• The extra level of indirection allows you to easily migrate webserver.qupps.biz to a dif-
ferent host without any reconfiguration of the hosts. If you change the CNAME of web-
server.qupps.biz to point at bigtank.qupps.biz, all your clients would subsequently con-
nect to the bigtank host.

• To have a number of web sites (www.example.net, www.qupps.biz, www.example.org) all
reside on a single machine but give the impression that they are different machines.

• To create host names that represent different services, even though they (currently)
run on a single host. Suppose you are starting off small and have a single machine

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

40 Alternative DNS Servers – Jan-Piet Mens

running mail services (SMTP, POP3, IMAP, LDAP) as well as a Web server, you create
CNAME records for each of these services, which point to your host smallbox:

name TTL class type rdata
smallbox.qupps.biz. 3600 IN A 192.168.1.44
qupps.biz. 3600 MX 10 smallbox.qupps.biz.
pop3.qupps.biz. 3600 IN CNAME smallbox.qupps.biz.
imap.qupps.biz. 3600 IN CNAME smallbox.qupps.biz.
www.qupps.biz. 3600 IN CNAME smallbox.qupps.biz.
ldap.qupps.biz. 3600 IN CNAME smallbox.qupps.biz.

After some time, you realize that your Web server is very popular, and you decide
to migrate it onto larger hardware. You acquire new hardware, give the machine a
canonical name (newerbox) and get your Web server running. As soon as you have
completed that task, you change your DNS and have the CNAME for www.qupps.biz
point to the new box. We highlight the changes to your zone’s data in bold:

name TTL class type rdata
smallbox.qupps.biz. 3600 IN A 192.168.1.44
newerbox.qupps.biz. 3600 IN A 192.168.1.46
qupps.biz. 3600 MX 10 smallbox.qupps.biz.
pop3.qupps.biz. 3600 IN CNAME smallbox.qupps.biz.
imap.qupps.biz. 3600 IN CNAME smallbox.qupps.biz.
www.qupps.biz. 3600 IN CNAME newerbox .qupps.biz.
ldap.qupps.biz. 3600 IN CNAME smallbox.qupps.biz.

There are some things you must note about CNAME records:

• RFC 1034 explicitly states:

If a CNAME RR is present at a node, no other data should be present

For example, if you have a CNAME for host printer.example.net aliased to anything, then
printer.example.net must not have any other DNS resource records associated with it2.
This is a source of woe for many an administrator, and it is something you must look
out for.

• You should never use the new alias in the rdata portion of a record – i.e. never put it
on the right-hand-side of a resource record. In other words, the new alias webserver
we created above must never be on the right hand side of a resource record; only place
the canonical name there.

• For the same reason, an alias must not be used in a Name Server (page 43) or a Mail
Exchanger record. (Using CNAMEs in MX records is a very common mistake.)

• You can use Address (A) records instead of CNAME records at any time. In fact, as they
save the server from performing a level of indirection (searching for the Address of
the canonical name), they are actually “faster”.

2RFC 4034 allows for one exception to the rule: a resource of type RRSIGmay coexist with a CNAME resource record.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 2. How to represent zone data and where to store it 41

The Start of Authority (SOA) resource records

The Start of Authority resource record can be thought of as a ”header” for a zone. It contains
management data, such as the e-mail address of the zone maintainer. It is called Start of
Authority because it specifies the server which provides authoritative information about an
Internet domain.
Every DNS zone must have exactly one SOA resource record. (There are brands of name

servers that create a zone’s SOA record automatically, without you having to explicitly enter
it, but the end result is the same – the zone has an SOA.) The TTL of the SOA record defines the
Time to Live for all records in a zone which don’t override the SOA’s TTL. In other words, you
can set a TTL on the SOA record and “forget” about setting individual TTLs on each record.
The SOA record’s rdata format differs from most other RRs. There are two different for-

mats for expressing the same information:

• A single line, containing whitespace- separated values, as in:

example.com. 3600 IN SOA dns.example.com. hostmaster.exa mple.com. ←֓
2007122401 86400 7200 3600000 172800

• Multiple lines, with each value on its own line, but with the set of values enclosed in
parentheses (which is how a program recognizes this format), as in:

example.com. 3600 IN SOA dns.example.com. hostmaster.exa mple.com. (
2007122401 ; serial YYYYMMDDnn
86400 ; refresh (24 hours)
7200 ; retry (2 hours)
3600000 ; expire (1000 hours)
172800) ; minimum (2 days)

Most of the values in the Start of Authority record are necessary for the management of
slave servers. You recall from Chapter 1, that a slave server “periodically” queries its master
server whether the zone data has changed, in order to initiate a zone transfer if it has. The
fields within the SOA define how often this check is performed.
The Start of Authority resource has the following seven values associated with it:

mname The mname is the name of the primary master name server for the zone. It is
relevant only for Dynamic DNS updates; we discuss it in Chapter 19.

rname The rname is the e-mail address of the person responsible for the zone. Re-
place the “at” character (@) in the e-mail address by a period.

Good practice, recommended in RFC 2142, is to define (and maintain) a ded-
icated mail alias ”hostmaster” for DNS operations, and ensure that that ad-
dress is monitored. (Unfortunately, hostmaster addresses, like postmaster
addresses, are a good target for spammers. The only thing you can do to
avoid this spam is run a good spam filter.)

serial The serial number is an integer value that represents the “version number”
of a zone. In practice, the serial number is often represented as a date in
“YYYYMMDD” format with an additional ”version per day” which caters
for more than one modification in a day, as in:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

42 Alternative DNS Servers – Jan-Piet Mens

2008052801

but you might prefer to start your serial numbers at 1 and simply increment
them every time you modify a resource in your zone. Another format often
encountered is the UNIX time (the number of elapsed seconds since the 1st of
January 1970 at 00:00:00 UTC).

The serial number is important when you provide the zone to slave servers
using AXFR zone transfer. Slaves use the serial number to detect whether a
zone has changed, so they can initiate a zone transfer if required. The slave
checks whether the current serial is greater than the last time it checked; if
so, the zone file has changed. If you forget to increase the serial number when
you add, delete or update any record in the zone, the slave will think the zone
is unmodified, and will not transfer it; the slave will then be out of sync with
the master.

If you don’t provide the zone to slave servers, or if you have more than one
primary server that uses native database replication to transfer zone data,
then the serial number is never used for anything. Even so, we recommend
that you always update it when you modify the zone, if only as an indication
to yourself that you have modified the zone’s data.

refresh The refresh value – the time, in seconds, after which a slave server should
check with the master server whether the serial number in the zone’s SOA has
changed, to decide if the slave should initiate a zone transfer.

retry If a slave server failed to contact the zone’s master (e.g. because it was down
for maintenance, or because of a network failure), the slave will try again
every retry seconds. It will continue do so at retry intervals until the expiry
time (expire) has elapsed (see next item).

expire The time in seconds after which a zone is expired, i.e. the zone’s data is too
old to be of any value. A slave will not answer queries for a zone that has
expired.

There are differing opinions as to how long the expiry time should be set; we
recommend you set it to a very long period to cater for network outages that
might last more than a week.

minimum The minimum field has had a number of different meanings in the past, but
RFC 2308 (Negative Caching of DNS Queries) has obsoleted those, and now de-
fines minimum to be how long, in seconds, that a (caching) name server may
cache a negative answer returned for a query. (In other words, minimum is
the Time to Live for a NXDOMAIN answer.)

Note that the serial number as well as the refresh, retry, and expire times, are all defined in the
zone database on the primary server, but they are used by the secondary or slave server to
determine when and how often to perform an incoming zone transfer for the zone.
The refresh and retry values affect zone maintenance and have to be negotiated between

zone maintainer and secondary service operators. Modern DNS servers implement the NO-
TIFY protocol making these values less important, but if notifications are neither available

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 2. How to represent zone data and where to store it 43

nor implemented or perhaps even get lost in transit, the slave server will attempt to transfer
the zone automatically. We recommend you use SOA values as in the examples above.

Name Server (NS) resource records

The resolution example in Section 1.1.4 showed a series of authoritative name servers being
queried in turn, to obtain the final answer for a query. The root server had delegated .biz to
the .biz servers, which in turn delegated qupps.biz to QUPPS. Delegation is implemented by
means of Name Server (NS) resource records. The zone file on the parent server contains, in
NS records, the addresses of the name servers that the child domain is delegated to (i.e. the
NS records contain the names of the servers authoritative for the child domain). Figure 2.2
shows the three delegations from the root to es.qupps.biz.
There can, and should, be more than one Name Server resource record in a zone, each

containing the host name of a different authoritative server. As we said in Section 1.2.2, you
typically want to create resilience for your name servers, and there are DNS registries that
insist on having more than one name server (e.g. the DENIC in Germany).
The name server specified in an NS record must be a canonical name (i.e. a real hostname

as you define with an A RR), not an IP address or an alias.

name TTL class type rdata
qupps.biz. 3600 IN NS ns1.qupps.biz.
qupps.biz. 3600 IN NS dns.my-isp.example.net.

Figure 2.2: How NS resource records are used to delegate sub-domains

If a zone contains an NS record for, say ns9.example.com, but that name server does not
exist, or does not answer authoritatively for the zone, you have what is called a lame delega-
tion. You have wrongly delegated authority to a name server that isn’t (or doesn’t believe it
is) authoritative for the zone.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

44 Alternative DNS Servers – Jan-Piet Mens

Text (TXT) resource records

A Text (TXT) resource record contains arbitrary text strings with a total length of less than 256
characters.

name TTL class type rdata
qupps.biz. 3600 TXT "contact Fred for details"
t.qupps.biz. 3600 TXT one two three
x.qupps.biz. 3600 TXT "had a little" "lamb"

Strings in text records are typically specified within double quotes as in the first example
above. If you omit the quotes, each white-space separated word is quoted in the DNS reply.
The following examples show the results of queries on the TXT records defined above:

$ dig @127.0.0.1 qupps.biz txt
;; ANSWER SECTION:
qupps.biz. 3600 IN TXT "contact Fred for details"

$ dig @127.0.0.1 t.qupps.biz txt
;; ANSWER SECTION:
t.qupps.biz. 3600 IN TXT "one" "two" "three"

$ dig @127.0.0.1 x.qupps.biz txt
;; ANSWER SECTION:
x.qupps.biz. 3600 IN TXT "had a little" "lamb"

You can use TXT resource records for all sorts of things (Section G.1) but do remember,
that anyone who can query your DNS can see your TXT records, so make sure they don’t
contain confidential or security-related information.

Service (SRV) resource records

SRV (Service) records let applications query the DNS to find the server(s) providing a particu-
lar service. For example, suppose you have three LDAP servers called ldap1, ldap5 and ldap7.
Normally you’d configure your LDAP client by specifying the hostnames and TCP port
numbers of each of the three servers servers. However, using DNS SRV records, you define a
domain name, ldap. tcp and in this domain create three SRVs, one for each of ldap1, ldap5 and
ldap7. (The name service. protocol is a convention.) A client that supports SRV records then
queries domain ldap tcp for SRV records, and gets the three server names as answer.
The format of the RR is

service. proto. name ttl class SRV priority weight port target

The rdata for SRV records contains:

service service is the symbolic name of the desired service, such as ldap or http . An
underscore (“ ”) is prepended to the service identifier to avoid collisions with
existing DNS names you may have defined.

proto proto is the symbolic name of the desired protocol (i.e. “tcp ” or “udp”) with an
underscore prepended to it.

name name is the domain name.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 2. How to represent zone data and where to store it 45

priority indicates the order in which this host should be used, in the same way MX uses
its own preference field.

weight The weight field specifies a relative weight for entries with the same priority. If
you have two SRV records with the same priority, you might specify 60 as the
weight for the first and 40 for the weight of the second RR. This would cause
the first target (see below) to be used 60% of the time and the second target to
be used for 40% of the requests. If there is only one SRV record for a domain, it
should use a weight of zero.

port The TCP or UDP port number of the service on the target host.

target The domain name of the target host. This must be a canonical name, not an alias
or an Address, i.e. the domain name must have at least one Address (A) record.
If target contains a single period (.), the service is explicitly not available at the
domain, but you may well have other SRV records for the same service pointing
to other targets.

Here’s an example that lets clients who want to connect to an LDAP server over TCP
find our three LDAP servers.

name TTL class type rdata
ldap1.qupps.biz. 3600 IN A 192.168.2.31
ldap5.qupps.biz. 3600 IN A 192.168.2.35
ldap7.qupps.biz. 3600 IN A 192.168.2.37
ldap. tcp.qupps.biz. 3600 IN SRV 30 0 389 ldap1.qupps.biz.
ldap. tcp.qupps.biz. 3600 IN SRV 30 0 389 ldap5.qupps.biz.
ldap. tcp.qupps.biz. 3600 IN SRV 30 0 389 ldap7.qupps.biz.

A SRV-conforming client that wants to discover an LDAP directory server and speak to
it via TCP, would perform a query for ldap. tcp.qupps.bizwith a query type of SRV. As we’ve
specified the same priority for all three it will use one of the servers at random.
Unfortunately, DNS SRV records are catching on only slowly. The Name Service Switch

(NSS), whichwe discuss in Chapter 20 uses them, and recent versions ofMicrosoftWindows
use them extensively.
That concludes our discussion of the individual resource records. In the next section we

show how you gather all these individual records together to form a correctly-constructed
zone file.

2.4 Creating zones from resource records

So we now have a bunch of typical DNS records, but what do we do with them? We use the
records described earlier to create a zone. As we said in Section 2.3.1, the record syntax we
have used so far is what BIND and NSD use for zone files, so the rest of this chapter will use
the same syntax. Other servers use different formats, which we explain fully when dealing
with those servers, but the following illustrates the basic principles in constructing a zone,
no matter which brand of server you’re using.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

46 Alternative DNS Servers – Jan-Piet Mens

2.4.1 Define a minimal zone

A zone must contain at least a Start of Authority (SOA) resource record, so you can define a
full zone by creating just that. Some brands of name server (e.g. BIND) require that a zone
also contain NS records, so we add one of these as well.

name TTL class type rdata
qupps.biz. 3600 IN SOA dns.qupps.biz. jp.foo.bar. 1 86400 7 200 3600 1800
qupps.biz. 3600 IN NS dns.qupps.biz.

Although this zone can be loaded by a name server, it’s not very useful:

• The SOA defines the mname to be dns.qupps.biz, but there is no such address defined in
the zone.

• We have defined aName Server (NS) record for the zone, but we don’t have an Address
for it.

2.4.2 A more realistic “minimal” zone

One of the name servers is our own, so we add an Address (A) record for that. The other
name server is located at our ISP and they have set up an A record for my-isp.example.net.

name TTL class type rdata
qupps.biz. 3600 IN SOA dns.qupps.biz. jp.foo.bar. 2 86400 7 200 3600 1800
qupps.biz. 3600 IN NS dns.qupps.biz.
qupps.biz. 3600 IN NS my-isp.example.net.
dns.qupps.biz. 3600 IN A 192.168.1.20

2.4.3 Add desktop hosts, and Web and e-mail servers

The zone we defined above still isn’t very useful. Let’s make it more realistic:

• We have several hosts we want to access by name, so we add A records for them:

name TTL class type rdata
ns1.qupps.biz. 3600 IN A 192.168.1.20
pc1.qupps.biz. 3600 IN A 192.168.1.18
ldap.qupps.biz. 3600 IN A 192.168.1.164

Note that we now have two hostnames (ns1 and dns) with the same IP address; that is
perfectly legal.

• We also want to have a neat name for our Web server, but we don’t have a separate
machine for it – it currently runs on 192.168.1.164. We could add an Address (A) record
for it, but we’ll do it with an Alias (CNAME), because that better reflects the real config-
uration of our network:

name TTL class type rdata
www.qupps.biz. 3600 IN CNAME ldap.qupps.biz.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 2. How to represent zone data and where to store it 47

• Our mail server software has also been installed on the same machine as the Web
server. We want the world to know we can receive mail on this, so we add an MX for
it:

name TTL class type rdata
qupps.biz. 3600 IN MX 100 ldap.qupps.biz.

Note:

– We have to use the host’s canonical name and we must not use the newly created
Alias (www) on the Mail Exchanger (MX) record.

– The right hand side of the record (i.e. the rdata field) must not contain an IP ad-
dress.

– As we only have one server capable of accepting e-mail, the preference value is
irrelevant at this point.

2.4.4 Add a reverse zone

So far, our zone lets people query to find the address of our named hosts. For example,
dig pc1.qupps.biz. will return 192.168.1.18. We would also like to be able to query an
IP address to get its name: i.e. we’d like to be able to dig -x 192.168.1.18 and get the
answer pc1.qupps.biz. To do this we must set up a reverse zone.
The real difference between a “forward” and a “reverse” or inverse zone is the domain

name you use, both in the query and the zone file. In Section 2.3.3 we explained address-
to-name lookups query for the reversed IP address octets in the in-addr.arpa domain. The
address space allocated to our domain qupps.biz is 192.168.1/24, so we have to set up a zone
file for 1.168.192.in-addr.arpa. We are assuming that a delegation to our domain has already
been set up. (Remember that being authoritative means that we have configured our name
servers correctly and that a delegation to our zone exists.) We set up the zone file as follows:

1 $ORIGIN .
2 $TTL 86400 ; 86400 seconds = 1 day
3 1.168.192.in-addr.arpa IN SOA ns1.qupps.biz. hostmaster .mens.de. (
4 200612688 ; serial
5 28800 ; refresh (8 hours)
6 14400 ; retry (4 hours)
7 3600 ; expire (5 weeks 6 days 16 hours)
8 86400 ; minimum (1 day)
9)
10 NS ns1.qupps.biz.
11

12 20.1.168.192.in-addr.arpa. PTR ns1.qupps.biz.
13 17.1.168.192.in-addr.arpa. 3600 PTR bigiron.qupps.biz.
14

15 $ORIGIN 1.168.192.in-addr.arpa.
16 51 PTR dom.mens.de.

There are several points to note:

• The first two lines contain special directives which are typical of zone master files:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

48 Alternative DNS Servers – Jan-Piet Mens

$ORIGIN This takes a string as argument. It defines the “origin” for the zone file:
all names within the file have the string automatically appended unless
they are FQDNs, i.e. unless you ended themwith a period. The third line
above (1.168.192.in-addr.arpa) is not fully qualified, so the origin (which
we specified to be “. ”, qualifies it, giving 1.168.192.in-addr.arpa. (quali-
fied with a terminating period). On line 15 we change the origin, and as
a result the name 51 on line 16 is interpreted as 51.1.168.192.in-addr.arpa..

$TTL The Time To Live in this directive specifies a default TTL for each resource
record in the file. You can override the TTL for a record, as we have done
for the PTR to bigiron on line 13.

• The Name Server (NS) record on line 10 appears not to have a name associated with
it, but it has: as we said on page 36, if you omit name, it defaults to the last one used,
1.168.192.in-addr.arpa. in this case.

• On line 16 we have a Pointer to a domain name (dom.mens.de) that doesn’t belong to
us. Is that allowed? Yes, it is. Since you are authoritative for the inverse zone 192.168.1,
you can create whatever records you think necessary.

2.4.5 Inconsistencies

You will note that there are several inconsistencies in the two zones we created above for
qupps.biz and for 1.168.192.in-addr.arpa:

• The serial numbers in the SOA records don’t match. That is quite normal and they do
not have to match; you may have updated one file more often than the other.

• We have A records with nomatching Pointers (PTR). The DNS standards don’t demand
that you have matching pairs, although you will probably want to.

• Because the forward and reverse domains are handled with two completely separate
zone files, if you are going to have matched forward/reverse zones, you will usually
have to do it “manually” yourself – by editing one file to take account of any changes
you make in the other. (However, the MaraDNS and tinydns servers do manage this
automatically for you, and we will discuss easy ways to keep forward/reverse zones
in sync on other brands of name server.)

Notes on master file syntax

• There is no specific order in which resource records must appear in a master zone file.
You can put them in any order, but resource records in zone master files are typically
ordered as shown in our examples.

• The master file can contain a domain named * (asterisk):

name TTL class type rdata
* 3600 IN CNAME bigiron.qupps.biz.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 2. How to represent zone data and where to store it 49

This is a wild card for the domain. A query for any domain name, in this zone, that has
no explicit record in the zone file, is matched by the wild card. For example, a request
for the domain frobizz.qupps.bizwould receive the CNAME record as answer.

• A semi-colon (;) indicates a comment. Comments can start anywhere on a line and
continue until the end of the line.

2.5 How and where zone data is stored

An authoritative name server has to store its definition of zones and resource records some-
where, so it can access the data when it needs it, to respond to incoming DNS queries. There
are two ways to store zone data:

1. In flat files on the local file system. We can sub-divide this classification according to
the syntax used in the zone file:

(a) Zone master files, used by BIND, NSD, and PowerDNS (with the BIND back-end).

As we said, the format of resource records we showed you in the earlier sections
is zone master file format.

(b) Program-specific file format. Instead of using master-file format, the program’s
author has defined his own. (As master file syntax is messy, defining a simpler
but equivalent representation for the data is a good idea.)

MaraDNS uses a text format similar to that of a zone master file with a number
of shortcuts. tinydns uses a text format consisting of lines with colon-separated
fields. We’ll describe each format in detail when we come to it.

2. In external databases or directories.

In the rest of this chapter we look at the advantages and disadvantages of the two ap-
proaches, and give an overview of what’s involved in using back-end databases or direc-
tories.

2.5.1 Advantages and disadvantages of text files for zone data

Good reasons for storing zone data in text files include:

• You can enter or modify zone data using any text editor. No special-purpose data
maintenance program has to be developed, ported to different platforms, and main-
tained.

• Plain text files are easy to maintain and to store. They can be put into a version control
system for tracking changes and alterations.

• Plain text files are easily transferred over networks by e-mail or by using tools like
rsync, rdist, scp (but this applies to any type of file really).

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

50 Alternative DNS Servers – Jan-Piet Mens

• Plain text files can easily be generated from other sources of data. We discussed above
how you might use dig to get answers to DNS queries which you store in master zone
files.

You might also be interested in storing your zone data in an SQL database and gener-
ating zone text files from that; we discuss that in Chapter 19.

On the other hand, storing zone data in text files has downsides:

• All the text formats for zone files have complicated syntax. It’s easy to make errors –
e.g. by omitting a punctuation or separator character – that render a zone useless and
prevent it being processed by the name server.

• Many text editors don’t lock the file you are editing, so you could inadvertently undo
or overwrite a modification recently performed on the same file by a colleague.

• File-locking issues make it difficult to implement tools that allow several administra-
tors to update zone data simultaneously.

• Replication of text files from one machine to another, though easy, has to be imple-
mented on a case-by-case basis.

For these reasons, you might either choose a brand of name server that doesn’t use text
files, or even if your server does use text files, store the definitive copy of your zone data in
some other way, and then automatically generate the text file with a suitable program.

2.5.2 Zone data in databases and directories

As we said, the alternative to storing zone data in text files is to use some form of back-end
data store instead. The two commonly-used back-ends are: Relational Database Manage-
ment Systems (RDBMS), also called SQL databases, and LDAP directory servers. Reasons
for using a back end include:

• You may already have integrated a lot of your infrastructure into an SQL database
or an LDAP directory. For example, it’s very common to use an LDAP directory to
store e-mail addresses of all employees and clients, configuration data, etc. Tying in
your DNS system with this makes sense (Microsoft Windows does this with Active
Directory.)

• Using a data source separate from your DNS server can reduce duplication and ease
your maintenance tasks. If you intend to (or already have) data such as e-mail ad-
dresses, host configuration, etc. in your LDAP directory or database, adding DNS data
to it keeps all this diverse data centralized, and you can use the same management
tools and backup procedures to handle it.

• You can automate addition and modification of DNS records in a way that isn’t pos-
sible (without a lot of fancy work) using zone master files. (We discuss this further in
Section 2.5.5.)

On the other hand:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 2. How to represent zone data and where to store it 51

• An external database means you have to learn about it. If you want to store zone
data in an LDAP directory, you need to know about that directory, how to manage it,
how to add entries to it, etc. Similarly, if you want to use an SQL database, you will
need to have an understanding of SQL, you will need to learn how to manage the SQL
database, create backups, etc. We show you how to implement an LDAP directory
server in Appendix A.

• An external database adds an extra level of software to your DNS infrastructure, which
needs to be maintained and cared for, and it makes your setup more complex.

• Using an external data source will notmake your DNS servers answer queries faster.

• Unfortunately, there is no standard for how to represent DNS resource records in
databases or LDAP directories. There are several different methods to choose from.
We recommend you consider this carefully when planning your implementation, as
moving from one brand of DNS server to another might involve changing the format
of all the data in your back-end.

Nowwe’ll consider what’s involved in using, first, an SQL back-end, and then, an LDAP
back-end.

2.5.3 SQL databases

Next to ordinary file systems, relational database management systems (RDBMS) are the
most common data storage technology today, and have been for the last 30 years. RDBMS
have become even more popular with the advent of GNU/Linux and FreeBSD systems
which come with the MySQL and PostgreSQL databases more or less as standard. An ad-
vantage of SQL databases over LDAP directories is that many SQL systems support atomic
transactions, making it possible to roll back out of a mass-update gone wrong.
DNS resource records are represented differently in an SQL database than in a text-file,

although the information content is equivalent. A zone is represented by one or more rows of
data in one or more database tables. Individual components of a resource record are usually
contained in different columns of a row. The database schema that is used is defined by the
DNS server’s author. We will explain the format when we discuss the brands of name server
that support SQL.

Databases supported by DNS servers

• MySQL and PostgreSQL are supported by: MyDNS, BIND SDB, Bind DLZ, and PowerDNS.

• PowerDNS’ OpenDBX back-end supports a number of database systems, including Fire-
bird, Interbase, Sybase, Oracle and SQLite.

• PowerDNS has a (deprecated) DB2 back-end.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

52 Alternative DNS Servers – Jan-Piet Mens

Replication of zone data stored in an SQL back-end

It is imperative to ensure that more than one name server doesn’t access only one database
back-end or you would create a single point of failure: if your database server collapsed, all
your DNS servers accessing it would be left without a data store. You should use database
replication to ensure timely duplication of data from your single master database to one
or more slave databases (Figure 2.3). MySQL possibly has a small advantage over Post-
greSQL because MySQL has replication built in, whereas with PostgreSQL you need add-
ons such as Slony-I (see http://slony.info/) or pgpool-II (see http://pgpool.projects.

postgresql.org/).

Figure 2.3: Database replication ensures resilience

Figure 2.3 shows each DNS server accessing its own database server, but we recommend
you keep the data as close as possible to the DNS server (from a network point of view)
and that you deploy both the DNS name server and its SQL database server on the same
machine (Figure 2.4).

Manipulating records in an SQL database

There are several ways to add, update or delete records in an SQL database:

• Most SQL databases have a command-line interface that let you submit SQL state-
ments to manipulate data. MySQL has the mysql program; PostgreSQL has psql.

• MySQL provides theMySQL Administrator andMySQL Query browser tools. A goodWeb-
based utility is phpMyAdmin (see http://www.phpmyadmin.net).

• For PostgreSQL, pgAdmin III is a cross-platform administration tool, and PhpPgAdmin is
a Web-based administration tool (see http://phppgadmin.sourceforge.net/).

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 2. How to represent zone data and where to store it 53

Figure 2.4: Database server and SQL server on one machine

2.5.4 LDAP Directories

Many organizations integrate their configuration data, and security data for authentication
and authorization services, into a single, consolidated, data store in the form of an LDAP
directory. The LDAP directory is then the single point from which all this data is managed.
In such environments it makes sense to store the DNS resource records in the same LDAP
directory.
In an LDAP directory, a DNS zone is represented as one or more entries. Each entry

contains several attribute types, each representing a specific DNS resource record. (If you
are new to LDAP, or want to refresh your memory, we discuss these terms in Appendix A.)

DNS servers that support LDAP

The following name servers can store zone data in LDAP directories: BIND SDB, Bind DLZ,
PowerDNS, and ldapdns.

Microsoft Windows DNS Server can be made to store zone data in Active Directory. (Al-
though Active Directory is accessible via LDAP, the format of the entries containing DNS
resources is undocumented, which means you cannot manipulate DNS zone data in an Ac-
tive Directory via LDAP.)

Choice of LDAP directory servers

If you already have a directory server, such as Novell eDirectory, Microsoft Active Direc-
tory or similar, you will use that. If you don’t yet have a directory server, we recommend
OpenLDAP, an Open Source implementation of an LDAP directory server and associated
programming libraries and utilities (see http://www.openldap.org). We show you in Ap-
pendix A how you acquire, install and configure a ready-built package of OpenLDAP.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

54 Alternative DNS Servers – Jan-Piet Mens

Replicating LDAP data

To avoid a single point of failure, to spread the performance load, or to service geograph-
ically dispersed clients, you can run multiple identical copies of an LDAP directory server
(Figure 2.5).

Figure 2.5: Directory server replication ensures resilience

Figure 2.5 shows each DNS server accessing its own directory server, but we recommend
you keep the data as close as possible to the DNS server (from a network point of view)
and that you deploy both the DNS name server and its LDAP directory server on the same
machine, as we showed you above for the SQL databases.
If you’re going to use an LDAP directory server as the back-end for a DNS server, repli-

cation is essential. You should never have more than one name server accessing a single
directory server; that would create a single point of failure: if your directory server goes
down, all DNS servers querying it are left without a data store. Having more than one DNS
server reading entries from a single LDAP directory server is a sure road to disaster.

Manipulating entries in an LDAP directory

The following are editors (“LDAP browsers”) for creating, modifying or deleting entries in
an LDAP directory: task:

• phpLDAPadmin is a Web-based LDAP browser that you can install on a Web server (see
http://phpldapadmin.sourceforge.net/).

• LDAP Browser/Editor is written in Java. It runs on a variety of platforms (see http:

//www-unix.mcs.anl.gov/˜gawor/ldap/).

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 2. How to represent zone data and where to store it 55

• The Apache Directory Project has released an Eclipse-based application called Apache
Directory Studio which runs on a multitude of platforms (see http://directory.

apache.org/studio/).

• If you use Microsoft Windows, you may be interested in the commercial Softerra LDAP
Administrator (see http://www.ldapadministrator.com/).

• ldapadmin also runs on Microsoft Windows; it lets you browse, search, modify, cre-
ate and delete objects on an LDAP server. It also supports more complex operations
such as directory copy and move between remote servers and extends the common
edit functions to support specific object types (such as DNS zones and records) with
templates (see http://ldapadmin.sourceforge.net/)

• web2ldap is a WWW to LDAP gateway by Michael Ströder. It lets you access and ma-
nipulate the content of an LDAP directory server, and also includes a schema browser
(see http://www.web2ldap.de/).

• We prefer command line tools, and recommend ldapvi by David Lichteblau. This
searches an LDAP directory for entries, and drops you into your preferred text edi-
tor with an LDIF (LDAP Data Interchange Format) representation of the entries. When
you save the file in your editor, ldapvi asks whether you want to commit the changes,
and if so, it updates the directory (see http://www.lichteblau.com/ldapvi/).

2.5.5 How you maintain zone data stored in a back-end

In this book we show you how you create zones and DNS resource records for servers that
use a database or an LDAP directory back-end. We do this using utilities that are readily
available:

• For the MySQL database examples, we use themysql command-line interface supplied
as part of the MySQL package.

• For the LDAP directory examples, we use ldapadd or ldapmodify because you will have
these installed as the basic utilities provided by your LDAP directory server software.

These basic tools are fine for experimenting, and you can (and should) use them to “look” at
the contents of your back-end data store. But we don’t recommend you use these tools for
the day-to-day operational tasks of adding new zones and resource records to your DNS.
Apart from easily introducing errors, you simply won’t want to use them as the primary
interface to your DNS data. There are, however, a number of alternatives you can consider:

• We discussed above that you can use graphical or Web-based utilities to manage the
data. These are only slightly better than the command-line programs because they
force you to “think” about the data you are entering (does the TTL value go in this
table column?, must I fully qualify the domain name?, etc.).

• We discuss some other Web-based utilities you can use, in Chapter 19. These are typ-
ically a bit better because they isolate you from the structure of the underlying data.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

56 Alternative DNS Servers – Jan-Piet Mens

Unfortunately they are often not the perfect solution because some of the tools are
simply not comfortable or “clever” enough. For example, most Web interfaces allow
you to add a CNAME for a domain even if there is “other data” present, and that is not
allowed by the DNS specification.

• Simple shell scripts you whip up often provide great flexibility and comfort, particu-
larly for repetitive tasks. For example, suppose you frequently add new zones to your
LDAP directory; instead of maintaining an LDIF file and remembering how to run that
through ldapadd to add entries to your directory, create a tiny shell script to do so:

#!/bin/sh

[$# -ne 1] && { echo "Usage: $0 zonename" >&2; exit 1; }
ZONE=$1

ldapadd -x -D cn=manager,dc=qupps,dc=biz -W << !EndZone
dn: relativeDomainName=@,zoneName=$ {ZONE},dc=qupps,dc=biz
objectClass: dNSZone
zoneName: $ {ZONE}
dNSTTL: 86400
...
!EndZone

Although it may be obvious to you that small tools like these greatly simplify daily
tasks, time and time again many people forget to use these time-savers.

• Custom made tools that you create to solve a particular task are most flexible. They
give you fine control over how you update DNS data stored in a database or LDAP di-
rectory. Most modern programming languages have APIs for MySQL (or PostgreSQL)
and LDAP, so you can use whatever language you feel most comfortable with.

For example, if you often create DNS zones with similar resource records in them, you
write a program that issues the corresponding SQL INSERT or LDAP add commands;
invoking, say:

$ my-addzone example.net

is much faster than messing about with most utilities, and, with a bit of extra work,
you can make the program available to colleagues or users who don’t have access to a
login shell, as a CGI script which they invoke through a Web browser.

• If you have to provide DNS management tools for inexperienced users, we strongly
recommend you take the time to create tools (whether Web-based, command-line, or
graphical) that very carefully inspect the data before your utility adds it to the back-
end data store. Say, for example, a user enters a domain name and doesn’t fully qualify
it with a period. If the brand of DNS server you deploy expects it to be qualified, you
might spend quite some time looking a reason why the domain is not being resolved
by your DNS server.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 2. How to represent zone data and where to store it 57

2.5.6 Provisioning text files from a database back-end

Even if you decide to use a DNS server that stores its zone data in text files, you can store the
definitive copy of the data in an SQL or LDAP back-end, and periodically generate working
copies of the necessary text files from the back-end (Figure 2.6).

Figure 2.6: Generating zone data from SQL/LDAP

The benefit of this approach is that maintenance of the zone data is easier (you can use
similar tools to manage users and DNS data in your database or directory), and your DNS
server always has access to its zone data, even if the back-end goes down for a while. We
discuss this in Chapter 19.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

58 Alternative DNS Servers – Jan-Piet Mens

Summary

• A zone consists of a set of resource records, each of which has a specific content format.

• Depending on the brand of name server you choose, it will retrieve its zone data from
text files or from an SQL or LDAP back-end.

• Using a database back-end has advantages and disadvantages.

Notes and further reading

SQL

• Wikipedia defines SQL: “StructuredQuery Language is a computer language designed
for the retrieval and management of data in relational database management systems,
database schema creation and modification, and database object access control man-
agement” (see http://en.wikipedia.org/wiki/SQL).

• A small tutorial on SQL (data definition statements, functions, statements, etc.) is at
Wikibooks (see http://en.wikibooks.org/wiki/Programming:SQL).

OpenLDAP

• OpenLDAP is an Open Source implementation of the Lightweight Directory Access
Protocol. It boasts a very good Administrator’s Guide (see http://www.openldap.org/

doc/admin/) and a list of Frequently Asked Questions (see http://www.openldap.org/

faq/).

• Mastering OpenLDAP by Matt Butcher (Packt Publishing) is a good introduction to
OpenLDAP and its configuration.

Reserved domain names

When you create a fictitious domain we recommend you use one of the following:

• The reserved names example.net, example.org or example.com.

• A TLD explicitly reserved in RFC 2606 for testing and documentation. The reserved
TLDs are .test, .example, .invalid and .localhost.

• Alternatively, you can use a ccTLD with one of the reserved country codes. ISO 3166
specifies3:

If users need code elements to represent country names not included in this
part of ISO 3166, the series of letters AA, QMto QZ, XA to XZ, and ZZ, and the
series AAA to AAZ, QMAto QZZ, XAA to XZZ, and ZZA to ZZZ respectively [. . .]
are available.

3http://www.iso.org/iso/customizing_iso_3166-1.htm

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter

3 Preparing for your
implementation

At Your Name Service

Diane M Boling

3.1 Planning your implementation

3.2 The programs and why we chose them

3.3 Operating system and software requirements

3.4 Back-ends supported by the various servers

3.5 Setting up a test environment

Introduction

We show you how to plan your name server implementation, and explain the factors you need to
consider when deciding which DNS server program you should use, taking into account whether or
not you want to use an SQL/LDAP back-end.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

60 Alternative DNS Servers – Jan-Piet Mens

In Part II of this book we will discuss in detail the various brands of server you can use
to provide authoritative and/or caching name services on your network. However, before
you start your implementation, you need to plan it, and you need to decide which brand
of server is the most suitable for your environment. You must decide how you’re going to
store your zone data – in flat files or in an SQL/LDAP back-end. As many of these factors
are interconnected, we recommend you read this chapter to get a feel for the process as a
whole, and then read Part II to see which server and back end are best for you. Then re-read
this chapter and plan your implementation accordingly.

3.1 Planning your implementation

Implementing a reliable DNS name service is non-trivial. Your planning will typically in-
volve several “passes”, as you may want to experiment with different servers before finally
choosing which to implement.

1. Choosing your server and back-end:

(a) Either you’ve chosen an operating system platform for your name servers al-
ready, or you will have to choose one now. It may come as a surprise, but not all
platforms are equal (see Notes).

(b) The name server you choose determines the choices open to you for storing your
zone data; for example, only some servers support LDAP back-ends. Contrari-
wise, if you definitely want/need to use a particular type of back end, that in turn
limits your choice of name server (Figure 3.1). (See also Section 3.4 for more detail
about back-end support.)

(c) If you want to use an SQL (or LDAP) back-end, but have no prior experience
of SQL (or LDAP), we strongly recommend you start acquiring knowledge in
that area before you start implementing a name server that uses such a back-end.
Otherwise, you could spend hours or days in a futile attempt to get your name
server running.

(d) If you want an SQL back-end but don’t have any preference for which RDBMS
to use, decide which of the freely available database systems (PostgreSQL vs.
MySQL) is best for you. We recommend you stay away from benchmark com-
parisons. Much more important are ease of use (does it have good tools?), plat-
form availability (will it run on your platform?), standards compliance (will it run
with your application?). Good places to start are http://troels.arvin.dk/db/

rdbms/ and http://www.wlug.org.nz/PostgresVsMysql , and a Web search of
“PostgreSQL vs MySQL” reveals more. Mind however, that some documents are
very dated and possibly don’t take account of the huge progress that bothMySQL
and PostgreSQL have made in terms of features.

On the other hand, If you want an SQL back-end, and are already using an SQL
RDBMS for other purposes, you will probably want to use the same RDBMS for
your DNS. Support for your chosen RDBMS will influence which brand of name
server you choose.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 3. Preparing for your implementation 61

Figure 3.1: Choosing a brand of name server by back-end

(e) If you have demanding performance requirements, that will probably be the
dominant factor in your choice of name server. Having chosen a server, you are
then of course limited to the zone data storage options supported by that server.

In any case, we recommend you run your own tests before deploying a system,
to ensure that your capacity requirements can be satisfied. We explain how you
do that in Chapter 23.

When considering performance, you must take into account the performance of
any SQL/LDAP back-end if you chosen to use one. Allocate time and resources
for tuning the back-end.

2. Provide at least two of “everything”:

(a) If you provide authoritative name servers on the Internet for your public domain
names, you’ll need at least two servers.

Some DNS registries, such as the German DENIC, require that the two name
servers are on different class-C networks, which can involve providing additional
networking resources, and/or using a hosting service where you place your sec-
ond name server.

(b) If you are setting up caching name servers for your private network, provide at
least two of them.

(c) For name servers that have an SQL database or LDAP directory back-end, you
will need one back-end server per name server, so you have no single point of
failure. We discuss this in more detail in Chapter 23.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

62 Alternative DNS Servers – Jan-Piet Mens

3. Implement a caching name server on every machine that makes heavy use of the DNS
– your mail servers and HTTP proxy servers, for example.

4. If you are operating in an environment in which you have to create your own private
root name servers, allow additional time to set those up.

5. Depending on the back-end you choose to deploy, you might have to find an ideal
storage schema for your back-end. We explain how you are often able to adapt an
existing schema, but you might decide to create a new schema to make it easier to
integrate into your existing systems. We cover this in detail for name server brands
that you can adapt, when we discuss the brands of name servers.

6. If you plan on using incoming or outgoing AXFR zone transfers, security considerations
may limit your choice of name server: only a few name servers support transaction
signatures (TSIG) for authorizing zone transfers, and this could be a decision maker or
breaker for you.

7. Implement monitoring of your name services (Chapter 24).

8. If you want statistics on your DNS usage, you will need additional software to gather
and analyze the statistics. We show you which brands of server produce their own
statistics, and in Chapter 24 we show you a program that you can use independently
of a specific brand of server.

9. If you plan on implementing one of the back-ends that allow you to add your own
program code to them, you will need some time for programming and testing. This
can turn out to be non-negligible, depending on the amount of experience you have.

10. If you are a mail system administrator, and want to implement a DNS blacklist, you
will need to be proficient with your mail server configuration.

11. Do you need DNSSEC security? This greatly restricts your choice of name server: cur-
rently only two authoritative servers (NSD and BIND), and two caching servers (Un-
bound and BIND) support DNSSEC.

12. If you want to integrate DHCP with your DNS, decide which of the methods we dis-
cuss in Chapter 19 is best for you.

13. If you intend to implement internationalized domain names, make sure you have the
required tools with which to test them. We discuss this in Chapter 21.

14. Secure the host machines on which you run your name servers. Apart from the initial
configuration effort, allocate ongoing resources to keep the operating system and DNS
software up to date with the latest security patches.

15. Set up a backup system for your DNS servers and perform regular backups of the zone
data and relevant configuration files. Create disaster-recovery plans (and test them!).

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 3. Preparing for your implementation 63

16. You may want to implement two different brands of server to provide name services.
The downside of using different programs on each server is that you have to know the
different programs and maintain them separately; the upside is that they are unlikely
to fail for the same reasons, so you system is more resilient in the face of widespread
bugs or DNS problems or security holes.

17. If you use private IP networks as specified by RFC 1918, you might need to configure
some of the caching name servers specifically to handle AS112 zones. TheAS112 zones
are the reverse DNS zones for the networks described by RFC 1918. If you use private
IP addresses, this is important to you.

18. Many sites implement DNS on a server with an SQL/LDAP back-end, but have a
different brand of server acting as a “front-end” server. Although this is quite easy to
implement, it does mean you have to learn and maintain two different programs.

3.1.1 Planning your name server placement

Where, from the network point of view, are you going to place your new DNS servers?

• Authoritative servers that handle from the Internet for your public domain names are
positioned in your DMZ.

• If you need an authoritative name server for internal (i.e. non-public) zones within
your network, or you decide to implement “internal” name servers with authority
and caching function like we described in Section 1.2.5, you place the servers on any
convenient part of your internal network.

• Unless you are an Internet Service Provider, you will typically not have a caching
server facing the Internet, as you won’t want others to use your caching name server,
just as you wouldn’t want others to use your HTTP proxies or (gasp!) your e-mail
server.

• We recommend you place the back-end’s replica as close as possible (from a network
point of view) to the DNS server, ideally on the same machine. While this increases
the load on the machine, the advantages are:

– You reduce the latency (i.e. the delay in sending the DNS answer back to the re-
questing client) caused by the DNS server querying the back-end.

– You can reduce the overhead (and thus also some latency) in the communica-
tion between the DNS server and its database back-end by using UNIX domain
sockets, instead of network sockets, wherever possible.

– Diagnosing errors is easier as you can eliminate network errors from the equation.

3.1.2 Capacity planning

• It is probably difficult to predict how many queries your DNS servers will receive. If
you know of a site comparable to yours, contact its system administrators: they may
be willing to give you an idea.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

64 Alternative DNS Servers – Jan-Piet Mens

As a rule of thumb, you can calculate one DNS query for each visit to your Web site by
a browser client; the Web browser will have to determine the IP address of your Web
site before it can connect to it. The Web browser will probably be querying your DNS
server via a caching name server, so it won’t have to query your DNS again until the
TTL of the DNS reply expires.

You can typically apply a similar rule of thumb for an e-mail sent to your site.

• If you know how many zones you will be publishing you can estimate the disk capac-
ity you will need based on our examples in Chapter 23. Zones stored in text files are
compact, because DNS resource records are very small. However, an SQL or LDAP
back-end adds a lot of storage overhead. For example, the 100 000 zones we use in
our performance tests (Chapter 23) occupy 400 MB of disk space when stored as zone
master files, compared with 2 GB, including indexes, when stored in OpenLDAP.

• The CPU requirements for running a name server are typically not very high, but
depend on a number of factors:

– The brand of name server.

– How your server stores its zone data. For example, an SQL back-end uses more
resources than zone data stored in local flat files.

– The number of queries your name servers receive..

– The load caused by any other services you run on the same machine.

– If you deploy DNSSEC, your name servers will utilize more CPU.

• In general, the higher you set the Time to Live (TTL) on your DNS records you serve,
the less frequently your DNS servers will be queried, because caching name servers
will cache the answers for a long time.

• If you use low TTL values on your records, your authoritative servers are queried more
often, but you know that a change of, say an Address of one of your mail or Web
servers, will propagate quickly.

• You might want to load-balance services using the DNS. Consider using Service (SRV)
or Mail Exchanger (MX) records to give priorities to services. Round-robin answers to
Address (A) resource records are also a kind of load-balancing. We discuss how you
might implement load-balancing of services by implementing custom DNS servers in
Chapter 6 and in Chapter 8.

3.1.3 Business continuity

DNS is mission critical for almost every organization. It is terribly embarrassing (and costly
due to lost revenue) if customers get a “can’t find the server” error message when they try
to visit your Web site (Figure 3.2). To make sure your DNS is highly available, you have
to build in resilience to failure, but you also have to avoid downtime for inevitable system
maintenance. Points to consider are:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 3. Preparing for your implementation 65

Figure 3.2: What your customer sees when your DNS fails

• Plan changes well in advance. For example, if you know that in two weeks you’ll be
moving one of the Web servers on www.qupps.biz to a new host with a new IP address,
lower the TTL of www.qupps.biz’s A record now. Set the TTL to a low a value, say 60 or
120 seconds;. this will increase the number of queries you get, but when you change
the Address record, the new value will be propagated very quickly. As soon as you
know that the change was successful, raise the TTL to its normal value.

• Within your organization, provide at least two caching name servers on your network,
and ensure that all your workstations and (non-DNS) servers include them in their net-
work configuration (/etc/resolv.conf on *nix, and TCP/IP properties on Microsoft
Windows). Believe us: at some point in time, one of the machines on which the recur-
sive resolvers run will fail; this will cause havoc on your local network if you don’t
have a second server.

Remember: use at least two of everything.

• Even though you have more than one DNS server, consider “duplicating” it onto a
machine (perhaps even a virtual machine) that you can bring on-line in the unlikely
event of a catastrophe. Ensure you document procedures for bringing it on-line in a
rush.

• Spread your name servers over different geographical regions if your organization’s
network allows it. Or, convince a friendly neighboring organization to be a secondary
to your zones if you do the same for them. Then your public DNS can continue to
operate even if one of your sites goes down. A DNS service can fail for many different
reasons: how it fails is important:

– A simple DNS server daemon might just have crashed. As long as you have
more than one server (you do, don’t you?) that is, surprisingly, very satisfactory:
the crashed daemon won’t answer at all, leaving the other daemon to answer
requests correctly. The reason this is acceptable, and in fact the best thing that can
happen, is that we know the crashed server will not answer incorrectly: a wrong
answer is muchworse than no answer at all.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

66 Alternative DNS Servers – Jan-Piet Mens

– In amore complex setup, youmight have a DNS server which relies on a database
back-end on a remote system. When the database server crashes, how does your
front-end DNS server react? Will it answer queries sent to it? Will it answer
correctly, by sending a SERVFAIL error answer, or will it answer all queries with
NXDOMAIN as answer? The latter is disastrous: one of your DNS servers is say-
ing, authoritatively, that the domain names do not exist! That must not happen.
When we say that the best case is the DNS daemon crashing, we aren’t kidding.

• DNS is a vital service for the workstations and servers on your own internal network.
Ensure that the caching name servers you set up actually work, and monitor them
continuously. We discuss this in Chapter 24.

• Use DHCP settings to distribute alternating name server addresses to your worksta-
tions to distribute the load on your internal name servers.

3.2 The programs and why we chose them

Is BIND the only name server implementation? The answer to this question is a resounding
“perhaps not”, although it is the most widely used. There are other programs which may
verywell be better suited to your environment. BIND is themost feature-rich of all the servers
we discuss, and this is probably what makes BIND a daunting beast: its documentation is
huge. If you won’t need all its features, there are several very good alternatives. You might
also decide to use both BIND in conjunction with a different server, and we show you how
to do so.
The programs we cover are: MaraDNS, PowerDNS and PowerDNS Recursor, MyDNS, BIND

(with BIND SDB and Bind DLZ), djbdns (which consists of tinydns and dnscache), ldapdns, NSD,
Unbound, dnsmasq, dnsproxy, Perl name servers, and rbldnsd. We selected these programs for
several different reasons:

• Most of these programs are in widespread use. They are usually well maintained and
you will find plenty of people willing to help you deploy them. They have active
mailing lists where you can ask for support if you need it.

• All the programs are special in some way. For example, MyDNS, PowerDNS and Bind
DLZ can access SQL back-ends to retrieve zone data. PowerDNS, Bind DLZ, BIND SDB,
and ldapdns can read their DNS zone data from LDAP directories, and MaraDNS has a
special resource record type which allows you to have the server automatically create
an inverse entry (i.e. a PTR RR in the in-addr.arpa domain) for each domain name you
define.

• BIND SDB and Bind DLZ are add-ons to the BIND name server rather than servers of in
their own right. They enable BIND to retrieve zone data from external data sources.

• rbldnsd is very specialized: you use it to publish DNS blacklists for your e-mail systems.

• Some of the programs allow you to extend their functionality. For example, BIND SDB
allows you to create a custom interface in the C programming language, with which

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 3. Preparing for your implementation 67

you “produce” answers to DNS queries from any source you come up with, and Pow-
erDNS’s Pipe back-end lets you easily solve a similar task with a simple shell or Perl
script. If you want to, you can even create your own specialized name server in Perl;
we show you how to do that as well.

• One of the programs, NSD, offers incredible performance, which you might need if
you are an Internet Service Provider, for instance.

• Unbound is a “new kid on the block”. It is a caching and validating name server devel-
oped by the people who wrote NSD, and it supports DNSSEC validation.

• With the exception of a short discussion of Microsoft Windows DNS Server, all the pro-
grams we discuss are Open Source. The quality of these programs is very high; be-
cause they are so widely used, bugs are found quickly; because people can download
the source code of the programs, bugs are usually fixed quickly too.

Some of the programs we discuss in this book haven’t been maintained for a while, which
is a shame. Still, we think all the programs have valuable characteristics, which is why we
discuss them. Take ldapdns for example; an LDAP-based DNS name server that does its job
reasonably well. What future does it have? We can’t answer that question, and we believe
the same question can be asked for most software packages. Software comes and goes, and
if there is nobody who undertakes to maintain a program, it typically slides into oblivion.
As another example, suppose the Internet quickly moves to DNSSEC, what future would be
in store for djbdns or PowerDNS? If the maintainers of these packages aren’t willing to add
DNSSEC to them (and they don’t appear to be, at the time of this writing), what future is
there for the programs? The question is a bit rhetorical perhaps, but it is something we hope
you’ll keep in mind.

3.3 Operating system and software requirements

Name servers impose few special requirements on the operating system:

• All the programs we discuss run on *nix, and consume moderate amounts of re-
sources.

We tested all the Open Source programs on a modern Linux distribution without any
special software added. (See Chapter 23 for the software we used in our tests.)

• Microsoft Windows versions of the code are available for some of the programs, and
there are ready-made binary packages of MaraDNS and BIND for Microsoft Windows.

• Obviously, if you want to use an SQL or LDAP directory back-end, you need the re-
spective server software (and perhaps extra hardware to run it on). (We show you how
to set up an LDAP directory back-end easily, in Appendix A.)

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

68 Alternative DNS Servers – Jan-Piet Mens

3.3.1 Using pre-built packages

Modern *nix system software distributions provide individual packages (or ports in the case
of FreeBSD) of software. This is a great way to get started quickly. You can compile from
scratch later, when you may want to tailor your build, and when you have a better under-
standing of what the various components of a package provide.
However, the package content is at the whim of the packager and is sometimes quite

outdated. Of course, not all software is available as a pre-built package for all platforms. If
there isn’t one for your chosen platform, you’ll have to build from source (see below).
You will have to consult your system documentation on how to install a package, but

you will typically have a program with which you can browse or search for a package by
name and then install it. On Red Hat systems this would be yum or rpm, on Suse Linux you
might use yast, or dpkg or apt-get on Debian Linux.

Building software from source

We always prefer building from source, because:

1. You specify exactly which features of a program you want compiled, without having
to live with what a package maintainer thinks you want.

2. You, not your operating system’s package management system, decide when to up-
date this software.

3. You have a handy copy of the source that you can consult if something goes wrong.
Even if you yourself don’t know how to “read” or “fix” source code, you can readily
employ somebody else to do it for you. Think of it as “protecting your investment”
(one of the major benefits of Open Source!).

4. You can specify exactly where you want your programs installed.

5. The source packages often contain additional and valuable documentation which isn’t
installed by packages.

6. You can compile a program on a platform for which no pre-built package is available
(for Cygwin on Microsoft Windows, for example).

Compiling the Open Source name servers is not difficult. Most use the GNU autoconf and
automake tools, which simplify the task. The program’s documentation will instruct you
how to build it, and we also cover each program’s compilation in its respective chapter.
Upgrading the programs is usually simply a matter of compiling a newer version and

installing it instead of a previous version. It is always important to backup previous pro-
grams and configuration files of course, and we strongly recommend you read at least the
program’s Changelog to find out about new requirements or features the program supports.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 3. Preparing for your implementation 69

3.4 Back-ends supported by the various servers

Many of the name servers give you a choice of where to store their zone data. Some of
the more “exotic” ones are Bind DLZ, with its Berkeley DB back-end. (Berkeley DB is an in-
process database – think of a database system embedded into the program. We discuss this
in greater detail in Chapter 9.)
Again others (BIND SDB, PowerDNS, Stanford::DNSserver) are so flexible that you can pro-

gram your own answers to DNS queries by attaching a back-end you code yourself, if you
have some programming skill. For example, we show you in Chapter 8 how you can im-
plement your own load-balancer, and in Chapter 15 we show you how you query details of
people in your LDAP directory via the DNS!
The alternatives are summarized in Table 3.1. (If you are not familiar with some of the

abbreviations such as BDBHPT, BDB, etc. don’t worry: we explain them when we cover
them in their respective chapters.)

Name server LDAP SQL Files Other
MaraDNS •a

PowerDNS • • •b •c

MyDNS •
BIND •d

BIND SDB • • •
Bind DLZ • • •e

tinydns •f

ldapdns •
NSD •g

aProgram specific
bStandard master file format
cPipe, Random, Oracle, SQLite, DB2, ODBC, XDB
dStandard master file format
eBDB, BDBHPT, ODBC, File system
fProgram specific
gStandard master file format

Table 3.1: Back-end support in authoritative name servers

3.5 Setting up a test environment

Before you plan your implementation, we recommend you create a test environment so
you can evaluate and experiment with the programs. (Even when your system has gone
live, a separate test environment lets you try out new configurations and techniques with
impunity.)

• You will need access to a modest machine on which you install software, create config-
uration files and possibly wreak havoc without affecting anything important. If you
don’t have a spare machine, we recommend you use VMware (see http://vmware.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

70 Alternative DNS Servers – Jan-Piet Mens

com), VirtualBox (see http://www.virtualbox.org/) or Parallels (see http://www.

parallels.com/). These programs let you create sand-boxed environments, called
virtual machines, where you can experiment to your heart’s content; they also let you
reset a virtual machine back to its initial state, making re-installation a snap if you
make a big mess and need to start over. The fear of damaging something important is
a huge barrier to becoming really proficient in complex systems.

• Use a recent version of your favorite operating system. GNU/Linux or FreeBSD are
excellent platforms for name services.

• If you are going to experiment with DHCP, make sure your test DHCP server is com-
pletely isolated from your live network. It is very easy to cause havoc in an organiza-
tion by setting up a DHCP server that starts doling out (duplicate) addresses to your
live machines.

Unlike DHCP, installing an extra DNS server is not dangerous, because no clients will
know about it, or use it, until you explicitly configure them to. (Extra DHCP servers
are a problem, because clients locate them automatically by broadcasting for them.)

• You do not need Internet connectivity for testing the programs; a Local Area Network
suffices.

• When testing in a sand-boxed environment, use IP addresses rather than hostnames
when querying your name server. If you don’t, you can be misled by your system
using its /etc/resolv.conf which might contain incorrect entries.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 3. Preparing for your implementation 71

Summary

• When planning your implementation, choose your server and back-end, and carefully
plan their placement on your network.

• BIND is the most widely used name server, but there are many good reasons why you
might decide to choose a different brand of server.

• Make sure you have at least “two of each”.

• Identify machines which make heavy use of the DNS, and place a caching name server
on those.

• You can easily set up an environment in which you test name servers for their func-
tionality, and we strongly recommend you do so.

What’s next?

This concludes Part I of the book, where we introduced you to the DNS, to zones and their
data. Part II is quite different: it discusses the Open Source DNS servers, how you compile
them (if necessary), and most importantly, how you configure them. We show you some of
their outstanding features, and help you decide what they are best used for.

• If you want to set up DNS in a branch or Small Office / Home Office environment, we
recommend you learn about:

– MaraDNS (Chapter 4)

– tinydns (Chapter 11)

– dnsmasq (Chapter 13)

• If you are planning to deploy DNS authoritative and/or caching name services in
your organization, we recommend you read the chapters in order to get an overview.
Ideally then go back and re-read in detail the chapters that are important to you.

Notes and further reading

Database transactions

In a relational database system such as PostgreSQL or MySQL, a transaction is a sequence
of operations performed as a single unit of work. A transaction has four key properties,
abbreviated as “ACID”:

1. Atomic. This means that all the work (i.e. all the modifications) in a transaction are
treated as one. Either they are all performed, or none are.

2. Consistent. This means that a completed transaction leaves the datbase in a consistent
internal state.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

72 Alternative DNS Servers – Jan-Piet Mens

3. Isolated. This means that a transaction sees the database in a consistent state. It will
not “see” a partial update performed by another transaction until that is complete.

4. Durable. This means that the results of the transaction are permanently stored in the
system and will not “somehow disappear”.

In PostgreSQL transactions are part of the database system, whereas for MySQL only certain
so-called “engines” offer transactional capabilities. We recommend you use the InnoDB
engine for MySQL.

Choosing a platform

• The ISC has a benchmark that shows that not all platforms are equal in terms of run-
ning a specific program. Case in point is a benchmark conducted on a number of
different operating systems. Even GNU/Linux distributions differ in the performance
attained (see http://new.isc.org/proj/dnsperf/OStest.html).

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Part

II
The DNS servers

This Part of the book covers the different brands of name servers in detail. We
start off with the authoritative name servers and show you how you implement
them. Even if you are not interested in a particular program, we suggest you at
least skim its chapter, as we do point out things you might wish to implement
with a different brand of name server.

After the authoritative servers, we cover the caching name servers, and finally
we discuss how you set up delegation, and create your own private root name
space if you need that.

Chapter

4 MaraDNS

BIND9 is the emacs of DNS servers: It
includes everything but the kitchen sink.
This results in a full-featured DNS server
that has about 5,000 features you will never
use.

MaraDNS documentation

4.1 Getting results quickly

4.2 Format of MaraDNS zone fi les

4.3 Launch the maradns daemon

4.4 Confi guring MaraDNS behavior with the mararc fi le

4.5 Zone transfers

4.6 Recursion, roots and forwarders

4.7 Logging and utilities

Introduction

MaraDNS has just about the smallest configuration file possible: four lines of configuration turn it into
an authoritative DNS server. It can automatically create PTR records for hosts, which simplifies zone
maintenance.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

76 Alternative DNS Servers – Jan-Piet Mens

MaraDNS, created by Sam Trenholme, is designed to be a lightweight, secure authoritative,
recursive and caching multi-threaded name server. Security is based on a special string
library designed to be resistant to buffer overflows. MaraDNS must run as a non-privileged
user, and it refuses to runwithout a chroot () directory (chroot () replaces the view a process
has regarding the / directory, effectively limiting that process’ view of the file system).

Pros • Special line types that create both A and PTR records
• Optional on-the-fly generation of SOA and NS records
• Recursion can be disabled at compile time to make an
authoritative-only server

• Native Win32 support
• Versatile access control lists
• Manual (man-) pages

Cons ◦ Limited slave support
◦ Threaded model limits scalability

Scenarios Small environments that want a DNS server that is easy to set up
and configure.

Table 4.1: MaraDNS at a glance

MaraDNS reads its zone data from files in the file system. Its zone files slightly resemble
zone master files, but the syntax is different, and it provides some nice shortcuts. If you are
a beginner with DNS you will greatly appreciate a record type that automatically sets up
PTR records when you define a host’s A record.

MaraDNS runs as one of the following:

• An authoritative-only server. You define this when compiling MaraDNS (see Notes).
If you build MaraDNS as authoritative-only, the installation procedure appropriately
names the executable maradns.authonly.

• An authoritative and recursive name server. You use this to set up a DNS name server
in your Small Office / Home Office environment. When running as a recursive name
server, MaraDNS restricts the use of its recursive cache, by means of ACLs (Access
Control Lists), preventing unauthorized clients using it for recursion.

• MaraDNS can also act as a custom root name server.

A strength of MaraDNS is its native support for running on *nix and on Microsoft Win-
dows (i.e. without Cygwin). The Microsoft Windows implementation is fully featured; we
describe how you install it in Chapter 14. The threaded model currently used by MaraDNS
means it doesn’t scale well with high traffic loads (which could make MaraDNS unsuitable
for use by ISPs).

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 4. MaraDNS 77

4.1 Getting results quickly

(This section is just to give you an overview of the program. Don’t worry too much about
the detailed syntax for now – we cover that in Sections 4.2 onwards.)

MaraDNS is probably the easiest of all name servers to set up. A three-line configuration
makes a recursive name server, and a four-line configuration makes an authoritative one.
There are many options that can be set in the configuration file, of course, and we discuss
some of them later on in this chapter.
After installing the programs (see Notes) you set up MaraDNS either as a recursive re-

solver, as an authoritative server, or both, as we show in the following sections.

4.1.1 Set up MaraDNS as a caching name server

To set up MaraDNS as a caching name server, you create a minimal configuration in a file
named /etc/mararc . This is MaraDNS’s default configuration file, and it is separate from
any zone files you might define (see below). The configuration file contains:

chroot_dir = "/etc/maradns"
ipv4_bind_addresses = "127.0.0.1, 192.168.1.164"
recursive_acl = "127.0.0.0/8, 192.168.1.0/24"

The above three lines in mararc will cause MaraDNS to:

• chroot () into the specified directory when it starts running, for security.

• Listen on the specified addresses for incoming queries.

• Allow its recursor to be used as a caching name server by clients on the local machine
(127.0.0.1) as well as those with network addresses 192.168.1.1 – 192.168.1.255.

We discuss below how you modify MaraDNS’s behavior.

4.1.2 Set up MaraDNS as a caching and authoritative server

MaraDNS can operate as a caching name server and as an authoritative name server simulta-
neously, i.e. as an “internal” server (Section 1.2.5). In a Small Office / Home Office environ-
ment, this enables you to publish the content of one or more zones for your internal network
and to use MaraDNS as a caching name server for the public DNS. In order to configure it
as such, you add one or more zone definitions to the configuration, as shown in the next
section.

4.1.3 Set up MaraDNS as an authoritative name server

MaraDNS can serve the content of one or more DNS zones authoritatively, whether you run
it as a caching name server or as an authoritative-only server. Zone files are read once, when
the maradns daemon starts up. If the files’ content changes, you must restart the server to
reload them. During the reloading, the server is unavailable to answer queries.
Modify or create /etc/mararc and add this content:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

78 Alternative DNS Servers – Jan-Piet Mens

chroot_dir = "/etc/maradns"
ipv4_bind_addresses = "127.0.0.1, 192.168.1.164"

csv2 = {}
csv2["soho."] = "soho.csv"

The line csv2={} indicates that the daemon will be authoritative and initializes an internal
list of zones, and the second csv2 line configures the daemon as authoritative for a zone
called soho with zone data in a file named soho.csv . We use the zone called soho because
then our internal hosts will be named printer.soho, pc2.soho, etc. which cannot clash with
public domain names.
You create the soho.csv file in the /etc/maradns directory, and give it this content:

printer.soho. FQDN4 192.168.4.17

Note that white space separates the three fields, but you can use a vertical bar (|) instead if
you prefer.

4.1.4 Automatic zones

Now launch the daemon, maradns (ormaradns.authonly if you built it authoritative-only), and
send it queries. If you query it for the address of your printer, you see:

$ dig @192.168.1.164 printer.soho
;; ANSWER SECTION:
printer.soho. 86400 IN A 192.168.4.17

;; AUTHORITY SECTION:
soho. 86400 IN NS synth-ip-c0a801a4.soho.

;; ADDITIONAL SECTION:
synth-ip-c0a801a4.soho. 86400 IN A 192.168.1.164

The Address (A) record of your printer is correctly returned, and you can see that MaraDNS
has automatically “completed” the zone for you:

• It has provided a Name Server (NS) record for the zone, with a synthesized name –
constructed from the hexadecimal value of the IP address of the maradnsmachine.

• If you query yourMaraDNSDNS server for the inverse (reverse) pointer to your printer,
you might be pleasantly surprised:

$ dig @192.168.1.164 -x 192.168.4.17
;; QUESTION SECTION:
;17.4.168.192.in-addr.arpa. IN PTR

;; ANSWER SECTION:
17.4.168.192.in-addr.arpa. 86400 IN PTR printer.soho.

MaraDNS automatically created a reverse pointer (PTR) because of the FQDN4 record
type in the soho.csv file.

• If you query the Start of Authority (SOA) of your new zone, you see sensible values:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 4. MaraDNS 79

;; AUTHORITY SECTION:
soho. 86400 IN SOA soho. hostmaster.soho. 151655571 ←֓

7200 3600 604800 3600

Technically neither the Start of Authority (SOA) nor the Name Server (NS) records are
required in a zone file. The SOA, including its serial number and RNAME, is synthesized,
and synthetic records are created for the Name Servers as shown above. Nevertheless,
we recommend you explicitly set the records to the values youwant (andwewill show
you to set the SOA, NS and PTR records explicitly).

That concludes our “getting results quickly”. In the next three sections we explain in
detail the format of MaraDNS’s zone files, its configuration file, and how to launch it.

4.2 Format of MaraDNS zone fi les

MaraDNS uses a format called csv2 for its zone files. This is a simple format consisting of lines
of “tokens” separated by white-space or pipe (|) characters. Empty lines and lines starting
with a hash symbol are ignored. Starting in MaraDNS version 1.3, the tilde character (˜) is
used to delimit records in csv2 files, but this is only enabled if a tilde is placed between the
first and second record; otherwise tildes are not allowed in zone files, except in comments.
You can use pipe, tabs, or spaces to separate fields in zone files. Any combination of tabs
and spaces can separate fields, and there can be a single vertical bar in that whitespace. Zone
files in csv2 format contain lines in the following form:

name [+ ttl] [rtype] rdata ˜

where the values have the following meanings:

name This is the domain name of the record to be added, such as www.qupps.biz. (qual-
ified with a terminating period). It must be placed at the beginning of a line. It
must be either fully qualified (with a terminating dot), or qualified with a percent
sign (%), which stands for the current zone name. For example, if the csv2 file be-
ing loaded is for zone qupps.biz, and you specify “name.%”, then the domain name
will be “name.qupps.biz. ”, with the terminating period.

+ttl The Time to Live (TTL) of the record in seconds. If it is not set on a line, it defaults to
86400 seconds (1 day), unless overridden in the csv2 file with the /ttl command:

www.qupps.biz. +60 A 192.168.1.20
w4.qupps.biz. A 192.168.1.21
/ttl 3600
mail.qupps.biz. A 192.168.1.24

The first host has its TTL explicitly set to 60 seconds; the second gets the default of
one day. The third line sets the new default of 3 600 seconds; subsequent records
inherit that TTL until it is overridden by a further /ttl command.

rtype The type of the DNS resource record. The default is an Address record (A).

rdata The data for the resource record; its format depends on rtype.

˜ The tilde is optional; if it is included at the end of the line, it defines the record
separator for the whole csv2 file – instead of a newline.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

80 Alternative DNS Servers – Jan-Piet Mens

Typical resource records

We list some of the more common resource records here with examples, but MaraDNS sup-
ports others as well (consult the documentation):

A An Address record contains an IPv4 Address. This is the default rtype, so you
can omit the type, if you like:

host.qupps.biz. A 192.168.3.23
host2.qupps.biz. 192.168.3.123

PTR A Pointer for an inverse lookup in an in-addr.arpa zone. Its content is a domain
name.

21.1.168.192.in-addr.arpa. PTR www.qupps.biz.

MX The Mail Exchanger rdata contains two fields: a preference (or priority) and a
domain name.

qupps.biz. MX 10 mail.qupps.biz.

AAAA This record contains an IPv6 Address.

server.% AAAA 3ffe:ffff:ffe:501:ffff::b:c:d

SRV Service definition. The rdata must have four fields: priority, weight, port and
target host.

_ldap._tcp.% SRV 0 10 389 ldap.%

NS Name server. This contains a domain name (not an IP address).

qupps.biz. NS dns2.%

SOA The Start of Authority rdata in MaraDNS contains the usual seven fields:

qupps.biz. SOA ns.% mail@% 200801010 7200 3600 604800 1800

Note that the RNAME field contains a real e-mail address with an@character.

If the serial number is specified as the string /serial , the serial number is syn-
thesized from the modification time of the file containing the zone.

TXT The Text record can contain an arbitrary string, which is placed between two
single quotes:

printer6.% TXT ’on second floor behind ping-pong machine’

FQDN4 This type is specific to MaraDNS. It creates an Address (A) with an associated
Pointer (PTR) record:

www.% FQDN4 192.168.1.17

but you still have to create the in-addr.arpa zone (see below). The example above
could have been specified as:

www.qupps.biz. A 192.168.1.17
17.1.168.192.in-addr.arpa. PTR www.qupps.biz.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 4. MaraDNS 81

FQDN6 Like the FQDN4 record for IPv4 addresses, MaraDNS has the FQDN6 record for
IPv6:

big.qupps.biz FQDN6 3ffe:ffff:ffe:501:ffff::b:c:d

CNAME Sets up an alias.

www.% CNAME webserver.qupps.biz.

An example zone in csv2 format

The following shows a zone file including SOA and NS records:

% SOA % hostmaster@% 1 7200 3600 604800 1800
% NS ns1.%
% NS ns2.%

% FQDN4 192.168.1.20
% MX 10 mail.%

ns1.% FQDN4 192.168.1.164
www.% A 192.168.1.21
mail.% FQDN4 192.168.1.20

Reverse zones

A line type FQDN4 in MaraDNS sets up an Address (A) and its associated PTR record for you,
but it does not automatically create authority for the appropriate reverse in-addr.arpa zone.
In order to do that you still have to:

1. Set up the zone in mararc by adding it to the csv2 variable:

csv2["4.168.192.in-addr.arpa."] = "reverse.csv"

As we’ll see in Section 4.4, csv2[] is a “ dictionary” variable that can take multiple
values, so you can use this in addition to the csv2["soho."] line we saw earlier.

2. Create the file reverse.csv with a Start of Authority (SOA). We show this here with
the pipe separators:

%|SOA|% email@soho. 1 7200 3600 604800 1800

A dig query for this shows:

$ dig @127.0.0.1 4.168.192.in-addr.arpa. soa
;; ANSWER SECTION:
4.168.192.in-addr.arpa. 86400 IN SOA 4.168.192.in-addr. arpa. ←֓

email.soho. 1 7200 3600 604800 1800

3. If you want to add additional records to the in-addr.arpa zone, you append them to the
reverse.csv file:

6.%|PTR|router.soho.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

82 Alternative DNS Servers – Jan-Piet Mens

4.3 Launch the maradns daemon

The configuration we created above together with the csv2 zone file suffice to authoritatively
serve DNS for the qupps.biz domain. Upon starting the MaraDNS daemon, we see:

/usr/local/sbin/maradns.authonly
Log: Root directory changed
Log: Binding to address 127.0.0.1, 192.168.1.164
Log: Socket opened on UDP port 53
Log: Root privileges dropped

Processing zone qupps.biz. right now.
Filename: db.qupps.biz
MaraDNS proudly serves you 11 DNS records
MaraDNS maximum memory allocation set to 2638336 bytes
Log: All RRs have been loaded

The diagnostic error-messages issued by maradns are sometimes a bit misleading. For exam-
ple, a misplaced comma (instead of a period) in ipv4 bind addresses can produce:

Fatal error: Problem binding to port 53.
System said: Cannot assign requested address

If you get an error like that, we recommend you go over your configuration once more.
There are no surprises when querying the server:

$ dig @127.0.0.1 qupps.biz
;; flags: qr aa rd; QUERY: 1, ANSWER: 1, AUTHORITY: 2, ADDITIO NAL: 1

;; ANSWER SECTION:
qupps.biz. 86400 IN A 192.168.1.20

;; AUTHORITY SECTION:
qupps.biz. 86400 IN NS ns1.qupps.biz.
qupps.biz. 86400 IN NS ns2.qupps.biz.

;; ADDITIONAL SECTION:
ns1.qupps.biz. 86400 IN A 192.168.1.164

4.4 Configuring MaraDNS behavior with the mararc fi le

As seen above, you configure the behavior of the MaraDNS daemons, either maradns or
maradns.authonly, with the mararc file (which is completely separate from the csv2 files that
contain zone data). Edit the file with a text editor. Lines that begin with a hash character (#)
and lines that contain only white space are ignored. Otherwise, lines contain variable/value
pairs. Variables in mararc are of two types:

1. Normal variables take only a single value, although that single value can indicate multi-
ple things. E.g. admin acl takes a single string value, but that string can specify multiple
IP addresses, netblocks or aliases. The syntax for setting a normal variable is:

name = " value"

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 4. MaraDNS 83

2. Dictionary variables. These are arrays that can have multiple elements, indexed by
strings. (Think associative arrays in PHP, or Perl hashes). The syntax of a dictionary
variable is:

name[" index-1"] = " value-1"
name[" index-2"] = " value-2"

where name is the name of the dictionary variable, index is the index of the array, and
value is the value stored at that index. Dictionary variables must be initialized before
their first use with:

name = {}

We showed a simple example starting in Section 4.1.3:

csv2 = {}
csv2["soho."] = "soho.csv"
csv2["1.168.192.in-addr.arpa."] = "reverse.csv"

4.4.1 Normal variables

The most commonly required normal variables are:

admin acl Netblocks specifying the addresses that are allowed to query the
server for administrative information, including theMaraDNS ver-
sion number and the number of threads it is running. The comma-
separated list of networks, specified as individual IP addresses or
CIDR networks, may retrieve server information, depending on
the setting of debug msg level (see below). If admin acl is unset, no-
body may query the server for these values.

admin_acl = "127.0.0.1, 192.168.1/24"

This administrative information is served as TXT resource records
on special domain names, so they can be queried with a standard
TXT DNS query.

Instead of specifying individual netblocks here, you can also spec-
ify an ipv4 alias (see page 86).

admin_acl = "127.0.0.1, bossMachines"

chroot dir The directory to which MaraDNS chroot ()s when you launch it.

debug msg level A number specifying the level of information a running MaraDNS
process should make public:

0 No information should be made public.

1 or higher (this is the default). MaraDNS’s version number is
available as a TXT RR on domain name version.maradns.

$ dig @127.0.0.1 version.maradns. txt
;; ANSWER SECTION:
version.maradns. 770616 IN TXT "MaraDNS version 1.3"

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

84 Alternative DNS Servers – Jan-Piet Mens

2 or higher: the number of currently running threads is avail-
able as a TXT RR on domain name numthreads.maradns, and
the number of elements in its cache as a TXT RR for the do-
main cache-elements.maradns.

$ dig @127.0.0.1 cache-elements.maradns. txt
;; ANSWER SECTION:
cache-elements.maradns. 770616 IN TXT "Elements in ←֓

DNS cache: 223"

A query for domain memusage.maradns returns the amount
of memory that MaraDNS has allocated, if you compiled the
program with “make debug ” (not recommended).

$ dig @127.0.0.1 memusage.maradns. txt
;; ANSWER SECTION:
memusage.maradns. 770616 IN TXT "Memory usage, in ←֓

bytes: 85377"

3 or higher: the current time on the server on which maradns is
running is returned in traditional UNIX seconds if you query
domain timestamp.maradns:

$ dig @127.0.0.1 timestamp.maradns. txt
;; ANSWER SECTION:
timestamp.maradns. 770616 IN TXT "Timestamp: 914..."

dns port Port that MaraDNS listens on. It defaults to 53.

hide disclaimer Whether or not to hide the disclaimer that MaraDNS issues upon
startup. After you have read that once, for the future you may
wish to set:

hide_disclaimer = "yes"

ipv4 bind addresses A comma-separated list of the IPv4 addresses the MaraDNS server
should listen on.

ipv4_bind_addresses = "127.0.0.1, 192.168.1.164"

ipv6 bind address The single IPv6 address MaraDNS should listen on. For this to
work, the server must be bound to at least one IPv4 address.

maradns uid

maradns gid The numeric UID and GID respectively that the server should run
as. The default for both number is 99.

maradns_uid = 103
maradns_gid = 98

max total The maximum number of records that the server will include in a
DNS reply. (For example, if you have a host with many A records,
you can limit the number of records returned in a query for it.)

random seed file MaraDNS needs 16 random bytes to seed its pseudo random num-
ber generator. This value specifies the name of a file from which
the 16 bytes will be read. The file name is relative to the system’s

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 4. MaraDNS 85

root directory (and not to the directory chroot ()ed to). The de-
fault is /dev/urandom .

random_seed_file = "/etc/maradns/rnd"

recursive acl Comma-separated netblocks specifying addresses that are permit-
ted to query the server for recursive queries. If this variable is
unset, the recursor is effectively disabled.

recursive_acl = "localhost, ip/ netmask"

ip is an IP address; netmask can be in one of two formats:

1. A single number between 1 and 32, which indicates the num-
ber of leading bits in the netmask (CIDR representation).

2. A 4-digit dotted decimal netmask.

remote admin If remote admin is set to 1 and admin acl is set, any IP address listed
in admin acl is allowed to modify the value of verbose level by
querying the server for a TXT record of n.verbose level.maradns, to
set the value of verbose query to n.

$ dig @127.0.0.1 4.verbose_level.maradns. txt
;; ANSWER SECTION:
4.verbose_level.maradns. 770616 IN TXT ←֓

"Verbose level is now 4"

upstream port The port number (default is 53) that the MaraDNS recursive re-
solver should use to contact other DNS servers.

verbose level Specifies what should be logged to standard output. There are
five possible values:

0 No messages except for the legal disclaimer and fatal file
parsing errors.

1 Only startup messages (default).

2 Error queries and level 1 messages.

3 All queries and level 2 messages.

4 All actions, including adding and removing records from the
cache, are logged.

verbose query Whether to verbosely output all DNS queries that the recursive
DNS server receives. If this is set to 1, then all recursive queries
sent to MaraDNS are logged. This is mainly used for debugging.

4.4.2 Dictionary variables

The dictionary variables currently supported by MaraDNS are:

csv2 The set of all zone-name/filename pairs that MaraDNS serves. The
named files are read after the program chroot ()s, so paths are
relative to the chroot dir directory.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

86 Alternative DNS Servers – Jan-Piet Mens

csv2 = {}
csv2["qupps.biz."] = "qupps.biz.csv"
csv2["soho."] = "soho.csv"
csv2["example.net."] = "db.example.net"

Note how the zone name is specified as the index into the csv2
variable, and that its name is qualified with a terminating period.

ipv4 alias This lets you give nicknames or aliases to netblocks for IPv4 ad-
dresses. You can then use these aliases in ACLs (as we showed
you for admin acl above).

ipv4_alias = {}
ipv4_alias["laptop"] = "192.168.2.178"
ipv4_alias["office"] = "laptop,192.168.1/24"
ipv4_alias["bossMachines"] = "192.1.1.1, 192.168.1.20"

Aliases can nest as shown in the above example: the alias office
contains all the hosts in the range 192.168.1.1 – 192.168.1.255 and
the single host 192.168.2.178.

An ipv4 alias can also be “appended to” with an operator that con-
catenates additional values to it. The alias for “bossMachines”
above could have been written as:

ipv4_alias["bossMachines"] = "192.1.1.1"
ipv4_alias["bossMachines"] += "192.168.1.20"

You typically use this when defining an alias with many values to
allow for a neat layout of your mararc file.

root servers When acting as a caching name server, MaraDNS uses a compiled-
in set of root name servers. If you are in an environment in which
you have to access your own private root servers (Chapter 18),
you will have to change the default set, by using this variable.
The value you set consists of one or more IP addresses, netblocks,
or ipv4 aliases:

ipv4_alias = {}
ipv4_alias["myown"] = "198.41.0.4, 192.228.79.201,"
ipv4_alias["myown"] += "128.8.10.90, 192.203.230.10,"
...
ipv4_alias["myown"] += "202.12.27.33"

root_servers = {}
root_servers["."] = "myown"

root serversmust point to root servers; if you want MaraDNS to act
as a forwarding server, use the upstream servers variable instead.

root servers is an array, so it can have more than one element, each
with a different index, of course; The index is a zone name qual-
ified with a terminal period. Extending on the example above, if
we add:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 4. MaraDNS 87

root_servers["example.net."] = "192.168.1.1"
root_servers["org."] = "192.168.1.20"

then queries for www.example.net will be resolved via the server
at 192.168.1.1 – i.e. 192.168.1.1 will be the first name server con-
tacted by MaraDNS when progressing along the chain of delega-
tions. Queries for anything.org will use the name server you con-
figured at 192.168.1.20, and all other domains will be resolved
via the servers defined for the "." element of the array (i.e. the
servers in the “myown” variable).

upstream servers Syntactically, this variable is identical to the root servers variable
above, but upstream servers lists forwarders (i.e. servers MaraDNS
should forward to). So, if you want MaraDNS to forward queries
for domain example.net to two specific forwarders, you would de-
fine:

ipv4_alias = {}
ipv4_alias["boxes"] = "192.0.2.4, 192.168.1.401"

upstream_servers["example.net."] = "boxes"

Having upstream servers and root servers in the same mararc file
causes a fatal error.

4.5 Zone transfers

MaraDNS supports zone transfers (AXFR) using two ancillary programs:

zoneserver This handles outgoing zone transfers. (In fact it handles all queries/responses
sent over TCP instead of UDP.)

fetchzone Performs incoming zone transfers, printing whatever it receives, to standard
output.

Both programs use the same configuration file as the main maradns program.

4.5.1 Using MaraDNS as a master DNS server

The zoneserver program handles TCP/IP traffic for MaraDNS as follows:

1. When zoneserver receives an incoming DNS query over TCP, if it isn’t an AXFR re-
quest, it forwards it via UDP to main maradns daemon at the address specified in the
tcp convert server variable. The main maradns program replies to zoneserver, over UDP,
and zoneserver sends the reply to the original client over TCP (Figure 4.1, left).

Only clients listed in the variable tcp convert aclmay send zoneserver non-AXFR requests
over TCP. If a client whose address is not in the ACL, attempts to connect via TCP,
zoneserver closes the connection.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

88 Alternative DNS Servers – Jan-Piet Mens

Figure 4.1: zoneserver handling non-AXFR requests (left) and AXFR (right)

2. If the incoming TCP query is an AXFR request, zoneserver itself handles the request
(Figure 4.1, right), reading the zone files as necessary from disk. The zone transfer acl
variable defines the list of clients that are allowed to perform zone transfers. Once you
have authorized a client to perform a zone transfer, it may transfer all zones offered by
MaraDNS; there is no provision to limit the zones a specific client may transfer. Setting:

zone_transfer_acl = "0.0.0.0/0"

allows any client to transfer zones from your server. We do not recommend this.

3. You enable zone transfers by adding the IP addresses of the requesting clients to
zone transfer acl.

A snippet from /etc/mararc illustrates the variables:

tcp_convert_server = "127.0.0.1"
tcp_convert_acl = "office"
zone_transfer_acl = "laptop"

A potential problem with MaraDNS as a master server to non-MaraDNS slaves is that re-
sources specified with MaraDNS’s FQDN4format have their reverse in-addr.arpa PTR records
returned mixed in with their forward zone, as illustrated; there are slave servers that don’t
like that very much (e.g. MaraDNS’s own fetchzone), because the zone contains “foreign”
data.

$ dig @127.0.0.1 qupps.biz axfr
qupps.biz. 86400 IN SOA qupps.biz. hostmaste...
qupps.biz. 86400 IN NS ns1.qupps.biz.
qupps.biz. 86400 IN NS ns2.qupps.biz.
20.1.168.192.in-addr.arpa. 86400 IN PTR qupps.biz.
qupps.biz. 86400 IN A 192.168.1.20
qupps.biz. 86400 IN MX 10 mail.qupps.biz.
164.1.168.192.in-addr.arpa. 86400 IN PTR ns1.qupps.biz.
ns1.qupps.biz. 86400 IN A 192.168.1.164
...

zoneserver handles incremental zone transfer (IXFR) requests as if they were full (i.e. AXFR)
requests.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 4. MaraDNS 89

Figure 4.2: fetchzone, not MaraDNS, handles incoming zone transfers

4.5.2 Using MaraDNS as a slave DNS server

MaraDNS relies on fetchzone to transfer zone files from other servers. MaraDNS can’t auto-
matically initiate transfers; instead, you invoke fetchzone with the name of a zone and the
IP address from which the zone should be loaded. The source name server (i.e. the master
server from which the zone transfer will be received) must obviously be willing to handle
zone transfers, or fetchzonewill fail.
Incoming zone transfers are rudimentary: fetchzone performs the AXFR and dumps the

result in CSV2 format on standard output, leaving it up to you to do something with it. For
MaraDNS that would mean saving the CSV2 formatted output to a zone file, to be served
up by the main daemon. Under no circumstances should you shell-redirect data into a
production file; if the zone transfer should fail, the state of the resulting zone would be
indeterminate. Instead, you should use something along the lines of:

Listing 4.1: Safe fetchzone for MaraDNS

#!/bin/sh
fetchzone=/usr/local/bin/fetchzone

[$# -ne 2] && { echo "Usage: $0 zone IP" >&2; exit 2; }

zone=$1
ip=$2
tmpz=/tmp/zone.$$

${fetchzone} ${zone} ${ip} > ${tmpz} &&
mv ${tmpz} /etc/maradns/db.${zone}

rm -f ${tmpz} # unlink anyway; file exists even
if transfer failed

MaraDNS doesn’t notice when a zone file changes. This means that you must restart maradns
for changes to take effect.
Steffen Beyer has written a Ruby script that enablesMaraDNS to operate as a slave server,

by automating the tasks you’d otherwise have to performmanually. The script, run via cron,
fetches the master zones, checks their serial numbers against those in the local zones, sorts
in the new records, and restarts MaraDNS if necessary (see http://teralink.net/misc/

fetchzones/).

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

90 Alternative DNS Servers – Jan-Piet Mens

4.6 Recursion, roots and forwarders

Unless it has been built as authoritative-only, MaraDNS can also act as a recursive name
server with support for IP-based access control to the recursor. By default, the name of the
recursive-enabled server binary is maradns instead of maradns.authonly. As we mentioned
before, even when built with recursion enabled, MaraDNS can still act as an authoritative
name server if you specify zones to be served in the csv2 dictionary variable.
Access to the recursive portion of the MaraDNS server is controlled by an ACL set up in

mararc . The variable recursive acl contains a list of IP addresses or alias names that define
the addresses of the clients allowed to perform recursive queries. For example,

recursive_acl = "127.0.0.1"

allows only localhost to use the server for recursion.

4.6.1 Setting up private root servers

When acting as a recursive name server, MaraDNS loads a compiled-in list of root name
servers by default. To override this, you set the root server variable. Here’s an example of
how:

ipv4_alias = {}
ipv4_alias["myroots"] = "192.168.1.20"
ipv4_alias["myroots"] += "192.168.9.53"

root_servers = {}
root_servers["."] = "myroots"

MaraDNS’s powerful ipv4 aliasmechanism is used to create a named array of local authorita-
tive root servers, and this is then assigned to the root servers variable, effectively overriding
MaraDNS’s compiled-in list. The root servers may point only to root servers; as we said be-
fore, if a forwarding server is needed, use the upstream servers variable instead.

4.6.2 Forwarding queries

MaraDNS can act as a forwarding server by setting the variable upstream servers to point to
a list of caching servers willing to act as forwarders, either for all zones or on a zone by
zone basis. Similar to what we did in the section on private roots, we create an array of
our (QUPPS’) servers named myown. Forwarding for all domains is set up to point to those
servers; however, we specify an exception for domain mens.de, for which it is to use two
different forwarders, which are queried in the specified order:

ipv4_alias = {}
ipv4_alias["myown"] = "192.168.1.20"
ipv4_alias["myown"] = "192.168.9.53"

upstream_servers = {}
upstream_servers["."] = "myown"
upstream_servers["mens.de."] = "192.168.1.21, 192.168. 1.45"

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 4. MaraDNS 91

4.7 Logging and utilities

4.7.1 Logging and monitoring

If you define verbose level in mararc to an appropriate value, MaraDNS logs queries to stan-
dard output in the format shown in Figure 4.3. The Z in the following example log entry
indicates the query type as per the list in Table 4.2.

Figure 4.3: Query logging in MaraDNS

Qtype Log code
A A
NS N

CNAME C
SOA S
PTR P
TXT T
ANY Z
MX @

other U

Table 4.2: MaraDNS query types and logging codes

If MaraDNS’s main configuration /etc/mararc contains an admin acl that allows it, a few
metrics can be retrieved from a running MaraDNS server via DNS (see description of de-
bug msg level in Section 4.4.1).

4.7.2 Converting BIND master zone files to csv2 format

The bind2csv2 program included in later versions of MaraDNS converts master zone files,
such as those used by the BIND name server, to the csv2 zone file format used by MaraDNS,
and which you typically place in a directory from which MaraDNS can find them. For exam-
ple, the following converts the BIND zone master file for qupps.biz, and creates a new CSV2
file qupps.biz.csv2 :

$ bind2csv2.py -c qupps.biz
Processing zone file qupps.biz
qupps.biz.csv2 written

bind2csv2 does not yet handle BIND’s $ORIGIN , nor does it handle wild-card names, ignoring
them during conversion.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

92 Alternative DNS Servers – Jan-Piet Mens

4.7.3 The duende utility

The duende utility (included in MaraDNS’s distribution) is a program that can “daemonize”
MaraDNS main program or the zoneserver. After spawning the servers, it logs the standard
output of the child processes via syslog.
If duende is sent a HUP signal it restarts the child. You can use this to force maradns to

re-read its configuration file, for example after fetchzone has finished writing an incoming
zone transfer.

4.7.4 Querying DNS servers with askmara

askmara is a small program that queries remote name servers for DNS records and outputs
these in a csv2-compatible format. Whereas with dig you specify the query type with -t ,
or as the last argument on the command line, with askmara you specify the query type by
prefixing the domain name with one of the mnemonics from table 4.2:

$ askmara -n @qupps.biz. 127.0.0.1
Querying the server with the IP 127.0.0.1
Question: @qupps.biz.
qupps.biz. +86400 mx 10 mail.qupps.biz.
...

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 4. MaraDNS 93

Summary

• You can compileMaraDNS as an authoritative-only or as an authoritative and recursive
name server.

• Setting up and configuring MaraDNS is easy. One of its best features is the automatic
creation of PTR resource records with the FQDN4and FQDN6line types.

• MaraDNS also runs onMicrosoftWindows; we show you how to install it in Chapter 14.

Related topics

In this section of each chapter, we point you to other Chapters in this book where we dis-
cuss topics or other name servers you may wish to implement together with what you are
currently reading. Don’t worry if the terms don’t mean anything to you. We recommend
you ignore these “pointers” on first reading.

• tinydns (Chapter 11) is an authoritative-only server you may want to consider as it too
is easy to set up. We discuss its caching counterpart, dnscache, in Chapter 17.

• dnsmasq in Chapter 13 is an easy-to-setup caching name server, suitable for Small Of-
fice / Home Office environments.

Notes and further reading

MaraDNS’s home page is at http://www.maradns.org/ . The program is released under a
BSD-type license. News about new snapshots are usually published at the MaraDNS blog
http://maradns.blogspot.com/

Building MaraDNS

Interestingly, MaraDNS does not use autoconf during the build process because, to quote its
author, “autoconf is designed to solve a problem that existed in the mid 1990s but does not
exist today”. Admittedly, the diversity of C compilers and environments is nowhere near as
large as it was.
To build MaraDNS as an authoritative name server, use a procedure like this:

$ wget http://www.maradns.org/download/1.3/1.3.07.08/marad ns-1.3.07.08.tar.gz
$ tar xvzf maradns-1.3.07.08.tar.gz
$ cd maradns-1.3.07.08
$./ configure --authonly
$ make
PREFIX=/usr/local make install

Built as above, the main binary server is installed as maradns.authonly in /usr/local/sbin .
To buildMaraDNSwith recursion enabled, omit the --authonly switch to configure; the main
server is then called maradns.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

94 Alternative DNS Servers – Jan-Piet Mens

The installation procedure creates a minimal mararc configuration file in /etc (but you
will certainly want to adapt this to your environment) and installs MaraDNS’s manual pages
and a script that launches maradns and its zoneserver at startup.
If you want to tweak the locations of the installation directories, either set $PREFIX as

shown in the example above, or modify the build/install.locations file in the source
before invoking make install .

Further reading

• TheMaraDNSWeb site has a few good tutorials and guides (see http://www.maradns.

org/tutorial/tutorial.html).

• The record types supported by MaraDNS are listed both in the manual pages and on-
line at http://www.maradns.org/tutorial/man.csv2.html

• A paper by Sam Trenholme on the Security design of MaraDNS can be found at http:

//www.tisc-insight.com/newsletters/42.html

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter

5 MyDNS

Life would be so much easier if only we had
the source code.

anonymous

5.1 Getting MyDNS up and running

5.2 Changing the way MyDNS works

5.3 Replicating zones

5.4 Dynamic DNS updates in MyDNS

5.5 Utilities included with MyDNS

5.6 Monitoring MyDNS

Introduction

MyDNS stores its zone data in a MySQL or PostgreSQL database. It is currently the only server with a
database back-end that has support for RFC 2136 Dynamic DNS Updates. It includes a lean and mean
Web-based administration tool, and tools for migrating to and from MyDNS.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

96 Alternative DNS Servers – Jan-Piet Mens

MyDNS is an authoritative DNS server created by Don Moore. It uses an SQL database back-
end to store zone data. The program is easy to install, and it supports both MySQL and
PostgreSQL. It boasts a very neatWeb-based administration script contained in a single PHP
file, which makes its deployment trivial. MyDNS supports Dynamic DNS updates, allowing
it to work in conjunction with a DHCP server that registers DHCP clients in the DNS.MyDNS
has support for outgoing zone transfers (but not incoming), and it supports DNS over TCP
if you enable it.

Pros • RFC 2136 Dynamic DNS updates are written to the back-end
database

• Tunable cache
• Normalized database schema
• Web interface in a single PHP file
• *nix manual pages

Cons ◦ Future development uncertain (see Notes)
◦ No incoming zone transfers

Scenarios Small to medium DNS servers.

Table 5.1: MyDNS at a glance

5.1 Getting MyDNS up and running

To get started with MyDNS, proceed in the following order:

1. Decide which SQL database back-end (MySQL or PostgreSQL) you want to use. (See
Section 3.1 for guidance if necessary.)

2. Download and install MyDNS (see Notes).

3. Create the database and the tables required for MyDNS. We show you how to do this
in Section 5.1.1.

4. Create a zone and some resource records in the database. We show you how to do this
in Section 5.1.3.

5. Launch MyDNS:

/usr/local/sbin/mydns --background --verbose

Check the log file (the default on our system is /var/log/messages) to ensure that
MyDNS started successfully. Common errors that prevent a successful MyDNS launch
include:

• You have another DNS server listening on the same IP address/port numbers,
making it impossible forMyDNS to acquire access to it (see Notes on using netstat).

• The username and/or password used to access theMySQL database are incorrect.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 5. MyDNS 97

5.1.1 Creating the MySQL database tables for MyDNS

MyDNS has a facility to print the list of commands you need to create the tables in theMySQL
or PostgreSQL database for use with MyDNS. For example, you can feed this list of com-
mands to the mysql command line tool:

$ mysqladmin create ourdnsdb
$ mydns --create-tables | mysql ourdnsdb

(Throughout this chapter we assume the name of the database you’re using for MyDNS is
ourdnsdb .)
Youwill then want to create a user and its associated passwordwith whichMyDNS access

the MySQL database:

$ mysql ourdnsdb
mysql> GRANT ALL on ourdnsdb.* TO fred@’localhost’ IDENTIF IED BY ’hah!’;
mysql> \q

Change the username (“fred”) and password (“hah!”) appropriately in mydns.conf .

5.1.2 The MyDNS database tables

MyDNS stores zones in one database table and the zones’ resource records in a separate table.
The two database tables used by MyDNS are:

soa This table defines a zone and its Start of Authority (SOA) resource record.

rr This table defines the resource records (RR) that make up a DNS zone.

In the following discussion, columns marked as being “optional” are just that: optional.
If you want MyDNS to use these, you have to create the columns, by altering the database
schema. We discuss the use of these optional columns when we discuss the feature they
relate to.

The soa table

The soa table is used to store the Start of Authority (SOA) of a zone. Each zone is defined by
a single row (a single record) in this table. The table definition has sensible defaults for most
values, so you don’t have to insert them explicitly when defining a new zone. The columns
in the default schema are:

id A unique numeric ID for the record. The database schema provides an auto
increment column for this, which means you can INSERT a NULL value to
have it increased automatically.

origin The name of the zone, such as “qupps.biz. ”. Note that this value must be
terminated by a period. If you omit the terminating period, the zone will not
exist.

ns The name of the primary name server (MNAME) for the zone.

mbox The RNAME of the Start of Authority.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

98 Alternative DNS Servers – Jan-Piet Mens

serial The serial number of the zone (default: 1).

refresh The SOA refresh value in seconds (default: 28800 = 8 hours).

retry The SOA retry value in seconds (default: 7200 = 2 hours).

expire The SOA expire time in seconds (default: 604800 = 1 week).

minimum The SOA minimum time in seconds (default: 86400 = 1 day).

ttl The SOA TTL (default: 86400 = 1 day).

xfer This optional column contains IP access lists specifying which clients may
transfer zones (Section 5.3.1).

update acl This optional column contains IP access lists specifying which clients may
perform RFC 2136 dynamic DNS updates (Section 5.4).

active If this optional column exists, whenever rows are selected from the table, its
value is honored. It should contain a boolean value (integer 1/0, or string
“Y”/“N”, “1”/“0”, or “Active”/“Inactive”). If the row is marked as inactive,
MyDNSwill react as though the row didn’t exist at all. If you use this optional
column, you normally set it to a “true” value, and set it “false” to temporarily
“delete” the respective zone, which can be easily undeleted later if necessary.

The rr table

The rr table for “Resource Records” stores individual DNS resources for all the zones. The
zone to which a record belongs is specified by the zone column. The default schema for this
table is:

id A unique number that identifies this record. The database schema provides
an auto increment column for this, which means you can INSERT a NULL
value to have it increased automatically.

zone The id in the soa table of the zone to which this record belongs. In other
words, the value of this column (rr.zone) corresponds to the value of the
soa.id column.

name The domain name that this record describes. This column may contain a host
name, a fully qualified domain name (terminated by period), or an asterisk
(*) for wild cards.

type The type of resource record. The following types are implemented:

A An Address in dotted-decimal format.

192.168.1.20

AAAA An IPv6 Address.

fe80::2ff:52ff:fee7:4c4e

ALIAS A server-side alias. It is handled like a CNAME, but the client only
sees an Address (A).

print.qupps.biz

CNAME Canonical name.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 5. MyDNS 99

www

MX Mail Exchanger. The preference value for an MX is set in the aux

column.

mail.qupps.biz

NS Name Server.

ns1.qupps.biz

PTR Pointer record; used only within in-addr.arpa zones.

www.qupps.biz

SRV Service location. The data column contains three space-separated
values: The first is the weight, the second is the port number on
the server, and the third is the target host.

0 389 ldap.qupps.biz

TXT Text record.

hello world

data The data associated with the DNS resource record type .

aux An auxiliary numeric value in addition to data . For Mail Exchanger records
(MX) this column specifies the preference, for SRV records, the priority.

ttl The value, in seconds, of the Time to Live (TTL) for the resource record.

active As with active in the soa table, if this optional column exists, whenever
records are retrieved from the table, its value is honored. It should contain a
boolean value which can be an integer (1/0) or a string (“Y”/“N”, “1”/“0”, or
“Active”/“Inactive”). If MyDNS detects that the row is inactive (because the
column exists and you have set it to a “false” value) it will react as though
the row didn’t exist at all.

You can add as many additional columns as you wish to either of the two tables, and
you can change column lengths too, if you want. Do not, however, change the names of the
columns.

5.1.3 Example – Create a zone and its resource records

To create a new zone with some records in it, you can use the MySQL command-line tool,
mysql, to perform appropriate inserts into the database tables:

$ mysql ourdnsdb
mysql> INSERT INTO soa (origin, ns, mbox)

-> VALUES (’qupps.biz.’, ’ns.qupps.biz.’, ’jp’);

mysql> INSERT INTO rr (zone, name, type, data)
-> VALUES (1, ’ns’, ’A’, ’192.168.1.20’);

mysql> INSERT INTO rr (zone, name, type, data)
-> VALUES (1, ’www’, ’CNAME’, ’ns’);

There are several points to note:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

100 Alternative DNS Servers – Jan-Piet Mens

• In the first INSERTwe insert our very first zone into the soa table – as id is not speci-
fied, and thus NULL, MySQL gives the “automatic” id column an integer value of 1.

In the two next INSERT statements, we use this to associate the records in rr to the
zone in table soa .

• The zone name in the origin column of the soa table must be qualified with a trailing
period.

• If you don’t fully qualify names in both the ns and mbox columns, they are qualified
with origin . In the example above, the mbox column is unqualified; this will cause
MyDNS to return the RNAME of this zone as jp.qupps.biz..

• MyDNS has sensible values for the Start of Authority (SOA) resource record fields, so
we didn’t enter them. However you can override these on a zone by zone basis by
inserting (or later updating) the appropriate columns of the soa table.

• As soon as you have inserted a row into the soa or rr tables, it is there for MyDNS to
serve via DNS. That is, after all, the whole point in having a database back-end on a
DNS server. This of course means that if you “accidentally” incorrectly mass-update
one of the database tables, your DNS clients will immediately “see” the results. This
isn’t a problem in itself: it is simply a word of caution that you should be careful with
your SQL queries.

If you now query your MyDNS server, the DNS resources you entered are immediately visi-
ble:

$ dig @127.0.0.1 www.qupps.biz
;; flags: qr aa rd; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIO NAL: 0
;; WARNING: recursion requested but not available

;; ANSWER SECTION:
www.qupps.biz. 86400 IN CNAME ns.qupps.biz.
ns.qupps.biz. 86400 IN A 192.168.1.20

5.2 Changing the way MyDNS works

5.2.1 Configuration in mydns.conf

There are several configuration variables to alter MyDNS behavior. The following sections
detail the available configuration variables. Most of these variables have sensible default
values. To add or modify a variable, edit the mydns.conf file, usually located in /etc , and
save the file. You must restart the MyDNS daemon (mydns) for changed variables to take
effect. The syntax for variables is:

variable = value

On any line, text following a hash sign (#) is ignored unless it is escaped with a backslash
(\#). Empty lines are ignored.
If you invokemydnswith the --dump-config option, it prints a default configuration to

standard output, merging it with whatever settings you already have in your mydns.conf .

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 5. MyDNS 101

Basic database information

The following variables define how MyDNS accesses the underlying database:

db-host The domain name (i.e. hostname) or address of the MySQL server.
Note that the name you specify should be in your /etc/hosts because
otherwise the name couldn’t be resolved – to resolve the name MyDNS
would have to use itself before it had started itself! We recommend you
use an IP address. The default is localhost.

db-host = 192.168.1.178

database The name of the database from which MyDNS reads its zone data.

database = ourdnsdb

db-user The username to use for authenticating with the back-end database
server. There is no default.

db-user = fred

The user you specify in db-user needs SELECTprivileges on the database
you specified with the database variable. If you use RFC 2136 dynamic
updates, the specified user will additionally require INSERT, UPDATE

and DELETEprivileges.

db-password The password to use for authenticating to the back-end database server.

db-password = hah!

Server options

The following variables control the general behavior of the server:

user

group The server will drop privileges and run with the permissions of the
specified user or group.

user = nobody
group = nogroup

listen The server should listen on the specified address(es). If the value of
this variable is * , the server will bind to all interfaces of the system.
We recommend, however, that you explicitly specify which addresses
to use. The variable may have a comma-separated list of IP addresses,
or you may specify multiple listen variables. To use a port other than
the default (53), append the desired port number to the IP address,
preceded by a colon (:).

listen = 127.0.0.1
listen = 192.168.1.164 :593

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

102 Alternative DNS Servers – Jan-Piet Mens

no-listen The server should not listen on the given IP address, even if it is spec-
ified in the listen variable. This sounds a bit pointless, but if you run
MyDNS on a host with many interfaces, you can specify listen = * and
“remove” the interfaces you don’t want MyDNS to listen on with one or
more no-listen settings.

Options to control internal caching

MyDNS answers incoming queries with records obtained from the database back-end. In
order to lower both the load on the back-end database and the time taken to answer the
query, MyDNS can cache replies for queries it answers.
When MyDNS receives a question it can answer, MyDNS stores the positive results (i.e.

found records) in its zone cache.
Once a complete reply has been constructed for a specific query (for example, IN A

www.qupps.biz.), this complete reply is stored in the reply cache. The reply cache is es-
pecially useful because if it contains a match for a specific query, MyDNS does not need to
perform any database queries or even very much internal computation in order to return
the reply.
The following options alter the behavior of the cache:

zone-cache-size The maximum number of entries the zone cache may contain at any
time. Default 4 096. (The average entry in the cache has a size of about
128 bytes, so a zone-cache-size of 8 192 gives a cache of approximately
8 192 x 128 bytes = 1 MB.)

zone-cache-size = 8192

A large cache improves performance but can causeMyDNS to serve out-
of-date answers to queries for resource records that have been recently
modified. You can disable the zone data cache completely by setting its
size to 0.

zone-cache-expire Entries that have been in the cache for this number of seconds (default
60) are expired from the cache. If the Time to Live (TTL) for any resource
record in the zone is less than the cache expiry time, the TTL is honored
(i.e. it overrides the zone-cache-expire time).

zone-cache-expire = 120

If you set this to zero, the zone data cache is disabled. The higher you
set this value, the longer it will be before MyDNS has to query the back-
end database to find out if a record has changed. If you have a fairly
static DNS with few changes being made to your zones, increasing this
value will increase the overall performance of your system.

reply-cache-size WhenMyDNS has constructed a complete reply for a specific query, this
complete reply is stored in the reply cache. This variable defines how
large the reply cache should be (default 1 024 entries).

reply-cache-size = 2048

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 5. MyDNS 103

Setting the value of this variable to zero disables the reply cache.

reply-cache-expire Entries in the reply cache expire once they are this number of seconds
old. Default 30.

reply-cache-expire = 120

Setting this value to zero disables the reply cache.

Options that affect the name server

The variables in this section affect the operation of the MyDNS name server. You will usually
not need these, but they do allow you to create interesting configurations. Variables defined
as being of type boolean are enabled by specifying their value as being “true” or “yes”, and
they are disabled by using “false” or “no”.

allow-axfr (boolean)Whether outgoing zone transfers are allowed (default: “no”):

allow-axfr = yes

You can specify IP-based access rules for outgoing zone transfers by
adding an optional column to the soa table (Section 5.3.1).

allow-tcp (boolean) Whether DNS requests over TCP are allowed (default: “no”).
This variable does not affect zone transfers (which are always over
TCP).

allow-update (boolean) Whether dynamic updates are allowed (default: “no”). We
discuss this in Section 5.4.

soa-table Specifies the name of the database table containing the Start of Author-
ity records for zones. The default value is soa and you shouldn’t need
to modify this.

soa-where If set, this variable contains an extraWHEREclause to append to queries
selecting records from the soa-table.

For example, if you’re an ISP, you might have a policy that you disable
a customer’s zone if he hasn’t settled his invoice. You define:

soa-where = paid=1

and create the additional column paid in the soa table:

mysql> ALTER TABLE soa
-> ADD COLUMN paid INTEGER NOT NULL DEFAULT 1;

To disable customer QUPPS’s zone, for example, use:

mysql> UPDATE soa SET paid = 0 WHERE origin = ’qupps.biz.’;

andMyDNSwill hide this zone, until paid is set to 1 againwhenQUPPS
pay their bill. This approach is clearer and more flexible than deleting
QUPPS’s zone when they don’t pay, and then having to recreate it later.

Note that a similar functionality (i.e. disabling of a zone) can be im-
plemented with the optional active column on both the soa and rr

database tables.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

104 Alternative DNS Servers – Jan-Piet Mens

rr-table Specifies the name of the database table containing the resource records
for zones. The default value is rr and you shouldn’t need to modify
this.

rr-where Analogous to soa-where, this contains an additionalWHEREclause to ap-
pend to queries selecting records from the rr-table. You can use this to
selectively enable or disable individual resource records.

recursive The IP address of a DNS server that accepts recursive DNS queries. If
MyDNS receives a query where recursion is desired, and the zone is not
local (i.e. MyDNS is not authoritative for it), MyDNS will forward the
query to the server at the specified and return the result to the client.

recursive = 192.168.1.20

If your MyDNS server is Internet-facing, do not set this option: you
should not make recursive DNS available to the whole Internet.

5.3 Replicating zones

MyDNS can replicate zone data in two ways:

1. Replication by the back-end database system. (This is what PowerDNS calls “native”
replication.)

For two or more peer MyDNS servers serving the same zone data, set up each mydns
server with its own SQL back-end. Then use SQL database replication from the master
database to the slave database (Figure 5.1).

Figure 5.1: MyDNSwith “native” database replication

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 5. MyDNS 105

2. AXFR zone transfer: use this where you have a MyDNS master server and a different
brand of server as slave(s) (Figure 5.2). MyDNS doesn’t support incoming zone trans-
fers, so it can’t act as a slave server.

Figure 5.2: MyDNS as a master server

5.3.1 Zone transfers

Zone transfers are allowed only if the allow-axfr variable is “true” in the server configuration.
MyDNS supports only outgoing AXFR zone transfers; it does not support incremental trans-
fers (IXFR) or incoming zone transfers. If you enable zone transfers, any client may perform
a transfer for any zone in the database. As this is not a good idea, MyDNS provides access
controls to limit who may transfer zones.
You can enable IP-based access control in MyDNS by adding a predefined (but optional)

column called xfer to the soa table. The server examines the value of this column when
a client requests a zone transfer to determine whether the client is allowed to transfer the
zone. If you want to add the column to your database, use mysql (or any other program you
normally use to alter a database schema):

mysql> ALTER TABLE soa ADD COLUMN xfer CHAR(255) NOT NULL;

The xfer column contains either an asterisk (*), or a comma-separated list of individual
IP addresses and/or CIDR network/netmask pairs, specifying which addresses are allowed
to perform AXFR zone transfers. (The asterisk means “allow any client to transfer zones”.)
For example, to allow zone transfer requests for zone qupps.biz, from hosts with addresses
127.0.0.1 or 192.168.1.1–192.168.1.255:

mysql> UPDATE soa SET xfer=’127.0.0.1,192.168.1/24’ WHER E origin = ’qupps.biz.’;

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

106 Alternative DNS Servers – Jan-Piet Mens

If MyDNS is running as a hidden or stealth master to a slave, it will not notify its slave
servers when data in a zone has changed – it has no support for NOTIFY. There are currently
three ways a slave can detect that data on the master has changed:

1. The slave server waits for the Start of Authority (SOA) retry timer to expire, and then
checks the SOA serial number on the master: if that number has increased, the slave
initiates a zone transfer.

2. Perform notification manually using a program like dnsnotify (see Notes.)

3. A new experimental version ofMyDNS (see Notes) now does support slave notification.
Use that.

5.4 Dynamic DNS updates in MyDNS

A big advantage ofMyDNS is that it supports RFC 2136Dynamic DNS updates. These update
requests are received as DNS queries and cause the database server (MySQL or PostgreSQL)
to modify or create the relevant resource records (i.e. records in the rr database table) in the
database back-end. We discuss dynamic DNS in detail in Chapter 19, but we want to show
you how this works for MyDNS here.
Before enabling dynamic DNS updates, ensure the db-user user specified in mydns.conf

has permission to insert and update rows on the rr table (or the table you specified in the
rr-table variable). If MyDNS cannot update the tables, dynamic DNS updates fail.
We strongly recommend you use a transactional database back-end if you allow dynamic

updates, so that MyDNS can roll back (i.e. undo) a transaction if an update fails. Without a
transactional back-end, your database could be left in an inconsistent state if an update
should fail (see Notes on page 71).

5.4.1 Enable dynamic DNS updates

MyDNS allows dynamic DNS updates by clients if the boolean configuration variable allow-
update in your mydns.conf is “true” (Remember that you must restart mydns for a changed
setting to take effect.)

allow-updates = yes

5.4.2 IP access rules for dynamic DNS updates

By default dynamic DNS updates are allowed from localhost only. You can override this by
specifying IP based access rules for DNS updates. Enable IP-based access rules in MyDNS by
adding a predefined (but optional) column called update acl to the soa table. update acl

controls dynamic updates in the same way that xfer controls zone transfers. The server
examines the value of this column when a client performs an DNS update to determine
whether the client is allowed to. If this column does not exist, updates are allowed from
localhost only. If you want to add the column to your database, use mysql (or any other
program you normally use to alter a database schema):

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 5. MyDNS 107

mysql> ALTER TABLE soa ADD COLUMN update_acl VARCHAR(254);

The update acl column contains either an asterisk (*), or a comma-separated list of
individual IP addresses and/or CIDR network/netmask pairs, specifying which addresses
are allowed to perform updates. (The asterisk means “allow any client to update”.) For
example, to allow update requests for zone qupps.biz, from hosts with addresses 127.0.0.1 or
192.168.1.1–192.168.1.255:

mysql> UPDATE soa SET update_acl = ’127.0.0.1,192.168.1/2 4’ WHERE ←֓
origin = ’qupps.biz.’;

We show you an example of dynamic DNS updates using MyDNS in Section 19.6.2.

5.5 Utilities included with MyDNS

MyDNS includes several useful utilities:

mydnsimport to import zones via zone transfer (AXFR), or from a tinydns-data file as used
by tinydns.

mydnsexport export any amount of zones either to master file format, or to tinydns-data
format for use with tinydns.

admin.php a Web interface for managing zone data.

5.5.1 Importing zones into MyDNS with mydnsimport

This utility is great if you are migrating from tinydns or BIND toMyDNS, because it can import
zone data into MyDNS from either of two sources:

1. From a DNS server via the zone transfer (AXFR) protocol.

2. From an existing data file in tinydns-data format.

During import, you can specify with the --replace flagwhether existing records in the SQL
database should be replaced with data from the import source; if you omit the flag, mydnsim-
port refuses to change existing zones. For example, to import a zone via zone transfer:

$ mydnsimport --axfr=192.168.1.20 example.net

5.5.2 Exporting zones from MyDNS with mydnsexport

mydnsexport exports zone data for one or more zones, extracting the zone data from MyDNS’
underlying SQL database and providing it in either master zone file format, suitable for use
by BIND or NSD, or tinydns-data format, suitable for conversion and consumption by tinydns.

1. To create master file format:

$ mydnsexport --bind qupps.biz
$TTL 86400
; Zone: qupps.biz. (#1)

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

108 Alternative DNS Servers – Jan-Piet Mens

; Created by "mydnsexport --bind qupps.biz"
; Sun Dec 30 18:15:33 2007
$ORIGIN qupps.biz.

@ IN SOA ns.qupps.biz. jp.mens.de. (
1 ; Serial
28800 ; Refresh
7200 ; Retry
604800 ; Expire
86400) ; Minimum

ns 86400 IN A 192.168.1.20
pc.qupps.biz. 86400 IN A 192.168.1.178
www 86400 IN CNAME ns.qupps.biz.

2. To create tinydns-data format:

$ mydnsexport --tinydns qupps.biz
#
Created by "mydnsexport --tinydns qupps.biz"
Sun Dec 30 18:18:28 2007
#
Zqupps.biz:ns.qupps.biz:jp.mens.de:1:28800:7200:604 800:86400:86400
=ns.qupps.biz:192.168.1.20:86400
=pc.qupps.biz:192.168.1.178:3600
Cwww.qupps.biz:ns.qupps.biz:86400

5.5.3 The MyDNS Web interface: admin.php

MyDNS has a Web-based administration utility (Figure 5.3) contained in a single file. It is
located in the contrib directory of the source distribution. (For other Web-based adminis-
tration programs, see Notes.) A very nice feature of the program is that it can automatically
increment the serial number in the SOA record for a zone whenever a client modifies any
record in that zone – a great convenience. If you are offering outgoing zone transfers.
Installation is simple: copy the admin.php file to a suitable location on a Web server, and
modify the database parameters at the top of admin.php to suit your setup. You may wish to
change some of the other variables as well:

• If $auto update serial is “true”, admin.php will automatically update the zone’s se-
rial number whenever a record is modified.

• If $auto update ptr is “true”, admin.php will automatically create PTR records for you
when a user adds, modifies or deletes an Address (A) record. admin.phpwill automati-
cally create the zone in the database, adding a record to the soa table if necessary. For
this to work, $default ns and $default mbox have to be set as well.

• If you use PostgreSQL, set $use pgsql to “true”.

admin.php doesn’t have built-in authentication, because it relies on the Web server to allow
users to access it. If you use an Apache Web server, you can use one of the many available
authentication modules to control access to admin.php.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 5. MyDNS 109

Figure 5.3: MyDNS admin.php

5.6 Monitoring MyDNS

5.6.1 Logging queries

If you start mydns with the verbose option (-v), it logs each query it receives, in a format
like:

30-Dec-2007 15:28:04+163961 #2 42597 UDP 127.0.0.1 IN A ←֓
www.qupps.biz. NOERROR - 1 2 0 0 LOG N QUERY ""

Each log line consists of 17 space-separated fields:

1. The date the query was received (30-Dec-2007).

2. The time the query was received as hour:minutes:seconds+microseconds.

3. A hash symbol followed by an incrementing internal ID number for the query (#2).

4. The query ID provided by the client (42597). This is usually a seemingly-random 16-
bit number used by the client to make sure the answer it receives matches the question
it asked.

5. The transport used (UDP); this is either TCP or UDP.

6. The client’s IP address (127.0.0.1) .

7. The query class. Always IN (Internet).

8. The query type (A), such as MX, NS, etc.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

110 Alternative DNS Servers – Jan-Piet Mens

9. The name being requested (www.qupps.biz.).

10. The status of the query. This can be one of the following values:

NOERROR No error; the query was successful.

FORMERR The server was unable to interpret the query.

SERVFAIL An internal error occurred; this is probably due to incorrect data in the
underlying database back-end.

NXDOMAIN Nonexistent domain: the requested name has no matching resources.

NOTIMP The requested type of query is not implemented.

REFUSED The server refused the query. This usually happens when a zone trans-
fer is requested by a client not allowed to do so.

11. If the previous field was anything but NOERROR, this is a human-readable reason
why the query failed, with space characters converted to underscores (). If the previ-
ous field was NOERROR, this field contains a dash (-).

12. The number of resource records included in the question section of the reply.

13. The number of resource records included in the answer section of the reply.

14. The number of resource records included in the authority section of the reply.

15. The number of resource records included in the additional section of the reply.

16. The word LOG.

17. The character “Y” if this was a cached reply, “N” if it was not.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 5. MyDNS 111

Summary

• MyDNS is an authoritative-only server, although it can forward recursive queries to a
nominated server.

• It uses either a MySQL or a PostgreSQL back-end.

• MyDNS includes tools both for migrating to, and away from, MyDNS.

• MyDNS implements support for RFC 2136 dynamic DNS updates.

Related topics

In this section we point you to other Chapters in this book in which we discuss topics or
other name servers you may wish to implement together with what you are currently read-
ing. Don’t worry if the terms don’t mean anything to you on first reading. If you are reading
this book sequentially, we recommend you ignore these “pointers”.

• dnsmasq (Chapter 13)

• In Chapter 18 we discuss how to set up a private root name server with MyDNS.

• In Chapter 19 we discuss RFC 2136 Dynamic DNS Updates and show you an example
using MyDNS.

Notes and further reading

MyDNS’ home

The home of MyDNS is at http://mydns.bboy.net/ . Its author, Don Moore, considers
MyDNS to be complete, so he has stopped developing it.
At the time of this writing, the development of MyDNS has restarted with a new name:

MyDNS-NG. Development of MyDNS-NG is being coordinated by Howard Wilkinson and
the project is hosted at http://sourceforge.net/projects/mydns-ng/ .

Building MyDNS

Building MyDNS is straightforward:

$ wget http://mydns.bboy.net/download/mydns-1.1.0.tar.gz
$ tar xvzf xvzf mydns-1.1.0.tar.gz
$ cd mydns-1.1.0
$./ configure --prefix=/usr/local --with-mysql-lib=/usr/lib64/mysq l
$ make
$ make install

After installing MyDNS the command:

$ make conf

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

112 Alternative DNS Servers – Jan-Piet Mens

creates a commented /etc/mydns.conf which you can edit and tailor to your environment:
at the very least, you will have to change the database connection settings in the file. To
view a commented configuration file use:

$ mydns --dump-config

The netstat utility

netstat is a program that prints information on network connections. You can also use it to
determine whether a specific port is already in use. For example, to see whether there is
already a DNS server running on your system, you use:

netstat -anp | grep 53
tcp 0 0 0.0.0.0: 53 0.0.0.0:* LISTEN 5204/pdns_server
udp 0 0 0.0.0.0: 53 0.0.0.0:* 5204/pdns_server

The two lines in the sample output above show a program called pdns server running on PID
5204. It is listening on TCP port 53 and on UDP port 53. Note how we use the -n option
to netstat to have IP addresses printed instead of hostnames. (When you are investigating
problems with the DNS, it’s clearly best not to use diagnostic tools that inadvertently use
the DNS to resolve hostnames.)

DNS notify

You can use a tool like dnsnotify to manually send out a notification request to a slave server
(see Section 1.3 for a discussion of NOTIFY). In doing so, you “pretend” to be a master DNS
name server (see http://people.debian.org/˜pkern/dnsnotify).

MyDNSConfig

MyDNSConfig (see http://www.mydnsconfig.org/) is another Web based administration
tool built upon MyDNS’ MySQL schema (my, there are a lot of ”My”s in that sentence!).

lochDNS

lochDNS is a self-contained package of operating system and tools (sometimes called a “vir-
tual appliance”, as for Xen, VMware, etc.) that provides an installation of MyDNS. It is pack-
aged together withMyDNSConfig andMySQL, so it is ready to run (see http://wiki.rpath.

com/wiki/Appliance:LochDNS).

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter

6 PowerDNS Authoritative
Server

Not all DNS servers run BIND. There are
other ones.

anonymous

6.1 How PowerDNS stores zone data

6.2 Server roles – master/slave, superslave, native

6.3 Getting started quickly

6.4 The OpenDBX database back-end

6.5 The LDAP directory server back-end

6.6 The Pipe back-end

6.7 Global PowerDNS confi guration directives

6.8 Monitoring PowerDNS

6.9 Deployment and provisioning scenarios

Introduction

The PowerDNS server is a feature-rich program that can fulfill most DNS server requirements. It sup-
ports several different back-ends from which it retrieves DNS zone data, including MySQL, LDAP,
BIND and the Pipe back-end. It can support several back-ends simultaneously, making it very flexible.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

114 Alternative DNS Servers – Jan-Piet Mens

PowerDNS is a DNS server that serves DNS zone data from a large number of supported
database systems. PowerDNS was developed by the Dutch company PowerDNS B.V. as a
commercial product. In November 2002 they released PowerDNS under an Open Source
License (GPL version 2), although they still offer commercial support for it. Bert Hubert is
its main author.

Pros • Multiple database back-ends supported simultaneously
• Supports LDAP, SQL databases, and BIND zone files
• Separate versatile, high-performance, caching server (PowerDNS

Recursor)
• Full master/slave semantics including NOTIFY
• Automatic provisioning of slaves
• Packet cache increases throughput and lowers load on back-ends
• Programmable back-end
• Built-in Web server for statistics and monitoring

Cons ◦ No DNS security (TSIG)
◦ No RFC 2136 Dynamic DNS

Scenarios Medium to large environments that need the widest range of op-
tions for DNS zone data storage.

Table 6.1: PowerDNS at a glance

PowerDNS is rich in features, so we recommend you get an overview of its capabilities before
digging in. To get the most out of PowerDNS:

1. Read the following sections to become familiar with PowerDNS, how it stores data, and
its configuration directives and settings.

2. Choose one (ormore) back-ends that you are interested in and look at their capabilities.

3. Download, build and install the software (see Notes).

You will also want to familiarize yourself with PowerDNS’ control (Section 6.8.1) and init (Sec-
tion 6.8.3) programs which you use for day-to-day administration.

6.1 How PowerDNS stores zone data

PowerDNS supports various back-ends for storing zone data (Figure 6.1). Note that a back-
end consists of two distinct parts. A database back-end, for example, consists of:
(a) The back-end code within PowerDNS.
(b) The database that the back-end communicates with.

You can configure PowerDNS to use more than one back-end in the same PowerDNS instance
– you might want to use LDAP for some zones, and an RDBMS for some other zones, say.
When PowerDNS receives a query, it has to obtain from one of its configured back-ends

the information it needs for the answer. If more than one back-end is configured, PowerDNS

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 6. PowerDNS Authoritative Server 115

queries each back-end in turn (in the order you configured them): if a back-end satisfies
the query, PowerDNS returns the answer, and the procedure terminates; otherwise the next
back-end is queried, and so on.

Figure 6.1: PowerDNS architecture

PowerDNS currently supports the following back-ends:

BIND Reads zone data from zone master files that you might already have
from a previous BIND or NSD installation, for example.

SQL Reads zone data from relational databases. You can choose from several
different SQL back-ends. We discuss two here:

• OpenDBX is a versatile SQL-database back-end. This is our SQL
back-end of choice.

• The genericMySQL (gmysql), PostgreSQL (gpgsql) andOracle (gora-
cacle) back-ends allow you to connect PowerDNS to a MySQL, Post-
greSQL or Oracle database respectively for zone storage. We intro-
duce you to gmysql, but we recommend you familiarize yourself
with the more flexible OpenDBX back-end, as it has more features.

PowerDNS can use the gsqlite and gsqlite3 back-ends to store zone
data in SQLite databases. SQLite support is also provided by the
OpenDBX back-end. (We don’t discuss SQLite any further.)

LDAP Retrieves zone data from an LDAP directory.

Pipe Enables you to create a so-called “coprocess” (somewhat like a *nix fil-
ter) in almost any programming language, with which you create a pro-
grammable back-end to PowerDNS. The coprocess receives a query and
produces an answer which PowerDNS returns to the DNS client.

ODBC TheMicrosoftWindows port of PowerDNS uses this to retrieve zone data
from a database via ODBC. Currently, there is no up-to-date Microsoft
Windows port of PowerDNS, so we don’t discuss this back-end.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

116 Alternative DNS Servers – Jan-Piet Mens

6.1.1 Generic SQL or OpenDBX for SQL back-ends?

As you can see above, if you are planning to deploy PowerDNS with either a PostgreSQL or
a MySQL database, you have a choice of two different database back-ends – you can use
either of:

• The generic MySQL (gmysql) or generic PostgreSQL (gpgsql) database back-end.

• The OpenDBX back-end.

There appears to be little distinction between the two – they even use almost identical
database schemas to store zone information. However, closer examination shows that the
OpenDBX back-end has several advantages, even though it is another library that your server
now requires. The advantages of OpenDBX are:

• It supports multiple database drivers1.

• It supports connections to more than one database, enabling the driver to provide load
balancing across several databases.

• It supports master/slave databases, with UPDATEqueries directed at one database
server, and SELECTqueries being retrieved from a second. Update queries are per-
formed on incoming AXFR zone transfers, when PowerDNS acts as a slave name server.

• It reacts very cleanly if connection errors occur when accessing the databases, and in
the case where you have defined more than one database to use, it will seamlessly
connect to the next.

Binary distributions of PowerDNS typically include the gmysql back-end which is why we
will start you off with that back-end in Section 6.3.2. Our back-end of choice however is
opendbx, which we discuss in Section 6.4.

6.2 Server roles – master/slave, superslave, native

PowerDNS offers full master and slave semantics for replicating DNS zones. It can be config-
ured as a slave server to any DNS server that supports outgoing AXFR zone transfers. It can
be configured as a master server, offering outgoing AXFR zone transfers to capable clients
servers. It can simultaneously be a slave for some zones and a master for others. (PowerDNS
also has “superslave” and “native” roles, which we explain later.) Table 6.2 lists the available
back-ends and their master/slave features.

6.2.1 Master

When operating as a master (Figure 6.2), if the employed back-end supports detection of
zone changes, PowerDNS notifies its slaves whenever changes to a zone have been per-
formed. The way this works is that PowerDNS periodically asks its back-ends to check the

1The OpenDBX developers permitted us to call them “drivers” to avoid overloading the term “back-end”

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 6. PowerDNS Authoritative Server 117

Back-end Native Master Slave Superslave
bind • • • ◦
db2 • ◦ ◦ ◦
gmysql • • • •
gpgsql • • • •
gsqlite3 • • • •
ldap • • ◦ ◦
odbc • • • ◦
opendbx • • • •
oracle • ◦ ◦ ◦
pipe • ◦ ◦ ◦

Table 6.2: Roles in PowerDNS back-ends

freshness of their data, which they do by querying their databases. If the back-ends detect a
changed record, they inform the main PowerDNS code, and it then notifies its slaves. (Table
6.2.)

Figure 6.2: PowerDNS as a master server

6.2.2 Slave

PowerDNS can also act as a slave DNS server (Figure 6.3), retrieving zones via incoming zone
transfers.

Figure 6.3: PowerDNS as a slave server

When PowerDNS starts, and at regular intervals, it requests, from all its back-end(s) that

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

118 Alternative DNS Servers – Jan-Piet Mens

support incoming zone transfers, a list of zones that have not been checked to see if they
have changed. For each “unfresh” zone, PowerDNS queries the zone’s master server for the
zone’s Start of Authority (SOA) record and then checks the serial number in the SOA: if it has
increased, PowerDNS initiates an incoming zone transfer.

PowerDNS also reacts to incoming NOTIFY requests: as above, it checks whether the zone
has changed, and if so, initiates an incoming zone transfer. You must explicitly configure
support for PowerDNS being a slave server if you need the functionality (Section 6.3.4).

6.2.3 Superslave

A unique feature of PowerDNS is that you can configure it to accept notifications from spec-
ified “trustworthy” master servers for which it does not yet carry slave zones, and have it
create the slave zone(s), and provision them from the master via incoming zone transfers,
all automatically (Figure 6.4). In this role, the server is said to be a Superslave. (By contrast,
a normal slave will accept/action NOTIFYs only if you have manually pre-configured it as
a slave for the zone. You have to create a zone on the slave, giving it the name of the zone,
and create an NS record in the zone pointing to this slave itself.)

PowerDNS can operate as a Superslave for any brand of DNS server running as a normal
master, as long as the master supports sending DNS NOTIFY requests, or at least can send
them out “manually”. When the foreign master loads or reloads a zone, it informs its slaves
by sending NOTIFYs.

Figure 6.4: PowerDNS as a Superslave server

6.2.4 Native

PowerDNS can also make good use of native database replication (Figure 6.5), with back-
ends that support it. A zone is called native if it is replicated by means other than AXFR zone
transfers.
For example, when using PowerDNS with an LDAP back-end, primary and secondary

servers use LDAP replication to ensure the data is kept up to date on both servers. (We
have to call the servers primary/secondary, rather than master/slave, because master/slave
implies AXFR replication.) This type of PowerDNS configuration is termed native, and it is the
default in all database and LDAP back-ends. Native zones never generate any NOTIFYs to
be sent to slave servers. Even so, outgoing zone transfers are still possible, and you could
for example NOTIFY slaves using pdns control (Section 6.8.1 on page 149).

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 6. PowerDNS Authoritative Server 119

Figure 6.5: PowerDNS with native replication

6.2.5 Mixing roles

One of the great advantages of PowerDNS is its flexibility: you are free to mix roles, creating
quite complex scenarios. For example:

• You set up a pair of PowerDNSmachines with native replication, to provide authorita-
tive name services for a number of zones.

• Simultaneously, you provide slave service for a couple of zones to a friendly company.

• You use PowerDNS as a master for a zone that belongs to a department in your organi-
zation, while they use a different brand of server as a slave.

You can implement all this in a single instance of a PowerDNS server, although we recom-
mend you use two servers for resilience.

6.3 Getting started quickly

PowerDNS is a very versatile program, but it has so many features and back-ends that it’s
hard to understand at first. Therefore, we’ll start off with the easiest scenario, even if it isn’t
the one most likely to be of interest. Then, we’ll cover the more advanced features as we go
along.
After installing PowerDNS (see Notes) proceed as follows:

A. Configure PowerDNS to serve one or more zones using the BIND back-end.

B. Configure PowerDNS to serve one or more zones using the generic MySQL back-end.

When we’ve covered these steps, we will move on to show you how to configure the LDAP,
OpenDBX, and Pipe back-ends. At that point, you can discard any configuration for back-
ends you used only for familiarizing yourself with PowerDNS.

6.3.1 A. Configure the BIND zone file back-end

The BIND back-end (Figure 6.6) is compiled into PowerDNS by default, enabling it to serve
BIND-compatible zone master files.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

120 Alternative DNS Servers – Jan-Piet Mens

Figure 6.6: PowerDNS BIND back-end

Using PowerDNSwith the BIND back-end is probably not themost commonway to deploy
PowerDNS; most people use it with a database back-end (which we cover later). However,
we start with this back-end for three reasons:
(a) It’s the easiest to understand, and to configure.
(b) You may already be familiar with BIND.
(c) You have some BIND zone files, and want to configure PowerDNS as quickly as possi-

ble to serve those zones.
To configure PowerDNS to serve a zone with the BIND back-end:

1. Section 2.4 showed how you create a zonemaster file from individual resource records.
Create this file in a convenient directory; in this examplewe create a file in the directory
/etc/powerdns , called qupps.biz.zone :

cd /etc/powerdns
cat qupps.biz.zone
qupps.biz. 84600 IN SOA ns1.qupps.biz. jp.qupps.biz. (

200803160 ; serial
10800 ; refresh (3 hours)
900 ; retry (15 minutes)
604800 ; expire (1 week)
3600 ; minimum (1 hour)
)

NS ns1.qupps.biz.
NS ns2.qupps.biz.
MX 10 mail.qupps.biz.

ns1 A 192.168.1.20
ns2 A 192.168.1.173
mail A 192.168.1.20

2. The BIND back-end to PowerDNS needs an additional configuration file which is used

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 6. PowerDNS Authoritative Server 121

only by the BIND name server. This file is usually called named.conf , although in this
initial example we need a minimal file, so we call it mini-named.conf . (We defer
discussing the syntax of this file until Chapter 7, BIND, because only a tiny amount of
named.conf is relevant to PowerDNS’s BIND back-end.) Create the file:

cat /etc/powerdns/mini-named.conf
options {

directory "/etc/powerdns";
};

zone "qupps.biz" {
type master;
file "qupps.biz.zone";

};

Note all the braces and the semicolons (“; ”) which you must enter as shown; this is
not PowerDNS syntax, but the syntax required by the BIND name server.

This minimal configuration will enable PowerDNS’ BIND back-end to locate and read
the zone file created in step 1 above; the name of the zone is specified in the config-
uration above in the zone clause, and the file containing the zone’s data in the file

statement. Zone files are relative to the directory specified in the directory statement
of the options clause.

3. Edit PowerDNS’ configuration file, which is called pdns.conf . The file contains a lot of
lines of text which are all commented out (the lines start with a hash (“#”) character).
We recommend you simply rename the file and start afresh, for clarity.

Create the following lines of configuration in /etc/powerdns/pdns.conf :

launch=bind
bind-config=/etc/powerdns/mini-named.conf

These directives configure PowerDNS as follows:

launch Which back-end(s) PowerDNS should enable (i.e. “launch”) when it
starts up. We specify bind to use the BIND back-end.

bind-config The PowerDNS back-ends have various back-end-specific configu-
ration directives that modify their behavior. This is one of the very
few BIND back-end directives. It specifies the name of the BIND con-
figuration file; we use the name of the file mini-named.conf that
we created in step 2, above.

4. Start the PowerDNS daemon (i.e. the name server proper):

/etc/init.d/ pdns start

Even if you get a message that the name server has started, we recommend you check
your log file. (On our system it is /var/log/messages , but your system might use
/var/log/daemon.log .) If you have a syntax error in your pdns.conf , the server
will log an error and exit immediately, but without any message on the terminal. For
example, if you get an error such as:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

122 Alternative DNS Servers – Jan-Piet Mens

Unable to launch, no back-ends configured for querying

check that you don’t have spaces before the equals (“=”) sign in your lines. Similarly,
don’t surround the value to the right of the equals sign with quotes of any kind; this
almost always causes syntax errors.

5. When PowerDNS launches the BIND back-end, it reads in the mini-named.conf and
very quickly loads all master and slave zones, serving those up as soon as they are
loaded, and then logs the following information:

[bindbackend] Parsing 1 domain(s), will report when done
[bindbackend] Done parsing domains, 0 rejected, 1 new, 0 rem oved

At this point, your PowerDNS server is ready to answer queries from the zones you
configured with the BIND back-end.

Using the BIND back-end as a slave server

To use the BIND back-end to PowerDNS in a slave role, add the slave keyword to your config-
uration (Section 6.7). PowerDNS queries the master servers for each zone and transfers each
zone into a temporary file. If the zone transfer is successful, it renames the file and starts
answering queries for the zone.
That completes the setup of PowerDNS with the BIND back-end. In the following section

we show you how to configure and use the MySQL back-end for PowerDNS.

6.3.2 B. Configure the generic MySQL back-end

PowerDNS gets interesting when you configure it to use a database back-end (Figure 6.7).
We discussed on page 115 that there are several you can use. The easiest to start with are
probably the generic PostgreSQL or the generic MySQL back-ends, because they are often
provided as part of a PowerDNS installation when you install a ready-made binary PowerDNS
package. We’ll initially use the generic MySQL back-end, to get you started quickly.

Figure 6.7: The gmysql back-end for PowerDNS

To use the generic MySQL back-end:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 6. PowerDNS Authoritative Server 123

1. We assume you already have your MySQL server running, and that you have some
basic SQL knowledge.

2. Set up the database and its tables.

(a) Depending on the version of your MySQL server and PowerDNS binary, you may
have to configure your MySQL server to accept passwords using its “old” proto-
col by setting a variable in /etc/my.cnf and restarting the MySQL daemon:

...
[mysqld]
old_passwords = true
...

(b) You need a database in which to store zone data. You can use an existing one,
but we recommend that for initial testing you create a new one. We’ll create the
database ourpdns :

mysqladmin -p create ourpdns
Enter password:

(c) Create the tables within the database, and use SQL GRANTqueries to enable Pow-
erDNS to access the tables. We provide a script that does this, on our Web site
(☞D064). Retrieve the script and edit the two variable settings in the first few
lines: user and pass are the MySQL username and password respectively you use
to allow PowerDNS to access your database. In the examples that follow, we as-
sume the username is pdnsadmin and the password is hah! .

$ wget http://fupps.com/dnsbook/pdns/pdns-tables.sh
$ edit pdns-tables.sh
$ sh pdns-tables.sh | mysql -p ourpdns

3. Configure PowerDNS to use the gmysql back-end.

(a) Create the following lines of configuration in pdns.conf , replacing the values in
the last four lines to match what you specified when creating the database in step
2 above:

launch= gmysql
gmysql-host= localhost
gmysql-dbname= ourpdns
gmysql-user= pdnsadmin
gmysql-password= hah!

These directives configure PowerDNS as follows:

launch Which back-ends to launch. This time we want to use the
generic MySQL back-end, so we specify gmysql .

gmysql-something The configuration directives specific to gmysql all begin with
gmysql- . The four directives shown specify the MySQL host,
database name, username and password respectively.

(b) Invoke PowerDNS by launching the binary program pdns server (but also see Sec-
tion 6.8.3). You should see output resembling this:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

124 Alternative DNS Servers – Jan-Piet Mens

pdns_server
This is a standalone pdns
Listening on controlsocket in ’/var/run/pdns.controlsoc ket’
It is advised to bind to explicit addresses with the --local- address...
UDP server bound to 0.0.0.0:53
TCP server bound to 0.0.0.0:53
PowerDNS 2.9.21 (C) 2001-2006 PowerDNS.COM BV (Nov 12 2007, 10:06:14
PowerDNS comes with ABSOLUTELY NO WARRANTY. This is free sof tware, ...
Creating backend connection for TCP
gmysql Connection succesful
About to create 3 backend threads for UDP
gmysql Connection succesful
gmysql Connection succesful
gmysql Connection succesful

(c) Ensure that the connection to the database is successful, as in the example above.
If PowerDNS cannot connect to the MySQL back-end it will issue appropriate di-
agnostic messages, like these:

gmysql Connection failed: Unable to connect to database:
Access denied for user ’pdnsadmi’@’localhost’ (using pass word: YES)
Caught an exception instantiating a backend, cleaning up

Such messages usually indicate a mismatch between the username and pass-
word you configured in pdns.conf and those you specified when you created
the MySQL database, specifically when executing the GRANTstatements on the
tables, but they can also be an indication that you have to use MySQL’s “old
password” protocol, as in step 2 above.

Configured as in the example above, the pdns serverwill run in the foreground. If
you don’t see errors, you can use the pdns script to start it instead (Section 6.8.3).

(d) PowerDNS is now ready to answer queries. If you send it a query for, say, qupps.biz,
you see it print:

Not authoritative for ’qupps.biz’, sending servfail to ←֓
127.0.0.1 (recursion was desired)

and the DNS client will receive a SERVFAIL error. Why does that happen? Because
PowerDNS’ database tables do not contain any data, until we complete the next
step.

4. Add DNS data to the database tables.

You add zones and zone data to PowerDNS by inserting records into its database tables.
Both the gmysql and opendbx back-ends use similar database tables. We cover this in
the next section.

6.3.3 Database schema used by the gmysql and opendbx back-ends

When we created the tables in Section 6.3.2, we used the database schema of the opendbx
back-end. (You can download the schema from the book’s Web site at (☞D061).) You can
use this for both the gmysql and the opendbx back-ends (Figure 6.8).
There are two tables, domains and records , that contain all the DNS data for your zones.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 6. PowerDNS Authoritative Server 125

Figure 6.8: PowerDNS database schema

The domains table

The domains table specifies which zones PowerDNS will serve. It contains one record per
zone. The columns of this table are:

id A unique identifier for this record. (If you INSERT a NULL value,
MySQL automatically increments this id for you.)

name The name of the zone (qupps.biz). The name must not be qualified
with a terminating period. This column has a constraint defined on
it to ensure you keep domain names unique; if you try to add a zone
name that already exists you will get an error.

type The type of zone. Possible values are:

MASTER PowerDNS is a master for this zone, and it will NOTIFY
slaves when changes to the zone’s Start of Authority
(SOA) serial number are detected.

SLAVE PowerDNS is a slave for the zone.

NATIVE PowerDNS uses native replication. No SOA checks are
performed, no NOTIFYs are sent, and received NOTIFYs
are not processed. Superslaves don’t use these zones
either.

master The IP address of the master server for this zone. (Applies to slaves
only.)

notified serial The serial number from the Start of Authority (SOA) that was used
to notify a slave. PowerDNS updates this column when it sends out a
NOTIFY.

account This is an arbitrary string which is copied from the account column
of the supermasters table when a master provisions your Super-
slave (Section 6.3.4).

last check The UNIX time stamp when a slave zone was last checked for fresh-
ness.

status A single character which defaults to A (for Active). This column
was designed to indicate whether a record is active or inactive. Nei-

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

126 Alternative DNS Servers – Jan-Piet Mens

ther the gmysql nor the opendbx back-ends use this column2, but that
doesn’t matter: you can have as many additional columns in your
tables as you want.

The records table

The records table stores all resource records of all zones. The columns in this table are:

id A unique identifier for the record. (If you INSERT a NULLvalue, MySQL
automatically increments this id for you.)

domain id The domain id identifies the record in the domains table to which this
resource record belongs. To join the tables, you can use an equality state-
ment

... WHERE domains. id = records. domain_id ...

name The domain or host name of the DNS resource. The domain is always
fully qualified, but is not terminated with a period. For example, you use
a value of www.qupps.biz and not just www.

type The DNS resource type (SOA, A, NS, MX, . . .).

ttl The Time to Live (TTL) of the DNS resource. This value defaults to NULL,
in which case the value of default-ttl is used.

prio For records of type MX, this is the Mail Exchanger preference. If the value
of this column is NULL, the preference will be zero.

content The data portion of the DNS resource: IP Address for an A record, host
name for the NS record, . . .

change date Unused by PowerDNS.

You are free to add any other columns you wish. For example, you might want to add
a comment column to the records table to help you identify why you created or updated
a record, or, if you are an ISP, you may wish to add a customerID column to domains to
associate a domain with a specific customer.
The default SQL queries that PowerDNS issues rely on the tables above having the names

and columns shown, i.e. as defined in the standard schema. You can change the tables
and/or or column names, but if you do, you also have to rewrite the queries that PowerDNS
issues. This is possible for both SQL back-ends; we show you how to do it for OpenDBX (see
Notes).

6.3.4 Managing zones in the database

Zones and their data are managed in the SQL back-ends by adding, deleting or updating
records in the database tables. You do this either manually with the database management
tool of your choice, or via command-line scripts that you craft to ease your administrative
chores, or via a Web-based interface. (We discuss this in Section 2.5.5 and Section 19.4.)

2See the home page of the OpenDBX project for information on how to use the column.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 6. PowerDNS Authoritative Server 127

A zone consists of a single record in the domains database table and one or more records
(probably more) in the records table. The exact SQL syntax needed to add these records
depends on the database vendor; unfortunately, there are differences in the dialects, but we
will attempt to remain ANSI-SQL compliant in the examples that follow.

Create a new master or native zone in the database

To create a master or native zone we have to insert a new row into the domains table, speci-
fying the zone name, as well as its type:

mysql> INSERT INTO domains (name, type) VALUES(’qupps.biz ’, ’NATIVE’);
mysql> SELECT id,name,type,status FROM domains;
+----+-----------+--------+--------+
| id | name | type | status |
+----+-----------+--------+--------+
| 1 | qupps.biz | NATIVE | A |
+----+-----------+--------+--------+

At this point, the domain is still not active, as it doesn’t contain any records. DNS queries
on the domain would fail, as the zone does not yet contain a Start of Authority (SOA) record.

Adding resource records to the database

You add DNS resource records to the records table and ensure that the column domain id

contains the identifier id from the domains table. This is the value 1 shown in the example
above.
We now insert three records to make the zone operative. The columns we need to set are:

domain id with the corresponding id from the domains table, namewith the fully qualified
host or domain name, the DNS type (one of SOA, A, TXT, NS, MX, etc.), and content which is
the data to be returned for the specified name (i.e. the right-hand side of the resource record).

mysql> INSERT INTO records (domain_id, name, type, content)
> VALUES (1, ’qupps.biz’, ’SOA’,
> ’ns.qupps.biz. jp.qupps.biz. 1 10800 900 604800 7200’);

mysql> INSERT INTO records (domain_id, name, type, content)
> VALUES (1, ’qupps.biz’, ’NS’, ’ns.qupps.biz’);

mysql> INSERT INTO records (domain_id, name, type, content)
> VALUES (1, ’ns.qupps.biz’, ’A’, ’192.168.1.20’);

mysql> SELECT id, domain_id AS Did, name, type, ttl, content FROM records;
+----+-----+--------------+------+------+---------- ---------------------------+
| id | Did | name | type | ttl | content |
+----+-----+--------------+------+------+---------- ---------------------------+
| 1 | 1 | qupps.biz | SOA | NULL | ns.qupps.biz. jp.qupps.biz. 1 1080...
| 2 | 1 | qupps.biz | NS | NULL | ns.qupps.biz |
| 3 | 1 | ns.qupps.biz | A | NULL | 192.168.1.20 |
+----+-----+--------------+------+------+---------- ---------------------------+

As that looks good, we’ll now attempt to query our PowerDNS:

$ dig +norecurs @127.0.0.1 ns.qupps.biz A
;; flags: qr aa ; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; ANSWER SECTION:
ns.qupps.biz. 3600 IN A 192.168.1.20

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

128 Alternative DNS Servers – Jan-Piet Mens

If you have query-logging enabled in pdns.conf (Section 6.7), you will see the SQL queries
being issued to the database by the back-end. The TTL that PowerDNS returns is the default-ttl
(see Section 6.7 on page 146), unless you have defined a TTL specific to this record, in the ttl

column.

Automating record inserts

We saw above that you have to set records . domain id to the value of domains . id . You can
“automate” this during an INSERT by using a sub-query, supported by many SQL dialects:

mysql> INSERT INTO domains (name, type) VALUES(’qupps.biz ’, ’NATIVE’);
mysql> INSERT INTO records (domain_id , name, type, content)

> VALUES (
> (SELECT id FROM domains WHERE name = ’qupps.biz’) ,

’qupps.biz’,
’SOA’,
’ns.qupps.biz. jp.qupps.biz. 1 10800 900 604800 7200’

);
mysql> INSERT INTO records (domain_id , name, type, content)

> VALUES (
> (SELECT id FROM domains WHERE name = ’qupps.biz’) ,

’qupps.biz’,
’NS’,
’ns.qupps.biz’

);
mysql> INSERT INTO records (domain_id , name, type, content)

> VALUES (
> (SELECT id FROM domains WHERE name = ’qupps.biz’) ,

’qupps.biz’,
’A’,
’192.168.1.20’

);

While the SQL statements are now much longer, you don’t have to manually look up a
zone’s id in the domains table. This makes it much easier to create scripts to automatically
add zones or records to your database.

Adding a slave zone

Adding a slave zone to the domains database table is very similar to adding a native zone,
but you have to add one extra piece of data: the IP address of the zone’s master server.
PowerDNSwill use this to retrieve the zone via AXFR zone transfer.

mysql> INSERT INTO domains (name, type, master)
> VALUES (’mens.de’, ’SLAVE’, ’192.168.1.20’);

Every slave-cycle-interval seconds (default 60s), PowerDNS checks for new slave zones, by
performing an SQL query to check for unfresh slaves, i.e. slaves that need to be primed with
an incoming zone transfer. If this query determines that there is an unfresh slave, then:

• It performs an SQL query to determine the IP of the master server from either the
domains table or from an existing SOA resource in the records table. As soon as those

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 6. PowerDNS Authoritative Server 129

have been found, all subsequent queries are wrapped in an SQL transaction which
is committed to the database if the zone transfer succeeds (or is rolled back and at-
tempted at a later time if it fails).

The reason for a transactional database back-end becomes clear now: all records in the
database for the current zone are deleted, effectively emptying the zone if it contained
data.

• Then a sequence of INSERTs is run, one for each of the resource records on the incoming
zone.

So, after a short while, the domains table is updated to reflect when the last check was
performed:

mysql> SELECT * FROM domains WHERE name = ’mens.de’;
*************************** 1. row ******************* ********

id: 2
name: mens.de
type: SLAVE

master: 192.168.1.20
account:

notified_serial: NULL
last_check: 1195049242

status: A

and the records table now contains our zone data:

mysql> SELECT id,name,type,prio,content FROM records
WHERE domain_id =

(SELECT id FROM domains WHERE name = ’mens.de’);
+----+--------------------+-------+------+--------- ----------------------------+
| id | name | type | prio | content |
+----+--------------------+-------+------+--------- ----------------------------+
| 4 | mens.de | SOA | 0 | mens.de. jp.mens.de. 200705537 108...
5	mens.de	NS	0	home.mens.de
8	home.mens.de	A	0	192.168.1.20
6	dom.mens.de	A	0	192.168.1.51
21	pr.mens.de	CNAME	0	printer.mens.de
22	printer.mens.de	A	0	192.168.1.78
+----+--------------------+-------+------+--------- ----------------------------+

How you configure a Superslave

When a PowerDNS superslave receives a notification from a known master, it can automati-
cally configure itself as a slave for the zone and provision itself via an incoming zone trans-
fer. When PowerDNS acts as a master to Superslaves, it calls itself a Supermaster, for lack of a
better term.
Configuring a PowerDNS server to be a Superslave is easy with the back-ends that have

Superslave capabilities (Table 6.2). The supermasters table contains a record for each Su-
perslave you create:

ip This column contains the IP Address of the DNS master server which is
allowed to provision your Superslave.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

130 Alternative DNS Servers – Jan-Piet Mens

nameserver This column contains the NS name of the DNS master name server which
is allowed to provision your Superslave. This value must either be the
official host name or the IP address of the DNS server that sends the NO-
TIFY.

account This is an arbitrary string that allows you to identify a DNSmaster. When
a master DNS server has notified your PowerDNS of the existence of a
new zone, PowerDNS will provision itself with the zone. The value of
supermasters.account will be copied into the account column of the
domains table for the zone. This allows you to track how a slave zone
entered your system.

Add a record to the supermasters table to define a Superslave:

mysql> INSERT INTO supermasters VALUES (’192.168.1.20’, ’ home.mens.de’, ’JP’);

If you then add a domain on your master (in this case host 192.168.1.20), it will send a
NOTIFY to our PowerDNS server thinking the latter is a normal slave. At that point, the
PowerDNS Superslave receives the NOTIFY and notices that is has no data on the zone but
recognizes the IP address of the master name server as being allowed to provision it. It will
creates a new slave zone, adding the zone to the domains table, and it performs an incoming
zone transfer for the zone, storing the data in the records table:

mysql> SELECT * FROM domains WHERE account = ’JP’;
*************************** 1. row ******************* ********

id: 2
name: mens.de
type: SLAVE

master: 192.168.1.20
account: JP

notified_serial: NULL
last_check: 1195039983

status: A

and PowerDNS records the creation of the zone, in the system log file:

Created new slave zone ’mens.de’ from supermaster 192.168. 1.20, queued axfr

If a zone is removed from the master server, there is no way to remove it automatically
from the PowerDNS slave; this is not a limitation of PowerDNS – there is simply no defined
protocol to announce zone removal to slaves.
We have discussed how the SQL-capable back-ends in PowerDNS use the database tables

to organize zones and their data, and we discussed that both the gmysql and opendbx back-
ends can use the same database schema. If you don’t want to learn about the OpenDBX,
LDAP or Pipe back-ends, you can skip to Section 6.7 on page 143, where we discuss the
PowerDNS configuration in detail. In the following section we discuss the OpenDBX back-
end.

6.4 The OpenDBX database back-end

The OpenDBX back-end was created by Norbert Sendetzky. It utilizes the similarly-named
OpenDBX package, which is a library of routines written in the C programming language

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 6. PowerDNS Authoritative Server 131

(C++ is also available), that hides the database-specific APIs, by presenting a unified and
consistent API to an application. OpenDBX favors speed and therefore doesn’t attempt to
unify the SQL query language; the application programmer must submit SQL queries in the
dialect of the supported database system. This offers a significant performance increase over
systems (such as ODBC) that try to encapsulate all SQL dialects by providing a translation
system between the query a program uses and the database system used.
The authors claim that the OpenDBX back-end to PowerDNS is marginally faster than the

gmysql or gpgsql back-ends, and we have been able to reproduce the numbers with some
reservations, depending on the test cases (see Chapter 23). We favor the OpenDBX back-end
over the generic SQL back-ends because of its homogeneous interface to different database
systems (Table 6.3), some of which may require additional software (see the OpenDBX doc-
umentation). OpenDBX itself should compile on all UNIX-based platforms (see Notes), al-
though as yet, no port to Microsoft Windows has been released, unfortunately.

Firebird PostgreSQL
Interbase SQLite
Microsoft SQL Server SQLite3
MySQL Sybase
Oracle

Table 6.3: OpenDBX drivers

A most interesting feature of the OpenDBX back-end is its support for reading and up-
dating zones from different database servers (Figure 6.9). Cluster environments in which
database nodes are not equal can benefit from this. You specify which is themaster database,
and PowerDNS directs all updates (e.g. during incoming zone transfers) to that copy of the
database. PowerDNS directs only read requests to the other (replica) servers.

Figure 6.9: The OpenDBX back-end for PowerDNS

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

132 Alternative DNS Servers – Jan-Piet Mens

6.4.1 Getting started with the OpenDBX back-end

Getting started with the OpenDBX back-end is very similar to what we discussed in Sec-
tion 6.3.2 for the gmysql back-end:

1. If your binary PowerDNS package doesn’t contain the opendbx back-end, you have to
build OpenDBX and PowerDNS yourself, but that isn’t difficult (see Notes).

2. You provide a database for the OpenDBX back-end to use and create tables for it. Copy
the procedure we showed you for MySQL in Section 6.3.2; it works just the same for
OpenDBXwith the MySQL driver.

3. The database tables and their content are also exactly the same as we described in
Section 6.3.3; if you’ve already set them up for gmysql and are now just moving to
the opendbx back-end, you don’t have to change anything: the opendbx back-end will
happily use the data you previously used with gmysql.

The opendbx back-end has a number of additional configuration options, mainly pertaining
to the fact that it can (but doesn’t have to) use multiple database servers for resilience. We
discuss these settings next.

6.4.2 Configuration options for the OpenDBX back-end

The OpenDBX back-end introduces two sets of configuration options to the main PowerDNS
configuration: (A) General options, and (B) options that affect queries (see Notes).

6.4.3 A – General options

launch Which back-end(s) PowerDNS should launch. This must include the
keyword opendbx to initialize the OpenDBX back-end.

opendbx-backend Name of the database driver you want to use (default: mysql). The
OpenDBX library must support it on your platform (see Notes).

opendbx-host-read Contains one or more host names3 or IP addresses of the database
servers (default is 127.0.0.1). These database servers will be used
for retrieving queries that involve SELECTstatements (i.e. zone and
resource record lookups performed by PowerDNS). The default for
this option is localhost.

opendbx-host-read= 192.168.1.20,192.168.1.24

For the SQLite and SQLite3 drivers, this variable should be set to
the name of the directory containing the SQLite database file, and it
must include the trailing slash.

opendbx-host-read= /var/pdns/db/
opendbx-host-write= /var/pdns/db/
opendbx-database= powerdns.sqlite

3Careful with host names: they have to be resolved, and we are launching a DNS server!

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 6. PowerDNS Authoritative Server 133

opendbx-host-write Contains one or more addresses of database servers which will
be used for SQL INSERT, UPDATEor DELETEstatements (default is
127.0.0.1). These are invoked by PowerDNS only for incoming zone
transfers. In a setup that involves a master database server with
one or more read replicas, opendbx-host-write contains the address
of the master database server. The default for this option is local-
host.

opendbx-host-write= 192.168.1.49

opendbx-port The TCP port number (or name from /etc/services) used to con-
tact the database server. (Default is empty string). Most databases
will use their default port number if this is left empty.

opendbx-database The name of the database. (Default: "powerdns" .)

opendbx-username Usernamewhich is sent to the database for authentication (together
with opendbx-password). (Default: "powerdns" .)

opendbx-password Clear text password sent in combination with opendbx-username to
connect to the database engine. (Default: "" .)

For a MySQL database engine running on the same host as the PowerDNS server itself, our
configuration is:

opendbx-backend= mysql
opendbx-host-read= 127.0.0.1
opendbx-host-write= 127.0.0.1
opendbx-port= 3306
opendbx-database= ourpdns
opendbx-username= pdnsadmin
opendbx-password= hah!

whereas for SQLite3, a configuration would be

launch= opendbx
opendbx-backend= sqlite3
opendbx-host-read= /usr/local/var/db/
opendbx-host-write= /usr/local/var/db/
opendbx-port=
opendbx-database= power.db
opendbx-username=
opendbx-password=

This completes our discussion of the OpenDBX back-end. You can skip to Section 6.7 to
learn about the other PowerDNS configuration directives, if you want. In the next section we
discuss the LDAP back-end.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

134 Alternative DNS Servers – Jan-Piet Mens

6.5 The LDAP directory server back-end

The LDAP back-end was created by Norbert Sendetzky. With it, you enable PowerDNS to
retrieve DNS resource records from an LDAP directory server, fully integrating your DNS
with LDAP (Figure 6.10).

Figure 6.10: PowerDNS LDAP back-end

Before rushing off to add appropriate entries to your LDAP directory, we strongly rec-
ommend you take some time to design the tree in which you will be storing DNS entries, as
a mis-design now can be painful to correct later on, so we cover that next.

6.5.1 Designing the LDAP directory tree

The LDAP back-end is very flexible: you can keep your DNS related entries in almost any
tree structure you want to. The back-end supports three tree styles:

simple For any requested domain, the LDAP back-end searches the LDAP directory
for an attribute type associatedDomain matching the requested domain name.
As the hierarchy of your LDAP directory tree is not used at all in the simple
method, you are free to organize your DNS entries as you wish.

tree With the tree style, the PowerDNS LDAP back-end maps the requested do-
main into a distinguished name. This means that for a query of www.qupps.biz,
your LDAP directorymust have an entry named dc=www,dc=qupps,dc=biz
under the base of the tree you keep your DNS data in.

strict The strict form is identical to the simple form, but the LDAP back-end is
able to generate PTR records for any LDAP aRecord (IPv4 Address) or for any
aAAARecord (IPv6 Address) entries: when a query for a PTR arrives, the back-
end checks if it has a forward entry for the IP address; if so it answers the PTR
query.

However, if you use strict , PowerDNSwith the LDAP back-end can’t act as a
master server for any zone, so we don’t discuss this form any further.

Our tests show there is no noticeable difference in performance using the “simple” or “tree”
styles, leaving the decision of how to structure your tree to a matter of taste. We show you
the “simple” style.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 6. PowerDNS Authoritative Server 135

6.5.2 LDAP schema used by the LDAP back-end

The schema used by the LDAP back-end of PowerDNS builds on elements found in the Co-
sine schema. (Download the dNSDomain2 schema (☞D062).) We show you an example
LDIF file for the zone qupps.biz:

dn: dc=qupps.biz,ou=pdns,ou=dns,dc=qupps,dc=biz
dc: qupps.biz
objectClass: dcObject
objectClass: dNSDomain2
objectClass: domainRelatedObject
sOARecord: ns1.qupps.biz. hostmaster.mens.de. 19620528 1 10800 900 604800 3600
NSRecord: ns1.qupps.biz
NSRecord: ns2.qupps.biz
mXRecord: 10 mail.qupps.biz
mXRecord: 20 mail.uit.co.uk
aRecord: 192.168.1.20
tXTRecord: "v=spf1 a:mail.qupps.biz a:mail.uit.co.uk mx :qupps.biz ˜all"
LOCRecord: 52 2 2.76 N 8 28 37.919 E 118m
dNSTTL: 86400
associatedDomain: qupps.biz

To define an entry for a DNS wild card domain, use an LDIF like this example:

dn: dc=wild,dc=qupps.biz,ou=pdns,ou=dns,dc=qupps,dc= biz
dc: wild
objectClass: top
objectClass: dNSDomain2
objectClass: domainRelatedObject
associatedDomain: *. qupps.biz
cNAMERecord: qupps.biz

Table 6.4 shows the most frequently used DNS records and their corresponding LDAP
attribute types as implemented by the LDAP back-end.

DNS RR Attribute type Sample content

A aRecord 192.168.1.20
AAAA aAAARecord fe80::200:ff:fe00:0
CNAME cNAMERecord www.somewhere.org
class dNSClass IN
TTL dNSTTL 3600
HINFO hInfoRecord "PC P5/700" "Ubuntu 7.04"
LOC LOCRecord 52 2 2.760 N 8 28 37.919 E
MX mXRecord 10 mail.qupps.biz
NS NSRecord ns.qupps.biz
PTR PTRRecord www.aa01.net
SOA sOARecord f.q. e.f.q. 2 10800 900 604800 3600
SRV sRVRecord 0 0 389 ldap.qupps.biz
TXT tXTRecord hello world

Table 6.4: Attribute types used by PowerDNS LDAP back-end

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

136 Alternative DNS Servers – Jan-Piet Mens

6.5.3 Defining an LDAP back-end in pdns.conf

To set up an LDAP back-end, you configure the following parameters in pdns.conf : Note
that quotes ("") in pdns.conf are almost always wrong; while quoting a DN might appear
to be the right thing to do, it will not work.

launch Which back-end(s) to launch. This must contain the word ldap to
launch the LDAP back-end.

launch= ldap

ldap-host Host name or IP address list of the LDAP directory server(s), op-
tionally followed by a colon and the TCP port number. Note that a
host name is probably not useful here if you need this DNS server
to resolve it to an IP address. (Default: 127.0.0.1:389 .)

ldap-host= 192.168.1.20:389

ldap-host may take a comma- or space-separated list of addresses,
with which you provide fail-over capabilities to the LDAP back-
end. The LDAP client libraries attempt to connect to the LDAP
directory servers in the order you specify; the first successful con-
nection is used. (In other words, this is not a way to spread your
load across multiple LDAP directory servers.)

SSL connections can only be established by setting this parameter
to a valid LDAP URI such as

ldap-host= ldaps://192.168.1.20:636/

If you are using TLS (see next parameter), the subjectAltName
flag of your SSL certificate will almost certainly have to contain an
IP:a.b.c.d for TLS to function correctly.

ldap-starttls Whether to use TLS to encrypt the connection to your directory
server (default is no). TLS is enabled by the underlying LDAP li-
braries to which the LDAP back-end was linked during building.

ldap-starttls= yes

ldap-basedn Distinguished name (DN) of the directory entry under which the
LDAP back-end should start searching. The default setting is "" .

ldap-basedn= ou=pdns,ou=dns,dc=qupps,dc=biz

ldap-binddn The distinguished name (DN) with which the back-end binds to
the LDAP directory. If it is not required, it can be left at the default
of an empty string (anonymous bind); otherwise it should be set to
a valid DN, whose password is given as ldap-secret.

ldap-binddn= cn=dnsAdmin,dc=qupps,dc=biz

ldap-secret The clear-text password which the LDAP back-end will use with
ldap-binddn as credentials to bind to the LDAP directory. As the

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 6. PowerDNS Authoritative Server 137

password is given in clear text, the file containing it must be ade-
quately protected from prying eyes, by file system permissions.

ldap-secret= hah!

ldap-method The style of tree on the LDAP directory. Valid settings are simple
(the default), tree or strict .

ldap-method= tree

ldap-filter-axfr If set, this filters which LDAP entries will be returned as records in
a zone transfer.

Normally the LDAP back-end will return all DNS resource records
found in the LDAP entries of the directory, but this filter may be
used to limit them. The default is the string (:target:) , which
includes the default search specification, but you can augment that
with any valid LDAP filter by And/Or-ing it with any desired at-
tribute=value.

ldap-filter-axfr= (&(:target:)(dNSDomainFlags=axfr))

The dNSDomainFlags attribute type is defined in the object class
dNSDomainFlags , and you can download the schema for that from
(☞D063). It could be used to offer split-horizon DNS by setting the
flag to either ”internal” or ”external” and adjusting the ldap-filter-
axfr and ldap-filter-lookup settings.

ldap-filter-lookup This filter is used to perform individual lookups, and it too may be
augmented to allow or disallow lookups.

ldap-filter-lookup= (&(:target:)(!(dNSDomainFlags=nolook)))

The dNSDomainFlags attribute type is defined in the object class
dNSDomainFlags , as explained in the previous item.

(You typically won’t have to alter ldap-filter-lookup or ldap-axfr-lookup,
as the defaults are quite sensible.)

6.5.4 The zone2ldap utility

Instead of manually crafting LDIF files for zones, you can use the zone2ldap utility provided
with PowerDNS. It converts zone master files to LDIF, which you can feed directly to ldap-
modify to update your LDAP directory. The utility supports the simple and tree -styles as
defined by the PowerDNS LDAP back-end. If you give it just a named.conf , it will look in
there to find the names of the zone data files and use those. Assume a master zone file for
qupps.biz contains:

$ORIGIN .
$TTL 86400 ; 1 day
qupps.biz IN SOA ns1.qupps.biz. hostmaster.mens.de. (

196205281 ; serial
10800 ; refresh (3 hours)
900 ; retry (15 minutes)

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

138 Alternative DNS Servers – Jan-Piet Mens

604800 ; expire (1 week)
3600 ; minimum (1 hour)
)

NS ns1.qupps.biz.
$ORIGIN qupps.biz.

A 192.168.1.20
MX 10 mail.qupps.biz.

* CNAME qupps.biz.

If you run zone2ldapwith the “tree” style on this zone file, it produces the following output:

$ zone2ldap --basedn=ou=dns,dc=qupps,dc=biz \
--dnsttl=yes \
--layout=tree \
--zone-file=qupps.biz \
--zone-name=qupps.biz

dn: dc=biz,ou=dns,dc=qupps,dc=biz
changetype: add
objectclass: dNSDomain2
objectclass: domainRelatedObject
dc: biz
associatedDomain: biz

dn: dc=qupps,dc=biz,ou=dns,dc=qupps,dc=biz
changetype: add
objectclass: dnsdomain2
objectclass: domainRelatedObject
dc: qupps
dNSTTL: 86400
associatedDomain: qupps.biz.
sOARecord: ns1.qupps.biz. hostmaster.mens.de. 19620528 1 10800 900 604800 3600

dn: dc=qupps,dc=biz,ou=dns,dc=qupps,dc=biz
changetype: modify
add: NSRecord
NSRecord: ns1.qupps.biz

dn: dc=qupps,dc=biz,ou=dns,dc=qupps,dc=biz
changetype: modify
add: aRecord
aRecord: 192.168.1.20

dn: dc=qupps,dc=biz,ou=dns,dc=qupps,dc=biz
changetype: modify
add: MXRecord
MXRecord: 10 mail.qupps.biz

dn: dc=qupps,dc=biz,ou=dns,dc=qupps,dc=biz
changetype: add
objectclass: dnsdomain2
objectclass: domainRelatedObject
dc: qupps
associatedDomain: qupps.biz

dn: dc=*,dc=qupps,dc=biz,ou=dns,dc=qupps,dc=biz
changetype: add
objectclass: dnsdomain2

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 6. PowerDNS Authoritative Server 139

objectclass: domainRelatedObject
dc: *
dNSTTL: 86400
associatedDomain: *.qupps.biz
cNAMERecord: qupps.biz

If you don’t have access to the master zone files but are able to perform a zone transfer for
the designated zone(s), use dig to retrieve the zone and feed its output to zone2ldap. The
following listing is an example of how to do that.

Listing 6.1: Feed a zone transfer to zone2ldap

#!/bin/sh

NS=192.168.1.20
ZONES="mens.de example.com example.net"
BASE="ou=dns,o=qupps.biz"

for z in ${ZONES}
do

dig @${NS} "${z}" axfr > z.tmp
zone2ldap --basedn="$BASE" --dnsttl=yes \

--layout=tree \
--zone-file=z.tmp \
--zone-name="${z}"

done

6.5.5 Limitations of the LDAP back-end

The LDAP back-end is powerful; if you want to store DNS data in your LDAP directory, it
will probably satisfy your needs. Two points to note are:

• You can use the LDAP back-end to provide zone master DNS services, and if you need
to be a slave for some zones, we recommend you add slave support to PowerDNS for an
SQL database with the OpenDBX back-end, or a BIND-style file with the BIND back-end.

• The LDAP back-end cannot be used as a slave. When PowerDNS is a slave, it has to
store the DNS records of an incoming zone transfer in a back-end database. Because
LDAP is (currently) non-transactional, the authors decided (correctly) not to imple-
ment slave functionality, because a failed incoming zone transfer could potentially
damage the LDAP directory with writes on an incomplete zone.

6.6 The Pipe back-end

The Pipe back-end lets you add dynamic resolution to PowerDNS by writing a custom pro-
gram that reads queries sent to it by PowerDNS and generates the answers. You can write this
program, called a coprocess, in any language that can read from standard input and write to
standard output in an unbuffered method.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

140 Alternative DNS Servers – Jan-Piet Mens

Figure 6.11: PowerDNS Pipe back-end

6.6.1 How PowerDNS and the coprocess communicate

The PowerDNS server and the coprocess communicate using a simple protocol:

• They exchange messages in the form of tab-separated lines of text.

• The first line the coprocess receives is a HELOwith the protocol version number.

• After that, they enter an infinite loop: PowerDNS server sends the coprocess a line
containing a request, and waits for for an answer.

The server can send three types of request. The request type is specified as the first tab-
separated field in the request line:

PING: check whether the coprocess is alive.

AXFR: PowerDNS wants to perform a zone transfer from the Pipe back-end. This com-
mand does not report for which zone an AXFR is being requested, so you can’t
implement a Pipe back-end that satisfies multiple zones.

Q: a regular DNS query which contains seven fields, which we’ll cover in a mo-
ment.

The coprocess answers with one or more lines containing tab-separated fields. The first field
in each line indicates the type of response:

FAIL: the lookup failed.

DATA: the lookup succeeded, and additional fields. in the line contain responses to
queries.

END: no more DATA lines to come in response to this query.

LOG: the server should log the text in the rest of this line.

Regular “Q” requests contain seven fields:

1. The record type – Qin this case.

2. qname, the query name, e.g. www.qupps.biz

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 6. PowerDNS Authoritative Server 141

3. The type of query (qtype); one of A, NS, SOA, . . .Note however, that, in order to optimize
communication with the Pipe coprocess, PowerDNS always passes an ANY query.

As PowerDNS translates a query for an Address record (A) into an ANY query, the
coprocess should be prepared to answer accordingly. If the answer contains a CNAME,
PowerDNSwill follow its indirection, but if it contains any other record such as an A, it
will return that as an answer.

4. The class of the query (qclass), which is always IN .

5. An identifier id, that you can specify to help your coprocess identify an earlier query,
but you typically ignore this.

6. The remote IP of the querying client (remote ip). This will usually be the IP of the
caching name server the query was received from.

7. The local address of the PowerDNS process.

6.6.2 Directives for the Pipe back-end

The Pipe back-end has only a few configuration directives:

pipe-command This string contains the name of the coprocess program that
should be forked by PowerDNS. It is invoked once for each of
the configured distributor-threads plus three times.

pipebackend-abi-version This defines the protocol spoken between PowerDNS and the
Pipe coprocess, and may be set to 1 or 2. The only difference is
that in version 2, the server adds an extra field to the queries it
sends to the coprocess; this extra field contains the IP address
of the client requestor.

pipe-timeout Determines the number of milliseconds that PowerDNS should
wait for an answer from the coprocess. If the timeout is ex-
ceeded, the coprocess is considered dead and PowerDNS forks
another.

pipe-regex A regular expression that determines which queries are sent
by PowerDNS to the Pipe back-end. When deploying the Pipe
back-end with other back-ends, this expression can help limit
the load on the Pipe back-end, by avoiding giving it queries
which it will never be able to answer.

For example, a query for an Address (A) resource record for
qupps.biz will be presented to the regular expression parser as
qupps.biz;A , so to enable just that query to reach the back-
end you would use a regular expression like ˆqupps \.biz;A$.

For the pseudo load-balancer we describe in the next section, the configuration we use is:

launch= pipe
pipe-command= /etc/powerdns/pipe/loadb.pl
pipebackend-abi-version= 2
pipe-regex= example \.com;

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

142 Alternative DNS Servers – Jan-Piet Mens

6.6.3 An example load balancer coprocess for the Pipe back-end

The program in the following listing is a coprocess for the Pipe back-end of PowerDNS, pro-
viding simple load balancing. (We provide similar functionality for BIND SDB in Chapter 8.)
When it receives a query for www.example.com, the program reads a single IP address from
the file /tmp/load and returns that as a reply. (We assume that a separate monitoring pro-
cess is writing the address of the least-laden Web server into /tmp/load .)

Listing 6.2: PowerDNS Pipe back-end: load-balancer

#!/usr/bin/perl

use strict;

my $ipfile = ’/tmp/load’;
my $soarr = ’foo.bar email.qu 1 10800 3601 608400 3600’;

$|=1; # disable buffering

chomp(my $line = <>);

unless($line eq "HELO\t2") {
print "FAIL\n";
<>;
exit;

}
print "OK\tHere is $0\n";

while(chomp($line = <>))
{

print STDERR "Received: $line\n";
print "LOG\tGot {$line}\n";
my @pq = split(/\t/, $line);

if ($pq[0] eq ’AXFR’) {
reply(’example.com’, ’IN’, -1, 86400, ’SOA’, $soarr);
reply(’example.com’, ’IN’, -1, 86400, ’NS’, ’ns.qupps.bi z’);
reply(’example.com’, ’IN’, -1, 60, ’A’, ’1.0.0.2’);
reply(’example.com’, ’IN’, -1, 60, ’TXT’, "Served by Power DNS and $0");
print "END\n";
next;

} elsif (@pq < 6) {
print "LOG\tPowerDNS sent unparseable line\n";
print "FAIL\n";
next;

}

my ($type,$qname,$qclass,$qtype,$id,$client,$ip) = @pq ;

if (($qname eq ’example.com’) && (($qtype eq ’SOA’) || ($qty pe eq ’ANY’))) {
reply($qname, $qclass, $id, 86400, ’SOA’, $soarr);
reply($qname, $qclass, $id, 86400, ’NS’, ’ns.example.com ’);
reply($qname, $qclass, $id, 9600, ’MX’, "10\tmail.qupps. biz");

}
if (($qname eq ’www.example.com’) && ($qtype eq ’ANY’)) {

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 6. PowerDNS Authoritative Server 143

my $ip = undef;
if (open(IP, "$ipfile")) {

chomp($ip = <IP>);
close(IP);

}

reply($qname, $qclass, $id, 60, ’A’,
($ip) ? $ip : ’127.0.0.1’);

}

print "END\n";
}

sub reply {
my ($qname, $qclass, $id, $ttl, $qtype, $rr) = @_;

print "DATA\t$qname\t$qclass\t$qtype\t$ttl\t$id\t$rr \n";
print "LOG\treturning $rr for $qname/$qtype\n";

}

When PowerDNS starts up, it logs the banner issued by the coprocess:

Backend launched with banner: OK Here is .../pipe/loadb.pl
Done launching threads, ready to distribute questions

If we now query this back-end with:

$ dig @localhost www.example.com a
www.example.com. 60 IN A 10.51.3.4

$ echo 45.1.3.29 > /tmp/load
$ dig @localhost www.example.com a
www.example.com. 60 IN A 45.1.3.29

we see this printed to the log:

Coprocess: Got Q www.example.com IN ANY -1 127.0.0.1 0.0.0. 0
Coprocess: returning 10.51.3.4 for www.example.com/A
Coprocess: Got Q www.example.com IN ANY -1 127.0.0.1 0.0.0. 0
Coprocess: returning 45.1.3.29 for www.example.com/A

For an alternative solution, see Related topics on page 161.
That completes our discussion of the back-ends provided by PowerDNS. In the follow-

ing section we show you how to configure PowerDNS (although you know a bit about that
already).

6.7 Global PowerDNS configuration directives

PowerDNS is configured via a pdns.conf file or via command-line switches. The location
of pdns.conf depends on how the software was built (see Notes), but it is typically either
/etc/powerdns/pdns.conf or /usr/local/etc/pdns.conf . Names of the command-line
switches are identical to the name of directives in the configuration file but have a double
hyphen (“-- ”) prepended to them; for example, a configuration file setting of:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

144 Alternative DNS Servers – Jan-Piet Mens

local-address=127.0.0.1
launch=pipe

is equivalent to invoking the PowerDNS binary with:

pdns_server --local-address=127.0.0.1 --launch=pipe

To display a list of all configuration settings and options:

pdns_server --launch=gmysql --help

and to display the list of supported options for a specific back-end, use:

pdns_server --launch=gmysql --help=gmysql

To see which modules are compiled in to your copy of PowerDNS:

pdns_server --list-modules
Modules available:
bind
geo
ldap
opendbx
pipe
random

Most of the back-ends require some form of TCP/IP to access their databases, and you may
be tempted to use hostnames when configuring them. Keep in mind, however, that these
names have to be resolved to IP addresses via the host’s resolver. Since it is quite likely that
your resolver talks to a caching server, which in turn requires the PowerDNS server you are
configuring, you are creating a problem: PowerDNS can’t connect to its back-end database
because it cannot access the database to perform the resolution4. In case of doubt, use IP
addresses when specifying the hosts on which your SQL or LDAP servers run, or configure
these names locally in /etc/hosts .
We now show you some of PowerDNS’ more interesting global configuration settings. All

others are documented at http://doc.powerdns.com . We have already described settings
pertinent to the individual database back-ends, in their respective sections.

allow-axfr-ips Which clients are allowed to request a zone transfer from PowerDNS,
specified as a comma-separated list of IP addresses or IP/subnet pairs.

allow-axfr-ips= 127.0.0.1 , 192.168.1.0/24

Unfortunately it is not possible to control access to zone transfers via
data in the back-end database, forcing you to list IP addresses of the
slave servers here. In other words, this is an all-or-nothing proposi-
tion: in the example above, the client 192.168.1.23 can transfer all zones
hosted by PowerDNS.

allow-recursion PowerDNS allows recursion by default. However, PowerDNS itself can-
not act as a full recursive name server; instead, it implements recursion

4See the novel Catch 22 by Joseph Heller.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 6. PowerDNS Authoritative Server 145

by forwarding queries to a separate caching name server, at the ad-
dress specified by the recursor variable (Figure 6.12). We recommend
this feature as a last-resort only, because all queries sent to PowerDNS
will first cause a database back-end to look up the query; if it cannot
answer it, PowerDNS hands the query off to the external recursor. This
will cause an unnecessary load on the PowerDNS, which is after all an
authoritative name server.

If you do use this feature, you can forward to any brand of caching
name server, although since you are using PowerDNS, you might want
to use PowerDNS Recursor, as it is written by the same authors as Pow-
erDNS (Section 17.3).

You can restrict recursion to a specified set of clients, by specifying
allow-recursionwith a comma-separated list of IP addresses or subnets:

allow-recursion= 127.0.0.1 , 192.168.0.0/16

Figure 6.12: PowerDNS can forward queries to a cache

cache-ttl PowerDNS caches entire packets it sends out, to save time on querying
back-ends for the data. This variable specifies the number of seconds
(default 20) that PowerDNS should store packets in the packet cache
before dropping them.

If cache-ttl is 0, PowerDNS will consult the back-end databases for each
incoming query, thereby increasing the load on the database, but en-
suring very fresh replies. A value of 60 is a good compromise. (This
means that it can take up to 60 seconds before a record you update on
a back-end database is seen by a DNS client.)

cache-ttl= 60

You can check the size of the packet cache with:

pdns show packetcache-size

config-name This setting lets you run multiple instances of a PowerDNS on a single
machine. This best way to use this is by renaming the pdns startup

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

146 Alternative DNS Servers – Jan-Piet Mens

script to pdns-something; that causes the startup script to use the word
something as the value of config-namewhen it starts the binary:

pdns_server --config-name=foob
$ ps ax | grep pdns
........ pdns_server- foob -instance

We use this as a kind of virtual hosting to run more than one instance
of PowerDNS on a single machine. We define two different config-names
to run two different PowerDNS instances, each listening on a separate
IP address and accessing different back-ends.

default-ttl The TTL that should be returned in answers for records retrieved from
a database that have no TTL defined for them. (Default: 3600.)

The OpenDBX back-end performs slightly better if you have NULL val-
ues in the ttl column of the records database, as it does not have to
convert strings to numbers.

Not having the dNSTTLattribute type in your LDAP entries also gives a
slight performance improvement, because the LDAP back-end doesn’t
have to convert the numbers; it uses the value of default-ttl.

default-ttl= 7200

Tests indicate that you can attain a performance increase of up to seven
percent by using default-ttl instead of specifying a TTL per record.

disable-axfr Do not allow zone transfers, not even to those listed in allow-axfr-ips.

disable-tcp Do not listen to TCP queries. This effectively disables the TCP port
and PowerDNS can then no longer be used to serve zone transfers, nor
can it accept queries over TCP, effectively breaking RFC compliance.
This matters if you serve large resource record sets (RRset) that don’t
fit into a single UDP packet.

distributor-threads If your database back-ends are latency-bound, you might want to in-
crease the number of parallel instances, by increasing the setting of this
variable. The server will then be able to send queries in parallel to the
back-end databases for processing. We recommend you set this to a
value of 3.

Depending on your operating system and system architecture, setting
this variable to 1 might actually increase performance as PowerDNS
then effectively reverts to unthreaded operation.

guardian When PowerDNS is launched from the pdns init script (Section 6.8.3) it
wraps itself up in a so-called guardian process that monitors a forked
pdns server instance (see config-name above). It is this guardian process
that pdns control communicates with. This setting should be enabled
on production systems because it restarts PowerDNS automatically if
necessary.

guardian= yes

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 6. PowerDNS Authoritative Server 147

Sending the guardian a SIGTERM signal will cause it to exit and termi-
nate its children as well.

launch List of the back-ends that this instance of PowerDNS should activate.
The order is important because it determines the order in which back-
ends are sent queries. As soon as one back-end answers the query
successfully, no further back-ends are asked (for this query).

launch=opendbx,ldap, opendbx:qdb

The example shows how you can rename a back-end, by appending
a colon and an arbitrary string to the name. If you do this, all the
related options are renamed too, so you can define options specific to
the back-end instance. E.g. opendbx-host-read becomes opendbx-string-
host-read (opendbx-qdb-host-read in the example above). This lets you
load a back-end more than once. So, if you want to set up a PowerDNS
which has most of its zones in a MySQL database, and some legacy
zones in a Sybase system, you could use:

launch= opendbx:mysql , opendbx:sybase
...
opendbx- mysql -backend= mysql
opendbx- mysql -host-read= 127.0.0.1
...
opendbx- sybase -backend= sybase
opendbx- sybase -host-read= 192.168.3.44
...

local-address A comma-separated or whitespace-separated list of addresses of the
local machine, on which the PowerDNS instance should listen. We rec-
ommend you specify this list and not have PowerDNS listen to all inter-
faces (the default).

log-dns-details PowerDNS usually logs informative details on DNS queries. Set this
variable to “no” to disable the logging.

logging-facility Set this to a single digit, n, to syslog with facility LOCALn, instead of
the default DAEMON.

loglevel Controls how detailed PowerDNS logs should be. Set this to an integer
between 1 and 9. A value of 9 prints debugging information. On a pro-
duction machine, we recommend you run with a low loglevel setting.

master To allow PowerDNS to act as a DNS master, you must enable this vari-
able. (Default is no.)

master= yes

When PowerDNS is running as a master, it will send out DNS notifi-
cations to all slaves of the zones. Master and slave support may be
enabled simultaneously.

query-cache-ttl Each DNS query leads to a number of back-end queries. Consider a
request for the address (A) of www.qupps.biz. This could be a CNAME, so
PowerDNS must first check if there is a CNAME record before checking

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

148 Alternative DNS Servers – Jan-Piet Mens

for the A record. These complete queries to the back-ends and their an-
swers are stored in the query cache if they result in zero or one answer,
and expire after the number of seconds specified in this variable.

query-cache-ttl= 120

The query cache saves hitting the database back-ends, but the packet
cache (see cache ttl above) saves a lot of CPU because no processing
needs to be done at all.

query-logging Tells a back-end that it should log a textual representation of queries it
performs. We recommend you use this for debugging only.

recursive-cache-ttl How long, in seconds, to store recursive packets in the packet cache.
(default: 10)

recursor Set to the address of a caching name server to which PowerDNS sends
queries it cannot answer from its back-ends. See allow-recursion above.

slave To allow PowerDNS to act as a DNS slave or superslave, you must en-
able this variable. (Default is no.)

slave= yes

Master and slave support may be enabled simultaneously. Since both
default to no , PowerDNS supports only native zones by default.

slave-cycle-interval PowerDNS periodically checks its slave zones, to see if they are up-
to-date. This option specifies how long, in seconds, that PowerDNS
should wait between these checks. If a zone is out-of-date (i.e. its SOA
refresh has elapsed), PowerDNS contacts the master server and queries
the SOA resource record to determine whether or not the zone must be
refreshed. If you don’t use PowerDNS as a slave, this option is ignored.

At the same time, if configured as a master, PowerDNS asks its back-
ends to check whether any records have recently been modified; if so,
PowerDNS sends DNS NOTIFYs to the zones’ slave servers.

version-string When queried via DNS for its version, PowerDNS normally responds
with a full version string. This variable controls the answer. There are
four possible settings:

full The server answers with :

Served by POWERDNS 2.9.21 ... 20:43:14Z ahu

powerdns The server answers with:

Served by PowerDNS - http://www.powerdns.com

anonymous The server sends a SERVFAIL reply instead of a text
string.

string The server answers with string.

wildcards DNS wild cards enable a query for something.qupps.biz to be satisfied if
there exists a record for *.qupps.biz. Wild cards are enabled in PowerDNS
by default, and cause a query for something.qupps.biz to be searched for

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 6. PowerDNS Authoritative Server 149

as something.qupps.biz, qupps.biz, *.qupps.biz and even *.biz. If you know
that you do not use wild cards, disabling wild card support can lower
the load on your back-end databases.

wildcards= no

6.8 Monitoring PowerDNS

Monitoring is an integral component of PowerDNS, making it easy to see what the program
is doing. The program provides three tools for monitoring:

• pdns controlwhich ”talks” to a running pdns server and requests information from it.

• A built-in Web server which shows vital numbers (i.e. metrics).

• MRTG-capabilities of the pdns script.

which we cover in the following sections.

6.8.1 pdns control

You can launch the PowerDNS binary using the pdns script (preferred), or manually by in-
voking pdns server. When the PowerDNS server starts, it creates a control socket to allow
two-way communication with a special utility called pdns control. pdns control can pass com-
mands to the server, requesting information or instructing the server to terminate. When
you run pdns control, it expects a command and optional parameters. The currently sup-
ported commands are:

ccounts Returns statistics on the current content of the cache, unless the
cache TTLs are zero (in which case no caching is performed by
the server):

pdns_control ccounts
negative queries: 1367, non-recursive packets: 2048

notify Adds a specified zone name to the notification list, causing Pow-
erDNS to send out NOTIFYs to the Name Servers (NS) of a zone.
Use this commandmanually if you detect that a slave has missed
a previous (automatic) notification:

pdns_control notify mens.de
Added to queue

notify-host The same as notify , except you specify an IP address as desti-
nation for the notification packet.

pdns_control notify-host mens.de 192.168.1.20
Added to queue

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

150 Alternative DNS Servers – Jan-Piet Mens

purge Tells pdns server to purge the packet cache. You can specify an
optional argument recordname in which case only entries for the
exact record name are purged. If you specified it as recordname$
it purges cache entries ending in this name – effectively purging
an entire domain.

pdns_control purge www.qupps.biz
4
pdns_control purge ’qupps.biz $’
9

rediscover Instructs back-ends that new domains may have appeared in the
databases. In most cases this does nothing. For the BIND-back-
end however, pdns server rechecks named.conf and loads new or
unloads unused domains.

pdns_control rediscover
Ok. Done parsing domains, 0 rejected, 1 new, 0 removed

reload Tells back-ends that the contents of domains may have changed.
Many back-ends ignore this, but the BIND back-end will check
timestamps for all zones and reload them if needed.

pdns_control reload
Ok

retrieve Tells PowerDNS that it should retrieve a slave domain from its
master. This operation is performed almost immediately (i.e. as
soon as PowerDNS gets around to doing it).

pdns_control retrieve mens.de
Added retrieval for ’mens.de’ from master 192.168.1.20

set Sets a server variable at runtime. Currently the only variable you
can set is query-logging:

pdns_control set query-logging 0
done

show Displays a variable from the current pdns server instance. The list
of metric names is in Table 6.5.

pdns_control show packetcache-hit
7

This command is also available via the pdns script (see Section
6.8.3 on page 152).

uptime Shows the uptime of the PowerDNS server.

pdns_control uptime
6.7 hours

version Prints the version of the running PowerDNS instance.

pdns_control version
2.9.21

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 6. PowerDNS Authoritative Server 151

corrupt-packets recursing-questions
deferred-cache-inserts servfail-packets
deferred-cache-lookup tcp-answers
latency tcp-queries
packetcache-hit timedout-packets
packetcache-miss udp-answers
packetcache-size udp-queries
qsize-q udp4-answers
query-cache-hit udp4-queries
query-cache-miss udp6-answers
recursing-answers udp6-queries

Table 6.5: pdns control variable (metric) names

bind-domain-status Outputs status of one or more domains but only after the BIND
back-end has successfully loaded.

pdns_control bind-domain-status aa01.net aal01.org
aa01.net: parsed into memory at Sat Nov 17 21:19:23
aal01.org: parsed into memory at Sat Nov 17 21:19:23

bind-list-rejects Lists all zones that have problems and indicates what the prob-
lems are.

pdns_control bind-list-rejects
qupps.biz error at Sat Nov 17 21:23:19 2007 parsing ←֓

’qupps.biz’ from file ’qupps.biz’: ←֓
Can’t parse zone line ’$RIGIN .’

bind-reload-now Reloads one or more specified zones from disk immediately, re-
porting results of the reload.

pdns_control bind-reload-now notfound.com qupps.biz
notfound.com no such domain
qupps.biz: parsed into memory at Sat Nov 17 21:26:41

6.8.2 Built-in Web server

PowerDNS has a built-in Web server that shows what the server is doing at the moment
(Figure 6.13). To configure the Web server, use the following configuration variables in
pdns.conf :

webserver Start the Web server. (Default: no)

webserver= yes

webserver-address The IP address on which the Web server should listen for incoming
connections. Set it to 0.0.0.0 to listen on all the machine’s addresses.
(Default: 127.0.0.1)

webserver-address= 192.168.1.143

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

152 Alternative DNS Servers – Jan-Piet Mens

webserver-password The password for HTTP basic authentication for the Web server. A
username is not required, but you can enter anything when asked to.
If this is not set (default), you won’t be asked for a password.

webserver-password= hah2!

webserver-port The TCP port number on which the built-in Web server should listen
for HTTP requests. (Default: 8081.)

webserver-port= 8080

Figure 6.13: An excerpt of PowerDNS’ built-in web server

If you require stronger authentication or want to allow different users to access the Pow-
erDNSmonitor using their own passwords, you can have the Web server listen on the host’s
loopback interface and give users access to it via a Web proxy with stronger authentication.

6.8.3 pdns init.d script

An easy way to control PowerDNS is via its pdns script; this script is built when the soft-
ware is compiled, and you usually install it in /etc/init.d/pdns . It accepts the following
commands:

start Starts PowerDNS. When you first start the server, or after any change in
its configuration, make sure you carefully watch the system’s log for
any errors you may have introduced into its configuration, that prevent
the server from starting. The location of these logs depends heavily on
your setup, but typically is /var/log/messages .

stop Stops PowerDNS.

restart Stops and starts the server. This is identical to performing a stop fol-
lowed by a start . A synonym is force-reload .

status Shows whether or not the server is running.

dump Dumps a list of all metrics and their current values. A list of these is
shown in Table 6.5 on page 151.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 6. PowerDNS Authoritative Server 153

show Displays the value of an individual metric. (See the list in Table 6.5 on
page 151.)

pdns show udp4-queries
udp4-queries=2166

mrtg Displays the value of an individual metric in a form suitable for feeding
to the MRTG system (see Notes).

pdns mrtg udp4-queries
2166
0
5.8 minutes
PowerDNS daemon

Figure 6.14 shows a sample MRTG graph of the packet cache hit rate
taken from a live system.

cricket Displays the value of an individual metric in a form suitable for feeding
to the Cricketmonitoring system (see Notes).

pdns cricket udp4-queries
2166

monitor Start PowerDNSwith an option enabling full debugging. PowerDNS runs
un-daemonized, without a guardian attached, and it opens a monitor-
ing console at which you can type control commands to PowerDNS.

Figure 6.14: MRTG graph of PowerDNS’ packet cache

6.9 Deployment and provisioning scenarios

6.9.1 Don’t create a single point of failure

Do not set up two PowerDNS servers that access a single SQL or LDAP back-end, or else you
will create a single point of failure (SPOF). Nomatter how stable you think your back-end is,
a full file system, two disks gone bad, or a network problem will bite you some day. Believe
us. If that happens, all your PowerDNS servers – and any other services you may have – that
rely on that single back-end will be “kaput”.
The general rule of thumb is: one back-end server for one PowerDNS server, and we very

strongly recommend putting both on a single box (Figure 6.15), provisioning the database
or directory back-ends from a central location.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

154 Alternative DNS Servers – Jan-Piet Mens

Figure 6.15: Each PowerDNS has its own back-end

6.9.2 Domain hoster

If you are a domain hosting organization, you often register new domains for customers,
and assign NS entries for the newly registered domain to your PowerDNS, because you are
going to provide public DNS services for them. Unfortunately, some registries insist on your
DNS servers returning correct answers to queries, even though you might not yet be ready
to provide the real data.
A fairly simple Pipe back-end solves this problem. Get PowerDNS to launch both a

database and a Pipe back-end:

launch= opendbx , pipe
...

This causes the OpenDBX back-end to be queried first, and if it cannot find the answers in the
database, PowerDNS then asks the Pipe back-end. The program you write for the Pipe back-
end should give standard SOA, NS and A answers which will satisfy the registry, until you
can set up the zone’s final data in the OpenDBX back-end database. When you do add the
zone data to the OpenDBX back-end, PowerDNS queries that first, finds the data, and answers
the query, avoiding the Pipe back-end completely.

6.9.3 Set up NSD or BIND with a hidden/stealth MySQL PowerDNS

Running PowerDNS as a hidden or stealth primary to an NSD or BIND name server is straight-
forward. However, you first have to configure zone clauses manually in both BIND and NSD.
If you have PowerDNS with an OpenDBX or gmysql database back-end, you can use a small
program to automatically create a file containing the necessary zone clauses, which you then
include in BIND’s named.conf or in NSD’s nsd.conf file. The program below generates a
file from the domains table of the database. The program can also be made to generate BIND
ACLs or NSD provide-xfr statements if you want it to.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 6. PowerDNS Authoritative Server 155

Listing 6.3: Enumerate zones from MySQL for NSDwith PowerDNS::Backend::MySQL

#!/usr/bin/perl
enumzonessql (C)2008 by Jan-Piet Mens
Generate zones to include in named.conf or nsd.conf

use strict;
use PowerDNS::Backend::MySQL;

my $params = {
db_user => ’pdnsadmin’,
db_pass => ’hah!’,
db_name => ’ourpdns’,
db_port => ’3306’,
db_host => ’127.0.0.1’,
mysql_print_error => 1,
mysql_warn => 1 };

my %nic = (
’hu’ => ’hu-nic’,
’dk’ => ’dk-nic’,

);

my $pdns = PowerDNS::Backend::MySQL->new($params);

my $zones = $pdns->list_domain_names;

for my $name (@$zones) {
$name = lc $name;
my ($pfx, $tld) = split(/\./, $name, 2);

my $xfer = "";
$xfer = ’allow-transfer { "’ . $nic{$tld} . ’"; };’ . "\n"

if (defined($nic{$tld}));

#print <<ZoneEnd;
#zone "$name" {
type slave;
file "$name";
masters { 127.0.0.2; };
$xfer
#};
#ZoneEnd

print <<ZoneEnd;
zone:

name: "$name"
zonefile: "$name.zone"
provide-xfr: 127.0.0.1 NOKEY

ZoneEnd

}

The program outputs stanzas of zone configurations. Here’s an example for NSD:

zone:
name: "example.net"

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

156 Alternative DNS Servers – Jan-Piet Mens

zonefile: "example.net.zone"
provide-xfr: 127.0.0.1 NOKEY

You direct the output of this program to a file:

$ enumzonessql.pl > /tmp/db.zones && mv /tmp/db.zones /etc/nsd/nsd.zones.incl

The disadvantage of this setup is obviously that the dynamic nature of PowerDNS is not
utilized to its full extent, as zones will only be visible once you’ve created BIND or NSD’s
configuration and reloaded the slave server. (We show you how you can solve this problem
with a MySQL trigger and a user defined function in Section F.2.)

6.9.4 Set up BIND with hidden/stealth PowerDNS and LDAP back-end

Similar to above, we can easily extract the list of zones from an LDAP directory server back-
end, and create a file containing zone clauses to be included in BIND’s named.conf :

Listing 6.4: Enumerate PowerDNS zones from LDAP for BIND

#!/usr/bin/perl

Print a list of all dNSDomain2 zones in LDAP to
include in BIND.

use strict;
use Net::LDAP;

my @masters = qw(192.168.1.20 192.168.2.56);

my $ldap = Net::LDAP->new(’localhost’) or die "$@";

my $mesg = $ldap->bind(’cn=manager,dc=qupps,dc=biz’, pa ssword=>’heh?’);

$mesg = $ldap->search(
base => "ou=pdns,ou=dns,dc=qupps,dc=biz",
filter => "(&(objectClass=dnsDomain2)(sOARecord=*))",
attrs => [’associatedDomain’],

);

$mesg->code && die $mesg->error;

foreach my $e ($mesg->entries) {
my $zone = $e->get_value(’associateddomain’);

print "zone \"$zone\" IN {\n";
print " type slave;\n";
print " file \"$zone.zone\";\n";
print " masters { " . join(’; ’, @masters) . "; };\n";
print "};\n";

}

$ldap->unbind;

The program’s output is like:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 6. PowerDNS Authoritative Server 157

zone "qupps.biz" IN {
type slave;
file "qupps.biz.zone";
masters { 192.168.1.20; 192.168.2.56; };

};

6.9.5 Create your own provisioning tools

The back-end you choose determines what you can use to provision its data store with DNS
records. Here are some ideas to get you started:

• If you decide to deploy an SQL database back-end such as OpenDBX, have a good look
at Perl’s DBI or PHP’s Pear modules, which will help you get results quickly.

• Writing tools for the LDAP back-end is not much more difficult than for an SQL back-
end. A good starting point is Perl’s Net::LDAP. However, if performance is important,
look at Net::LDAPapi or the C language if you are conversant with that: OpenLDAP has
a very good client library with all functions you need.

Update your database with PowerDNS::Backend::MySQL

Augie Schwer has created a set of Perl modules for controlling PowerDNS. One of these is
PowerDNS::Backend::MySQL, a powerful Perl interface to the MySQL database used by the
OpenDBX and the generic MySQL back-ends. The module is available on CPAN. It provides
methods to:

• Add, delete and list master zones.

• Add, delete, list and find records.

• Add slave zones.

The example below uses the module to add the example.com zone if it doesn’t already exist.
It then adds an SOA record and an A record, for www.example.com.

Listing 6.5: Create a zone in PowerDNS with PowerDNS::Backend::MySQL

#!/usr/bin/perl

use strict;
use PowerDNS::Backend::MySQL;

my $MNAME = ’ns.qupps.biz.’;
my $RNAME = ’hostmaster.qupps.biz.’;
my $refresh = 7200; # Refresh 2 hours
my $retry = 1800; # Retry 30 minutes
my $expire = 2592000; # Expire 30 days
my $minimum = 14400; # Minimum 4 hours

my $params = {
db_user => ’pdnsadmin’,

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

158 Alternative DNS Servers – Jan-Piet Mens

db_pass => ’hah!’,
db_name => ’ourpdns’,
db_port => ’3306’,
db_host => ’127.0.0.1’,
mysql_print_error => 1,
mysql_warn => 1 };

my $pdns = PowerDNS::Backend::MySQL->new($params);

my $domain = ’example.net’;

if (! $pdns->domain_exists(\$domain)) {
unless ($pdns->add_domain(\$domain)) {

die "Cannot add domain $domain";
}

}

addrr($domain, ’www’, ’A’, ’192.168.1.20’);
addrr($domain, ’’, ’SOA’, "$MNAME $RNAME 0 $refresh $retry $expire $minimum");

$pdns = undef;
exit;

sub addrr {
my ($domain, $host, @rr) = @_;

my $fqdn = ($host) ? "$host.$domain" : "$domain";
my @rrset = ($fqdn, @rr);

unless ($pdns->add_record(\@rrset, \$domain)) {
die "Cannot add RR to $domain";

}
}

6.9.6 Enforce correct CNAME usage in your database

We discussed in Chapter 2 that RFC 1034 explicitly states:

If a CNAME RR is present at a node, no other data should be present

However, it’s easy to forget that, and if you insert an incorrect record, it could cause a slave
server of your PowerDNS to fail, on a zone transfer. One solution to this is to use OpenDBX
with its MySQL back-end, and set up a trigger in MySQL to prevent you from entering
the bad data. (This technique should work with most SQL database systems that support
triggers.)

Creating the trigger

The listing below shows our MySQL database trigger.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 6. PowerDNS Authoritative Server 159

Listing 6.6: Trigger prevents CNAME and other data

-- cnametrigger.sql by Jan-Piet Mens
-- Do *not* create the two procedures CALLed below; they
-- should fail in order to RAISE an error.

DELIMITER $$

CREATE TRIGGER pdnsCNAMEtrigger
BEFORE INSERT ON records
FOR EACH ROW

BEGIN
DECLARE nrows INTEGER;

IF NEW.type = ’CNAME’ THEN
SELECT COUNT(*) INTO nrows

FROM records
WHERE name = NEW.name;

IF nrows > 0 THEN
-- there is an RR already (including CNAME):
-- don’t insert this one!
--
CALL NO_CNAME_AND_OTHER_DATA_OTHER_EXISTS();

END IF;

ELSE -- NEW.type <> ’CNAME’
SELECT COUNT(*) INTO nrows

FROM records
WHERE name = NEW.name

AND type = ’CNAME’;

IF nrows > 0 THEN
-- there is already a CNAME: don’t insert!
--

CALL NO_CNAME_AND_OTHER_DATA_CNAME_EXISTS();
END IF;

END IF;

END $$
DELIMITER ;

The trigger is executed before a row is inserted into the records table. The two procedures
that are CALLed fromwithin the trigger don’t exist andmust not exist: as MySQL has no SQL
RAISE ERROR, there is no elegant way of getting the trigger to produce an error; however, by
calling procedures that have not been created in the database, we emulate a RAISE ERROR.
In Appendix F we show you how to solve the problemmore elegantly, using a User Defined
Function (UDF).

Viewing the effects of the trigger

To demonstrate what happens on an INSERT, we create a new zone with a few records in it:

• Add a zone.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

160 Alternative DNS Servers – Jan-Piet Mens

mysql> INSERT INTO domains (name,type) VALUES (’jp.xa’, ’M ASTER’);
mysql> SELECT id,name FROM domains WHERE NAME = ’jp.xa’;
+--------+-------+
| id | name |
+--------+-------+
| 100011 | jp.xa |
+--------+-------+
mysql> INSERT ... values (100011,’jp.xa’,’SOA’, ’1 1800 90 0 604800 86400’);
mysql> INSERT ... values (100011,’jp.xa’,’NS’, ’dns.jp.x a’);
mysql> INSERT ... values (100011,’dns.jp.xa’, ’A’, ’192.1 68.1.11’);
mysql> SELECT id,name,type,content FROM records WHERE dom ain_id = 100011;
+---------+-----------+------+--------------------- -----+
| id | name | type | content |
+---------+-----------+------+--------------------- -----+
1000173	jp.xa	SOA	1 1800 900 604800 86400
1000174	jp.xa	NS	dns.jp.xa
1000176	dns.jp.xa	A	192.168.1.11
+---------+-----------+------+--------------------- -----+

This gives us a basic zone with a Start of Authority record (SOA) and a Name Server
(NS) record.

• Add a first CNAME record. If you insert a CNAME record, it works:

mysql> INSERT ... values (100011,’www.jp.xa’, ’CNAME’, ’w ww.qupps.biz.’);
mysql> SELECT id,name,type,content FROM records WHERE dom ain_id = 100011;
+---------+-----------+-------+-------------------- ------+
| id | name | type | content |
+---------+-----------+-------+-------------------- ------+
1000173	jp.xa	SOA	1 1800 900 604800 86400
1000174	jp.xa	NS	dns.jp.xa
1000176	dns.jp.xa	A	192.168.1.11
1000177	www.jp.xa	CNAME	www.qupps.biz.
+---------+-----------+-------+-------------------- ------+

• Try to add a CNAME record for an existing domain.

Now we try to add a CNAME record for a domain that already exists, and it fails. The
name of the procedure gives an indication of what went wrong:

mysql> INSERT ... values (100011,’dns.jp.xa’, ’CNAME’, ’w ww.qupps.biz.’);
ERROR 1305 (42000): PROCEDURE opendbx.NO_CNAME_AND_OTHER_DATA_OTHER_EXISTS←֓

does not exist

• Try to add an “other” record for an existing CNAME.

Similarly, if you attempt to add a record for which there already exists a CNAME, you
get a similar error:

mysql> INSERT ... values (100011,’www.jp.xa’, ’A’, ’127.0 .0.3’);
ERROR 1305 (42000): PROCEDURE opendbx.NO_CNAME_AND_OTHER_DATA_CNAME_EXISTS←֓

does not exist

The code presented isn’t perfect, and it handles only INSERTs to the tables, not UPDATEs.
However, it might give you a few ideas for your own implementation. Using non-existent
procedures to indicate errors isn’t ideal, and we show you how to create a MySQL user-
defined function to handle the problem more elegantly in Appendix F.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 6. PowerDNS Authoritative Server 161

Summary

• PowerDNS is a versatile DNS server with a number of database back-ends, (a) SQL
(gmysql, opendbx, . . .) (b) LDAP (c) BIND, and (d) Pipe, that you can use simultaneously
if you want.

• PowerDNS’s BIND back-end is useful if you want to slowly migrate to PowerDNS, and
its Pipe back-end allows you to provide dynamic answers to DNS requests.

• PowerDNS has full support for being a master/slave name server, and it can be a Su-
perslave, allowing it to be provisioned remotely.

• PowerDNS has good tools to control the server, and its built-in Web server provides
statistics on its operation.

• The packet cache provides a good balance between throughput and dynamic back-
ends.

Related topics

• PowerDNS Recursor is a powerful and fast caching name server, complimentary to Pow-
erDNS. We discuss it in Section 17.3 on page 395.

• You like the idea of creating a program to generate answers to DNS queries on the
fly with PowerDNS()’s Pipe back-end? Before you dive into that, read about the Stan-
ford::DNSserver server implemented in Section 15.3 on page 362, which just might be
better suited to your needs. Although it would be a standalone server running on its
own IP address, Stanford::DNSserver will provide better performance, and you might
find it easier to implement than handling the text protocol spoken by the PowerDNS
Pipe back-end.

Notes and further reading

PowerDNS’ home

PowerDNS home is at http://www.powerdns.com/ and its documentation lives online at
http://wiki.powerdns.com/ .

Installing PowerDNS

Youmay already have PowerDNS installed on your system. If you don’t, there are three ways
you can obtain PowerDNS:

1. Install it via your package manager, if your *nix distribution has it.

2. Obtain a statically linked version directly from the powerdns.com download site.

3. Download the source and build it yourself (see Notes.) You typically build PowerDNS
yourself if you want to add options not readily available in the binary packages.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

162 Alternative DNS Servers – Jan-Piet Mens

Installing the PowerDNS binary

The following is an example of how to install PowerDNS on a GNU/Linux system using the
pre-build binary package from the PowerDNS web site.
Download the package:

$ wget http://downloads.powerdns.com/releases/deb/stable/ \
pdns-static_2.9.21-1_i386.deb

dpkg -i pdns-static_2.9.21-1_i386.deb

The installation copies configuration files and programs to their appropriate locations. It
specifically creates the following files:

• The file /etc/powerdns/pdns.conf contains a list of all valid configuration directives.
They are commented out, and we recommend you rename the file, and create a new
one containing only the directives you need, depending on the functionality you want
PowerDNS to provide.

• /etc/init.d/pdns is the script you typically use to start, stop and control the name
server.

• The file /usr/sbin/pdns server is the name server binary, which you typically don’t
execute yourself, leaving it up to the pdns script.

Installing PowerDNS from source

When building PowerDNS from source, youmust decidewhether you prefer to havemodules
compiled in to the final binary, or have them dynamically loaded. These hints might help
you decide:

1. Most GNU/Linux distribution maintainers seem to prefer the dynamically loaded
modules.

2. There is no noticeable performance difference when running PowerDNS with dynami-
cally loaded modules.

3. You configure PowerDNS to use statically linked modules with:

--with-modules=...

and to use dynamically loaded modules with:

--with-dynmodules=...

4. If you statically link in libraries, your current binary can’t break when you install a
new version of the library. By contrast, if you have dynamic libraries, when you install
a new version of the library, your DNS server can break, because of incompatibilities
in the library.

To build PowerDNSwith the OpenDBX, LDAP and Pipe back-ends, proceed as follows:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 6. PowerDNS Authoritative Server 163

$ wget http://downloads.powerdns.com/releases/pdns-2.9.21. tar.gz
$ tar xvzf pdns-2.9.21.tar.gz
$ cd pdns-2.9.21
$ export LDFLAGS="-L/opt/symas/lib -L/usr/lib64/mysql" # LDAP & M ySQL libraries
$ export CXXFLAGS="-I/opt/symas/include -I/usr/include/mysql"
$./ configure \

--prefix=/usr/local \
--with-dynmodules="" \
--with-modules="opendbx ldap pipe"

$ make
$ make install

Change the modules options as necessary, for the back-ends you want to use.

Installing OpenDBX

OpenDBX’ lives at http://www.linuxnetworks.de/doc/index.php/OpenDBX

$ wget http://linuxnetworks.de/opendbx/download/opendbx-1. 3.4.tar.gz
$ tar xzf opendbx-1.3.4.tar.gz
$ cd opendbx-1.3.4
$ export LDFLAGS="-L/usr/lib64/mysql"
$ export CFLAGS="-I/usr/include/mysql"
$./ configure --prefix=/usr/local --with-backends="mysql sqlite3"
$ make
$ make install

Build PowerDNSwith the OpenDBX back-end, making a static build

$ export CXXFLAGS="-I/opt/symas/include -DLDAP_DEPRECATED=1"
$ export CFLAGS="-I/opt/symas/include -DLDAP_DEPRECATED=1"
$ export LDFLAGS="-L/opt/symas/lib/ -L/usr/lib64/mysql/"

$./ configure --prefix=/usr/local \
--with-modules="" \
--with-dynmodules="opendbx ldap pipe"

Retrieving the latest version of PowerDNS

You can obtain the bleeding edge version of the PowerDNS source code directly from its
official Subversion repository.

$ mkdir pdnsSVN
$ cd pdnsSVN
$ svn co svn://svn.powerdns.com/pdns/trunk/pdns pdns
A pdns/regression-tests
A pdns/regression-tests/basic-hinfo
...
A pdns/makerelease
U pdns
Checked out revision 1123.

$ cd pdns
$./ bootstrap
$./ configure ...

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

164 Alternative DNS Servers – Jan-Piet Mens

OpenDBX options that affect queries

The SQL statements that OpenDBX uses in its queries are configurable. The standard ones
are almost always adequate, but there are situations where you might wish to change them.
For example, you might have to adapt them to accommodate a custom database schema.
Or, an ISP might want to change the queries to check whether a specific zone may be served
by the back-end – “if the customer hasn’t paid his invoice, I won’t serve his DNS”.
Here’s an example of how you might customize a query. The opendbx-sql-lookup parame-

ter specifies the SQL used to lookup a resource record. The default is:

SELECT domain_id, name, type, ttl, prio, content
FROM records WHERE name=’:name’

By changing this, you can alter the behavior of a DNS reply. Suppose you have a zone
with lots of Address (A) records, and you want to return only one in each answer, selected
randomly. You could set this query to:

SELECT domain_id,name,type,ttl,prio,content
FROM records where name = ’:name’
ORDER BY RAND() LIMIT 1

The client querying PowerDNSmay then see different A records for two consecutive queries:

$ dig @127.0.0.1 www.ex.net
;; ANSWER SECTION:
www.ex.net. 360 IN A 10.0.0.4

$ dig @127.0.0.1 www.ex.net
;; ANSWER SECTION:
www.ex.net. 360 IN A 10.0.0.7

Do note however, that the packet-cache may “interfere”: because it caches the answers, your
client will see the next random record only when the previous packet expires from the cache.
Alternatively, you could add a column to the database, to assign a “weight” or prefer-

ence to each server name. (You could even use the MX pref column for that). You would
periodically set the value in the column for a “preferred” server (e.g. a server with the least
load, the fastest machine, etc.) and return the two most preferred servers with:

ORDER BY pref LIMIT 2

Do note however, that the changes you make to the the SQL queries affect all zones served
by the back-end instance. We recommend you consider carefully whether you really need to
modify the queries, because you might introduce an error into PowerDNS if you do change
them.
A list of all the SQL queries used by the OpenDBX (Table 6.6) back-end is at http://www.

linuxnetworks.de/ – search for “Configuring SQL statements”.

Migrating from BIND-sdb-LDAP

If you are migrating from BIND-sdb-LDAP to PowerDNS, you might be interested in a migra-
tion script that allows you update your LDAP directory entries so that PowerDNS can use
them. (See http://tinyurl.com/6xyb6a)

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 6. PowerDNS Authoritative Server 165

opendbx-sql-infomasters opendbx-sql-master
opendbx-sql-infoslaves opendbx-sql-supermaster
opendbx-sql-insert-record opendbx-sql-transactabort
opendbx-sql-insert-slave opendbx-sql-transactbegin
opendbx-sql-list opendbx-sql-transactend
opendbx-sql-lookup opendbx-sql-update-lastcheck
opendbx-sql-lookupid opendbx-sql-update-serial
opendbx-sql-lookuptype opendbx-sql-zonedelete
opendbx-sql-lookuptypeid opendbx-sql-zoneinfo

Table 6.6: Options that affect OpenDBX queries

MRTG & Cricket

• MRTG is the Multi Router Traffic Grapher, which draws pretty pictures from data col-
lected from all sorts of devices and programs on a network (see http://oss.oetiker.

ch/mrtg/).

• Cricket is a system for monitoring trends in data. While it was developed to help net-
workmanagers visualize network data, you can use it to visualize almost anything and
as such it is also useful with PowerDNS (see http://cricket.sourceforge.net/).

Further reading

Andy Smith has implemented a Geographic load balancer using a custom back-end for Pow-
erDNS. “Geographic load balancing” means tailoring the answer to a queries for a domain
name according to where the query comes from. This lets you disperse services across dif-
ferent countries or continents, and then direct clients, via the DNS, to a server that is close
to them (network-wise), to reduce network traffic and improve response. (See the article
by Andy Smith, in modules/geobackend/README in the distribution source.) The geo back-
end is now included in the PowerDNS distribution (see http://wiki.blitzed.org/DNS_

balancing).

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

166 Alternative DNS Servers – Jan-Piet Mens

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter

7 An overview of BIND

BIND 9 is the Apache of nameservers

Stephane Bortzmeyer

7.1 Why use the BIND name server?

7.2 Scenarios for deployment of BIND

7.3 Confi guring zones in BIND

7.4 Using TSIG to secure zone transfers and updates

7.5 Confi guring BIND to accept dynamic DNS updates

7.6 Split-horizon DNS using BIND views

7.7 Aspects of implementing a BIND name server

7.8 Points to note when using BIND

Introduction

BIND is the most widely used implementation of the Domain Name System server. It is a reference
implementation of all things DNS, and has a very impressive list of features. We give you an overview
of the latest release, BIND9, here.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

168 Alternative DNS Servers – Jan-Piet Mens

If there is one program that is associated with serving DNS data, it is the BIND name server.
Created in 1986, the Berkeley Internet Name Domain (BIND) is the most widely used DNS
name server implementation:

• In 2002, Daniel J. Bernstein (author of djbdns) determined that 70% of the name servers
were running BIND to publish second level .com domains1 (i.e. anything.com).

• In 2004, Don Moore (the author of MyDNS) surveyed2 646 524 name servers: 72% were
running BIND.

• In a survey taken in October 20073, 91% of the world’s DNS servers were running a
version of BIND (84% had BIND version 9).

Irrespective of how accurate these figures may be, BIND is certainly the most widely used
name server implementation.

Pros • Reference implementation of all DNS RFCs
• Full master/slave support
• Programmable back-ends
• Access Control Lists
• DNS security (TSIG, DNSSEC)
• Built-in Web server serves XML for viewing statistics (BIND 9.5)
• Native port for Microsoft Windows

Cons ◦ Zone data must be stored in zone master files. BIND has no in-
built support for SQL/LDAP back-ends (but see: Bind DLZ).

◦ Slow startup if configured with a large number of zones.
◦ Complex configuration files and a huge number of options make

BIND hard to learn.

Scenarios Large environments that require all DNS features, including se-
curity and dynamic DNS updates.

Table 7.1: BIND at a glance

A huge amount has been written on the operation of BIND, and there are two books
which you must have if you want to deploy it (see Notes). This isn’t a beginners guide to
BIND, and we are not even going to attempt to duplicate these excellent references; instead
we will just summarize the important aspects of the BIND configuration. To do so, we are
going to plunge you into a BIND configuration file, with the sole purpose of preparing you
for BIND SDB (Chapter 8) and Bind DLZ (Chapter 9).

1http://cr.yp.to/surveys/dns1.html
2http://mydns.bboy.net/survey/
3http://dns.measurement-factory.com/surveys/200710.html

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 7. An overview of BIND 169

7.1 Why use the BIND name server?

People use BIND for many reasons:

• BIND is the most widely deployed name server software in the world.

• It is provided as standard on many operating systems.

• There is a huge amount of documentation on its use, withmyriad examples for specific
scenarios or problems that people have solved with BIND.

• BIND is very flexible: you can create very versatile configurations with authoritative
and caching services combined (which we do not recommend).

• BIND has a huge number of features.

• BIND supports access control lists (ACLs) so you can restrict which DNS clients can
perform what operations.

• BIND is extensible. With its application programming interface you can create inter-
faces between BIND and foreign data sources from which you retrieve answers to DNS
queries. We discuss the simple database API in Chapter 8.

• Along with MyDNS (Chapter 5), BIND is one of the few name servers that have support
for RFC 2136 Dynamic DNS Updates.

7.2 Scenarios for deployment of BIND

The BIND name server is monolithic: it implements all its functionality within a single binary
program, called named. While there are certain features you can choose to include or exclude
at compile-time, most of its functionality is automatically included.

7.2.1 Authoritative name server

BIND can simultaneously act as an authoritative master for some zones and as a slave server
for other zones.

7.2.2 Caching name server

BIND can act as a caching name server. You can combine caching and authoritative services
in a single named instance, but we don’t recommend it (for reasons given in Section 1.2.5).
In addition to being a recursive resolver, you can configure BIND to forward queries for

some or all zones to other servers.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

170 Alternative DNS Servers – Jan-Piet Mens

7.2.3 Front-end to stealth server

BIND is frequently used as a front-end server to a stealth or hidden name server. You can
run a hidden or stealth server (MyDNS, ldapdns, PowerDNS, . . .) with BIND as your “official”
name servers, i.e. the Name Server (NS) records in your zones point to your BIND servers.
Reasons for doing this include:

• You might not want to have a DNS name server with a database or LDAP directory
back-end directly connected to the public DNS.

• When you run BIND with its zone data stored in local master files, it doesn’t depend
on a complex SQL/LDAP back-end being available and operating correctly, so your
system is less complex.

• Zone transfers from BIND servers might be easier for you to manage than MySQL or
LDAP replication.

(Note that you can also use a different server such as NSD (Chapter 10), instead of BIND, as
a front-end server to your database-powered hidden DNS server.)

7.3 Configuring zones in BIND

The BIND configuration file is typically called /etc/named.conf . You create or modify it
with your favorite text editor, and we recommend you place it under a version control sys-
tem, in order to track changes to it. The file itself may contain comments, in any of three
formats:

1. C-style comments, enclosed in /* and */ which may span multiple lines.

2. Shell-style comments, which begin when a hash sign (#) is encountered and run to the
end of the same line.

3. C++-style comments on a single line, initiated with a double forward slash (//).

7.3.1 A sample configuration of an authoritative BIND name server

In this section we construct a sample configuration file, to configure BIND as follows:

• BIND is to act as an authoritative server and will not perform recursion.

• It is a master for the qupps.biz and 1.168.192.in-addr.arpa zones.

• It is a slave server for the mens.de zone.

• Access Control Lists (ACL) specify which IP addresses may initiate zone transfers for
the master zones.

The following clausesmake up our configuration file:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 7. An overview of BIND 171

acl The acl clause defines one or more access control lists that may be refer-
enced in other clauses. We define two ACLs, internal and qupps-xfer ,
which we use later on in the zone clause, to limit access to zone transfers.

acl "internal" {
127.0.0.1;
192.168.1.20/32;

};

acl "qupps-xfer" {
192.168/16;
10.0.21.2/32; # a friend

};

options The options clause contains statements that influence the behavior of the
server. Some of the options in the options clause also apply to all zone

clauses, except where locally overridden within one.

options {
directory "/var/named";
statistics-file "/var/run/named/stats";
zone-statistics yes;

version "[no-way-jose]";

listen-on {
127.0.0.1;
192.168.1.164;

};

recursion no;
auth-nxdomain yes;
allow-transfer { none; };
allow-update { none; };
allow-recursion { none; };

};

Our configuration defines the options:

directory The base path for the server. All other paths in the
configuration file are relative to this directory.

statistics-file The file in which the server records statistics (when
instructed to do so with the rndc program). (Default:
named.stats in the server’s directory)

zone-statistics If this option is set, the server collects statistics on all
zones (except zones explicitly disabled).

version The string the server answerswith, when queried for
version.bind in the CHAOS class:

$ dig @server ch version.bind txt

listen-on A list of the IPv4 addresses the server should listen
on. The default is to use all interfaces the system
provides, but we recommend you set this explicitly.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

172 Alternative DNS Servers – Jan-Piet Mens

recursion If this option is set, the server will always provide re-
cursive queries to clients. On an authoritative server,
this option should be set to no .

auth-nxdomain If set to yes , allows the server to authoritatively re-
spond with NXDOMAIN.

allow-transfer Specifies which source addresses (listed in an acl

clause) are allowed to transfer zones (master or slave
zones). We recommend you disable zone transfers
globally (as we have shown above) and allow them
on a per-zone basis only.

allow-update Specifies which clients (matched by an acl clause)
are allowed to perform RFC 2136 Dynamic Updates
to zones. We recommend disabling this globally, and
enabling it on individual zones as required.

allow-recursion Specifies hosts which are allowed to issue recursive
queries to the server. On an authoritative server this
should be set to none , as shown.

Note that if the answer to the query already exists
in the cache it will be returned irrespective of this
statement. In other words, if you allow recursion for
some hosts, they cause the cache to fill with answers
that are returned to all hosts – also those not allowed
to recurse.

include Interpolate the content of a separate file at this point. You typically use this
to include external files containing the definition of keys (as in the example
below), or to include a file containing externally generated zone clauses.
include can appear anywhere in the /etc/named.conf file.

include "/usr/local/etc/rndc.key";

controls BIND sets up a control channel for communicating with the rndc program – the
“remote name daemon control” program, that you can use to tell the named
daemon to reload one or more zones or even to shut itself down. This clause
configures the control channel.

controls {
inet 127.0.0.1 port 953 allow {

127.0.0.1;
192.168.1.20;

} keys { "admindns"; };
};

The keys statement specifies the names of the keys that this instance of
named will accept from rndc for controlling it. You create keys with the rndc-
confgen program: it creates a default key that will be used both by named and
rndc.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 7. An overview of BIND 173

zone The zone clause defines a zone that your server is authoritative for. You
use a separate zone clause for each zone. We explain the zone clause in
Section 7.3.2. Here is a brief example:

zone "qupps.biz" {
type master;
file "q/qupps.biz";
allow-transfer {

"internal";
"qupps-xfer";

};
};

zone "1.168.192.in-addr.arpa" {
type master;
file "rev/1.168.192";

};

zone "mens.de" {
type slave;
file "m/mens.de";

};

logging Configures the type of logging that BIND performs (default: logging via sys-
logd):

logging {
channel "x info" {
file "/var/log/axfr.log";
severity info;
print-time yes;
print-category yes;
print-severity yes;

};

category "xfer-out" { "x info"; };
category "xfer-in" { "x info"; };

category default {
default syslog;
default debug;

};
};

The clause defines a logging channel called x info which writes to a file
/var/log/axfr.log , adding a timestamp, the log category and the severity,
to the log entry. This “channel” is used to log both outgoing and incoming
zone transfers.

7.3.2 Defining zones

BIND lets you define five types of zones:

A. Master zones.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

174 Alternative DNS Servers – Jan-Piet Mens

B. Slave zones.

C. Forwarding zones.

D. Stub zones.

E. Root hints.

Each zone is defined in a zone clause.

A,B. Master and slave zones

For a master zone you specify the name of the file containing the zone data.

zone "qupps.biz" IN {
type master ;
file "qupps.biz";

};

For a slave zone, you must also specify the master servers from which this slave should
transfer the zones:

zone "aa01.net" IN {
type slave ;
file "aa01.net";
masters { 192.168.1.164; 192.168.2.14; };

};

For master zones you provide the zone data in the specified file, whereas for slave zones,
BINDwill write the content of the transferred zone to the specified file.

C. Forwarding zones

If you want queries for certain zones to be resolved using a specific remote name server, set
up a forwarding zone for it. For example:

zone "qupps.bl" {
type forward ;
forward only;
forwarders {

127.0.0.3 port 53;
};

};

With this configuration:

• All queries for qupps.bl and its sub-domains are sent for resolution to the name servers
specified in the forwarders statement (optionally specifying a port number).

• Because we specify the forward only statement, BINDwill not iteratively search for an
answer to queries for this zone, but it will answer from data received by the forwarder
only. If you omit this statement, BIND will forward the query to its forwarders, and if
it doesn’t receive a reply from them, BINDwill recursively search for an answer.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 7. An overview of BIND 175

D. Stub zones

When you delegate a zone to a subordinate name server, you normally have to provide
Start of Authority (SOA) and Name Server (NS) records, together with the necessary glue, so
that the subordinate zones can be found. (We discuss delegation in Chapter 18). However,
BIND gives you an easier way to do this. You define a stub zone; this tells BIND to query
the delegated name servers and load the SOA and NS records (plus the necessary glue) from
those servers. You define a stub zone in named.conf like:

zone "es.qupps.biz" {
type stub ;
masters { 192.168.1.20; 192.168.1.22; };
file "es.qupps.biz";

};

In the masters statement you list the master servers. When BIND loads this stub zone, it
queries the master servers for the necessary records for the zone and maintains them in
the specified file. At every refresh interval (specified in the SOA record just retrieved), BIND
checks with the masters whether the serial number of the zone has changed, and if so, up-
dates the Start of Authority, Name Server and glue records. The master servers do not have
to enable outgoing zone transfers for stub zones to work.

E. Root hints

If you configure BIND as a caching name server, it must know where to find the root name
servers. BIND has a built-in list of root server addresses. You can get a fresh copy of the
ICANN root hints with, for example:

$ dig @k.root-servers.net . ns | tee root.hints
;; flags: qr aa rd; QUERY: 1, ANSWER: 13, AUTHORITY: 0, ADDITI ONAL: 15

;; ANSWER SECTION:
. 518400 IN NS a.root-servers.net.
. 518400 IN NS b.root-servers.net.
...

;; ADDITIONAL SECTION:
a.root-servers.net. 518400 IN A 198.41.0.4
b.root-servers.net. 518400 IN A 192.228.79.201
...

You use the root.hints file created by the above command to configure the hints for the
root zones:

zone "." IN {
type hint ;
file "root.hints";

};

You must change the list of root servers BIND uses when deploying your own private root
servers (Chapter 18).

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

176 Alternative DNS Servers – Jan-Piet Mens

7.4 Using TSIG to secure zone transfers and updates

RFC 2845, Secret Key Transaction Authentication for DNS, defines TSIG (Transaction SIGnature),
a protocol used for authenticating:

• DNS queries, such as zone transfers.

• Dynamic DNS Updates (RFC 2136).

TSIG uses a shared secret key, a time-stamp and a one-way hashing function called HMAC
(keyed-Hash Message Authentication Code) to provide a cryptographically secure means
of identifying the endpoints of a connection. The use of a time-stamp means that all clients
and servers that participate in TSIG transactions must have synchronized clocks. (Time syn-
chronization of machines is beyond the scope of this book, but you typically use NTP, the
Network Time Protocol, for keeping the clocks of machines in your network synchronized
to a time source.)
You typically use TSIG to permit only hosts that you authorize with appropriate keys

to update your zones, or to transfer zones – usually between your master and slave name
servers (Figure 7.1).

Figure 7.1: Securing your primary and slave name servers with TSIG

There are a number of points to consider when you use TSIG:

• As TSIG requires shared keys, you have to securely distribute the keys “out-of-band”
to each of the name servers involved.

• We recommend you use a different key for each pair of hosts.

• If you use TSIG, any client with access to the shared secret key can impersonate a valid
client.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 7. An overview of BIND 177

To use TSIG, proceed as follows:

1. Generate the TSIG keys.

2a. Configure the zones with the TSIG keys to protect zone transfers.

2b. To protect updatable zones, add allow-update statements to them, and include your
keys.

1 – Generating TSIG keys

You typically generate TSIG keys with one of:

• The ldns-keygen utility from the ldns package (see Chapter 10).

• The dnssec-keygen program from the BIND distribution.

For example, using dnssec-keygen to create a TSIG key:

$ dnssec-keygen -a HMAC-MD5 -b 256 -n HOST ma-clef
Kma-clef.+157+30764

produces two files:

i. The .key file

ma-clef. IN KEY 512 3 157 t3Q+wdd6Nzt0VnKslPuHk5JkE931QqP yntA33Z1AjEo=

ii. The .private file

Private-key-format: v1.2
Algorithm: 157 (HMAC_MD5)
Key: t3Q+wdd6Nzt0VnKslPuHk5JkE931QqPyntA33Z1AjEo=
Bits: AAA=

Note that the two base64-blobs (the long strings of apparently random characters) are iden-
tical. If you don’t have access to ldns-keygen or dnssec-keygen, as a last resort you can use any
valid base-64 encoded string instead of a key:

$ echo -n "DNS is vital!" | openssl enc -a
RE5TIGlzIHZpdGFsIQ==

$ echo ’RE5TIGlzIHZpdGFsIQ==’ | openssl enc -a -d
DNS is vital!

The first command takes a piece of plain text and encodes it in base 64with the openssl utility.
The result is a base64 blob that you use in lieu of a key. (We show you the second command
just for completeness: it decodes a base64 string and prints the result on standard output.)
Encoding can be useful if you want to exchange a TSIG key with a systems administrator
over the telephone: you dictate a word or a a phrase and she can create the required base64
on the fly, adding it to a key clause in either BIND or NSD (which uses BIND-compatible zone
master files).

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

178 Alternative DNS Servers – Jan-Piet Mens

2a – Configure zones with TSIG keys

We discuss how you set up TSIG to protect zone transfers between a Name Server Daemon
(NSD) and a BIND server in Chapter 10.

2b – Protect updatable zones

• Create a key clause in named.conf :

key "ma-clef" {
algorithm hmac-md5;
secret "t3Q+wdd6Nzt0VnKslPuHk5JkE931QqPyntA33Z1AjEo= ";

};

• Apply the key to a zone to allow updates to it:

zone "qupps.biz" IN {
type master;
file "qupps.biz";
allow-update {

key "ma-clef";
};

};

• You can now use the key with nsupdate

$ nsupdate -y ’ma-clef:t3Q+wdd6Nzt0VnKslPuHk5JkE931QqPyntA33Z1A jEo=’
>
...

7.5 Configuring BIND to accept dynamic DNS updates

Other than MyDNS, BIND is the only other program we discuss in this book that supports
Dynamic DNS Updates as defined by RFC 2136. We discuss RFC 2136 in Chapter 19, but for
now here’s how you enable Dynamic DNS Updates in BIND:

A. Define a master zone for which you want to enable RFC 2136 Dynamic DNS Updates.

B. Add allow-update statements, to permit specific networks to update your zone.

C. Optionally create TSIG keys for authenticating the DNS updates, as described in the
previous section.

The following example defines a zone qupps.biz (step A) that may be updated by the two
hosts 127.0.0.1 and 192.168.1.20 (step B):

zone "qupps.biz" IN {
type master;
file "qupps.biz";
allow-update {

127.0.0.1;
192.168.1.20;

};
};

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 7. An overview of BIND 179

7.5.1 How your zone is updated

As soon as named receives the first Dynamic DNS update for your zone, BIND creates a jour-
nal file. The name of the journal is the zone’s file name with “.jnl ” appended. BIND records
updates in the journal, and increments the zone’s serial number in the Start of Authority
(SOA) at each change. BIND processes the update request by modifying its in-memory data.
It uses this in-memory data for answers to queries it receives. Modifications are not merged
back into the zone’s file on disk until either:

• named is stopped, or . . .

• Dynamic Updates to the zone (or to all zones served by BIND) are frozen with the
command:

rndc freeze qupps.biz

When you subsequently thaw the zone with:

rndc thaw qupps.biz

dynamic updates are allowed again and the first update causes named to create the
journal file for the zone.

If your machine crashes, when named starts up again, it merges whatever it has in its journal
file back into its in-memory copy and continues answering from there.

7.6 Split-horizon DNS using BIND views

You can configure BIND to give different answers to the same query, according to the IP
address of the querying client, using BIND’s views feature. It may sound a bit schizophrenic,
to have a name server that doesn’t answer consistently, but split-horizon DNS servers are
useful. Recall from Section 1.2.3 that we had a Web server in the DMZ. From hosts within
the DMZ, we can address the Web server called www.qupps.biz as 192.168.1.20, but for hosts
on the public Internet, we want the same domain name to resolve to 192.0.2.1.
We illustrate how to configure views with an example:

acl "trusted" {
127.0.0.1;
192.168.1.20/32;

};

options {
directory ".";
listen-on {

127.0.0.1;
192.168.1.164;

};
};

view " inside " IN {
match-clients { " trusted "; };

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

180 Alternative DNS Servers – Jan-Piet Mens

zone "qupps.biz" {
type master;
file "inside/qupps.biz";

};
};

view " outside " IN {
match-clients { any; };
zone "qupps.biz" {

type master;
file "outside/qupps.biz";

};
};

This provides the following features:

• An access control list, trusted , defines the clients on the internal network, for use in
the next step.

• Two view clauses are defined with the same zones:

inside The view inside is used when the querying client’s address matches the
trusted ACL. The zone loads its data from the file inside/qupps.biz .

An internal client querying this server sees:

$ dig @192.168.1.164 www.qupps.biz
www.qupps.biz. 86400 IN A 192.168.1.20

outside The view outside matches any client including internal trusted hosts.
However, internal hosts never “reach” this view because BIND accepts the
first match it finds when processing views. Internal hosts match on the
first view, internal , because it is defined first in named.conf . There-
fore the ordering of views is very important: you place the view with the
greatest restrictions first.

An external client that queries this same DNS server sees:

$ dig @192.168.1.164 www.qupps.biz
www.qupps.biz. 86400 IN A 192.0.2.1

7.7 Aspects of implementing a BIND name server

7.7.1 How you create your zone files

Instead of maintaining zone files manually, i.e. by modifying their content with a text editor,
you may be interested in tools that allow you to generate them from content stored in an
SQL database or in an LDAP directory server. In Chapter 19 we show you how to do this. In
addition, Appendix B describes a system that can automatically increment serial numbers
in your zone’s SOA records when you modify your zone master file.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 7. An overview of BIND 181

7.7.2 Monitoring your BIND name server

You can monitor BIND’s operation using Statistics, Query logging, and its Statistics server
(BIND 9.5). We look at each of these in turn, now.

Statistics

BIND can gather statistics on the number and type of queries it receives. You enable this with
the zone-statistics statement in the options clause, and optionally specify the name
of the file to which statistics are written, using the statistics-file statement (default:
named.stats in named’s directory):

options {
...
zone-statistics yes;
statistics-file "/var/named/stats";
...

};

This instructs named to collect in memory statistical data on all zones (unless specifically
turned off on a per-zone basis by specifying zone-statistics “no” in the zone clause).
You tell named to dump the in-memory data to its statistics file with:

rndc stats

The statistics file then contains a list of global query statistics, followed by statistics on indi-
vidual zones:

+++ Statistics Dump +++ (1203256530)
success 806705
referral 146981
nxrrset 286490
nxdomain 179147
recursion 0
failure 2
success 294034 qupps.biz
referral 0 qupps.biz
nxrrset 138001 qupps.biz
nxdomain 34677 qupps.biz
recursion 0 qupps.biz
failure 0 qupps.biz
...
...
--- Statistics Dump --- (1203256530)

We recommend dnsstats4, a small Perl program written by Haw Loeung that uses MRTG to
graph the output of the statistics file and produces query totals (Figure 7.2).

Query logging

If you are having trouble identifying whether queries are being satisfied by your named, you
can have it (temporarily) log the queries it receives by toggling the querylog function at
run-time:
4http://sourceforge.net/projects/statusreport

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

182 Alternative DNS Servers – Jan-Piet Mens

Figure 7.2: Using MRTG to graph BIND statistics

rndc querylog
switch on query logging
wait a while or watch logs
rndc querylog
stitch off query logging

By default, named logs its queries to syslog, which will showwhen you enabled and disabled
query logging, as well as the queries named received:

query logging is now on
client 127.0.0.1#53178: query: www.qupps.biz IN A
client 127.0.0.1#53178: query: cnn.com IN MX
client 127.0.0.1#53178: query: www.cnn.com IN A
client 127.0.0.1#53178: query: www.yahoo.de IN A
...
query logging is now off

The BIND 9.5 stats Web server

BIND version 9.5 includes an experimental built-in Web server that can output statistics
about the server and the zones it serves, in XML format. An extract of the XML is shown
below:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="/bind9.xsl"?>
<isc version="1.0">

<bind >
<statistics version="1.0">

...

...
<server >

<boot-time>2008-01-26T06:30:03Z</boot-time>
<current-time>2008-01-27T14:56:31Z</current-time>
<counters >

<success >17511</success>
<referral>0</referral>
<nxrrset>5482</nxrrset>
<nxdomain>0</nxdomain>
<recursion>1</recursion>
<failure >0</failure>
<duplicate>0</duplicate>
<dropped>0</dropped>

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 7. An overview of BIND 183

</counters>
</server>

...

The built-in Web server also provides an XSL style sheet on demand, so you can open the
URL to BIND’s “Web server” in a Web browser, and see a neatly styled view of what your
server is currently doing (Figure 7.3).

Figure 7.3: BIND’s built-in statistics server

You enable the statistics server with the zone-statistics statement in named.conf .
If you want BIND to also accumulate statistics on a zone by zone basis, you enable the
zone-statistics option globally, or in the zone clause of each zone that is to log its statis-
tics:

options {
...
stats-server port 8000;
zone-statistics yes;
...

};

You can use the XML produced by the BIND stats server to build tools to integrate into
your monitoring environment (e.g. Nagios). As a small example, the listing below uses the
XML shown above, to print the number of successful and failed queries in the current in-
stance of named.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

184 Alternative DNS Servers – Jan-Piet Mens

Listing 7.1: Parsing the XML produced by BIND’s statistics server

#!/usr/bin/perl

use XML::Simple;
use strict;

my $xs = XML::Simple->new();
my $xml = $xs->XMLin(’bind.xml’);

my $counters = $xml->{bind}->{statistics}->{server}->{ counters};

print "Success: ", $counters->{success}, "\n";
print "Failure: ", $counters->{failure}, "\n";

When you run this program, it prints something like:

Success: 17511
Failure: 0

7.8 Points to note when using BIND

• BIND is very memory-hungry. It loads all its zones into RAM upon startup. During
startup, the server is “deaf” (i.e. it won’t answer queries). You can use Bind DLZ to
avoid this behavior.

• One of BIND’s strengths is its ability to run as an authoritative and as a caching name
server simultaneously. (We recommend you don’t do this.)

• Another of BIND’s strengths is that it is very flexible. However, the downside of that
is that BIND’s configuration language is very complex, with too many options and
statements.

• BIND fully supports DNSSEC (Chapter 22).

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 7. An overview of BIND 185

Summary

• BIND is the most widely used name server implementation.

• BIND implements all DNS specifications in a single binary.

• BIND can, but should not, be configured as an authoritative and caching name server
in one.

• BIND supports TSIG and DNSSEC.

• BIND supports RFC 2136 Dynamic DNS Updates.

Related topics

• Bind DLZ (Chapter 9) lets BIND use a number of different SQL databases, LDAP direc-
tory servers and Berkeley DB databases as back-ends for storing zone data.

• BIND SDB (Chapter 8) lets you create your own BIND back-end with a special program-
ming interface.

• PowerDNS (Chapter 6) has a BIND back-end which reads master zone files.

• MyDNS (which stores zone data in a MySQL or PostgreSQL database) is the only other
name server that supports RFC 2136 Dynamic DNS Updates (Chapter 5).

• NSD, the Name Server Daemon (Chapter 10), supports TSIG for controlling zone trans-
fers. NSD uses BIND-compatible zone master files.

• We discuss running BIND on Microsoft Windows in Chapter 14.

• We show you how to configure BIND to serve or validate DNSSEC signed zones in
Chapter 22.

Notes and further reading

Building BIND

The Internet Systems Consortium is the current maintainer and provider of the BIND soft-
ware distribution (see http://www.isc.org/). It is quite likely that you won’t have to build
BIND yourself: most operating system vendors and distribution maintainers provide binary
packages of BIND. If you do want to build it yourself, you can, as follows:

$ wget http://ftp.isc.org/isc/bind9/9.5.0b1/bind-9.5.0b1.t ar.gz
$ tar xvzf bind-9.5.0b1.tar.gz
$ cd bind-9.5.0b1/
$./ configure --prefix=/usr/local --enable-threads --with-libxml2=y es
$ make
$ make install

The XML2 library (specified in the configure line in the example) is needed for the built-in
Web server.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

186 Alternative DNS Servers – Jan-Piet Mens

Secure BIND Template

Rob Thomas maintains a template that can be used to securely deploy a BIND name server,
mitigating some of the risks involved (see http://www.cymru.com/Documents/secure-

bind-template.html).

GeoDNS for BIND

GeoDNS is a small patch to BIND to add geographical filters support to its views. Together
with Maxmind’s GeoIP, you can filter by countries’ address blocks without specifying their
IP address blocks (which would be a gargantuan task). For example, the following config-
uration in named.conf enables this view only for addresses that Maxmind reports as being
from Spain and France:

view "SpainFrance" {
match-clients { country_ ES; country_ FR; };
recursion no;
zone "qupps.biz" {

type master;
file "qupps.biz-es-fr.zone";

};
};

After patching BIND, the match-clients statement triggers use of GeoIP when you use the
literal string “country ” in the match-clients statement; the two-letter country codes
(in the above example, ES and FR) define the countries’ IP addresses (see http://www.

caraytech.com/geodns/).

Further reading

• The first bookwe recommend is already in its 5th edition: Paul Albitz and Cricket Liu’s,
DNS and BIND, Fifth Edition (O’Reilly) covers BIND version 9.3.2

• Another book that should not be missing from your DNS bookshelf is: Pro DNS and
BIND, by Ron Aitchison (Apress).

• The BIND9 Administrator Reference Manual, also known as ARM is part of the BIND
distribution (see http://www.isc.org/index.pl?/sw/bind/arm95/).

• An advisory published by ISC on Running An Authoritative-Only BIND Nameserver ex-
plains why you shouldn’t mix caching and authoritative functions (see http://www.

isc.org/pubs/tn/isc-tn-2002-2.txt).

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter

8 BIND’s Simplified Database
Interface

When solving problems, dig at the roots
instead of just hacking at the leaves.

Anthony J. D’ Angelo

8.1 Overview of BIND SDB

8.2 Overview of BIND SDB LDAP driver

8.3 Installing BIND SDB and confi guring your LDAP server

8.4 Anatomy of a BIND SDB driver

8.5 Load balancing with DNS, implemented using SDB

Introduction

The Simplified Database Interface (sdb) is one of the APIs provided by BIND in version 9.1 and above.
It lets an administrator extend BIND by creating a driver that is linked into BIND. We discuss the BIND-
sdb-LDAP driver and develop a simple load-balancer driver for BIND SDB.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

188 Alternative DNS Servers – Jan-Piet Mens

The Simplified Database Interface for BIND 9 is an application programmer interface (API)
with which a programmer can add a back-end (called a driver in BIND SDB) to the BIND
name server. BIND uses that driver to provide answers to DNS queries. BIND 9.1 introduced
this simplified database interface, or SDB, to make it easy to create specialized applications.
While many people have programmed SDB drivers and made them available as con-

tributed software, Bind DLZ, described in the next chapter, is much more flexible, and SDB
will probably be of interest to you only if you want to use the contributed LDAP driver, or
to program your own, special-purpose, driver.

Pros • Can provide answers to DNS requests from any data source
• Programmable
• Many available drivers in BIND’s contrib directory
• LDAP driver very stable
• Supported natively on Microsoft Windows

Cons ◦ Zones must be configured manually in named.conf

◦ Slow startup if configured with a large number of zones

Scenarios Users who want to add custom drivers to the BIND name server.

Table 8.1: BIND SDB at a glance

8.1 Overview of BIND SDB

SDB is one of the APIs that BIND provides, to allow its functionality to be extended. When
a zone uses SDB, BIND answers queries for the zone, not by reading information from zone
master files, but instead by using the driver specified in the zone’s configuration. Standard
drivers distributed with BIND SDB let you use a variety of databases and files from which to
retrieve data. You can also program your own drivers for special purposes; for example, the
demonstration timedb driver returns the date and time when you query for a TXT record in a
zone configured to use timedb.

SDB doesn’t remove any of BIND’s features; on the contrary, it expands on what BIND has
to offer. A single instance of BIND can have both normal zones and zones served by SDB
drivers. An SDB zone has an SDB-specific database statement in a zone clause. If this is
present when BIND receives a query for such a zone, BIND calls the SDB driver to resolve the
query instead of using master files as for normal zones. Consider this example named.conf ,
which has two zone clauses:

zone "qupps.biz" {
type master;
file "qupps.biz.zone";

};
zone "example.net" {

type master;
database "my-back-end";

};

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 8. BIND’s Simplified Database Interface 189

There are two master zones:

• qupps.biz is a “normal” master zone, loaded from a zone file qupps.biz.zone .

• example.net is also a master zone, but because of the database statement, queries on it
will be satisfied by calling the my-back-end SDB driver, instead of from a zone master
file. You can have two different zones each served by a different driver if youwant. For
example, a zone example.net served by the my-back-end driver, and a zone example.org
served by the another-back-end driver.

SDB is extremely versatile as it allows you to add to BIND, almost any kind of functionality
for retrieving zone data, with an easy API. A limitation is that zones still have to be added
manually by configuring zone clauses in named.conf , because there are no “does this zone
exist” and “add this zone” functions within BIND SDB.

8.1.1 Existing BIND SDB drivers

Current BIND source distributions include several SDB drivers in the contrib directory of
the source distribution:

bdb Stores zones in Berkeley DB databases.

dir A database driver that returns basic information about files and directo-
ries in the *nix file system, as DNS data.

TCL A driver with a TCL back-end. TCL is a scripting language, created by
John Ousterhout. The driver allows you to write your own back-end in
TCL.

Time A simple driver that allows the server to return the current time in a DNS
resource record.

PostgreSQL A database driver that interfaces to a PostgreSQL database, enabling BIND
to retrieve answers to DNS queries from a database. Its design requires
that each zone be contained in a separate database table.

MySQL The MySQL BIND SDB driver was derived from the PostgreSQL driver,
and it is the MySQL equivalent of that. The MySQL driver for BIND SDB
is not in the BIND source distribution; you can download it from http:

//mysql-bind.sourceforge.net/ .

LDAP The LDAP driver allows BIND to answer queries from a suitably config-
ured LDAP directory server. It is quite popular, and we discuss it below.

We don’t discuss the contributed drivers, except for the LDAP driver in Section 8.2, because
a lot of the functionality provided by the database drivers is available in Bind DLZ, and we
recommend you use that instead, as it is easier to use and more versatile. We discuss Bind
DLZ in Chapter 9.
One of the most popular SDB drivers is the LDAP driver, which we discuss next. After

that, we show you how you develop your own SDB driver, in Section 8.4.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

190 Alternative DNS Servers – Jan-Piet Mens

8.2 Overview of BIND SDB LDAP driver

Stig Venaas1 created the LDAP SDB driver for BIND9 to store DNS zone data in an LDAP
directory server, using a specialized schema called dNSZone. Why another schema? Be-
cause the dNSDomain object class defined in the Cosine schema (one of the standard LDAP
schemas) didn’t fulfill his needs, as it defines only very few resource record types. The
dNSZone object adds attribute types for Time to Live (TTL), class, zone name and relative do-
main name, whichmake it easy tomaintain and to organize the entries in an LDAP directory
server.

BIND with BIND-sdb-LDAP can manage any number of zones stored in LDAP simultane-
ously with any number of different master or slave zones stored in zone master files.

8.2.1 Limitations of the BIND-sdb-LDAP driver

There are some limitations when using BIND-sdb-LDAP. These are caused not by the imple-
mentation of this driver, but rather by SDB’s API:

• Starting namedwhen configured with a large number of SDB zones is slow.

• New zones cannot be created “on the fly”. Even if you create LDAP entries for a new
zone, BIND recognizes the new zone only after you define the zone in a zone clause in
named.conf , and reload named.

If this is unacceptable to you, but you still want to use BIND, instead of SDB use BIND’s
DLZ add-on, which does let you add zones dynamically, i.e. on the fly. We cover Bind
DLZ in Chapter 9.

• BIND-sdb-LDAP can serve only as a master name server and not as a slave. BIND’s SDB
API defines functions only for reading resource data from the driver, not for writing
to it. Therefore, a BIND server can’t act as a slave for a zone stored in SDB, because
BIND can’t do anything with a zone retrieved in a zone transfer. To avoid this problem,
configure slave zones normally (i.e. configure them from files), and not as SDB zones.

• The original design of the BIND-sdb-LDAP driver did not implement support for wild-
card domain names. For this book, we created a small patch to remedy that. The patch
is easy to implement (see Notes) and adds support for wildcard domain names, and
for some debugging output.

8.3 Installing BIND SDB and configuring your LDAP server

To deploy BIND SDBwith the LDAP driver:

A. Download BIND, apply the BIND SDB LDAP patch, optionally applying the wildcard
patch if you require support for DNS wild cards (see Notes), and compile BIND SDB.

1Turbo Fredriksson has taken over the project maintenance at http://bind9-ldap.bayour.com/

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 8. BIND’s Simplified Database Interface 191

B. Configure your LDAP directory server. Add the schema definitions needed by the
LDAP driver.

C. Optionally create indexes for the two LDAP attribute types the driver uses to search
entries. We strongly recommend you do this to enhance performance of the driver.

D. Define the SDB zone(s) in named.conf .

E. Create entries in your LDAP directory for zones.

F. Create entries in your directory for resource records.

8.3.1 A – Compile BIND SDB with the LDAP driver

To download, compile and install BIND-sdb-LDAP, proceed as follows:

1. Download and unpack BIND into a temporary directory (e.g. /tmp):

$ wget http://ftp.isc.org/isc/bind9/9.4.2/bind-9.4.2.tar.g z
$ tar xvzf bind-9.4.2.tar.gz

2. Download and extract the latest release of the LDAP driver into the same temporary
directory:

$ wget http://www.venaas.no/ldap/bind-sdb/bind-sdb-ldap-1. 1.0.tar.gz
$ tar xvzf bind-sdb-ldap-1.1.0.tar.gz

3. Move or copy the source of the LDAP driver into named’s source directory:

$ mv bind-sdb-ldap-1.1.0/ ldapdb.? bind-9.4.2/bin/named/

4. Change into BIND’s source directory:

$ cd bind-9.4.2

5. Edit named’s Makefile.in , to add the dependencies to the LDAP driver:

$ edit bin/named/Makefile.in

Locate lines that begin with the string DBDRIVER near the top of the file and modify
those as shown here:

#
Add database drivers here.
#
DBDRIVER_OBJS = ldapdb.o
DBDRIVER_SRCS =ldapdb.c
DBDRIVER_INCLUDES =ldapdb.h
DBDRIVER_LIBS = -lldap -llber

6. Edit main.c to add the entry and exit points of the LDAP driver:

$ edit bin/named/main.c

Search the file for the string “xxdb ” and add the necessary lines:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

192 Alternative DNS Servers – Jan-Piet Mens

/* #include "xxdb.h" */
#include "ldapdb.h"
...

/*
* Add calls to register sdb drivers here.
*/

/* xxdb_init(); */
ldapdb_init();
...

/*
* Add calls to unregister sdb drivers here.
*/

/* xxdb_clear(); */
ldapdb_clear();
...

7. Configure namedwith whichever options you need:

$./ configure --prefix=/usr/local --enable-threads=no ...
$ make
$ make install

8.3.2 B – Configure your LDAP directory server

The LDAP schema used by BIND-sdb-LDAP relies on the dNSZone object class, which in turn
builds on classes and attribute types defined in the Cosine schema. These dependencies
mean that the LDAP directory server must load both the Cosine and dNSZone schemas.
In OpenLDAP parlance, that would require at least the following include directives in
slapd.conf :

include path/to/cosine.schema
include path/to/dnszone.schema

8.3.3 C – Indexes required by BIND-sdb-LDAP

Zones configured with the BIND-sdb-LDAP driver are not cached; each and every query for
resource records in the zones is sent directly to the LDAP directory server back-end for
answering. The advantages are of course, that the data is never out of date; as soon as an
entry has been modified on the LDAP directory it is immediately visible to the BIND name
servers that have the zone configured. The downside is that the directory server must be
able to handle the load.
If we log the LDAP queries that are used by BIND-sdb-LDAP on the directory servers

(Section 8.3.8), we see that a number of attribute types are requested of course, and the search
filters indicate which attribute types should be indexed to get maximum performance for
this back-end with an LDAP directory server. The indexes you should add to your directory
server are for the zoneName and the relativeDomainName attribute types. In OpenLDAP,
you would add these lines to your slapd.conf :

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 8. BIND’s Simplified Database Interface 193

database bdb
suffix "o=qupps.biz"
directory ...
index objectclass eq
index zonename,relativedomainname eq

8.3.4 D – Define the zone in named.conf

All zones, both SDB and non-SDB, are configured with a zone clause in named.conf . The
SDB zones do not retrieve their zone data from files but rather from what SDB calls a
“database”. The database statement describes on one line (without line breaks or continu-
ation lines) the name of the driver and the arguments that will be passed to it. In the case of
the LDAP driver, the driver name is ldap , and the driver has two arguments:

1. The first argument is an LDAP URL (Section A.3.11) that specifies the hostname (or IP
address) and the search base of your LDAP directory server. Because this hostname
has to be resolved when your DNS server is starting up, we strongly recommend you
use either an IP address or a hostname you define in the system’s /etc/hosts file.

2. The second argument is the default Time To Live (TTL) that the LDAP SDB driver
should return in DNS replies for LDAP entries which do not explicitly have a dNSTTL

attribute type (see Section 8.3.6 below).

The zone clause we use for our example is:

zone "qupps.biz" {
type master;
database "ldap ldap://127.0.0.1/zoneName=qupps.biz,ou =forward,ou=zones, ←֓

ou=sdb,ou=dns,o=qupps.biz 129600";
};

Note once again: the whole database statement must be written on one line.
Once you have reloaded named, you can start querying it for your new zone, but you

won’t get any replies until you add the zone to your LDAP directory server.

8.3.5 E – Creating DNS zones in your LDAP directory server

Before you can define your zones in your LDAP directory, you must set up your LDAP
directory server to contain the dNSZone schema, which you can download from the book’s
Web site (☞D081)).

BIND-sdb-LDAP searches your LDAP directory server for every query it gets on a master
zone you configure with it in named.conf . The entries it searches for belong to the object
class dNSZone. A dNSZone object can store a zone, or a single DNS record for a host.
The dNSZone class supports only a limited set of DNS resource record types, because its

author didn’t consider the implementation of all types necessary. Adding new types to the
schema is trivial, and the maintainers of the project will probably help you do it if need be.
The dNSZone object class (Table 8.2) duplicates a few types defined in the Cosine schema.
Two attribute types are mandatory: relativeDomainName and zoneName.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

194 Alternative DNS Servers – Jan-Piet Mens

Type Da Cb Usage
relativeDomainName • The starting labels of a domain name

zoneName • The name of a zone
dNSView • The view this record should show in

a6Record • A6 Record Type, RFC 2874
aAAARecord • IPv6 address, RFC 1886

aFSDBRecord • for AFS Data Base location, RFC 1183
aRecord • Address record

certRecord • certificate, RFC 2538
cNAMERecord • Canonical name
dNameRecord • Non-Terminal DNS Name Redirection, RFC 2672

dNSClass • The class of a resource record (IN)
dNSTTL • An integer denoting time to live

dSRecord • Delegation Signer, RFC 3658
hInfoRecord • host information, RFC 1035

KeyRecord • Key, RFC 2535
kXRecord • Key Exchange Delegation, RFC 2230

LocRecord • Location, RFC 1876
MDRecord • RFC 1274

mInfoRecord • mailbox or mail list information, RFC 1035
nAPTRRecord • Naming Authority Pointer, RFC 2915

nSECRecord • NSEC record, RFC 3755
NSRecord • Name server

nXTRecord • non-existant, RFC 2535
PTRRecord • PTR record, RFC 1035

rRSIGRecord • RRSIG record, RFC 3755
SigRecord • Signature, RFC 2535
sOARecord • Start of Authority
sRVRecord • service location, RFC 2782

sSHFPRecord • SSH Key Fingerprint, draft-ietf-secsh-dns-05.txt
tXTRecord • text string, RFC 1035

adNSZone schema
bCosine schema

Table 8.2: Resource records in the dNSZone& Cosine schemas

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 8. BIND’s Simplified Database Interface 195

How you organize LDAP entries

The dNSZone schema is flexible in regard to the design of the LDAP tree with the BIND
SDB LDAP driver, because it imposes neither a specific hierarchy nor specific naming of the
relative distinguished names (RDNs) (Figure 8.1).

Figure 8.1: An LDAP tree for BIND SDB

How you store your zone data in the LDAP directory tree is unimportant to the workings
of the BIND SDB LDAP driver. We recommend you put each zone in its own container as
shown in Figure 8.1, but you don’t have to. Here are some ways you can do it:

• Create an organizational unit (ou) named after the zone, and store all LDAP entries
which belong to a zone in this:

ou=qupps.biz,ou=DNS,...

• Use the zoneName as an RDN for the container and put all LDAP entries for a zone
into that.

zoneName=qupps.biz,ou=DNS,...

In the examples that follow, we choose to use zoneName as the container for zone data.

dn: zoneName=qupps.biz,ou=forward,ou=zones,ou=sdb,ou=dns,o=qupp s.biz
objectClass: top
objectClass: dNSZone
relativeDomainName: qupps.biz
zoneName: qupps.biz

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

196 Alternative DNS Servers – Jan-Piet Mens

8.3.6 F – Adding a zone

To add a new zone to BIND-sdb-LDAP:

1. Create the LDAP entries to represent the zone. As a minimum you require one entry
of object class dNSZone with the attribute types sOARecord containing the fields of a
Start of Authority (SOA) record.

2. Add the zone to your named.conf and reload named so it sees the newly added zone
definition. From this point on, you add LDAP entries for the zone to the directory
server without reloading named.

A sample LDIF file that you might use to create zone qupps.biz in your directory server, using
ldapadd or any program with which you load LDIF into your directory server, is:

$ cat zone.ldif
dn: relativeDomainName=@,zoneName=qupps.biz,ou=forwa rd,ou=zones,

ou=sdb,ou=dns,o=qupps.biz
objectClass: top
objectClass: dNSZone
relativeDomainName: @
zoneName: qupps.biz
dNSTTL: 86400
sOARecord: ns1.qupps.biz. hostmaster.qupps.biz. 1 10800 900 604800 3600
nSRecord: ns1.qupps.biz.
tXTRecord: "my first zone"

$ ldapadd ... < zone.ldif

You can directly query BIND SDB for the zone data. The new zone has the following char-
acteristics which we illustrate with excerpts from the dig output of queries for the newly
created zone:

SOA The zone’s Start of Authority (SOA) record, which you definewith the attribute type
sOARecord . It contains the seven fields of an SOA as defined in master zone file
format. Remember to change the serial number of the SOA whenever you change,
add or delete an entry from your LDAP directory for the zone, if you provide zone
transfers for it.

;; ANSWER SECTION:
qupps.biz. 86400 IN SOA ns1.qupps.biz. ←֓

hostmaster.qupps.biz. 1 10800 900 604800 3600

NS The zone has a Name Server (NS) record, but no glue for it (i.e. the Address (A) for
the Name Server is missing. You add that separately as a host entry with an IP
address (see Section 8.3.7 below).

;; ANSWER SECTION:
qupps.biz. 86400 IN NS ns1.qupps.biz.

TXT The Text (TXT) record is defined by the tXTRecord attribute type. This type is mul-
tivalued so you add as many of these attributes as you like.

;; ANSWER SECTION:
qupps.biz. 86400 IN TXT "my first zone"

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 8. BIND’s Simplified Database Interface 197

TTL The Time to Live (TTL) for these records is 86400 seconds as defined by the attribute
type dNSTTL. If that is missing, the default TTL of the database statement is used
(Section 8.3.4).

8.3.7 G – Adding a host

Adding a host to our zone is trivial: add an entry to your LDAP directory in the same
container as you have the apex of the zone (i.e. the LDAP entry with a relativeDomainName

of@): (Remember that whitespace at the beginning of a line in LDIF indicates a continuation
line.)

$ cat host.ldif
dn: relativeDomainName=www,zoneName=qupps.biz,ou=for ward,ou=zones,

ou=sdb,ou=dns,o=qupps.biz
objectClass: top
objectClass: dNSZone
relativeDomainName: www
zoneName: qupps.biz
aRecord: 192.168.1.12
aRecord: 192.168.1.10
aRecord: 192.168.1.11

When you ldapadd host.ldif , the entry is immediately visible from the DNS server, with-
out having to reload named, so you can:

$ dig @127.0.0.1 www.qupps.biz
;; ANSWER SECTION:
www.qupps.biz. 129600 IN A 192.168.1.10
www.qupps.biz. 129600 IN A 192.168.1.11
www.qupps.biz. 129600 IN A 192.168.1.12

;; AUTHORITY SECTION:
qupps.biz. 86400 IN NS ns1.qupps.biz.

Note:

• The TTL of the Address (A) records is the default as specified in named.conf for the
zone, whereas the TTL for the NS is determined from the SOA.

• The addresses in the A records are returned in pseudo-random order.

8.3.8 Watching LDAP queries

When getting started with BIND-sdb-LDAP we recommend you enable debugging on your
LDAP directory server, to “see” the LDAP searches being performed by BIND SDB.

• A DNS query for vino.qupps.biz causes our BIND SDB to search for the fully quali-
fied name. BIND-sdb-LDAP knows the name of the zone (from the zone clause in
named.conf) and uses the remainder as the relativeDomainName , so BIND-sdb-LDAP
searches for:

(&(zoneName=qupps.biz)(relativeDomainName=vino))
(&(zoneName=qupps.biz)(relativeDomainName=@))

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

198 Alternative DNS Servers – Jan-Piet Mens

A query for tinto.es.qupps.biz would have resulted in these LDAP filters being applied
during the search:

(&(zoneName=qupps.biz)(relativeDomainName=es))
(&(zoneName=qupps.biz)(relativeDomainName=tinto.es))

• If tinto.es.qupps.biz is not found, the Start of Authority (SOA) record is searched for at
the apex of the zone:

(&(zoneName=qupps.biz)(relativeDomainName=@))

• With our wildcard patch applied (see Notes), a DNS query for leche.qupps.biz would
have BIND SDB perform these LDAP searches:

(&(zoneName=qupps.biz)(relativeDomainName=leche))
(&(zoneName=qupps.biz)(relativeDomainName=˜))
(&(zoneName=qupps.biz)(relativeDomainName=@))

Note the additional search for a relativeDomainName of ˜ (tilde). The tilde represents
a wildcard entry.

Zones in the in-addr.arpa domain are stored in a similar fashion, and they have the same
dNSZone objectclass, with an attribute type PTRRecord pointing back to the appropriate do-
main name.

8.3.9 Miscellaneous features

LDAP over IPC

If the LDAP directory server is on the same host as BIND SDB, and it supports LDAP over
*nix sockets, you can use the URL prefix ldapi:// (note the i in ldap i) for communication
between BIND SDB and your LDAP directory server, which may improve performance. For
example:

zone "qupps.biz" {
type master;
database "ldap ldapi:// %2fvar%2frun%2fslapd.sock /ou=dns,dc=qupps,dc=biz 600";

};

Note that the hex value %2F is a forward slash (/), so the bold text specifies a *nix path name
/var/run/slapd.sock .

Views

Wediscussed in Chapter 7 that you can create views to allow a single named instance to serve
differing content depending on the network location (IP address) of the querying client. The
LDAP driver for BIND SDB implements this with an LDAP attribute type called dNSView ,
a single-valued type, which you can add to your directory entries to specify which entries
should be used in which view.
Suppose you have a view called “inside ” and another named “outside ”, and an ACL,

trusted , that matches on IP addresses of your own trusted hosts. You would use the
dNSView type as follows:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 8. BIND’s Simplified Database Interface 199

view " inside " IN {
match-clients { " trusted "; };

zone "qupps.biz" {
type master;
database "ldap ←֓

ldapi:///o=qupps.biz??sub?(&(objectClass=dNSZone) (dNSView=inside)) 600";
};

};

view " outside " IN {
match-clients { any; };

zone "qupps.biz" {
type master;
database "ldap ←֓

ldapi:///o=qupps.biz??sub?(&(objectClass=dNSZone) (dNSView=outside)) 600";
};

};

Zone transfers

BIND-sdb-LDAP supports outgoing zone transfers, just as for normal zones. You enable zone
transfers in named.conf with allow-transfer statements, either globally, or on a zone-by-
zone basis as in this example:

zone "qupps.biz" {
type master;
database "ldap ldap:// ... ";
allow-transfer { 192.0.2.17; };

};

Controlling zone transfers

If you manage a large number of zones with BIND-sdb-LDAP, you might be interested in a
feature we created specially for this book: an auxiliary LDAP object class that you can add
to dNSZone entries, to specify BIND access control list (ACL) names on a zone-by-zone basis.
You enable this schema with a few simple steps:

1. Add the schema for the dNSZoneAXFRobject class to your server. For example, in
OpenLDAP, you add this line to slapd.conf :

include /path/to/dNSZoneAXFR.schema

2. Add the dNSZoneAXFRobject class to entries. For example:

$ cat qupps.modif
dn: relativeDomainName=@,zoneName=qupps.biz,ou=forwa rd,

ou=zones,ou=sdb,ou=dns,o=qupps.biz
changetype: modify
add : objectClass
objectClass: dNSZoneAXFR

$ ldapmodify ... < qupps.modif

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

200 Alternative DNS Servers – Jan-Piet Mens

3. Populate the multi-valued attribute type dNSZoneAXFRacl with the name of one or
more ACLs you have already declared in named.conf .

$ cat qupps.acl
dn: relativeDomainName=@,zoneName=qupps.biz,ou=forwa rd,

ou=zones,ou=sdb,ou=dns,o=qupps.biz
changetype: modify
add : dNSZoneAXFRacl
dNSZoneAXFRacl: hu-nic
dNSZoneAXFRacl: Acme-USA
dNSZoneAXFRacl: 192.168.1.14

$ ldapmodify ... < qupps.acl

A small program (see next section) reads your LDAP directory and creates a file with
zone clauses and their ACLs, which you can include in your named.conf .
The following LDIF shows a sample entry for a zone with the new object class and at-

tribute type:

dn: relativeDomainName=@,zoneName=qupps.biz,ou=forwa rd,
ou=zones,ou=sdb,ou=dns,o=qupps.biz

objectClass: top
objectClass: dNSZone
objectClass: dNSZoneAXFR
relativeDomainName: @
zoneName: qupps.biz
dNSTTL: 86400
dNSClass: IN
sOARecord: ns1.qupps.biz. hostmaster.qupps.biz. 1 10800 900 604800 3600
nSRecord: ns1.qupps.biz.
tXTRecord: "my first zone"
mXRecord: 10 mail.qupps.biz.
LocRecord: 52 2 2.76 N 8 28 37.919 E 118m
dNSZoneAXFRacl : hu-nic
dNSZoneAXFRacl : Acme-USA
dNSZoneAXFRacl : 192.168.1.14

You can download the schema for the dNSZoneAXFRobject class from (☞D082).

Create zone clauses for named.conf from LDAP

If you use the dNSZoneAXFR class, you will be interested in a utility we developed for
this book, which generates zone clauses for inclusion in your named.conf . The program
scans your LDAP directory for BIND SDB zones. It prints each zone to standard output in
named.conf format; if the LDAP entry for a zone has an dNSZoneAXFRacl value, the pro-
gram includes the appropriate allow-transfer statement in its output for that zone:

$ sdbldap2bind.pl
zone "qupps.biz" {

type master;
database "ldap ldap:// ... ";
allow-transfer {

"hu-nic";
192.168.1.14;

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 8. BIND’s Simplified Database Interface 201

"Acme-USA";
};

};

Your named.conf should contain the ACLs you specified on your zones:

acl "Acme-USA" {
127.0.0.1;
192.168.1.20/32;

};
acl "hu-nic" { ... };
acl "de-nic" { ... };

options {
directory "/var/named";
allow-transfer { none; };
...

};
...
include "/etc/ldapzones.inc";
...

Running the program is trivial, so you can automate the creation of the file you include in
your named.conf , but do be careful that it isn’t clobbered if an error occurs:

sdbldap2bind.pl > zones.$$ && mv zones.$$ /etc/ldapzones.inc
rndc reload

We show you the small program in Section C.1, and you can download it from the book’s
Web site (☞D083).

Convert master zone files to LDIF

Roman A. Egorov created zone2ldif, a program that converts a zone master file into LDIF
for import into an LDAP directory server. Before running the program, make sure that the
$ORIGIN line before the SOA in master zone files contains the zone name. For example, the
following produces LDIF for mens.de from the zone master file mens.de.zone :

$ zone2ldif.pl -b ou=dns,o=qupps.biz \
-z mens.de.zone \
-l mens.ldif

$ more mens.ldif
dn: zoneName=mens.de,o=qupps.biz
objectClass: top
objectClass: dNSZone
relativeDomainName: mens.de
zoneName: mens.de

dn: relativeDomainName=mens.de,zoneName=mens.de,o=qu pps.biz
objectClass: top
objectClass: dNSZone
relativeDomainName: mens.de
zoneName: mens.de
dNSTTL: 86400

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

202 Alternative DNS Servers – Jan-Piet Mens

dNSClass: IN
SOARecord: mens.de. jp.mens.de. 200712127 10800 900
604800 86400
NSRecord: home.mens.de.
...

zone2ldif is available from http://www.venaas.no/ldap/bind-sdb/zone2ldif.pl .

Performance

BIND SDB with the LDAP driver is widely used, and many system administrators find it
easy to set up. If you have trouble with performance, consider configuring BIND-sdb-LDAP
as a hidden master to a non-SDB BIND slave.
That concludes our explanation of how to use BIND SDB with the contributed LDAP

driver. In the next sections we explore how you can write your own driver.

8.4 Anatomy of a BIND SDB driver

This section describes how you can write your own driver for BIND SDB.
A BIND SDB driver is a module (typically written in the C programming language). There

is currently no provision for BIND to load these driver modules at run time, so you must link
them into the server at compile time.
A driver module interfaces with the standard SDB code in two ways, as shown in Figure

8.2:

1. SDB calls specially-named functions or callbacks to request data from the driver. For
example, it calls lookup () to query for a resource record. The driver programmer has
to write the callback functions in the driver, so that they are available for SDB to call.

2. The driver has retrieved the necessary information. It then calls a few standard-
named functions to pass the information back to SDB. For example, the driver calls
dns sdb putrr () to return (“put”) a resource record (“rr”). These functions are pro-
vided by SDB; the driver programmer doesn’t have to write them, but just uses them.

When domain names or resource records are passed between SDB and the driver, they are
represented as ASCII text, which greatly eases the amount of coding you have to do. (Pro-
grammers wishing to access the SDB API should definitely consult doc/misc/sdb of the
BIND source distribution, where the nitty gritty is explained.)
One important detail to note is that the current SDB interface does not implement zone

lookup. So, when BIND needs to check if a zone exists when it starts to process an incoming
query, it can’t use SDB; instead, it has to look in named.conf to see if the zone exists. Con-
sequently, to add a new SDB zone, you have to enter it in named.conf and restart or reload
named as usual. An alternative package, Bind DLZ (“Dynamically Loadable Zones”), doesn’t
have this limitation; it lets you implement zones dynamically (i.e. without having to reload
named). We discuss Bind DLZ in Chapter 9.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 8. BIND’s Simplified Database Interface 203

8.4.1 Writing a Driver

When a driver is registered with the SDB subsystem, it publicizes its name, list of callback
functions and flags. There are five callback functions which can be provided (Figure 8.2):

Figure 8.2: The named program, showing the SDB library and driver code

create () This is a convenience function that allows the programmer to initialize a
zone by connecting to an external database, allocating resources, etc. If the
create () function is provided, a corresponding destroy () can free what-
ever resources where reserved by create ().

lookup () The lookup () function is mandatory. It is invoked by BIND for each query it
receives. The function may return whatever resource records are required
by the query and, if no authority () function is provided, it must return
Start of Authority (SOA) and Name Server (NS) records, when queried for
the zone apex.

authority () The optional authority () function must be provided to return SOA and NS
records, if the lookup () function does not or cannot provide answers to NS

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

204 Alternative DNS Servers – Jan-Piet Mens

or SOA requests for a zone. If authority () is defined, lookup () must not
supply NS or SOA records.

allnodes () This routine need be implemented only if zone transfers (AXFR) for this
database are to be supported. allnodes () provides all records that are to
be included in the zone transfer.

destroy () This is an optional function, called during destruction of the database (i.e.
when named is terminating). You use this routine to free any resources you
allocated allocated in the create () function.

These functions are how SDB calls your driver; writing the code for these functions (plus any
ancillary functions you need) is how you implement the driver. The only callback function
that must be implemented is lookup (); the others are optional and depend on the feature
set you require in your driver. For example, if you don’t want your driver to provide zone
transfers, you don’t implement the allnodes () function.
That completes our overview of the features of an SDB driver, and we show you an

example, now.

8.5 Load balancing with DNS, implemented using SDB

Standard DNS is often used as load sharing mechanism, when a particular service is pro-
vided by more than one server. Suppose we run IMAP on three servers. We assign three
Address (A) records to imap.qupps.biz. When a client queries for that name, our DNS server
returns the answer, containing the three addresses in a pseudo-random order:

;; ANSWER SECTION:
imap.qupps.biz. 120 IN A 192.168.1.61
imap.qupps.biz. 120 IN A 192.168.1.63
imap.qupps.biz. 120 IN A 192.168.1.62

Most IMAP clients use the first returned address, so returning the address records in
random order in the answer effectively shares the load over the three servers that have the
name imap.qupps.biz.
The above is load sharing but not load balancing: even if host 192.168.1.63 is very heavily

loaded for some reason, or has crashed, it will still be returned first in the list on average 33%
of the time. A better approach would be for the DNS to monitor, somehow, the availability
and load of each of the IMAP servers. Then it could omit dead machines from the list of
addresses returned for imap.qupps.biz, and could either return the addresses so that the least-
loaded server is listed as the first, or indeed the only, item in the answer. BIND SDB lets you
build this sort of functionality into your DNS, and that’s what we cover in the next section.

8.5.1 Implementing a simple load-balancer driver

To illustrate how SDBworks, we implement a simple load balancer driver for BIND.

• On our SDB DNS server we have a process that continually monitors the load on our
three Web servers; it writes the IP address of the least loadedWeb server into a text file
(Figure 8.3). (How the process monitors the Web servers is irrelevant, and we don’t

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 8. BIND’s Simplified Database Interface 205

cover it. All we need to know is that our file contains the address of the least loaded
Web server.)

• When a client queries the BIND SDB server for address www.yourdomain.name, our driver
opens the file, reads a line containing the IP address, and closes the file. It then returns
the IP address as answer to the query. (You can download the full source code of our
sample driver from (☞D084).)

Figure 8.3: BIND SDB driver to load-balance DNS

Initializing the driver

The programmer-supplied init () function calls dns sdb register () which registers a sim-
ple database driver with BIND for the database type drivername. The name of the driver is the
first argument to the dns sdb register () function and corresponds to the name specified in
the database statement in named.conf (see Section 8.5.2).
Flags let you specify details of the driver’s operation. For example, you can choose

between relative or absolute domain names in the lookup (), authority (), and putrr ()

functions, and whether lookup () is thread-safe or must be serialized. The create () and
destroy () functions can be NULL if no initialization or destruction code is required.

Performing lookups

The BIND name server performs lookups in the database by invoking lookup () with four
parameters:

1. The name of the queried zone (e.g. qupps.biz), as a string.

2. The name of the queried domain (e.g. www), as a string.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

206 Alternative DNS Servers – Jan-Piet Mens

3. A programmer-supplied, optional, pointer dbdata. This points to data which you set up
earlier in your create () function. This is a way to pass arbitrary data to your callback
functions.

4. An opaque data item which is passed in to lookup () when called by SDB, and which
lookup () must pass on unchanged when it in turn calls dns sdb putrr (). This argu-
ment is used to return resource records to BIND.

The following listing shows a sample lookup () routine. The complete source code for the
whole load balancing driver is in Section C.2.

static isc_result_t
jpload_lookup(const char *zone, const char *name, void *db data,

dns_sdblookup_t *opq)
{

struct jpinfo *jpi = dbdata;

if (strcmp(name, "@") == 0) {

/* If authority() is not defined, issue RR for SOA
* and for NS here. (Not shown to save space.) */

} else if (strcmp(name, "www") == 0) {
char buf[BUFSIZ];
FILE *fp;

res = ISC_R_FAILURE;
if ((fp = fopen(jpi->path, "r")) != NULL) {

if (fgets(buf, sizeof(buf) - 1, fp) != NULL) {
buf[strlen(buf) - 1] = ’\0’; /* strip newline */

res = dns_sdb_putrr(opq, "a", 60, buf);
if (res != ISC_R_SUCCESS)

res = ISC_R_FAILURE;
}
(void)fclose(fp);

}
return (res);

}
return (ISC_R_SUCCESS);

}

Lookups at the zone apex (when name contains the string "@") will cause the server to also
invoke the authority () function if it is defined. If it isn’t, the lookup () function is responsi-
ble for returning SOA and NS resource records.
The functions dns sdb putrr () and dns sdb putnamedrr () are part of the SDB API; they

send resource records from your function “back” to BIND, converting the ASCII values into
BIND’s internal representation.
Note how the lookup function has no method with which to determine what kind of

query was issued (A, ANY, TXT, CNAME, etc.). The BIND SDB interface doesn’t care; for exam-
ple, if the programmer pushes TXT and A answers down the pipe when an Address (A) query
was issued, BINDwill simply discard the TXT answers and keep the A answers.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 8. BIND’s Simplified Database Interface 207

Returning all records in a zone transfer

The allnodes () function, if defined, should return the result for an AXFR zone transfer. (If it
is not defined, a zone transfer is disabled.)
There will usually be a correlation between the records returned by allnodes () and the

set of possible records returned by lookup (), but there need not be: the allnodes () function
could return a completely different set of DNS records.

8.5.2 Adding an SDB zone to named.conf

To configure a BIND zone to use an SDB driver, include a database statement in its zone

clause in named.conf , with the driver’s name enclosed in double quotes as argument:

zone "load.local" {
type master;
database " jpload ";

};

You can specify extra information which is to be passed to your driver’s create () function.
List the data you want passed, as whitespace separated arguments in the database state-
ment. For example:

zone "load.qupps.biz" {
type master;
database "jpload /var/load/balance.ip dns1";

};

When create () is called, it retrieves the items you specified, via its argc and argv arguments:

jpload_create(const char *zone, int argc, char **argv,
void *driverdata, void **dbdata)

In the example above, create () is passed:

argc Containing the integer value 2.

argv Contains two string (char*) pointers:

1. argv[0] contains the pathname to the file /var/load/balance.ip .

2. argv[1] contains the host name (dns1).

8.5.3 Building the driver and linking named

You provide the code for your SDB driver in one or more files that contain the source code,
which must be compiled and linked to the binary named executable.
Our example consists of two files:

1. jpload.h declares the functions and includes header files required for the compilation
of jpload.c .

2. jpload.c contains the source code of the driver.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

208 Alternative DNS Servers – Jan-Piet Mens

There are a number of steps required to compile named with the SDB driver, and we recom-
mend you proceed in this order:

1. Extract the source code of the BIND distribution and change into the newly extracted
directory.

$ tar xvzf bind-9.5.0a6.tar.gz
$ cd bind-9.5.0a6/

2. Copy (or create) your source code in the following paths. Assuming your source files
have the names used above, you provide the files in the following locations:

$ edit bin/named/jpload.c
$ edit bin/named/jpload.h

3. Edit named’s Makefile.in , to add the dependencies of your source code.

$ edit bin/named/Makefile.in

Locate the lines that begin with the string DBDRIVER near the top of the file and
modify them to use your driver’s source and object files names:

#
Add database drivers here.
#
DBDRIVER_OBJS = jpload.o
DBDRIVER_SRCS =jpload.c
DBDRIVER_INCLUDES =jpload.h
DBDRIVER_LIBS = -lmylib

The last line is not required for our driver; we’ve added it as an example of how you
would add linking options if your driver requires additional libraries.

4. Edit main.c to add the entry and exit points of your driver code.

$ edit bin/named/main.c

Search the file for the string “xxdb ” and add your #include directives (if you need
any) and the names of your functions.

/* #include "xxdb.h" */
#include "jpload.h"
...

/*
* Add calls to register sdb drivers here.
*/

/* xxdb_init(); */
jpload_init();
...

/*
* Add calls to unregister sdb drivers here.
*/

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 8. BIND’s Simplified Database Interface 209

/* xxdb_clear(); */
jpload_clear();
...

5. Configure namedwith whichever options you need, but don’t install it yet.

$./ configure --prefix=/usr/local ...
$ make

6. Create a minimal named.conf containing only what you need to test your driver. Note
how we define a high port number which allows us to test named without requiring
“root” privileges.

$ cat test.conf
controls {
};

options {
directory "/tmp";
listen-on port 9953 { 127.0.0.1; };
listen-on-v6 { none; };
allow-query { any; };

};

zone "load.local" {
type master;
database "jpload /tmp/load dns1 ";

};

Launch named, in debugging mode, in the foreground, with the configuration file you
created above.

$ bin/named/named -d 1 -g -c test.conf
starting BIND 9.5.0a6 -f -d 1 -g -c test.conf
loading configuration from ’/tmp/x/bind-9.5.0a6/bin/na med/test.conf’
listening on IPv4 interface lo, 127.0.0.1#9953
automatic empty zone: 127.IN-ADDR.ARPA
ignoring config file logging statement due to -g option
load_configuration: success
...
zone load.local /IN: starting load
*** jpload_create start
*** jpload_create end
zone load.local /IN: loaded
*** jpload_lookup start: zone=load.local name=@
*** jpload_lookup start: zone=load.local name=dns1
*** jpload_allnodes start: zone=load.local
*** jpload_lookup start: zone=load.local name=@
...
running

7. We configured our named to listen on a non-standard port number (9953), so we must
use that port number with dig as well:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

210 Alternative DNS Servers – Jan-Piet Mens

$ dig -p 9953 @127.0.0.1 filename.load.local txt
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 1, ADDIT IONAL: 1

;; ANSWER SECTION:
filename.load.local. 60 IN TXT "/tmp/load"

;; AUTHORITY SECTION:
load.local. 86400 IN NS dns1.load.local.

;; ADDITIONAL SECTION:
dns1.load.local. 100 IN A 127.0.0.1

8. When you have finished writing your driver code and named works as intended, you
can install it and its supporting tools into their final locations by running:

make install

in the main directory of the distribution.

8.5.4 What happens when named starts?

After writing the code and building the named binary, launch the program by running:

named

When named starts up, BIND loads all the SDB zones (and any other zones you may
have) that have been defined in named.conf . When BIND loads an SDB zone, BIND calls
the corresponding driver’s create () function, if supplied, and then invokes the lookup ()

function, passing it the name of the configured zone and@as domain name, searching for
the zone apex. If an authority () function is defined, BIND invokes that as well, to determine
the Start of Authority (SOA) and Name Server (NS) resource records for the zone.
If no authority () function is defined, BIND invokes lookup () at load time on the zone

apex (name is@) to retrieve NS and SOA records; if none exist, BIND issues diagnostic warnings
and refuses to serve the zone:

zone load.local/IN: starting load
zone load.local/IN: loaded
zone load.local/IN: has 0 SOA records
zone load.local/IN: has no NS records

After querying the zone for its apex, and still as part of the zone-loading procedure, BIND
invokes the lookup () function for all unqualified names that lookup () returned. As an exam-
ple, if lookup () returns a name dns1 for an Name Server (NS) query, BINDwill call lookup ()

to find an address record for that name. You might keep in mind, that the allnodes () func-
tion, if you defined it, is also invoked at the start of BIND. This might considerably increase
startup times.
In our example driver, for a query of www.load.local BIND invokes the lookup () function

for these names:

zone=load.local name= www
zone=load.local name= @
zone=load.local name= dns1

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 8. BIND’s Simplified Database Interface 211

8.5.5 Querying the new BIND SDB driver

At this point named and our SDB driver are fully initialized. Now let’s see how our load
balancer answers some queries. When we query it for a text (TXT) record, we get:

$ dig filename.load.local TXT
;; ANSWER SECTION:
filename.load.local. 60 IN TXT "/var/load/balance.ip"

We now query for the Address (A) record, then manually modify the balance.ip file, and
re-issue the same query:

$ dig www.load.local
;; ANSWER SECTION:
www.load.local. 60 IN A 10.51.0.2

$ echo 10.4.5.19 > /var/load/balance.ip

$ dig www.load.local
;; ANSWER SECTION:
www.load.local. 60 IN A 10.4.5.19

The SDB driver works – it has correctly picked up the changed contents of the file. Wewould
now launch whatever tool we need to monitor our Web or IMAP servers and insert the IP
address of the least loaded one into the balance.ip file.

8.5.6 Retrieving a zone transfer from the BIND SDB driver

A zone transfer performed on our BIND SDB database calls our allnodes () routine which
returns all the resource records you have programmed it to return. (See Section C.2 for the
code that produces the example below.) Whether or not a zone transfer (i.e. allnodes ()) is
useful for such dynamic data is up to you to decide of course, but it is possible to implement.

$ dig load.local axfr
; <<>> DiG 9.2.3 <<>> @127.0.0.1 -p 9953 load.local axfr
;; global options: printcmd
load.local. 86400 IN SOA localhost. root.localhost. 7 2880 0 7200 604...
imap.load.local. 3600 IN A 192.168.2.1
googl.load.local. 3600 IN CNAME www.google.com.
poem.load.local. 86400 IN TXT "These" "words" "will" "be" " individually"...
poem.load.local. 86400 IN TXT "its fleece was white as snow"
ns.load.local. 100 IN NS foo.load.local.
filename.load.local. 1800 IN TXT "/var/load/balance.ip"
load.local. 86400 IN SOA localhost. root.localhost. 7 2880 0 7200 604...
;; Query time: 0 msec
;; SERVER: 127.0.0.1#9953(127.0.0.1)
;; WHEN: Sat Nov 03 19:29:09 2007
;; XFR size: 8 records

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

212 Alternative DNS Servers – Jan-Piet Mens

Summary

• BIND SDB allows you to create your own interface to the BIND name server, providing
answers to DNS queries for specific zones from any imaginable source.

• Writing an BIND SDB interface requires programming experience in the C language.

• BIND SDB provides a number of sample drivers in the BIND source distribution.

• The BIND SDB LDAP driver is in widespread use.

Related topics

• Bind DLZ (Chapter 9) extends the BIND name server with drivers that provide database
and LDAP directory back-ends to BIND. In contrast to SDB, DLZ enables BIND to serve
new zones, on the fly as they are added to the back-end without having to alter
named.conf .

• If you enjoy programming, you will be interested in the PowerDNS’ Pipe back-end
(Chapter 6) and in DNS name servers you can implement in Perl (Chapter 15).

• We discussed in Chapter 1 that some organizations need their own private DNS root
zones. We show you how to use BIND-sdb-LDAP for this in Chapter 18.

Notes and further reading

Wildcard domain patch for BIND SDB LDAP

For this book we have created a small patch which enables the BIND SDB LDAP driver to
support wildcard DNS domains as in *.qupps.biz , and can log on the console a list of
LDAP queries being used. The patch is simple to apply. After configuring BIND SDB with
the LDAP driver as described above, get and apply the patch:

$ cd bind-9.4.2/bin/named
$ wget http://fupps.com/code/sundry/sdb/bind-sdb-ldap-wild card3.patch
$ patch < bind-sdb-ldap-wildcard3.patch
$ make

Our patch has already been committed to the project’s CVS tree, so you may prefer to get
the code from there (see http://bind9-ldap.bayour.com/).

ISC’s stand on load-balancing in BIND

The Internet Systems Consortium (ISC) is reluctant to include load-balancing in BIND. www.

isc.org/index.pl?/sw/bind/docs/bind-load-bal.php explains why.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter

9 Bind DLZ

Now you’re coming back to Earth, and
things are getting more and more dynamic.

Duane G. Carey

9.1 Architecture of Bind DLZ

9.2 Why should you use Bind DLZ?

9.3 Order of processing with multiple Bind DLZ back-ends

9.4 Choosing a DLZ driver

9.5 Getting started with Bind DLZ

9.6 How Bind DLZ retrieves information from your SQL or LDAP server

9.7 The Bind DLZ MySQL driver

9.8 The Bind DLZ LDAP driver

9.9 The Berkeley DB High Performance Text (BDBHPT) driver

9.10 Implementing Bind DLZ

9.11 How you can process Dynamic DNS Updates

Introduction

Dynamically Loadable Zones (DLZ) is an add-on for the BIND name server that lets you store zone
data in an external database, greatly reducing BIND’s memory requirements and, more importantly, its
startup time. DLZ lets you add zones to BIND on-the-fly without having to reconfigure or reload named.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

214 Alternative DNS Servers – Jan-Piet Mens

Managing DNS data in zone master files, which are usually edited by hand, requires great
care: whenever you modify a zone file, you have to remember to reload or restart BIND.
And when editing a file it’s easy to introduce errors, which are difficult to detect or can even
prevent BIND’s named from loading a zone at all.

BIND loads all configured zone master files into main memory when the named daemon
starts up, so that when it’s running it can answer queries quickly, without having to access
disks. This of course has the side-effect that startup takes a long time, during which the
server is unavailable to answer queries. Because the startup time is proportional to the
number and size of the zone files, administrators are cautious of restarting or reloading
BIND. Additionally, when serving a very large number of zones, BIND uses a lot of memory.
To overcome the long startup time and BIND’s hunger for memory, and to let you store

zone data in external databases, Rob Butler created Dynamically Loadable Zones (Bind DLZ)
for BIND. Bind DLZ was sponsored by Stichting NLnet1; the project was completed in 2005;
support and the mailing list are still active.
Because of the way DLZ handles its zones, it is dynamic – it serves zones you add to one

of its database back-ends immediately, without you having to reconfigure or reload BIND.
So, while it is more effort to get started with one of Bind DLZ’s back-ends (SQL or LDAP,
say), the great advantage is that zone data management can be automated, which is crucial
for large organizations and ISPs.
Unfortunately, DLZ is not a panacea for DNS data management: it has limitations, some

of which are due to BIND’s design. DLZ has no support for RFC 2136 dynamic updates, nor
does it support incremental zone transfers (IXFR).
Even so, you can set up BIND together with DLZ to solve most requirements you might

have in terms of DNS serving. For example, you can configure BIND to serve some domains
from zone master files, and others from an external database.

Pros • Adds LDAP, SQL and Berkeley DB databases to BIND
• BIND doesn’t need to be reloaded when you add zones or zone
data

• Adaptable database schemas
• Fast startup, lower memory consumption
• Native Microsoft Windows port
• Good documentation

Cons ◦ No RFC 2136 Dynamic DNS (in back-ends)
◦ NoWeb GUI or data management tools provided
◦ BDBHPT driver difficult to implement

Scenarios Large BIND environments that want to manage DNS using an ex-
ternal database, adding zones and DNS data on-the-fly.

Table 9.1: Bind DLZ at a glance

1NLnet Foundation is a non-profit organization committed to network (Internet) related research and develop-
ment. As part of this commitment, they sponsor the development of software that would benefit the Internet, and
make that software available as Open Source (see http://www.nlnet.nl).

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 9. Bind DLZ 215

9.1 Architecture of Bind DLZ

DLZ is a large add-on for BIND that is integrated into ISC’s BIND9 and later distributions. It
is similar in purpose to BIND SDB that we discussed in the previous chapter. DLZ consists of
two main parts (Figure 9.1):

Figure 9.1: Inside DLZ

A. The SDLZ API is built into the BIND core. It allows BIND to ask (via a DLZ driver)
whether a zone is contained in the database, and to retrieve the zone data when
needed. This apparently small change is what gives DLZ its dynamic capabilities. (If
you read the previous Chapter, recall that BIND SDB didn’t have this feature, so you
had to configure zones manually, in advance.) Compared to SDB, DLZ provides two
new functions: findzone () to query the external database to determine if a zone exists,
and allowzonexfr () to determine if a zone transfer for a specific zone is allowed.

SDLZ acts as a driver adapter converting all data to and from plain ASCII text for use
by the real DLZ back-end API, so that the answers are received from the back-end in
exactly the same format as answers from zone master files.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

216 Alternative DNS Servers – Jan-Piet Mens

B. A number of database drivers, that you enable with switches to the configure program
when building Bind DLZ (see Notes). These drivers are located in the contrib directory
of BIND’s source distribution.

A driver interfaces with a particular type of data store, which you use for your DNS
zone data. For example, the DLZ MySQL driver lets you store your zone data in a
MySQL database.

DLZ provides many different drivers ready for you to use with SQL, LDAP, and Berke-
ley DB databases, as we explain in Section 9.4.

9.1.1 How a Bind DLZ driver works

Every Bind DLZ driver interfaces with BIND in a standard way. As shown in Figure 9.1, Bind
DLZ calls just a few functions (findzone (), lookup (), . . .) to tell the driver what to do – for
example, “retrieve the MX records for example.com”. There are only five of these functions.
The driver uses other standard functions (dns sdlz putrr (), . . .) to return answers to Bind
DLZ.
The findzone (), lookup (), . . . functions are part of the driver, and they interface with

the back-end data store. For example, Figure 9.1 illustrates lookup () retrieving data from
the back-end database. A very important feature of Bind DLZ and its drivers is that it doesn’t
force you to store you data in a particular place or a specific format. As long as the data
is present and can be retrieved in the right format, Bind DLZ can use it. The small price for
this flexibility is that you have to configure your Bind DLZ with enough information that it
can successfully retrieve the data from the respective back-end database, which is what we
cover next.

Configuring a Bind DLZ driver – overview

Configuring a Bind DLZ driver requires about ten lines of configuration information in your
named.conf file. There’s nothing particularly difficult involved, but you do need to know
how Bind DLZ uses the configuration information. To make things concrete, let’s assume you
are using a MySQL back-end database.
What information does Bind DLZ need, in order to be able to retrieve DNS data from your

MySQL database? First, you have to tell it that it will be a MySQL database that you’re
using; then DLZ needs the name of the database, the IP address of the machine it’s on, and
user ID/password details.
Next (and this is the only complicated part) you have to tell Bind DLZ how to perform

queries against the database, to get the information required. Remember, Bind DLZ deliber-
ately doesn’t mandate any database schema, and therefore you have to give it all the nec-
essary details. Each of the five different functions that we mentioned above – findzone (),
lookup (), . . . – will use a query to interrogate the database. You have to write a template
for each of these five queries; when you’ve done that, you have finished configuring your
driver.
Later on (Section 9.6.1), we’ll give you full details of what data the five functions expect

to receive back from their queries, but for now, we just want you to understand broadly how

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 9. Bind DLZ 217

things work. Again to make things more concrete, let’s look at an example. When you query
Bind DLZ for the address of example.com, say, Bind DLZ first uses the findzone () function to
decide whether it is authoritative for example.com. You have to write a template SQL state-
ment that Bind DLZ can use for this. In your SQL statement you specify the database table
and column names to use, and that’s the crucial point: the template query you write gives
Bind DLZ all the information it needs about the database schema, etc. For our findzone ()

example, your template SQL query might look like this:

SELECT zname FROM dns_records WHERE zname = ’$zone$ ’

This example illustrates one other important point about Bind DLZ’s query operation:
there are a number of tokens that you can use in your template query. When Bind DLZ comes
to use the query, it replaces the tokens with the relevant values for the current query. In the
example above, Bind DLZ replaces $zone$ with the name of the zone being queried. (Two
other tokens are also used: $record$, which contains the host name of the domain being
queried, and $client$ which contains the IP address of a client requesting zone transfer.)
To summarize, configuring your Bind DLZ driver involves giving it enough information

to connect to your back-end database of whatever type, and writing five template SQL (or
LDAP or . . .) queries, one for each of the five findzone (), lookup (), . . . functions.
That’s all we’ll say about configuration for now. We’ll cover it in all the detail you require

in later sections.

9.2 Why should you use Bind DLZ?

If you are using BIND already, the benefits of DLZ are:

• DLZ does not remove any of BIND’s capabilities or features; it adds to them.

• DLZ enables BIND to store zone data in a back-end database. Because you can use DLZ
zones and normal master file zones in the same BIND, you don’t have to convert all
your current BIND zone files to database format; you can convert existing zones to DLZ
as and when you want.

• DLZ makes BIND fully dynamic, meaning you don’t have to reload the name server
when you add zones. We discussed in Chapter 8 that BIND SDB adds dynamic record
lookup to BIND. DLZ goes a step further: it can dynamically add new zones to BIND.

• DLZ starts very quickly and has low memory consumption, even when you have hun-
dreds or thousands of zones.

• DLZ supports a variety of database drivers including SQL databases, LDAP direc-
tory servers and a special driver that uses Berkeley DB, an embedded non-relational
database that offers high performance.

• As we’ve already mentioned, DLZ lets you use any database or LDAP schema you
want, so you can layer your DNS systems on top of an existing database infrastructure
if you need to.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

218 Alternative DNS Servers – Jan-Piet Mens

9.2.1 Limitations of Bind DLZ

Bind DLZ has some limitations:

• Bind DLZ can serve only as a master name server and not as a slave. The SDLZ API
defines functions only for reading resource data from the back-end, not for writing
to it. Therefore, a BIND server can’t act as a slave for a zone stored in DLZ, because
BIND can’t do anything with a zone retrieved in a zone transfer. To avoid this problem,
configure slave zones normally (i.e. to use zone files), and not as DLZ zones.

• DLZ query performance is generally slower than with zone files. As the different
drivers provided with DLZ have different performance characteristics, we recommend
you test which driver offers the performance requirements you have to meet (see
Chapter 23).

• BIND statements such as allow-transfer , etc. cannot be used in a DLZ zone. The only
statement allowed within a DLZ zone is the database statement.

However, this doesn’t matter, because DLZ does let you control who can perform
zone transfers, with ACL-like sets of addresses that you configure in your back-end
database.

• You can’t use Dynamic DNS (RFC 2136) in a DLZ-managed zone. However, a single
instance of BIND can simultaneously have DLZ zones and normal zones which do have
support for RFC 2136. Or you can use our “poor man’s dynamic DNS” (Chapter 19).

9.3 Order of processing with multiple Bind DLZ back-ends

When Bind DLZ receives a query, it handles it as follows:

1. BIND checks its in-memory database, loaded from master and slave zone statements,
to see if it has authoritative data for this zone. If there is no such in-memory database
(because you are using only DLZ and have no other zone sources configured), this
checkwill be completed very quickly. If an in-memorymatch is found, DLZ is bypassed
– goto step 3.

2. BIND checks to see if the DLZ database back-end is authoritative for the queried zone
by executing the findzone () query. This query can be executed several times, check-
ing for shorter versions of the zone’s name at each iteration until it finds a match or
terminates; only if it gets a positive response is the domain considered authoritative.
For example, if we are searching for www.qupps.biz, DLZ could call findzone () once for
each of www.qupps.biz, qupps.biz, and biz in that order.

3. If neither BIND’s in-memory database nor DLZ are authoritative, BIND then consults its
cache, and returns the necessary data if it’s there.

4. If BIND is configured to recurse (and we recommend it shouldn’t be when acting as
an authoritative server) it will query other DNS servers for the requested information,
cache it, and return it as answer to the client.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 9. Bind DLZ 219

In other words, you can mix DLZ zones and normal (master / slave) zones in BIND,
but zone files have precedence over DLZ zones – they are queried before DLZ. Thus, if a
DLZ database back-end contains data for a zone example.net and you have also configured
a zone file for example.net, BIND will always answer queries for anything.example.net from
the zone master file; BIND will never consult DLZ’s back-end database. However, you can
have DLZ serve data for example.net and use a master zone file for a sub-domain such as eu-
rope.example.net. A configuration like this may be of interest if you need RFC 2136 dynamic
updates, for a sub-domain only; it’s a workaround for DLZ’s lack of support for dynamic
DNS updates.

9.4 Choosing a DLZ driver

DLZ provides several drivers: choose the one that’s best suited to your needs and your per-
formance requirements. They are:

• The MySQL driver, which we cover in Section 9.7.

• A PostgreSQL driver, very similar in function to the MySQL driver. We don’t cover
this because it is so similar to the MySQL driver.

• The LDAP driver, which we cover in Section 9.8.

• The Berkeley DB High Performance Text (BDBHPT) driver, which we cover in Sec-
tion 9.9.

For the BDBHPT driver, you don’t have to create any template queries, as these are
built-in to the driver. As a result, the Bind DLZ configuration is much easier than for
SQL and LDAP. On the other hand, you have to create the databases (which involves
writing a program or script), and you have to write the programs that manipulate the
data in those databases, so the overall implementation is a lot of work.

• TheODBC driver (MicrosoftWindows only) can be used on supported platforms to ac-
cess databases via ODBC, if there is no DLZ driver available for your specific database.
We don’t cover this driver, but you will find it documented on the Bind DLZWeb site
(see Notes).

• The File System driver allows you to use a file system as a database for DNS data.
Zones and hosts are represented by names of directories and (empty) files. The file
system driver is the easiest to build as it doesn’t have external library dependencies,
but we do not recommend it, as it is quite slow.

• The BDB driver is the original Berkeley DB driver, which should not be confused with
the newer BDBHPT driver, above. The BDB driver is deprecated because it is much
slower than the BDBHPT driver, which is unfortunate as, unlike the BDBHPT driver,
it comes with utilities for data management.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

220 Alternative DNS Servers – Jan-Piet Mens

9.5 Getting started with Bind DLZ

Configuring DLZ is not trivial because it requires that you tell it what to do. Approach it in
this order:

1. Read the next Section (9.6) irrespective of the back-end you plan to implement. It
contains general information that you require for any back-end.

2. If you plan on using the MySQL driver, read Section 9.7. We show you how to config-
ure the MySQL driver, and we give you three examples, with three different database
schemas: (a) minimal, (b) Bind DLZ’s default, and (c) the MyDNS schema.

3. If you plan on using an LDAP directory server as a back-end to Bind DLZ, read Sec-
tion 9.8. We show you how to configure the LDAP driver, and we show you two
schemas for doing so: (a) minimal and (b) Bind DLZ’s default.

4. And finally, if you plan on using the High Performance Berkeley DB driver, read Sec-
tion 9.9.

9.6 How Bind DLZ retrieves information from your SQL or LDAP server

As we outlined earlier, for the SQL and LDAP drivers, you have to instruct DLZ how it
should find the answers to DNS queries, i.e. how the data in your back-end database is
organized and how youwant Bind DLZ to lookup and use that data. Because Bind DLZ doesn’t
know what your database schema is, part of the configuration that you specify is template
queries that Bind DLZ should use. For example, if you are using an SQL database, you have
to write template SQL SELECTstatements, that contain the correct table and column names.
You must also ensure that the data returned by the queries is in the correct format.
In the next two sections we go through this configuration process in detail, so you’ll

know exactly how to write the query templates. In the sections after that (Section 9.7 on-
wards) we cover the other configuration details – how you specify which database, onwhich
host, etc.

9.6.1 The five template queries that you have to configure

DLZ uses five different queries, for five different purposes which we will now explain. These
are the template queries that you have to configure. The five different queries are:

findzone () DLZ invokes this whenever it needs to find out if it is authoritative for a
given domain. The only token translated in this query is $zone$, as the
others don’t make sense in this context.

findzone () uses neither the contents of the results, nor any attribute
types/values returned by the query: what matters is the number of re-
sults the query returns. If the LDAP query returns zero entries (or the
SQL query returns zero rows), DLZ considers it is not authoritative for
the zone, and it will not answer queries about it. A non-zero number

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 9. Bind DLZ 221

of results indicates to DLZ that the underlying database back-end is au-
thoritative for the zone.

DLZ calls findzone () for each DNS query BIND receives, so the efficiency
of this function affects the performance of the database back-end con-
siderably. A single result by the query is enough to indicate that the
zone exists, so you should phrase your queries to return only one result;
doing so will speed up DLZ considerably. To speed up DLZ further, we
recommend your query returns the shortest possible single field and
not a whole row of data. Use the SQL syntax of your database back-end
to return only one row, with a single (small) column, if the zone exists.
In MySQL you can do this by adding:

... LIMIT 1

to the end of your SQL SELECTstatement.

The findzone () query is mandatory; without it, DLZ doesn’t do any-
thing.

lookup () DLZ invokes the lookup () query once findzone () has determined that
DLZ is authoritative for the zone. lookup () must return the zone data
for the query, and in the order specified in Table 9.2.

If the lookup () query returns Start of Authority (SOA) and Name Server
(NS) records, the authority () query (see below) must not return them.

The tokens supported by this query are $zone$ and $record$; the for-
mer is set to the zone name (de.qupps.biz) and the latter to the host name
portion (www) of the DNS query. Both tokens must be specified in the
query; if you omit either, DLZ won’t start up. When searching at the
zone apex, $record$ is set to@and when searching for a wild card host
name, it is set to a special character:

• For LDAP, the special character is a tilde (˜).

• For SQL, the special character is an asterisk (*).

Your lookup () query must not return the host field (see Table 9.2) be-
cause if it did, for a query of, say, www, you would illegally return a line
consisting of:

www 86400 A www 192.168.7.4

The lookup () query is mandatory.

authority () DLZ calls the optional authority () query, replacing the $zone$ token
with the zone’s name, to find the zone’s Start of Authority (SOA) and
Name Server (NS) records. If your lookup () function already returns NS
and SOA records, this query must not be defined.

allnodes () DLZ invokes the allnodes () query to gather the DNS records that will
be returned in an outgoing zone transfer. Only the $zone$ token is in-
terpolated and allnodes () will work only if an allowzonexfr () query
has ”permitted” the zone transfer.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

222 Alternative DNS Servers – Jan-Piet Mens

Your allnodes () query must return values in the order specified in Ta-
ble 9.2, including the host field.

allowzonexfr () Bind DLZ uses this query to determine if a specific client is allowed
to request a zone transfer for the zone. The name of the requested
zone (e.g. qupps.biz) is interpolated into the $zone$ token and a string
representation of the IPv4 or IPv6 address of the requesting client in
$client$ (e.g. 192.168.1.1). In this context, the client will commonly be
a slave DNS server requesting a zone transfer.

The contents of results returned by this query are not used by DLZ. It
is rather the number of LDAP entries (or SQL rows) that determines
whether a zone transfer is allowed or not. If the LDAP search finds
zero entries (or the SQL SELECTreturns zero rows), the zone transfer is
denied; otherwise it succeeds. Here again, to speed up DLZ, we recom-
mend you phrase your queries in such a way as that a maximum of one
row (or entry) is returned.

Those are the five queries you have to configure, and we have just explained when DLZ
uses them. In the next section we explain the format in which the functions must return the
data. section

9.6.2 Format of data returned by queries to the DLZ drivers

Bind DLZ connects to your back-end database and performs searches with queries you pro-
vide: for an SQL back-end, these are SQL SELECTstatements, and for an LDAP directory
server back-end, they are LDAP URLs (Section A.3.11). In both SQL and LDAP queries, you
name the fields2 that you want to retrieve. The names you give your fields don’t matter, as
long as the values returned by your queries are in the right format and in the right order.
For example, the drivers expect the TTL value of a DNS resource record to be returned as the
first whitespace-separated value, and the value must be convertible to an integer. The field
might be called timeToLive or mySpecialTimer ; that doesn’t matter, but it must be the first
item on the line returned by your query.
When developing your own schema, you may decide to use fewer or more fields than

those described. That is perfectly in order as long as the concatenation of the returned values
makes sense to Bind DLZ. If you really want to, you can store the whole DNS data record in
a single field, separating the individual values with a single space.

DLZ expects at least three items to be returned for every entry in an LDAP search (or for
every row in an SQL query). In order, these are:

1. The TTL of the host. This string must be able to be transformed to a positive integer
by a call to strtol (). The TTL of all records in an RRset (resource record set) must be
the same. (Remember, that an RRset comprises all the records of the same type for
the same host.) So, for example, if your host has two MX records, they must both have
the same TTL value. Failure to observe this rule can result in “bad ttl” errors issued by
dns sdlz putrr ().

2We hate doing this, but we have to to make your reading easier: as you know, SQL has “columns” and LDAP
has “attribute types”, but we call them both “fields” in this section only.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 9. Bind DLZ 223

Order Name Type Description
1 ttl number Time to Live
2 type string DNS record type (A, NS, . . .)
3 host string Hostname or IP address
4 mx prio number MX priority (for MX records)
5 data string Record content
6 primary ns string MNAME of SOA
7 resp person string RNAME of SOA
8 serial number SOA Serial number
9 refresh number SOA Refresh time
10 retry number SOA Retry time
11 expire number SOA Expiry time
12 minimum number SOAMinimum time

Table 9.2: DLZ driver attribute type order

2. The type of the resource record, as an ASCII string (SOA, A, MX, etc).

3. All subsequent items are concatenated to form the “rdata” that is returned to BIND. The
concatenation of values forms what you would use on the right-hand side of a zone
master file record. Some examples for commonly used records:

SOA For the Start of Authority record, the data consists of the primary name server
for the zone (MNAME), followed by the usual values in the SOA record.

ns1.qupps.biz. hostmaster.mens.de. 196205281 10800 900 6 04800 3600

A For an Address record, the data consists of a dotted quad IP address.

192.168.1.20

MX A Mail Exchanger must contain a decimal priority followed by a single space
and the host name of the mail exchanger.

10 mail.qupps.biz.

SRV For a Service record, the data contains the priority, weight, port and target,
each separated by a space.

0 0 636 ldap.qupps.biz.

For example, for a Name Server record, either of these two SQL queries:

SELECT ttl,type,mx_prio,data FROM tablename WHERE ...
SELECT ttl,type,rest FROM tablename WHERE ...

is valid if the concatenation of the values returned by the query produce:

84600 NS ns.qupps.biz.

So, now that you know what queries you have to write, and the format of the data they
should return, we can show you a sample Bind DLZ configuration. (We still have to explain
the database connections lines in the configuration, but ignore those for now – we’ll cover
them shortly. For now, we just want you to look at the five SELECTstatements which are the
template queries for findzone (), lookup (), authority (), allnodes () and allowzonexfr ().)

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

224 Alternative DNS Servers – Jan-Piet Mens

dlz "minimalDB" {
database "mysql
{host=127.0.0.1 dbname=dlzmini user=dnsadmin pass=hah! }
{SELECT id FROM zones WHERE zone = ’$zone$’ LIMIT 1 }
{SELECT ttl,type,data FROM zones z,rrset r WHERE z.id=r.zid ←֓

AND zone=’$zone$’ AND host=’$record$’ AND type NOT IN (’SOA ’,’NS’) }
{SELECT ttl,type,data FROM zones z,rrset r WHERE z.id=r.zid ←֓

AND zone=’$zone$’ AND type IN (’SOA’,’NS’) }
{SELECT ttl,type, host ,data FROM zones z,rrset r WHERE z.id=r.zid ←֓

AND zone=’$zone$’ }
{SELECT ’$zone$’, ’$client$’ }";

};

9.6.3 Using tokens in your queries

As we explained in Section 9.1.1, in your template queries Bind DLZ replaces the three to-
kens $zone$, $record$ and $client$, with the appropriate real values. By default (i.e. in
the DLZ code as distributed), the tokens you use when configuring DLZ in named.conf are
surrounded by percent characters (%), but that doesn’t work for LDAP URLs, so we have
written a small patch (see Notes):

• If you apply the patch, you surround the token name with dollar characters, e.g.
$zone$.

• If you don’t apply the patch, surround the token name with percent characters, e.g.
%zone%as normal. Note however, that you will not be able to use the LDAP driver.

In this chapter we assume you have applied the patch so we’ve used $token$ throughout.
That completes our discussion of how DLZ uses the queries you describe for the SQL and

LDAP back-ends, and the type of data it expects. Now, we start discussing the individual
back-ends.

9.7 The Bind DLZ MySQL driver

9.7.1 Configuration

Bind DLZ’s MySQL driver lets you store zone data in a MySQL database (Figure 9.2). As we
mentioned, the DLZ MySQL driver doesn’t specify which database schema to use; you use
any schema you want. This means that DLZ doesn’t know the details of your schema. There-
fore, your configuration must give DLZ enough information that it can query the database
for the resource record data it needs. You give DLZ this information by specifying five SQL
SELECT statements – one for each of the findzone (), lookup (), . . . functions that we de-
scribed in Section 9.5. (If you use the schema suggested by the DLZ authors, you can get
the necessary SELECTstatements from the DLZWeb site (see Notes).)
To define a zone for Bind DLZwith theMySQL driver, and to configure theMySQL driver,

create a dlz clause in named.conf :

1 dlz " descriptive name" {
2 database " mysql

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 9. Bind DLZ 225

Figure 9.2: Bind DLZMySQL driver

3 database connection
4 SELECT ... definition of findzone() ...
5 SELECT ... definition of lookup() ...
6 SELECT ... definition of authority() ...
7 SELECT ... definition of allnodes() ...
8 SELECT ... definition of allowzonexfr() ...
9 UPDATE ... ";
10 };

Lines 3–9 are best written in braces. Each pair of braces with their enclosed characters make
up an argument to the database statement, shown in line 2. The meaning of the various
lines is:

1. The keyword dlz specifies that this is a Bind DLZ driver. The descriptive name is an
identifier you choose, such as "Spain’s data" , and the opening brace must be on
this first line. It is closed on line 10.

2. Specify which DLZ driver to use. Enter the keyword database followed by the string
"mysql after the opening quote; note that we don’t close the double quote until line
9.

This is the only place where we specify that this zone is a MySQL-driver zone, and
that Bind DLZ should therefore load that driver.

3. Specify the database connection parameters. The line contains a set of keyword=value
pairs that describe the connection to the back-end database.

{ host =127.0.0.1 dbname=dns }

The allowed keywords are:

host The IP address of the host where the MySQL database is located.

port The MySQL port number; if not defined, it defaults to 3306.

dbname The name of the MySQL database.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

226 Alternative DNS Servers – Jan-Piet Mens

user The username with which Bind DLZ authenticates against the MySQL
database.

pass The password for user.

socket The filename of the UNIX socket to use instead of connecting via TCP to
host:port.

compress Flag: if “true”, MySQL uses the compression protocol. (Default: false.)

ssl Flag; if “true”, the connection to the MySQL database should be SSL-
encrypted. (Default: false.)

space Flag: if “true”, spaces are allowed in MySQL function names. (Default:
false.)

A keyword=value pair may not include whitespace. Anywhere.

4. Your definition of the findzone () query.

5. Your definition of the lookup () query.

6. Your definition of the authority () query.

7. Your definition of the allnodes () query.

8. Your definition of the allowzonexfr () query.

9. If the findzone () query returns a row, this optional query is invoked. This allows
you to gather statistics on how many queries have been performed for a zone. Since
findzone () is also invoked by allowzonexfr (), this query is also run when a zone
transfer is initiated, even if the client is not allowed to transfer the zone.

If you don’t want to update a table when findzone () is called, simply omit the query.

Note the closing double quotes and the semicolon (;) at the end of the line.

For maximum performance, we recommend you omit this query completely.

10. This last line in /etc/named.conf closes the dlz clause started on line 1. Note the
terminating semicolon.

Remember that each of the queries in lines 4–9 must be written on a single line.

9.7.2 Minimal MySQL schema

We demonstrate the use of the MySQL driver by creating a small schema which you can
download from the book’s Web site (☞D091). Our schema uses two tables: zones and
rrset .

zones This table contains a single row per zone. The id column is a primary key and
is referenced from the rrset table. The zone’s name is in the column zone .

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 9. Bind DLZ 227

mysql> SELECT * FROM zones;
+----+-----------+
| id | zone |
+----+-----------+
| 1 | qupps.biz |
| 2 | jp.de |
+----+-----------+

rrset The table rrset contains all the resource records for all zones and has the fol-
lowing columns:

id A unique identifier for the record.

zid This is the id from the zones database table; it identifies the zone
this record belongs to.

ttl Defines the Time to Live (TTL) of this DNS resource.

host The host name for the DNS domain. It must be a value like www, a
single “at” character (@) for the zone apex, or an asterisk (*) for a
wild-card record.

type The type of DNS resource record (SOA, NS, A, . . .).

data This column contains the “right hand side” of a DNS resource, as
in a zone master file.

mysql> SELECT * FROM rrset;
+----+-----+-------+------+-------+---------------- -----------------+
| id | zid | ttl | host | type | data |
+----+-----+-------+------+-------+---------------- -----------------+
| 1 | 1 | 86400 | @ | SOA | mens.de. jp.mens.de. 1 10800 ...
2	1	86400	@	NS	ns.qupps.biz.
3	1	86400	@	NS	ns2.qupps.biz.
4	1	86400	www	A	192.168.1.20
5	2	86400	@	SOA	jp.de. jp.mens.de. 1 10800 90...
6	2	86400	@	NS	jp.de.
7	2	67	@	A	10.0.0.1
8	2	86400	www	CNAME	www.qupps.biz.
+----+-----+-------+------+-------+---------------- -----------------+

Configure the minimal schema in named.conf

The configuration for this schema is easy. We specify an SQL query for each of the five
functions we want to implement. Note again, that you have to write each query on a single
line:

dlz "minimalDB" {
database "mysql
{host=127.0.0.1 dbname=dlzmini user=dnsadmin pass=hah! }
{SELECT id FROM zones WHERE zone = ’$zone$’ LIMIT 1 }
{SELECT ttl,type,data FROM zones z,rrset r WHERE z.id=r.zid ←֓

AND zone=’$zone$’ AND host=’$record$’ AND type NOT IN (’SOA ’,’NS’) }
{SELECT ttl,type,data FROM zones z,rrset r WHERE z.id=r.zid ←֓

AND zone=’$zone$’ AND type IN (’SOA’,’NS’) }
{SELECT ttl,type, host ,data FROM zones z,rrset r WHERE z.id=r.zid ←֓

AND zone=’$zone$’ }

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

228 Alternative DNS Servers – Jan-Piet Mens

{SELECT ’$zone$’, ’$client$’ }";
};

The five queries specified in the dlz clause do the following:

1. This query is used by findzone () to determine whether a zone actually exists. The
SQL LIMIT is overkill, as zone is a unique key and by design can return only a single
row, but we leave it in to remind you that returning even a single row indicates that a
zone exists: this improves Bind DLZ’s performance.

2. This is the lookup () query. As we wanted to demonstrate the authority () query on
the next line, this query should not return the SOA and NS records, which is why we
add:

AND type NOT IN (’SOA’,’NS’)

to the SELECTstatement.

To increase performance, return the SOA and NS records in the lookup () function if
possible, and don’t use the authority () function at all. That way, you reduce the
number of database queries.

3. This is the authority () query, which determines the Start of Authority and the Name
Servers for a zone, and it returns only those resource records to BIND, due to the:

AND type IN (’SOA’,’NS’)

4. This is the allnodes () query, which is utilized for outgoing zone transfers. It returns
all the records of a zone. Note that it also selects the host column.

5. This last query is the allowzonexfr () query, which you use to limit who can perform
zone transfers. As an example, we open our BIND name server to all by ensuring the
query returns exactly one row. Note how we have to use the $zone$ and $client$

tokens in the query: Bind DLZ does not start without them.

This simple SELECTwill always return one row.

Note that we have omitted the UPDATEquery, for two reasons: we aren’t interested in gath-
ering statistics on the number of queries DLZ receives, and we want maximum performance.

Observing queries

After launching Bind DLZ (see Notes) you populate the database tables, and then Bind DLZ is
ready to answer queries. A query for an Address record:

$ dig @127.0.0.1 www.qupps.biz
;; ANSWER SECTION:
www.qupps.biz. 86400 IN A 192.168.1.20

;; AUTHORITY SECTION:
qupps.biz. 86400 IN NS ns2.qupps.biz.
qupps.biz. 86400 IN NS ns.qupps.biz.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 9. Bind DLZ 229

will cause named to submit the following SQL queries. (For clarity we omit the column and
table names in the SELECTstatements.)

1 SELECT zone FROM zones WHERE zone = ’www.qupps.biz’ LIMIT 1
2 SELECT zone FROM zones WHERE zone = ’qupps.biz’ LIMIT 1
3 SELECT ... AND zone=’qupps.biz’ AND host=’www’ AND type NOT IN (’SOA’,’NS’)
4 SELECT ... AND zone=’qupps.biz’ AND host=’@’ AND type IN (’S OA’,’NS’)
5 SELECT ... AND zone=’qupps.biz’ AND host=’*’ AND type NOT IN (’SOA’,’NS’)
6 SELECT ... AND zone=’qupps.biz’ AND type IN (’SOA’,’NS’)

1. findzone () query to determine whether www.qupps.biz is in fact a zone.

2. Bind DLZ removes a label from the name and again uses findzone () to find the zone.
This time it finds it.

3. lookup () query to find the host www.

4. lookup () query to find SOA and NS records.

5. The Name Server (NS) records in the rrset table contain names which cannot be re-
solved. This lookup () query checks for a wild-card entry.

6. authority () query to determine the SOA and NS records for the zone.

Adding an in-addr.arpa zone to Bind DLZ

If you query Bind DLZ for a Pointer (PTR) to the address 192.168.1.20 you would see the fol-
lowing queries issued by the MySQL driver, when it uses findzone () to determine whether
Bind DLZ is authoritative for the zone:

SELECT zone FROM zones WHERE zone = ’20.1.168.192.in-addr. arpa’ LIMIT 1
SELECT zone FROM zones WHERE zone = ’1.168.192.in-addr.arp a’ LIMIT 1
SELECT zone FROM zones WHERE zone = ’168.192.in-addr.arpa’ LIMIT 1
SELECT zone FROM zones WHERE zone = ’192.in-addr.arpa’ LIMI T 1
SELECT zone FROM zones WHERE zone = ’in-addr.arpa’ LIMIT 1
SELECT zone FROM zones WHERE zone = ’arpa’ LIMIT 1

To add an in-addr.arpa zone to your minimal schema database, add the following records
to your database:

mysql> INSERT INTO zones (zone) VALUES (’1.168.192.in-add r.arpa’);

mysql> INSERT INTO rrset (zid, host, type, data)
SELECT id, ’@’, ’SOA’,
’ns.qupps.biz. jp.qupps.biz. 1 10800 900 604800 86400’
FROM zones
WHERE zone = ’1.168.192.in-addr.arpa’;

mysql> INSERT INTO rrset (zid, host, type, data)
SELECT id, ’@’, ’NS’, ’ns.qupps.biz.’
FROM zones
WHERE zone = ’1.168.192.in-addr.arpa’;

mysql> INSERT INTO rrset (zid, host, type, data)

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

230 Alternative DNS Servers – Jan-Piet Mens

SELECT id, ’20’, ’PTR’, ’www.qupps.biz.’
FROM zones
WHERE zone = ’1.168.192.in-addr.arpa’;

These records added to the zones and rrset tables set up an authoritative zone 1.168.192.in-
addr.arpa, and an inverse Pointer to 192.168.1.20:

$ dig @127.0.0.1 -x 192.168.1.20
;; ANSWER SECTION:
20.1.168.192.in-addr.arpa. 86400 IN PTR www.qupps.biz.

;; AUTHORITY SECTION:
1.168.192.in-addr.arpa. 86400 IN NS ns.qupps.biz.

Limitations of the minimal schema

The minimal schema just discussed works very well and has good performance. However:

• Updating the DNS resources in the rrset table is complicated by the fact that the data
portion (right hand side) of a record is a one long string in the data column. If you
create tools to update the tables, you have to keep this in mind.

• Any client can perform zone transfers because the query in allowzonexfr () always
returns a row. A simple way to control zone transfers is to create a table (called axfr ,
say) containing zone names and IP addresses of clients allowed to transfer those zones:

mysql> select * FROM axfr;
+----+-----------+--------------+
| id | zone | ip |
+----+-----------+--------------+
| 1 | qupps.biz | 192.168.1.20 |
| 2 | qupps.biz | 127.0.0.1 |
+----+-----------+--------------+

Then change the allowzonexfr () query to read:

{SELECT id FROM axfr WHERE zone=’$zone$’ AND ip=’$client$’ }";

When Bind DLZ gets a request for a zone transfer, it uses findzone () to determine
whether the zone exists, and if it does, it issues the allowzonexfr () query, which pro-
duces:

SELECT id FROM axfr WHERE zone=’qupps.biz’ AND ip=’192.168 .1.20’

If this query returns a row, the allnodes () query is invoked to return the actual data.
Do not use the following as it always returns a row:

SELECT COUNT(*) FROM axfr WHERE ...

The minimal schema is functional and fast, but there is another schema: the one designed
by the Bind DLZ author. We discuss that next.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 9. Bind DLZ 231

9.7.3 MySQL schema proposed by Bind DLZ

The Bind DLZ project has its own suggested MySQL schema, as documented on the project’s
Web site (see Notes). The suggested configuration is:

dlz "mysqlzone" {
database "mysql
{host=127.0.0.1 dbname=dlzdns ssl=false }
{SELECT zone FROM dns_records WHERE zone = ’$zone$’ LIMIT 1 }
{SELECT ttl, type, mx_priority, CASE ←֓

WHEN lower(type)=’txt’ ←֓
THEN concat(’ \"’, data, ’ \"’) ←֓
WHEN lower(type) = ’soa’ ←֓
THEN concat_ws(’ ’,data,resp_person,serial,refresh,re try,expire,minimum) ←֓
ELSE data END←֓
FROM dns_records ←֓
WHERE zone = ’$zone$’ AND host = ’$record$’ }

{}
{SELECT ttl, type, host, mx_priority, CASE ←֓

WHEN lower(type)=’txt’ ←֓
THEN concat(’ \"’, data, ’ \"’) ←֓
ELSE data END, ←֓
resp_person, serial, refresh, retry, expire, minimum ←֓
FROM dns_records ←֓
WHERE zone = ’$zone$’ }

{SELECT zone FROM xfr_table WHERE zone = ’$zone$’ AND client = ’$client$’ }
{INSERT INTO hits (zone) VALUES (’$zone$’) ON DUPLICATE KEY U PDATE nr=nr + 1 }";

};

Note that all lines beginning with an opening brace ({) must be continued on the same line
until the closing brace (}); wrapping is not supported and is not allowed, and it would cause
Bind DLZ to fail when it tried to load its configuration.
The data column contains the data of the DNS resource record which will be returned by

Bind DLZ: the equivalent of the right hand side of a zone master file. For an address record
(A), it is the IP address; for a Name Server record (NS) it is the hostname of the name server
(possibly qualified with a terminating period: BIND rules).
You can download the project-suggested schema from (☞D092). We have added a hits

table to it to illustrate the optional update query that Bind DLZ submits whenever a zone is
requested.

Adding a zone and resource records with the Bind DLZ MySQL schema

1. Adding a new Start of Authority (SOA) record creates a new zone:

mysql> INSERT INTO dns_records (zone,host,ttl,type,data ,resp_person,
-> serial,refresh,retry,expire,minimum)
-> VALUES (’qupps.biz’,’@’,3600,’SOA’,’ns.qupps.biz.’ , ’jp.mens.de.’,
-> ’1’, ’10800’, ’900’, ’604800’, ’86400’);

2. To illustrate how to add other record types, we now add a Name Server (NS):

mysql> INSERT INTO dns_records (zone,host,ttl,type,data)
-> VALUES (’qupps.biz’, ’@’, 3600, ’ NS’, ’ns.qupps.biz.’);

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

232 Alternative DNS Servers – Jan-Piet Mens

mysql> INSERT INTO dns_records (zone,host,ttl,type,data)
-> VALUES (’qupps.biz’, ’ns’, 1800, ’ A’, ’192.168.1.20’);

Note that we have not added any values to the other columns in the database table.
Their values will be inserted as NULL, which is fine, because the MySQL driver will not
use them.

If we now query our new Bind DLZ server for the newly added host:

$ dig @127.0.0.1 ns.qupps.biz
;; flags: qr aa rd; QUERY: 1, ANSWER: 1, AUTHORITY: 1, ADDITIO NAL: 0

;; ANSWER SECTION:
ns.qupps.biz. 1800 IN A 192.168.1.20

;; AUTHORITY SECTION:
qupps.biz. 3600 IN NS ns.qupps.biz.

we see the following queries being performed (edited for clarity):

SELECT zone FROM dns_records WHERE zone = ’ns.qupps.biz’
SELECT zone FROM dns_records WHERE zone = ’qupps.biz’
INSERT INTO hits VALUES (’qupps.biz’) ON DUPLICATE KEY UPDATE nr = n r + 1
SELECT ttl, type, WHERE zone = ’qupps.biz’ AND host = ’n s’
SELECT ttl, type, WHERE zone = ’qupps.biz’ AND host = ’@ ’

Also note, that the hits table now shows:

mysql> SELECT * FROM hits;
+-----------+------+
| zone | nr |
+-----------+------+
| qupps.biz | 1 |
+-----------+------+

3. To enable a zone transfer, insert the client’s IP address into the table, remembering
that, in this context, a client will usually be a secondary DNS server that is requesting
a zone transfer:

mysql> INSERT INTO xfr_table (zone,client) VALUES (’qupps .biz’,’127.0.0.1’);

and we see on the debugging console:

SELECT zone FROM dns_records WHERE zone = ’qupps.biz’
INSERT INTO hits (zone) VALUES (’qupps.biz’) ON DUPLICATE KEY UPDATE nr = nr + 1
SELECT zone FROM xfr_table WHERE zone = ’qupps.biz’ AND client = ’127.0.0.1’
SELECT ttl, type, mx_priority, WHERE zone = ’qupps.biz’ AND host = ’@’
SELECT ttl, type, host, FROM dns_records WHERE zone = ’qupps.biz’
SELECT ttl, type, WHERE zone = ’qupps.biz’ AND host = ’@’

as well as BIND itself logging successful zone transfers on its logging channel (Chap-
ter 7).

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 9. Bind DLZ 233

9.7.4 Alternative database queries with the MySQL driver

As explained in Section 9.5, Bind DLZ doesn’t mandate a specific database schema; instead,
you can configure Bind DLZ to use any schema you want. As a final example of how flexible
Bind DLZ can be, in this section we configure it to use the database schema of the MyDNS
server (Chapter 5). Just to be clear, we are using a schema from a different DNS server,
MyDNS, which is not to be confused with the MySQL schema for Bind DLZ we discussed
above!
Recall that MyDNS uses two separate database tables to represent zones:

1. The soa table contains the data required for a zone’s Start of Authority (SOA).

2. The rr table contains all other resource records of a zone.

Finding the resource records of a zone means joining both tables. Once again, note that on
the following lines, each SQL query enclosed in braces must be written on a single line!

dlz "mydns-schema" {
database "mysql
{host=127.0.0.1 dbname=mydns user=dnsadmin pass=hah! }
{SELECT origin FROM soa WHERE origin = ’$zone$. ’ }
{SELECT rr.ttl, rr.type, CASE ←֓

WHEN rr.type=’TXT’ THEN concat(’¨’,rr.data,’¨’) ←֓
WHEN rr.type=’MX’ THEN concat(rr.aux, ’ ’,rr.data) ←֓
ELSE rr.data END, ’’, ’’, ’’, ’’, ’’, ’’ ←֓
FROM rr,soa ←֓
WHERE soa.origin = ’$zone$.’ ←֓

AND rr.name = REPLACE(’$record$’,’@’,’’) ←֓
AND rr.zone = soa.id ←֓

UNION ←֓
SELECT ttl, ’SOA’, ns, mbox, serial, refresh, retry, expire , minimum ←֓

FROM soa
WHERE origin = ’$zone$. ’ }";

};

There are a few points worth noting in the example above:

• MyDNS qualifies zone names in the origin column by appending a period so we have
to include the terminating period in the query. (The period follows the $zone$ token.)

• The authority () query is not specified, because the lookup () query returns the SOA
and NS records.

• The other two queries (allnodes () and allowzonexfr ()) are not specified either. (We
could have made this more obvious by including pairs of empty braces {}.)

The example above uses many SQL functions, which is bad for performance, but there’s
nothing we can do about it.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

234 Alternative DNS Servers – Jan-Piet Mens

9.8 The Bind DLZ LDAP driver

The LDAP driver of Bind DLZ lets you store zone data in an LDAP directory (Figure 9.3). The
driver supplies a schema that you can use, or you can design your own. The LDAP driver
is flexible in that it allows the systems administrator to adapt the queries used by the driver
to make it work with any available schema as long as it contains an attribute type for the
TTL of a DNS record. If your DNS schema doesn’t contain one, you must alter your existing
schema and/or re-provision the directory to accommodate the driver’s requirements: each
and every LDAP entry that represents a DNS record requires an attribute containing the TTL.
(Unlike SQL, where you could simply SELECTa constant in your SQL query, LDAP URLs
don’t have such a feature.)

Figure 9.3: Bind DLZ LDAP driver

To get you started with DLZ’s LDAP driver:

1. We begin by showing you how to configure the LDAP driver in named.conf .

2. We then discuss a minimal schema we designed for this book.

3. Finally, we give a brief overview over the LDAP schema provided by the Bind DLZ
project.

9.8.1 Configuring the LDAP driver

Instead of imposing a specific schema, Bind DLZ requires you configure it with LDAP URLs
that contain the queries and the attribute types that should be returned by the directory
server. These URLs have the tokens embedded in them as explained in Section 9.6.3. Re-
member, when searching for a wild card host, Bind DLZ replaces the * in the wild card by a
tilde (˜) because the asterisk would be translated in an LDAP search to mean “any value”.
Activate the LDAP driver in named.conf via a database command contained within a

dlz clause in named.conf :

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 9. Bind DLZ 235

dlz " descriptive name" {
database "ldap ...

...
";

};

The descriptive name is any string you like to identify this DLZ driver. The database state-
ment describes the DLZ driver; This is the hardest part to get right in the configuration: all
other Bind DLZ configuration parameters are contained within the double quotes. The LDAP
driver’s database statement consists of seven lines (including the database line), and even
if LDAP URLs are shownwrapped to accommodate the width of these pages, theymust each
be written on a single line in the file. To help you further, when complete, the beginnings of
the lines in the dlz clause will look like this, all neatly beneath one another:

1 dlz " descriptive name" {
2 database " ldap 2
3 v3 method {binddn} {bindpass} {ip-addresses}
4 ldap:/// ... definition of findzone() ...
5 ldap:/// ... definition of lookup() ...
6 ldap:/// ... definition of authority() ...
7 ldap:/// ... definition of allnodes() ...
8 ldap:/// ... definition of allowzonexfr() ... ";
9 };

The function of each line is:

1. Introduces the dlz clause, giving it a descriptive name of your choice (something like
Our Domains) contained within double quotes. The content of the dlz clause starts
at the opening brace ({).

2. This line configures the LDAP driver. The database statement is mandatory and it
takes a single value enclosed in double quotes. The opening quote is on this line, but
note that its closing counterpart is on line 8!

The ldap keyword is mandatory for the LDAP driver, and the decimal number follow-
ing it specifies the number of simultaneous connections that Bind DLZ should open to
the back-end directory server. Match this number to the number of threads used by
named.

Upon startup, Bind DLZ creates the specified number of connections to the directory
server and keeps these open throughout its lifetime.

3. The authentication method with which to bind to the LDAP server, the credentials,
and a list of IP addresses of LDAP servers to attempt to connect to (see below).

4. URL used by findzone () to determine if a zone exists (mandatory).

5. URL used by lookup () to find a domain (mandatory).

6. URL used by authority () to return SOA and NS records if the lookup () query (line 5)
doesn’t (optional).

7. URL used by the allnodes () function (optional).

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

236 Alternative DNS Servers – Jan-Piet Mens

8. URL used by allowzonexfr () (optional). Note the terminating double-quotes and
semicolon; these close the database statement that started on line 2.

9. Ends the dlz clause. Note the terminating semicolon, which is part of BIND syntax.

All lines must be specified and must not be empty. For optional URLs, if you don’t want to
specify a value, use an empty pair of braces ({}) without whitespace. If any of the queries
contains a space (such as in an LDAP DN), the whole query must be enclosed in braces to
protect the space.
Note that the LDAP URLs on lines 4–8 have an empty host:port portion (see also Sec-

tion A.3.11); you cannot specify alternate LDAP servers in the URLs: DLZ uses a single
connection, and we describe how you configure that, now.

Describing the LDAP directory connection

Line 3 of the dlz clause configures the LDAP connections to the back-end directory servers:

v3 method {binddn} {bindpass} {ip-addresses}

The string v3 specifies the LDAP protocol version to use and may be changed to v2 if the
target directory does not speak version 3. method is the authentication method the LDAP
driver should use to authenticate with the back-end LDAP directory server. The supported
methods are:

simple Simple authentication using binddn and bindpass.
krb41 Kerberos 4.1.
krb42 Kerberos 4.2.

binddn is the distinguished name with which the LDAP driver should bind to the directory,
bindpass is its password, and ip-addresses is a space-separated list of IP addresses of the LDAP
directory servers this driver should contact. Each address is tried in order by ldap init ()

until a connection is successfully established. The servers are always contacted in the same
order, and the first available one is used.
For example, if you have an LDAP directory server running on 127.0.0.1 with a replica

server running on 192.168.1.40 and DLZ should use an anonymous bind, you’d configure:

dlz "DEMO" {
database "ldap 1
v3 simple {} {} {127.0.0.1 192.168.1.40 }
...

};

However, if DLZ should bind to the directory servers with a specific DN (binddn) and pass-
word (bindpass), you must supply these instead of the first two empty brace pairs:

dlz "DEMO" {
database "ldap 1
v3 simple {cn=fred,dc=qupps,dc=biz } {SuPERsecret } {127.0.0.1 192.168.1.40 }
...

};

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 9. Bind DLZ 237

Minimal schema

We have developed a minimal schema for illustration purposes. You can download the
schema definition from the book’s Web site (☞D093). The schema provides three attribute
types RRttl , RRtype , and RRdata , that contain the ttl, type and rdata of the DNS record
respectively. The full right-hand-side of the DNS record is contained in the RRdata attribute
type. You must take care to populate this attribute correctly: for example, if you forget one
of the SOA values in an entry for the Start of Authority (SOA) or the preference on a Mail
Exchanger (MX) entry, Bind DLZ can crash.
To simplify the schema and avoid creating further object classes or attribute types, our

minimal schema contains zones in organizational units (ou), and contains the host name
portion of a domain name in the cn type. The following LDIF represents an entry for an A
resource and a SRV resource for the host named@ (the zone apex):

dn: RRtype= A,cn= @,ou=qupps.biz,o=dns
cn: @
objectClass: RR
RRtype: A
RRdata: 192.168.1.131
RRttl: 3600

dn: RRtype= SRV,cn= @,ou=qupps.biz,o=dns
cn: @
objectClass: RR
RRtype: SRV
RRttl: 180
RRdata: 0 10 389 ldap.qupps.biz.

The attribute type RRtype becomes part of the entries’ distinguished name (DN) to allow for
more than one resource record type per host (Bind DLZ does not support multi-valued types),
and the record type (RRtype) and its TTL (RRttl) are stored individually as required by the
driver. Note how the right-hand side rdata is stored as a single string in RRdata , taking great
care to separate the individual content values with single spaces.
The configuration of the driver in named.conf is shown below. Note how the two empty

pairs of braces on line 3 are used to specify an empty binddn and bindpass:

1 dlz "DEMO" {
2 database "ldap 1
3 v3 simple {} {} {127.0.0.1 }
4 ldap:/// ou=$zone$,o=dns ?cn?sub?(objectclass=RR)
5 ldap:/// cn=$record$,ou=$zone$,o=dns ?RRttl , RRtype , RRdata ?sub?(objectclass=RR)";
6 };

Configured like this, Bind DLZwill not be able to offer outgoing zone transfers, as neither the
allnodes () nor the allowzonexfer () queries have been defined, but apart from that, Bind
DLZwill be fully functional as an authoritative content name server.
In the next section we look at the queries DLZ sends to the directory server, and after that

we do enable zone transfers.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

238 Alternative DNS Servers – Jan-Piet Mens

Observing queries

When Bind DLZ receives a DNS query, it uses findzone () to see whether it is authoritative
for the domain. For a query of www.qupps.biz, Bind DLZ does not know what the zone’s name
is, so it first searches for www.qupps.biz (which could be a zone name), after which it removes
a label from the name and looks for qupps.biz. In this minimal schema, the initial queries
issued by DLZ for www.qupps.biz zone are:

ldap:///ou= www.qupps.biz ,o=dns?cn?sub?(objectclass=RR)
ldap:///ou= qupps.biz ,o=dns?cn?sub?(objectclass=RR)

Having ensured that it is authoritative for the requested zone, DLZ uses lookup () to find the
resource records. An “A” DNS query for www.qupps.biz (which does not exist) results in the
following LDAP searches by lookup ():

ldap:///cn=www,ou=qupps.biz,o=dns?RRttl,RRtype,RRda ta?sub?(objectclass=RR)
ldap:///cn=˜,ou=qupps.biz,o=dns?RRttl,RRtype,RRdata? sub?(objectclass=RR)
ldap:///cn=@,ou=qupps.biz,o=dns?RRttl,RRtype,RRdata ?sub?(objectclass=RR)

In spite of appearances all these searches are necessary. Let’s look at each of them:

1. DLZ looks for the A record for www.qupps.biz. This wasn’t found, so now. . .

2. DLZ looks for a wild card record instead. (Remember that this DLZ driver translates
the asterisk (*) in a DNS wild card to a tilde (˜) for the LDAP searches.)

3. DLZ finally looks at the zone apex (hostname is@) in order to find the SOA for the zone.

The schema we have presented is minimal but functional. As it stands, it does not allow
outgoing zone transfers, as there are two types of query missing. We’ll fix that now, in the
next section.

Enabling zone transfers in the minimal schema

It is easy to add outgoing zone transfer capabilities: we just have to specify the LDAP search
URLs to be used for the allowzonexfr () and allnodes () functions. allowzonexfr () de-
termines whether a zone transfer is permitted for the client requesting it, and allnodes ()

produces all the DNS resource records which make up the zone. The Bind DLZ configuration
in named.conf then becomes:

1 dlz "DEMO with axfr" {
2 database "ldap 1
3 v3 simple {} {} {127.0.0.1 }
4 {ldap:///ou=$zone$, o=dns?cn?sub?(objectclass=RR) }
5 {ldap:///cn=$record$,ou=$zone$,o=dns?RRttl,RRtype,RR data?sub?(objectclass=RR) }
6 {}
7 {ldap:///ou=$zone$,o=dns?RRttl,RRtype,cn,RRdata?sub? (objectclass=RR) }
8 {ldap:///cn=@,ou=$zone$,o=dns?description=$client$?s ub?(objectclass=RR) }";
9 };

There are several points to note in this configuration:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 9. Bind DLZ 239

1. The LDAP driver binds anonymously to our directory, meaning that both binddn and
bindpass are empty strings (which we enclose in braces {} to avoid 127.0.0.1 being
interpreted as a binddn).

2. We have surrounded each of the LDAP queries by braces because one of the search
bases contains a space (whichwe inserted purely for illustration purposes). Otherwise,
we could have omitted the braces, but using them is good practice, to ensure that no
runaway space causes problems.

3. The authority () query is not specified because our lookup () query also returns SOA
and NS records (if our LDAP entries provide them). Nevertheless, we have to mark the
query as empty, with the empty pair of braces on the 6th line, because otherwise line 7
would be incorrectly interpreted as the authority () URL.

4. Lines 7 and 8 contain the URLs for the allnodes () and allowzonexfer () queries.
Note how the allnodes () query returns the hostname in cn , unlike the lookup () query
which doesn’t. (We discussed this in Section 9.5.)

5. The allowzonexfr () query demonstrates the flexibility of the LDAP driver. We use an
existing description attribute type to store IP addresses of clients allowed to perform
zone transfers. (This is an example only; we recommend that in real life your schema
should use a dedicated attribute type.)

The queries that DLZ sends to the LDAP back-end upon receipt of an outgoing zone transfer
request are:

ldap:///ou=qupps.biz,o=dns?cn?sub?(objectclass=RR)
ldap:///cn=@,ou=qupps.biz,o=dns? description =127.0.0.1?sub?(objectclass=RR)
ldap:///cn=@,ou=qupps.biz,o=dns?RRttl,RRtype,RRdata ?sub?(objectclass=RR)
ldap:///ou=qupps.biz,o=dns?RRttl,RRtype, cn ,RRdata?sub?(objectclass=RR)

which perform the following:

1. Use findzone () to check whether Bind DLZ is authoritative for the zone.

2. Is the client at IP address 127.0.0.1 allowed to transfer this zone?

3. Find the Start of Authority (SOA) for the zone using a lookup () query.

4. Use the allnodes () query to enumerate all the DNS records returned in the
zone transfer.

That completes a configuration for an authoritative DNS server retrieving a zone in an LDAP
directory. In the next section we cover the LDAP schema provided by the Bind DLZ project.

9.8.2 LDAP schema suggested by the Bind DLZ project

The Bind DLZ project has published a schema which you can use with the LDAP driver. It
represents DNS resource records in LDAP objects in a much more structured way than the
minimal schema we designed above, with a number of object classes that inherit from one
another. (Download the schema definition file from (☞D094).)
A sample LDIF that describes three DNS resource records using this schema is:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

240 Alternative DNS Servers – Jan-Piet Mens

dn: dlzZoneName=qupps.biz,ou=dlz,o=dns
objectclass: dlzZone
dlzZoneName: qupps.biz

dn: dlzHostName=@,dlzZoneName=qupps.biz,ou=dlz,o=dns
objectclass: dlzHost
dlzHostName: @

dn: dlzRecordID=1,dlzHostName=@,dlzZoneName=qupps.bi z,ou=dlz,o=dns
objectclass: dlzSOARecord
dlzRecordID: 1
dlzHostName: @
dlzType: soa
dlzSerial: 196205280
dlzRefresh: 10800
dlzRetry: 900
dlzExpire: 604800
dlzMinimum: 3600
dlzAdminEmail: hostmaster.mens.de.
dlzPrimaryns: ns1.qupps.biz.
dlzTTL: 86400

dn: dlzRecordID=2,dlzHostName=@,dlzZoneName=qupps.bi z,ou=dlz,o=dns
objectClass: dlzNSRecord
dlzRecordID: 2
dlzHostName: @
dlzType: ns
dlzTTL: 3600
dlzData: ns1.qupps.biz.

dn: dlzRecordID=3,dlzHostName=@,dlzZoneName=qupps.bi z,ou=dlz,o=dns
objectClass: dlzARecord
dlzRecordID: 4
dlzHostName: @
dlzType: a
dlzTTL: 3600
dlzIPAddr: 192.168.1.20

DNS resources can be stored in dlzZoneName containers (but need not be), and most record
types have their own object class (dlzSOARecord , dlzNSRecord , dlzPTRRecord , . . .) that
inherit types from the structural classes dlzGenericRecord and dlzAbstractRecord .
The great advantage of this schema is that attribute types are enforced by the schema; it is

therefore difficult to forget, say, the preference value on an MX record, as the LDAP directory
server would refuse to add such an incomplete object. The schema furthermore includes an
object class dlzXFR with a dlzIPAddr type to control zone transfers in the allowzonexfer ()

query, making it feature-complete.
You will find the required configuration for this schema on the DLZWeb site.
The comfort offered by the this schema comes at a price. We tested this schema, and our

own minimal schema, on identical hardware, with the same LDAP server configuration.
Our minimal schema gave twice the throughput. (See Chapter 23 for testing details.)
That completes our discussion of the DLZ’s LDAP driver and how you configure and use

it. Now we discuss DLZ’s so-called BDBHPT driver.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 9. Bind DLZ 241

9.9 The Berkeley DB High Performance Text (BDBHPT) driver

DLZ’s BDBHPT driver is quite different to the SQL and LDAP drivers; the latter are non-
trivial to configure with their long queries, whereas BDBHPT is easy to configure but quite
difficult to implement due to lack of data management tools for its databases. In this section
we describe the BDBHPT driver, how its databases are organized, and how best to imple-
ment it.
BDBHPT is layered on Berkeley DB (BDB), an embedded non-relational database for

applications that require persistent storage and fast access to data.

• BDB offers programmers a high performance embedded database library, with a num-
ber of language bindings, providing functions for data manipulation.

• SQL databases typically offer a query language with which to access their data; BDB
doesn’t have a query language.

• BDB stores arbitrary key/data pairs in an index. In SQL databases the index is typi-
cally an additional data set, but in BDB it is the database.

• BDB offers indexed and sequential access methods to data stored in it via the Btree,
Queue, Recno, and Hash methods. (See the BDB documentation for details.)

• BDB supports replication over multiple systems by having a single master which re-
ceives and distributes updates.

• BDB stores data reliably and ensures data integrity by allowing a group of database
modifications to be grouped together into a transaction. Note that if you want to have
Berkeley DB support replication for a database, the application you use to write to the
database must explicitly use the Berkeley DB replication API. Berkeley DB replication
does not come “out of the box”: you have to program it. To make this quite clear: Bind
DLZ does not include support for Berkeley DB database replication, as it simply reads
from the Berkeley DB databases.

• A BDB database is represented as a file on a file system. BDB also supports multi-
database files, i.e. a collection of one or more databases contained in a single file. These
are what DLZ’s BDBHPT driver use.

• What are called tables in relational databases, are called databases in Berkeley DB, and
a relational database is called an environment. Berkeley DB’s environment contains the
databases, together with an optional configuration file, and file-based backing stores
for the shared memory that Berkeley DB uses to coordinate concurrent access to, and
locking of, its databases. An environment is needed in transactional and concurrent
modes, but not in privatemodes (see below).

Bind DLZ with the BDBHPT driver has excellent performance. This is achieved by not
having to contact an external data repository (perhaps even on a remote host), thus elimi-
nating all TCP/IP and UNIX socket communications overhead. As the BDB database API is

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

242 Alternative DNS Servers – Jan-Piet Mens

Figure 9.4: Bind DLZ BDBHPT driver

part of Bind DLZ’s address space (Figure 9.4), the BDBHPT driver offers the highest possible
performance without sacrificing the advantages of a transactional database.

Bind DLZ’s BDBHPT driver is fast, but it is difficult to implement – you will need some
programming experience. Before you start implementing it, you have to consider whether
it will be worth your while:

• The first question that often arises is: why would anyone implement BDBHPT if they
have to write code to do so?

The answer is, that DLZ’s BDBHPT driver is fast, and due to its BDB layer, dispenses
with any communications overhead between the DNS server (Bind DLZ) and the back-
end database (Berkeley DB). Large organizations may have the human resources re-
quired to implement BDBHPT, but if you are a small organization, we cannot recom-
mend you use it: it is simply too complex, and you’ll be much happier using one of
DLZ’s other drivers.

• BDBHPT’s use of Berkeley DB also leverages BDB’s replication framework onto DLZ’s
databases, but this means writing even more (complex) code to implement such func-
tionality. Here again, you will do this only if you have lots of experience and plenty of
time at hand.

If you like programming, BDBHPT will whet your appetite, and we show you how to get
started, now.

9.9.1 Configuring a BDBHPT zone

Bind DLZ’s BDBHPT driver is easier to configure than most others: there is so little to con-
figure. You create a BDBHPT zone using a dlz clause such as this, in your named.conf

file:

dlz "our DNS data" {
database " bdbhpt C /usr/local/dlz DLZ.db " ;

};

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 9. Bind DLZ 243

The database statement expects a single string surrounded by quotes and terminated with
a semicolon, containing four parameters:

1. The keyword bdbhpt telling Bind DLZ to use the BDBHPT driver.

2. The operating mode of the BDBHPT driver, which we explain in a moment.

3. The name of the directory on disk containing the database environment, i.e. the direc-
tory in which Berkeley DB stores the files on the file system.

4. The name of the database as it is stored in the file system.

9.9.2 BDBHPT operating modes

A BDBHPT database has an operating mode which defines whether it should support trans-
actions, whether file locking is to be used, etc. With a non-embedded database, you specify
this sort of thing in a configuration file. However, as BDBHPT is embedded, you have to
specify the mode in your programwhen you call the BDB function that creates the database.
You do this by passing one or more flags to the create function. Once you’ve created the
database, you have to tell BDBHPT which mode it should use when using the database you
created. You do this by giving BDBHPT a single letter code in its database directive.
There are three modes of operation:

T Mode T is transactional and supports full transactional operation, including logging,
locking and multiple simultaneous database writers. This functionality adds over-
head, so this is the slowest of the three modes. The flags passed to Berkeley DB are:

DB INIT TXN | DB INIT MPOOL | DBINIT LOCK | DB INIT LOG | DB CREATE

C Mode C is the concurrent mode, which allows multiple processes to simultaneously
read and write to the database, but it does not support the commit or rollback features
of transactional mode. This mode uses the flags:

DB INIT CDB | DB INIT MPOOL | DBCREATE

P Mode P is the “private” mode. In private mode, only a single process may access the
database, as there is no locking or transactional support. This mode offers the best
performance for the BDBHPT driver, and it uses these flags:

DB PRIVATE | DB INIT MPOOL | DBCREATE

When running in private mode, you cannot update the Berkeley DB file while Bind
DLZ is using it. A good way around this is to make a copy of the Berkeley DB file to
another location, update it, and then rename it atomically, replacing the original file.
If you then restart named, it will open the new file: since Bind DLZ starts quickly, using
private mode like this is reasonable if:

• You want to use Bind DLZ.

• You need the utmost in performance using a database back-end.

• You don’t modify your zone data very often.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

244 Alternative DNS Servers – Jan-Piet Mens

The Berkeley DB flags described above are Or-ed together by the BDBHPT driver, and you
must pass the same combination of flags to the BDB functions you use in your custom pro-
grams when you create or update your database. In other words, when configuring DLZ
you specify only the mode character (one of T, C, or P), and BDBHPT uses the correspond-
ing flags when it invokes the appropriate Berkeley DB functions. So, for example, when you
configure Bind DLZwith:

dlz "our DNS data" {
database " bdbhpt C /usr/local/dlz DLZ.db " ;

};

DLZ’s BDBHPT driver will open the file DLZ.db with the Berkeley DB flags set to:

DB INIT CDB | DB INIT MPOOL | DBCREATE

9.9.3 Layout of the BDBHPT databases

The Berkeley DB database used by Bind DLZ with the BDBHPT driver is a single file on
the file system, containing four internal databases called dns zone , dns data , dns xfr , and
dns client (Figure 9.4, page 242).
The four internal databases contain carefully crafted keys and values, that consist of

strings of text. As Berkeley DB does not offer a high-level query language such as SQL to
access data in its databases, programs accessing them (in our case, it is DLZwith its BDBHPT
driver) resort to direct keyed access using BDB functions. Now, let’s look at each of these
four databases in turn.

1. The dns zone database.

This Btree database contains the list of zones for the DNS data. The key is a reversed
zone name (zib.sppuq) and the data is an empty string. In Perl, the appropriate
hash3 can be populated with:

$DNSzone{’zib.sppuq’ } = "";

BDBHPT looks up this database in the same way that findzone () is used by the LDAP
and MySQL drivers.

When BIND calls DLZ, it must first determine which portion of the query is the zone
name and which the host. A query received for a domain www.qupps.biz, could be for
a zone qupps.biz or for biz, but it could also be for a zone called www.qupps.biz. As
the initial portions of these strings are alphabetically quite different, looking up each
of these keys would cause Berkeley DB to “move around” a lot in the database (seek
from one disk block to a different one), which would reduce its effectiveness. BDBHPT
avoids this by searching for reversed zone names: zib.sppuq, zib and zib.sppuq.www
respectively.

Done this way, the BDBHPT driver preserves “database locality” because these names
sort almost identically, and are likely to occur within a single disk block within the
database.

3A Perl hash creates one-to-one associations between a variable (key) and its value. Hash elements can be
accessed only via their keys, and keys within a hash must be unique.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 9. Bind DLZ 245

2. The dns data database.

The dns data database contains all the resource records for a zone. It is used for
lookup operations and outgoing zone transfers. For best performance, the underly-
ing Berkeley DB database should be a Hash database with duplicates allowed on it.

The key on this database is the name of the zone (not reversed this time) followed by a
single space (" ") and the host name. The value is a textual representation of the DNS
resource record. The exact format of the record is as follows (Table 9.3):

Order Item Description
1 replication id Unique alphanumeric ID for the record
2 host DNS hostname
3 ttl Time to live (must be a number)
4 type DNS record type (A, SOA, NS)
5 data Content of data

Table 9.3: Format of DNS records in BDBHPT

(a) replication id is a sequence of non-whitespace characters which uniquely identi-
fies a record within the database. Although each record can have any value you
desire for the replication id, using non-unique values would make it impossible to
identify a single record during update operations, so we could never change an
existing record – we could only add new records. For example, if you have two
A records in the database for host www, and both have the same replication id, it is
impossible to specify the one you want to update.

For this reason, we recommend you have a unique replication id on each record in
order to allow a database management utility to identify a record. This value is
mandatory, i.e. the BDBHPT driver expects something to be there, even if it isn’t
unique.

(b) host is the domain name as described above. Use @for the name of the zone’s
apex.

(c) ttl is the Time to Live in seconds. It must be a numeric string.

(d) type is a string containing the DNS resource record type.

(e) data contains the rdata of the DNS record, i.e. the right-hand side in a zone master
file. For an MX resource, it includes a numeric priority and a host, for an A RR the
IP address, for a CNAME just a domain name, etc.

For example, the data for qupps.biz can be set with a Perl hash as follows:

$DNSdata {"qupps.biz @" } = "91 @ 10 SOA ns1.qupps.biz. jp.mens.de. 17 ←֓
18000 3600 64800 3 600";

$DNSdata {"qupps.biz @" } = "92 @ 86400 NS ns1.qupps.biz.";
$DNSdata {"qupps.biz www" } = "90 www 3600 A 192.168.1.164";
$DNSdata {"qupps.biz www" } = "17 www 3600 MX 10 mail.isp.net.";
$DNSdata {"qupps.biz ldap" } = "99 ldap 3600 A 192.168.1.20";

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

246 Alternative DNS Servers – Jan-Piet Mens

BDBHPT looks up this database in the same way that the MySQL and LDAP drivers
use the lookup () query.

3. The dns xfr database.

When performing an outgoing zone transfer for a particular zone, qupps.biz say, Bind
DLZ has to retrieve all DNS records for that zone, i.e. search for records with key be-
ginning “qupps.biz space”. However, Berkeley DB does not support searching by
sub-strings like this, so therefore the dns data database, which contains keys like
“qupps.biz www ”cannot be used for zone transfers. BDBHPT solves this problem
by adding another database, dns xfr . This uses the zone name as key and the host
name as value. Note that, here again, the host name of the zone apex is symbolized by
an “at” character (@).

$DNSaxfr {’qupps.biz’ } = ’@’;
$DNSaxfr {’qupps.biz’ } = "www";
$DNSaxfr {’qupps.biz’ } = "ldap";

An outgoing zone transfer works as follows: the BDBHPT driver searches the queried
zone name in the dns xfr database and enumerates all unique host names. Then, for
each host found, the driver queries the dns data database for the actual data which it
returns in the zone transfer.

It is quite possible (deliberately or by mistake) to provide a zone transfer with DNS
records missing, by not including the respective zone/host pair in dns xfr for a spe-
cific DNS resource.

The dns data and dns xfr databases together implement the equivalent of what the
allnodes () function does for the LDAP and SQL drivers.

4. The dns client database.

This database specifies which clients may transfer which zones. The database key
is the zone name, and the record values are string representations of IP addresses; a
zone/IP combination must be unique.

$DNSclient {’qupps.biz’ } = ’127.0.0.1’;
$DNSclient {’qupps.biz’ } = ’192.168.1.20’;
$DNSclient {’example.net’ } = ’127.0.0.1’;

BDBHPT looks up this database in the same way that the MySQL and LDAP drivers
use the allowzonexfr () query.

That completes our discussion of the Berkeley DB databases used by DLZ’s BDBHPT
driver, and you might want to take a breather before we continue with a discussion of how
you actually enter data into these databases.

9.9.4 Creating your BDBHPT database

There is no special utility that you use to create your BDBHPT databases, because that is
part of the Berkeley DB API. So the programs you use to manipulate data in your BDBHPT
databases (see next section) will create the necessary files for you.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 9. Bind DLZ 247

9.9.5 Manipulating data in the BDBHPT databases: dlzdb-util

How do you get the data into the database? Good question. Bind DLZ doesn’t provide a
utility for doing that, so we have to roll our own or use one created by somebody else.

• In Section 9.9.6 we give you some pointers on how to manage your DNS data in an
SQL database, and how you could provision your Berkeley DB databases from an
SQL database.

People who use BDBHPT are usually willing to spend the necessary time creating
utilities adapted to their specific environment. We have done a bit of that work for
you, and have created a small example, with a program that reads and dumps the
content of an SQL database into a Berkeley DB database ready to be used by DLZ’s
BDBHPT driver. We discuss the program in Appendix D.

• In the remainder of this section we cover dlzdb-util, which is a good starting point if
you’re developing your own tools to update BDB databases.

dlzdb-util is a Perl script, written by Jorgen Lundman. After downloading it, configure
the database filename and path at the top of the script. You can add a new zone (by adding
the necessary SOA, NS and A records) from the command line by invoking the script to create
appropriate SOA, NS and A records in the database. (See the program’s documentation for a
description of its options.)

$ dlzdb-util -a -z example.net -t SOA -S 1 -F 10800 -R 900 \
-E 608400 -T 86400 -H hostmaster.example.net. -N ns1.examp le.net.

Creating SOA for example.net...

$ dlzdb-util -a -z example.net -t NS -n ’@’ -v ns1.example.net.
add [example.net @] [2 @ 86400 NS ns1.example.net.]

$ dlzdb-util -a -z example.net -t A -n ns1 -v 192.168.1.20
add [example.net ns1] [1 ns1 86400 A 192.168.1.20]

$ dlzdb-util -a -z example.net -t A -n www -v 192.168.1.164
add [example.net www] [1 www 86400 A 192.168.1.164]

To see what the database contains for a zone, use:

$ dlzdb-util -s -z example.net
status for domain example.net
dns zone: [ten.elpmaxe]
dns client: [example.net] [127.0.0.1]
dns xfr: [example.net] [ns1]
dns data: [example.net ns1] [1 ns1 86400 A 192.168.1.20]
dns xfr: [example.net] [www]
dns data: [example.net www] [1 www 86400 A 192.168.1.164]
dns data: [example.net @] [1 @ 86400 SOA ns1.example.net. ←֓

hostmaster.example.net. 1 10800 900 608400 86400]
dns data: [example.net @] [2 @ 86400 NS ns1.example.net.]

dlzdb-util is available at http://www.lundman.net/wiki/index.php/DLZUtil and it uses
BDBHPT in concurrent (C) mode by default, but you can change the Berkeley DB flags in
the program to suit your needs.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

248 Alternative DNS Servers – Jan-Piet Mens

9.9.6 Pushing DNS records into a BDBHPT database

Instead of fiddling around with inserting individual records into Berkeley DB databases,
you can take a different route: store your DNS data in a stand-alone SQL database or in
an LDAP directory (the provisioning server), write a program to read the zone data from
SQL/LDAP, and then automatically generate the necessary database files for Berkeley DB.
This means you don’t have to write a user interface to maintain the data in Berkeley DB, and
it’s a good approach especially if you already have a Web-based GUI or other management
utilities with which you add DNS records to the SQL/LDAP database. The downside to
provisioning of back-end databases with such a technology is of course the delay that occurs
between updating a DNS record and its availability on the satellite servers. Most users of
DLZ’s BDBHPT driver do it as above; unfortunately, we are not aware of “ready to use”
programs you can download and start using.
With a bit of programming skill, you can stack a layer of code on top of the the pro-

grams you use to provision your database, ensuring that updates are written to a BDBHPT
database used by Bind DLZ. There are two implementation techniques you can choose from:

pull Have DLZ’s BDBHPT server poll the provisioning server periodically, to determine
whether any updates to the database have been made, and if so, read the modifica-
tions, and update the Berkeley DB databases accordingly.

The disadvantages of this approach are:

• If you poll frequently, you consume resources on both the Bind DLZ machines
and the provisioning system, even if there are no changes.

• If you poll only at long intervals, you lose much of the benefit of DLZ’s dy-
namic nature, because it will be a long time before updates reach Bind DLZ.

push Modify the software that you use to add, modify and delete the zone data on your
SQL/LDAP system, so that when it makes a modification, it automatically triggers
a push to the satellite Bind DLZ machines and causes appropriate updates to the
Berkeley DB databases. This approach is the most dynamic – your live server data
is updated almost instantly. The downside is that if one or more of the Bind DLZ
satellites is unreachable, you have to queue updates and distribute them at a later
time.

9.9.7 Replication with Berkeley DB

If you have several peer Bind DLZ servers on separatemachines, all using the BDBHPT driver,
how do you replicate the same data to each server? You can use two different methods:

1. BDB databases are files on a file system. As long as no process has the database open
for writing, the file can be transported to a remote location by your preferred means of
file synchronization (rsync, etc.). This method is suitable where changes to the database
are infrequent.

2. BDB supports a “single master” replication strategy. You update the data only on a
single, master, database. Then, using code you’ve written, you instruct the master to

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 9. Bind DLZ 249

replicate the updated data to multiple read-only replicas (Figure 9.5). Berkeley DB
transmits transactional log records to its replicas, so the application must be transac-
tional in nature (i.e. BDBHPT Tmode). Note again, that Bind DLZ is not responsible for
Berkeley DB replication, as it just reads the database. If you want replication in your
BDB databases, you must provide replication support in the programs that you write
to manipulate the data in the databases.

Figure 9.5: Using BDB’s single-master replication in your program

9.9.8 Zoned: the BDBHPT replicator

Zoned, by William Ahern, is a package that provides replication for a BDBHPT zone in Bind
DLZ (Figure 9.6). Zonedmanages the Berkeley DB database and uses the Berkeley DB Repli-
cation Base API to provide high availability and load distribution. Zoned basically builds a
cluster of nodes (i.e. machines) on which you provide Bind DLZ servers that use the Berkeley
DB databases. Zoned includes the Zoned replication manager, the zonectl utility for managing
server nodes and editing DNS resource records, and a Perl module called Zoned.

Zoned and Berkeley DB manage the cluster autonomously, handling the necessary mes-
saging and the routing of zone updates to the master node (updates are contained in mes-
sages and they have to be directed to individual nodes). Replication is managed by Zoned
and the underlying Berkeley DB API. Nodes are “found” with the help of Service (SRV)
records.
You manage all changes to DNS zone data through one of the nodes controlled by Zoned.

To add or modify a resource record, you either use the zonectl utility, or you write an applica-
tion which uses the supplied Perl module. You can also build your own tools for interacting
with Zoned; the ASN.1message schema definition is provided, defining the communications
protocol for interacting with the nodes in a cluster.

Zoned is an interesting set of tools and you should look closely at it if you intend to
deploy Bind DLZ with BDBHPT (see http://25thandclement.com/˜william/projects/

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

250 Alternative DNS Servers – Jan-Piet Mens

Figure 9.6: Zoned architecture

zoned.html).
That concludes our explanation of the individual Bind DLZ back-end drivers. In the next

section we cover common Bind DLZ deployment scenarios.

9.10 Implementing Bind DLZ

9.10.1 Split-horizon DNS with views in Bind DLZ

In Chapter 7 we discussed how you can create “views” in BIND to give you different per-
spectives on a zone’s content, based on the network location of the querying client. You can
also use BIND views with Bind DLZ.
You implement views in Bind DLZ the same way as in a vanilla BIND configuration; the

difference lies in the source of your zones. Whereas in BIND you load zones frommaster files
and include a zone clause in a view definition, Bind DLZ finds zones in one of its back-end
databases, so you include a dlz clause in a view definition. The general syntax for defining
views in your named.conf for Bind DLZ is thus:

view " name1" {
dlz " driver-a" { ... };

};
view " name2" {

dlz " driver-b" { ... };
};

An example: two views with different Bind DLZ drivers

In the example that follows, we implement Bind DLZwith two views:

• A view called inside which uses the LDAP driver. This view is used when the ad-
dress of the querying client is in the trusted ACL.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 9. Bind DLZ 251

• A view called outside which uses the MySQL driver.

(You do not have to use two different drivers when implementing views in Bind DLZ; we
simply illustrate that it is possible. And in the next section we show how you can use the
same driver in both views.) In your named.conf define the views with their respective dlz

clauses:

acl "trusted" {
127.0.0.1;
192.168.1.20/32;

};
options {

directory ".";
listen-on { 127.0.0.1; 192.168.1.164; };

};

view " inside " IN {
match-clients { " trusted "; };
dlz "ldap-minimal" {

database "ldap 1
v3 simple {} {} {127.0.0.1 }
{ldap:///ou=$zone$,ou=dlz-demo,o=dns?cn?sub?(objectc lass=RR) }
{ldap:///cn=$record$,ou=$zone$,ou=dlz-demo,o=dns?RRt tl, ←֓

RRtype,RRdata?sub?(objectclass=RR) }
{}
{ldap:///ou=$zone$,ou=dlz-demo,o=dns?RRttl,RRtype,cn ,RRdata ←֓

?sub?(objectclass=RR) }
{ldap:///cn=@,ou=$zone$,ou=dlz-demo,o=dns?descriptio n=$client$? ←֓

sub? ←֓ (objectclass=RR) }";
};

};

view " outside " IN {
match-clients { any; };
dlz "mysqlzone" {

database "mysql
{host=localhost dbname=dlz ssl=false }
{SELECT zone FROM dns_records WHERE zone = ’$zone$’ }
{SELECT ttl, type, mx_priority, CASE WHEN lower(type)=’txt ’ ←֓

THEN concat(’¨’, data, ’¨’)
WHEN lower(type) = ’soa’ THEN concat_ws(’ ’, data, resp_per son, ←֓

serial,refresh, retry, expire, minimum)
ELSE data END FROM dns_records WHERE zone = ’$zone$’ ←֓

AND host = ’$record$’ }
{}
{SELECT ttl, type, host, mx_priority, case when lower(type) =’txt’ THEN

concat(’¨’, data, ’¨’) ELSE data END, resp_person, serial, ←֓
refresh, retry, ←֓

expire, minimum FROM dns_records WHERE zone = ’$zone$’ }
{SELECT zone FROM xfr_table WHERE zone = ’$zone$’ AND client = ’$client$’ }
{INSERT INTO hits (zone) VALUES (’$zone$’) ON DUPLICATE KEY U PDATE←֓

nr = nr + 1 }";
};

};

Note:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

252 Alternative DNS Servers – Jan-Piet Mens

• The database statements within the dlz clause must be on a single line. (They are
shown wrapped here to fit on the page.)

• The configuration provides two views:

inside This uses the LDAP driver to provide answers to DNS queries. A client
that matches the trusted ACL sees the following:

$ dig @192.168.1.164 www.qupps.net
;; ANSWER SECTION:
www.qupps.net. 3600 IN A 127.0.0.1

;; AUTHORITY SECTION:
qupps.net. 3600 IN NS ns.qupps.net.

outside The outside view uses the MySQL driver to provide answers to DNS
queries from “any other” clients. These clients see the following, when
querying the same name server:

$ dig @192.168.1.164 www.qupps.net
;; ANSWER SECTION:
www.qupps.net. 86400 IN A 192.168.1.20

;; AUTHORITY SECTION:
qupps.net. 86400 IN NS dns.qupps.net.
qupps.net. 86400 IN NS ns.qupps.net.

• We recommend you initially launch named with debugging enabled (see Notes) in
order to watch the queries being performed by the Bind DLZ drivers.

Using similar Bind DLZ drivers in views

You can configure split horizon with BIND views with identical DLZ drivers. To implement
this, the drivers in your dlz sections must access separate resources:

• For the LDAP driver, you can use different search bases, or expand your filters to
include an additional attribute type. So, on the outside view, specify a search base
ou=public-dns,o=qupps.biz , but on the inside view, specify a different search
base: ou=private-dlz,o=qupps.biz .

Another way to implement this, if want to avoid different search bases, is to extend
your schema with a multi-valued type that indicates whether a specific entry is “pri-
vate” and/or “public”. You then add the attribute type to the LDAP query filters, to
select only the entries for a particular view. For example, the filter for the private view
might be:

ldap:///ou=$zone$,o=dns?cn?sub?(&(view=private) (objectclass=RR))

with, of course, a different filter on the public view, for its DLZ LDAP driver. (Don’t
forget to add an index to the attribute type you use on the LDAP server, for perfor-
mance reasons.)

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 9. Bind DLZ 253

• For the SQL drivers, you can use separate databases, different tables, or even expand
the SQL queries, by adding conditions:

... WHERE ... AND view = ’public’;

• If you use the BDBHPT driver, you specify different databases to use.

9.10.2 Don’t create a single point of failure

If you have two Bind DLZ installations (i.e. two distinct name servers) that use a single back-
end database server, then you have a single point of failure, which is risky. If your database
server goes down, both your name servers stop answering queries, and die. You also halve
the possible throughput of the name servers, as the single back-end database has to share
the load of two name servers hitting it with queries.
Never ever do that; one Bind DLZ name server gets exactly one back-end database server.

(There is no point in giving one Bind DLZ two back-end servers, because Bind DLZ does not
have fail over capabilities built in to it.) The back-end server should preferably be on the
same machine as DLZ, to minimize both the communications overhead and latency incurred
by talking to a remote host. If the back-end database goes away temporarily, Bind DLZ will
attempt to reconnect to it (as long as it’s using the PostgreSQL, MySQL or LDAP driver; this
doesn’t apply to the BDBHPT driver).
However, what is of course possible, is to have a couple of back-end database servers

– either behind a load balancer or carefully managed with heartbeat (see Notes) – ensuring
that the cluster always represents a ”single” instance. The whole cluster appears to Bind DLZ
as a single back-end database, but you have added resilience.

9.10.3 High-availability through heterogeneous replication

The highest availability is probably attained by using heterogeneous database replication to
replicate data from an LDAP directory server or an SQL database directly to an BDBHPT
database which is local to the Bind DLZ name servers (Figure 9.7). It also performs well,
because it saves on the communications overhead between Bind DLZ and its database. This
setup offers the highest level of resilience as it allows the SQL database or the LDAP direc-
tory server to be unavailable for maintenance, for example, without affecting your Bind DLZ
name servers. Note that you would have to implement such a system yourself, and that it
involves a lot of programming.

9.10.4 Automatically creating PTR records

No matter which back-end you use with Bind DLZ, you will probably be providing both
forward (name-to-address) and reverse (address-to-name) lookups for your clients. If so,
automatically creating reverse (PTR) resource records whenever you create an A record is
very convenient. Below we show you how you can do this using the MySQL driver as an
example. This requires a few custom MySQL functions and a database trigger. We have
tested this with MySQL version 5.0.45.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

254 Alternative DNS Servers – Jan-Piet Mens

Figure 9.7: Heterogeneous replication for Bind DLZ

We want to detect when an Address record (A) is inserted into the database table, and
trigger another INSERT to enter the corresponding PTR record. There are two problems:

• MySQL doesn’t permit an INSERT to trigger another INSERT on the same table.

• We have to write a lot of MySQL functions to implement our automatic PTR records.

Our solution uses two database tables and a database view:

1. The database table provided by Bind DLZ is called dns records . We continue to use this
table in unmodified form, and it is into this table that we enter DNS resource records
(SOA, NS, A, etc.). When an A record is inserted, the insertion triggers the insertion of a
PTR record into the second table.

2. The second database table is called dns ptrrecords and is created with the same
schema as the dns records table.

3. A database view in the MySQL database, which is a union of both tables above:

CREATE VIEWvdns AS
SELECT * from dns_records
UNION
SELECT * from dns_ptrrecords;

It is via this view that Bind DLZ reads records with its SELECTstatements. The UNION

causes the two database tables to appear as one, when selecting records from the view.
In the dlz clause of named.conf you configure Bind DLZ to query this view:

dlz "our dns data" {
database "mysql
{host=127.0.0.1 dbname=dlzdns ssl=false }
{SELECT zone FROMvdns WHERE zone = ’$zone$’ }
...
...

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 9. Bind DLZ 255

Configured like this, Bind DLZ reads data from the vdns view and so it sees whatever
is in the dns records and in the dns ptrrecords tables.

4. You then create three helper functions (the code for these MySQL functions is in Sec-
tion D.2 on page 619):

(a) revip4 () takes a dotted-decimal IPv4 address and reverses it.

(b) ip4octet () uses MySQL’s inet aton () function to return the rightmost octet of
an IPv4 address.

(c) inarpa4 () uses revip4 () to return the in-addr.arpa zone for a dotted-decimal IPv4
address.

5. The trigger on the dns records table fires when MySQL detects that an INSERT has
succeeded. It uses the functions defined above to insert a new record of type PTR into
the dns ptrrecords table.

Listing 9.1: MySQL trigger copies records in Bind DLZ

-- automatic insert of ‘PTR’ when an ‘A’ is inserted (JPM)

DELIMITER $$
CREATE TRIGGER dlz_dns_ptrrecords AFTER INSERT ON dns_rec ords
FOR EACH ROW BEGIN

IF (NEW.type = ’A’) THEN
-- data *must* contain an IPv4 Address
INSERT INTO dns_ptrrecords (zone, host, ttl, type, data)

VALUES (
inarpa4(NEW.data), -- 1.168.192.in-addr.arpa
ip4octet(NEW.data), -- 4
NEW.ttl, -- copy ttl
’PTR’, -- PTR
CONCAT_WS(’.’, NEW.host, CONCAT(NEW.zone, ’.’))

);
END IF;

END $$
DELIMITER ;

That completes the preparations on the database tables and the data dictionary. Now we
show you what happens when we use this.
If we start off with empty database tables, when we list all A and PTR records:

mysql> SELECT zone,host,ttl,type,data FROM vdns WHERE typ e IN (’A’, ’PTR’);

we get nothing, as expected. If we insert a new Address record:

mysql> INSERT INTO dns_records (zone,host,ttl,type,data)
VALUES (’qupps.biz’, ’w4’, 60, ’A’, ’192.168.1.4’);

Query OK, 1 row affected (0.00 sec)

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

256 Alternative DNS Servers – Jan-Piet Mens

what does the view now show?

mysql> SELECT zone,host,ttl,type,data FROM vdns WHERE typ e IN (’A’, ’PTR’);
+------------------------+------+------+------+---- -----------+
| zone | host | ttl | type | data |
+------------------------+------+------+------+---- -----------+
| qupps.biz | w4 | 60 | A | 192.168.1.4 |
| 1.168.192.in-addr.arpa | 4 | 60 | PTR | w4.qupps.biz. |
+------------------------+------+------+------+---- -----------+
2 rows in set (0.01 sec)

The database contains one A record and one PTR, as expected. A DNS query for the inverse
of the record we just added shows:

$ dig @127.0.0.1 -x 192.168.1.4

;; ANSWER SECTION:
4.1.168.192.in-addr.arpa. 60 IN PTR w4.qupps.biz.

This is a very useful addition to the database schema and a great time-saver.

9.11 How you can process Dynamic DNS Updates

While BIND supports Dynamic DNS Updates, you cannot have a Bind DLZ-managed zone
receive updates, because the APIs support only reading from the back-end databases, and
don’t include any functions to allow DLZ to write to the back-end. There are, however,
certain things you can implement:

• While DLZ zones can’t process Dynamic DNS Updates, any other zone master files in
the same BIND instance can, of course.

• If you want to have the updated DNS records in a database, you can write a program
to periodically parse the zone master files and update Bind DLZ’s back-end database,
performing additions, modifications and deletions as required.

• You can set up a MyDNS (Chapter 5) name server that receives the dynamic DNS up-
dates into its own PostgreSQL orMySQL database, and trigger updates into tables you
use with Bind DLZ. For this to work, specify the MyDNS server as your primary name
server. (The MNAME field in the SOA must point to the MyDNS name server for it to
receive the updates.)

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 9. Bind DLZ 257

Summary

• The DLZ add-on enables BIND to maintain zones in databases – SQL databases, LDAP
directory servers, Berkeley DB databases, ODBC connections and even from file sys-
tems.

• Bind DLZ does not restrict BIND’s functionality; it augments it. You can have zone
master files and DLZ zones in a single instance of named.

• DLZ is dynamic – it serves new zones and resource records without you having to
reconfigure BIND.

• DLZ allows you to provide all sorts of zones, even from different databases, in a single
instance of BIND.

• Some of the Bind DLZ drivers allow you to configure the schema used, enabling you to
adapt Bind DLZ to your existing data infrastructure.

• BDBHPT is very fast, but non-trivial to implement.

Related topics

• BIND SDB (Chapter 8) will interest you if you need to create a back-end that answers
queries from any data source you want. (Don’t forget however, that Bind DLZ has an
API you can use as well.)

• If you need a name server that can act as a slave server and provision its back-end
database via zone transfers, consider PowerDNS (Chapter 6).

Notes and further reading

Downloading Bind DLZ

Bind DLZ’s home and documentation are at http://bind-dlz.sourceforge.net/ , but you
download Bind DLZ itself from the Internet Software Consortium (ISC), as it has been incor-
porated into the BIND distribution (see http://www.isc.org/sw/bind/).

Building DLZ

Broadly, you build Bind DLZ the same way as you build BIND, but you supply options to its
configure program to link in the necessary Bind DLZ drivers. A typical build will look like
this:

$ wget ftp://ftp.isc.org/isc/bind9/cur/9.4/bind-9.4.2.tar. gz
$ tar xvzf bind-9.4.2.tar.gz
$ cd bind-9.4.2
$./ configure --prefix=/usr/local ...

and the extra configure options you need for the various drivers are as follows:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

258 Alternative DNS Servers – Jan-Piet Mens

MySQL To build MySQL support into Bind DLZ:

$ export CFLAGS=’-I/usr/include/mysql’
$ export LDFLAGS=’-L/usr/lib64/mysql’
$./ configure ... --enable-threads= no --with-dlz-mysql

Note that Bind DLZmust run with only a single thread when using the MySQL
driver, due to a limitation in the MySQL API.

LDAP Before building the LDAP driver into Bind DLZ, apply our small patch which
modifies the token names used in LDAP URLs (see below):

$ patch -p1 < bind-dlz-patch-ldap-url.patch

If you want to add the LDAP driver to Bind DLZ, use the additional flags:

$./ configure ... --enable-threads= yes \
--with-dlz-ldap=/opt/symas \
--with-openssl=/opt/symas

BDBHPT To build the BDBHPT driver, add the following switches to configure:

$./ configure ... --enable-threads= yes --with-dlz-bdb

Launching named

After you build Bind DLZ and configure one or more of its back-ends, we recommend you
initially launch named as we do below. This tells it to remain in the foreground (i.e. not run
as a background daemon), force all logging to standard error, create a single thread, and set
its debug level to 1.

/usr/local/sbin/named -g -n 1 -d 1 -c named.conf

starting BIND 9.4.2 -n 1 -g -d 1 -c named.conf
found 2 CPUs, using 1 worker thread
loading configuration from ’/usr/local/etc/named/named .conf’
listening on IPv4 interface lo, 127.0.0.1#53
Loading ’ldapzones’ using driver ldap
LDAP driver running multithreaded
command channel listening on 127.0.0.1#953
ignoring config file logging statement due to -g option
load_configuration: success
...

Run like this, Bind DLZ prints (to stderr) the queries it sends to the back-end database servers,
so you can observe what it is doing.

Patching token names in the drivers

The Bind DLZ drivers use the percent sign (%) in the tokens of the dlz clause (e.g. %zone%).
The percent sign collides with its use as a hex prefix in LDAP URLs in newer versions of
OpenLDAP (e.g.%20specifies a space). We propose a two-line change to sdlz helper.c to
solve the problem; it changes the token notation (%zone%et.al.) to $zone$ which ought to
be safe enough for the time being. Note that this modifies the tokens for all drivers that use
them. (Download the patch from the Web site (☞D096).)

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 9. Bind DLZ 259

Listing 9.2: Patch to Bind DLZ changes tokens

--- bind-9.4.2/contrib/dlz/drivers/sdlz_helper.c.ori g
+++ bind-9.4.2/contrib/dlz/drivers/sdlz_helper.c
@@ -166,12 +166,12 @@

ISC_LIST_APPEND(*tql, tseg, link);

/*
- * split string at the first "%". set query segment to
+ * split string at the first "$". set query segment to

* left portion
*/

tseg->sql = isc_mem_strdup(mctx,
isc_string_separate(&right_str,

- "%"));
+ "$"));

if (tseg->sql == NULL) {
/* no memory, clean everything up. */
result = ISC_R_NOMEMORY;

Berkeley DB

• The Berkeley DB (BDB) project started at the University of California in Berkeley and
has since been integrated into Oracle’s product suite. (See http://www.oracle.com/

technology/products/berkeley-db/index.html)

• We recommend The Berkeley DB Book, by Himanshu Yadava, published by Apress. It is
a practical guide to the intricacies and programming of Berkeley DB, and it discusses
its fault tolerant and high-availability frameworks.

Heartbeat

The heartbeat program is one of the core components of the Linux High Availability project.
It provides sophisticated high-availability (fail-over) capabilities to machines you define. It
provides monitoring of cluster nodes and applications. When a fault occurs – for exam-
ple a machine becomes unreachable – your user-supplied rules are followed to provide the
desired resource placement in the cluster. heartbeat lives at http://linux-ha.org/ .

sheerdns

sheerdns, written by Paul Sheer, is a simple DNS server that stores resource records in the file
system, similar to Bind DLZ’s File System driver. It keeps each resource record in a separate
file (e.g. /var/sheerdns/ XX/www.qupps.biz/ query-type), where XX is the hashed domain
name. Consequently, updates are immediate: the program doesn’t have to be restarted
or reloaded. When sheerdns receives a query, it checks whether the file exists and serves
up its content. To speed up processing, sheerdns hashes domain names into subdirecto-
ries. sheerdns is well suited for embedding into specialized applications; for example, if you
want to implement a Web site that serves dynamic DNS, as we discuss in Section 19.8, then
sheerdns is a good solution. The project’s home is at threading.2038bug.com/sheerdns/ .

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

260 Alternative DNS Servers – Jan-Piet Mens

Related projects

• Cisco Sytems has incorporated Bind DLZ into at least one of its products (see http:

//tinyurl.com/2zg6yg).

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter

10 Name Server Daemon (NSD)

The Domain Name Server (DNS) is the
Achilles heel of the Web. The important
thing is that it’s managed responsibly.

Tim Berners-Lee

10.1 Overview of NSD

10.2 Confi guring NSD with its nsd.conf fi le

10.3 Controlling NSD’s behavior with its utilities

10.4 Monitoring NSD

10.5 The different NSD server roles

10.6 Securing NSD

Introduction

The Name Server Daemon is a very fast authoritative-only name server. It can act as a master, slave,
or root name server.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

262 Alternative DNS Servers – Jan-Piet Mens

NSD is the Name Server Daemon. It was developed in cooperation with the RIPE NCC by
NLnet Labs of Amsterdam1. NSD uses master zone files (the same files as those used by
BIND). You compile these into a binary database using NSD’s zone compiler. Pre-compiling
zone data lets NSD start up very quickly. NSD evolved out of a server designed to power
the K.ROOT-SERVERS.NET installation. The H-ROOT-SERVERS.NET, K-ROOT-SERVERS.NET L-
ROOT-SERVERS.NET backbones, and several top-level domains (e.g. Sweden) use NSD.

Pros • Very fast authoritative-only name server
• Supports DNS security (TSIG and DNSSEC)
• Produces BIND-compatible statistics for monitoring usage
• Zone compiler catches errors before daemon starts
• Good documentation in manual pages

Cons ◦ No RFC 2136 Dynamic DNS

Scenarios Very large environments that need maximum performance.

Table 10.1: NSD at a glance

NSD is authoritative only, i.e. it will not answer queries for which it isn’t responsible. It
cannot act as a caching or recursive server. NSD can be set up as a master name server and
as a slave name server. We discuss version 3 of NSD.

10.1 Overview of NSD

10.1.1 NSD’s architecture

The name server nsd serves DNS records from an intermediate database, not directly from
its zone master files. The database, usually called nsd.db , is created from the zone master
files by the zone compiler zonec (Figure 10.1) – all zone files must be “compiled“ before nsd
can serve them. This has the following advantages:

• Errors in zone files are caught by the zone compiler (zonec). Syntax errors in zone
master files cannot cause the main daemon (nsd) to fail upon startup.

• The main server (nsd) does not have to check syntax of the zone files on startup; this
greatly reduces NSD’s startup time.

• Large portions of the database are in “wire format”. This speeds up NSD’s operation,
as it doesn’t have to perform these conversions at run-time.

NSD stores incoming zone transfers (AXFR or IXFR) into a temporary journal file from which
it also serves the modified zone data – if the “newer” data is in the journal file, NSD serves
it from that, otherwise from its database. You periodically invoke a program (via cron) to

1NLnet Labs promotes open source and open standards and is an expertise centre in the area of DNS and DNSSEC
(see http://www.nlnetlabs.nl/).

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 10. Name Server Daemon (NSD) 263

Figure 10.1: NSD’s database: offline and live-running

“patch” (i.e. merge) the records from the journal file (called ixfr.db) into the respective
zone master files, and when the patch completes, the journal file is removed (until it is re-
created on the next incoming zone transfer) (Figure 10.2). In other words, NSD always serves
the correct data: the data is retrieved either from the nsd.db database or, if it is newer, from
the journal file. After merging the journal file back into the zone master files, the journal file
no longer exists.

Figure 10.2: How NSD processes incoming zone transfers

10.1.2 Setting up NSD

Setting up the Name Server Daemon is straightforward:

• Install the software (see Notes).

• Create NSD’s configuration file, nsd.conf . An easy way to do this is to adapt the
sample configuration that is installed as part of the installation procedure.

• If you are setting up a master name server, create your zone files.

• Launch NSD.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

264 Alternative DNS Servers – Jan-Piet Mens

10.1.3 A minimal configuration file

The file nsd.conf contains configuration directives for the server and lists the zones you
intend to serve. A very small nsd.conf might contain:

server:
ip-address: 192.168.1.164

zone:
name: "qupps.biz"
zonefile: "qupps.biz"

We discuss the configuration file in detail in Section 10.2. The file qupps.biz containing
the resource records for the zone qupps.biz in this example, is in zone master file syntax
(Section 2.4).

10.1.4 Compile your zones

You have to compile zone master files for NSD. The zone compiler (zonec) performs syntax
checks on the zone master files and, if the file is valid, adds a compiled form of the zone to
NSD’s database (nsd.db). What the zone compiler effectively does is:

• Reads the entire zone into main memory.

• Checks the syntax of resource records, verifies that CNAME are used legitimately, etc.

• Compiles the records into sets of resource records (RRsets).

• Prepares answers to CNAME queries.

• Stores everything in a database on the file system.

All compiled zones are in a single database, for which the domain name and the resource
record type are the key.
Instead of invoking zonecmanually, we recommend you use the nsdc script to rebuild the

zones that need compiling, because it processes all zones configured in nsd.conf , without
you having to remember which zones need compiling. For example:

$ nsdc rebuild
zonec: reading zone "qupps.biz".
zonec: processed 30 RRs in "qupps.biz".

zonec: done with 0 errors.

10.1.5 Launch NSD

You start NSD by launching the nsd daemon. We recommend you do this via the the nsdc
program, as it performs sanity checks on your nsd.conf :

nsdc start

Even with many thousands of zones, NSD is up and available to answer queries after just a
few seconds.
That completes our overview of NSD and its architecture. In the next two sections, we

describe the configuration in detail.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 10. Name Server Daemon (NSD) 265

10.2 Configuring NSD with its nsd.conf fi le

nsd.conf is NSD’s configuration file. Empty lines in the file are ignored, as is whitespace at
the beginning of a line. A comment starts with a hash (#) symbol and extends to the end of
the line. The file is split into three clauses or sections:

a. Server options which define global options for the NSD server.

b. Zone options.

c. Key declarations.

Each of these sections consist of attribute / value pairs. You configure an attribute and its
value by separating them with a colon and whitespace. You can include the content of
additional files at any point within nsd.conf with the include directive, which takes a single
filename as argument. Note that the filename can be in double quotes.

include : "my-zones.inc"

After you modify nsd.conf , we recommend you use nsd-checkconf to ensure the file is free
from syntax errors (Section 10.3).

a. Server options

The syntax for this clause is:

server:
attrib-1: value-1
attrib-2: value-2
...

This clause defines global options for the NSD server. Some of these may be overridden by
command-line options when launching nsd. The more interesting options are:

ip-address The IP address (IPv4 or IPv6) that nsd should listen on. You can specify
this option more than once, to have nsd listen on more than one address.
If you don’t specify this option, nsd binds to all the machine’s interfaces.

database The database that nsd should use for serving zone data. The default is
/var/db/nsd/nsd.db .

logfile nsd should log messages to this file. The default is to log to both syslog
and to standard error output (stderr).

server-count The number of copies of the NSD server to start. This defaults to 1. We
recommend you start one NSD server for each CPU on the host.

statistics If NSDwas built with the --enable-bind8-stats switch, it can log statis-
tics. This option determines how often it should do so. If the option is not
present, no statistics will be logged; otherwise, this specifies the frequency
as a number of seconds (see Section 10.4).

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

266 Alternative DNS Servers – Jan-Piet Mens

chroot If this option is specified, the server should chroot () into this directory on
startup.

username If this option is specified, NSD should switch to the specified username on
startup, so it no longer runs with root privileges.

zonesdir Change the working directory to the specified directory before accessing
zone files. Also, nsd will access its pid file, database file and log files rel-
ative to this path. Set the value of zonesdir to the empty string ("") to
disable a change of working directory.

difffile When NSD receives updates via incoming zone transfers, it should store
them in this journal file. It contains the differences between the com-
piled nsd.db database and the latest zone version. The default filename
is /var/db/nsd/ixfr.db . You use the patch command of the nsdc pro-
gram to convert the journal file to zone files (Section 10.3).

identity Sets the string to be returned when the server is queried for id.server in the
Chaosnet class. (Default is the machine’s hostname.) For example, setting:

identity : "go.away"

results in the following answer:

$ dig @192.168.1.20 +short id.server ch txt
"go.away"

hide-version Prevents NSD from replying with the version string on Chaosnet class
queries. (Default: no.) If you don’t hide the version, anybody can query
NSD’s version number using version.bind or version.server:

$ dig @192.168.1.20 +short version.server ch txt
"NSD 3.1.0"

b. Zone options

Every zone served by NSDmust have its own zone clause. The syntax for zone clauses is:

zone:
attrib-1: value-1
attrib-2: value-2
...

The more interesting attributes available in zone clauses are:

name This attribute is mandatory. It defines the name or origin of the zone.
Whether you qualify it with a trailing period or not doesn’t matter:

name: "qupps.biz"

zonefile This mandatory attribute specifies the file containing zone information.
Its value is a filename which is relative to zonesdir; if you specify a full
path name, it must be available from within the chroot jail. If you have
many thousands of zones, we recommend you split up the files into many
sub-directories – perhaps organized by initial letter:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 10. Name Server Daemon (NSD) 267

zonefile : "q/qupps.biz"

allow-notify You use this option on a slave server to specify which master server is
allowed to send NOTIFYs to it. The syntax is:

allow-notify: ip-spec {<key-name | NOKEY | BLOCKED>}

The ip-spec address is allowed to send NOTIFYs to this slave server. Noti-
fies from unlisted or explicitly BLOCKEDaddresses are discarded. If you
specify NOKEY, no TSIG signature is required. (You must specify one of
key-name, NOKEYor BLOCKED.)

allow-notify: 192.168.1.20 NOKEY

The ip-spec can be a plain IP address (either IPv4 or IPv6), or a subnet of
the form a. b. c. d/24 or masked as a. b. c. d&255.255.255.0 or a range
of the form a. b. c. d- w. x. y. z.

request-xfr You use this option to specify from which master server this slave server
should obtain a zone transfer for the zone. The syntax of this option is:

request-xfr: [AXFR] ip-address { <key-name | NOKEY> }

The ip-address you list is for amaster server (to this slave). This slave server
queries the master for AXFR/IXFR using either the specified key key-name
or no TSIG key if you specify NOKEY.

request-xfr : 192.168.1.20 NOKEY

If you specify AXFR, the server will query its master only with AXFR re-
quests and not with IXFR. Note that NSD does not support incremental
zone transfers (IXFR) when acting as a master name server. If you have
an NSD slave to an NSDmaster, ensure you use the AXFRkeyword in this
option on the NSD slave.

notify You use this option on a master server to tell it which slave(s) it should
NOTIFY. The syntax of this option is:

notify: ip-address { <key-name | NOKEY> }

The IP address of the slave server on the single ip-address is notified of
updates to this zone.

notify : 192.168.1.20 NOKEY

When NSD reloads changed zones, it notifies slave servers.

If you are migrating from BIND, be aware that BIND automatically sends
notifications to the servers you specify in a zone’s Start of Authority (SOA)
and Name Server (NS) records, whereas NSD doesn’t. If you want to notify
those servers, you have to enumerate them in nsd.conf with multiple
notify options.

provide-xfr You use this option on a master server to tell it which slave servers may
request zone transfers from it. The syntax of this option is:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

268 Alternative DNS Servers – Jan-Piet Mens

provide-xfr: ip-spec { <key-name | NOKEY | BLOCKED> }

Slave servers at the specified address(es) are allowed (or explicitly forbid-
den if BLOCKED) to request a zone transfer via AXFR from this server.

provide-xfr : 192.0.0.0/8 NOKEY

AXFR requests from addresses not contained in ip-spec, or from BLOCKED
addresses, are discarded.

The attributes allow-notify, request-xfr, notify, provide-xfr are access controls (ACLs). You can
add multiple ACLs per zone if you need them. For example, if you have two slave servers
for a zone, you would configure:

zone:
name: "qupps.biz."
...
provide-xfr: 192.168.1.20 NOKEY
provide-xfr: 10.0.12.10 NOKEY
...

c. Key declarations

The key clause defines a key for use in access control lists (ACLs). The syntax for the key
declaration clauses is:

key:
attrib-1: value-1
attrib-2: value-2
...

It has the following attributes, all of which are mandatory:

name The key name. You use this to refer to this key in an ACL.

algorithm The authentication algorithm for this key. For TSIG keys, you set this to
hmac-md5 . Other algorithms and uses are beyond the scope of this book.

secret The base64-encoded shared secret. You can put the secret and its base64
blob into a separate file which you include into nsd.conf to make it more
readable.

We discuss how you use TSIG for securing NSD in Section 10.6.1.

10.3 Controlling NSD’s behavior with its utilities

The NSD control script, nsdc

nsdc is a shell script for controlling both the Name Server Daemon (nsd) and the zone com-
piler (zonec). Every time you invoke nsdc, the first thing it does is check the syntax of your
nsd.conf configuration file for errors and reports them:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 10. Name Server Daemon (NSD) 269

nsdc
/usr/local/etc/nsd/nsd.conf:1: error: syntax error
read /usr/local/etc/nsd/nsd.conf failed: 1 errors in conf iguration file
Usage: nsdc [-c configfile] {start|stop|reload|rebuild|restart|

running|update|notify|patch }

nsdc supports the following commands:

start Starts nsd.

stop Stops nsd by sending it a SIGTERM signal.

reload Initiates a reload of nsd, causing it to reopen its database, by sending it a
SIGHUP signal.

rebuild Rebuilds the NSD database by invoking the zone compiler (zonec) with ap-
propriate arguments. It rebuilds the database into a temporary database in
the directory containing nsd.db . The temporary database is then atomically
renamed if the build is successful. After a rebuild you must reload to have nsd
reload its database.

restart Restarts nsd. A restart is exactly equivalent to a stop followed by a start.

running Check whether nsd is running. If it is not, nsdc issues a diagnostic message
and exits with a non-zero code.

nsdc running || nsdc start
nsd is not running
nsdc running || nsdc start
nsdc running && echo "NSD is running"
NSD is running

update Updates all slave zones that have an allow-notify from this host. This com-
mand is deprecated as it is not really required: the server notifies its slaves
automatically.

notify Sends DNS NOTIFY messages to all the zones that have a notify keyword in
nsd.conf . This command is deprecated as it is not really required: the server
notifies its slaves automatically.

patch NSD stores incoming zone transfers in a journal file, which you specify as the
difffile in nsd.conf . The patch command cleans up the journal file:

1. It checks if there is a journal file. If so, it temporarily moves it aside.

2. It merges modifications to zones into the respective files (i.e. the file you
specified as zonefile in each zone clause).

3. It rebuilds the nsd.db database if any zones have changed and issues a
reload command.

4. The temporary journal file from step 1 above is discarded.

You run this regularly (e.g. from cron) to ensure that the difffile does not grow
indefinitely.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

270 Alternative DNS Servers – Jan-Piet Mens

Check and parse the nsd.conf file with nsd-checkconf

nsdc uses the nsd-checkconf program to check the syntax of nsd.conf , every time you invoke
nsdc. nsd-checkconf is useful in itself: when you use its -o option, it parses nsd.conf and
prints out a specified attribute from it; you can use this in shell scripts.

• To print an attribute (e.g. zonesdir) from the global server clause of the configuration
file:

$ nsd-checkconf -o zonesdir nsd.conf
/usr/local/etc/nsd/zones

• To print out an attribute from a zone, you have to specify the zone, with option -z , in
addition to the attribute:

$ nsd-checkconf -z example.net -o notify nsd.conf
192.168.1.20 NOKEY

Manually perform a zone transfer with nsd-xfer

You initiate a manual incoming zone transfer with the nsd-xfer utility on the slave server.
The initial query for the Start of Authority record is sent via TCP instead of via UDP, so the
master server you are transferring from from must support DNS over TCP, not just AXFR
over TCP. To perform a zone transfer for the specified zone into a file q.tmp you invoke:

$ nsd-xfer -z qupps.biz -f q.tmp 192.168.1.20
info: send AXFR query to 192.168.1.20 for qupps.biz.

Note that this command is deprecated as the server performs zone transfers automatically;
the command may be removed in a future release.
Unlike nsd-xfer, zone transfers initiated by the built-in transfer process of nsd do not use

an initial SOA query; the SOA serial number is determined from the first packet in the AXFR
result.

10.4 Monitoring NSD

If you includeNSD’s optional BIND-style statistics when you compile it, NSDwill periodically
log statistics about the number of queries it receives, and their types. You typically use this
information to keep an eye on the health and the performance of NSD.

NSTATS 1204922160 1204912050 A=40891 CNAME=2 MX=31326 TXT=13208 TYPE252=1
XSTATS 1204922160 1204912050 RR=0 RNXD=0 RFwdR=0 RDupR=0 RFail=0 RFErr=0 RErr=0 ←֓

RAXFR=0 RLame=0 ROpts=0 SSysQ=0 SAns=85427 SFwdQ=0←֓
SDupQ=0 SErr=0 RQ=85428 RIQ=0 RFwdQ=0 RDupQ=0 RTCP=1←֓
SFwdR=0 SFail=44534 SFErr=0 SNaAns=0 SNXD=0 RUQ=0 ←֓

RURQ=0 RUXFR=0 RUUpd=0

• The NSTATSline contains totals for the query types received.

• The two large numbers following the NSTATSand XSTATSkeywords respectively are
the current time and boot time (i.e. NSD startup time), in UNIX time format.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 10. Name Server Daemon (NSD) 271

• The XSTATSline contains additional statistics on the server’s operation. The codes
are defined in the BIND8 distribution (file ns stats.c). We list them in Table 10.2 for
completeness but don’t otherwise discuss them:

RR sent us an answer.
RNXD sent us a negative response.
RFwdR sent us a response we had to forward.
RDupR sent us an extra answer.
RFail sent us a SERVFAIL.
RFErr sent us a FORMERR.
RErr sent us some other error.
RAXFR sent us an AXFR.
RLame sent us a lame delegation.
ROpts sent us some IP options.
SSysQ sent them a sysquery.
SAns sent them an answer.
SFwdQ forwarded a query to them.
SDupQ sent them a retry.
SErr sent failed (in sendto ()).
RQ sent us a query.
RIQ sent us an inverse query.
RFwdQ sent us a query we had to forward.
RDupQ sent us a retry.
RTCP sent us a query using TCP.
SFwdR forwarded a response to them.
SFail sent them a SERVFAIL.
SFErr sent them a FORMERR.
SNaAns sent them a non autoritative answer.
SNXD sent them a negative response.
RUQ sent us an unapproved query.
RURQ sent us an unapproved recursive query.
RUXFR sent us an unapproved AXFR or IXFR.
RUUpd sent us an unapproved update.

Table 10.2: NSD statistic codes

10.5 The different NSD server roles

NSD can fulfill the following authoritative roles:

• Master server.

• Slave server.

• Root server.

In the following examples (pages 272–280), our master server has the address 192.168.1.164,
and the slave’s address is 192.168.1.20.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

272 Alternative DNS Servers – Jan-Piet Mens

10.5.1 Running NSD as a master server

NSD is a full master and therefore fully supports outgoing zone transfers via AXFR (Figure
10.3). You initiate slave notifications with nsdc’s notify command, to send out notifications
to all slave servers, but as a master, NSD automatically notifies slaves for which you’ve
specified a notify (Section 10.2).

Figure 10.3: NSD as a master server

Adding a new master zone

To add a new master zone:

1. Create and populate the zone master file.

2. Add the zone to nsd.conf :

zone:
name: "example.net"
zonefile: "example.net"
notify: 192.168.1.20 NOKEY
provide-xfr: 192.168.1.20 NOKEY

Note how there is no keyword that says “I am a master zone”: the behavior is inferred
from the attribute that specifies that this instance of NSD provides zone transfers (i.e. is
a master).

3. Rebuild nsd.db by compiling the zone:

$ nsdc rebuild

4. Restart nsd.

5. Add the zone to your slave name server (Section 10.5.2).

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 10. Name Server Daemon (NSD) 273

Changes in your master zone

To modify or add resource records in your master zone:

1. Edit the zone file and modify the record(s) you need. Make sure to update the serial
number in the zone’s Start of Authority (SOA).

2. Compile the zone:

nsdc rebuild

3. Instruct NSD to reload the changes:

nsdc reload

NSD reloads the changes, and sends a DNS NOTIFY to the slave servers for the zones
you configured with the notify parameter.

10.5.2 Running NSD as a slave server

On an NSD slave (Figure 10.4), NSD writes incoming zone transfer data temporarily to the
the ixfr.db file, from which it is immediately served for new DNS queries. The data is
merged back into a zone file with an invocation of nsdc with the patch command, which
creates the zone file if necessary (i.e. if the zone master file didn’t yet exist). You can set up
cron to periodically perform the patch ing for you.

Figure 10.4: NSD as a slave server

Adding a new slave zone

To add a new slave zone to your NSD, you perform the following tasks:

1. Configure the slave zone in nsd.conf :

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

274 Alternative DNS Servers – Jan-Piet Mens

zone:
name: "example.net"
zonefile: "example.net"
request-xfr: 192.168.1.164 NOKEY
allow-notify: 192.168.1.164 NOKEY

You specify the masters for this slave zone with the request-xfr option in the zone, and
if you want NSD to react to incoming NOTIFY requests, you specify allow-notify options
for each of the servers that will send DNS NOTIFY to this NSD.

Note how there is no keyword that says “I am a slave zone”: the behavior is inferred
from the attribute that specifies that this instance of NSD requests zone transfers from a
master, and as such, it is a slave.

2. Optionally create an empty file for the zone’s zonefile, making sure that nsd is allowed
to write to the file:

$ touch example.net
$ chown nsd example.net

This step is optional because nsdc creates the zone file for you (permissions on the file
system provided), when you patch the zone.

3. Restart NSDwith:

nsdc restart

4. The new incoming zone is automatically temporarily written to the difffile ixfr.db ,
from where it is immediately available for DNS queries on the zone.

5. At your convenience, you patch the zone transfer changes back into the zone files. We
like to perform the patch frequently (e.g. every 10 minutes), but you may want to do
it only once a day:

nsdc patch
reading database
reading updates to database
writing changed zones
writing zone example.net to file example.net
zone qupps.biz had not changed.
done
zonec: reading zone "qupps.biz".
zonec: processed 30 RRs in "qupps.biz".
zonec: reading zone "example.net".
zonec: processed 29 RRs in "example.net".

zonec: done with 0 errors.

This program reads the NSD database (nsd.db) and the difffile (ixfr.db), and updates
the zone master files if there were any changes. Note how nsdc automatically invoked
the zone compiler (zonec) to re-compile the zone back into nsd.db .

After patch ing, the slave’s resource records for the zone are in the zonefile file.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 10. Name Server Daemon (NSD) 275

10.5.3 Running NSD as a private root server

NSD can operate as a root server (which is, after all, what it was originally written for!). We
discuss root servers in Chapter 18, but we show you here how to enable NSD to act as a
private root server in your environment (Figure 10.5). To use NSD as a root server, you have
to enable that functionality at build time with an option to configure; otherwise NSD refuses
to serve the "." zone:

$./ configure ... --enable-root-server

Figure 10.5: NSD as a root server

Thus enabled, NSD functions as a root name server (in addition to a master and slave server)
and can serve your private root. You configure the root zone in nsd.conf with a zone clause
like this:

zone:
name: "."
zonefile: "my-root.zone"

and you configure your root zone resource records in the filemy-root.zone located in zones-
dir. There is no keyword specifying “I am a root name server”, because it isn’t necessary. NSD
serves the content of the root zone as it serves any other zone. If you set up an NSD server as
a master or a slave for your root zone, you add attributes specifying the addresses of master
or slave servers respectively, as discussed in Section 10.5.1 and Section 10.5.2.

10.6 Securing NSD

NSD has no built-in mechanism to restrict which clients are allowed to send queries to it.
Instead of bloating the NSD server with access controls to DNS queries, NSD expects that you
protect your installation with a suitably configured and managed firewall. We consider this
a good approach because it makes the NSD server code much easier to maintain, resulting
in better-quality code, and configuring the NSD server is much simpler. Finally, you have
a firewall protecting your network anyway, so why not use that? There are, however, two
aspects of security that are implemented in NSD itself:

• NSD fully support the DNS Security Extensions (DNSSEC). We discuss DNSSEC in
Chapter 22 and show you examples of how to configure NSD for DNSSEC there.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

276 Alternative DNS Servers – Jan-Piet Mens

• You protect zone transfers to and from NSDwith Transaction Signatures (TSIG), which
we discuss next.

10.6.1 Transaction signatures (TSIG)

RFC 2845, Secret Key Transaction Authentication for DNS, defines TSIG (Transaction SIGnature),
a protocol used for authenticating two things:

• DNS queries, most commonly zone transfers.

• Dynamic DNS Updates (RFC 2136).

TSIG uses a shared secret key, a time-stamp, and one-way hashing to provide a cryptograph-
ically secure means of identifying the endpoints of a connection. The use of a time-stamp
means that all clients and servers that participate in TSIG transactions must have synchro-
nized clocks. (Time synchronization of machines is beyond the scope of this book, but you
typically use NTP, the Network Time Protocol for keeping the clocks of machines in your
network synchronized to a time source. This is not a limitation of NSD, but rather a require-
ment of the TSIG protocol.)

NSD supports TSIG for protecting zone transfers (incoming and outgoing) and for send-
ing or receiving DNS NOTIFY notifications. The shared secrets on which TSIG keys are based
must be defined in the configuration file (nsd.conf) or in files you include therein. You
define keys in the key clause of the configuration file.
To implement TSIG to protect zone transfers in NSD you:

A. Generate TSIG keys and include them in nsd.conf .

B. Set up ACLs for your zones.

C. Test a zone transfer.

A – Generate TSIG keys for inclusion in nsd.conf

You generate the keys for NSD in one of two ways:

• With the ldns-keygen utility from the ldns package of NLnet Labs (see Notes). You
invoke ldns-keygen with the -H option to create the keys in the “HMAC-MD5” format
required by TSIG. The domain – qupps.biz in this example – is not used in the key, but
the program requires it so it can name its output files correctly.

$ ldns-keygen -H -b 128 qupps.biz

The command creates two files named:

Kdomain+algorithm+id.key
Kdomain+algorithm+id.private

with:

– domain set to the domain you specify when invoking ldns-keygen.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 10. Name Server Daemon (NSD) 277

– algorithm specified as the numeric signing algorithm (157 for HMAC-MD5 keys).

– id to a random number, usually the process ID.

The keys in both files are identical because HMAC-MD5 encrypts symmetrically. The
file you need for the TSIG key is the file with the .private extension. It will have a
content like this:

Private-key-format: v1.2
Algorithm: 157 (HMAC_MD5)
Key: HHRNUcikVl9Be3x9rImfBA==

The value of the key is the base64-encoded “blob” which you set in the secret option
of your key.

• With the dnssec-keygen of the BIND distribution. To create a key for use with TSIG you
run it like this:

$ dnssec-keygen -H HMAC-MD5 -b 256 -n HOST qupps.biz

Then, in the NSD configuration file (nsd.conf), define a key clause with a key name, algo-
rithm and the base64-blob that you just generated:

key:
name: quppskey
algorithm: hmac-md5
secret: "HHRNUcikVl9Be3x9rImfBA=="

Both the key’s name and the base64-blob are important, and you will need both on the
“other” name server.

B – Set up ACLs for your zones

Now add the key to the ACL that protects your zone. To avoid (even known) clients per-
forming zone transfers for a zone if they don’t have the correct key, add the ACL to the zone
definition in nsd.conf :

zone:
name: qupps.biz
zonefile: q/qupps.biz
provide-xfr: 192.168.1.20 quppskey

Now DNS client 192.168.1.20 will only be able to transfer the zone if it has the correct key.
Without the TSIG key, the client will be refused the zone transfer. Other clients aren’t allowed
zone transfer at all.

C – Test a zone transfer

You can test with digwhether a transfer would be successful:

$ dig -y ’quppskey:HHRNUcikVl9Be3x9rImfBA==’ @192.168.1.164 qupps.biz axfr
quppskey. 0 ANY TSIG hmac-md5.sig-alg.reg.int. 120092550 4 300 0 ←֓

9434 BADTIME 6 AABHlLlS

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

278 Alternative DNS Servers – Jan-Piet Mens

Make sure your clocks are synchronized! If you use the wrong key, the server reports BAD-
TIME. If the clocks had been in sync we’d have seen the result of the zone transfer performed
by dig.
In the preceding steps (A) through (C) we set up an NSD master server to provide zone

transfers for the zone qupps.biz to a client at 192.168.1.20 only if the client has the correspond-
ing TSIG key. We show you in Section 10.6.2 and Section 10.6.3 how you configure NSD and
BIND servers to transfer zones from eachother using TSIG keys.

10.6.2 Using NSD as a master and BIND as slave

To set up NSD as master, and a BIND server as a slave (Figure 10.6), proceed as follows:

Figure 10.6: NSD as a master, BIND as a slave

• First configure your NSDmaster server:

1. Create an HMAC-MD5 key.

2. Distribute that key over a secure channel to the other server. A secure channel
can be an ssh connection in which you copy the file with scp, or it might be a
telephone call in which you literally dictate the key to a colleague who types it in.

3. In nsd.conf , define a key clause, giving it a name and a secret consisting of the
base64-blob you created in step 1.

key:
name: samplekey1
algorithm: hmac-md5
secret: "DD69fLqJe4uycMqQvq/gNqZj6WfxpH70IT15fkH+7AQ ="

4. As NSD is the master server, you will be providing zone transfers, so you specify
a provide-xfr ACL, and add the key’s name to this. If you want to DNS NOTIFY the
slave server, you specify notify so that NSD sends notifications to the BIND slave
server.

zone:
name: beispiel.de
zonefile: beispiel.de
provide-xfr: 192.168.1.20 samplekey1
notify: 192.168.1.20 samplekey1

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 10. Name Server Daemon (NSD) 279

• Now configure the BIND slave server:

1. Add the key you generated, to a key clause in named.conf . The key’s name must
be the same as you used in NSD above:

key " samplekey1 " {
algorithm hmac-md5;
secret "DD69fLqJe4uycMqQvq/gNqZj6WfxpH70IT15fkH+7AQ= ";

};

2. Ensure BIND will use that key when communicating with the NSD name server,
by adding a server clause to named.conf . BIND’s server clause allows certain
characteristics to be defined when this server is interacting with remote server
192.168.1.164. In this case, we want BIND to use the specified TSIG key when
communicating with the NSDmaster server:

server 192.168.1.164 {
keys { samplekey1 ; };

};

3. Create the slave zone in named.conf :

zone " beispiel.de" IN {
type slave;
file "beispiel.de";
masters { 192.168.1.164; };

};

10.6.3 Using BIND as a master and NSD as slave

To set up NSD as a slave to a BIND name server (Figure 10.7) you proceed as follows:

Figure 10.7: BIND as a master, NSD as a slave

• First configure your BIND server:

1. Create an HMAC-MD5 key.

2. Distribute that key over a secure channel to the other server.

3. Add the key you generated, to a key clause in named.conf :

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

280 Alternative DNS Servers – Jan-Piet Mens

key " llave2 " {
algorithm hmac-md5;
secret "OtTcknKkyKByCURfU95Ifdnl5++lmf7Z2N6KhSh9haI= ";

};

4. Ensure BIND will use that key when communicating with the NSD name server,
by adding a server clause to named.conf :

server 192.168.1.20 {
keys { " llave2 "; };

};

5. Optionally, create an access control list to protect zone transfers, by allowing only
certain IP addresses to transfer the zone. You would add that to the zone clause
with an allow-transfer statement.

6. Create the master zone in named.conf :

zone " ejemplo.es" IN {
type master;
file "ejemplo.es";

};

• Now configure NSD:

1. In nsd.conf , define a key clause, giving it a name and a secret consisting of the
base64-blob you created in step 1 above. The key’s name must match that used
by BIND:

key:
name: llave2
algorithm: hmac-md5
secret: "OtTcknKkyKByCURfU95Ifdnl5++lmf7Z2N6KhSh9haI ="

2. As NSD is the slave server, you will be requesting zone transfers, so you specify a
request-xfr ACL, and you add the key’s name to the zone ACL, optionally setting
up allow-notify for notifications arriving from the BIND slave server:

zone:
name: ejemplo.es
zonefile: ejemplo.es
request-xfr: 192.168.1.164 llave2
allow-notify: 192.168.1.164 llave2

Remember, incoming zone transfers on NSD are stored in the difffile, and you have to
use nscd’s patch command to have the zone(s) written to their zone files. (Wemention
this again because you might be looking for the incoming data and not seeing it.)

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 10. Name Server Daemon (NSD) 281

Summary

• NSD is an exceptionally fast authoritative-only name server.

• NSD serves answers to DNS queries out of its in-built static database which contains
compiled zone files.

• You use the single control script, nsdc, for most maintenance tasks.

• NSD supports TSIG and DNSSEC.

Related topics

• NLnet Labs, the creators of NSD have released Unbound, which is a caching name
server. We discuss Unbound in Chapter 17.

• We discuss delegation and private DNS roots in Chapter 18.

• We discuss how you can provision (i.e. generate) zone files from databases in Chap-
ter 19.

• We show you how to configure NSD to serve DNSSEC signed zones in Chapter 22.

• In Appendix B we discuss a method for automatically increasing serial numbers in
SOA records when you modify a zone file with resource records. You can apply that
method to NSD as well.

Notes and further reading

NSD home

The main distribution site for NSD is http://www.nlnetlabs.nl/nsd/ .
If you want to get an idea of the amount of system memory you will require to run

NSD, NLnet Labs has an on-line estimation tool at http://www.nlnetlabs.nl/nsd/nsd-

memsize.html .

Building NSD

NSD uses GNU autoconf and you build it with the usual magic incantation. For example:

$ wget http://www.nlnetlabs.nl/downloads/nsd/nsd-3.1.0.tar .gz
$ tar xvzf nsd-3.1.0.tar.gz
$ cd nsd-3.1.0
$./ configure --prefix=/usr/local --enable-bind8-stats
$ make
make install

The installation creates a sample file in /usr/local/etc/nsd/nsd.conf.sample . You can
use this as the basis for your own configuration.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

282 Alternative DNS Servers – Jan-Piet Mens

The ldns package

NLnet Labs.nl supplies libraries and tools for creating and manipulating TSIG keys. The
package is available at http://www.nlnetlabs.nl/ldns/ . To build the ldns-keygen tool,
follow these steps:

$ wget http://www.nlnetlabs.nl/downloads/ldns-1.2.2.tar.gz
$ tar xvzf ldns-1.2.2
$ cd ldns-1.2.2
$./ configure --prefix=/usr/local
$ make
$ make install
$ cd examples
$./ configure --prefix=/usr/local
$ make
$ make install

A basic requirement

The file REQUIREMENTSin the NSD source distribution contains a number of basic require-
ments that NSD was designed to fulfill. One of these requirements is given verbatim here,
because it ought to be a requirement for all DNS name server operators:

”NSD operators are considered to have basic Unix and networking knowledge and are
also considered to be able to read and understand reasonably written user documenta-
tion.”

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter

11 tinydns

From a security perspective, if you’re
connected, you’re screwed.

Daniel J. Bernstein

11.1 An overview of djbdns and its component parts

11.2 The tinydns authoritative server

11.3 Logging and statistics

11.4 Utilities

11.5 Caching DNS

Introduction

djbdns is a modular set of tools that lets you provide only the DNS services you really want to use. The
djbdns package consists of: tinydns, the authoritative name server; dnscache, the caching recursive name
server; and a number of related support tools.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

284 Alternative DNS Servers – Jan-Piet Mens

11.1 An overview of djbdns and its component parts

Daniel J. Bernstein wrote the djbdns package. He applied the UNIX philosophy, and instead
of creating a large multi-purpose binary program, he built djbdns as a modular system. It
is a collection of small special-purpose components, each designed to fulfill a specific task,
reliably and fast. You run only the components you need, to offer only those DNS services
you require. For example, if you want to offer authoritative DNS you use tinydns. If you
want to provide a DNS caching server for a set of machines on a LAN, for an office or
home network (Small Office / Home Office), you use dnscache. tinydns and dnscache run
independently of one another.
Although by nomeans as feature-rich as BIND, djbdnswas the secondmost popular name

server software on the Internet as of the year 2004, according to a survey1 performed by
Dan Moore, the author of MyDNS.

Pros • Very modular standalone programs
• Separate DNS caching server
• Fast

Cons ◦ Lacks human-readable representation for many DNS records
◦ Terse documentation
◦ No RFC 2136 Dynamic DNS

Scenarios Small to medium DNS servers.

Table 11.1: djbdns at a glance

As illustrated in Figure 11.1, the component programs of djbdns and their specific roles are:

tinydns: an authoritative name server which answers over UDP only.

axfrdns: answers queries received via TCP (as opposed to UDP) and answers those via
TCP authoritatively, as well as providing support for outgoing zone transfers.
(axfrdns is autonomous – you don’t have to deploy it with tinydns – if you want
queries answered via TCP only.)

dnscache: a recursive, caching name server that is very careful about what it caches.

rbldns: a server designed for implementing a DNS blacklist2.

walldns: accepts queries for in-addr.arpa domains from hosts and supplies generic re-
sponses to them. (We don’t further cover walldns.)

axfr-get: a utility to perform an incoming zone transfer.

djbdns also includes many client tools, used for querying DNS servers, some of which we
cover later in this chapter.

1http://mydns.bboy.net/survey/
2See rbldnsd (not to be confused with rbldns) in Chapter 16 for a more flexible implementation.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 11. tinydns 285

Figure 11.1: djbdns overview

11.2 The tinydns authoritative server

tinydns is the authoritative name server component of djbdns. It answers DNS queries over
UDP, only. If you want to answer queries over TCP, you must implement axfrdns. If you
want to allow queries over both TCP and UDP, you must set up and run both tinydns and
axfrdns. tinydns runs off a very small and efficient file-system based database.

tinydns serves only authoritative data; if tinydns receives a query that it can’t answer from
its own database, it will not answer at all, and the client that sent the query will time out.
Only if tinydns knows from its database (by the presence of a Start of Authority record) that
it is authoritative for a queried domain, will it return an NXDOMAIN reply to indicate that
the queried domain definitely does not exist. For example, if your tinydns is authoritative for
qupps.biz only and it receives a query for cnn.com it will not answer that query at all.

11.2.1 Setting up tinydns

Configuration files and environment variables – overview

Apart from the file containing resource records, tinydns is configured by way of environment
variables. You must set these before the tinydns process starts. There are two ways to set
them:

1. Explicitly, “by hand”, on the command line.

2. By entering the values of the environment variables in files (Figure 11.2), and using
the envdir utility from the daemontools package to define the variables from these files.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

286 Alternative DNS Servers – Jan-Piet Mens

The filename is the name of the environment variable, and the content of the file is the
value the variable is to be set to. For example, exporting IP=127.0.0.1 from a shell
before starting tinydns, and creating a file named env/IP containing 127.0.0.1 are
equivalent.

Creating your configuration files, directories, and startup scripts

The package provides a special configuration program, tinydns-conf, which sets up tinydns’s
runtime environment as a set of files and directories. For example:

tinydns-conf nobody nolog /usr/local/tinydns 192.168.1.20

creates a new directory structure at /usr/local/tinydns as shown in Figure 11.2, for an
authoritative name server which listens only on IP address 192.168.1.20. The two system
usernames nobody and nolog must exist and should not have login privileges. tinydns-conf
also creates the program run, which is a shell script to launch tinydns.

Figure 11.2: The tinydns directory structure

11.2.2 Where tinydns stores its zone data

You enter your DNS resource records in the flat text file called data in the root directory of
the installation; as configured above, it would be the file /usr/local/tinydns/root/data .
The contents of this file are then converted into a CDB database file called data.cdb by the
tinydns-data program. tinydns reads its information from data.cdb (Figure 11.3); tinydns itself
never reads the data text file. CDB is an efficient file format for read-only databases (see
Notes for details), and consists of key/value pairs, where the the DNS queries are the keys
and the DNS replies are the values. This scheme minimizes the work that tinydns has to do
at runtime.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 11. tinydns 287

tinydns-datawrites its output to a temporary CDB file which is then renamed to data.cdb .
As the rename is atomic, the conversion may take place while tinydns is running. tinydns
will recognize that the file data.cdb has changed, reopen it, and immediately use the new
answers, without requiring you to to restart or otherwise signal the tinydns server to reload
its data file.
As tinydns needs the CDB file when starting, an initial conversion by tinydns-datamust be

performed before tinydns is started the first time.

Figure 11.3: tinydns and axfrdns relationship to tinydns-data

The root directory created during a tinydns-conf contains a Makefile with a recipe to
convert the single data file to the data.cdb database by invoking tinydns-data. You edit your
resource records in the data file and use make to convert it to data.cdb :

cd /usr/local/tinydns/root
edit data
make
/usr/local/bin/tinydns-data

As the data file can become large and unwieldy it may of course be split up into multiple
files to ease maintenance. There is probably no best practice here, but maintaining individ-
ual files named domain.z and concatenating these to form a single data file, before running
tinydns-dataworks well 3.
Alternatively, the jumbo patch to djbdns (see Notes) gives tinydns-data the capability to

read multiple filenames on the command line. In addition to allowing each zone to have
its own default SOA serial number gleaned from the file’s modification time, separation of
zones into individual files allows you to handle zone files as individual entities and possibly
delegate their management to distinct administrators.

11.2.3 Format of information in the data file

We said above that you enter your DNS information into the data file. You can do this in
several ways:

• Manually, using any text editor.

• Manually, using the tinydns-edit program (only for additions to the database, not for
changes or deletions).

3Dan Peterson’s zcat.pl does a nice job of this (see http://danp.net/djbdns/patches.html).

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

288 Alternative DNS Servers – Jan-Piet Mens

• Manually, using the add-* scripts created by tinydns-conf in root . These simply invoke
tinydns-edit.

• By a provisioning system, which we discuss in Section 11.2.7 on page 297.

Apart from the generic record type which can be used to represent any DNS resource
record type, tinydns-data has only a few built-in record types. There are patches that add
support for additional records such as SRV, but these must be obtained separately.
The content of the data file is a series of lines:

• Empty lines, and lines starting with a hash (#) symbol, are comments and are ignored.

• Every other line starts with a “magic” character (shown in bold in Table 11.2) that
determines the line’s function.

1 2 3 4 5 6 7 8 9 10 11 12 Makes

comment ;
% lo ipprefix
. fqdn ip x ttl ts lo SOA,NS,A
& fqdn ip x ttl ts lo NS,A
= fqdn ip ttl ts lo A, PTR
+ fqdn ip ttl ts lo A

@ fqdn ip x dist ttl ts lo MX,A
ˆ fqdn p ttl ts lo PTR

Z fqdn mname rname ser ref ret exp min ttl ts lo SOA

- fqdn ip ttl ts lo
’ fqdn string ttl ts lo TXT

C fqdn p ttl ts lo CNAME

: fqdn n rdata ttl ts lo other

Table 11.2: tinydns-data record syntax

• Lines that are not comments or empty represent DNS resource records.

• A line contains a number of colon-separated fields or properties (Table 11.2). These
are specific to the line’s function, and must be entered in the order shown for each
line-type. Some fields are optional and may be empty, or omitted completely (i.e. you
don’t even have to enter their terminating colon) if they occur at the end of the line.

• Each data line may contain a TTL that specifies the number of seconds a DNS resource
record may be cached. The TTL defaults to 86 400 seconds (24 hours).

• Each data line may contain an optional time stamp field in TAI64 format (see Notes,
page 313):

– If the TTL field in the line is omitted or non-zero, the time stamp is a starting time
for the related data (i.e. the line will be ignored before that time).

+jp.qupps.biz:1.2.1.7::40000000483d4242

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 11. tinydns 289

means that the Address for jp.qupps.biz will come into operation on Wed May 28
2008 at 13:30:00.

– If TTL is zero, the time stamp specifies an “end of validity” time of the related
data.

+jp.qupps.biz:1.2.1.4: 0:40000000483d4242

means that the Address for jp.qupps.bizwill be invalidated on WedMay 28th 2008
at 13:30:00

The two lines above effectively cause the IP address for jp.qupps.biz to switch from
1.2.1.4 to 1.2.1.7 on the specified date. You can use this to automatically change a
server’s configuration at a specific time in the future. For example, you might want to
change the IP address that your Web server listens on in the middle of the night, and
instead of being present to do so at the exact time, you would prepare two data lines
like those above.

In the following sections we look at the line types, their syntax and how to use them.

Line type %(percent) – create a “location”

%lo: ipprefix

Use a line of type%to define a location name, which you can use to implement split-horizon
DNS (or views as they are called in BIND). The location name consists of one or two ASCII
letters. It is followed by an IP prefix that denotes the range of IP address that will see the
record. For example:

%IN:192.168.1
%LO:127

creates two locations: INternal and LOcal. We can use these in the data file to serve different
replies for a particular query, depending on the address of the client. For example, if data

also contains the following:

.qupps.biz:192.168.1.20:ns.qupps.biz:3600:: IN

.qupps.biz:127.0.0.2:ns.qupps.biz:3600:: LO

a client on the 192.168.1 network will get the reply 192.168.1.20 when it queries the name
ns.qupps.biz, whereas a client on the local machine querying over a loop-back interface will
get 127.0.0.2.
We do not recommend the use of locations to implement split-horizon DNS, preferring

to implement two separate tinydns content servers with two completely separate data files.

Line type . (period) – create a “complete name server”

. fqdn: ip: servername: ttl: timestamp: lo

This line type causes tinydns-data to create a Start of Authority resource record, with an op-
tional Name Server resource record, and its associated Address record, creating three re-
source records in all.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

290 Alternative DNS Servers – Jan-Piet Mens

fqdn is a domain name, ip an IP address. The time to live for the resulting DNS resource
record is specified in ttl and timestamp and lo are the time stamp for the line and its location
respectively, as described above. These meanings are valid for all other line types as well;
we won’t mention them again.
If servername contains a period, then tinydns-data will use servername as the name server’s
name; otherwise it will construct a name servername.ns .fqdn. If servername is empty, the
name server will be called ns .fqdn. Instead of relying on tinydns-data to make names of name
servers for you, always fully qualify servername. For example:

.qupps.biz:192.168.1.20:

produces:

;; ANSWER SECTION:
qupps.biz. 2560 IN SOA ns.qupps.biz. hostmaster.qupps.bi z. ←֓

1193737192 16384 2048 1048576 2560
qupps.biz. 259200 IN NS ns.qupps.biz.

;; ADDITIONAL SECTION:
ns.qupps.biz. 259200 IN A 192.168.1.20

as answer to an ANY query, whereas

.qupps.biz:192.168.1.20: dns :3600::

changes the answer to be:

;; ANSWER SECTION:
qupps.biz. 2560 IN SOA dns.ns.qupps.biz. hostmaster.qupp s.biz. ←֓

1193737352 16384 2048 1048576 2560
qupps.biz. 3600 IN NS dns.ns.qupps.biz .

;; ADDITIONAL SECTION:
dns.ns.qupps.biz. 3600 IN A 192.168.1.20

In the first example, the name server created is called ns.qupps.biz because servername is
empty. In the second example, the name server’s name becomes dns.ns.qupps.biz because
the word “dns” doesn’t contain a period.
If you don’t like the default values used by this tinydns-data record type, use can use the

Z, & and = line types instead, to create SOA records with the particular values you want.

Line type Z – create “start of authority”

Zfqdn: mname: rname: ser: ref: ret: exp: min: ttl: timestamp: lo

With this line type you create only a Start of Authority (SOA) for a domain; unlike the & type,
it doesn’t create any NS records.
mname is the primary server, rname is the e-mail address of a responsible person with the
@ replaced by a period. ser is the serial number, ref the refresh time, ret the retry time, exp
the expire time, and min the minimum time. All of ser, ref, ret, exp, and minmay be omitted,
in which case they default to the modification time of the data file, 16 384 seconds, 2 048
seconds, 1 048 576 seconds, and 2 560 seconds respectively.
An SOA resource record specified with Z is not sufficient to create a domain; you will also

need at least one name server entry, as shown in this example:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 11. tinydns 291

Zqupps.biz:ns.qupps.biz:dns.foo.bar:2007102800:8640 0:7200:3600000:172800
&qupps.biz:192.168.1.21:

;; ANSWER SECTION:
qupps.biz. 2560 IN SOA ns.qupps.biz. dns.foo.bar. ←֓

2007102800 86400 7200 3600000 172800
qupps.biz. 259200 IN NS ns.qupps.biz.

;; ADDITIONAL SECTION:
ns.qupps.biz. 259200 IN A 192.168.1.21

You can use a Z line with an & line if you want more precise control over the resource records
created than you get when you use a . line.

Line type & (ampersand) – create a “name server”

&fqdn: ip: servername: ttl: timestamp: lo

The & line type creates two resource records: a Name Server record for a domain, and an
associated Address record for the Name Server. It you want to have more than one Name
Server record (always recommended), use this together with the Z data line.
You use this line type for domains that are delegated from this server, whereas youwould

use the . data line for domains that are delegated to this server. servername is handled as
with the . line above. In order to add a second name server to the zone created with the .
record, we specify:

.qupps.biz:192.168.1.20:dns:3600::
&qupps.biz:192.168.1.21:foobar:

which results in a host foobar.ns.qupps.biz because foobar does not contain a period in it.

;; ANSWER SECTION:
qupps.biz. 2560 IN SOA dns.ns.qupps.biz. hostmaster.qupp s.biz. ←֓

1193740884 16384 2048 1048576 2560
qupps.biz. 3600 IN NS dns.ns.qupps.biz.
qupps.biz. 259200 IN NS foobar.ns.qupps.biz.

;; ADDITIONAL SECTION:
dns.ns.qupps.biz. 3600 IN A 192.168.1.20
foobar.ns.qupps.biz. 259200 IN A 192.168.1.21

Line type = (equals) – create a “host”

=fqdn: ip: ttl: timestamp: lo

You use this line type to create two resource records: an Address record for the domain fqdn
with the IP address specified in ip, as well as a PTR resource record in the in-addr.arpa domain
pointing to fqdn.
For example, to create an A record for host mail.qupps.biz, we use:

=mail.qupps.biz:192.168.1.20

which results in:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

292 Alternative DNS Servers – Jan-Piet Mens

;; ANSWER SECTION:
mail.qupps.biz. 86400 IN A 192.168.1.20

We will also get the associated PTR record:

;; ANSWER SECTION:
20.1.168.192.in-addr.arpa. 86400 IN PTR mail.qupps.biz.

if, and only if, this server is authoritative for the domain 1.168.192.in-addr.arpa, that is, only
if the data file contains a line like:

.1.168.192.in-addr.arpa:192.168.1.20:dns:3600::

Neither an Address record nor its associated PTR record will be served by tinydns if it is not
authoritative for the zones containing them. If you add

=www.ibm.de:21.3.40.62

to your data file, tinydns will never serve them, because it is neither authoritative for ibm.de
nor for 3.21.in-addr.arpa.
(This = line type is similar to the FQDN4 type in MaraDNS.)

Line type + (plus) – create an “alias”

+fqdn: ip: ttl: timestamp: lo

This record type is identical in syntax to the = record above. However, it does not create
a reverse PTR resource, so this is what you should use to create A resource records for IP
addresses that are in in-addr.arpa zones not delegated to our servers.

Line type @(at) – create a “mail exchanger”

@fqdn: ip: mailhost: prio: ttl: timestamp: lo

As the at sign (@) is reminiscent of an e-mail address, this line type is easy to remember: it
creates a mail exchanger (MX). In effect, this line type creates two resource records:

1. An MX record, pointing at host namemailhost, for domain fqdn. The MX priority is set to
prio, with a default of zero. (The djbdns documentation refers to this preference number
as a distance.)

2. An A record, specifying IP address ip for host name mailhost

If mailhost does not contain a period, it defaults to x.mx.fqdn, which may not be what you
want, so we recommend you always qualify it. For example, the lines:

@qupps.biz:192.3.4.4:post.qupps.biz:80
@qupps.biz:192.3.4.9:exim.qupps.biz:40

create the resource records:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 11. tinydns 293

;; ANSWER SECTION:
qupps.biz. 86400 IN MX 80 post.qupps.biz.
qupps.biz. 86400 IN MX 40 exim.qupps.biz.

;; ADDITIONAL SECTION:
post.qupps.biz. 86400 IN A 192.3.4.4
exim.qupps.biz. 86400 IN A 192.3.4.9

Quite obviously, you should specify an MX resource record only if the target machine (mail-
host) is a mail server willing to accept mail for domain fqdn; make a point of clarifying this
with the maintainers of mailhost.

Line type - (dash) – disable a line

This record type is a pseudo type: it disables a record, and is like a comment.

Line type ’ (single-quote) – create a “text”

’ fqdn: string: ttl: timestamp: lo

This creates a TXT DNS resource record, containing the text string for the domain fqdn. You
can have multiple ’ lines for the same fqdn; each line creates a separate TXT record. Take care
to quote colons with an octal \072. You may include arbitrary characters in the string with
an octal \nnn, where nnn is a three-digit octal number.

’whatmon.qupps.biz:version=3.0.4
’whatmon.qupps.biz:author \072\040Jan-Piet Mens
’whatmon.qupps.biz:http \072 //fupps.com/extensions

;; ANSWER SECTION:
whatmon.qupps.biz. 86400 IN TXT "version=3.0.4"
whatmon.qupps.biz. 86400 IN TXT "author: Jan-Piet Mens"
whatmon.qupps.biz. 86400 IN TXT "http://fupps.com/exten sions"

Line type ˆ (circumflex) – create a “pointer”

ˆ fqdn: ptr: ttl: timestamp: lo

Use this line to create a PTR record, with fqdn pointing to domain ptr. fqdn is a fully qualified
in-addr.arpa domain name. For example:

ˆ164.1.168.192.in-addr.arpa:www.qupps.biz

creates the PTR:

;; ANSWER SECTION:
164.1.168.192.in-addr.arpa. 86400 IN PTR www.qupps.biz.

Note that if you use the = line to create an A record, it automatically creates the PTR record
too, so you don’t need to create the PTR explicitly with an ˆ line. The ˆ line type is used for
setting up PTR resource records for which you do not create the Address record.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

294 Alternative DNS Servers – Jan-Piet Mens

Line type C – create a “canonical name”

Cfqdn: cname: ttl: timestamp: lo

You create a canonical name resource with the C line type, setting up fqdn to point to the
domain cname.

Cwww.qupps.biz:mail.qupps.biz

creates the record:

;; ANSWER SECTION:
www.qupps.biz. 86400 IN CNAME mail.qupps.biz.

The DNS specification mandates that CNAME records for a given domain fqdn must not be
used if there are any other records for the domain fqdn (Section 2.3.3). If you do mix them,
the result of their use is undefined and other name servers (BIND is an example) performing
zone transfers might choke on the results.

Line type : (colon) – create “generic record”

. fqdn: type: rdata: ttl: timestamp: lo

You can create almost any type of valid DNS resource record with a : line.

• type is a DNS record type specified as a positive integer between 1 and 65 535, but not
2 (NS), 5 (CNAME), 6 (SOA), 12 (PTR), 15 (MX), or 252 (AXFR). The list of DNS resource
record types is maintained by the IANA (see http://www.iana.org/assignments/

dns-parameters).

• rdata is the data for the record. This can contain arbitrary bytes encoded as octal \nnn.

:_ldap._tcp.qupps.biz:33: \000\012\000\036\001\205\←֓
004ldap \005qupps \003biz \000:86400

;; ANSWER SECTION:
_ldap._tcp.qupps.biz. 86400 IN SRV 10 30 389 ldap.qupps.bi z.

This is the how you can create DNS resource record types for which tinydns-data doesn’t have
built-in support4.

Notes on data syntax

When editing the data file, you must ensure that the syntax is correct, as tinydns-data doesn’t
do full syntax checking on the input. The following are common mistakes:

• If you forget the second field (ip) of a + or = line, tinydns-data silently ignores the entire
line.

4An on-line tinydns record builder that simplifies this task greatly can be found at http://www.anders.
com/projects/sysadmin/djbdnsRecordBuilder/

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 11. tinydns 295

• If the second field of an &, . or @record does not contain an IP address, tinydns-data
simply ignores the whole line and skips it silently.

• Location codes (% lines) are silently truncated to two characters, which may cause
”internal” records to be published to the outside world. The intention in:

%sa:127
%sales:192.168.1
.qupps.biz:192.168.1.20:ns.qupps.biz:3600::sa

is to protect the qupps.biz domain, serving it to internal hosts only, but it ”slips” out
because the location “sales” is silently truncated to two characters.

• Non decimal digit characters in TTL cause the subsequent portion of the TTL field to be
ignored (although subsequent fields are still correctly recognized).

Using tinydns-edit to add records to the data file

tinydns-edit is a program to add records to the data file. (A better name would have been
tiny-add, as it can neither modify nor delete records.) You run the program as:

tinydns-edit datafile tempfile add type name address

tinydns-edit reads in datafile (usually the tinydns data file), adds the specified record, writes
the result to a temporary file, tempfile, and if all is successful, atomically renames tempfile to
datafile (so both files must reside on the same file system). type is the type of record to be
added, name the domain name and address the IP address of name. (The add verb is required,
even though that is the only action supported.)

tinydns-edit supports the following types:

ns: This creates a . record for a name server.

childns: creates a & record for a name server to which we delegate.

mx: creates a@record.

host: creates an = record for a host.

alias : creates a + record.

Instead of invoking tinydns-edit directly, you can use the utility scripts add-ns, add-childns, etc.
which were created in the tinydns root directory when you ran tinydns-conf. They invoke
tinydns-editwith the first four arguments appropriately set.

Randomizing RR

If a client queries a domain name that has more than eight address resource records (A
records), tinydns chooses eight of them at random, and returns only these eight in the re-
ply. All A records will be used in the course of time, but a single client’s query will never see
more than 8 of them. This random selection of no more than eight A records was originally
contained in the djbdns pickdns program but has since been rolled in to tinydns.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

296 Alternative DNS Servers – Jan-Piet Mens

Wild-cards

tinydns supports wild cards. Lines in the data file that have *. fqdn provide resource records
for any domain ending in fqdn except those that you have explicitly qualified in data and
those that are covered by more specific wild cards (* .subdomain.fqdn).
For example, if you enter the lines:

+qupps.biz:192.168.1.21
C*.qupps.biz:qupps.biz
+*.eu.qupps.biz:192.168.2.40

then a query for qupps.biz will return the Address record 192.168.1.21 whereas a query for
foo.qupps.biz will return the CNAME qupps.biz. If the domain foo.bar.qupps.biz is queried, the
CNAME qupps.biz is also returned, but queries for www.eu.qupps.biz return the Address record
192.168.2.40.

11.2.4 Starting tinydns

There are two ways to launch tinydns, one for normal running, and the other for when you
need to run it with non-standard configuration.

1. The run script that tinydns-conf created (Section 11.2.1) is the easiest way to start tinydns.
Assuming you created your config files in /usr/local/tinydns , to launch tinydns, you
invoke:

cd /usr/local/tinydns
./ run

2. As a systems administrator you may want to launch tinydns manually, exercising full
control over what is happening. Assuming tinydns’ data file is stored in the directory
/usr/local/tinydns/root , you could launch tinydnswith:

env - \
UID=99 \
GID=99 \
IP=192.168.1.20 \
ROOT=/usr/local/tinydns/root \
/usr/local/bin/tinydns

explicitly passing environment variables to tinydns as you need them. We now describe these
environment variables in detail.

11.2.5 Controlling tinydns with environment variables

As described in Section 11.2.1, there are some variables you can set to modify tinydns’ behav-
ior:

$IP tinydns listens on the IP address defined in $IP , and if you need it to listen on
more than one interface, you can start more than one instance of tinydns, each
with its own directory, ideally having $ROOTpointing to the same directory so
that every instance of tinydns reads the same database. Alternatively, the jumbo

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 11. tinydns 297

patch (see Notes) adds a feature that allows $IP to contain multiple IP addresses,
separated by slashes.

$UID On startup, tinydnswill switch to the uid of the username specified in $UID .

$GID On startup, tinydnswill switch to the gid of the group name specified in $GID.

$ROOT On startup, tinydnswill chroot () to this directory. It is in this directory that tinydns
expects to find its data.cdb .

11.2.6 IPv6

Neither tinydns nor any of the other djbdns tools has in-built support for IPv6. You can use
the generic record type ”:” to produce IPv6 answers for AAAA requests, but if you use them
a lot, the data file can get a bit messy.
Instead, you can use a patch (developed by Felix von Leitner) to add support for AAAA

resource records, as well as another that adds IPv6 functionality to axfrdns. The patch adds
two record types to tinydns-data:

• Line type ”6” creates an IPv6 AAAA record and its associated PTR records.

• Line type ”3” creates only the AAAA record (and not the matching PTR).

IPv6 addresses must be fully qualified and may not be abbreviated with colons (”::”) (see
http://www.fefe.de/dns/).

11.2.7 Provisioning DNS information for tinydns’ data file

Whether or not you maintain tinydns’ data file manually, hand-crafting entries with a text
editor, is a matter of taste and your existing infrastructure. For a small number of zones,
it is easy to maintain the file manually, interspersing it with blank lines and comments as
documentation. Placing the data file under a revision control system is also a good idea.
The alternative is to maintain DNS information in a relational database, or in an LDAP

directory. You then generate the data file from those, and use tinydns-data to convert the
resulting data into CDB format, as data.cdb . Automating this is straightforward, as we’ll
illustrate in the following example.
A medium-sized ISP has a relational database, in which they track customers, invoices

etc. All the customers have identical hosting packages, so generating the DNS data is easy.
Part of their database looks like this:

mysql> SELECT id,cust,name,ns1,ns2,modif,UNIX_TIMESTA MP(modif) AS secs
FROM zones WHERE name IN (’qupps.biz’, ’example.com’);

+-----+-------+-------------+-----+-----+---------- -----------+------------+
| id | cust | name | ns1 | ns2 | modif | secs |
+-----+-------+-------------+-----+-----+---------- -----------+------------+
| 145 | 24101 | qupps.biz | 0 | 2 | 2007-11-01 05:00:06 | 1193889 606 |
| 146 | 24102 | example.com | 3 | 1 | 2007-11-04 22:50:42 | 11942 13042 |
+-----+-------+-------------+-----+-----+---------- -----------+------------+
2 rows in set (0.00 sec)

The ns columns indicate on which name server pool (i.e. group of name servers) the DNS
entries are to be distributed. The small Perl program below connects to the database, extracts

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

298 Alternative DNS Servers – Jan-Piet Mens

the DNS-related information from it using a query like that shown above, and writes a data

file to standard output.

Listing 11.1: isp2tiny.pl creates a tinydns data file from a MySQL database at an ISP

#!/usr/bin/perl
isp2tiny.pl (C)2008 Jan-Piet Mens

use strict;
use DBI;

my %NSERV = (
0 => ’192.168.100.1’,
1 => ’192.168.100.32’,
2 => ’192.168.100.42’,
3 => ’192.168.100.44’,

);

my $dbdsn = ’DBI:mysql:tiny:localhost’;
my $dbh = DBI->connect($dbdsn, ’dnsadmin’, ’hah!’)

or die "Can’t connect to $dbdsn";

$dbh->{RaiseError} = 1;

my $q = "SELECT id,cust,name,ns1,ns2,UNIX_TIMESTAMP(mod if) AS secs \
FROM zones ORDER BY cust";

my $sth = $dbh->prepare($q);

$sth->execute() or die $dbh->errmsg;

Bind Perl variables to columns:
my ($id, $cust, $name, $ns1, $ns2, $modif);
$sth->bind_columns(\($id, $cust, $name, $ns1, $ns2, $mod if));

while ($sth->fetch) {
print "# cust=$cust. Modified " . localtime($modif) . "\n";

my $mname = "dns${ns1}.isp.net";
my $dns2 = "dns${ns2}.isp2.net";
my $ser = $modif;
print "Z${name}:${mname}:hostmaster.isp.net:${ser}:1 0800:900:604800:3600\n";
print ".${name}:" . $NSERV{$ns1} . ":$mname:\n";
print ".${name}:" . $NSERV{$ns2} . ":$dns2:\n";
print "+${name}:192.168.1.20:\n";
print "Cwww.${name}:${name}:\n";
print "\@${name}:192.168.9.20:mail.${name}:10:\n";
print "\n";

}

$sth->finish;
$dbh->disconnect;
exit 0;

This program produces output in data file format, suitable for tinydns-data to convert into a
data.cdb file.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 11. tinydns 299

cust=24101. Modified Thu Nov 1 05:00:06 2007
Zqupps.biz:dns0.isp.net:hostmaster.isp.net:11938896 06:10800:900:604800:3600
.qupps.biz:192.168.100.1:dns0.isp.net:
.qupps.biz:192.168.100.42:dns2.isp2.net:
+qupps.biz:192.168.1.20:
Cwww.qupps.biz:qupps.biz:
@qupps.biz:192.168.9.20:mail.qupps.biz:10:

cust=24102. Modified Sun Nov 4 22:50:42 2007
Zexample.com:dns3.isp.net:hostmaster.isp.net:119421 3042:10800:900:604800:3600
.example.com:192.168.100.44:dns3.isp.net:
.example.com:192.168.100.32:dns1.isp2.net:
+example.com:192.168.1.20:
Cwww.example.com:example.com:
@example.com:192.168.9.20:mail.example.com:10:

We have kept the example simple to illustrate the concepts, so keep the following in
mind if you implement something similar:

• The sample database uses the notion of a DNS server “pool” because that is whatmany
ISPs use; you can just as easily maintain the names of the servers if you prefer.

• Use any programming language you are comfortable with.

• Either make sure that the data contained in the database is strictly checked when en-
tering it, or ensure that your conversion program does error-checking; errors in the
data file are hard to spot.

11.2.8 Replication to other tinydns servers

The data.cdb file contains everything that tinydns needs to serve DNS information. There-
fore, if we copy or replicate this file in its entirety to other tinydns server(s), they will act as
as “identical masters” of this server.
In the case of data.cdb being created from a provisioning system such as from an SQL

database or from an LDAP directory, there are two different methods we can use to ensure
that name servers contain the same data.

1. On each machine on which tinydns runs, create a new data.cdb from the (common)
provisioning system.

2. Create a new data.cdb on a single machine and then copy the result to all the other
machines running tinydns.

You can use these methods irrespective of whether you have two or more tinydns servers
providing authoritative name services.

1. Create data.cdb on every machine

Each machine running tinydns requires an up-to-date copy of the data.cdb file. This
file can be created on each of the tinydns servers from a single source, such as an SQL
database (Figure 11.4).

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

300 Alternative DNS Servers – Jan-Piet Mens

Figure 11.4: tinydns provisioning from database

It might sound as though data.cdb re-creation is very time consuming, but on a mod-
ern Intel machine, running tinydns-data on a 60MB data file with over a million records
takes only four or five seconds, and a 410MB data file with 11 million records is con-
verted to CDB format in under a minute.

2. Create a single data.cdb and distribute to every machine

Amore common scenario is to create the data.cdb on a single machine and then copy
it to all servers running tinydns (Figure 11.5).

There are some variations to the process you could consider deploying:

(a) Replicate the original back-end data file, and have the individual servers re-
create the data.cdb file.

(b) Replicate only the differences in data and re-create the data.cdb file.

(c) Replicate the binary data.cdb file using programs such as rsync or CVsup.

Methods for copying files safely from one machine to another abound and include
tools such as the excellent rsync, and CVsup, which is a software package for distribut-
ing and updating collections of files across a network. CVsup can efficiently and accu-
rately mirror all types of files, including sources, binaries, hard links, symbolic links,
and even device nodes.

Whichever method you choose, we strongly recommend you:

• Create a checksum on the source data or data.cdb file, send that too to the remote
machine, and verify the checksum there, before you put the zone data into production.

• Use your monitoring system (Chapter 24) to detect inconsistencies between your au-
thoritative tinydns servers.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 11. tinydns 301

Figure 11.5: Replicating tinydns’s data.cdb

11.2.9 Using AXFR zone transfers

In the previous section we discussed how to replicate data between two or more cooperating
tinydns servers. You might want to have tinydns cooperate with non-tinydns servers, in which
case you will have to use standard zone transfers via AXFR. Scenarios using AXFR to or from
tinydns include:

1. A tinydnsmaster has a BIND slave name server.

2. A non-tinydnsmaster, such as a PowerDNS or Bind DLZ server, has a tinydns slave.

Let’s look at these two cases in more detail.

1. From tinydns to another server (outgoing AXFR)

If tinydns is to be a primary name server for secondary or slave servers that can be
provisioned only via zone transfers, you can use the axfrdns utility. axfrdns uses TCP
on port 53 to provide outgoing zone transfers. It is designed to run alongside tinydns
and in fact uses the same data file (Figure 11.3). It requires the tcpserver program from
the ucspi-tcp package (see Notes).

axfrdns runs under control of tcpserver, which accepts an incoming TCP connection and
applies a set of rules to the connection to decide whether to allow or deny it. tcpserver
uses a separate CDB database compiled with the tcprules program. The file contains
allow and deny rules that specify whether a connection is permitted.

Here’s an example:

:allow ,AXFR=""
1.2.3.4:allow ,AXFR="qupps.biz/aa01.net"
9.1.0.8:deny

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

302 Alternative DNS Servers – Jan-Piet Mens

You store these 3 lines into a file called tcp.rules , say, and run:

$ tcprules tcp.cdb tcp.tmp < tcp.rules

to create the tcp.cdb database. If you launch tcpserver as:

tcpserver -x tcp.cdb -- 192.168.1.20 53 /usr/local/bin/axfrdns

it will listen on TCP port 53 on the specified IP address for an incoming connection.
If tcpserver permits the connection, it launches axfrdns, passing it an environment vari-
able named $AXFRin which you determine which clients are allowed to request which
zones. The restrictions imposed by axfrdns are thus atop those enforced by tcpserver.

The three rules specified above mean:

(a) Any host is allowed to connect (the IP address to the left of the colon (:) is empty).
When a host connects, axfrdnswill be launched with the $AXFRvariable set to the
empty string.

(b) A host with a source IP address of 1.2.3.4 is allowed to connect, and when it does,
axfrdns will be invoked with $AXFR set to the slash-separated list of two zone
names. So, a host with this source address may AXFR the two specified zones.

(c) The host with IP address 9.1.0.8 is not allowed to connect.

Effectively, the above sample permits anyone except 9.1.0.8 to connect to axfrdns for
simple DNS queries over TCP (typically used for large replies), but only the host at
1.2.3.4 is allowed to request a zone transfer for domains qupps.biz and aa01.net.

Since axfrdns exports tinydns data in zone transfer format it is in effect a conversion tool
from tinydns-data into master zone file format. We mention this in case you want to
migrate to a DNS server that understands only zone master files.

Neither tinydns nor axfrdns have support for NOTIFY messages to inform slave servers
of modifications to zone data. This means that either slave servers will have to await
expiry of the SOA refresh timer before they check for updates on the djbdns system, or
that notifications have to be sent out manually. Fortunately there is a small program,
dnsnotify, to do that. (see http://www.tinydns.org/dnsnotify).

2. From another server to tinydns (incoming AXFR)

If you are setting up tinydns as a slave to a master name server that supports outgoing
zone transfers (AXFR), you can use the axfr-get tool, in conjunction with tcpclient of the
ucspi-tcp package, to perform an incoming zone transfer, in which resource records are
converted to tinydns-data format. For example, the following command grabs a zone
from a BIND name server (on mens.de) and stores it in the file /tmp/data.mens ; this
file is in the tinydns data file format, so you can use it directly as input to tinydns-data:

$ tcpclient 192.168.1.40 53 axfr-get mens.de /tmp/data.mens /tmp/m.t

As its name suggests, tcpclient tries to connect over TCP to the specified host and port.
If successful, it runs the specified program (here axfr-get) on that connection, with file
descriptor 6 reading from the network, and file descriptor 7 writing to the network. In

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 11. tinydns 303

the example above, axfr-get is then actually talking to a DNS server which it asks for the
specified zone, storing that in /tmp/data.mens and using /tmp/m.t as a temporary
file. Here is the result of this transfer:

#200705537 auto axfr-get
Zmens.de:mens.de.:jp.mens.de.:200705537:10800:900:6 04800:86400:86400
&mens.de::home.mens.de.:86400
+dom.mens.de:192.168.1.51:86400
Cpr.mens.de:printer.mens.de.:86400
...

When the incoming zone data has been transferred, you append it to the data file and
then convert that to data.cdb , but you have to do that manually. We recommend you
create a controlling script to automate the task.

11.2.10 Private root name server

If you have an isolated network – for example, in a corporate environment with private IP
addresses — you will want to provide full DNS infrastructure for services running on those
networks, including a functioning root name server. As the official ICANN root servers are
not available (and you obviously don’t want them to be available if you need the isolation
from the Internet) you can provide your own, an easy task with tinydns.
You use the add-ns script in the root directory, to add one or more such root servers. For

example, the commands:

$./ add-ns . 192.168.1.20 ; ./ add-ns . 192.168.4.20

add the following lines to the data file: (The first “. ” is the line type, meaning create a
complete name server, and the second “. ” is the fully qualified domain name of the DNS
root zone.)

..:192.168.1.20:a:259200

..:192.168.4.20:b:259200

Making your name server authoritative for the root zone in this way is only the first step.
After that, you have to delegate your actual zones to other servers (or possibly the same
servers) that will serve these zones.
Having checked that the delegation works by running:

$ dig @IP-of-tinydns-server . NS

you then configure your caching name servers on your network to use your private root
server(s). For dnscache (Section 17.4 on page 402) you just add the IP addresses of your root
name servers to the file@in root/servers , removing any existing ICANN servers from the
@file.
We discuss private roots servers in Chapter 18.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

304 Alternative DNS Servers – Jan-Piet Mens

11.2.11 Useful utilities that assist in handling tinydns data files

A pre-processor for the data file

Ward Vandewege has a pre-processor to create a whole zone using a simple one-line syntax.
This is useful if you have a lot of zones which, apart from the name, are otherwise identical.
By adding a record of type * newfqdn: fqdn somewhere in the data file, the script creates data
for the domain newfqdn with all resources of the existing fqdn, but with the domain names
suitably modified. The pre-processor only handles lines that begin with the asterisk (*). As
an example, consider the following input file:

Zqupps.biz:ns1.qupps.biz.:hostmaster.mens.de.:19620 5281:10800:900:604800:3600
.qupps.biz:192.168.1.173:ns1.qupps.biz:
@qupps.biz::mail.qupps.biz.:10:
#
now the "duplicates"
#
* foo.net:qupps.biz
* example.com:qupps.biz
* example.net:qupps.biz
* aa01.net:qupps.biz

If we dig an MX for aa01.netwe find:

$ dig aa01.net mx
;; ANSWER SECTION:
aa01.net. 86400 IN MX 10 mail.aa01.net.

;; AUTHORITY SECTION:
aa01.net. 259200 IN NS ns1.aa01.net.

;; ADDITIONAL SECTION:
ns1.aa01.net. 259200 IN A 192.168.1.173

illustrating that everything we need for the aa01.net domain has been created correctly. (See
http://patch.be/djbdns/tinydns-predata.html .)

Creating the data file from BIND zone files

Daniel Erat has a small C program that converts BIND zonemaster files to tinydns-data format.
This is useful if you have to periodically do such a conversion and/or you aren’t able to use
axfr-get to pull in a zone transfer (see http://www.erat.org/).

Perl program to create SRV lines in the data file

If you require an elegant way to create DNS SRV resource records for tinydns-data, RobMayoff
has a Perl program with built-in documentation with which you can do that.

$ make-srv -service ldap. tcp.qupps.biz -weight 10 -target ldap.qupps.biz -port 389
:_ldap._tcp.qupps.biz:33: \000\000\000\000\001\205\004ldap \005qupps \003biz \000

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 11. tinydns 305

11.3 Logging and statistics

tinydns outputs log information when it is queried. The program outputs the log on standard
output; if you want to save the log, standard output has to be redirected to a file or piped
through a program. The log looks like this:

7f000001:8000:f87b + 0001 qupps.biz
7f000001:8000:33a8 + 0001 www.qupps.biz
7f000001:8000:9ad4 + 0001 ww.qupps.biz
7f000001:8000:6934 + 000f qupps.biz
7f000001:8000:b548 + 000f mail.qupps.biz
7f000001:8000:76ad + 0021 _ldap._tcp.qupps.biz
7f000001:8000:2445 C 0010 version.bind
7f000001:8000:762d - 0001 www.cnn.com

Each line corresponds to a single query and contains:

ip The IP address from which the request was received. The IP is logged as as a hex-
adecimal string.

port The port number from which the request was received.

id The request id of the DNS query. This is chosen by the client and the server includes
it in its response.

code An indicator of how the query was processed: This can be

+ tinydns answered the request

- tinydns dropped this request. It is not authoritative for the requested domain.
Hint: tinydns has no Start of Authority record for the domain.

I A request received by tinydns cannot be answered because it is not imple-
mented. This includes invalid bits in the DNS request header.

C tinydns received a query for a class other than IN (Internet), such as a ver-
sion.bind query in the Chaos class.

type The type of request received, represented as a hexadecimal number (see http://

www.iana.org/assignments/dns-parameters).

name The domain name for which records were requested.

11.3.1 tinystats

Luca Morettoni wrote tinystats, a filter that reads tinydns logs and stores data about your
authoritative DNS (see http://morettoni.net/tinystats.en.html). A full discussion of
its installation is beyond the scope of this book, but you can get started by downloading and
installing the software with:

$ wget http://morettoni.net/bsd/tinystats-1.1.tar.gz
$ tar xvzf tinystats-1.1.tar.gz
$ cd tinystats
$ make
make install
$ more README

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

306 Alternative DNS Servers – Jan-Piet Mens

and reading the program’s documentation contained in the READMEfile. Apart from creating
human-readable logs from tinydns output like:

starting tinydns
127.0.0.1 32768 [21614] + A qupps.biz
127.0.0.1 32768 [61899] + A www.qupps.biz
127.0.0.1 32768 [16604] + A ww.qupps.biz
127.0.0.1 32768 [36613] + MX qupps.biz
127.0.0.1 32768 [08583] + MX mail.qupps.biz
127.0.0.1 32768 [28825] + 0021 _ldap._tcp.qupps.biz
127.0.0.1 32768 [48016] C TXT version.bind
127.0.0.1 32768 [41586] - A www.cnn.com

the tinystats program has support for creating nice usage graphs with RRD (Figure 11.6).

Figure 11.6: Graphing tinydns queries with tinystats and RRD

11.4 Utilities

In this section we give an overview of some of the query tools included with djbdns. (We
don’t cover in detail tools from other packages required by djbdns, namely daemontools and
ucspi-tcp.)
Even though most of what these individual programs do can also be done with dig, these

tools are useful because they are ideal for use in scripts to provide just the desired informa-
tion, without requiring extensive grepping, cutting and awking.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 11. tinydns 307

11.4.1 Query domain names with dnsip

dnsip uses /etc/resolv.conf to resolve the fully qualified domain names specified on the
command line, and prints their IP addresses line by line on the output. If a name cannot be
resolved, dnsip prints an empty line; if a name resolves to multiple A resource records, dnsip
prints them all on a single line, separated by spaces. For example:

$ dnsip qupps.biz amazon.de cnn.com
192.168.1.20
87.238.81.130 87.238.85.130
64.236.29.120 64.236.16.20 64.236.16.52 64.236.24.12

Note how dnsip found multiple addresses for the domains amazon.de and cnn.com.

11.4.2 Qualify and query names with dnsipq

dnsipq is similar to dnsip, but before trying to resolve the name it first attempts to fully qualify
(see http://cr.yp.to/djbdns/qualify.html) it, as follows:

1. If the file /etc/dnsrewrite exists, dnsipq applies the rules in it.

2. If /etc/dnsrewrite doesn’t exist or is empty, the qualification process looks for do-
mains in the following places and appends them to the the name you pass to the pro-
gram.

(a) The $LOCALDOMAINenvironment variable, if it is set, or . . .

(b) The first domain or search line in /etc/resolv.conf , if the file exists and has
such a line; or . . .

(c) Everything after the first period in the system’s hostname.

This procedure is called djbdns qualification. Having qualified the name, dnsipq attempts to
resolve it in exactly the same was as dnsip does. For example:

$ hostname
master.qupps.biz
$ dnsipq www
www.qupps.biz 192.168.1.20
$ LOCALDOMAIN=amazon.de dnsipq www
www.amazon.de 87.238.85.130

The first dnsipq invocation shows how the name www is qualified by appending the do-
main name found after the first period of the value determined by hostname, and the second
invocation shows how the qualification is altered by setting $LOCALDOMAINto amazon.de,
whereupon dnsipq then searches for www.amazon.de.

11.4.3 Lookup reverse names with dnsname

dnsname does a reverse lookup for the specified IP address(es) and prints their names on
standard output, one per line with a blank line where a reverse lookup cannot be completed
for an address. For example:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

308 Alternative DNS Servers – Jan-Piet Mens

$ dnsname 192.168.1.20 127.0.0.1
qupps.biz
localhost

11.4.4 Query TXT records with dnstxt

dnstxt is like dnsip but instead of querying for A records, it queries for, and prints, DNS TXT re-
source records. If a name resolves to multiple TXT records, dnstxt unfortunately concatenates
them onto a single line without otherwise separating them, as illustrated in this example:

$ dnstxt qupps.biz whatmon.qupps.biz
v=spf1 a:mail.qupps.biz a:mail.uit.co.uk mx:qupps.biz ˜a ll
author: Jan-Piet Menshttp://fupps.com/extensionsversi on=3.0.4

11.4.5 Query MX records with dnsmx

dnsmx prints the MX resource records of the domain names given on the command line, one
per line. If a domain name cannot be found, dnsmx prints a priority of zero (0) followed by
the given domain name.

$ dnsmx nosuchname.de qupps.biz
0 nosuchname.de
80 mail.uit.co.uk
10 mail.qupps.biz

11.4.6 Resolve addresses from a file with dnsfilter

dnsfilter reads lines of text from standard input and performs reverse lookups on the IP ad-
dress at the beginning of each line. For each address resolved successfully, dnsfilter prints the
address and its name separated by an equals sign (=); addresses that cannot be resolved are
printed as is.

$ cat /tmp/ip
192.168.1.20 this is mine
127.0.0.1
192.168.1.173
64.233.167.99 should be google
192.168.1.27

$ dnsfilter < /tmp/ip
192.168.1.20 =qupps.biz this is mine
127.0.0.1 =localhost
192.168.1.173 =jp830w.mens.de
64.233.167.99 =py-in-f99.google.com should be google
192.168.1.27

While dnsfilter is looking up an address in DNS, it reads ahead in the input and parallelizes
lookups, doing a default of 10 simultaneous queries. dnsfilter is useful in expanding IP ad-
dresses found at the start of lines in log files, such as those produced by the Apache Web
server.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 11. tinydns 309

11.4.7 Query a name and type with dnsqr

dnsqr is invoked with a type and a fully qualified name. It asks the DNS for resources of type
for the name and prints its results in a human-readable form that is more compact than the
dig output, but not necessarily clearer.
typemay be a name or number. Currently recognized names are: ANY, A, NS, MX, PTR, TXT,

CNAME, SOA, HINFO, RP, SIG, KEY, AAAA, and AXFR, specified as either upper or lowercase.

$ dnsqr a www.qupps.biz
1 www.qupps.biz:
129 bytes, 1+2+2+2 records, response, authoritative, noer ror
query: 1 www.qupps.biz
answer: www.qupps.biz 86400 CNAME qupps.biz
answer: qupps.biz 86400 A 192.168.1.20
authority: qupps.biz 86400 NS ns2.qupps.biz
authority: qupps.biz 86400 NS ns1.qupps.biz
additional: ns1.qupps.biz 86400 A 192.168.1.20
additional: ns2.qupps.biz 86400 A 192.168.1.173

dnsqr should not and cannot be used for performing zone transfers; use axfr-get for that.

11.4.8 Tracing queries with dnstrace

dnstrace uses the standard DNS resolution algorithm and searches for all DNS servers that
can affect the resolution of records of type t under the domain name fqdn, starting from the
root server r. You can list more than one root server.
It prints all the responses it receives fromDNS servers; it also prints warnings about slow

servers, dead servers, misdelegated (“lame”) servers, and misformatted packets.

$ dnstrace any www.amazon.de k.root-servers.net
0:.:.:start:NS:.:.
0:.:.:start:A:.:198.41.0.4
255:www.amazon.de:.:198.41.0.4:tx
255:www.amazon.de:.:198.41.0.4:NS:de:a.nic.de
255:www.amazon.de:.:198.41.0.4:A:a.nic.de:194.0.0.5 3
255:www.amazon.de:.:198.41.0.4:A:l.de.net:89.213.25 3.189
...

(We’ve truncated the listing because the full output is 1.2 megabytes!) A good way to view
dnstrace output is with the dnstracesort utility of djbdns (which outputs underlining codes)
piping the result to the less pager.

11.5 Caching DNS

The recursive caching DNS name server of the djbdns package is a standalone program called
dnscache. We cover dnscache fully in Chapter 17, Recursion (Section 17.4).

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

310 Alternative DNS Servers – Jan-Piet Mens

Summary

• djbdns is a package of tools that provides authoritative as well as caching DNS services,
and a number of useful utilities for querying DNS servers.

• tinydns is the authoritative name server. It is configured via environment variables
which are set up through files in a directory, and it reads authoritative DNS data from
a CDB file produced from a text source file.

• axfrdns and axfr-get can be used to provide outgoing and incoming zone transfers (AXFR)
for inter-operating with non-tinydns name servers.

Related topics

• The caching name server of djbdns is called dnscache, and we cover that in Chapter 17.

• Web based management of tinydns data in Chapter 19.

• Performance in Chapter 23.

Notes and further reading

Building djbdns

You install djbdns in a different way to most of the other tools in this book. djbdns had very
specific licensing restrictions which prohibited the distribution of modified versions. These
restrictions made it difficult to find ready-to-run packages of djbdns, requiring users to build
it themselves. At the time of this writing, Dan. J. Bernstein placed all his code in the public
domain5, opening the path to binary packages.
We recommend you proceed to build djbdns in the following order:

1. Prepare and install the programs in the daemontools package, even if you are not going
to use the supervisemechanism (see below).

After downloading the source of the daemontools package you have to fix the command
withwhich the programs are compiled (on GNU/Linux), and launch compilation. The
fix adds the required inclusion of the errno.h file on newer GNU/Linux platforms.

$ wget http://cr.yp.to/daemontools/daemontools-0.76.tar.gz
$ tar xvzf daemontools-0.76.tar.gz
$ cd admin/daemontools-0.76
$ echo "gcc -O2 -include /usr/include/errno.h" > src/conf-cc
$ package/compile

If the compilation was successful, the resulting binaries are in the commandsubdirec-
tory. Copy them to a directory of your choice:

5http://cr.yp.to/distributors.html

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 11. tinydns 311

$ ls -l command/
-rwxr-xr-x 1 root root 17216 Nov 11 14:50 envdir
-rwxr-xr-x 1 root root 16376 Nov 11 14:50 envuidgid
-rwxr-xr-x 1 root root 16264 Nov 11 14:50 fghack
-rwxr-xr-x 1 root root 27744 Nov 11 14:50 multilog
-rwxr-xr-x 1 root root 16152 Nov 11 14:50 pgrphack
-rwxr-xr-x 1 root root 4816 Nov 11 14:50 readproctitle
-rwxr-xr-x 1 root root 16384 Nov 11 14:50 setlock
-rwxr-xr-x 1 root root 16232 Nov 11 14:50 setuidgid
-rwxr-xr-x 1 root root 16336 Nov 11 14:50 softlimit
-rwxr-xr-x 1 root root 18832 Nov 11 14:50 supervise
-rwxr-xr-x 1 root root 13456 Nov 11 14:50 svc
-rwxr-xr-x 1 root root 11584 Nov 11 14:50 svok
-rwxr-xr-x 1 root root 17032 Nov 11 14:50 svscan
-r-xr-xr-x 1 root root 740 Nov 11 14:50 svscanboot
-rwxr-xr-x 1 root root 13232 Nov 11 14:50 svstat
-rwxr-xr-x 1 root root 11680 Nov 11 14:50 tai64n
-rwxr-xr-x 1 root root 9328 Nov 11 14:50 tai64nlocal

$ cp command/* /usr/local/bin/

A typical way of running djbdns is via a supervise daemon, which is a program that su-
pervises execution of long-running daemons. This program is part of the daemontools
package. If you wish to run the supervise daemon, which was built as part of dae-
montools, see http://cr.yp.to/daemontools.html . (We don’t discuss this method
further.)

2. If you require incoming or outgoing zone transfers for tinydns, prepare and install the
programs in the ucspi-tcp package. Otherwise, skip this step.

Download the ucspi-tcp package and fix its compilation command as above if you are
running on GNU/Linux:

$ wget http://cr.yp.to/ucspi-tcp/ucspi-tcp-0.88.tar.gz
$ tar xvzf ucspi-tcp-0.88.tar.gz
$ cd ucspi-tcp-0.88
$ echo "gcc -O2 -include /usr/include/errno.h" > conf-cc
$ make

The included Makefile will install the programs into the directory contained in the
file conf-home (default: /usr/local/bin). Then copy the binaries to the destination,
using:

$ make setup

(Note the “setup” as opposed to “install”.)

3. Prepare and install the programs in the djbdns package.

$ wget http://cr.yp.to/djbdns/djbdns-1.05.tar.gz
$ tar xvzf djbdns-1.05.tar.gz

At this point you may optionally decide to install the jumbo patch:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

312 Alternative DNS Servers – Jan-Piet Mens

$ wget http://www.ro.kde.org/djbdns/mywork/jumbo/jumbo-p13 .patch.gz
$ gunzip jumbo-p13.patch.gz
$ patch -p0 < jumbo-p13.patch
$ cd djbdns-1.05
$ echo "gcc -O2 -DDUMPCACHE -include /usr/include/errno.h" > con f-cc
$ make

and if you don’t, then use these steps:

$ cd djbdns-1.05
$ echo "gcc -O2 -include /usr/include/errno.h" > conf-cc
$ make

As with ucspi-tcp, install thedjbdns binaries in their final destination with:

$ make setup

This also puts a slightly outdated list of root servers into the /etc/dnsroots.global

file.

4. Before continuing, it may be useful to check the list of ICANN’s root servers in
/etc/dnsroots.global (and also in any existing $ROOT/servers/@ of dnscache con-
figurations). Retrieve a new list of root server names with dnsqr:

$ dnsqr ns . | awk ’/answer/ {print $5; }’
a.root-servers.net
h.root-servers.net
...

You can then use dnsip to query their addresses, producing a list of IP addresses of the
root name servers.

$ dnsip ‘dnsqr ns . | awk ’/answer/ {print $5; }’‘
198.41.0.4
128.63.2.53
...

Copy this list into the file /etc/dnsroots.global , which dnscache-conf uses to prime
the $ROOT/servers/@ file.

5. Select the djbdns components you will be running on your machines and use the
“*-conf” program(s) to set them up.

You are now ready to configure, for live running, tinydns (Section 11.2.1) and/or dnscache
(17.4) as you require.

CDB databases

CDB is the constant database, and it refers to both the data format and a library of access
routines created by Daniel J. Bernstein. The database is “constant” because it allows only
two operations: creation and reading; once created, you can’t write to it, and updates are
not possible. However, reads are very efficient. Since the database does not change while

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 11. tinydns 313

in use, multiple processes can access it simultaneously without requiring any locking. (See
http://cr.yp.to/cdb.html)
Michael Tokarev created an alternative library to access CDB databases (see http://

www.corpit.ru/mjt/tinycdb.html), and you’ll find a benchmark comparison of the vari-
ous database formats at http://qdbm.sourceforge.net/benchmark.pdf .

Patches and djbdns related software

Claudiu Costin put together what he calls the “Jumbo Patch“, a collection of 13 individ-
ual patches that he collected from various places. The collection adds several interesting
features to djbdns:
• Support for SRV in tinydns-data and axfr-get.
• ”D” line type for tinydns-data for SOA contact address.
• tinydns-data accepts multiple filenames on command line.
• $OKCLIENTmakes dnscache accept queries from everywhere.
• $IP may contain multiple IP addresses for dnscache.
• dnscache can dump and load the cache.
• dnsfilter uses names in lieu of IP addresses.
• tinydns listens on multiple IP addresses.
• dnscache reloads configuration on SIGHUP.
• dnscache returns custom IP for NXDOMAIN.
• tinydns logs NXDOMAIN with ’X’.
• tinydns logs ’N’ when NOTIFY is received.
• dnscache serves round-robin A RR.

TAI64

Temps Atomique International (TAI) is the international real-time standard. It is used by djbdns
and daemontools as it overcomes the limitation of the original UNIX time stamp format stored
as a 32-bit signed integer, which will expire in 2038. If you need to process djbdns TAI64
timestamps as produced in logs, you might be interested in the Time::TAI64 Perl module
available on CPAN; it makes handling of these times easy, as the following sample shows:

Listing 11.2: Example of Perl’s Time::TAI64

#!/usr/bin/perl

use strict;
use Time::TAI64 qw/:tai64/;
use POSIX qw(mktime);

my $clock = POSIX::mktime(0, 30, 12, 28, 4, 62);
print "Date = ", POSIX::ctime($clock);

my $tai = unixtai64($clock);
print "$tai \n";

print tai2strftime($tai, ’%Y-%m-%d %H:%M:%S’) . " \n";

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

314 Alternative DNS Servers – Jan-Piet Mens

When the program is run it produces the following output:

Date = Mon May 28 12:30:00 1962
@40000000f1b62f42
1962-05-28 12:30:00

For more information on TAI as it is used by djbdns, see http://pobox.com/˜djb/libtai/

tai64.html , and for information on TAI in general, consult http://en.wikipedia.org/

wiki/International_Atomic_Time .

Man pages

The daemontools, ucspi-tcp and djbdns packages don’t include manual pages, but Ger-
rit Pape has created manual pages for the three packages; we recommend you download
them and copy them to your mandirectory. (See http://smarden.org/pape/djb/)

Recommended reading

• Henning Bauer’s Life with djbdns has a lot of interesting information and insight into
the workings of djbdns; it is located at http://www.lifewithdjbdns.com/

• Felix von Leitner’s unofficial FAQ is also a good starting point http://www.fefe.de/

djbdns/

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter

12 ldapdns

Simple Updates and true replication. . . This
is the future.

A Brenk

12.1 Choosing your LDAP schema

12.2 Setting up ldapdns with ldapdns-conf

12.3 Environment variables for controlling ldapdns

12.4 Confi guring zones and resource records

12.5 Managing zone data

12.6 Providing DNS over TCP with ldapdns

12.7 Integrate ldapdns with BIND

Introduction

ldapdns is a lean and mean program that retrieves its zone data from an LDAP directory. Although its
documentation is sparse, ldapdns is worth more than just a cursory glance.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

316 Alternative DNS Servers – Jan-Piet Mens

ldapdns is a small DNS server that authoritatively answers DNS queries directly from an
LDAPdirectory. The author, who prefers to be called “Mrs. Brisby”, appears to have stopped
development, but ldapdns still does its job well and reliably.

Pros • Authoritative-only DNS server
• LDAP back-end
• Choice of schema

Cons ◦ Lacks representation for many DNS records
◦ Minimal documentation
◦ Further development uncertain

Scenarios Small DNS servers in an LDAP directory server environment.

Table 12.1: ldapdns at a glance

The similarities between ldapdns and some of the tools of the djbdns package (Chapter 11)
are not coincidental: the author of ldapdns originally implemented ldapdns as an extension to
tinydns. Today, it is a standalone program that shares only some ideology with tinydns.
Several years ago we successfully deployed ldapdns onto a dozen lightly loaded Mail

Transfer Agents (MTA, or mail servers); these systems have most of their configuration data
stored in an OpenLDAP directory server. We wanted a lightweight and resilient DNS name
server on the machines that stored its zone data in LDAP, giving us a uniform method of
managing all configuration of these hosts. ldapdnswas ideal and continues to serve us well.

12.1 Choosing your LDAP schema

ldapdns looks up answers to DNS queries in an LDAP directory server. It walks up and down
the LDAP tree to search for domains. (For example, if you query for www.qupps.biz, if ldapdns
finds SOA and NS records for the domain, it uses them.) If it finds www.qupps.bizwithout SOA
or NS records, it walks back up and searches qupps.biz for them. Domains can exist with NS
records only: if ldapdns doesn’t find a SOA, it creates it synthetically for you. Domain names
must be fully qualified, but you can omit the trailing period in a domain name.
You can configure ldapdns to use an LDAP schema depending on your requirements. It

supports one of several approaches for finding LDAP entries. We describe them by using
samples for a query of www.qupps.biz:

cosine This is the default, and the method used in our examples. ldapdns performs
base-level searches for the attribute types defined in the Cosine schema. The
searches are:

base="dc=www,dc=qupps,dc=biz,ou=zones,ou=LDAPdns,ou =dns,o=qupps.biz"
base="dc=qupps,dc=biz,ou=zones,ou=LDAPdns,ou=dns,o= qupps.biz"
base="dc=*,dc=biz,ou=zones,ou=LDAPdns,ou=dns,o=qupp s.biz"

rfc1279 Identical to cosine .

msdns ldapdns performs base-level searches on dNSRecord attribute types:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 12. ldapdns 317

base="dc=@,dc=quppsbiz,ou=zones,ou=LDAPdns,ou=dns,o =qupps.biz"
base="dc=@,dc=,ou=zones,ou=LDAPdns,ou=dns,o=qupps.b iz"
base="dc=@,dc=,ou=zones,ou=LDAPdns,ou=dns,o=qupps.b iz"

There is evidently something wrong in that, because the second dc attribute in
the distinguished names is incorrect, so we can’t use this schema.

ldapdns ldapdns performs subtree searches of your LDAP directory starting at the base
you configure it to use. A DNS query for qupps.biz is translated to a search filter
for

(|(associatedDomain=qupps.biz)(associatedDomain=biz))

You choose which schema to use depending on how you organize and manage your LDAP
entries. We’ve had good experience with the Cosine schema, and we discuss that.
In the Cosine schema, domains and zones are split into a sequence of domainComponent

(dc) objects (Figure 12.1). ldapdns uses attribute types of the LDAP entries of dNSDomain

objects from which it constructs replies.

Figure 12.1: ldapdnsmaps DNS queries to domainComponents

12.2 Setting up ldapdns with ldapdns-conf

Install the binary programs (see Notes). The program inherits ideas from the djbdns package,
so it uses a ldapdns-conf program for setup. Its syntax is:

ldapdns-conf acct logacct / path yourip ldaphost binddn [suffix]

Where the arguments are:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

318 Alternative DNS Servers – Jan-Piet Mens

acct ldapdns should run as this user.

logacct ldapdns should create log files as this user.

path ldapdns chroot ()s into this directory on startup. It is populated by ldapdns-conf
with three directories and a shell script:

env As with djbdns, the files in this directory are used to load environment
variables. For each file envdir (from the daemontools package) creates an
environment variable with the same name, and with the file’s contents
as the variable’s value. The files that ldapdns-conf creates in this directory
are:

• HOSTMASTER

• IP

• LDAP AUTHNAME

• LDAP HOSTS

• LDAP SUFFIX if suffixwas specified on the command line.

• ROOT

We discuss these in Section 12.3 below.

log This directory contains a script with which you can run multilog, just as
youwould dowith djbdns. We don’t discuss this further here; for details,
see Section 17.4.8.

root This directory contains the file passwd , which should contain the pass-
word that ldapdns is to use to bind to the LDAP directory. The file’s
permissions must be set read-only to root .

echo TerriblySecret > root/password
chmod 400 root/password

run You use this script to launch ldapdns. It has a small bug that causes
ldapdns to fault upon startup. We recommend you change the script to
read:

#!/bin/sh
exec 2>&1
exec envuidgid nobody envdir ./env /usr/local/bin/ldapdn s

yourip The IP address of the interface on this machine, that ldapdns is to listen on, for
incoming DNS queries. This address is written to the file IP in the env directory.
Set this to 0.0.0.0 to have ldapdns listen on all the machine’s interfaces.

ldaphost The IP address or URI (for example, ldap://192.168.1.164/) at which your
LDAP directory server is reachable. This address is written to the LDAP HOSTS

file in the env directory. When running with OpenLDAP, the URI may also be
an ldapi (note the final “i”) URI, in which case ldapdns will communicate with
your OpenLDAP server over a UNIX domain socket:

ldapi://%2fvar%2frun%2fsldapd.sock

For this to work, your slapd needs to be started with something similar to this:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 12. ldapdns 319

slapd ... -h "ldap:/// ldapi://%2fvar%2frun%2fsldapd.sock " ...

binddn The DN with which ldapdns binds to your LDAP directory. The value of this
variable is written to the LDAP AUTHNAMEfile in the env directory.

suffix The optional search base of your LDAP directory tree. This value is written into
the file LDAP SUFFIX in the env directory.

As an example, to configure ldapdns to run in the directory /usr/local/ldapdns , listen
on IP address 192.168.1.164, contact your LDAP server on IP address 127.0.0.1, and bind as
manager , you could use:

ldapdns-conf nobody nobody /usr/local/ldapdns \
192.168.1.164 127.0.0.1 cn=manager,o=qupps.biz

Don’t forget to set $ROOT/root/password

Note that the program warns that you still have to set the password with which ldapdnswill
bind to your LDAP directory.

12.3 Environment variables for controlling ldapdns

Like tinydns, when ldapdns starts, it uses the values of several environment variables that you
set earlier in one of two ways:

1. Using the ldapdns-conf program to populate a directory structure (discussed in Sec-
tion 12.2 above). The name of each file in the env directory is used as a variable name,
and the file’s content as variable’s value.

2. By creating a script that sets the variables explicitly, and then launching ldapdns from
that script. For example:

Listing 12.1: ldapdnsrun: a script to start ldapdns

$ cat /etc/ldapdnsrun
#!/bin/bash
export IP="192.168.1.164"
export HOSTMASTER="jp@xyz.de"
export LDAP_HOST="192.168.1.20"
export ROOT=/usr/local/ldapdns # for the password file
export LDAP_SUFFIX="dc=qupps.biz"
export SCHEMA=cosine
env UID=90 GID=90 /usr/local/sbin/ldapdns

Some of the environment variables that ldapdns uses are:

$AXFR Determines how ldapdns-axfr should handle TCP requests. See
Section 12.6. $LDAP AXFRis synonymous with $AXFR.

$DEFAULTEXPIRE The value to use as the SOA expire time if it is zero in the entry.

$DEFAULTMINIMUM The value to use as the SOA minimum time if it is zero in the
entry.

$DEFAULTREFRESH The value to use as the SOA refresh time if it is zero in the entry.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

320 Alternative DNS Servers – Jan-Piet Mens

$DEFAULTRETRY The value to use as the SOA retry time if it is zero in the entry.

$DNSTHREADS The number of threads used for handling DNS queries (default:
1).

$LDAP THREADS ldapdns uses this number of threads to talk to the LDAP direc-
tory server (default: 1). Increasing this number increases con-
currency.

$HANDLERS ldapdns uses a default of 128 “handlers” (internal queues) to
handle DNS requests. It sets $HANDLERSto be twice the sum of
$LDAP THREADSand $DNSTHREADS(if set), but you can override
this by setting $HANDLERS.

$HELPERNOTIFY The path to a program that should be fork ()edwhenever a DNS
NOTIFY is detected. ldapdns expects you to create such a pro-
gram if you need it.

$HOSTMASTER contains an email address (with an@character). This address is
used as the rname field in the Start of Authority (SOA) records.

$IP The single IP address that ldapdns should listen on for incoming
DNS requests. If this variable is set to 0.0.0.0 , ldapdns listens
on all the machine’s interfaces.

$LDAP AUTH The value of this variable must be one of:

simple Use simple LDAP authentication. The password is
taken from the password file in $ROOT.

sasl Use SASL authentication. The authentication name
is taken from $LDAP SASL. ldapdns first attempts Ker-
beros V2, and if that doesn’t work, it tries Kerberos
V1.

$LDAP AUTHNAME The distinguished name (DN) with which ldapdns attempts to
bind to the directory. If this value is not set, it tries to find the
DN in $LDAP BINDDN.

$LDAP HOSTS You use either $LDAP HOSTSor $LDAP HOST(synonymous) to
specify the IP addresses at which your LDAP directory server
is located. The value of this variable is either a space-separated
list of IP addresses or a space-separated list of LDAP URIs; they
are tried in order until the first one succeeds.

$LDAP SUFFIX The search base under which ldapdnswill perform searches.

$LOG Specifies how ldapdns should perform logging. You can:

• Log to stderr, by either not setting the variable at all, or
setting it to an empty value.

• Avoid all logging, by setting:

LOG=quiet

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 12. ldapdns 321

• Use syslogwith a facility of DAEMON, by setting:

LOG="syslog"

• Log to a file, by setting the value of $LOGto a path name be-
ginning with a slash, or to a URI beginning with file://

LOG=/var/log/ldapdns

• Log to a program or pipe, by setting $LOGto a string begin-
ning either with a vertical bar (|), or to a URI beginning
with pipe:/ , exec:/ , prog:/ or program:/ .

LOG=pipe://usr/sbin/mylogger

Queries are printed to the log like they are with tinydns:

c0a801a4:0000:a0a6 + 0001 qupps.biz
c0a801a4:0000:58cc - 0001 www.qupps.biz
c0a801a4:0000:def2 + 000f qupps.biz

$PORT The UDP port number (default: 53) on which ldapdns should
listen, and the TCP port number onwhich ldapaxfr should listen.

$ROOT The directory containing the root directory, which in turn con-
tains the password file.

$SCHEMA Modifies how ldapdns searches your LDAP directory tree. The
value may take on one of the values rfc1279 ,msdns, cosine ,
or ldapdns (Section 12.1).

$SUPERVISE If you set this variable to any value, ldapdns forks and back-
grounds itself upon start. Use this when running ldapdns under
the supervision of daemontools (see Notes).

$THREADS The number of threads to use (default: 1). If you set this vari-
able, ldapdns sets $LDAP THREADSto this number, and it sets
$DNSTHREADSto half this.

We obtained the best performance with these settings:

HANDLERS=128
THREADS=2

With these values, we obtained 1120 queries per second instead
of 90 qps.

$UID / $GID $UID and $GID are the numeric user id and group id to which
ldapdnswill setuid () and setgid () respectively. ldapdns refuses
to run as root unless you set:

$I AMSTUPID LET MERUNLDAPDNSAS ROOT

12.4 Configuring zones and resource records

As soon as you launch ldapdns, it is ready to answer queries, assuming you have entries in
your LDAP directory that satisfy the queries. You launch ldapdnswith:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

322 Alternative DNS Servers – Jan-Piet Mens

cd /usr/local/ldapdns
./ run

We recommend you keep an eye on the logs of your LDAP directory server. OpenLDAP
in particular, can show you what searches are being performed by ldapdns, and this can be
helpful when troubleshooting. (We discuss OpenLDAP logging in Section A.3.10.)

12.4.1 DNS resources supported by ldapdns

The Cosine schema used by ldapdns is straightforward to implement. ldapdns uses the at-
tribute types provided in the schema to represent a number of DNS resource records:

SOA A Start of Authority (SOA) is mapped onto the sOARecord attribute type. The
attribute value must contain five space-separated numbers:

1. serial number. You can specify three different values for the serial number:

• If you specify a numeric value, that value is used as the serial number.
sOARecord: 17 ...

• If you specify a zero (0), the current time (in UNIX time format), when
the SOA is read, is used as the serial number.

sOARecord: 0 ...

• If you specify a literal nnn , ldapdns uses the value of modifyTimestamp

of the LDAP entry as the serial number.
sOARecord: nnn ...

If the serial number portion of the attribute’s value begins with an asterisk
(*) the entire zone is disabled. You can use this to disable a zone if your
customer hasn’t paid their bill, without having to delete and later re-create
the zone.

2. refresh time. If this value is zero, it defaults to 10 800 seconds or to
$DEFAULTREFRESHif set.

3. retry time. If this value is zero, it defaults to 7 200 seconds or to
$DEFAULTRETRYif set.

4. expire time. If this value is zero, it defaults to 604 800 seconds or to
$DEFAULTEXPIRE if set.

5. minimum TTL. If this value is zero, it defaults to 86 400 seconds or to
$DEFAULTMINIMUMif set.

ldapdns does not require Start of Authority records, as it can synthetically create
them. You do that by omitting the SOA altogether, adding a Name Server (NS)
record.

ldapdns automatically constructs the rname value of the SOA record by appending
the domain name of the host ldapdns is running on to the word “hostmaster”.
You can change this on a zone-by-zone basis if you want to, by adding a mail

attribute type to the LDAP entry containing the SOA record (sOARecord). The
last attribute value of mail will be used as rname (with any@character replaced
by a period).

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 12. ldapdns 323

NS The Name Server (NS) resource is mapped onto the nSRecord attribute type. The
value is a domain name (i.e. a fully qualified host name).

nSRecord: ns.qupps.biz

A An Address record (A) is mapped by ldapdns onto the LDAP aRecord attribute
type. Its value is a dotted decimal IP address.

aRecord: 1.2.3.4

ldapdns can also provide split-horizon in this attribute type, but we don’t recom-
mend you do that. To enable split-horizon, you append a slash and a network
mask to the IP address. Consult the documentation on how to do that.

MX A Mail Exchanger (MX) is mapped onto an LDAP mXRecord attribute type. Its
value must contain a numeric preference followed by a single space, followed by
the domain name of the mail server.

mXRecord: 19 mail.qupps.biz

CNAME ldapdns retrieves a Canonical name (CNAME) from the LDAP cNAMERecord at-
tribute type. The value is a domain name.

cNAMERecord: www.google.com

TXT A DNS query for a Text record (TXT) is served from the LDAP description at-
tribute type. Its content is an arbitrary string.

description: expensive colour laser printer

If you have more than one value for the description attribute type, then more
than one TXT RR will be served.

PTR Pointer resource records (PTR) are created in the in-addr.arpa domain by setting
the cNAMERecord attribute type to a domain name.

dc=10,dc=3,dc=2,dc=1,dc=in-addr,dc=arpa,...
cNAMERecord: home.mens.de

12.4.2 Adding a zone to ldapdns

Adding a minimal zone

Adding a zone to ldapdns involves adding an object to your LDAP directory server. The
following LDIF provides all that is necessary to add a zone:

dn: dc=qupps,dc=biz,ou=zones,ou=LDAPdns,ou=dns,o=qup ps.biz
dc: qupps
objectClass: dNSDomain
objectClass: dcObject
objectClass: extensibleObject
mail: jp@xyz.de
nSRecord: ns.qupps.biz

If we now query ldapdnswe get the following:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

324 Alternative DNS Servers – Jan-Piet Mens

$ dig @192.168.1.164 qupps.biz
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19751
;; flags: qr aa rd; QUERY: 1, ANSWER: 1, AUTHORITY: 1, ADDITIO NAL: 0

;; ANSWER SECTION:
qupps.biz. 86400 IN SOA ns.qupps.biz. jp.xyz.de. ←֓

1199309678 10800 7200 604800 86400

;; AUTHORITY SECTION:
qupps.biz. 86400 IN NS ns.qupps.biz.

Note the following:

• The “aa” bit is set in the “flags” line. ldapdns is authoritative for the zone.

• We didn’t include an sOARecord in the LDAP entry for the zone, so ldapdns used its
defaults, using the modifyTimestamp for the serial number.

• The object we added to the directory has a class extensibleObject . That allows us to
add an attribute type mail which is used by ldapdns to construct the rname for the SOA
record. This is just for illustration: you do not have to do this; if you omit an e-mail
address, ldapdns uses the value of $HOSTMASTERinstead.

• The nSRecord attribute type is mandatory.

Adding a zone with more records

The following LDIF shows a zone with two name servers, two Mail Exchangers and a host
with four IP Address records:

dn: dc=qupps,dc=biz,ou=zones,ou=LDAPdns,ou=dns,o=qup ps.biz
dc: qupps
objectClass: dNSDomain
objectClass: dcObject
sOARecord: 17 180 90 180 180
nSRecord: ns.qupps.biz
nSRecord: ns2.qupps.biz
mXRecord: 10 mail.qupps.biz
mXRecord: 25 mail.uit.co.uk
description: This zone belongs to me
description: contact me

dn: dc=mail,dc=qupps,dc=biz,ou=zones,ou=LDAPdns,ou=d ns,o=qupps.biz
objectClass: dcObject
objectClass: dNSDomain
dc: mail
aRecord: 192.168.1.20
aRecord: 192.168.1.21
aRecord: 192.168.1.22
aRecord: 192.168.1.23

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 12. ldapdns 325

$ dig @192.168.1.164 qupps.biz any
;; ANSWER SECTION:
qupps.biz. 86400 IN MX 25 mail.uit.co.uk.
qupps.biz. 86400 IN MX 10 mail.qupps.biz.
qupps.biz. 180 IN SOA ns.qupps.biz. hostmaster.qupps.biz. 17 180 90 180 180
qupps.biz. 86400 IN NS ns.qupps.biz.
qupps.biz. 86400 IN NS ns2.qupps.biz.

;; AUTHORITY SECTION:
qupps.biz. 86400 IN NS ns.qupps.biz.
qupps.biz. 86400 IN NS ns2.qupps.biz.

;; ADDITIONAL SECTION:
mail.qupps.biz. 86400 IN A 192.168.1.23
mail.qupps.biz. 86400 IN A 192.168.1.22
mail.qupps.biz. 86400 IN A 192.168.1.21
mail.qupps.biz. 86400 IN A 192.168.1.20

12.4.3 Adding an in-addr.arpa zone to ldapdns

Create the zone

To add a reverse Pointer (PTR) to an in-addr.arpa zone, you reverse the dotted decimal num-
bers of an IP Address and use each of the decimal numbers in the relative distinguished
name (RDN) of an LDAP entry. An example LDIF for creating the containers for a zone is:

dn: dc=arpa,ou=zones,ou=LDAPdns,ou=dns,o=qupps.biz
dc: arpa
objectClass: dcObject
objectClass: dNSDomain

dn: dc=in-addr,dc=arpa,ou=zones,ou=LDAPdns,ou=dns,o= qupps.biz
dc: in-addr
objectClass: dcObject
objectClass: dNSDomain

dn: dc=192,dc=in-addr,dc=arpa,ou=zones,ou=LDAPdns,ou =dns,o=qupps.biz
dc: 192
objectClass: dcObject
objectClass: dNSDomain

dn: dc=168,dc=192,dc=in-addr,dc=arpa,ou=zones,ou=LDA Pdns,ou=dns,o=qupps.biz
dc: 168
objectClass: dcObject
objectClass: dNSDomain

dn: dc=1,dc=168,dc=192,dc=in-addr,dc=arpa,ou=zones,o u=LDAPdns,ou=dns,o=qupps.biz
dc: 1
objectClass: dcObject
objectClass: dNSDomain
nSRecord: ns.qupps.biz

The zone now exists, because the last entry in the example above contains the required
nSRecord attribute type for the NS resource record.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

326 Alternative DNS Servers – Jan-Piet Mens

Create the PTR resource record

The LDIF for the PTR record for an IP address 192.168.1.10 looks like this:

dn: dc=10 ,dc=1,dc=168,dc=192,dc=in-addr,dc=arpa,ou=zones,ou= LDAPdns,ou=dns,
o=qupps.biz

dc: 10
objectClass: dcObject
objectClass: dNSDomain
cNAMERecord: www.qupps.biz

Note how the cNAMERecord attribute type is used to create a pointer resource record (PTR).
Querying the ldapdns server, we get a correct answer:

$ dig @192.168.1.164 -x 192.168.1. 10
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 23060
;; flags: qr aa rd; QUERY: 1, ANSWER: 1, AUTHORITY: 1,

;; ANSWER SECTION:
10.1.168.192.in-addr.arpa. 86400 IN PTR www.qupps.biz.

;; AUTHORITY SECTION:
1.168.192.in-addr.arpa. 86400 IN NS ns.qupps.biz.

;; ADDITIONAL SECTION:
ns.qupps.biz. 86400 IN A 192.168.1.164

12.5 Managing zone data

You will probably not want to create long LDIF files for adding a DNS resource record to
your LDAP directory server, and we certainly don’t. There are a number of different ways
you can manipulate LDAP entries on your directory server:

• Use an LDAP browser (Section 2.5.4) to edit your LDAP entries.

• We like creating small specialized scripts or programs for the job. You can use a simple
shell script that utilizes ldapadd or ldapmodify, or you can invest a bit more time and use
Perl’s Net::LDAP (or any other programming language with LDAP support) to create
custom tools to add DNS zones and resource records to your LDAP directory.

• You can use some of the scripts provided in the admin directory of the ldapdns source
distribution.

We discuss some further methods in Chapter 19.

12.6 Providing DNS over TCP with ldapdns

Like tinydns, ldapdns only answers DNS queries over UDP. If you want to provide DNS over
TCP with ldapdns, you have to deploy the zone transfer program, ldapaxfr, which also uses
your LDAP directory server. You set up ldapaxfrwith the ldapaxfr-conf program:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 12. ldapdns 327

ldapaxfr-conf nobody nobody /usr/local/ldapaxfr /usr/local/ldapdns 19 2.168.1.164

ldapaxfr uses the same env directory (that you specified when you configured ldapdns with
the ldapdns-conf utility), to find the variables pertaining to the LDAP directory. In addition to
other variables used by ldapdns, ldapaxfr uses the variable $AXFRto control what it will serve
over TCP. You have two possibilities:

1. If $AXFRis unset or it is set to an empty string (""), ldapaxfr will not provide outgoing
zone transfers, limiting its operation to supplying answers to DNS queries over TCP.

2. If the variable $AXFRis set to a single period (.) it provides zone transfers for all zones.
If you set $AXFRto a domain name (e.g. biz) it provides transfers to all sub-domains of
the one specified, as well as normal answers over TCP.

12.7 Integrate ldapdns with BIND

We said in the introduction to this chapter that we use ldapdns as authoritative DNS server
on a group of e-mail servers within an organization, and we said that we’ve had good ex-
perience with it, which is quite true. In fact, we set this system up as shown in Figure 12.2:
the machines have a BIND name server configured as a caching name server, providing DNS
services to the local LAN. The same BIND server is also configured to forward queries for
the special domain email.qupps.biz to ldapdns.

Figure 12.2: Forwarding BIND queries to ldapdns

The forwarding in BIND is configured as:

zone "email.qupps.biz" {
type forward ;
forward only;
forwarders {

127.0.0.3 port 53;
};

};

Note the use of the loop-back address 127.0.0.3 to which ldapdns is bound.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

328 Alternative DNS Servers – Jan-Piet Mens

Summary

• ldapdns is an authoritative DNS server that retrieves its zone data from an LDAP di-
rectory.

• Its organization and administration are similar to tinydns.

• ldapaxfr provides DNS replies and outgoing zone transfers over TCP.

• Development of ldapdns appears to have come to a standstill.

Related topics

• Other authoritative DNS servers that can retrieve DNS data from an LDAP directory
are PowerDNS (Chapter 6), BIND SDB (Chapter 8), and Bind DLZ (Chapter 9).

• You can use dnsproxy (Section 17.5) if you want to operate a cache and ldapdns on the
same host.

• If ldapdns is causing a large load on your LDAP servers, you might want to consider
placing a cache in front of it. dnscache (Section 17.4) is up to snuff.

Notes and further reading

Building and installing ldapdns

Download ldapdns from http://www.nimh.org/code/ldapdns/ . The configure script sup-
plied is just a small wrapper that supports the --prefix option only.

$ wget http://www.nimh.org/dl/ldapdns.tgz
$ tar xvzf ldapdns.tgz
$ cd ldapdns-2.06

On our system we had to patch ldapdns slightly, because it uses a function called log ()

which conflicts with a routine of the same name from the standard C library. We have made
the patch available at the URL shown here and on the book’s Web site (☞D121):

$ wget http://fupps.com/code/sundry/ldapdns/ldapdns-2.06.p atch
$ patch -p0 < ldapdns-2.06.patch
patching file ldapdns.c
patching file error.h
patching file engine.c
patching file error.c

$./ configure --prefix=/usr/local
$ make
$ PREFIX=/usr/local make install

To use the facilities provided by ldapdns-conf you must install the daemontools package, a
collection of tools for managing UNIX services. We recommend you do so at this point. (See
Notes on page 310.)

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 12. ldapdns 329

Are you a developer?

• ldapdns could do with a new breath of life. If you are a developer, many people would
be pleased to see development continue on ldapdns.

• Version 2 of ldapdns (the version we have discussed in this chapter) has not been mod-
ified for some time. There are some “features” that could do with a bit of polish.

• A newer code base of ldapdns is named LDAPDNS3. There hasn’t been development
on it since early 2004, but you may nevertheless be interested in taking it for a test
drive. It could use a good developer to get it going again (see http://ldapdns.

sourceforge.net/).

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

330 Alternative DNS Servers – Jan-Piet Mens

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter

13 dnsmasq

Why is it drug addicts and computer
aficionados are both called users?

Clifford Stoll

13.1 Preliminary explorations

13.2 Live running

13.3 Advanced dnsmasq confi guration

13.4 A complete example

Introduction

For Small Office / Home Office or branch-office networks, using one of the “big” name servers is
overkill and requires too much effort. dnsmasq is a gem of a program: it uses the simple /etc/hosts

file for its zone data, has support for ad-blocking and has a built-in DHCP server as well.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

332 Alternative DNS Servers – Jan-Piet Mens

Many small home or office networks don’t use DNS, because it appears to be too difficult
to set up. Consequently, either their users have to refer to local machines by numeric IP
address, or the “administrator” has to maintain and distribute /etc/hosts files to all ma-
chines on the LAN, which is tedious and error-prone. dnsmasq, written by Simon Kelley, is
a gem. It comes to the rescue for these environments, combining a very lightweight DNS
server, an optional DHCP server with DNS integration, and a caching resolver which talks
to the outside world.

dnsmasq accepts DNS queries and either answers them from your /etc/hosts file, or
forwards them to a “real” DNS server for resolving; dnsmasq can’t act as a full recursive
resolver itself because it wasn’t made to do so. It uses the content of a local /etc/hosts or
similar file to create resource records and serves them under any domain name you specify.
dnsmasq’s built-in DHCP server supports static and dynamic address assignments, can be
configured to send any desired set of DHCP options, supports BOOTP, and includes a TFTP
server.

Pros • Trivial to set up and maintain
• Built-in DHCP server with some DNS integration
• Lightweight
• Used in router boxes and distributions
• Advanced options for complex scenarios

Cons ◦ No IPv6 for DHCP

Scenarios Small networks (Small Office / Home Office or branch office)
without a dedicated systems administrator.

Table 13.1: dnsmasq at a glance

In some countries, Germany for example, it is common to have an ISDN or ADSL connection
to the Internet. It is often the case that a small router is used to provide DHCP service to the
LAN and act as a gateway to the Internet. The router sets itself up as a non-caching DNS
proxy and provides DHCP service to clients, giving them its address as DNS server. When
users surf the Internet or use an e-mail client, all DNS requests are passed to the router
which forwards them to the ISP’s DNS servers for resolution. This works well enough for
qualified domain names but it’s not ideal:

• If the Internet connection is down, the query from the router to the Internet has to time
out before errors are reported to a user.

• If your local network has a server of any kind – for example a network printer, a
file server, or media server – it too needs to be addressed. The only way to make
it addressable by hostname across the whole network is to enter it manually in the
/etc/hosts files (\windows \system32 \drivers \etc \hosts on Microsoft Windows)
on each of the workstations.

Putting dnsmasq on a small machine in your network addresses all these issues (Figure 13.1).

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 13. dnsmasq 333

Figure 13.1: Placing dnsmasq on your network

Workstations on the local network set up their resolver to point to the dnsmasq host or get
this set up automatically via dnsmasq’s built-in DHCP server (in which case you should
disable any other DHCP server on your network1). If you have a single host on your network,
you can use dnsmasq as a caching name server for that machine.
If your operating system vendor has not already packaged dnsmasq for you, you will

have to build and install it yourself, but that is not difficult (see Notes). dnsmasq is supported
on FreeBSD, GNU/Linux, Mac OS X, and Solaris.

13.1 Preliminary explorations

With dnsmasq installed, you can immediately run it to provide seamless DNS to your net-
work, before you explore its more advanced configuration options which we discuss in the
next sections. There is no danger at all in setting up a test DNS server on your LAN because
your clients will only “see” it when you explicitly configure them to use it.
First add an exotic host name to the /etc/hosts file of themachine youwill be launching

dnsmasq on, to test the DNS server:

echo "192.168.1.17 foozy.local foozy" >> /etc/hosts

Now launch dnsmasq in the foreground and make it log queries to the console, so that you
can see things as they happen:

dnsmasq --no-daemon --log-queries
dnsmasq: started, version 2.43 cachesize 150
dnsmasq: compile time options: IPv6 GNU-getopt no-ISC-lea sefile no-DBus no-I18N
dnsmasq: reading /etc/resolv.conf
dnsmasq: using nameserver 192.168.13.2#53
dnsmasq: read /etc/hosts - 3 addresses

1Is it just us or do you also get feeling that every device on the market today has a built-in DHCP server? At the
time of this writing, we purchased a NAS device, and guess what? Yes.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

334 Alternative DNS Servers – Jan-Piet Mens

If you query dnsmasq for the host name you previously added to /etc/hosts (foozy.local)
you should get an authoritative answer (i.e. with “aa” bit set in dig’s “flags” line):

$ dig @127.0.0.1 foozy.local
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 47776
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; ANSWER SECTION:
foozy.local. 0 IN A 192.168.1.17

and the debugging output of dnsmasq shows the received query:

dnsmasq: reading /etc/resolv.conf
dnsmasq: using nameserver 192.168.13.2#53
dnsmasq: read /etc/hosts - 3 addresses
dnsmasq: query[A] foozy.local from 127.0.0.1
dnsmasq: /etc/hosts foozy.local is 192.168.1.17

If that does not work as expected, check the following:

• Did you launch dnsmasq as the root user? You must. (dnsmasq can drop privileges
after it starts; Section 13.3.1 shows you how to configure this.)

• Did you see any error messages when you started dnsmasq? If so, try and get them
cleared away.

• Your machine may already have a DNS server running on it. (If you installed dnsmasq
from a binary package, your packagemanagermay have already launched dnsmasq for
you.). Two DNS servers can’t listen on the same port 53 and on the same IP addresses,
so the second one you try to start will fail. Ensure that no other program is ”grabbing”
your DNS traffic. To see which programs are listening on which addresses:

netstat -anp | grep 53
tcp 0 0 127.0.0.1:53 0.0.0.0:* LISTEN 15338/named
udp 0 0 192.168.1.20:53 0.0.0.0:* 15338/named
udp 0 0 127.0.0.1:53 0.0.0.0:* 15338/named

If you see a program such as named, you are already running a version of BIND. Either
stop it, or get it to listen on a different IP address, or read on to see how to configure
dnsmasq to do so.

• If you are testing the query logging from a Windows machine and don’t see any en-
tries being made in the log, your PC might be using the Windows DNS cache and not
passing the query to dnsmasq at all. Either flush it with:

C: \> ipconfig /flushdns

or try a query for a different name, that you know you haven’t accessed recently.

By default dnsmasq uses its local /etc/resolv.conf to find addresses of DNS caches
and will forward queries to them. So if your Internet connection is active, you should be
able to direct queries for public hosts to dnsmasq and receive answers for them.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 13. dnsmasq 335

13.2 Live running

To put dnsmasq into production on your LAN, you:

1. Edit /etc/hosts and enter all the hosts you want to name. (You don’t have to fully
qualify their names.)

2. Make sure the /etc/resolv.conf file on the host running dnsmasq has at least one
correct nameserver entry, so that dnsmasq can forward DNS queries for the public
DNS to upstream name servers.

3. Configure /etc/resolv.conf on the other clients of your network to point to your
dnsmasq host. Below, we show how you can use dnsmasq’s built-in DHCP server to
accomplish that if you like.

4. Configure your system to launch dnsmasq at system startup. (Consult your documen-
tation for how to do that.)

If you don’t intend to use the DHCP features of dnsmasq or if you don’t need to adapt the
sensible defaults it uses, you can stop right here.

13.3 Advanced dnsmasq configuration

dnsmasq uses very sensible default options. In many environments you won’t need to adjust
them in any way. Nevertheless, to get more out of dnsmasq, such as setting up DHCP to
enable other machines on your network to automatically obtain network parameters, you
will have to create a custom configuration.
You configure dnsmasq either by invoking it with options or by letting it read its default

/etc/dnsmasq.conf (or the file specified with --conf-file=). Most options have both a
short one-character name, and a long name, that is the same as the option-name used in the
configuration file. You must restart dnsmasq for changes to take effect (because a SIGHUP
does not cause it to re-read its configuration).
The following sections group the more interesting options by task, not alphabetically;

other options are documented in the dnsmasqmanual page.

13.3.1 Interfaces and addresses

With these options, you configure dnsmasq to listen only on specific interfaces or addresses
with these options. The default of listening on all interfaces is fine for many installations.

port Listen on the specified port instead of the default DNS port (53). If
you set the port number to 0, the DNS server is disabled.

port= 53

interface Listen only on the specified interface(s). dnsmasq can be made to
listen on any number of the system’s real (not aliased) interfaces.
The loop-back interface is included automatically, but may be ex-
cluded with the interface-except option.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

336 Alternative DNS Servers – Jan-Piet Mens

interface= eth0
interface= eth1

interface-except Listen on all interfaces except those listed.

interface-except= lo

listen-address Use this option to get dnsmasq to listen on aliased interfaces by
providing their addresses. If no interface option is given but listen-
address is, dnsmasq will not automatically listen on the loop-back
interface; if you want it to, you must explicitly add 127.0.0.1 to this
option.

listen-address= 192.168.1.164
listen-address= 127.0.0.1

no-dhcp-interface Provide only DNS on the specified interface (i.e. no DHCP or TFTP
service).

no-dhcp-interface= eth0

user Specify the userid to which dnsmasq will change after startup. dns-
masq must normally be started as root , but it drops root privi-
leges after startup by changing userid to another user. (Default:
nobody .)

13.3.2 Hosts and domains

A few options tell dnsmasq how it should handle host names and from which files it should
create local DNS resource records. As a small reminder, hosts files on *nix and Microsoft
Windows are formatted as a list of IP addresses and hostnames, one on each line:

127.0.0.1 localhost.localdomain localhost
192.168.1.20 home
192.168.1.179 ls1
192.168.1.185 pc2
192.168.1.17 foozy.local foozy

no-hosts Don’t process the default /etc/hosts . Often used with addn-hosts,
next.

addn-hosts (“additional hosts”) Specify a file in /etc/hosts format that dns-
masq should also read in addition to the system’s /etc/hosts file.
If no-hosts is also set, only this file will be used.

addn-hosts= /etc/my.hosts

expand-hosts Append our domain, specified in domain, below, to unqualified host
names read from /etc/hosts , i.e. to names that do not contain a
period.

expand-hosts

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 13. dnsmasq 337

domain This option sets “ourdomain” – the domain that is appended to
unqualified names. For example, if you set:

domain= foo.bar

the name www in /etc/hosts will be expanded to www.foo.bar.

This setting also sets the DHCP domain option, thereby providing
all DHCP clients with a DNS domain name, and it ensures that
DHCP clients that provide their own namesmust do so with names
that end with this value. For example:

domain= office

causes DHCP clients that supply their host name as alex or alter-
natively as alex.office (qualified) to be called alex.office. However,
dnsmasqwill not register – in the local DNS cache – any clients that
announce their names as alex.fupps.com. This ensures that a client
on the network cannot announce itself as being www.cnn.com and
have HTTP requests for the news agency falsely directed to its IP.

We recommend you do not use .local as your domain name be-
cause it may interfere with mDNS on Mac OS X systems.

domain-needed This option instructs dnsmasq to never forward queries to upstream
DNS name servers, for names that are unqualified (i.e. do not con-
tain a period). You should enable this option.

13.3.3 DNS resolution

A number of options affect the way dnsmasq resolves names; some are given here, but see
also Section 13.3.2.

alias This option can be used to alter IP addresses that are returned from
upstream DNS servers. For example:

alias=10.0.0.1,192.168.1.20

makes dnsmasq return 192.168.1.20 instead of the “real” address
10.0.0.1.

bogus-priv All reverse lookups for private IP ranges (i.e. 192.168.x.y, 10.x.y.z,
etc.) that are not found in /etc/hosts or the DHCP leases file are
answered with “no such domain” (NXDOMAIN) rather than being
forwarded upstream. We recommend you generally set this, be-
cause private IP addresses (RFC 1918) aren’t routed on the Internet,
so you’d never get an answer anyway.

filterwin2k Filter out SOA, SRV and type ANY queries where the requested name
contains underscores. These queries are frequently sent by later
versions of Microsoft Windows. Do note however, that this option
blocks all queries of type SRV as well.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

338 Alternative DNS Servers – Jan-Piet Mens

resolv-file dnsmasq uses the resolv.conf file to find upstream name servers.
This means, however, that other programs on this host also use
the same resolv.conf for query resolution and therefore bypass
dnsmasq.

To work around this, the resolv-file option allows you to specify an
alternative file that dnsmasq uses to find upstream name servers.
dnsmasq reads the IP addresses of the upstream name servers from
the specified file instead of /etc/resolv.conf . The format of the
file is the same as /etc/resolv.conf , but dnsmasq uses only the
nameserver lines. Here’s an example of how you’d set this up:

1. Enter your ISP’s name server addresses in nameserver lines
in /etc/resolv.dm , say, and set the option:

resolv-file =/etc/resolv.dm

2. Make sure the only nameserver line in /etc/resolv.conf is:

nameserver 127.0.0.1

Now your local stub resolver will send its queries to 127.0.0.1, i.e.
to dnsmasq, which will forward them to your ISPs servers.

no-poll By default, dnsmasq checks whether the modification time stamp of
/etc/resolv.conf (or the file specified as resolv-file) has changed,
and reloads it if it has, on receiving a DNS query. This allows dns-
masq to work in environments that have their DNS servers set dy-
namically with PPP or DHCP, since both protocols generally mod-
ify the local resolver file. To avoid this behavior, set no-poll.

Even if no-poll is set, sending dnsmasq a SIGHUP will cause it to re-
read /etc/resolv.conf .

clear-on-reload Whenever dnsmasq re-reads resolv.conf because it has changed,
it should clear the content of its cache. Although this means loos-
ing cached entries, it is probably wise, as different upstream name
servers may have differing DNS data to that which is in the cache.

local

server The options server and local are synonymous; use whichever seems
more logical to you. They specify the addresses of upstream DNS
servers directly.

If one or more optional domains are given, that server is used only
for those domains and they are queried only using the specified
server. The setting

server= / fupps.com / qupps.biz / 192.168.13.129

causes dnsmasq to forward all queries for domains fupps.com and
qupps.biz to the DNS server at 192.168.13.129; all other queries are
sent to the upstream DNS servers read from /etc/resolv.conf if
they cannot be answered from /etc/hosts or DHCP.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 13. dnsmasq 339

Specifying just a domain, without a DNS-server address, has a dif-
ferent meaning. It tells dnsmasq that the domain is local; it might
answer from /etc/hosts or DHCP but it should never forward
queries for the domain to upstream name servers. For example,
the setting:

local= / my.home /

has dnsmasq answer a query for pc27.my.home from /etc/hosts (if
it contains an IP for pc27 or pc27.my.home), but it will never forward
queries for anything.my.home to other name servers.

address This option is useful for home networks. With it, you specify a
domain, and the single IP address to be returned for any host in that
domain. Queries for these domains are never forwarded, although
they can be overridden by /etc/hosts or DHCP entries. This is
often used to redirect HTTP traffic for specific unwanted sites to a
local HTTP server (think advertisement blocking). For example:

address=/foo.bar/foo.de/1.2.3.4
address=/singleclick.com/127.0.0.1

returns the address 1.2.3.4 for all queries to the two domains foo.bar
and foo.de and queries for singleclick.com are answered with an Ad-
dress (A) record of 127.0.0.1. As shown, you can specify this option
multiple times. Now, the DNS directs anyWeb browser connecting
to http://www.singleclick.com to IP address 127.0.0.1 instead
of to the domain’s real address.

txt-record This option causes dnsmasq to add a TXT resource record to the
built-in DNS server. The value is given a host name (which is
not automatically qualified with the name of our domain), and a
comma-separated list of strings. The example adds two TXT records
for the same name:

txt-record =what , This is my server , Contact JP
txt-record =what , at 555-1001

and a query for a TXT record produces:

$ dig @127.0.0.1 what. TXT
;; ANSWER SECTION:
what. 0 IN TXT "at 555-1001"
what. 0 IN TXT "This is my server" "Contact JP"

Note that two records are returned, one of which contains two
strings.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

340 Alternative DNS Servers – Jan-Piet Mens

cache-size The compiled-in limit of dnsmasq’s internal cache is 10 000 entries,
which is more than sufficient for the intended deployment scenar-
ios. The default cache size is defined in config.h to be 150 entries,
which is a bit small. This variable sets the size of the cache to the
desired number of entries; more consumes more memory and a
value of 0 (zero) disables the cache entirely. We don’t recommend
you disable it.

Just like all other caching servers, when dnsmasq is shut down, it
does not store the cache’s content for reloading later, and it cannot
be made to do so. (Due to the nature of DNS and the sometimes
quite short TTL onDNS records, there is little point in saving a cache
that contains mostly records that will have expired when it comes
to be reloaded.)

13.3.4 DHCP

By default, dnsmasq does not offer DHCP services on the network, but you can easily con-
figure it to do so. dnsmasq’s DHCP service is quite complete and includes supplying options
to its clients, IP address pools from which clients are assigned a dynamic address, multiple
subnets, and static host assignments for devices to which you want to give a permanent
address.

dhcp-range This option enables the DHCP server. It allows dnsmasq to give out
addresses from the range start-addr to end-addr inclusive, and from
statically defined addresses given in the dhcp-host option, below.

dhcp-range= start-addr, end-addr[, netmask, bcast][, lease-time]
dhcp-range=192.168.1.50 , 192.168.1.150 , 3d

If the lease time is given, then leases will be given for that length
of time (default: 1h). Lease times are specified in seconds, minutes,
hours or days by appending the character s (default), m, h or d
respectively, and may be infinite with the literal infinite . This
option may be repeated with different addresses to enable DHCP
service to more than one network.

dhcp-host This option specifies per-host parameters for the DHCP server. It
allows a machine with a particular hardware address to be always
allocated the same host name, IP address and lease time. A host
name specified like this overrides any supplied by the DHCP client
software on the client machine. You can omit the hardware address
and include the host name; then, the IP address and lease times will
apply to any machine claiming that name.

dhcp-host= hardware-addr, name, IP addr, lease
dhcp-host=00:0F:1F:C5:0B:65,jp510m,192.168.1.60,48h

dhcp-hostsfile This variable causes dnsmasq to read DHCP host information from
the specified file. The file contains information about one host per

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 13. dnsmasq 341

line. The format of a line is the same as text to the right of the “=” in
dhcp-host. The advantage of storing DHCP host information in this
file is that it can be changed without restarting dnsmasq: the file is
re-read when dnsmasq receives a SIGHUP signal.

dhcp-hostsfile= /etc/dhcp.machines

dhcp-option This setting allows you to override the default DHCP options sent
to clients by dnsmasq. Options may be specified as decimal num-
bers or as option names (Table 13.2).

dhcp-option = option:netmask, 255.255.255.0
dhcp-option = option:router, 192.168.1.1
dhcp-option = 3, 192.168.1.1

The last two lines are synonymous; the last line specifies the op-
tion’s decimal number (3) whereas the second-last line specifies it
as an option namewith a leading “option: ”. (We prefer the textual
representation as they document themselves better.)

1 netmask 37 tcp-ttl
2 time-offset 38 tcp-keepalive
3 router 40 nis-domain
6 dns-server 41 nis-server
7 log-server 42 ntp-server
9 lpr-server 44 netbios-ns
13 boot-file-size 45 netbios-dd
15 domain-name 46 netbios-nodetype
16 swap-server 47 netbios-scope
17 root-path 48 x-windows-fs
18 extension-path 49 x-windows-dm
19 ip-forward-enable 60 vendor-class
20 non-local-source-routing 64 nis-domain
21 policy-filter 65 nis-server
22 max-datagram-reassembly 68 mobile-ip-home
23 default-ttl 69 smtp-server
26 mtu 70 pop3-server
27 all-subnets-local 71 nntp-server
31 router-discovery 74 irc-server
32 router-solicitation 77 user-class
33 static-route 119 domain-search
34 trailer-encapsulation 120 sip-server
35 arp-timeout 121 classless-static-route
36 ethernet-encap

Table 13.2: DHCP options supported by dnsmasq’s DHCP server

dhcp-authoritative Use this when dnsmasq is definitely the only DHCP server on a net-
work. It changes the behavior from strict RFC compliance, so that

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

342 Alternative DNS Servers – Jan-Piet Mens

DHCP requests for unknown leases (even renew requests) from un-
known hosts are not ignored. This allows new hosts to get a lease
without a tedious timeout under all circumstances. It also allows
dnsmasq to rebuild its lease database without each client needing to
reacquire a lease, if the database is lost.

dhcp-authoritative

dhcp-leasefile dnsmasq should record the leases it has granted, in the specified file
(default is /var/db/dnsmasq.leases). This file is re-used when
dnsmasq starts up, if it exists.

dhcp-script dnsmasq can be instructed to run a program or a script when a lease
is obtained or released. The option:

dhcp-script= /bin/myprog

defines the path to the program that should be executed, which can
be an executable script or program. This program can do anything
it desires: a simple example follows, to show the arguments and
the environment that the program receives:

#!/bin/sh

exec > /tmp/myprog.out
echo "ARGS: " $*
env|grep ’ˆDNSMASQ’

In our example, the following would be saved in the myprog.out

file.

ARGS: add 00:0f:1f:c5:0b:65 192.168.1.60 jp510m
DNSMASQ_TIME_REMAINING=2700
DNSMASQ_LEASE_EXPIRES=1196471835

The first argument passed to the program is one of the following
three keywords:

add Indicates that a new lease has been created.

old Indicates that an existing lease is being renewed.

del Indicates that an existing lease is being destroyed.

For very small small environments the dhcp-script option is proba-
bly overkill, unless you want to experiment with writing a script
that notifies you whenever a new client has been connected to the
network. Larger environments might want to do something useful
with the data, such as performing usage analysis.

13.3.5 Debugging

The following options are normally disabled, but are useful for debugging.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 13. dnsmasq 343

keep-in-foreground Do not fork () and do not run in background. This is useful on Mac
OSX when running under launchd control.

no-daemon dnsmasq should run in the foreground, in debugging mode. It will
not change user and won’t write a PID file. Sending this process a
SIGUSR1 will cause it to create a full cache dump, which is logged
with syslogd or into a file, depending on your setting of log-facility.

log-facility The “facility” with which dnsmasq should send entries to the sys-
tem’s syslog daemon. The default is DAEMON or LOCAL0 when
you run it as no-daemon, which runs it in debugging mode. Set-
ting this variable to a path, which must contain a forward slash (/),
causes dnsmasq to write to the specified file instead of using syslog.
When logging to a file, dnsmasq closes and reopens the file when
it receives SIGUSR2. This allows the log file to be rotated without
stopping dnsmasq.

log-dhcp Log additional information about DHCP requests sent to clients.
We recommend you use this when you first start using DHCP, as it
shows you what the clients are sending and what dnsmasq is reply-
ing with.

log-queries Log the result of DNS queries. Here are three sample log entries:

query[A] kiki.office from 192.168.1.60
DHCP kiki.office is 192.168.1.53

query[A] myserver.office from 192.168.1.60
/etc/hosts myserver.office is 192.168.1.21

query[A] cnn.com from 192.168.1.60
forwarded cnn.com to 192.168.1.20
reply cnn.com is 64.236.29.120
reply cnn.com is 64.236.16.20
reply cnn.com is 64.236.16.52
reply cnn.com is 64.236.24.12

dnsmasq shows the query type in square brackets. (A is a query for
an A record, . . .). On the second line of each entry it shows where
the query was answered from. In the first case, the answer came
from a DHCP registration, the second came from the /etc/hosts

file on the machine dnsmasq is running on, and the third was for-
warded to a recursive name server running on 192.168.1.20.

Setting this option also enables a full cache dump to the log-facility
on receipt of SIGUSR1.

time 196386581, cache size 150, 0/4 cache insertions ...
Host Address Flags Expires
localhost6 ::1 6FRI H
foozy.local 192.168.1.17 4FRI H
foozy 192.168.1.17 4F I H
mail.qupps.biz 192.168.1.20 4F Sat Dec 1 18:15
x.qupps.biz qupps.biz CF Sat Dec 1 18:15

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

344 Alternative DNS Servers – Jan-Piet Mens

qupps.biz 192.168.1.20 4F Sat Dec 1 18:15
localhost 127.0.0.1 4F I H

dnsmasq recognizes other options, as well as more advanced forms of some of the options
described. We encourage you to read the dnsmasqmanual for details.

13.4 A complete example

Here we show you a configuration suitable for a number of scenarios. We’ve used only a
small subset of dnsmasq’s facilities, but we can boot FreeBSD, GNU/Linux and even Mi-
crosoft Windows XP PCs from this and that is good enough for us.

Listing 13.1: dnsmasq configuration

Logging.
1. Use file instead of syslog
2. Log DNS queries
3. Log DHCP details
log-facility=/var/log/dnsmasq
log-queries
log-dhcp# disable if too noisy

DNS things
1. Set domain to .office
2. Never forward anything.office
3. Don’t forward unknown PTR for private addrs
4. Drop Win2K stuff
5. Must have period in name to forward
6. Add domain (.office) to simple names

domain=office
local=/office/
bogus-priv
filterwin2k
domain-needed
expand-hosts

more DNS
1. Add explicit forwarder for qupps.biz
server=/qupps.biz/192.168.1.20

DHCP
1. I am *the* DHCP server
2. Write leases to this file
dhcp-authoritative
dhcp-leasefile=/var/lib/dnsmasq.leases

DHCP Options (‘dnsmasq --help dhcp’)
1. Netmask
2. Gateway (router)
(3. optional: DNS server; default is dnsmasq host)
4. Tell MS client to RELEASE on shutdown

dhcp-option = option:netmask, 255.255.255.0

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 13. dnsmasq 345

dhcp-option = option:router, 192.168.1.1
dhcp-option = option:dns-server, 192.168.1.164
dhcp-option = vendor:MSFT,2,1i

Dynamic DHCP
1. range with 3 day lease (lowers traffic)
dhcp-range=192.168.1.50,192.168.1.150,3d

A few static DHCP hosts
dhcp-host=00:0F:1F:C5:0B:65,jp510m,192.168.1.60,45m
dhcp-host=00:80:77:B1:0E:38,printer,192.168.1.60,72 h

Here’s a summary of what this configuration does for you:

Logging 1. Log to the specified file instead via syslogd.

2. DNS queries will be logged.

3. Details about DHCP requests received and answered will also be
logged. This is very useful for debugging.

DNS settings 1. Our local DNS domain is set to .office.

2. The local option specifies that dnsmasq will not forward any query
containing the domain .office to an upstream name server.

3. Forbidding dnsmasq to forward requests for PTR resource to private
IP addresses records to upstream name servers is always a good
idea unless you are deploying dnsmasq in an environment in which
the upstream name servers use private IP addresses.

4. Newer unwanted Microsoft Windows DNS queries are filtered out
with filterwin2k.

5. Forward queries to upstream servers only if the query contains a
domain name.

6. Furthermore dnsmasq should add our domain name (.office) to un-
qualified names read from /etc/hosts .

More DNS As an example, we set up a forwarder for the domain qupps.biz to a name
server at 192.168.1.20. You may need several server lines if you have
several private domains you want to serve.

DHCP 1. DHCP is set to be authoritative.

2. Set the location of the leases file.

DHCP options 1. Netmask.

2. Gateway or router.

3. DNS server. This option is commented out, because dnsmasq de-
faults to supplying its own address as the DNS server.

4. A vendor setting that causes Microsoft Windows clients to relin-
quish their lease upon shutdown.

Dynamic Define a range of IP addresses (an address pool) from which dnsmasq
assigns IP addresses to clients. The lease is given for three days.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

346 Alternative DNS Servers – Jan-Piet Mens

Static Static DHCP assignments can also be specified.

1. A special laptop is given a fixed IP address.

2. The office printer is also assigned a static address. It will be avail-
able to office users as the host name printer.office.

13.4.1 Booting a PC and watching it happen

Starting a Microsoft Windows PC or renewing a lease with the ipconfig.exe utility produces
the following debug output if DHCP debugging is enabled on dnsmasq:

DHCP packet: transaction-id is 1331026398
Available DHCP range: 192.168.1.50 -- 192.168.1.150
DHCPRELEASE(eth0) 192.168.1.53 00:0c:f1:71:67:ca
DHCP packet: transaction-id is 2846010516
Available DHCP range: 192.168.1.50 -- 192.168.1.150
Vendor class: MSFT 5.0
DHCPDISCOVER(eth0) 192.168.1.53 00:0c:f1:71:67:ca
DHCPOFFER(eth0) 192.168.1.53 00:0c:f1:71:67:ca
requested options: 1:netmask, 15:domain-name, 3:router, 6:dns-server,
requested options: 44:netbios-ns, 46:netbios-nodetype, 47:netbios-scop
requested options: 31:router-discovery, 33:static-rout e, 249,
requested options: 43:vendor-encap
sent size: 1 option: 53:message-type 02
sent size: 4 option: 54:server-identifier c0:a8:01:a4
sent size: 4 option: 51:lease-time 00:00:2a:30
sent size: 4 option: 58:T1 00:00:15:18
sent size: 4 option: 59:T2 00:00:24:ea
sent size: 4 option: 28:broadcast c0:a8:01:ff
sent size: 4 option: 6:dns-server c0:a8:01:a4
sent size: 3 option: 15:domain-name 6c:61:6e
sent size: 4 option: 3:router c0:a8:01:01
sent size: 4 option: 1:netmask ff:ff:ff:00
sent size: 7 option: 43:vendor-encap 02:04:00:00:00:01:f f
DHCP packet: transaction-id is 2846010516
Available DHCP range: 192.168.1.50 -- 192.168.1.150
Vendor class: MSFT 5.0
DHCPREQUEST(eth0) 192.168.1.53 00:0c:f1:71:67:ca
DHCPACK(eth0) 192.168.1.53 00:0c:f1:71:67:ca kiki
...

You can view the configuration retrieved via DHCP on Microsoft Windows clients, with the
ipconfig.exe tool from the command line. An XP client that booted via dnsmasq shows the
following information:

C: \> ipconfig /all
Windows IP Configuration

Host Name : kiki
Primary Dns Suffix :
Node Type : Unknown
IP Routing Enabled. : No
WINS Proxy Enabled. : No
DNS Suffix Search List. . . . : office

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 13. dnsmasq 347

Ethernet adapter Local Area Connection:

Connection-specific DNS Suffix : office
Description : Intel(R) PRO/100 VE Network Connec tion
Physical Address. : 00-0C-F1-71-67-CA
Dhcp Enabled. : Yes
Autoconfiguration Enabled . . : Yes
IP Address. : 192.168.1.53
Subnet Mask : 255.255.255.0
Default Gateway : 192.168.1.1
DHCP Server : 192.168.1.164
DNS Servers : 192.168.1.164
Lease Obtained. : Freitag, 30. November 2007 23:15: 00
Lease Expires : Samstag, 1. Dezember 2007 02:15:00

The leases file on the dnsmasq host contains the DHCP leases that dnsmasq issued:

1196475348 00:0c:f1:71:67:ca 192.168.1.53 kiki 01:00:0c :f1:71:67:ca
1196467231 00:0f:1f:c5:0b:65 192.168.1.60 jp510m 01:00: 0f:1f:c5:0b:65

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

348 Alternative DNS Servers – Jan-Piet Mens

Summary

• dnsmasq provides an easy solution for all DNS and DHCP requirements in small to
medium branch-office networks or Small Office / Home Office environments.

• dnsmasq can provide services for more complex networks, with additional
configuration.

• dnsmasq is also useful on single-machine networks because of its caching DNS proxy.

Related topics

• dnscache (Chapter 17).

• Chapter 19 expands on the DHCP topics.

Notes and further reading

Building dnsmasq

Building dnsmasq yourself might not be necessary, as many GNU/Linux distributions have
ready-made packages of dnsmasq which can be installed from your usual package man-
ager; do check whether your distribution comes with dnsmasq. For Mac OS X, ports are
available from http://dnsmasq.darwinports.com/ and from the Fink project http://

finkproject.org/ .
If you do want to build it yourself, download the latest version of dnsmasq from http:

//www.thekelleys.org.uk/dnsmasq/ , extract the archive, and make the binary:

$ wget http://www.thekelleys.org.uk/dnsmasq/.....
$ tar xvzf dnsmasq-2.43.tar.gz
$ cd dnsmasq-2.43
$ make clean
make install

The file src/config.h contains path names which youmight want to tweak before building
the program. By default the program is installed in /usr/local/sbin/dnsmasq . To install
a commented configuration file, which is useful for getting started:

cp dnsmasq.conf.example /etc/dnsmasq.conf

Router distributions

dnsmasq is used in a number of router boxes, and in some software distributions that can
be used to flash supported routers. Some of the known packages that contain dnsmasq are
DD-WRT, OpenWRT, La Fonera, Tomato, and Meraki.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter

14 DNS on Microsoft Windows

Why would you want to do that?

JP Mens

14.1 An overview of Microsoft Windows DNS Server

14.2 Using Open Source DNS servers on Windows

Introduction

There are several options for running DNS onMicrosoft Windows. Some of the programs discussed in
the preceding chapters are available as nativeWindows executables, and there is of course theMicrosoft
Windows DNS Server, which can be Active-Directory-enabled.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

350 Alternative DNS Servers – Jan-Piet Mens

It is widely recognized that the Domain Name System is a domain1 of *nix systems: you
would be hard pressed to find a notable ISP that uses a Microsoft Windows system to pro-
vide DNS services to its customers2. Be that as it may, valid reasons for running DNS ser-
vices on Microsoft Windows are:

• Microsoft Windows is the only operating system allowed in your organization.

• You want Active Directory integration.

• You want to run Microsoft Windows DNS Server because of the automatic DNS updates
performed by your client workstations. You may still have your main DNS servers
on a UNIX platform, and you can define your Microsoft domain controllers as sub-
domains of your primary UNIX-served DNS domain, and have them perform zone
transfers if required.

If you are obliged to offer DNS services on Microsoft Windows you have several options:

1. Use Microsoft Windows DNS Server.

2. Use one of the open source DNS servers that has a native Microsoft Windows port.

3. Use the Cygwin environment (Section 14.2.2) on which to run a name server.

4. Consider using virtualization software onWindows, such as VMware server, on which
you install a *nix operating system. Within that environment, you install and operate
one of the *nix DNS servers.

We cover only options 1, 2 and 3 in the following sections.

14.1 An overview of Microsoft Windows DNS Server

In Windows 2003, DNS has become the primary method of name resolution for a Microsoft
Windows environment. If you use Active Directory (AD) you must run DNS, and it must
support dynamic updates. (Dynamic updates are supported in MyDNS and BIND, so you
can use those name servers instead, if you prefer.) The Windows 2003 DNS can either be
AD-integrated or non-AD integrated (which is then called ”normal DNS”). The benefits of
having integrated DNS are:

• DNS data is stored in AD.

• AD automatically replicates DNS data, which removes the need to configure AXFR zone
transfers.

• AD-integrated DNS still supports outgoing zone transfers to non-AD integrated Mi-
crosoft DNS servers or *nix DNS servers.

1Pun intended. . .
2According to the October 2007 survey at http://dns.measurement-factory.com/surveys/

200710.html , only 2.74% of the world’s public DNS servers run on Microsoft Windows.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 14. DNS on Microsoft Windows 351

You specify at installation time whether DNS is to be integrated in AD or not:

• If Microsoft Windows DNS Server is not AD-integrated, its zones are stored as individual
files, named zone.dns , in the directory (folder):

%systemroot% \system32 \dns

Whenever you change a zone, the system automatically keeps a single backup copy
(of the version before the change), in the backup directory.

• For AD-integrated DNS, it is good practice to manually create a backup of zones with
the dnscmd.exe utility before changing them:

C: \> dnscmd servername /ZoneExport qupps.biz qupps.biz.dns

Unless otherwise specified, the file is created in:

%systemroot% \system32 \dns

14.1.1 Zone types

Whether AD-integrated or not Microsoft Windows DNS Server can host the following types of
zones:

• Primary zones. They can be AD-stored or not. They can zone transfer to secondary or
slave servers if required.

• Secondary zones containing read-only copies of DNS records that were obtained via
incoming zone transfers (AXFR). Microsoft Windows DNS Server can offer zone transfers
for secondary zones to other secondaries (i.e. secondary of a secondary).

• BIND-style stub zones containing only pointers to another zone.

14.1.2 Forwarders

In Windows 2003 you configure forwarders on the General tab of the DNS server’s property
sheet in the DNS console. You can also configure so-called conditional forwarders, which
handle name resolution only for specific domains. This can be useful to get name reso-
lution between two different companies coupled. For example, if your company merges
with QUPPS, you create a conditional forwarder for QUPPS’ domains so that queries for
anything.qupps.biz are forwarded to QUPPS’s name servers for resolution. This is like the
forward zone in a BIND configuration.
When querying aWindows DNS server with a conditional forwarder, we noticed that all

replies from that forwarder are returned as authoritative (the replies have the “aa” bit set on
them) even if they are not authoritative.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

352 Alternative DNS Servers – Jan-Piet Mens

14.1.3 DNS on the command-line

The Microsoft Windows 2003 DNS server has good support for management via a com-
mand line, using a program called dnscmd.exe which ships with the support tools on the
Windows 2003 Server media. Navigate to the Support \Tools folder and right-click on the
SUPPORT.CABfile to choose Explore from the context menu. Locate dnscmd.exe, right-click it
and choose Extract from the context menu, saving it in a suitable path.

Microsoft Windows DNS Server does not support DNSSEC, although it will transfer DNSSEC-
enabled zones. Support for DNSSEC was slated for the release of Microsoft Windows 2008,
but the first release does not contain DNSSEC.

14.2 Using Open Source DNS servers on Windows

You have a number of options for deploying an Open Source DNS server on Microsoft Win-
dows:

• BIND, BIND SDB, Bind DLZ, MaraDNS, PowerDNS can be built for running on native Mi-
crosoft Windows, and some of them already exist as pre-built packages or binaries.

• Run a virtual machine on VMware, and run your chosen DNS server brand on this
*nix virtual machine.

• Use the Cygwin environment, which is a set of utilities that implements a GNU/Linux-
like environment on Microsoft Windows.

14.2.1 DNS servers with native Win32 support

Running BIND on Win32

It is pleasantly easy to install BIND on Microsoft Windows using ISC’s binary installer. The
installation includes the dig program, which is essential in all things DNS. After download-
ing the binary package from ISC’s Web site, you:

1. Extract the content of the ZIP archive to a temporary location.

2. Install BIND on Microsoft Windows by running BINDInstall.exe. The installer creates an
account called named under which the service will run.

3. Before starting the service, you have to create a named.conf file in:

%SYSTEMROOT%\system32 \dns \etc \named.conf

A small example that you use to serve a single master zone is:

options {
directory "c: \windows \system32 \dns";
pid-file "c: \temp \named.pid";
dump-file "cache_dump.db";
statistics-file "named_stats.txt";
allow-query { any; };

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 14. DNS on Microsoft Windows 353

recursion no;
};

zone "qupps.biz" IN {
type master;
file "qupps.biz";

};

4. If you install BIND as a service (recommended), you can start and stop the service from
the usual Services dialog or using the net command:

C: \> net start| stop named

5. Any errors or warnings issued by named on Microsoft Windows are logged via the
Microsoft Windows event log.

6. The utilities (not the name server, but the tools such as dig) supplied with theMicrosoft
Windows version of BIND look for the addresses of your name servers by consulting
the registry for the typical resolver settings used by Microsoft Windows. However,
if you want to, you can override their settings by creating a resolv.conf file, and
installing it as:

C: \> type %SYSTEMROOT%\system32 \drivers \etc \resolv.conf
nameserver 127.0.0.1

The supplied tools include dig, dnssec-keygen, dnssec-signzone, host, nslookup, nsupdate, rndc,
and rndc-confgen.
The great thing about BIND on Microsoft Windows is that it has the same features that

you get running BIND on *nix.

Running Bind DLZ on Windows

Although there are no pre-built binary packages of Bind DLZ, you can build it for Microsoft
Windows. You will need the appropriate tool chains to do so, but that is documented on the
Bind DLZWeb site.

Running MaraDNS on Win32

You install MaraDNS from the pre-built binary package available on the MaraDNS download
site (see http://www.maradns.org/download.html). The binary is compiled withmingw32.
After downloading the file, you unpack the zip file:

C: \> unzip maradns-1-3-10-win32.zip
C: \> cd maradns-1-3-10

A startup script is provided as run maradns.bat, which is just a wrapper for:

C: \> start maradns -f mararc

You can also run MaraDNS as a service on your Windows workstation with these steps:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

354 Alternative DNS Servers – Jan-Piet Mens

1. We recommend you create a special directory for MaraDNS and its supporting files. In
the following examples, we use:

C: \> mkdir c: \mara
C: \> cd c: \mara

2. Download and install the srvany.exe and instsrv.exe executable programs from the Mi-
crosoft resource kit, and copy both into your newly created directory:

C: \> copy " \Program Files \Windows Resource Kits \Tools \srvany.exe" c: \mara
C: \> copy " \Program Files \Windows Resource Kits \Tools \instsrv.exe" c: \mara

3. Run the instsrv.exe program to set up srvany.exe as a service. After that, you can safely
delete the instsrv.exe program file:

C: \> cd \mara
C: \> instsrv MaraDNS c: \mara\srvany.exe
C: \> del instsrv.exe

4. Use the registry editor (regedit) to edit the registry. You will have to create a new key
and three values (Figure 14.1). Consult MaraDNS’s documentation in service.html

on how to do this.

Figure 14.1: Adding registry entries for MaraDNS

5. You can then start the service from the Services control panel (Figure 14.2) or directly
from the command-line:

C: \> net start maradns

Running PowerDNS on Win32

PowerDNS can be built for a Microsoft Windows platform. There are currently no up-to-date
pre-built packages available from the download site.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 14. DNS on Microsoft Windows 355

Figure 14.2: Starting or stopping the MaraDNS service

14.2.2 Cygwin

Cygwin is a GNU/Linux-like environment for Microsoft Windows. It consists of a set of
dynamic link libraries (DLL) and a huge number of prepackaged utilities from which you
choose whatever parts you are interested in. After you install Cygwin on Microsoft Win-
dows you have an environment at your fingertips that allows you to compile and run most
*nix programs as though you are on *nix.
The Cygwin distribution contains the GCC compiler suite and many other utilities (bash,

xterm, make, grep, sed, ldapsearch, vi3, etc.), so if you don’t have ready access to a UNIX or
GNU/Linux workstation, you can at least experiment with the programs we have discussed
in this book.
If you have a choice, don’t deploy a production name server on Cygwin because a real

*nix platform is faster (on the same hardware) and more stable, but Cygwin is a valuable
platform for experimentation4.
After you install Cygwin and launch a bash shell, you can download and install *nix

source code and compile it, following the instructions for a typical *nix system. This usu-
ally includes running a series of commands and/or compiler invocations, all of which are
available from within Cygwin, as long as you install the required packages in Cygwin:

$ tar xvzf ...
$./ configure ...
$ make ...

Although the resulting binary programs have an .exe extension to them, they are not
“normal” Microsoft Windows programs (i.e. not WIN32). In order to run, these programs
require the Cygwin environment, which consists of a number of DLLs.

3Some might say “yuk”, but there are also other text editors to choose from.
4In fact the samples we wrote for BIND SDBwere initially created and tested on a Cygwin environment in a hotel

room.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

356 Alternative DNS Servers – Jan-Piet Mens

Summary

• Microsoft Windows DNS Server is little used on the public Internet, although it is widely
used within organizations.

• Microsoft Windows DNS Server is either Active Directory-enabled or not; you choose at
install time.

• For a seamless UNIX /MicrosoftWindowsDNS integration, you typically deploy BIND
on both platforms.

Notes and further reading

Obtaining Cygwin

Cygwin’s home is at http://cygwin.com/ . You typically download a small executable in-
staller (Figure 14.3). It prompts you to specify the packages you want, and then it down-
loads and installs them. Whenever youwish to install further packages, you run the installer
again. Installation is very simple and it is well documented.

Figure 14.3: Selecting packages in Cygwin’s installer

Further reading

• The bookDNS onWindows Server 2003 by Cricket Liu, Matt Larson, and Robbie Allen is
a specialWindows-oriented edition of the classicDNS and BIND, updated to document
the many changes to DNS, large and small, found in Windows Server 2003. http:

//www.oreilly.com/catalog/dnswinsvr/

• How to Integrate Windows 2003 Server DNS with an Existing DNS Infrastructure http:

//support.microsoft.com/kb/323417 .

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter

15 DNS and Perl

Unix is simple. It just takes a genius to
understand its simplicity.

Dennis Ritchie

15.1 Querying the DNS from Perl

15.2 Create your own dynamic name server in Perl

15.3 Example – A custom dynamic server using Stanford::DNSserver

Introduction

Sometimes a regular DNS server will not provide what you need, but a small bit of coding will. The
Perl modules we present in this chapter allow you to create specialized DNS servers that provide
answers to DNS queries directly from code you write in Perl. We also show you how you can query
the DNS from Perl.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

358 Alternative DNS Servers – Jan-Piet Mens

The name servers we have discussed so far store their zone data in text files or in an SQL or
LDAP back end; some of these are even “dynamic”, in that they can serve new zones as soon
as they are added to the back end, without any reconfiguration of the name server. How-
ever, you may want something even more dynamic than that. For example, in Section 8.5.1
we described a dynamic load balancing server: the answer to a query for an A record for
www.qupps.biz is calculated dynamically each time and the value returned is the A record for
the least-loaded of three different Web server hosts.

PowerDNS (Chapter 6) with its “Pipe” back-end, and BIND SDB (Chapter 8), let you pro-
gram an interface to return whatever youwant, based on a query received. While the former
may not be performing enough, the latter means programming in the C language. A name
server in Perl may not perform as fast as BIND SDB, but it is easier to learn, is quicker than
programming in C, and is great for prototyping.
This happy medium is provided by Perl modules that you can use to implement a fully

functional DNS server in Perl. The nitty-gritty of the communications protocol is handled
automatically by the modules, so you have to provide only the functions or subroutines that
handle answers to the DNS queries.

Pros • Completely programmable and customizable
• Access whatever back-end you want to, however you want to
• Support for zone transfers (AXFR) and TCP
• Three different implementations

Cons ◦ Difficult to learn

Scenarios Small to medium environments that need maximum
customization.

Table 15.1: Perl name servers at a glance

Before we discuss how you implement your own name server in Perl, we show you how to
query the DNS using Perl.

15.1 Querying the DNS from Perl

When you want to translate a hostname to an IP address in Perl, you typically use the
gethostbyname () or gethostbyaddr () subroutines (provided by theSocket module, which
is included in the standard Perl installation). These routines are just Perl wrappers for the
resolver functions of the same name from the standard C library (Section 20.1). If you want
to do more than name-to-address (or address-to-name) translation, such as querying the
DNS for a Text (TXT) resource record, you use the Net::DNS Perl module, which we describe
in the rest of this section.

• Net::DNS contains functions for all facets of DNS: performing queries, dissecting DNS
packets, changing name servers, performing DNS updates, using different resolvers,
etc.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 15. DNS and Perl 359

• Net::DNS allows you to add DNSSEC support to your programs with its Net::DNS::SEC
modules.

With Net::DNS you typically use a “resolver object” to query the DNS. To create the resolver
object, you use methods provided by the package to specify whether you want recursion,
debugging, DNSSEC, etc. You can also specify which name server(s) to use; if you don’t, the
system’s configuration (i.e. /etc/resolv.conf) is consulted to find addresses of caching
name servers. Once you’ve obtained a resolver object, you use its search method to perform
queries. The search method returns either an array of answers obtained from name servers,
or an error on failure.
Here is a very small example, using Net::DNS to resolve a domain name:

Listing 15.1: Query a hostname with Net::DNS

#!/usr/bin/perl

use strict;
use Net::DNS;

my $domain = "qupps.biz";

my $res = Net::DNS::Resolver->new; # create resolver objec t
my $query = $res->search($domain); # perform query

if ($query) {
foreach my $rr ($query->answer) {

next unless $rr->type eq "A";
print "${domain}’s address is: ", $rr->address, "\n";

}
} else {

warn "query failed: ", $res->errorstring, "\n";
}

We show you more examples of Net::DNS in different chapters:

• Update your DNS with Net::DNS (Chapter 19).

• Initiate an incoming zone transfer (Chapter 23).

• Monitor DNS notifications sent out by name servers, which you integrate into your
monitoring environment (Chapter 24).

• Resolve Service (SRV) records (page 365).

• Query a DNS server for TXT records (Section G.1.1).

15.2 Create your own dynamic name server in Perl

Have you ever worked at a help desk? As a system administrator you know the drill when
a user needs help: (a) User reports a problem, and you decide to connect to user’s work-
station with VNC (see Notes). (b) You ask the person for a username. (c) You ask them for

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

360 Alternative DNS Servers – Jan-Piet Mens

the workstation’s IP address. (d) User doesn’t know it (obviously), so you explain how to
determine it (very long explanation omitted here. . .). (e) You connect to user’s workstation,
and tell the user you’ll call back in a minute to give your ear a rest. (f) You ask user for a
telephone number, and you jot it down.
We hate all that. When a user calls us, we ask them for their unique username – alexi ,

for example – and run:

$ dig alexi. info.qupps.biz any
;; ANSWER SECTION:
alexi.info.qupps.biz. 3600 IN A 192.168.2.96
alexi.info.qupps.biz. 3600 IN TXT "name: Ilexa Snem"
alexi.info.qupps.biz. 3600 IN TXT "phone: +34 71 10019345"

A single DNS query to our special domain info.qupps.biz returns all the information we need:

• The user’s IP address – we didn’t have to ask the user to try and find it.

• The user’s full name – we didn’t have to ask the user and write it down incorrectly.

• The user’s telephone number – we didn’t have to jot it down.

Is that magic? Well, perhaps; but we implemented this with a name server in Perl, integrated
into our DNS environment. We show you exactly how we did it, on page 365. Before that,
let’s look at Perl name servers more generally.

15.2.1 Why would I want to create my own name server?

Perl lets you do almost anything you want with the name server modules. Here are some
ideas:

• Using some sort of geographical data (see Notes), implement a GEO-capable name
server: when you query it for www.example.com, it returns an answer that depends on
the geographical location of the DNS client. E.g. a query for www.example.com might
return the Address (A) of www.de.example.com to a client in Germany, but return the
Address of www.uk.example.com to a client in England – you get the idea. (Note that
PowerDNS (Chapter 6) already has a ready-built GEO back-end you can use if you
don’t want to make your own.)

• For one of our clients we implemented an internal “pseudo-Geo” name server, that
again returns an A value depending on the geographical location of the querying client.
The internal network uses private 10.*.*.* addresses; obviously, no real geographical
data is available for these. Instead, we have a table that maps ranges of IP addresses,
specified by Perl regular expressions, to countries. We used Stanford::DNSserver (Sec-
tion 15.3) to implement this system, with Perl’s Net::IP::Match::Regexpmodule perform-
ing the network-to-country mapping.

• Load balancing. You can implement a DNS server that answers a query for a spe-
cific domain name with the address of the machine with the lowest load (Figure 15.1).
This is similar to our own load balancing example in Section 8.5.1, and also similar to
lbnamed (see Notes).

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 15. DNS and Perl 361

A name server implemented in Perl can use almost any kind of monitoring software
that keeps track of the availability or current performance of hosts. The monitoring
software regularly updates a database or file with this information, and then your Perl
code in your DNS server uses the information to determine which address (A) to return
as answer to the query.

Figure 15.1: An idea for a SNMP-controlled load-balancing DNS server in Perl

15.2.2 Perl tools for creating name servers

There are three different Perl modules you can use to implement a fully dynamic name
server:

1. Stanford::DNSserver

The Perl module Stanford::DNSserver was assembled by Rob Riepel, and it is based on
lbnamed by Roland Schemers (see Notes). We describe Stanford::DNSserver in detail in
Section 15.3, and use it to develop our own example DNS server.

2. Net::DNS::Nameserver

The Perl module Net::DNS::Nameserver implements a DNS server class. We show you
a simple example in Appendix E. At our request, the module’s maintainer, Olaf Kolk-
man, added a handler to detect DNS NOTIFY requests. We use these in an unusual way
to detect if our name servers are sending out notifications (Chapter 24).

3. Net::DNS::Server

Net::DNS::Server, developed by Luis E. Muñoz, is a set of Perl modules. You use meth-
ods to provide answers to specific query types. We show a simple example of how to
use it in Appendix E.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

362 Alternative DNS Servers – Jan-Piet Mens

Each of these three modules has its own, specific, API. Look at the examples here and in the
Appendixes to see which you prefer, or which is closest to your needs.

15.3 Example – Implementing a custom dynamic server
using Stanford::DNSserver

Stanford::DNSserver is an extensible name server written in Perl. The Perl code you write
determines the answers to the DNS queries it receives (Figure 15.2). The resource records it
returns to the DNS client are constructed at runtime by code you supply.

Figure 15.2: Architecture of Stanford::DNSserver

Installing Stanford::DNSserver

After downloading the code, apply the usual Perl incantation:

$ wget http://www.stanford.edu/˜riepel/lbnamed/Stanford-DNS server/ ←֓
Stanford-DNSserver.tar.gz

$ tar xvzf Stanford-DNSserver.tar.gz
$ cd Stanford-DNSserver-1.2.0
$ perl Makefile.PL
$ make
$ make test
$ make install

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 15. DNS and Perl 363

The package provides a sample name server in the file example that demonstrates the ca-
pabilities of the module. In the next section we show an example of our own using Stan-
ford::DNSserver.

Using DNS to find a user’s telephone number

The organization you work for may have an LDAP directory service that stores informa-
tion about the users in your organization. And if your organization doesn’t have an LDAP
directory, now is the best time to start implementing one; grab a copy of OpenLDAP and
go ahead: it is easier than you think (Appendix A), and your boss will raise your paycheck
by 50 percent1. Don’t skip this section if you don’t have an LDAP directory; modifying the
program to use an SQL database or even a plain-text file is trivial.

• Each user in our organization has a directory entry containing their name, telephone
number, authentication information, etc. A lot of this data originates in the HR depart-
ment, where it is added to the LDAP directory with custom made tools written in C
and Perl.

• We know that the machine that user alexi sits at has IP address 192.168.2.96 because
the address is assigned statically via DHCP. Our convention is that we give this ma-
chine the domain name alexi.users.qupps.biz. (We associate all users’ workstations with
the users.qupps.biz zone.)

• Using automatic tools, we create an address (A) record in our “normal” internal DNS:

alexi.users.qupps.biz. 3600 IN A 192.168.2.96

Actually, addresses of users’ workstations are entered into the DNS via our “poor
man’s dynamic DNS” (Chapter 19). Their addresses are in the DNS, but we could
just as easily have obtained the addresses directly from the database used by the DNS
server. Our code below retrieves them from the DNS.

That’s how we create the information in the system. On page 359 we showed you an exam-
ple of the result:

$ dig alexi.info.qupps.biz any
;; ANSWER SECTION:
alexi.info.qupps.biz. 3600 IN A 192.168.2.96
alexi.info.qupps.biz. 3600 IN TXT "name: Ilexa Snem"
alexi.info.qupps.biz. 3600 IN TXT "phone: +34 71 10019345"

These are DNS resource records, but where did our Perl name server get the values from? We
could have “copied” the information from the LDAP directory into our “normal” internal
DNS with some batch program and created TXT records for each user, but we didn’t. Doing
so would have several disadvantages:

• We’d have to store data redundantly (in LDAP and in the DNS).

1Or she might cut your pay by the same amount if you fail.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

364 Alternative DNS Servers – Jan-Piet Mens

• The DNS would contain hundreds (in large organizations, thousands) of TXT resource
records, many of which would never be used.

• Data could get stale. Suppose the process of updating the TXT records from LDAP
runs nightly: if a user’s information is changed in LDAP early in the morning, the
data would be updated in the DNS only at the next nightly run of the batch update.

That is why we want to retrieve the data “on-line”. Now, let’s see how the data is retrieved.
Consider username alexi as an example; the numbered items below refer to the numbers
in (Figure 15.3).

1. The syadmin is talking to user alexi . By definition, her “information” domain name
is alexi.info.qupps.biz, so the sysadmin uses dig to query our normal (caching) DNS
server for an ANY answer for this domain.

2. Our Perl server is authoritative for the info.qupps.biz zone, so we configure our caching
name to forward any queries for this zone to our Perl server. (We show you in Chap-
ter 18 how to set this up.)

Now, when the query from the sysadmin arrives, the caching server forwards it for
resolution to the Perl server.

3. The Perl server receives the query for alexi.info.qupps.biz, type ANY. This query is passed
down within the server to the Perl code that we’ve written.

Our convention is that user alexi ’s host has the domain name alexi.users.qupps.biz.
Therefore, our Perl code first queries the normal DNS for the (A) record for this do-
main. So now we have the first part of the answer to be returned to the sysadmin:

alexi.info.qupps.biz. 3600 IN A 192.168.2.96

4. We are still within our Perl code in the Perl server. We now have to retrieve the in-
formation (user’s real name and phone number) to insert into Text (TXT) records. We
retrieve this on the fly from the corporate LDAP directory server. Every user has a
unique username, so we can find unambiguous directory information for a user. The
LDAP entry (see Appendix A) describing a user contains:

dn: uid=alexi,ou=usr,dc=qupps,dc=biz
objectClass: inetOrgPerson
objectClass: person
telephoneNumber: +34 71 10019345
uid: alexi
cn: Ilexa Snem
sn: Snem
...

(We could have stored this data an SQL database if we had preferred. However, the
scenario for this example assumed that the users’ HR information was already in an
LDAP directory.)

We now take the information obtained via LDAP, and form it into TXT records:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 15. DNS and Perl 365

alexi.info.qupps.biz. 3600 IN TXT "name: Ilexa Snem"
alexi.info.qupps.biz. 3600 IN TXT "phone: +34 71 10019345"

5. Our own Perl code has all the data it requires now. It passes it back to the main code
of the Perl server, which returns the DNS reply to the sysadmin’s dig (via the caching
server).

Figure 15.3: Stanford::DNSserver Perl server queries DNS and LDAP

The reason we use two distinct domains is that we used info.qupps.biz to get the authoritative
“information” records, which is held on our Perl server (strictly, on the LDAP directory used
by the Perl server). Then, we use the separate domain, users.qupps.biz, to get the authorita-
tive A record for the user’s machine.
Could we have consolidated the data into a single name server? Yes, but then we would
have had to store the users’ machine addresses – their A records – in our LDAP directory,
instead of using a normal authoritative server as we did above.

The code

The name server we implement is a program is called clidnsd.pl. We go through the source
ode explaining the most interesting portions here. The full code is in Appendix E.

1. We are going to use a “modern” DNS Service (SRV) record to find the LDAP directory
server:

my $ldapsrv = ’ ldap. tcp.qupps.biz’;
my $ldapbase = ’ou=usr,dc=qupps,dc=biz’;

2. Define defaults for our DNS server:

my $myname = hostname();
my $tld = ’info.qupps.biz’;
my $atld = ’users.qupps.biz’;
my $ttl = 3600;

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

366 Alternative DNS Servers – Jan-Piet Mens

$myname the host name of the machine this Perl DNS server will be running on.
Our DNS server uses this name to publish its own NS record.

$tld The domain name you choose. We have to tell Stanford::DNSserver for
what domains it will execute which code, and we associate our user-
lookup code with this domain name.

$atld Another domain name you choose. We find A resource records for our
users in this zone (i.e. user alexi ’s workstation has a fully qualified
name of alexi.users.qupps.biz).

$ttl The default Time to Live (TTL) for records served by the DNS server.

3. The program uses the dnsSRV() subroutine to query the DNS for a service record, re-
solves that into one or more IP addresses, and sorts them by priority. We then use
these to attempt to connect to the LDAP directory server. The program then binds to
the LDAP directory or dies if it cannot (this code is shown in Appendix E).

4. Stanford::DNSserver is instantiated next; we set the address(es) to listen on, the port
number, TTL, and the optional flags that control whether it should fork () and become
a daemon.

$ns = new Stanford::DNSserver (
listen on => ["127.0.0.1"],
port => 53,
defttl => 60,
debug => 1,
daemon => "no",
pidfile => "/tmp/example.pid",
logfunc => sub { print shift; print " \n" },
exitfunc => sub {

print "Bye! \n";
$ld->disconnect;
});

logfunc () and exitfunc () are subroutines (Perl subs) that are called for each received
query and at the program’s exit respectively.

5. Optionally add “static” answers to Stanford::DNSserver. This is how you “hard-code”
answers to queries. We add static answers for queries of a Start of Authority (SOA),
Name Server (NS) and Address (A) records:

$ns->add_static(" $tld ", T_SOA, rr_SOA($myname, "hostmaster. $tld ",
time, 3600, 3600, 86400, 0));

$ns->add_static("$tld", T_NS, rr_NS($myname));
...

6. Add a dynamic “handler” to Stanford::DNSserver. This handler, which we’ve called
userreq (), is invoked for each DNS query received in the $tld domain. userreq () is
the code that dynamically creates answers to queries apart from the “static” ones we
hard-coded earlier:

$ns->add_dynamic("$tld" => \&userreq);

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 15. DNS and Perl 367

The add dynamic method is how we “link” our own custom code, i.e. userreq (), into
Stanford::DNSserver’s DNS-query processing framework, which handles all the UDP
communications, packet formatting, etc.

7. We have now finished our initialization. We call the answer queries method to pass
control to the main loop of Stanford::DNSserver. Control returns to our Perl program, to
the statement after this, only when the DNS server ends.

$ns->answer_queries();

8. This is where the “hard” part begins, as we have to provide code for the handler
userreq (). All queries received by Stanford::DNSserver for the domain $tld (except
for the ones we defined as “static”) are passed to the userreq () subroutine with argu-
ments:

domain The zone for which Stanford::DNSserver is handling this request. In the
example, it is info.qupps.biz.

host The domain name queried. For a query of alexi.info.qupps.biz, $host con-
tains the string “alexi ”.

qtype The query type as an ASCII string: A, MX, NS, TXT, etc.

qclass The query class. Usually contains IN (Internet).

dm A pointer to the DNS message as defined by the Stanford::DNSmodule.

from The IP address of the client that issued the query. This will typically be the
address of a name server.

(a) userreq () performs a sanity check on $host and returns a SERVFAIL if empty.

if (!$host) {
$dm->rcode = SERVFAIL; # No username specified
return;

}

(b) Check the query type. For queries of type ANY or A, determine IP Address(es)
of $host using dnsADDR() defined in dnssrv.pl (Appendix E), and pass answers
back into Stanford::DNSserver.

if ($qtype == T_A || $qtype == T_ANY) {

my @iplist = dnsADDR(9, "$host.$atld");

for my $ip (@iplist) {
$entry = unpack(’N’, inet_aton($ip));
$dm->answer .= dns_answer(QPTR, T_A, C_IN, $ttl, rr_A($en try));
$dm->ancount += 1;

}
}

Note, that the original query is for alexi.info.qupps.biz, but we have to search the
DNS (with dnsADDR()) for alexi.users.qupps.biz because that is the domain in which
A records for users are stored.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

368 Alternative DNS Servers – Jan-Piet Mens

(c) userreq () passes answers back to the main Stanford::DNSserver name server code
by adding values to $dm. We modify this pointer to the DNS message by append-
ing a resource record to answer , and by setting the number of records we return
in ancount .

The subroutine dns answer () is exported by Stanford::DNSserver and allows us to
build a properly formatted DNS reply.

(d) If the query type is TXT or ANY, search the LDAP directory server for a user, and
form the user details as TXT records back into Stanford::DNSserver, which will an-
swer them when the userreq () subroutine returns.

if ($qtype == T_TXT || $qtype == T_ANY) {

my $msg = $ld->search(base => $ldapbase,
filter => "(&(objectclass=person)(userid= $host))",
attrs => [qw(cn telephonenumber)]);

if ($msg->code) {
$dm->rcode = SERVFAIL;
return;

}
my @entries = $msg->entries;

foreach my $e (@entries) {
my $cn = $e->get_value(’cn’) or ’unknown’;
my $tel = $e->get_value(’telephonenumber’) or ’unknown’;

$dm->answer .= dns_answer(QPTR, T_TXT, C_IN, $ttl,
rr_TXT("name: $cn"));

$dm->ancount += 1;
$dm->answer .= dns_answer(QPTR, T_TXT, C_IN, $ttl,

rr_TXT("phone: $tel"));
$dm->ancount += 1;

}
}

(e) If no DNS answers found, set the return code to NXDOMAIN.

if (! $dm->ancount) {
$dm->rcode = NXDOMAIN;

}

Integrate your Perl name server into your organization’s DNS

The sub-domain served by our Perl name server (info.qupps.biz) has to be integrated into the
organization’s DNS so that a DNS query directed at our caching name servers finds it. The
process bywhich this is done is called delegation, andwe discuss that in detail in Chapter 18.
Suffice it to mention at this point, that you would delegate info.qupps.biz from qupps.biz to the
machine(s) on which your Perl name server is running.
A word of warning: we would recommend that you carefully consider whether you

should offer this kind of service on a publicly accessible DNS server. Think of the potential
implications of publishing details of your organization’s users to the public Internet! (If in
doubt, don’t.)

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 15. DNS and Perl 369

Summary

• Using the Perl language, you can create your own DNS name server, which dynami-
cally constructs answers to queries, using code that you write.

• There are three different Perl modules you can use to implement a fully dynamic name
server; the choice is yours.

Related topics

• You like the idea of having DNS queries answered dynamically but you are wary of
implementing your own DNS server? Have a look at PowerDNS (Chapter 6) with its
Pipe back-end.

• Instead of implementing a separate name server to answer queries dynamically, you’d
prefer embedding code into an existing program? With BIND SDB (Chapter 8) you can
write an interface to the BIND name server in the C programming language.

Notes and further reading

The Net::DNS package

Net::DNS was written by Michael Fuhr; Chris Reinhardt maintained the package between
2002 and 2004 and now the package is maintained by Olaf Kolkman from NLnet Labs
with active contributions by Dick Franks. Net::DNS’ home is at http://www.net-dns.org/ ,
where you will also find its excellent documentation with lots of examples.

VNC

Virtual Network Computing (VNC) is a graphical desktop sharing system to control another
computer. Keyboard and mouse events are transmitted from your computer to the remote
computer, and screen updates are relayed back from the remote to your computer. VNC is
great because it is platform independent: you can use a VNC viewer on, say, GNU/Linux to
control the screen of a Microsoft Windows PC or vice versa. There are clients and servers for
many operating systems and even for Java. VNC was originally developed by the Olivetti
& Oracle Research Lab, and today you’ll find several different flavors of VNC.We like using
TightVNC (see http://www.tightvnc.com/).

Geographical data

Maxmind have a database of geographical data which is free to use (see www.maxmind.com/

app/geoip_country).
In Section G.2 we discuss a DNS blacklist you can use to determine the geographic loca-

tion of an IP address.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

370 Alternative DNS Servers – Jan-Piet Mens

lbnamed

lbnamed originated at Stanford. It is an extensible load-balancing DNS name server written
in Perl. It serves either static or dynamic data. lbnamed reads a “poller” summary file pro-
duced by “poller” clients, and uses computed weights to determine which system to assign
to a name request.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter

16 DNS blacklists

I have no doubts that electronic mail will
remain a powerful vector for propagation of
viruses and other malware.

Wietse Venema

16.1 Why would I want to implement a DNS blacklist?

16.2 How to use an existing blacklist in your e-mail server

16.3 Implementing a simple DNS blacklist

16.4 Serving DNSBL with rbldnsd

16.5 Integrate DNS blacklists into your e-mail infrastructure

Introduction

Spam or Unsolicited Commercial E-mail (UCE) has long taken over the lion’s portion of e-mail traf-
fic on the Internet. DNS blacklists let you specify lists of IP addresses of servers or domain names
from which you do not want to receive mail. You can use publicly available DNS blacklists and/or
implement your own.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

372 Alternative DNS Servers – Jan-Piet Mens

A DNS blacklist (DNSBL) or blocklist, is a list of hosts or TCP/IP addresses that are known
to be senders of Unsolicited Commercial E-mail or Spam. Mail servers query these lists via
the DNS to decide whether to accept a message from that host. DNS blacklists are useful,
but controversial: your mail server relies on a third party to decide whether a particular
message should be accepted. We discuss how you use a blacklist (i.e. your e-mail server
queries the blacklist to fend off spammers), and we show you how you can implement your
own blacklist (i.e. you publish your own data).
You can implement DNS blacklists with any DNS name server (and we show you how),

but you will typically want to use a specialized program for implementing them because a
specialized program consumes fewer resources. rbldnsd is one such specialized name server:

Pros • Very fast, low memory usage
• Supports several file formats
• Good logging facilities

Cons ◦ Individual addresses cannot be easily (or temporarily) removed
from a blacklist

Scenarios Medium to large environments with their own Mail Transfer
Agents (mail servers).

Table 16.1: rbldnsd at a glance

Some DNS blacklist services (see Notes) are free, others charge for a subscription. Subscrip-
tion rates are typically related to the volume of mail you receive, i.e. the number of DNS
queries you submit to the blacklist. If you don’t intend to “publish” your own blacklist you
may want to use one of the publicly available ones, which gives you two options:

1. You configure yourmail server to use one ormore of the public DNS blacklists utilizing
the public DNS to resolve the appropriate queries.

2. If you process large volumes of incoming e-mail, you will typically want to reduce the
number of DNS queries over the Internet. You can usually obtain a copy of the DNS
blacklist, which you then serve to your own mail servers with a specialized DNSBL
name server (Section 16.4).

Before continuing, we need to define two terms:

1. AMail User Agent (MUA) is your desktop e-mail client – a program such as Thunder-
bird, Outlook, Lotus Notes, Mutt, etc. As you probably know, there is more to e-mail
than the Mail User Agent: there is . . .

2. The Mail Transport Agent (MTA) or mail server. This is the program that receives an
e-mail message from a User Agent (MUA) and tries to dispatch it to its destination.
The Mail Transport Agent runs on a server machine. Typical implementations of Mail
Transport Agents include Exim, Sendmail, Postfix, Lotus Domino, etc.

In the discussion that follows we concentrate on the Mail Transport Agent, i.e. the mail
server side of things.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 16. DNS blacklists 373

16.1 Why would I want to implement a DNS blacklist?

Reasons to implement a DNS blacklist on your own systems include:

• You are sick and tired of Spam. Your users already have a method in place with which
they report Spam, and you want to use addresses gleaned from that “database” to
populate a blacklist.

• You subscribe to (or otherwise use) a DNS blacklist service. Instead of using band-
width over the Internet to query their DNS servers (which you mitigate with a caching
name server), you want to become self-sufficient in case the DNSBL provider’s name
servers become unreachable.

• You maintain a “white list” of hosts that you know would never send spam, and wish
to make that list available to friendly sites (or to the public at large) via DNS.

16.2 How to use an existing blacklist in your e-mail server

Figure 16.1: DNS blacklists attempt to combat spam

When your mail server receives a connection from a remote mail server (which acts as SMTP
client, to your SMTP server) and wants to check that against a DNSBL, the process is more
or less as follows: (Figure 16.1):

1. The (remote) sending server establishes a connection to your server. Your server ex-
amines the connection to find the IP address (192.0.2.13, say) of the sending server.

2. Your server creates a special “pseudo-domain name” by reversing the IP address and
appending the domain name of the blacklist. For example, if the incoming address is

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

374 Alternative DNS Servers – Jan-Piet Mens

192.0.2.13 and the domain name of the blacklist is bl.example.com, the “pseudo-domain
name” is 13.2.0.192.bl.example.com.

Your mail server performs a DNS lookup for an Address (A) record on this domain
name. This is not an inverse query for a PTR (in an in-addr.arpa domain), but a forward
query for an A record (in the bl.example.com domain).

3. Your caching name server queries the authoritative DNS servers for the blacklist do-
main. In our example, we use a domain name bl.example.com, so the authoritative
name servers for the zone bl.example.com are queried.

4. If the DNS query resolves successfully (we discuss in a moment what it must resolve
to), your mail server considers the sending server to be a spammer, indicates a fatal
error condition, and closes the connection.

If the lookup is successful, your MTA can query the DNS for a Text (TXT) record. The
Text record typically contains a reason for communications denial (a short explanation
or a URL pointing to a more verbose reason). MTAs include the value of the TXT record
in the error message they return to the sending user.

If the query does not resolve, your mail server has no reason (at this point in time)
to consider the client offensive, and it continues processing the incoming message. In
many installations, the receiving mail server next checks the content of the message
(not just the sender’s address) to decide whether it is spam, before finally accepting
the message.

There are several things to note:

• Your mail server queries the DNS for an Address (A) record of any value:

– Typically, if the DNS returns 127.0.0.4, the mail sender is to be blocked. The actual
IP address returned is defined by the blacklist operator.

If you use a publicly accessible blacklist youmust check its documentation to find
out what records are returned; failure to do so canmake yourMail Transfer Agent
(yourmail server) incorrectly refusemail, because it thinks that a successful query
automatically means the client is black-listed, even though the DNSBL provider
has perhaps actually white-listed it. In the examples that follow, we use 127.0.0.4
to indicate that a client is a spammer, and 127.0.0.10 for whitelisting the client.
Our zone file contains both black-listed and white-listed clients.

– If the A query resolves, an MTA can query query the DNS for a Text (TXT) record
saying why the mail sender is on the blacklist (see below).

– If the DNS query returns not found (i.e. NXDOMAIN), the address of the sending
MTA is not on the blacklist, so your server continues processing this message.

• If you publish your DNS blacklist on the public Internet, you either use a separate
zone name or you create a sub-domain of a publicly accessible Internet domain (e.g.
bl.qupps.biz). If, on the other hand, you use your blacklist privately only, you can call
the domain whatever you like (e.g. bad.guys).

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 16. DNS blacklists 375

• Some Mail Transfer Agents, such as Exim, allow you to use a DNS blacklist to query
a sender’s domain name (i.e. the part after the@character in the sender’s e-mail ad-
dress), as opposed to the sender’s IP address, to decide whether you want to accept
or discard mail from a domain. This is very flexible because it catches many servers,
including future ones.

• If you want to, and if your mail server supports the feature, you can use blacklist
technology to implement a whitelist, i.e. a list of domain names or IP addresses that
you know are good. By judiciously configuring your e-mail server, you can blindly
allow incoming mail from hosts on your whitelist.

That’s how you use a blacklist provided on the Internet, that someone else has set up, and
we show you in Section 16.5 how you configure your e-mail servers to query the blacklist.
Now we’ll show you how to create your own blacklist; if that’s not relevant to you, skip to
Section 16.5.

16.3 Implementing a simple DNS blacklist

Mail servers query blacklists using the DNS, so you need a DNS server to implement one.
You can implement a simple DNS blacklist on any DNS server you deploy. However, if you
have a lot of entries in your DNS blacklist, or you want to use local copies of existing DNS
blacklists, deploying a small, special-purpose DNS server reduces memory consumption
on your main authoritative name servers and it can ease maintenance of blacklist entries.
rbldnsd is great for this.
To implement a blacklist:

A. Choose a domain name in which you publish the blacklist entries.

B. Add Address (and optionally Text) records to this zone.

C. Configure your MTA to query your new DNS blacklist.

We cover each of these steps in the following sections.

16.3.1 A – Choose a domain to publish blacklist entries

Before implementing your DNS blacklist decide whether it will be publicly available or used
only by your e-mail servers. If it is public, the DNS will have to “find” the blacklist, so
you must use an officially-assigned (sub-)domain name for it. If it is private, you choose
whatever name you want (see Notes on page 58 for help on choosing a name).
You configure the Mail Transfer Agent to query the DNS in the domain you choose for

the blacklist. We’ll implement a private blacklist, so we can choose what the name of that
domain is. The domain we have chosen is bl.qupps.biz. AnMTAmight perform the following
queries:

• If you configure the MTA to check IP addresses, when it wants to check address
192.168.1.181, it will submit a DNS query for an Address (A) record for the domain:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

376 Alternative DNS Servers – Jan-Piet Mens

181.1.168.192.bl.qupps.biz.

Note that it is not a inverse query for a Pointer (PTR), but a forwards query for an
Address (A). The Address record returned can have any value, but typically you give
it a value in the loopback network (127.0.0.0/8). The exact address you want returned
depends on how you configure your MTA, but conventionally the address 127.0.0.4 is
used to indicate a spammer. When using some other organization’s blacklist you have
to find out from them which IP addresses they return.

• If you configure the MTA to check for good or bad sender domains (as opposed to
numeric IP addresses), the DNS query submitted for a sending domain of example.com
will also be for an Address (A) record, but this time for the domain:

example.com.bl.qupps.biz.

16.3.2 B – Add Address (and optionally Text) records to this zone

As the implementor of the DNS blacklist you decide what A resource record you will return
for a query. Typical values are 127.0.0.2 or 127.0.0.4 to indicate a listed client, but that varies
greatly. For example, the SORBS DNSBL1 returns A records from 127.0.0.2 through 127.0.0.12
depending on the database the client is listed in. (They have different databases containing
clients listed as being open proxies, spammers, badly configured e-mail servers, etc.)
Knowing how an MTA queries the DNS makes it easy to set up your DNS server with

the blacklist. The zone file for bl.qupps.bizwould thus look like this:

Listing 16.1: Zone file with a DNS blacklist

$ORIGIN .
$TTL 600 ; 10 minutes
bl.qupps.biz IN SOA ns1.qupps.biz. email.nospam.xa. (

200801192 ; serial
10800 ; refresh (3 hours)
900 ; retry (15 minutes)
604800 ; expire (1 week)
600 ; minimum (1 hour)
)

NS ns.qupps.biz.
$ORIGIN bl.qupps.biz.

ns A 127.0.0.1

;--
; *** NO trailing periods from here on!!! ***
;--

; These guys are good
mens.de A 127.0.0.10
qupps.biz A 127.0.0.10

; Here come the spammers

1http://www.dnsbl.us.sorbs.net/

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 16. DNS blacklists 377

example.com A 127.0.0.4
karok.info A 127.0.0.4

TXT "Go away!"

spammer.com A 127.0.0.4
TXT "Go pester somebody else"

*.kapit.info A 127.0.0.4

; IP addresses
181.1.168.192 A 127.0.0.4

TXT "Go to http://bl.qupps.biz/bad.cgi?q=192.168.1.181 "
42.172.253.61 A 127.0.0.4

TXT "Found by NiXSpam"

Notes:

• The domain names in our blacklist are not fully qualified, and they must not be: recall
that they’ll be qualified with the domain name of our blacklist.

• Some of the domains have a TXT record associated with them. For instance, the TXT
record for the address 192.168.1.181 (reversed in the above example) contains a URL;
this is common practice, and it is meant for consumption by a human who sees the
mail server’s error message. The user would hopefully point a Web browser at the
URL to find details on the black-listing.

We have shown you a zonemaster file as you’d use for BIND or NSD, but you can consider
other alternatives for serving DNSBL:

• Set up a MyDNS or PowerDNS server with a database back-end and provide a GUI for
adding blacklist entries. If you provide your DNSBL as a public service (and receive
a large volume of queries) you can place a caching name server in front of it, to lower
the load on your back-end.

• Bind DLZwith a BDBHPT back-end (see Notes).

• Use a specialized server. We discuss rbldnsd in Section 16.4.

16.3.3 C – Configure your MTA to query your new DNS blacklist

If you want your Mail Transfer Agent to use a DNSBL:

• If you have integrated your DNS blacklist into the public DNS, you don’t need any
special DNS configuration, because your MTA sends queries to the DNSBL in exactly
the same way as it sends any other, “normal”, DNS query.

• If you have created a fictitious domain (bad.guys) for your DNSBL (which we recom-
mend you do if youwill not provide your blacklist to the public), you have to configure
your caching name servers to specifically find that zone. In other words, since this is
an internal list for your organization’s use only, you have to configure your caching
name server to “find” your blacklist zone. We discuss how you can set up forwarding
for your caching name servers in Chapter 17, and give you an example, using BIND, in
Section 16.4.3.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

378 Alternative DNS Servers – Jan-Piet Mens

16.4 Serving DNSBL with rbldnsd

DNS blacklists are held in DNS zones, so these can be (and sometimes are) distributed via
DNS zone transfers (AXFR). However some DNS blacklists are so big that this is no longer
practical. Instead, a special condensed file format has been developed, which allows the
database to be distributed efficiently. Special DNS servers, including rbldnsd, can directly re-
trieve all the information they need from these specially-formatted files, to serve the blacklist
over the DNS.
DNS black-list files are often distributed via rsync. rsync is a remote file copy program,

but where a file already exists, it’s very efficient, because it transmits only the differences
over the network (to minimize network load and transmission time), and then reconstitutes
the new version of the file from the old version plus the differences. If a DNSBL is made
available via rsync, you must configure its synchronization separately.

rbldnsd by Michael Tokarev is a DNS server specially made to serve DNS blacklist zones.
It uses very little memory. By default, it answers only Address (A) and Text (TXT) queries, but
it can answer Start of Authority (SOA) and Name Server (NS) if you configure it. Originally
inspired by rbldns from the djbdns package, it has gained great popularity, and there is also a
pre-built package available for Microsoft Windows-based systems (see Notes). The program
serves both IP-address-based and name-based blacklists, and it supports ACLs, to control
which hosts are allowed to query its database.

16.4.1 Running rbldnsd

You run rbldnsd either on a public IP address, if you intend to serve your own blacklist to
the Internet, or on a local address, if it is for consumption within your organization only.
rbldnsd automatically reloads its zone file(s) after a predetermined period of time, and all in
all, requires little maintenance. If logging is enabled, the log files can get quite large on a
busy MTA, so do remember to use some form of log rotation to handle these.
You typically launch rbldnsd at system startup with an invocation such as:

/usr/local/sbin/rbldnsd \
-u nobody \
-b 127.0.0.3/53 \
-4 \
-c 60 \
-l rbl.log \
-s rbl.stats \
-n \
qupps.bl:combined: qupps-bl.in

The options specified here are:

u Drop privileges to user nobody on startup. rbldnsd refuses to run as user root .

b The address and port (separated by a forward slash) rbldnsd should bind to. You specify
this option for each address you want the program to listen on. (Mandatory.)

4 Use IPv4 only and do not attempt to use IPv6.

c rbldnsd checks the zone files’ modification times periodically on the file system, to see
if the files themselves have changed; this option specifies how long, in seconds, that

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 16. DNS blacklists 379

rbldnsd should wait between between checks. If rbldnsd detects that a file has changed,
it reloads the zone from disk. If you set this value to zero, rbldnsd doesn’t check for
changes at all.

l rbldnsd logs all queries to this logfile. (No logging if not specified.)

s Specifies a file where rbldnsd will write a line with short statistic summary of queries
made per zone, every check (-c) interval. (Default: no statistics.)

n Do not become a daemon. (Normally rbldnsdwill fork () and go to the background; this
option suppresses that.)

The first argument to rbldnsd is made up of three parts: (a) The zone name of the blacklist.
(b) The data set type. (c) The file containing the data set. The data set type (in the example
above, combined) specifies that rbldnsd accepts different kinds of data in a single file, and we
discuss that file format now.

16.4.2 Zone file formats in rbldnsd

rbldnsd supports a number of different zone file formats, making it very flexible: you can
specify default entries that can be returned to queries, and include entries describing CIDR
network blocks, individual IP addresses, and domain names. rbldnsd’s manual page has full
details of these; here we give only a small sample:

Listing 16.2: An example input for rbldnsd

1 $DATASET ip4set @
2 :127.0.0.2:Bad guy (http://bl.qupps.biz/q?ip=$)
3 192.168.1.1
4 10/8
5 $DATASET dnset @
6 $TTL 172800
7 :127.0.0.10:added by HR
8 example.com
9 .example.org

The lines in the above example have the following meanings:

1. Defines the format of the data (the data set) as being of type ip4set . An ip4set is a
set of addresses or CIDR address ranges, together with A and TXT records.

2. The default answer to queries is the A record 127.0.0.2, with a TXT record containing
Bad guy . . .

3. This IP address 192.168.1.1 is blocked. . .

4. As is the whole block of addresses 10.0.0.1 through 10.255.255.255.

5. A new data set, dnset , is defined. This new dataset has a different format to that of an
ip4set . A dnset is a set of possibly wildcarded domain names with associated A and
TXT records. Instead of the IP addresses used in an ip4set , a dnset contains domain
names.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

380 Alternative DNS Servers – Jan-Piet Mens

6. The TTL for subsequent lines is set to 2 days.

7. Sets the default answer for subsequent lines to an A resource record 127.0.0.10 with the
corresponding TXT record containing added by HR .

8. The domain example.com is added; as it follows a 127.0.0.10 line, we are whitelisting it.

9. Similarly, we whitelist anything.example.com.

We store the above example into a file called qupps-bl.in . Recall, that this is the file we
specified as argument to rbldnsd earlier.
We’ll now send off a number of queries, remembering to append our imaginative domain

name to the query:

$ dig @127.0.0.3 example.com.qupps.bl any
;; flags: qr aa rd; QUERY: 1, ANSWER: 2, AUTHORITY: 0,

example.com.qupps.bl. 172800 IN A 127.0.0.10
example.com.qupps.bl. 172800 IN TXT "added by HR"

$ dig @127.0.0.3 1.1.2.10.qupps.bl any
1.1.2.10.qupps.bl. 2100 IN A 127.0.0.2
1.1.2.10.qupps.bl. 2100 IN TXT "Bad guy (http://bl.qupps. biz/q?ip=10.2.1.1)"

$ dig @127.0.0.3 10.9.2.72.qupps.bl any
;; ->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 37844
;; flags: qr aa rd; QUERY: 1, ANSWER: 0, AUTHORITY: 0, ADDITIO NAL: 0

16.4.3 Running rbldnsd and a caching name server on the same system

You can run rbldnsd and a caching name server on the same system, and yes, even on the
same TCP/IP address (as long as you use a different port number, of course). rbldnsd’s -b

option specifies the address and slash-separated port number to listen on. So, for instance,
with -b 127.0.0.3 / 54 rbldnsd listens only to a loopback interface on port 54. Or, if you
want BIND to forward queries for qupps.bl to your rbldnsd, set up forwarding for that zone
with a forward statement in named.conf :

Listing 16.3: Adding a forwarder to BIND for rbldnsd

zone "qupps.bl" {
type forward;
forward only;
forwarders {

127.0.0.3 port 54;
};

};

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 16. DNS blacklists 381

16.5 Integrate DNS blacklists into your e-mail infrastructure

DNS blacklists work only if your MTA is set up as a Mail Exchanger (MX) for your domain.
(If your MTA receives its mail via a third party application or a specialized appliance, it
can’t use IP-based DNS blacklists, as it doesn’t have access to the sender’s IP Address dur-
ing the SMTP session.) How you integrate your DNSBL into your Mail Transfer Agent’s
infrastructure is MTA-specific. We show you examples for several systems in the following
sections.

16.5.1 Exim

The Exim documentation describes exactly how to integrate a DNS blacklist, but we show
you a configuration snippet here.

Telling Exim to use the blacklist

Telling Exim to use a DNSBL is a two-stage process:

1. Create an Exim ACL.

The ACL we’ve chosen is checked when Exim reads the recipients of the message. (It’s
called acl check receipt in the sample configuration supplied with Exim.) It allows
local hosts, and perhaps authenticated remote hosts (such as your traveling users in
hotel rooms) to deliver mail without checking them against the blacklist, but we don’t
show that here. After that, we check the blacklist:

my_acl_check_rcpt:
...
deny message = rejected because $sender_host_address is on a ←֓

black list at $dnslist_domain \n$dnslist_text
dnslists = bl.qupps.biz

...

The ACL above uses three Exim variables:

• $sender host address is the address of the sending host.

• $dnslist domain is the name of the blacklist. In our example, the name of the
blacklist is bl.qupps.biz. This variable is interpolated into the message returned
during the SMTP transaction (see below for an example).

• $dnslist text is the value of the Text (TXT) record returned for the DNS query.

2. Tell Eximwhen/where to use this ACL.

You specify the ACL in Exim’s configuration:

...
acl_smtp_rcpt = my_acl_check_rcpt
...

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

382 Alternative DNS Servers – Jan-Piet Mens

A sample SMTP dialog

Thus configured, your Exim Mail Transfer Agent will perform an inverse DNS query for
the IP address in $sender host address when it reaches the ACL. The following example
shows the SMTP dialog:

220 qupps.biz ESMTP Exim 4.43 Sat, 12 Jan 2008 13:44:18 +0100
helo x
250 qupps.biz Hello p192-168-001-181.somewhere [192.168 .1.181]
mail from:<joe@somewhere.uk>
250 OK
rcpt to:<manager@qupps.biz>
550-rejected because 192.168.1.181 is in a black list at bl. qupps.biz
550 Bad guy (http://bl.qupps.biz/q?ip=192.168.1.181)
quit
221 qupps.biz closing connection

Note the “rejected” message: it contains the name of the blacklist (from $dnslist domain)
as well as the content of the TXT resource record, interpolated from $dnslist text .

Black-lists and white-lists

Exim can use both white and black lists. You may want to have specific sender domains
white-listed, but do note that the sender’s domain can easily be forged, so you might be
forced to whitelist IP addresses instead. The following shows how we implement it:

1 accept dnslists = bl.qupps.biz=127.0.0.10/$sender_addr ess_domain : \
2 bl.qupps.biz=127.0.0.10
3 log_message = WHITELISTED found in $dnslist_domain
4

5 deny message = rejected because $sender_host_address is in a black list \
6 at $dnslist_domain \n$dnslist_text
7 dnslists = bl.qupps.biz!=127.0.0.10 : \
8 bl.qupps.biz!=127.0.0.10/$sender_address_domain : \
9 bl.qupps.biz

• Lines 1–3 white-list an SMTP client. If the Address (A) record returned from a query
on the sender’s domain ($sender address domain) returns 127.0.0.10 , or a query
on the sender’s IP address returns the same value, accept the sender, and the deny

clause isn’t checked.

• Lines 5–9 implement the blacklist. (This clause is reached only if the sending host isn’t
in the whitelist.) Here we check whether a lookup for the host in the white/back-list
returns a value other than 127.0.0.10 (i.e. is in the list, but isn’t a whitelist entry) by
negating the checks used in lines 1–3.

16.5.2 Sendmail

Sendmail’s configuration file, sendmail.cf , is generated from M4 macros in an .mc file. To
add a DNSBL to Sendmail, add one or more dnsbl feature lines to the .mc file. You can also
customize the message that sendmail returns when a DNS blacklist matches a host:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 16. DNS blacklists 383

FEATURE(‘dnsbl’,‘bl.qupps.biz’)dnl
FEATURE(‘dnsbl’,‘bl.qupps.biz’,‘"554 Rejected " $& {client_addr } ←֓

" blacklisted in bl.qupps.biz"’)dnl

Sendmail also supports enhanced DNS blacklist support, in which you specify the result that
a DNS query to a blacklist should return:

FEATURE(‘enhdnsbl’,‘bl.qupps.biz’, , , ‘127.0.0.9’)dnl

16.5.3 Postfix

Adding support for a DNSBL in Postfix is also easy. You configure the DNSBL domain(s)
you wish Postfix to handle, and it checks the IP address of the sending server against these
blacklists. If the IP address is registered at any of the DNSBL domains, then the message is
rejected. (The names reject maps rbl and maps rbl domains are Postfix keywords.)

stmpd_client_restrictions = ...,reject_maps_rbl,...
maps_rbl_domains = bl.qupps.biz

You can query more than one DNSBL, by adding multiple names to the maps rbl domains

parameter.

16.5.4 IBM Lotus Domino

IBM Lotus Domino has supported DNS-based blacklists since version 6. It is easy to set up:
open your server’s configuration document and locate the tab Router/SMTP, Restrictions and
Controls, SMTP Inbound Controls. The settings you need are on the section headed DNS Blacklist
Filters (Figure 16.2).

Figure 16.2: Lotus Domino has support for DNS blacklists

Here’s the result of an attempt by an SMTP client to deliver a message to a suitably config-
ured Lotus Domino server:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

384 Alternative DNS Servers – Jan-Piet Mens

220 domi.fupps.com ESMTP Service (Lotus Domino Release 6.5 .4) ready at ...
helo x
250 domi.fupps.com Hello x ([192.168.1.181]), pleased to m eet you
mail from:<joe@someplace.com>
554 Your message was not delivered because the host which att empted delivery ←֓

[192.168.1.181] is listed in the block list at [bl.qupps.bi z].
quit
221 domi.fupps.com SMTP Service closing transmission chan nel

and the attempt is also logged on the Domino console and log.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 16. DNS blacklists 385

Summary

• DNS blacklists help combat Spam. You can either use an existing blacklist or imple-
ment your own.

• DNS blacklists can be used to blacklist or whitelist senders.

• The implementor of the DNSBL defines what address is returned to a DNS query to
indicate that the entry is blacklisted (or whitelisted).

• The rbldnsd program is a specialized DNS server for publishing IP addresses for your
DNS blacklist.

• When a mail server (MTA) receives a message it can query one or more DNS blacklists
during the SMTP dialog to determine whether it should accept the message.

Related topics

• You can use Bind DLZwith the BDBHPT driver (Chapter 9) to implement a DNS black-
list. Implementing a DNS blacklist with Bind DLZ might sound far fetched, as we’ve
just shown you how you can do it much more easily with rbldnsd, but Jorgen Lundman
has implemented an RBL with Bind DLZ and the BDBHPT driver for a reason: so that
he can add and remove IP addresses from it very quickly – which is very difficult to
do with rbldnsd (see http://www.lundman.net/wiki/index.php/Rbl-add-ip).

• rbldns (without the trailing “d”) is a part of djbdns. However, we haven’t covered it
(there or here) because rbldnsd is more flexible (with its support for different data sets),
and it is used more widely.

• We discuss how you create and use a DNSBL for determining the geographic location
of an IP address in Section G.2. That blacklist is also served by rbldnsd.

Notes and further reading

Installing rbldnsd

rbldnsd does not use autoconf; its configure script is minimal, but sufficient.

$ wget http://www.corpit.ru/mjt/rbldnsd/rbldnsd_0.996a.tar .gz
$ tar xvzf rbldnsd_0.996a.tar.gz
$ cd rbldnsd-0.996a
$./ configure --enable-stats --enable-zlib
$ make

After completing the build, you install the program (rbldnsd) and its associated manual page
(rbldnsd.8) to directories of your choice.

$ install -m 755 rbldnsd /usr/local/sbin
$ install rbldnsd.8 /usr/local/man/man8

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

386 Alternative DNS Servers – Jan-Piet Mens

DNS Blacklists

• Wikipedia has a good article on DNS blacklists at http://en.wikipedia.org/wiki/

DNSBL, as well as a comparison of the available DNSBL at http://en.wikipedia.

org/wiki/Comparison_of_DNS_blacklists .

• The SpamHaus Project provides DNS-based blacklist queries free of charge for small
sites, and provides an rsync-based subscription that you can use on your own hosts
with rbldnsd. The documentation you receive when you purchase their subscription
service is excellent (see http://www.spamhaus.org/).

• For a huge list of DNSBL providers see http://www.moensted.dk/spam/

A packaged rbldnsd for Microsoft Windows

ITeF!x Consulting have combined rbldnsd, rsync, ssh, and Cygwin into a package, Wrbldnsd,
forMicrosoftWindows. It comeswith an installer to ease the pain of installing the individual
components (see http://tinyurl.com/yrxdmr).

Further reading

We recommend these books be on the bookshelf of any self-respecting e-mail admin:

• The Exim SMTP mail server, 2nd edition, by Philip Hazel (UIT Cambridge Ltd.).

• The Book of Postfix, by Ralf Hildebrandt and Patrick Koetter (No Starch Press).

• sendmail, 4th edition, by Bryan Costales, Claus Assmann, George Jansen, and Gre-
gory Shapiro. This is the so-called “bat book” (O’Reilly).

Combatting spam with Lotus Domino

If you have Lotus Domino, youmay be familiar with Chris Linfoot’s IBM Lotus Notes/Domino
spam bible. It is an excellent source for all things Spam and Lotus Domino (see http://

chris-linfoot.net/).

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter

17 Caching name servers

caching: the act of recording response to
resolver queries for future reference.

definition

17.1 Deploying your caching name servers

17.2 The BIND caching server

17.3 The PowerDNS Recursor caching server

17.4 The dnscache caching server

17.5 The dnsproxy proxying server

17.6 The Unbound caching server

Introduction

Caching name servers are the front-line DNS servers that clients use when accessing services on the
Internet or on private networks. This Chapter initially explains the the factors to consider when de-
ploying any caching server. Then we describe several caching servers, each in what is almost a mini-
chapter of its own, explaining how to configure it, with common deployment scenarios.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

388 Alternative DNS Servers – Jan-Piet Mens

We discussed in Chapter 1 that a caching name server is the first line of name server that
you configure your clients to use. Caching name servers talk directly to authoritative name
servers, performing the hard work of query resolution. In order to do that, they follow a
chain of referrals starting at the root servers, and following those referrals from one author-
itative server to the next, until they find the required answer, as illustrated in Figure 17.1.

Figure 17.1: The different steps in resolving the name www.qupps.biz

17.1 Deploying your caching name servers

17.1.1 Where you place your caching name server

In the sections that follow, we discuss examples of where you place a caching name server:

• Directly on a workstation or e.g. a mail server, if it makes heavy use of the DNS. If the
workstation has no access to the public Internet, you must set up the name server to
forward to a more central DNS cache such as the main caching server in your organi-
zation.

• In a Small Office / Home Office, you typically run a single caching name server, on
your main workstation (or server), to be used by all devices on your network. Your
caching name server will use the public Internet DNS or forward to your ISP’s for-
warder.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 17. Caching name servers 389

• A branch office, often connected over a Virtual Private Network to a central network,
typically has a caching name server directly on the LAN. It will often be configured to
forward all queries to the main DNS caches at your organization’s head office.

• On a corporate network you place a caching server at strategic places on your network,
of which there are typically many:

– Close to large groups of users’ workstations.

– Close to (or even better, on) machines that make heavy use of DNS (mail servers,
proxies, etc.).

– In branch offices, as described above.

• To ease the workload on authoritative name servers, you might even place a DNS
cache in front of them. Do note however, that in doing so you deny your clients the
“aa” bit on the authoritative answers. Some DNS registries check your authoritative
servers to see whether they are answering correctly; if the answers don’t have the “aa”
bit set, the registry can refuse delegation.

17.1.2 Checklist for deployment

When deploying your caching name servers, here are some points to keep in mind:

• We strongly recommend you deploy at least two DNS caches. Always observe the
motto “two of everything”, because you don’t want a failure on one of the caches to
cripple your network services.

• Carefully consider where you place the caches on your network. We recommend you
do not have caches on publicly accessible IP addresses, as that would allow Tom, Dick
and Harry to use your DNS cache, and opens it to attack. You don’t want those guys
to use your e-mail server either, do you?

• On machines such as e-mail servers (Mail Transfer Agents and relays) or Web proxy
servers (e.g. squid) that make heavy use of DNS, we recommend you install a local
caching DNS server. You configure the caching name server to listen on a loop-back
interface (IP 127.0.0.1) and you set up the system’s /etc/resolv.conf to use that as
well as at least one more cache on another machine.

• You can install a small caching name server on workstations if you want to. We rec-
ommend either dnscache or dnsmasq (Chapter 13) for this.

17.1.3 Don’t forget the stub resolver

In Chapter 1 we introduced the resolver – the client-side software on a host that uses the
DNS:

• On UNIX and GNU/Linux systems it is the so-called stub resolver which is configured
via the Name Service Switch (Chapter 20) and /etc/resolv.conf .

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

390 Alternative DNS Servers – Jan-Piet Mens

• On Microsoft Windows it is the DNS Client service.

Resolvers are frequently overlooked although they can be a major point of failure:

• You configure the resolvers of each of the workstations, servers and devices on your
network to use the network addresses of both (or more, if you deploy more than two)
of your DNS caches. (We were called from dinner one evening because services on
a client’s mainframe computer were not responding. One of the site’s caching DNS
servers had conked out, but why was the mainframe reacting so? Its resolver had two
nameserver entries, but both pointed to the same crashed name server!)

• Ensure resolvers on your hosts do not contain entries for name servers that you take
out of service. Wherever possible, use DHCP to provide hosts and devices with an
up-to-date list of your caches. Even so, there will almost always be machines that are
not configured via DHCP; for these you have to update their resolver configuration by
other means.

17.1.4 Special-case resolution requirements

Unless you are on a private network disconnected from the public Internet (in which case
you have to configure your caching name server specially), caching name servers usually
do “the right thing” automatically. They prime themselves with a list of (compiled-in) root
name server addresses, and start at these roots when they receive a query. From the root
servers, they successively find their way to authoritative name servers in the attempt to
resolve the query as illustrated in Figure 17.1. However, there may be situations in which
you will want to change the behavior of your cache:

• You want a specific domain name to be resolved to another address. For example, you
might want to avoid images from the domain singleclick.biz to be loaded in your Web
browser. If you configure your caching server to resolve singleclick.biz to the address
127.0.0.1 you bypass the domain entirely.

• You want to have queries for a domain directed at (i.e. forwarded to) a specific name
server. If, for example, you host a copy of a DNS blacklist, say spamhaus.org, on your
own servers, you will want queries for that domain to be handed off to your own
authoritative servers for the blacklist instead of directing them at Spamhaus’ public
servers on the Internet.

• You want to add “a bit of authority” to your caching server by configuring it to serve
some data from a file on disk instead of having it recurse. As a developer, for example,
you want to test applications even when you are on the road. Although you are dis-
connected when sitting in your hotel room, the caching name server you run on your
laptop can resolve myserver.mydomain.

Many of the servers we discuss in this chapter have the capability of being tweaked in this
manner, andwe show you how to do so. If you are on a disconnected network (i.e. a network
without connectivity to the public Internet), you will have to modify the list of root name
servers the caches use. We show you how to do this as well.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 17. Caching name servers 391

17.1.5 The recursive caching name servers

The caching name servers we cover are:

• BIND is a versatile server, and it can be configured to perform recursion; we show you
how to do so in the next section.

• PowerDNS Recursor (Section 17.3) is a standalone recursive resolver, from the makers
of PowerDNS.

• dnscache (Section 17.4) that is part of djbdns, is a standalone recursive resolver.

• dnsproxy is a special kind of recursor. We discuss dnsproxy in Section 17.5

• Unbound (Section 17.6) is a standalone recursive caching name server with optional
support for DNSSEC validation. (We discuss DNSSEC in Chapter 22.)

• dnsmasq is a recursive resolver with a twist. The program is ideally suited for a Small
Office /HomeOffice environment as it provides an optional DHCP server. We covered
dnsmasq fully in (Chapter 13).

17.2 The BIND caching server

As BIND is supplied by most operating system vendors (and GNU/Linux distributions) you
probably already have it on the machines you want to set up a cache on. In this section we
provide you with a boilerplate configuration you can use to set up BIND as a caching server.

Pros • Very good documentation available
• Access Control Lists
• Can serve authoritative zones
• Can forward queries for selected or all zones

Cons ◦ Memory hungry

Scenarios Medium to large environments with BIND knowhow.

Table 17.1: BIND caching name server at a glance

We discussed how you build and install BIND in Chapter 7. For a caching name server, you
must provide:

A. BIND’s main configuration file, named.conf , which is probably located in /etc .

B. Keys to allow the control program (rndc) to communicate with to BIND.

C. Optionally, a hints file to override BIND’s compiled-in default root name servers. You
have to provide this if you are setting up a caching name server in an environment
that has private roots.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

392 Alternative DNS Servers – Jan-Piet Mens

D. You typically configure BIND to provide DNS answers for the domain localhost and
the domain 0.0.127.in-addr.arpa in order to answer queries about the local loop-back
interface. This is not strictly necessary, but it is a good practice, even if you already
have the necessary information in your /etc/hosts file.

We discuss each of these steps in the following sections.

17.2.1 Setting up a BIND caching name server

A – Create named.conf

The named.conf for your caching name server will typically contain the following clauses:

Listing 17.1: named.conf for a BIND caching name server

options {
directory "/var/named";
pid-file "/var/named/named.pid";
allow-query { 127.0.0.1; };
allow-transfer { none; };
listen-on {

127.0.0.1;
192.168.1.164;

};
};

zone "." IN {
type hint;
file "root.zones";

};

zone "localhost" IN {
type master;
file "localhost.zone";

};

zone "0.0.127.in-addr.arpa" IN {
type master;
file "127.zone";

};

B – Create an rndc key

The program rndc-confgen generates configuration files for rndc. It is a convenient alternative
to manually setting up an rndc.conf file and creating the controls and key statements in
your named.conf . You typically have it create the files for you, by running:

rndc-confgen -a
wrote key file "/usr/local/etc/rndc.key"

(You can specify a different output file with option -c .) rndc-confgen chooses the file name
based on how BINDwas built, and its defaults are usually sensible.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 17. Caching name servers 393

C – Hints file for the root servers

You create the hints file containing the root name servers by one of two methods:

1. Download the file via FTP:

$ wget -O root.zones ftp://ftp.internic.net/domain/named.roo t

2. By performing a DNS query to one of the root name servers:

$ dig @m.root-servers.net . ns | tee root.zones
;; flags: qr aa rd; QUERY: 1, ANSWER: 13, AUTHORITY: 0, ADDITIONAL: 13

;; ANSWER SECTION:
. 518400 IN NS A.ROOT-SERVERS.NET.

. . .

;; ADDITIONAL SECTION:
A.ROOT-SERVERS.NET. 3600000 IN A 198.41.0.4
. . .

D – Master zones for localhost

You will typically provide zones for the localhost as well as for the 0.0.127.in-addr.arpa do-
mains.

Listing 17.2: Master zone file for the domain localhost

$TTL 86400
$ORIGIN localhost.
@ IN SOA localhost. root.localhost. (

1 ; Serial
28800 ; Refresh
14400 ; Retry
3600000 ; Expire
86400) ; Minimum

IN NS localhost.
IN A 127.0.0.1

Listing 17.3: Master zone file for the domain 0.0.127.in-addr.arpa

$TTL 86400
@ IN SOA localhost. root.localhost. (

1 ; Serial
28800 ; Refresh
14400 ; Retry
3600000 ; Expire
86400) ; Minimum

IN NS localhost.

1 IN PTR localhost.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

394 Alternative DNS Servers – Jan-Piet Mens

17.2.2 Adding features

The caching BIND name server as configured above fulfills most requirements of a cache, but
there are some features you might want to add:

• Private roots.

If you are in an environment that has its own root servers without Internet connectiv-
ity, you have to set up your cache so that it can find those root servers. We discuss
private roots in Chapter 18, but suffice it to say at this point that you normally just
replace the root.zones file with one containing the Name Server (NS) and Address
(A) records for your private root servers.

• Forwarding.

If you want BIND to resolve specific domains via specialized servers, you set up for-
warding. In a forward zone you define the zone’s name and a list of one or more
upstream name servers that are willing to do recursion on your behalf.

zone "myzone.internal" IN {
type forward;

forward only;
forwarders {

192.168.1.20;
192.168.1.118 port 5300 ;

};
};

– Queries for the zone myzone.internal are forwarded for resolution to the server(s)
defined in the forwarders statement.

– You can optionally specify a non-standard port number on a server-by-server
basis, with the port statement.

– The forward statement controls how BIND should handle forwarding:

* With the only setting, BIND attempts to resolve the query only by forwarding
it to the target name servers. If it receives no reply, it sends no reply at all,
and clients time out.

* Without the only setting, BIND first attempts to forward to the specified for-
warders. If it receives no reply, it reverts to normal resolution and starts
searching for an answer on the public Internet.

A typical use for forwarding is to get access to a zone which is not otherwise delegated
to. For example, if you have an internal zone on an authoritative name server, and you
want your BIND caching server to “find” it, you set up forwarding for that zone as in
the example above, and then you don’t have to worry about setting up private root
servers.

• Some authority.

If you also need your BIND cache to provide authoritative answers for a zone, you can
of course add a master zone to it, as discussed in Chapter 7.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 17. Caching name servers 395

Reloading named

After you change BIND’s configuration in named.conf , you activate the changes by telling
named to re-read its configuration:

rndc reload

That concludes our discussion of the BIND caching name server.

17.3 The PowerDNS Recursor caching server

The PowerDNS Recursor is a powerful and fast recursive caching name server. It used to be an
integral portion of PowerDNS but was split out to become a standalone program beginning
with version 3 of the PowerDNS Recursor.

Pros • Authoritative local zones
• Good monitoring built-in
• Very flexible
• Integration with Lua provides scriptable answers (Section H.2)

Cons ◦ No DNSSEC validation

Scenarios Caching name service for medium to large environments.

Table 17.2: PowerDNS Recursor at a glance

PowerDNS Recursor (Figure 17.2) can be configured to:

• Serve the content of the local /etc/hosts file. This is useful on e.g. developer worksta-
tions for testing programs when you are working away from your usual environment
(i.e. you are working disconnected). Recall that dnsmasq (Chapter 13) has a similar
feature.

• Forward queries for specific domains to other caching name servers. For example,
if your organization uses PowerDNS Recursor and joins up with QUPPS, you could
configure your PowerDNS Recursor to forward queries for qupps.biz to QUPPS’ internal
DNS servers, which contain more information than QUPPS’ public name servers.

• Serve local zones authoritatively from locally configured master zone files. This is
useful if you want to add a few authoritative internal zones to a PowerDNS Recursor
without deploying a separate full-blown authoritative name server.

• Use a list of root name servers you configure. Modify this list if your organization uses
its own private root name servers. We discuss how you do this in Chapter 18.

PowerDNS Recursor and its sister program, PowerDNS, are similar in several ways (a) They use
similar configuration files (b) They both have separate controlling programs – PowerDNS has
pdns control and PowerDNS Recursor has rec control (c) They both have facilities for graphing
operations statistics with RRDtool.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

396 Alternative DNS Servers – Jan-Piet Mens

Figure 17.2: PowerDNS Recursor overview

17.3.1 Configuration

On startup PowerDNS Recursor reads its recursor.conf file from the directory configured
as CONFIGDIRduring the build. Each of the following settings can appear either in the
configuration file, separated from its value with an “=” sign, or as a command-line switch
prefixed by “-- ”. A typical configuration file for a workstation or central cache running
PowerDNS Recursor could be as simple as:

local-address= 192.168.1.202

which will have PowerDNS Recursor listen on 192.168.1.202 on port 53 (default) of the spec-
ified IP address for TCP and UDP connections from clients, and using the default access
control, i.e. allowing only clients from private IP networks (RFC 1918) to submit queries.
Other interesting configuration directives include:

allow-from A comma-separated list of network/mask addresses of clients
allowed to use this server. The default permits access only from
clients on private IP networks as specified by RFC 1918 (i.e. 10/8,
172.16/12 and 192.168/16). Queries from addresses not listed
here will be ignored.

allow-from= 192.168.2.0/24 , 19.4.0.0/16

auth-zones PowerDNS Recursor can serve zones locally from files in master
zone file format1. Each zone and its file are separated by an “=”
sign, and multiple pairs are separated by commas. For example,
to serve qupps.biz and example.net from this PowerDNS Recursor:

auth-zones= qupps.biz=/etc/powerdns/quppszone , \
example.net=/etc/powerdns/ex.zone

1Note that $ORIGIN parsing is not implemented.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 17. Caching name servers 397

Note that PowerDNS Recursor currently does not set the “aa” bit
on responses for its authoritative zones.

chroot Name of a directory into which the program should chroot () at
startup. Any files referred to must be accessible from the new
root directory. In particular, care must be taken to ensure that
rec control and PowerDNS Recursor can access the control socket
they use to communicate with (see socket-dir).

chroot= /var/dns/pdns

daemon Whether PowerDNS Recursor should fork () and operate as a dae-
mon. Default is yes.

daemon=yes

export-etc-hosts If this flag is set, IPv4 addresses from the local /etc/hosts file
are made available in the DNS. For example, setting this flag:

export-etc-hosts= yes

with an /etc/hosts containing:

192.168.1.20 mypc
192.168.1.21 myserver
192.168.1.51 dom.jp dom

causes PowerDNS Recursor to print the following upon startup:

Inserting forward zone ’mypc.’ based on hosts file
Inserting reverse zone ’20.1.168.192.in-addr.arpa.’...
Inserting forward zone ’myserver.’ based on hosts file
Inserting reverse zone ’21.1.168.192.in-addr.arpa.’...
Inserting forward zone ’dom.jp.’ based on hosts file
Inserting forward zone ’dom.’ based on hosts file
Inserting reverse zone ’51.1.168.192.in-addr.arpa.’...

and a lookup on mypc returns:

$ dig @localhost mypc
;; ANSWER SECTION:
mypc. 86400 IN A 192.168.1.20

forward-zones Queries for specific zones can be forwarded by PowerDNS Recur-
sor to other caching name servers by listing the zone names and
their forwarders in the forward-zones setting2. For example:

forward-zones= qupps.biz =192.168.1.20, \
jp.com =192.168.1.20, \
mens.de =127.0.0.1
qupps.bl =127.0.0.3

2At the time of this writing, only a single forwarder can be set up for a zone, but the code for enabling multiple
forwarders per zone is ready, and it will be available in the next release.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

398 Alternative DNS Servers – Jan-Piet Mens

The above configuration causes PowerDNS Recursor to (a) Direct
queries for qupps.biz and jp.com to 192.168.1.20 (b) Send queries
for mens.de to a caching server on the local machine (c) Forward
queries for the DNS blacklist configured as qupps.bl to an rbldnsd
listening on 127.0.0.3.

If you have to forward many zones, you can enter zonename=IP
address tuples, one per line, in a file, and you then specify this
file’s name in the forward-zones-file setting.

hint-file On startup, PowerDNS Recursor uses either built-in hints or the
content of the hint-file to determine the addresses of the root name
servers. The format of this file is as in a master zone file.

You need to change this setting only if you are setting up a pri-
vate DNS system with private roots, in which case you create a
hints file looking like this:

$ cat /etc/powerdns/hints
. 608400 IN NS root1.qupps.biz.
. 608400 IN NS root2.qupps.biz.
root1.qupps.biz. 608400 IN A 192.168.1.80
root2.qupps.biz. 608400 IN A 192.168.9.65

and enable that for PowerDNS Recursorwith a :

hint-file= /etc/powerdns/hints

local-address By default PowerDNS Recursor binds to port 53 on the machine’s
local loop-back interface. You will want to change this behav-
ior for a caching name server on your network, so that all your
clients can query it. Set the interfaces on which PowerDNS Recur-
sor listens to:

local-address= 192.168.1.20 , 127.0.0.2:530

You can addmore than one interface by separating them by com-
mas (“, ”), and you specify an alternate port number by append-
ing it after a colon.

Note that for security reasons, you will probably not want to
have a public PowerDNS Recursor listening on an Internet-facing
interface.

max-cache-entries The number of cache entries that PowerDNS Recursor should hold.

remotes-ringbuffer-entries If you change this value is from its default of 0, PowerDNS Recur-
sor keeps statistics on the clients that query the recursor. It stores
client statistics in a ring buffer; this variable defines how many
entries should be held in the buffer.

remotes-ringbuffer-entries= 100

After changing this and restarting PowerDNS Recursor, use the
rec control program to display the content of the ringbuffer.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 17. Caching name servers 399

rec_control top-remotes
Over last 100 queries:
66.00% 192.168.1.18
34.00% 127.0.0.1

serve-rfc1918 This setting (on by default) causes PowerDNS Recursor to not for-
ward queries for private IP addresses (RFC 1918) to the Internet,
because they wouldn’t be answered anyway. The setting makes
the server authoritatively aware of 10.in-addr.arpa,
168.192.in-addr.arpa and 16-31.172.in-addr.arpa, which saves load
on the AS112 servers. Individual parts of these zones can still be
loaded or forwarded.

server-id By default, the PowerDNS Recursor replies to a query for id.server
with its host name. This option changes the reply value to the
specified string. For example, if we set:

server-id= foo1

then a query gives:

$ dig @192.168.1.164 CH id.server TXT
;; ANSWER SECTION:
id.server. 86400 CH TXT "foo1"

setuid / setgid In addition to chrooting, PowerDNS Recursor can switch to a differ-
ent user and/or group after binding to its socket (which must be
done as a privileged user). These settings define the user and/or
group to switch to:

setuid= nobody

Note that files required by the PowerDNS Recursormust be acces-
sible by the user or group, and cache dump files created with
rec control are owned by this user.

socket-dir PowerDNS Recursor and its rec control utility “talk” to each-other
via a control socket. This defines where the control socket and
the file containing the process-id (PID) of the daemon should
be stored. It defaults to LOCALSTATEDIRdefined during build
(/var/run) but can be modified at run-time.

socket-dir= /tmp

This option also affects the rec control controller (Section 17.3.2).

trace If turned on, the PowerDNS Recursor prints impressive heaps of
logging information. This option should be disabled for any pro-
duction system, as it ruins performance.

trace= on

A single query will start printing DNS trace information:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

400 Alternative DNS Servers – Jan-Piet Mens

question for ’fupps.com.|A’ from 127.0.0.1
Looking for CNAME cache hit of ’fupps.com.|CNAME’
No CNAME cache hit of ’fupps.com.|CNAME’ found
No cache hit for ’fupps.com.|A’, trying to find an NS
Checking if we have NS in cache for ’fupps.com.’
no valid/useful NS in cache for ’fupps.com.’
Checking if we have NS in cache for ’com.’
no valid/useful NS in cache for ’com.’
Checking if we have NS in cache for ’.’
NS (with ip, or non-glue) in cache ’.’ -> ’a.root ...
within bailiwick: 1, in cache, ttl=1209571
...

version-string By default, PowerDNS Recursor replies to the version.bind query
with its version number. Security conscious users may wish to
override the reply that the recursor issues (although you cannot
disable the reply completely). For example:

version-string= Foo server

causes PowerDNS Recursor to issue the following answer to the
query:

$ dig @192.168.1.164 CH version.bind TXT
;; ANSWER SECTION:
version.bind. 86400 CH TXT "Foo server"

17.3.2 Controlling PowerDNS Recursor

You control and influence a running PowerDNS Recursor process with the rec control utility.
The program talks to PowerDNS Recursor via a UNIX socket stored in the directory specified
with option socket-dir. rec control understands the following commands:

ping Checks if PowerDNS Recursor is alive.

rec_control ping
pong

quit Requests a shutdown of the PowerDNS Recursor.

rec_control quit
bye

reload-zones Tells PowerDNS Recursor to reload all external zone data from authoritative
zone files (i.e. from the zones you specify with auth-zones). It also checks the
configuration file to determine if the export-etc-hosts statement has changed
and possibly incorporates the changes if required.

rec_control reload-zones
ok

top-remotes Shows the list of top clients (see remotes-ringbuffer-entries).

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 17. Caching name servers 401

wipe-cache Clears the cache for a specified domain. This is useful if you know that a
server’s IP has changed, but the TTL hasn’t yet expired.

rec_control wipe-cache example.com
wiped 2 records

get Retrieves one ormore variables from the running PowerDNS Recursor. Some
of the variables currently defined are listed in Table 17.3; the whole list is at
http://doc.powerdns.com/recursor-stats.html

rec_control get all-outqueries questions
2404
1504

all-outqueries counts the number of outgoing UDP queries since starting
answers0-1 counts the number of queries answered within 1 millisecond

answers100-1000 counts the number of queries answered within 1 second
answers10-100 counts the number of queries answered within 100 milliseconds

answers1-10 counts the number of queries answered within 10 milliseconds
cache-entries shows the number of entries in the cache

cache-hits counts the number of cache hits since starting
cache-misses counts the number of cache misses since starting

questions counts all End-user initiated queries with the RD bit set
uptime number of seconds process has been running (version 3.1.5+)

Table 17.3: A selection of rec control variables

17.3.3 PowerDNS Recursor statistics

Approximately every half hour, PowerDNS Recursor outputs a few lines of statistics which
can be used to create MRTG graphs:

stats: 1461 questions, 1177 cache entries, 0 negative entri es, 7% cache hits
stats: throttle map: 0, ns speeds: 2
stats: outpacket/query ratio 159%, 0% throttled, 0 no-dele gation drops
stats: 0 outgoing tcp connections, 1 queries running, 21 out going timeouts

You can dump a readable representation of the current cache of a running PowerDNS
Recursor to a file:

rec_control dump-cache /tmp/newfile
head /tmp/newfile
googlemail.l.google.com. 153 IN A 209.85.137.18
googlemail.l.google.com. 153 IN A 209.85.137.19
googlemail.l.google.com. 153 IN A 209.85.137.83
www.modsecurity.org. 8819 IN A 82.165.78.202
netherlabs.nl. 1617 IN NS ahu.casema.net.
netherlabs.nl. 1617 IN NS ns1.pine.nl.
netherlabs.nl. 1617 IN NS ns2.pine.nl.
www.connexitor.com. 5224 IN A 208.97.143.153
www.nsftools.com. 1677 IN CNAME nsftools.com.
ns1.technorati.com. 59254 IN A 208.66.64.37

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

402 Alternative DNS Servers – Jan-Piet Mens

17.3.4 Graphing PowerDNS Recursor

The rrd directory of the PowerDNS Recursor source distribution includes tools for plotting
RRD graphs of the numbers provided by rec control. The create script creates the necessary
RRD databases for the numbers, update must be invoked every five minutes (by cron) and
makegraphs generates the image files which are served up by index.html on a Web server
of your choice. Figure 17.3 shows just one of the images produced.

Figure 17.3: Statistics graphed by PowerDNS Recursor and RRD

17.4 The dnscache caching server

The caching DNS server of the djbdns package is a standalone program called dnscache.
It performs recursive hostname-to-address, or address-to-hostname, queries, to service re-
quests from DNS clients.

Pros • Low memory usage
• Flexible configuration
• Easy to set up

Cons ◦ Too many choices for installing

Scenarios Anything from a workstation cache to a large DNS cache.

Table 17.4: dnscache at a glance

By default, dnscache contacts authoritative name servers on the Internet, but you can easily
configure it to contact your own private root name servers instead.
For efficiency, dnscache stores all responses it receives in a local in-memory cache, so that

future identical queries can be answered quickly. However, dnscache is very careful about
what it caches:

• It caches records for at most one week, even if their TTLs request longer times.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 17. Caching name servers 403

• It does not cache SOA records, although it does use SOA TTLs to determine cache times
for NXDOMAIN answers.

• It does not cache, or pass back in a reply, any records outside an authoritative server’s
authority, as they could be poisoned (i.e. they could have been forged). For example,
records for qupps.biz are accepted only from the root servers, the .biz servers and the
qupps.biz servers.

• As a cache, dnscache never sets the “aa” bit (except in NXDOMAIN responses).

17.4.1 Installing and setting up dnscache

We covered the installation of the dnscache binary in Chapter 11, and we recommend you
read about tinydns-conf inSection 11.2.1. Like the related tinydns authoritative content server,
you set up dnscachewith an invocation of dnscache-conf:

dnscache-conf nobody nolog /usr/local/dnscache 192.168.1.164

This prepares a new directory /usr/local/dnscache and populates it with the necessary
directories and files (Figure 17.4). It adds a run script you can use to launch dnscache. When
you run dnscache it will listen on IP address 192.168.1.164, will drop privileges to the user
nobody , and it will chroot () to /usr/local/dnscache . The second username (nolog) is
used to create the logging directory (Section 17.4.8).

Figure 17.4: dnscache directory structure

Like tinydns, dnscache is primed from a set of environment variables. It also requires
the root directory (which we defined in our example as /usr/local/dnscache/root):
dnscache uses the files in root/ip for client access control, and files in root/servers to
determine which forwarders or root servers it should direct its queries to.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

404 Alternative DNS Servers – Jan-Piet Mens

There are three methods of starting dnscache:

1. Via the supervise method of daemontools (which is beyond the scope of this book – see
http://cr.yp.to/daemontools.html).

2. By setting, on the command line, all the environment variables dnscache needs upon
start. You can use this if you want to start dnscache from your own scripts. In this case,
you use something like:

env - \
UID=99 \
GID=501 \
IP=192.168.1.164 \
CACHESIZE=1000000 \
DATALIMIT=3000000 \
IPSEND=0.0.0.0 \
ROOT=/usr/local/dnscache/root \
/usr/local/bin/dnscache < /dev/random

3. By invoking the run script (Section 17.4.3).

Upon startup, dnscache reads up to 128 bytes of random data from standard input which it
uses to seed itself3.

17.4.2 Scenarios for dnscache deployment

dnscache is frequently used as an efficient recursive cache; its small memory footprint makes
it ideal for installation on workstations or other machines on a LAN, to speed up and cache
their DNS queries. The authors of both MyDNS4 and PowerDNS5 recommend it.

Centralized cache on your local network

All the machines on your network use a central dnscache, which provides a large DNS cache
for the whole network (Figure 17.5).
You configure the resolvers of your network’s machines to point to the IP address of the
central dnscache. You must also ensure that dnscache allows them to query the cache, by
adding appropriate prefixes to the servers/ip directory. For example:

touch /usr/local/dnscache/root/ip/192.168

permits all machines on the 192.168/16 network to query the cache.

Caching DNS server on a Workstation

*nix workstations generally do not cache DNS requests by default; the stub resolver used by
programs requesting name-to-address (or address-to-name) resolution will query the DNS

3A process reading /dev/random has to wait until the system has generated sufficient entropy for the amount of
bytes requested, which is why dnscache reads from standard input and doesn’t use /dev/random by default.
4http://mydns.bboy.net/faq/
5http://doc.powerdns.com/recursion.html

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 17. Caching name servers 405

Figure 17.5: Central dnscache

servers contained in /etc/resolv.conf , return the answer and forget about it. If the pro-
gram requesting an answer does not explicitly “remember” (i.e. cache) the answer itself, it
is lost and has to be repeated for subsequent identical queries. Users of Microsoft Windows
2000 and above are used to the workstation caching answers; this is handled explicitly by
the DNS Client service. In essence, setting up a dnscache on a UNIX or GNU/Linux work-
station emulates that feature of Microsoft Windows. On a workstation or computer with
Internet connectivity, if you set up dnscachewith a default configuration, it contacts the root
servers specified in its $ROOT/servers /@file and caches results of queries (see Figure 17.6).
In this configuration, each workstation’s /etc/resolv.conf points to the local dnscache IP
address at 127.0.0.1.

Figure 17.6: dnscache on a workstation

The difference between this and the scenario in Figure 17.5, is that in Figure 17.5 one
dnscache services all the machines on the local network, and not just the machine that
dnscache is running on.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

406 Alternative DNS Servers – Jan-Piet Mens

Workstation as forwarder

The large central cache (Figure 17.5) may also be used as a forwarder for workstations:
dnscache runs on each workstation and forwards queries to this central dnscache. You might
have a large DNS cache on a central machine in your network, (Figure 17.7, left), or at your
ISP (Figure 17.7, right), in which case your workstations can profit from the work it has al-
ready done in caching queries. In this case, you set up a local dnscache on a workstation,
which forwards its requests to the upstream cache.

Figure 17.7: dnscache as a forwarder

In Figure 17.7, left, Alice’s stub resolver points to her own local dnscache IP address on
127.0.0.1. (Alice’s dnscache listens on 127.0.0.1 only, because it doesn’t have to handle queries
from any other host.) To enable forwarding, edit Alice’s $ROOT/servers /@file, adding the
IP address(es) of the upstream cache(s), and set $FORWARDONLY. For example, if the upstream
cache has IP address 192.168.9.1, you configure Alice as follows, and then restart dnscache:

alice# echo 192.168.9.1 > /usr/local/dnscache/root/servers/@
alice# echo 1 > /usr/local/dnscache/env/FORWARDONLY

Central cache with forwarding

This is an extension of the previous scenario. Suppose you have a tinydns (or other authorita-
tive) server that serves a few zones. You add forwarding for those zones to dnscache so that
it directs queries for those zones directly to your authoritative name server, without using
the root servers (Figure 17.8). You configure your workstations’ resolvers to query dnscache;
they don’t query tinydns directly. Adding a forwarder for a zone is easy enough:

echo 192.168.1.20 > /usr/local/dnscache/root/servers/qupps .biz

After restarting dnscache, queries for qupps.biz are directed to 192.168.1.20, whereas all other
queries are resolved via the root servers (specified in the file $ROOT/servers /@).

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 17. Caching name servers 407

Figure 17.8: Central dnscachewith forwarders

Inbound cache

Authoritative DNS content servers that make heavy use of database back-ends and offer no
caching of their own can profit from a front-end dnscache as shown in Figure 17.9. Here,

Figure 17.9: Inbound dnscache for content servers

dnscache is accessible on an external IP address (the address to which zones have been del-
egated to in the worldwide DNS). dnscache forwards all queries to an internal authoritative
DNS server. If the authoritative server is on Carol (192.168.3.55), you configure dnscache on
Dave with:

dave# echo 192.168.3.55 > /usr/local/dnscache/root/servers/@
dave# echo 1 > /usr/local/dnscache/env/FORWARDONLY

This configuration provides good caching for your content servers. However, a side effect
is that dnscache will never return answers for your zones with the “aa” authority bit set in
the replies (because it is the tinydns server that is authoritative, and it’s not the one reply-
ing). Some DNS registries complain when they check that zones for which your servers are
authoritative, aren’t answered with the “aa” bit set.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

408 Alternative DNS Servers – Jan-Piet Mens

17.4.3 Detailed dnscache configuration options

dnscache uses a handful of environment variables and some files in $ROOT(Figure 17.10).
When you use the default run script, the environment is primed from files in the env direc-
tory: as we saw with tinydns, the filename is used as the environment variable name, and the
file content becomes the variable’s value. If you want to have dnscache start with $ROOTset
to /dns you would:

echo /dns > /usr/local/dnscache/env/ROOT

After modifying a variable’s value you must restart dnscache for the change to take effect.

Figure 17.10: Files used by dnscache

Here are the variables and filenames used by dnscache:

$CACHESIZE The size of dnscache’s in-memory cache. Default: one million
bytes.

$DATALIMIT The run script sets the limit on the maximum size of the pro-
cess’s data segment to $DATALIMIT , using the setrlimit () sys-
tem call, effectively limiting the maximum size of the dnscache
process. The default is three million bytes.

$FORWARDONLY If this variable is set to any value, dnscache treats the addresses
in $ROOT/servers /@as a list of forwarders (i.e. addresses of
other caching name servers), not root servers. Any domain
in the servers directory will be contacted directly while all
other queries go to the back-end caching name server(s) that
you specify in the $ROOT/servers /@file.

If you do set this variable, ensure that your@file does not con-
tain addresses of root servers; the addresses listed must be of
name servers willing to handle recursive queries.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 17. Caching name servers 409

$IP The single IP address on which dnscache listens for incoming
UDP queries and TCP connections, on port 53. If you have ap-
plied the jumbo patch to djbdns (see Notes on page 310), this
variable can contain a slash-separated list of addresses (for ex-
ample 192.168.1.164/127.0.0.1).

Note that to run dnscache and tinydns on the same machine
the programs must listen on separate IP addresses, so either
the machine must be multi-homed, or you start dnscache on a
loopback interface (127.0.0.1) and tinydns on the external IP, or
you run dnsproxy (Section 17.5) to front tinydns and dnscache.

$IPSEND dnscache sends outgoing packets from the address $IPSEND.
You usually set $IPSEND to 0.0.0.0 , meaning the machine’s
primary IP address, but in the case of a multi-homed host, you
can set this to any valid interface address.

$ROOT, $UID , $GID dnscache runs chrooted in the directory specified by $ROOT, un-
der the uid and gid specified by $UID and $GID respectively.
Files in the ip and servers directories are relative to $ROOT,
and they must be accessible by uid $UID . Both $UID and $GID

may contain names or numeric ids.

$ROOT/ip Files in this directory control client access to dnscache. For ex-
ample, dnscache will accept a query from IP address 1.2.3.4 if
there exists a file named ip/1.2.3.4 , ip/1.2.3 , ip/1.2 , or
ip/1 . (The files can be empty.)

For example, to allow queries from a network 192.168/16 and
from network 127/8 as well as from 10.0.12/24, create the fol-
lowing files:

touch /usr/local/dnscache/root/ip/192.168
touch /usr/local/dnscache/root/ip/127
touch /usr/local/dnscache/root/ip/10.0.12

$ROOT/ servers / @ dnscache reads a list of dotted-decimal root server IP addresses
(one per line) from $ROOT/servers/ @. When you initially set
up dnscache with dnscache-conf, it copied the list of root name
servers from /etc/dnsroots.global to the@file. However, if
you are using private root servers, you have to configure the
list manually by editing the@file; you add one IP address per
line. (See Notes on page 312 regarding updating the list of root
servers.)

$ROOT/ servers / dom.ain dnscache scans the servers directory for a list of domains. For
example, if there are addresses listed (one per line) in a file
servers/qupps.biz , then dnscache will send queries for any-
thing.qupps.biz to those servers, and it will not cache records
for anything.qupps.biz from any server other that those listed, in
order to avoid cache pollution.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

410 Alternative DNS Servers – Jan-Piet Mens

If you also run tinydns (or another brand of authoritative name
server), it’s a good idea to create a file pointing to your au-
thoritative server(s) for each domain you create, as we have
just done above for qupps.biz. Then dnscache doesn’t have to
recurse from the root servers for queries to your own zones.

The run script

One of the actions performed by dnscache-conf is to create a shell script that starts dnscache;
this script is called run . The script must be executed within the directory specified, so in our
example above, to start dnscachewe should:

cd /usr/local/dnscache
./ run

There will be a copious amount of diagnostic log messages sent to standard output, which
we cover in Section 17.4.8.

17.4.4 Testing dnscache

As shown in the following example, you test dnscache by pointing dig at it, and issuing some
queries. After the five second pause, query again; note that the total query time is drastically
reduced – that is, after all, the purpose of using a cache – and the TTL of the queried records
has correctly been modified to reflect the time they have been in the cache.

$ dig @192.168.1.164 fupps.com
;; ANSWER SECTION:
fupps.com. 10800 IN A 82.165.102.119

;; Query time: 250 msec
;; SERVER: 192.168.1.164#53(192.168.1.164)
;; WHEN: Mon Nov 5 23:49:03 2007
;; MSG SIZE rcvd: 43

$ sleep 5
$ dig @192.168.1.164 fupps.com
;; ANSWER SECTION:
fupps.com. 10795 IN A 82.165.102.119

;; Query time: 0 msec
;; SERVER: 192.168.1.164#53(192.168.1.164)
;; WHEN: Mon Nov 5 23:49:08 2007
;; MSG SIZE rcvd: 43

If dnscache doesn’t answer, ensure that:

• A firewall is not blocking your requests

• dnscache is the only program running on the machine which is listening to the the IP
address and port number you assigned to it. (Hint: is there a BIND name server already
running by default on your host?)

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 17. Caching name servers 411

17.4.5 Implicit answers returned by dnscache

dnscache handles a number of queries internally without querying other name servers or
data in files:

• It answers a query for localhostwith 127.0.0.1

• It answers a query for 1.0.0.127.in-addr.arpawith a PTR record of localhost.

• It answers A record queries for hostnames consisting of dotted-decimal IP addresses
with an A reply consisting of that IP address. For example, if you query dnscache for
the address of 192.0.2.14 it will answer with 192.0.2.14. (This is quite useless, but there
are people who ask a name server for the IP address of an IP address. . .)

17.4.6 Adding a forwarder for one or more domains

Adding a forwarder to dnscache for a specific domain, domainname, is trivial, as we saw on
page 406. Create a file in the servers directory with name domainname, containing the IP
address(es) of the name servers to which we should forward the requests for the specific
domain. For example:

echo 192.168.1.20 > /usr/local/dnscache/servers/qupps.biz

tells dnscache to forward queries for qupps.biz to the server at 192.168.1.20 instead of trying
to resolve them recursively itself. When you change files in the servers directory you must
restart dnscache to force it to re-read the contents of servers .

17.4.7 Configuring client machines to use dnscache

After successfully installing dnscache you must configure the resolvers of the hosts that will
use it. Modify /etc/resolv.conf on each client host, to contain the IP addresses of your
new dnscache servers. For example, if you have a single dnscache running on 192.168.1.20:

echo "nameserver 192.168.1.20" > /etc/resolv.conf

OnMicrosoft Windows you enter the IP address of the host running dnscache in the proper-
ties of the TCP/IP settings for the PC.

17.4.8 Logging dnscache statistics

dnscache prints statistical messages on standard output. If you want to save the statistics,
you either redirect standard output to a file, or you pipe it through a program. You typically
pipe the output of dnscache through multilog, a component of the daemontools package (see
Notes on page 310). multilog is a filter with the following features:

1. It reads lines of text from standard input.

2. It can select, or alternatively deselect, any number of lines of the input with a pattern
which, unfortunately, is not a regular expression. Initially all lines are selected.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

412 Alternative DNS Servers – Jan-Piet Mens

3. It writes selected lines to any number of logfiles, optionally prepending lines with a
TAI64 timestamp (see Notes on page 313).

4. It can perform log rotation.

A full discussion of multilog (see http://cr.yp.to/daemontools/multilog.html) is be-
yond the scope of this book, but we will show you a sample recipe we use on production
systems:

1 multilog \
2 t \
3 s1000000 n20 ’-* cached *’ ’-* rr *’ ’-* tx *’ ’-* stats’ /var/l og/dnscache \
4 ’+*’ s1000000 n20 /var/log/dnscache/details \
5 ’-*’ s1000000 ’+* stats *’ /var/log/dnscache/stats

The lines mean the following:

1. Run multilog. The arguments to multilog are called a scriptwhich is made up of selectors,
actions and files. A selector consists of a +pattern or - pattern, indicating whether lines
matching pattern should be included (+) or excluded (-). For example, the pattern “-*
cached * ” means multilog should exclude lines containing “spacecached space”.

2. Timestamps. Action t means prepend a TAI64 timestamp to lines printed.

3. Minimum. dnscache is quite verbose in its logging. The arguments on this line cause
logging to /var/log/dnscache and excludes lines with the “- ” patterns. The result is
written to a maximum of 20 files, none of which will exceed a size of 1 000 000 bytes.
When a file exceeds the size it is renamed from current to a name like
@4000000047628222252a8c9c.s which is the time (in TAI64-format) when the file
was last written to.

4. Details. All lines read by multilog are written to files in /var/log/dnscache/details

and are also rotated, with a maximum of 20 such files being produced. Some log file
entries you might see:

stats 1 1334 1 0
cached 1 ns2.dnspartner.de.
tx 0 1 www.qupps.biz. qupps.biz. 5413b06e 5bb82022
rr 5413b06e 86400 1 www.qupps.biz. c0a80101

5. Statistics. Lines containing the pattern "* stats *" are written to the directory
/var/log/dnscache/stats .

Analyzing dnscache logs with dlog

Rasmus Skaarup has written dlog, a program to analyze log files produced by dnscache,
tinydns and others. A complete discussion is beyond the scope of this book (see http://

dlog.gal.dk/) but we will show you the kind of graphs it can produce for dnscache when
used with RRD. Figure 17.11 shows the types of answers dnscache has returned.
That concludes our discussion of the dnscache caching name server.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 17. Caching name servers 413

Figure 17.11: Graphing dnscache answers with dlog and RRD

17.5 The dnsproxy proxying server

dnsproxy, by Armin Wolfermann, is an unusual, special purpose DNS server. It proxies DNS
queries by forwarding them to two previously configured name servers: one for authorita-
tive queries, and the second for recursive queries (Figure 17.12). dnsproxy receives the an-
swers from the “real” servers, and sends them, unchanged and uncached, to the requesting
client.

Pros • Preserves “aa” bit for answers from authoritative server
• Concise configuration file

Cons ◦ Easy to confuse the two forwarders in the configuration file

Scenarios Environments that need authoritative and caching name services
behind a single IP address.

Table 17.5: dnsproxy at a glance

According to the documentation, the primarymotivation for this project was to enable djbdns
to run in an ISP environment, where a single target server listening on UDP port 53 was to
answer authoritative queries by clients and recursive queries at the same IP address. djbdns
cannot be set up to do that because the authoritative server (tinydns) and the caching server
(dnscache) would compete for the same IP address. dnsproxy solves the problem by listening
for UDP requests on a single IP address and forwarding the requests either to tinydns or to
dnscache.

dnsproxy runs chrooted and doesn’t require root privileges. It is easy to set up: a single
configuration file which is read at program startup defines how dnsproxy should handle
requests.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

414 Alternative DNS Servers – Jan-Piet Mens

Figure 17.12: dnsproxy

17.5.1 Installing dnsproxy

You install dnsproxy in the usual way:

$ wget http://www.wolfermann.org/dnsproxy-1.15.tar.gz
$ tar xvzf dnsproxy-1.15.tar.gz
$ cd dnsproxy-1.15
$./ configure --prefix=/usr/local
$ make
make install

The package has its own manual page, a good tradition for tools on *nix. (We sorely miss
“man pages” on a number of other programs. . .)

17.5.2 Configuring dnsproxy with /etc/dnsproxy.conf

You configure dnsproxy with the file dnsproxy.conf located in /etc . The configuration il-
lustrated in Figure 17.12 is shown in the following Listing:

Listing 17.4: dnsproxy.conf

Authoritative server (e.g. tinydns, bind, powerdns, ...)
authoritative 127.0.0.1
authoritative-port 1053
authoritative-timeout 10

Recursive resolver (e.g. dnscache, powerdns-recursor)
recursive 127.0.0.1
recursive-port 2053
recursive-timeout 90

Local address and port of dnsproxy
listen 192.168.1.164
port 53
statistics 1800

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 17. Caching name servers 415

Security features
chroot /var/empty
user nobody

Internal networks (allowed to do recursive queries)
#
internal 192.168.1.0/24 # Our LAN
internal 192.168.6.0/24 # Friends
internal 127.0.0.1

The keywords are:

authoritative The IP address on which the separate authoritative DNS server is
listening. This can be any brand of authoritative DNS server you
want to use.

authoritative-port The port number on which the authoritative DNS server is listening.

authoritative-timeout The time (in seconds) that dnsproxy should wait until the authorita-
tive server has answered. If this time is exceeded, the client’s query
fails.

recursive The IP address of the separate recursive server. This can be any
brand of server you want to use.

recursive-port The port number on which the recursive server is listening. The
default is 53.

recursive-timeout The time (in seconds) that dnsproxy should wait for the recursive
server to answer, before causing the query to fail.

listen The IP address dnsproxy should listen on for incoming DNS queries.

port The port number at which dnsproxy should listen. (Default: 53)

chroot If you use this option, dnsproxy chroot ()s to the specified directory
on startup.

user The username to which dnsproxy switches to on startup. Use this,
together with chroot () to lower dnsproxy’s privileges.

statistics dnsproxy periodically produces statistics about the number of recur-
sive and authoritative queries it has processed. This option specifies
the length of the interval, in seconds, between statistics outputs. Set
this to zero to disable statistics.

If dnsproxy is running as a daemon, it logs its statistics via syslog;
otherwise it prints them to standard output.

internal You can specify this option multiple times. It defines the addresses
of internal or friendly hosts and networks; these source addresses
are allowed to perform recursive queries via dnsproxy. You can spec-
ify either individual IP addresses or CIDR-formatted network num-
bers.

Note that you will certainly notwant to allow all public users query
your dnsproxy (and thus allow them to use your dnsproxy for per-
forming recursive queries). Instead, allow only internal hosts, and

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

416 Alternative DNS Servers – Jan-Piet Mens

select remote clients on the Internet (e.g. customers or your own em-
ployees) to access the proxy.

17.5.3 Sending DNS queries to dnsproxy from “external” hosts

dnsproxy acts like a DNS server, and it may be used by clients as a recursive (albeit non-
caching) DNS server. Therefore clients can use the address of the dnsproxy server in a
nameserver line in their /etc/resolv.conf .
Queries sent to dnsproxy by hosts that are not allowed to perform recursion (i.e. are not

listed on the internal option in dnsproxy.conf) are forwarded to the authoritative server
even if the query has the “rd” (recursion desired) bit set.

$ dig @192.168.1.164 qupps.biz
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 28035
;; flags: qr aa rd; QUERY: 1, ANSWER: 1, AUTHORITY: 2, ADDITIONAL: 2

;; ANSWER SECTION:
qupps.biz. 86400 IN A 192.168.1.20

Note that the query is returned with the authoritative answer (“aa”) bit set, even though it
passed via dnsproxy.

17.5.4 Sending DNS queries to dnsproxy from “internal” hosts

Queries sent to dnsproxy by hosts that are considered “internal” are forwarded to the caching
name server only. Queries are not passed to the authoritative server. So, if you want “inter-
nal” hosts to be able to query zones held on the authoritative DNS content server (which will
almost always be the case), you must ensure that the caching name server behind dnsproxy
knows how to find them.

dnsproxy is a useful utility if you are short on IP addresses; it can consolidate two DNS
servers (a content server, and a recursive cache) into one. dnsproxy lives at http://www.

wolfermann.org/dnsproxy.html

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 17. Caching name servers 417

17.6 The Unbound caching server

Unbound is a caching name server developed at NLnet Labs6 by Wouter Wijngaards. It
is based on a prototype developed in the Java programming language by Verisign labs,
Nominet, Kirei and EP.NET. The current Unbound implementation is written in the C pro-
gramming language.

Pros • Sensible defaults in its default configuration file
• DNSSEC validation
• Access control
• Local data and stub zones
• libunbound provides embeddable Unbound in your own programs
• Very informative logging
• Fast

Cons ◦ No DNSSEC look-aside validation

Scenarios Medium to large environments that need a fast, flexible and val-
idating caching name server.

Table 17.6: Unbound at a glance

Unboundwas designed as a validating recursive DNS resolver with DNSSEC support and full
RFC compliance. It is very fast, and you can use it as:

• A stub resolver.

• A caching name server.

• Fromwithin a program, by using Unbound’s libunbound library (Section 17.6.6). This lets
you launch an Unbound server within your application, rather than creating a separate
Unbound process.

Unbound has three main components. These components are modular: you enable or disable
some of them according to your requirements:

• The “Iterator” is in charge of sending iterative queries to the DNS servers. Don’t dis-
able this module, or Unbound will not be able to fetch answers to DNS queries from
other servers.

• The “Cache” stores data received from other DNS servers and doles it out on request.
This module is built-in to Unbound and cannot be disabled.

• The “Validator” validates the security fingerprints on data sets received by the name
server. We discuss how you configure portions of this module in Chapter 22, when we
discuss DNSSEC.

6We are grateful to NLnet Labs for having provided us with the code to Unbound before its release.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

418 Alternative DNS Servers – Jan-Piet Mens

17.6.1 Installing Unbound

We recommend you proceed in the following order when deploying Unbound:

1. Download and install the prerequisite libraries for building Unbound. These are ldns
and libevent.

• ldns is a library that simplifies programming with DNS. It supports DNSSEC and
it is also used by NSD (Chapter 10). If you don’t have ldns installed, Unbound uses
a version of ldns packaged with it. The developers recommend, however, that
you install ldns prior to building Unbound, as it will then use the shared libraries
of ldns, reducing Unbound’s memory footprint.

• libevent provides an API for executing a callback function when a specific event
occurs on a file descriptor, or after a timeout has been reached. The libevent library
was created by Niels Provos. libevent also contains the evdns API by Adam Lan-
gley, with asynchronous functions for DNS name resolution, but this part of the
library isn’t used by Unbound.

2. Download the source code to Unbound and build and install it. We chose to build from
the subversion repository, but by the time you read this, pre-built packaged versions
will be available (see http://unbound.net).

$ mkdir /tmp/unbound && cd /tmp/unbound
$ svn co http://unbound.nlnetlabs.nl/svn/trunk
A trunk/Makefile.in
A trunk/LICENSE
...
A trunk/install-sh

U trunk
Checked out revision 1144.
$ cd trunk
$./ configure --prefix=/usr/local
$ make
make install

3. Configure Unbound with its unbound.conf file (Section 17.6.3). This is similar in form
to the nsd.conf file we discussed in Chapter 10.

17.6.2 Setting up Unbound as a caching server

It is easy to set up Unbound as a caching name server: it provides very sensible defaults, so
you typically will not have to provide a complex configuration file. We suggest you start
with a small configuration, as shown below, and then add features as you need them:

server:
verbosity: 1
pidfile: "/run/unbound.pid"
use-syslog: yes
chroot: "/usr/local/etc/unbound"
username: "unbound"
directory: "/usr/local/etc/unbound"
module-config: "validator iterator"

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 17. Caching name servers 419

Save this as unbound.conf . (You can use unbound-checkconf (Section 17.6.5) to check the
configuration for errors.) This example configures caching server that accepts queries on
the loop-back interface only (default); it cannot be accessed by other clients on the network.
Note that because of the chroot () system call, all paths are anchored to the new root, so the
pidfile is actually located in /usr/local/etc/unbound/run/unbound.pid .

Launching Unbound

Unbound starts up and daemonizes itself when you run:

unbound

Unbound writes its process id into the file you specify as pidfile. You can force it to remain
in the foreground (i.e. not to fork ()) with option -d , and you can increase its verbosity by
specifying one or more -v options, one for each level of verbosity you want.

Signaling and stopping Unbound

To stop Unbound, send it a SIGTERM signal:

kill ‘cat /usr/local/etc/unbound/run/unbound.pid‘

To reload Unbound, send it a SIGHUP signal: it performs the following actions:

• If run with verbosity of at least 1, Unbound writes some statistics to its log. The statis-
tics show the number of queries processed by the cache, the number that required
recursion, and the number answered from the cache, which helps you determine if
your cache is large enough. The output also includes a numerical histogram that tells
you how your service to clients is performing. The requestlist tells you how many
recursive queries Unboundwas servicing at the same time on average.

info: sent 3657 replies, with average wait of 2.745577 sec
info: histogram of reply wait times
info: [25%]=0.00800497 median[50%]=0.0348871 [75%]=0.1 29392
info: lower(secs) upper(secs) replycount
info: 0.000032 0.000064 21
info: 0.000064 0.000128 138
info: 0.000128 0.000256 1
...
info: 128.000000 256.000000 28
info: 256.000000 512.000000 2
info: server stats for thread 0: 49035 queries, 45378 from ca che
info: server stats for thread 0: requestlist max 17 avg 3.966 09 exceeded 0

• Unbound clears its cache, reopens its configuration file, attempts to reconfigure itself,
and then gets ready to answer queries again.

• During this reconfiguration process, Unbound keeps the sockets open. This means that,
although Unbound cannot answer queries during this short period of time, the under-
lying operating system will queue up the UDP queries, and Unboundwill answer them
as soon as it is ready. Although the operating system’s queue can fill up, it is rather
unlikely to happen in most situations.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

420 Alternative DNS Servers – Jan-Piet Mens

• If you have changed the Unbound configuration by setting new ports or interfaces,
Unbound closes its sockets while it reconfigures itself. In this case, it is “deaf” to queries
while it is restarting.

• Unbound also reopens the log file, so you can do log-rotation with popular tools like
logrotate and have them send SIGHUP when they rotate the log files.

17.6.3 Configuring Unbound with unbound.conf

Unbound uses the configuration file unbound.conf . The file contains attributes and values
separated by a colon. Valuesmay be unquoted, or enclosed in double quotes (" . . . ") or single
quotes (’ . . . ’); values containing whitespace must be quoted. (Use single quotes in local-
data statements with long TXT records that require double quotes.) You can include the
content of further files with the include directive, which can appear anywhere. Comments
can appear anywhere; they are introduced with a hash symbol (#) and continue until the
end of a line. Some of the options you can define in unbound.conf are:

verbosity An integer number that controls how verbose Unbound’s log-
ging should be i.e. how much information it should produce.
Set to 0 to disable all messages. The default value of 1 gives
operational information. Set this value to 2 for query-level in-
formation, and to 3 for algorithm-level information.

num-threads The number of threads Unbound should create to serve clients.
Set to 1 to disable threading.

port The port number on which Unbound will listen for incoming
queries. The default value is 53.

interface The IP address (either IPv4 or IPv6) on which Unbound should
listen to queries from clients. You specify this option as often
as needed. If you don’t specify any interface, Unbound uses the
loop-back interface by default.

outgoing-interface The IP address you specify for this attribute is used to send
queries to authoritative content servers and receive their replies.
You may specify this attribute multiple times. If you omit it en-
tirely, the default of all is used. If you specify more than one
address, Unbound chooses outgoing addresses depending on the
interface it uses.

Note that you may specify the same address in the interface and
outgoing-interface attributes. This causes Unbound to use it both
for incoming and outgoing requests.

outgoing-port Unbound requires a port number allocated from a pre-defined
range to provide the client side of the communication. Specify
the starting port number of this ephemeral port. Default is 1053.
The range starts at this number and extends to outgoing-range.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 17. Caching name servers 421

outgoing-range The number of ports to open per thread for every interface. It
must be at least 1, and defaults to 16. Larger numbers require
more resources from the underlying operating system.

num-queries-per-thread The number of queries that each thread will service simultane-
ously. If more queries arrive they are dropped, which will force
a client to resend the query after a timeout. Default is 1024.

rrset-cache-size Size of the RRset cache in bytes. Default is 4 megabytes. A plain
number is in bytes; append k , mor g for kilobytes, megabytes or
gigabytes respectively.

cache-max-ttl Maximum time to live in seconds for resource record sets and
replies in the cache. The default is 86400. You can use this to
force low TTL on records. For example, if you want to force Un-
bound to discard items from its cache after 600 seconds (ignoring
any higher TTL on DNS records), you set cache-max-ttl to 600.

do-ip4 / do-ip6 Enable (yes) or disable (no) queries on IPv4 or IPv6. The de-
fault value for both attributes is yes . If you don’t use IPv6, we
recommend you disable it in Unbound to conserve memory.

do-udp / do-tcp Enable (yes) or disable (no) handling queries over UDP or TCP.
The default value for both attributes is yes .

access-control Which clients are allowed to use your Unbound cache. The syn-
tax of this attribute is:

access-control: IP-netblock action

You specify IP-netblock as an IPv4 or IPv6 address with / size ap-
pended for a CIDR network block. The action defines how the
IP-netblock is handled by the cache:

deny Stops queries from the specified network. Unbound
silently drops the query, and the client times out.

access-control: 192.168.0.0/24 deny

refuse Stops the queries like deny , but sends a REFUSED
error-message back to the client, which is friendlier
than drop .

access-control: 10.0.0.0/8 refuse

allow Enables clients to use the cache.

access-control: 127.0.0.0/8 allow
access-control: 192.168.1.0/24 allow

The default Unbound configuration allows only localhost to use
the cache, and refuses all other clients.

You can allow a netblock of addresses to use the cache, but pro-
hibit single hosts or sub-blocks within that block, by specifying
them in order:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

422 Alternative DNS Servers – Jan-Piet Mens

access-control: 192.0.0.0/8 allow
access-control: 192.168.1.20 deny

chroot If you specify chroot, which we recommend, Unbound chroot ()s
to the specified directory name on startup. If you specify an
empty value:

chroot: ""

no chroot () is performed. The default setting is /etc/unbound .
Note that Unbound changes to its configured directory (see next
item) before it chroot ()s.

directory Sets the working directory for the program. (C.f. chroot above.)

directory: "/usr/local/etc/unbound"

username If you specify a username, Unbound drops its privileges to the
named user after binding to the port. If you specify an empty
value ("") for this attribute, Unbound doesn’t change user. The
default user is unbound .

username: "nobody"

pidfile The name of the file into which Unbound writes its process id
when it starts. The file is relative to chroot and must be writable
by username. Default /var/run/unbound.pid .

pidfile: "/run/unbound.pid"

logfile The name of the file to which Unbound writes its log messages.
Setting this to an empty string (””) turns off logging if Unbound
is running as a daemon, or causes Unbound to log to standard
error (stderr) if running in the foreground.

use-syslog Messages are sent to syslog with a log facility of LOG DAEMON.
Setting use-syslog to yes overrides the logfile setting.

If you use chroot, you have to ensure that Unbound can access
resources required by syslog within the chroot () environment.
In our environment we have to:

• Create a dev directory below our chroot directory.

• Ensure syslogd is started with an alternate UNIX socket in
that path:

syslogd -m 0 -p /usr/local/etc/unbound/dev/log

root-hints The name of a file specifying the root servers Unbound should
use. The file must be in zone file format, and contain only root
name server and addresses. We recommend you do set this op-
tion, and keep your root hints file up to date. You obtain a list
of current root servers with:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 17. Caching name servers 423

$ dig @k.root-servers.net . ns > root-servers.zone

and configure unbound to use this list with:

root-hints: "root-servers.zone"

By default Unbound uses a compiled-in list of root servers. (We
discuss how you create your own private root name servers in
Chapter 18.)

identity / version Set the values Unbound reports when queried for TXT records
in the Chaosnet class. identity contains the string returned for
id.server (defaults to the hostname) and version is the string re-
turned for version.server (defaults to Unbound’s version). If you
want to disable these queries, set hide-identity and/or hide-version
respectively.

$ dig @127.0.0.1 ch id.server txt
;; ANSWER SECTION:
id.server. 0 CH TXT "ns.qupps.biz"

$ dig @127.0.0.1 ch version.server txt
;; ANSWER SECTION:
version.server. 0 CH TXT "unbound 0.9"

do-not-query-address You can prohibit Unbound from querying specific servers by us-
ing this attribute one or more times. You specify the addresses
as IPv4 or IPv6 addresses, and you can add / size to indicate a
CIDR netblock.

do-not-query-address: 10.14.0.0/16
do-not-query-address: 192.168.1.13

For example, you can use this as a method of preventing users
from resolving names of sites with dubious content. Use this
with care, as you can stop Unbound serving queries for specific
domains if you inadvertently add addresses of the domain’s
name servers.

module-config The list of modules that Unbound should load. The modules cur-
rently provided are:

• validator . This enables DNSSEC support.

• iterator . This was implemented as a module to better
fit in with the code, but you cannot disable it because it
would render the program unusable.

• cache . This module is built-in and cannot be disabled.
You can however, effectively disable the cache by setting
its size to 100 bytes, which fits at most one item.

You specify the modules, separating their names with spaces
within a quoted string. The two valid settings are:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

424 Alternative DNS Servers – Jan-Piet Mens

• "validator iterator" :

Unbound becomes a validating server, i.e. it enables DNSSEC
validation. The validator module verifies the security fin-
gerprints on data sets, and clients are shielded from data
with bad fingerprints – Unbound will not serve them, and
will just not answer. You must configure public keys for
the validator to start checking. With no keys, the validator
does nothing.

module-config: "validator iterator"

• "iterator" :

Unbound becomes a non-validating server, i.e. doesn’t use
DNSSEC validation, and if there are any security finger-
prints on data sets, Unbound ignores them.

module-config: iterator

The default value for this attribute is iterator .

local-zone / local-data These options allow you to have Unbound answer queries in spe-
cial ways. We discuss this in depth in Section 17.6.4.

statistics-interval Unbound periodically logs statistics. This option specifies the
length of the interval, in seconds, between log dumps. Set to 0
or to an empty string to disable statistics logging.

This completes our discussion of some of Unbound’s configuration settings. Consult Un-
bound’s documentation for some others.
You can configure Unbound to answer queries in special ways (Figure 17.13), and we

discuss that now.

Figure 17.13: Unbound overview

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 17. Caching name servers 425

17.6.4 Intercepting domains: serving data locally

You can configure Unbound to serve DNS answers from data you specify in its configuration
file. It can also hand-off queries for specific zones to name servers you define.

A. Using the local-zone and local-data directives, Unbound can serve DNS data directly from
its configuration file.

B. Using the stub-zone directive, you can have Unbound hand off all queries for specified
zones to a specific list of name servers.

C. Using the forward-zone directive, you can set up forwarding to other recursive caching
name servers.

We cover these in the following three sections.

A – Serving data authoritatively from a local file

You can configure Unbound to serve answers to certain DNS queries from data you specify
in its unbound.conf configuration file (Figure 17.14). You use this to have Unbound provide
answers for a few hosts on your network without having to set up a separate, authoritative,
name server.

Figure 17.14: Unbound can serve local data authoritatively

You use local-zone, and optionally local-data, to handle zones specially:

local-zone This configures a zone that is handled locally and is answered authorita-
tively. The syntax of this option is:

local-zone: zone type

zone is the name of the zone (e.g. example.com) and type is one of:

deny Drop the query unless there is a match from local-data.

refuse Answer the query if there is a match from local-data, and
reply with code REFUSED if not.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

426 Alternative DNS Servers – Jan-Piet Mens

static Answer the query if there is amatch from local-data, oth-
erwise answer with NXDOMAIN. If you have defined a
Start of Authority (SOA) in local-data, it is included in
the answer.

redirect Answer the query from local-data for the zone name.
This answers all queries for the zone and all sub do-
mains of the zone with local data for the zone. The dif-
ference between redirect and static is that the for-
mer includes sub-domains of the zone name.

You typically use this to redirect a domain to a different
address. Note that the zone specified in local-zonemust
match the domain you specify in local-data.

transparent Answer the query if there is amatch from local-data, oth-
erwise resolve the query normally, by querying other
name servers.

If you have only local-data for a zone and no correspond-
ing local-zone configured for it, the zone is transparent
by default. This means you can either have:

local-data: "www.example.com A 10.0.0.1"

by itself, or you define

local-zone: example.com transparent
local-data: "www.example.com A 10.0.0.1"

We recommend you use the second form, as it docu-
ments itself.

nodefault The default for AS112 zones (the in-addr.arpa zones for
RFC 1918 private addresses) is to return NXDOMAIN an-
swers to queries for them. Set nodefault to enable Un-
bound to process queries for AS112 zones. See below
for an example, and consult the Unboundmanual for an
exact description of the AS112 zones.

local-data This is where you set up the DNS data that will be used to serve up replies
to queries in the zones you defined with local-zone.

The value of the local-data attribute is a double quoted string containing the
resource record in zone file format that you wish to provide as answer. If
the data is unparseable, Unbound and unbound-check exit with a diagnostic
message. A typical setting is:

local-data: "www.example.com 120 IN A 127.0.2.3"
local-data: "www.example.com A 127.0.2.3"

The first example contains a full answer including Time to Live (TTL) and
class (IN). In the second example, the TTL is unspecified, so it defaults (to
3 600 seconds). You typically have quite a few local-data lines, one per re-
source record.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 17. Caching name servers 427

B – Stub zones

You define one or more stub zones for zones that cannot be found using the public DNS,
or zones that have no delegation to them or that are otherwise private (Figure 17.15). For
example, you might have internal private zones (myzone.private) or an internal DNS blacklist
(bad.guys) and you want your internal clients to find those.

Figure 17.15: A stub zone points Unbound to a content server

You have such zones running on separate authoritative servers. Here’s the stub zone defini-
tion for the example in Figure 17.15:

stub-zone:
name: qupps.private
stub-addr: 192.168.4.201
stub-addr: 192.168.4.202

You use stub-addr to specify the name server by IP address, or stub-host to specify it by (re-
solvable) name. Append an@and the port number to the hostname (stub-host only) to use a
non-standard port number.

C – Forwarding

You define one or more forward zones for which you want to have queries forwarded to
an upstream caching name server (e.g. another Unbound server in your DMZ perhaps). The
server you forward to must be able (and willing) to handle recursion.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

428 Alternative DNS Servers – Jan-Piet Mens

Here’s the configuration for the example in Figure 17.16:

forward-zone:
name: qupps.bl
forward-addr: 192.168.1.20
forward-addr: 192.168.2.20

Figure 17.16: A forward zone points Unbound to another cache

You use forward-addr to specify the name server by IP address, or forward-host to specify it by
(resolvable) name. Append an@and the port number to the hostname (forward-host only) to
use a non-standard port number.

Scenarios for using local zones and forwarding

The functionality provided by local-zone and local-data, and the forward-zone and stub-zone
directives is very powerful. Some scenarios demonstrate the flexibility provided byUnbound:

• Youwant to intercept queries for specific hosts in a domain, but youwant most queries
to be answered from their origin servers. This is useful if you want to redirect cer-
tain domain names to hosts you manage. For example, you can intercept the host
images.singleclick.biz and point that to your own Web server, transparently having the
DNS answer all other queries for the domain singleclick.biz.

Lets look at an example for the yahoo.com domain. If you configure:

local-zone: yahoo.com transparent
local-data: "www.yahoo.com A 192.168.1.11"

Queries to the domain will be answered as follows (recall that transparent answers
queries from local-data if there is a match, otherwise queries are resolved normally):

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 17. Caching name servers 429

$ dig @127.0.0.1 www.yahoo.com
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; ANSWER SECTION:
www.yahoo.com. 3600 IN A 192.168.1.11

$ dig @127.0.0.1 weather.yahoo.com
;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIO NAL: 0

;; ANSWER SECTION:
weather.yahoo.com. 300 IN CNAME weather.yahoo6.akadns.n et.
weather.yahoo6.akadns.net. 300 IN A 69.147.78.254

• You wish to catch all queries for a whole domain and all its sub domains and direct
those to a single address. You configure:

local-zone: clickme.com redirect
local-data: "clickme.com A 192.168.1.11"

Note how all queries for the domain are answered authoritatively with a single ad-
dress:

$ dig @127.0.0.1 clickme.com
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; ANSWER SECTION:
clickme.com. 3600 IN A 192.168.1.11

$ dig @127.0.0.1 www.usa.clickme.com
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; ANSWER SECTION:
clickme.com. 3600 IN A 192.168.1.11

• By default Unbound blocks reverse in-addr.arpa queries to the AS112 addresses for the
private IP addresses defined in RFC 1918. If you are on such a network (e.g. 10.0.0.0/8)
you will have to disable Unbound’s default handling so that it doesn’t return NXDO-
MAIN for any 10.in-addr.arpa query. As an example, consider the inverse query for:

$ dig @127.0.0.1 -x 10.0.12.1
;; ->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 20261
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 1, ADDITIONAL: 0

;; AUTHORITY SECTION:
10.in-addr.arpa. 10800 IN SOA localhost. nobody.invalid. 1 ←֓

3600 1200 604800 10800

Note how it returns NXDOMAIN without having passed the query to any upstream
name server (i.e. Unbound just says “this doesn’t exist”). Now change unbound.conf ,
and configure:

local-zone: 10.in-addr.arpa nodefault

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

430 Alternative DNS Servers – Jan-Piet Mens

If you now submit the same query, you obtain a different answer:

$ dig @127.0.0.1 -x 10.0.12.1
;; ->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 22361
;; flags: qr rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 1, ADDITIO NAL: 0

;; AUTHORITY SECTION:
10.in-addr.arpa. 604800 IN SOA prisoner.iana.org. ←֓

hostmaster.root-servers.org. 2002040800 1800 900 604800 604800

Where did that answer come from? From the Internet: the Start of Authority (SOA)
indicates the source of the answer.

You should only change the default handling of AS112 addresses if you have author-
itative name servers for your private addresses (as in our example, for the zone 10.in-
addr.arpa). On an Internet-connected Unbound cache, you would cause unnecessary
traffic (which is why Unbound catches queries for the AS112 zones by default).

• You have Unbound set up as a caching name server in a DMZ, and you need an author-
itative zone for addressing an LDAP server or two, for example. Instead of installing a
full-blown authoritative name server, you want Unbound to serve that content for you.
Create the following entries in unbound.conf to define a zone called foo.xa:

local-zone: foo.xa static
local-data: "foo.xa SOA foo.xa. jp.foo.xa. 1 60 60 60 60 60"
local-data: "foo.xa NS foo.xa."
local-data: "foo.xa A 192.168.1.164"
local-data: "foo.xa TXT This is local"
local-data: "ldap.foo.xa A 192.168.1.183"
local-data: "_ldap._tcp.foo.xa SRV 0 0 389 ldap.foo.xa."

Because you define the local-zone as being static, queries for non-existent hosts are
correctly answered with NXDOMAIN.

• You have created a DNS blacklist using rbldnsd (Chapter 16) and you want Unbound to
forward queries received for your DNS blacklist to rbldnsd running on 127.0.0.3. You
configure a forward-zone:

forward-zone:
name: qupps.bl
forward-addr: 127.0.0.3

Note that this is not the same as setting up a local-zone of type “redirect”. The config-
uration:

local-zone: qupps.bl redirect
local-data: "qupps.bl A 127.0.0.3"

would have Unbound itself immediately answer all queries for anything.qupps.bl with
127.0.0.3, which is not at all the same thing.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 17. Caching name servers 431

17.6.5 Utilities

Unbound comes with some useful utilities:

unbound-checkconf This program checks your configuration file for syntax errors. We
recommend you use this after updating your unbound.conf to en-
sure it contains no mistakes.

unbound-checkconf
unbound-checkconf: no errors in ←֓

/usr/local/etc/unbound/unbound.conf

unbound-host This is a DNS lookup utility similar to host. It uses the Unbound re-
solver code to query the DNS for a host name, and then displays
results.

By default, unbound-host uses the servers defined in your local re-
solver (i.e. /etc/resolv.conf). You can force it to react differently,
by setting up a separate unbound.conf file for it and invoking it as:

$ unbound-host -C my-unbound.conf ...

17.6.6 libunbound

Unbound comes with the libunbound library. This provides functions you use in your own
programs for controlling the resolution (both synchronously and asynchronously) of host
names and addresses. libunbound gives you access to the power of the Unbound caching name
server inside your own application. You would typically implement this in programs that
make extensive use of DNS queries, such as a Web browser. By using libunbound in your
(multi-threaded) program, your application contains its own caching name server, without
requiring the system it is running on to have one. The sample program below queries the
DNS for an Address (A) record for a given host name. Commented-out portions show you
how you can:

• Specify your own unbound.conf configuration file for libunbound, so you can easily
provide more detailed configuration options.

• Use ub resolve () to launch an Unbound server to perform your resolutions, but with-
out creating an additional process. If you use ub resolve () from multiple threads,
your program becomes a multi-threaded Unbound cache during the lifetime of your
process. If you use ub resolve async (), then a process or thread (your choice) is cre-
ated to handle it. If you call ub resolve async () multiple times, the function will
re-use that process or thread as a caching resolver.

• Specify a forwarder that the program should use, with the ub ctx set fwd () function.
You can set up as many as you wish.

• You can also use the function ub ctx resolvconf () to parse a /etc/resolv.conf file
you specify and extract the nameserver lines to set up forwarders as above.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

432 Alternative DNS Servers – Jan-Piet Mens

Listing 17.5: unboundq.c: a sample program for libunbound

/* unboundq.c (C)2008 by Jan-Piet Mens. Portions by NLnet La bs
* Use libunbound to query an A RR. */

#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <unbound.h>

#include <sys/socket.h>
#include <sys/uio.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <openssl/err.h>
#include <openssl/rand.h>
#include <ldns/ldns.h>

static void print_rd(int t, char* data, size_t len);

#define CLASS_IN (1)

int lookup(char *name)
{

struct ub_ctx *ub;
struct ub_result *res;
int rc;

if ((ub = ub_ctx_create()) == NULL) {
fprintf(stderr, "Can’t create Unbound context\n");
return (-1);

}

/* Use this to provide your own unbound.conf*/ /*
if ((rc = ub_ctx_config(ub, "/home/jpm/unbound/unbound- my.conf")) != 0) {

fprintf(stderr, "config error: %s\n", ub_strerror(rc));
return (-1);

}
*/

/* Use this to manually set up a forwarder */ /*
if ((rc = ub_ctx_set_fwd(ub, "192.168.1.164")) != 0) {

fprintf(stderr, "config error: %s\n", ub_strerror(rc));
return (-1);

}
*/

/* Use this to provide your own resolv.conf */ /*
if ((rc = ub_ctx_resolvconf(ub, "my-resolv.conf")) != 0) {

fprintf(stderr, "config error: %s\n", ub_strerror(rc));
return (-1);

}
*/

if ((rc = ub_resolve(ub, name, LDNS_RR_TYPE_A, CLASS_IN, & res))) {
fprintf(stderr, "lookup error: %s\n", ub_strerror(rc));
return (-1);

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 17. Caching name servers 433

}

if (!res->havedata && res->rcode) {
printf("Host not found\n");

} else {
int n;

for (n = 0; res->data[n]; n++) {
printf("qname: %s: ", res->qname);
print_rd(LDNS_RR_TYPE_A, res->data[n], res->len[n]);
printf("\n");

}
}

ub_resolve_free(res);
ub_ctx_delete(ub);
return 0;

}

int main(int argc, char **argv)
{

return lookup(argv[1]);
}

/** convert and print rdata; Swiped from smallapp/unbound- host.c */
static void print_rd(int t, char* data, size_t len)
{

size_t i, pos = 0;
uint8_t* rd = (uint8_t*)malloc(len+2);
ldns_rr* rr = ldns_rr_new();
ldns_status status;
if(!rd || !rr) {

fprintf(stderr, "out of memory");
exit(1);

}
ldns_rr_set_type(rr, t);
ldns_write_uint16(rd, len);
memmove(rd+2, data, len);
ldns_rr_set_owner(rr, NULL);
status = ldns_wire2rdf(rr, rd, len+2, &pos);
if(status != LDNS_STATUS_OK) {

free(rd);
printf("error_printing_data");

}
for(i=0; i<ldns_rr_rd_count(rr); i++) {

printf(" ");
ldns_rdf_print(stdout, ldns_rr_rdf(rr, i));

}
ldns_rr_free(rr);
free(rd);

}

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

434 Alternative DNS Servers – Jan-Piet Mens

Summary

• BIND is a very versatile name server. You can configure it as a caching server, with or
without authoritative zones.

• PowerDNS Recursor is the recursive resolver complementary to PowerDNS. You can use
it stand-alone or together with PowerDNS. PowerDNS Recursor can serve zones directly
from a master zone file.

• dnscache is the recursive resolver from the djbdns package. It is ideally suited for in-
stallation on single workstations or as a corporate recursor.

• dnsproxy is a special-purpose program that allows you to run separate authoritative
and caching servers behind a single public IP address.

• Unbound is a fast caching name server. You use it as a standalone cache. It is highly
configurable.

Related topics

• If you want to set up a recursive resolver with some DNS and optional DHCP features,
consider dnsmasq (Chapter 13).

• PowerDNS (Chapter 6) is the powerful DNS server complementary to PowerDNS Recur-
sor.

• The djbdns package (Chapter 11) contains an authoritative name server called tinydns.

• We show you how to configure Unbound and BIND to validate DNSSEC signed zones, in
Chapter 22.

• NSD (Chapter 10) is the very fast authoritative name server complementary toUnbound.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter

18 Delegation and private DNS
roots

Surround yourself with the best people you
can find, delegate authority, and don’t
interfere.

Ronald Reagan

18.1 The root of the Domain Name System

18.2 Delegating a sub-domain to a name server

18.3 Creating your own private root name servers

Introduction

Delegation is the process by which the authority for a zone is given to one or more DNS name servers,
in order to distribute the management of sub-domains. We explain delegation and how to do it, with
several examples using different brands of name server. We also discuss why and how you set up
private root name servers.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

436 Alternative DNS Servers – Jan-Piet Mens

The Domain Name System is a hierarchy made up of nodes, each of which is assigned to an
authority. The authority is the entity responsible for the management of the node or zone.
By default, the authority for a node applies to all nodes below it, as well. However, the entity
in charge of a zone may split up the the hierarchy of its domain into subordinate nodes or
zones, each of which becomes authoritative in its own right. This authority is delegated from
parent domain to sub-domain. In the early days there were no delegations, so everything
was in the root. The first delegations, therefore, had to be from the root. Without delegation
there would be no hierarchy in the DNS.

18.1 The root of the Domain Name System

The authority for the root domain (which is generally written as a single period “. ”) lies
with ICANN, the Internet Corporation for Assigned Names and Numbers. ICANN is also
responsible for the root servers, although diverse organizations operate the physical servers.
While the root server installations might be a bit larger and will probably receive more
queries than servers that you set up, they have the same ingredients as your DNS:

• One or more DNS name servers.

• Zone data. The root name servers cater for the single zone called “. ”.

18.1.1 The root zone file

The root zone file contains the names and addresses of all authoritative DNS servers for all
top-level domains (TLDs). These include the generic top-level domains (gTLDs) such as COM,
NET, ORG as well as the country-coded top-level domains (ccTLDs), which include DE, UK and
ES1. The first few lines of the 2 681-line root zone file dated early July 2008 were:

. IN SOA A.ROOT-SERVERS.NET. NSTLD.VERISIGN-GRS.COM. (
2008071200 ;serial
1800 ;refresh every 30 min
900 ;retry every 15 min
604800 ;expire after a week
86400 ;minimum of a day
)

$TTL 518400
. NS A.ROOT-SERVERS.NET.
. NS H.ROOT-SERVERS.NET.
...
A.ROOT-SERVERS.NET. A 198.41.0.4
H.ROOT-SERVERS.NET. A 128.63.2.53
...
$TTL 172800
ZM. NS HIPPO.RU.AC.ZA.
ZM. NS NS1.ZAMNET.ZM.
...
HIPPO.RU.AC.ZA. A 146.231.128.1
NS1.ZAMNET.ZM. A 196.46.192.26

The root zone file is published at ftp://ftp.internic.net/ .

1For a list of ccTLDs see http://www.iana.org/root-whois/index.html

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 18. Delegation and private DNS roots 437

18.1.2 Querying the root servers

Assuming you have Internet connectivity and a working recursive name server, you can
enumerate the current list of root name servers by querying the DNS. The domain you query
is the root domain:

$ dig . ns
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 30269
;; flags: qr rd ra; QUERY: 1, ANSWER: 13, AUTHORITY: 0, ADDITI ONAL: 13

;; QUESTION SECTION:
;. IN NS

;; ANSWER SECTION:
. 518400 IN NS a.root-servers.net.
. 518400 IN NS b.root-servers.net.
...

;; ADDITIONAL SECTION:
a.root-servers.net. 518400 IN A 198.41.0.4
b.root-servers.net. 518400 IN A 192.228.79.201
...

When you query a root server for a specific top-level domain, it answers with referrals to
the authoritative servers that the TLD has been delegated to, or with an error if that the TLD
does not exist:

$ dig biz. ns
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 22765
;; flags: qr rd ra; QUERY: 1, ANSWER: 8, AUTHORITY: 0, ADDITIO NAL: 0

;; QUESTION SECTION:
;biz. IN NS

;; ANSWER SECTION:
biz. 518398 IN NS a.gtld.biz.
biz. 518398 IN NS b.gtld.biz.
biz. 518398 IN NS c.gtld.biz.
biz. 518398 IN NS d.gtld.biz.
biz. 518398 IN NS e.gtld.biz.
biz. 518398 IN NS f.gtld.biz.
biz. 518398 IN NS g.gtld.biz.
biz. 518398 IN NS h.gtld.biz.

$ dig foo. ns
;; ->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 30622
;; flags: qr rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 1, ADDITIO NAL: 0

;; QUESTION SECTION:
;foo. IN NS

;; AUTHORITY SECTION:
. 10800 IN SOA A.ROOT-SERVERS.NET. NSTLD.VERISIGN-GRS.COM. 2008010701 ←֓

1800 900 604800 86400

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

438 Alternative DNS Servers – Jan-Piet Mens

18.2 Delegating a sub-domain to a name server

A parent domain delegates responsibility for a domain to a different name server just like
your spouse might delegate to you the task of taking the rubbish out. The decentralized
administration of the DNS works through delegation: name servers delegate the task of
managing sub-domains to other name servers; the delegating name servers keep and pub-
lish pointers to the name server(s) the administrative responsibility has been given to. A
name server given the responsibility for such a sub-domain becomes authoritative for that
zone’s data.

Figure 18.1: Delegating sub-domains to Name Servers

Figure 18.1 shows how domain qupps.biz has been split up into more manageable chunks:

• The zone qupps.biz is managed centrally. This zone contains domain names (i.e. hosts)
in the qupps.biz domain, such as www.qupps.biz and imap.qupps.biz, as well as delegation
records for the sub-domains.

• Domain de.qupps.biz is managed in Germany.

• Domain es.qupps.biz is managed in Spain, and domain uk.qupps.biz is also managed
on servers in Spain because there are no qualified system administrators in the UK
portion of the QUPPS organization (and because the food is much better in Spain).

In the following sections we explain how we carried out the above delegations.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 18. Delegation and private DNS roots 439

18.2.1 Name Server (NS) records are used for delegation

Responsibility for a sub-domain is delegated from a parent domain by using Name Server
(NS) records in the parent zone. It is important to note that NS records contain domain names
and not IP addresses. In master zone file format, the delegation to our three sub-domains is
contained in the zone master file for the qupps.biz zone:

$ORIGIN qupps.biz.
de 86400 NS willi.qupps.biz.
de 86400 NS feigling.de.qupps.biz.

uk.qupps.biz. 86400 NS torres.es.qupps.biz.
uk.qupps.biz. 86400 NS sherry.es.qupps.biz.

es 86400 NS torres.es.qupps.biz.
es 86400 NS sherry.es.qupps.biz.

There are a few points to note:

• The origin of the zone file is qupps.biz, so the unqualified domain named de actually
refers to de.qupps.biz.

• You can of course always write domain names qualified if you prefer (just like we have
done for uk.qupps.biz).

• One of the Name Servers, willi, for de.qupps.biz is a host in the qupps.biz zone rather than
in the de.qupps.biz zone itself. This is perfectly legal and demonstrates good practice,
because you spread the risk over a wide geographical area, minimizing the likelihood
of a total blackout.

• All of the Name Servers for uk.qupps.biz and es.qupps.biz are in their respective zones,
which is how delegation is most frequently done. For example, if you have been del-
egated example.com, your servers, not .com’s servers, will be authoritative for the do-
main.

• Seen from “the top” (i.e. seen from the domain qupps.biz), qupps.biz does not know how
how to resolve the domain sherry.es.qupps.biz, as it would have to contact the name
server running on that host to determine the Address (A) record of sherry.es.qupps.biz.
But without an IP address, it cannot contact the server2. . .

This is where glue comes to the rescue. Servers that delegate a sub-domain to a Name
Server in that sub-domain must provide Address records for that name server. So, in
qupps.biz zone data, we add:

sherry.es 86400 A 192.168.2.164
es 86400 NS sherry.es.qupps.biz.

2Have you read Catch 22 already?

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

440 Alternative DNS Servers – Jan-Piet Mens

18.2.2 Delegation in the in-addr.arpa domain

We discussed in Section 2.3.3 that address-to-name lookups are performed via so-called re-
verse queries in the in-addr.arpa domain. There are, however, two different cases:

A. Delegating a full Class A, B or C in-addr.arpa network.

B. Delegating a classless in-addr.arpa network.

18.2.3 A – Normal in-addr.arpa delegation

Delegation in the in-addr.arpa domain is straightforward, if your address-range is a full class
A, B or C. For example, if your network is 192.168.4.0/24 a delegation to your servers in the
in-addr.arpa domain would contain:

4.168.192.in-addr.arpa. 86400 NS willi.qupps.biz.
4.168.192.in-addr.arpa. 86400 NS feigling.de.qupps.biz .

This is the simplest form of reverse in-addr.arpa delegation.

18.2.4 B – Classless in-addr.arpa delegation

The delegation of reverse DNS (address-to-name) was for a time only possible on network-
class boundaries, with the longest prefix being 24 bits. If you were assigned, say, a network
192.0.2.0/28, reverse delegation had to be managed by your ISP, requiring you to wait until
the ISP modified its DNS for the changes you sent them to become active.
RFC 2317, Classless in-addr.arpa delegation, defines a best practice for delegation of classless

in-addr.arpa networks. Classless in-addr.arpa delegation allows administrators to provide au-
thoritative reverse DNS on subnets that don’t fall on octet boundaries. It is specially useful
for subnets with less than eight bits in the host portion (i.e. smaller than a class C).
Using this method, the master name server retains authority over the in-addr.arpa zone.

It uses “dummy” entries to identify the classless subnets, and pseudo-delegates these using
Canonical Name (CNAME) records.
For example, let’s assume that an ISP has two customers (First Customer with domain

example.org, and Second Customer with domain example.net). Let’s further assume, the
network 192.0.2.0/24 is split equally between them – First Customer has been assigned
192.0.2.0/28 (IP addresses 192.0.2.0 – 192.0.2.15) and Second Customer has been assigned
192.0.2.16/28.
The authoritative name server (i.e. the ISP’s name server) is configured as authoritative

for the entire /24 netblock, i.e. for the zone 2.0.192.in-addr.arpa. For each of its customers it
contains “pseudo-hosts” pointing to the delegated name server(s). (We show you one name
server, but each customer of course has two.)

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 18. Delegation and private DNS roots 441

This is the zone file at the ISP:

$ORIGIN .
$TTL 86400 ; 1 day
2.0.192.in-addr.arpa. IN SOA nsa.ISP.net. jp.ISP.net. 20 0804132 ←֓

28800 14400 3600000 86400
IN NS nsa.ISP.net.
IN NS nsb.ISP.net.
IN NS nsc.ISP.net.

$ORIGIN 2.0.192.in-addr.arpa.
; First customer
0-28 IN NS ns1. example.net.
1 IN CNAME 1.0-28
2 IN CNAME 2.0-28
3 IN CNAME 3.0-28
4 IN CNAME 4.0-28
...
15 IN CNAME 15.0-28

; Second customer
16-28 IN NS ns1. example.org.
16 IN CNAME 16.16-28
17 IN CNAME 17.16-28
...
31 IN CNAME 31.16-28

Domain 0-28 (fully qualified it is 0-28.2.0.192.in-addr.arpa.) represents the 28-bit block starting
at 0, and domain 16-28 represents the 28-bit block starting at 16. Each of these is delegated
to one or more servers at the customers’ sites. (We use dashes (“–”) in the domain names;
you will frequently see a slash (“/”) used instead, but we prefer the former because it is a
valid character in a domain name.)
First Customer configures their server to be authoritative for the zone 0-28.2.0.192.in-

addr.arpa. In BIND’s named.conf , for example, they would configure:

zone " 0-28. 2.0.192.in-addr.arpa" IN {
type master;
file "my-subnet.zone";

};

The zone master file contained in my-subnet.zone would be:

$TTL 3600;
0-28.2.0.192.in-addr.arpa. IN SOA ns1.example.net. mast er.mens.de. ←֓

19 10800 900 604800 3600
NS ns1.example.net.

$ORIGIN 0-28.2.0.192.in-addr.arpa.

1 IN PTR mail.example.net.
;2 IN PTR reserved.example.net. ; not allocated yet
;3 IN PTR reserved.example.net. ; not allocated yet
;4 IN PTR reserved.example.net. ; not allocated yet
5 IN PTR imap.example.net.
...
;15 IN PTR reserved.example.net. ; not allocated yet

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

442 Alternative DNS Servers – Jan-Piet Mens

Configured this way, a reverse query for, say, 192.0.2.5 translates initially to 5.2.0.192.in-
addr.arpa as usual, which is answered by your ISP’s name server. Your ISP’s server resolves
it to a CNAME, 5.0-28.2.0.192.in-addr.arpa, for which they have delegated authority to the NS
at ns1.example.net. The First Customer’s name server receives a query for 5.0-28.2.0.192.in-
addr.arpa and returns the final PTR record as reply:

$ dig -x 192.0.2.5
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 1, ADDIT IONAL: 1

;; ANSWER SECTION:
5.2.0.192.in-addr.arpa. 86400 IN CNAME 5.0-28.2.0.192.i n-addr.arpa.
5.0-28.2.0.192.in-addr.arpa. 3600 IN PTR imap.example.n et.

;; AUTHORITY SECTION:
0-28.2.0.192.in-addr.arpa. 3600 IN NS ns1.example.net.

This method has the advantage that the actual authority for the zone remains on the
Customer’s name servers. The downside is that the actual resolution of an address-to-name
lookup by the resolver requires two indirections via a CNAME: the first to obtain the “pseudo-
hostname” contained in the alias, and the second to obtain the actual PTR record for the
“pseudo-hostname”.

18.2.5 Examples of delegation by different brands of name server

All the following sections show the same delegation – that illustrated in Figure 18.1 – but
for different brands of name server.

Delegation in NSD or BIND

The example in Section 18.2.1 shows how you set up delegation for NSD and BIND (because
the example is in zone master file format, which is what these two name servers use.) We
omitted the uk and de delegations to save space.

Delegation in MaraDNS

The csv2 file for MaraDNS contains the following entries:

es.% +86400 NS torres.es.%
es.% +86400 NS sherry.es.%

torres.es.% A 192.168.1.22
sherry.es.% A 192.168.1.20

The first two lines set up delegation of the es.qupps.biz sub-domain to the two name servers,
and the last two lines create the glue for them.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 18. Delegation and private DNS roots 443

Delegation in PowerDNS

For PowerDNS the delegation records depend on the back-end used:

• Using the LDAP back-end.

PowerDNS uses dNSDomain2 objects to store zone data. The following entries in LDIF
format show you how you add the Name Servers and the appropriate glue:

dn: dc=es.qupps.biz,ou=pdns,ou=dns,o=qupps.biz
dc: es.qupps.biz
nSRecord: sherry.es.qupps.biz
nSRecord: torres.es.qupps.biz
dNSTTL: 86400
associatedDomain: es.qupps.biz
objectClass: dNSDomain
objectClass: dNSDomain2
objectClass: dcObject
objectClass: domainRelatedObject

dn: dc=sherry,dc=es.qupps.biz,ou=pdns,ou=dns,o=qupps .biz
associatedDomain: sherry.es.qupps.biz
dNSTTL: 86400
aRecord: 192.168.1.20
dc: sherry
objectClass: dNSDomain2
objectClass: domainRelatedObject
objectClass: top

dn: dc=torres,dc=es.qupps.biz,ou=pdns,ou=dns,o=qupps .biz
associatedDomain: torres.es.qupps.biz
dNSTTL: 86400
aRecord: 192.168.1.22
dc: torres
objectClass: dNSDomain2
objectClass: domainRelatedObject
objectClass: top

Note that the delegation via the LDAP back-end does not work on the release version;
we had to install build 1123 from the Subversion repository (see Notes in Chapter 6).

• Using the OpenDBX back-end.

For the OpenDBX back-end you first define the Name Server entries:

INSERT INTO records (domain_id, name, type, ttl, content)
VALUES (1, ’es.qupps.biz’, ’NS’, 86400, ’sherry.es.qupps .biz’);

INSERT INTO records (domain_id, name, type, ttl, content)
VALUES (1, ’es.qupps.biz’, ’NS’, 86400, ’torres.es.qupps .biz’);

and the necessary glue:

INSERT INTO records (domain_id, name, type, ttl, content)
VALUES (1, ’sherry.es.qupps.biz’, ’A’, 86400, ’192.168.1 .20’);

INSERT INTO records (domain_id, name, type, ttl, content)
VALUES (1, ’torres.es.qupps.biz’, ’A’, 86400, ’192.168.1 .22’);

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

444 Alternative DNS Servers – Jan-Piet Mens

Delegation in MyDNS

In theMySQL or PostgreSQL database for theMyDNS server, you create Name Server records
like this:

INSERT INTO rr (zone, name, type, data)
VALUES (1, ’es’, ’NS’, ’torres.es.qupps.biz.’);

INSERT INTO rr (zone, name, type, data)
VALUES (1, ’es’, ’NS’, ’sherry.es.qupps.biz.’);

and create the glue with:

INSERT INTO rr (zone, name, type, data)
VALUES (1, ’sherry.es’, ’A’, ’192.168.1.20’);

INSERT INTO rr (zone, name, type, data)
VALUES (1, ’torres.es’, ’A’, ’192.168.1.22’);

Delegation in tinydns

In tinydns’s data , to specify a name server that this zone is delegating to, you use the &
(ampersand) line-type. In the following data file, the first line defines the qupps.biz zone,
and the two following lines create the glue for the servers you’re delegating es.qupps.biz to:

.qupps.biz:192.168.1.164:dns.qupps.biz:
&es.qupps.biz:192.168.1.22:torres.es.qupps.biz:
&es.qupps.biz:192.168.1.20:sherry.es.qupps.biz:

Delegation in ldapdns

ldapdns uses dNSDomain objects to store zone data. The following entries in LDIF format
show you how you add the Name Servers and the appropriate glue:

dn: dc=es,dc=qupps,dc=biz,ou=zones,ou=LDAPdns,ou=dns ,o=qupps.biz
dc: es
objectClass: dNSDomain
objectClass: dcObject

nSRecord: torres.es.qupps.biz
nSRecord: sherry.es.qupps.biz

dn: dc=torres,dc=es,dc=qupps,dc=biz,ou=zones,ou=LDAP dns,ou=dns,o=qupps.biz
dc: torres
objectClass: dNSDomain
objectClass: dcObject
aRecord: 192.168.1.22

dn: dc=sherry,dc=es,dc=qupps,dc=biz,ou=zones,ou=LDAP dns,ou=dns,o=qupps.biz
dc: sherry
objectClass: dNSDomain
objectClass: dcObject
aRecord: 192.168.1.20

That concludes our discussion of delegation. In the next section, we discuss how you create
a private root name server, and why you might need to.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 18. Delegation and private DNS roots 445

18.3 Creating your own private root name servers

Do you need your own private root name server? That depends on what you are trying to
accomplish:

• If you are in a Small Office / Home Office or small organization with a caching name
server and Internet connectivity, the answer will most probably be: “no”.

• If you need your own authoritative zone (e.g. you.example) and the brand of caching
name server you deploy can serve such a zone for you, then the answer is also: “no”.
For example, our publisher runs a BIND name server that performs caching (for when
their users want to query the public DNS), and it serves a zone uit.private in which they
maintain their servers, printers and other devices they want to make addressable by
hostname. They do not need a private root server.

• If, however, you are deploying DNS in a large organization that has private IP ad-
dresses and wants to set up name resolution for various domains within that network,
then the answer will likely be: “yes”. (See Figure 1.15 for an example.)

These organizations can simply set up authoritative name servers, of course, and point
their caching name servers at them. However, the caching servers will always attempt
to query the public root servers, because they contain a built-in list of root servers. To
fully override that, such organizations frequently set up private root name servers.

Organizations that want to create a disconnected DNS environment (i.e. one which has no
connectivity to the public DNS) can create private root servers as the entry point into the
DNS (Figure 18.2).

Figure 18.2: Private root servers on your network

To create private root servers:

A. Install two or more servers as your private root name servers. These do not have to be
dedicated machines; you typically implement your root servers and a portion of your
content servers on the same machine. You can of course use separate machines, and
many organizations do so.

B. Configure the name servers to serve the root zone, which you define yourself. Most
authoritative content servers we have discussed are able to provide root service, and
we show you how to do that in Section 18.3.2.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

446 Alternative DNS Servers – Jan-Piet Mens

The root zone consists of delegations to your authoritative content servers. For each
of your zones, you provide Name Server (NS) resource records, as well as glue in the
form of Address (A) records.

This completes your root name server setup.

C. Now set up (or modify) the configuration of your caching name servers:

(a) These typically attempt to contact the public DNS root servers when performing
recursion, and you must “teach” them not to do so.

(b) The “lesson” typically consists of configuring your caches with a different list of
the addresses of the name servers (often called a hints file). A hints file typically
consists of a Name Server (NS) and an Address (A) resource record for each of
your root name servers.

We illustrate how you create your own root environment with three different name servers,
NSD, MyDNS, and BIND SDB, in the following sections. Do note, however, that you can use
any of the authoritative content servers discussed earlier, applying the same principles.

18.3.1 A – Install your root name servers

We covered the installation of authoritative name servers in Part II of the book. You can
chose any brand of name server to serve the root zone, however, you may have to build
the server binary with special options (see the description of the individual brands of name
server).

18.3.2 B – Configuring name servers to serve the root zone

B1 – Using NSD as a root server

NSD (Chapter 10) was designed to operate as a root name server, and it is easy to set up as
one. To set up NSD as a root name server we recommend you proceed as follows:

1. Create your root zone, with a Start of Authority (SOA), Name Server (NS) and its Ad-
dress (A) records:

Listing 18.1: Private root zone

$TTL 604800
$ORIGIN .
. 604800 IN SOA ROOT1.MYROOT.NET. jp.MYROOT.NET. (

2008020301 1800 900 604800 86400)
. 604800 IN NS ROOT1.MYROOT.NET.
. 604800 IN NS ROOT2.MYROOT.NET.

ROOT1.MYROOT.NET. 604800 IN A 192.168.1.20
ROOT2.MYROOT.NET. 604800 IN A 192.168.1.164

It doesn’t matter what domain names you allocate to your root server machines. For
clarity it’s best if you use names that are not registered in the public DNS, but you

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 18. Delegation and private DNS roots 447

don’t have to (see Notes in Chapter 2). To emphasize this, in the example above we
have used names not in the real qupps.biz domain – root1.myroot.net, . . .

2. Add delegation to the qupps.biz name servers to the root zone file.

; Delegations and Glue
$ORIGIN .
qupps.biz. 604800 IN NS ns1.qupps.biz.
qupps.biz. 604800 IN NS ns2.qupps.biz.
ns1.qupps.biz. 604800 IN A 192.168.1.20
ns2.qupps.biz. 604800 IN A 192.168.1.164

3. Configure NSD to serve your root zone by adding the zone to nsd.conf . Our root zone
is contained in the file my-root.zone :

zone:
name: "."
zonefile: "my-root.zone"

4. Rebuild the zone database and reload or restart NSD:

nsdc rebuild
nsdc restart

We discuss in Section 18.3.3 how you set up your DNS caching servers (e.g. Unbound) to
access your new root server.

B2 – Using MyDNS as a root server

To use MyDNS as a root server, add the following to your database:

1. The Start of Authority (SOA) for the root zone, which is called “. ”. Whereas we demon-
strated in the example for NSD above that you can use fictitious names in root zones,
here we use names in our own name space:

INSERT INTO soa (origin, ns, mbox)
VALUES (’.’, ’root.qupps.biz.’, ’jp.qupps.biz.’);

2. The Name Server (NS) records describing at least one name server, but preferably more
than one:

INSERT INTO rr (zone, name, type, data)
SELECT id, ’.’, ’NS’, ’root.qupps.biz.’ FROM soa WHERE orig in = ’.’;

INSERT INTO rr (zone, name, type, data)
SELECT id, ’.’, ’NS’, ’root2.qupps.biz.’ FROM soa WHERE ori gin = ’.’;

3. The glue:

INSERT INTO rr (zone, name, type, data)
SELECT id, ’root.qupps.biz.’, ’A’, ’192.168.1.164.’ FROM soa ←֓

WHERE origin = ’.’;
INSERT INTO rr (zone, name, type, data)

SELECT id, ’root2.qupps.biz.’, ’A’, ’192.168.1.20.’ FROM soa ←֓
WHERE origin = ’.’;

Then add delegations from the root name space to your domains, as shown above for NSD.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

448 Alternative DNS Servers – Jan-Piet Mens

B3 – Using BIND-sdb-LDAP as a root server

Create the master “ . ” zone in named.conf

Define amaster zone clause for the zone “. ” (a single period). For example, using the LDAP
driver in BIND SDB, create the following entry in named.conf :

zone "." {
type master;
database "ldap ldap://127.0.0.1/ou=ROOT,ou=sdb,o=dns 1 72800";

};

LDIF for the root zone

Your LDAP directory server needs an entry for the root zone itself, as well as an entry for
each zone it delegates to:

1. The LDAP entry for the root zone must contain Name Server (NS) records pointing to
your root name servers.

dn: relativeDomainName=@,ou=ROOT,ou=sdb,o=dns
objectClass: top
objectClass: dNSZone

relativeDomainName: @
zoneName: .
dNSTTL: 86400
dNSClass: IN
nSRecord: ns1.qupps.biz.
nSRecord: ns2.qupps.biz.
sOARecord: ns1.qupps.biz. ROOT-MASTER.qupps.biz. 1 1080 0 900 604800 3600

Note that the zoneName attribute type in these examples contains a single period: the
name of the root zone.

At this point, as we haven’t delegated any zones, your BIND SDB root servers answer
queries with NXDOMAIN, but do return the Start of Authority (SOA) of the root zone:

$ dig @127.0.0.1 qupps.biz
;; ->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 20633
;; flags: qr aa rd; QUERY: 1, ANSWER: 0, AUTHORITY: 1, ADDITIO NAL: 0

;; AUTHORITY SECTION:
. 3600 IN SOA ns1.qupps.biz. ROOT-MASTER.qupps.biz. 1 1080 0 900 604...

2. Add an LDAP directory entry for the delegation to the qupps.biz name servers:

dn: relativeDomainName=qupps.biz,ou=ROOT,ou=sdb,o=dn s
objectClass: top
objectClass: dNSZone
relativeDomainName: qupps.biz
zoneName: .
dNSTTL: 7200
dNSClass: IN
nSRecord: dns1.qupps.biz.
nSRecord: dns2.qupps.biz.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 18. Delegation and private DNS roots 449

If you now query your name server for qupps.biz you get:

$ dig @127.0.0.1 qupps.biz

;; AUTHORITY SECTION:
qupps.biz. 7200 IN NS dns1.qupps.biz.
qupps.biz. 7200 IN NS dns2.qupps.biz.

The authority section is correct, and the delegation is successful, but there is something
missing: the glue records.

3. The glue records are searched for at the LDAP search base of the root zone, by per-
forming subtree searches for:

(&(zoneName=.)(relativeDomainName=dns1.qupps.biz))
(&(zoneName=.)(relativeDomainName=dns2.qupps.biz))

Add the glue records with the following LDIF:

dn: relativeDomainName=dns1.qupps.biz,ou=ROOT,ou=sdb ,o=dns
objectClass: top
objectClass: dNSZone
relativeDomainName: dns1.qupps.biz
zoneName: .
dNSTTL: 86400
dNSClass: IN
aRecord: 192.168.1.20

dn: relativeDomainName=dns2.qupps.biz,ou=ROOT,ou=sdb ,o=dns
objectClass: top
objectClass: dNSZone
relativeDomainName: dns2.qupps.biz
zoneName: .
dNSTTL: 86400
dNSClass: IN
aRecord: 192.168.1.164

Nowwhen you query your BIND SDB name server for qupps.biz you get the glue in the
ADDITIONAL SECTION:

$ dig @127.0.0.1 qupps.biz
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 20
;; flags: qr rd; QUERY: 1, ANSWER: 0, AUTHORITY: 2, ADDITIONA L: 2

;; QUESTION SECTION:
;qupps.biz. IN A

;; AUTHORITY SECTION:
qupps.biz. 7200 IN NS dns1.qupps.biz.
qupps.biz. 7200 IN NS dns2.qupps.biz.

;; ADDITIONAL SECTION:
dns1.qupps.biz. 86400 IN A 192.168.1.20
dns2.qupps.biz. 86400 IN A 192.168.1.164

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

450 Alternative DNS Servers – Jan-Piet Mens

How clients query the root zone

To better understand how BIND-sdb-LDAP handles queries, we show you the LDAP searches
it performs. If your BIND SDB name server is asked about a domain qupps.biz, the LDAP
back-end will have these queries directed at it:

1 (&(zoneName=.)(relativeDomainName=biz))
2 (&(zoneName=.)(relativeDomainName=qupps.biz))
3 (&(zoneName=.)(relativeDomainName=@))

The first query is for the generic Top-Level domain (gTLD) .biz, the second for the name
servers of the domain qupps.biz and the last for the Start of Authority (SOA) of the root do-
main proper. The LDAP search base for these filters is the base you specify in the database

statement of the zone clause.

18.3.3 C – Configure your caching servers

All the caching name servers on your network have to be configured to know about and
locate your new root zone. We show you three examples of how to do this with Unbound,
BIND, and dnscache in the following two sections.

Configuring Unbound and BIND to access your root servers

Both Unbound and BIND, which we discussed in Chapter 17, are easy to set up; they use the
same form of hints file.

• Create a “hints” file for you new root name servers. The hints file contains only Name
Server (NS) and Address (A) resource records. Notice that the hints file is a copy of a
portion of the my-root.zone we created on page 446 for NSD – the NS and A records
for our root servers.

$ cat my-root.hints
. 604800 IN NS ROOT1.MYROOT.NET.
. 604800 IN NS ROOT2.MYROOT.NET.

ROOT1.MYROOT.NET. 604800 IN A 192.168.1.20
ROOT2.MYROOT.NET. 604800 IN A 192.168.1.164

• You configure Unbound to load the root hints file by adding a root-hints option to
unbound.conf :

server:
interface: ...
...
root-hints : "my-root.hints"
...

• For BIND, you define a hint zone:

zone "." IN {
type hint ;
file "my-root.hints";

};

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 18. Delegation and private DNS roots 451

Configuring dnscache to access your root servers

The file @in the dnscache’s $ROOTdirectory contains a list of IP addresses of the root name
servers, one per line. Modify this file to contain only the addresses of your new root servers:

$ cd /usr/local/dnscache
$ cat root/servers/@
192.168.1.164
192.168.1.20

Don’t forget to restart dnscache after this modification.
It isn’t difficult to set up and configure a private root server environment, and unless you

are in a large organization, you probably won’t have to do it at all.
This completes Part II of the book, in which we discussed the individual brands of server

you can use to set up DNS services, as well as delegation and private root servers.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

452 Alternative DNS Servers – Jan-Piet Mens

Summary

• Delegation is the process by which the authority or manager of a name server devolves
responsibility for a sub-domain to another authority or manager. This allows the man-
agement of domains to be distributed. Typically a sub-domain or zone is managed by
the organization or department most connected with it.

• To delegate authority over a zone, you set up Name Server (NS) records in the zone
that is delegating.

• Name servers can only find subordinate name servers (i.e. name servers “below” them
in the hierarchy) if they have the glue – the Address records – that point to the subor-
dinate servers.

• Private root name servers are used in organizations that are not connected to the public
DNS.

Related topics

• We discuss the process of recursion and the caching name servers that recurse in
Chapter 17.

Notes and further reading

The thirteen root servers

Currently there are thirteen root servers (see http://www.root-servers.org/). A root
server is not usually a single machine, but rather a cluster of machines available at a single
address. It is worth noting that the IP address of a root server occasionally changes; for
example, the address of the l.root-servers.net installation underwent a scheduled change in
November 2007.

Alternative root servers

In addition to the “official” (i.e. ICANN-operated) root name servers, there are alternative
root servers with their own top-level domains (TLDs) (see http://en.wikipedia.org/

wiki/Alternative_DNS_root).

Online CIDR calculator

If you need a program to calculate CIDR networks, there is a good one at http://www.

subnet-calculator.com/cidr.php

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Part

III
Operational Issues

This Part of the book covers topics common to all brands of name server:

• Chapter 19 covers tools and methods for updating your DNS data.

• Chapter 20 covers the Name Service Switch.

• Chapter 21 explains Internationalized DomainNames and how to use them.

• Chapter 22 introduces DNSSEC – secure DNS.

• Chapter 23 shows how we measured the performance of the various name
servers, and the results we obtained.

• Chapter 24 discusses how to secure your name servers, and how to monitor
them.

Chapter

19 Updating DNS zones and
their associated records

A lot of hacking is playing with other people,
you know, getting them to do strange things.

Steve Wozniak

19.1 Using a registry to manage your DNS operations

19.2 How you update your DNS data

19.3 Managing DNS data in text fi les

19.4 Updating name server back-end data stores

19.5 Web-based management

19.6 Dynamic DNS Updates (RFC 2136)

19.7 Dynamic DNS updates performed by DHCP client or server

19.8 Poor man’s dynamic updates

Introduction

This chapter explains the procedures for day-to-day updating of your DNS data. Larger organizations
should consider a registry group or department for managing all aspect of DNS operations. We discuss
“manual” updating – where you decide on and perform changes to the data yourself. Finally, we
cover Dynamic DNS Updates, which can be linked in to your DHCP service, so that your DNS is
automatically updated as client PCs join and leave the network.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

456 Alternative DNS Servers – Jan-Piet Mens

Information in the DNS changes continually. In the worldwide DNS, domains are constantly
being added and deleted; the architecture of the DNS ensures that you always receive the
latest, correct, values automatically.
However, you have to treat your own zones – the ones that you are authoritative for,

whether internal (private) or external (public) – differently. You have to explicitly update
your zone data when you add a new domain, for example, or add or remove a mail server,
or even when a desktop workstation joins the network. You have to consider how best to
perform these changes.
This chapter explains how you update your DNS data, and the standard protocols and

APIs for performing the updates dynamically, i.e. triggered by a program, rather than man-
ually. But first, you should decide whether your organization should have a dedicated a
registry group or department for managing all aspect of DNS operations, which we discuss
in the next section.

19.1 Using a registry to manage your DNS operations

A registry (also called a Network Information Center) is an organization that coordinates how
domain names are issued, and runs the technical infrastructure required for operating the
name servers for those domains (Figure 19.1). A registry typically maintains or manages the
following:

• A list of all domains (not individual host names) used, now and in the past. You can
store this list in any suitable format – text file, XML file, SQL database, etc. Larger
organizations will probably integrate this with their provisioning systems.

• The contact details associated with the domains. Owners’ names and addresses, the
name servers a domain has been delegated to, contact data, administrative and tech-
nical contacts, billing, etc.

• Procedures for creating and removing zones. A Small Office / Home Office environ-
ment might simply remove the zone, whereas a larger organization might have an
automated process, coupled into their customer or department billing system.

• The name server hardware and software that host the zones and serve DNS data.

• Provisioning and monitoring the organization’s DNS servers, using specialized tools
created for doing that.

• A system to back up the DNS and also your registry data (which is separate from the
DNS data), and disaster-recovery procedures for hardware, software and data.

19.1.1 Do you need a registry?

Yes, you do. We strongly recommend you create an infrastructure for managing the infor-
mation associated with issuing and managing domains. Getting the infrastructure running
is not difficult, and it will help you streamline your work.
Your registry requirements will differ according to your organization:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 19. Updating DNS zones and their associated records 457

Figure 19.1: A typical registry

• Small Office / Home Office: you will probably organize yourself on a sheet of paper,
or note changes in comments in a zone file. You are your own registry.

• Large organization: you will want a registry to identify and track which department
“owns” your various domains, when they expire, whether they have to be renewed,
who the contacts for the domains are, etc.

• An Internet Service Provider needs a registry, ideally with automated tools to handle
the hundreds or thousands of clients.

19.1.2 How to set up a registry

Setting up a registry is not necessarily a difficult task, and there are plenty of Open Source
tools which will help you to get started. Here are two implementations:

• Stephane Bortzmeyer of the French AFNIC registry has a writeup on how to im-
plement a simple registry using basic tools and data contained in an XML file (see
www.generic-nic.net/sheets/practical/xml-registry-en). He proposes using
the XML file as the database containing technical and social data, and using XSLT to
produce the zone file. While this might be a little simplistic, the ideas are interesting.

• The Internet Systems Consortium (ISC) has an implementation of a domain registry
that top-level domain operators might use to manage the delegation of domains. The
package is called OpenReg, and its source code is available at http://www.isc.org/

sw/openreg/ .

Many large organizations have a dedicated group of people who manage the organiza-
tion’s DNS registry; others out-source the task to specialized firms.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

458 Alternative DNS Servers – Jan-Piet Mens

19.2 How you update your DNS data

How your server stores its zone data – in text files, or LDAP or SQL databases – obviously
affects your choice of updating tool. There is no all-round tool that will satisfy your require-
ments for the simple reason that most people’s requirements are quite different. Just as your
registry requirements (Section 19.1) depend on your organization and the number of DNS
domains you maintain, so your requirements for maintaining the data in your DNS will be
quite different to the next organization’s.
Your attitude towards tools will also depend on your workload. An awkward tool is

tolerable if you modify DNS data only occasionally, but not if you are adding new zones
and lots of resource records every day.
In the next section we discuss how you maintain your DNS data in text files, and in

Section 19.4 we discuss how you update data stored in non-text back-end databases.

19.3 Managing DNS data in text fi les

Four of our name server implementations store their zone data in text files on a file system:
BIND and NSD use zone master file format and MaraDNS and tinydns use their own propri-
etary formats. Broadly, you can maintain the DNS data in these files in two ways:

A. Manually, with a text editor.

B. Generate their content from a database.

Let’s look at these two methods in turn.

19.3.1 A – Editing by hand with a text editor

You typically edit zone files with a text editor of your choice, but there are some points you
should note:

• Place zone files and configuration files under some sort of revision control system.
This allows you to easily back out of a change when something goes wrong, and gives
you a full history of your configurations.

• If you work in a team, set up some form of file-locking system so that you don’t clob-
ber changes made by a colleague, or vice versa. A small script that uses the lockfile
command (from the procmail package) before invoking your editor is easy to create
and is an effective solution. (Unless you start your text editor every few months only,
in which case there is no easy solution.)

• Use tools to make your life easier. *nix systems have a large number of excellent tools
that you can put to good use for maintaining your DNS. For example:

subversion A version control system. It allows you to create so-called hooks –
scripts that subversion executes when a particular action occurs. It is

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 19. Updating DNS zones and their associated records 459

easy to write a little script that notifies others whenever a zone or
configuration file has changed.

You can go a step further still, and create a script that reloads your
name server when a zone change has been committed by subversion,
so you don’t have to remember to do it manually.

make make is an indispensable tool for a systems administrator, and you
probably know it. Although it was created for building code, we use
it in all areas of system administration. In Appendix B we show you
how you can use make to automatically track changes to zone mas-
ter files and “fix” the serial number of your zones when you modify
resource records.

19.3.2 B – Generating file content from an external data source

Even though your server needs its zones in text files, why not generate them from data
contained in an SQL database or in an LDAP directory instead of editing zone files by hand?
(Figure 19.2)

Figure 19.2: Generating zone data from SQL/LDAP

While this adds complexity at the outset, it gives you all the benefits of data management in
databases and directories.

• Section 11.2.7 showed how to generate text files for tinydns from an SQL database.

• Another interesting program is ldap2dns by Jacob Rief and Ben Klang. This creates a
data file suitable for tinydns, or zone files suitable for NSD or BIND, directly from entries
stored in an LDAP directory (see http://projects.alkaloid.net/).

• For NSD or BIND, with LDAP, you can use ldap2zone by Stig Venaas instead. It reads
LDAP directory entries from your LDAP directory and produces a zone master file on
standard output. Saved in a file, this output is ready to feed to either NSD or BIND1.
If you have organized your LDAP directory with entries as discussed in Chapter 8,
running ldap2zonewill search all entries and produce a zone master file:

1The program does not take into account the use of a tilde as a wild-card character in the LDAP directory (see
Notes on page 212).

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

460 Alternative DNS Servers – Jan-Piet Mens

$ ldap2zone qupps.biz ldap://localhost/o=qupps.biz 3600
$TTL 3600
@ 86400 IN SOA ns1.qupps.biz. hostmaster.mens.de. (

196205281 ; Serialnumber
10800 ; Refresh
900 ; Retry
604800 ; Expire
3600) ; Minimum TTL

86400 NS ns1.qupps.biz.
86400 NS ns2.qupps.biz.
86400 A 192.168.1.20

...

...

– The Time To Live specified on the command-line (3600) is used to create the $TTL

directive in the zone.

– You can give ldap2zone a serial number as an optional last parameter. It compares
this with the serial number in the the LDAP directory: if the numbers match, the
program prints:

$ ldap2zone qupps.biz ldap://localhost/o=qupps.biz 3600 196205281
ldap2zone: serial numbers match

and exits with an error-code indicating the zone has not changed. You can use
this to check whether a zone has changed in your LDAP directory: if it has, you
create the zone master file, reload your master and notify your slaves and record
the new serial number for use in the next check; if no change has occurred you
do nothing.

That completes our coverage of maintaining zone text files. Next we look at good practice
for maintaining zone data in database back-ends.

19.4 Updating name server back-end data stores

One of the main reasons for deploying a DNS server with an external database back-end is
flexibility in maintenance of your DNS zone data. As soon as you add or modify a database
entry, the DNS server “picks” it up and uses it automatically. MyDNS, PowerDNS, BIND SDB,
Bind DLZ, and ldapdns can all be configured to utilize an external SQL database or LDAP
directory, and you can update those databases on the fly.
While you may be able to use one of theWeb-based utilities (Section 19.5) to update your

back-end databases, most organizations that maintain a large number of domains bite the
bullet and create their own tools for maintaining zones and zone data. Whether you do so
depends on your programming skills, howmuch time (andmoney) you are willing to invest
and the volume of DNS updates you’ll be handling.
Updating DNS data can be a tedious task if you don’t have the proper tools. For example,

Section 2.5.5 explained how you can use basic command-line utilities to manage your SQL
database or your LDAP directory, but if you have lots of updates to do, that’s unsatisfactory.
You have to remember the exact format of the data used by the back-end, and the names of
database tables, and to change the PTR when you change its associated A record, and so on.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 19. Updating DNS zones and their associated records 461

If you have a lot of DNS work to do, automating your task will save you time and reduce
the number of errors in your data.
What sort of programs should you create? Here are some ideas to get you started:

• You frequently add a new zone that needs a Web server, two Mail Exchangers and
some Service records. Create a program that adds the zone and its associated records
to your back-end database. So, for example, to add, say, a complete example.net to your
DNS, you execute:

$ add-zone example.net

Your program should allow you to specify the zone name with or without a trailing
period to reduce the possibility of a common error.

• You constantly deploy new workstations and assign them static IP addresses. Create a
utility for yourself to add the A record (and its associated PTR) to the DNS. For example,
when you “deliver” Alice her new workstation, you use:

$ new-pc alice

The investment in creating custom utilities for DNS maintenance is generally quickly re-
couped in time savings on these (usually tedious) tasks. A small shell script wrapper around
command-line tools may be sufficient, or, if you need a bit more logic in your utility, use a
programming language you are comfortable with:

• Updating SQL databases is not difficult to do, and there are language bindings for
most databases. Many programming languages and scripting languages have in-built
SQL database tools: Perl with its DBI, PHP, and C. We show you a small PHP example
in Section 19.8.2.

• Libraries are available for manipulating LDAP directories, too. These client libraries
usually offer both an synchronous and an asynchronous interface. A typical update
procedure will look something like this:

1. Create a session handle with ldap initialize () (or ldap open (), which is dep-
recated).

2. Use ldap set option () to set parameters for communication with the LDAP di-
rectory server.

3. Establish a session by invoking ldap bind (), possibly passing credentials.

4. Perform other operations such as ldap search (), ldap add (), etc. depending on
what the application needs to do, and then. . .

5. Terminate the LDAP association and underlying connection with ldap unbind ().

The exact details depend on the API you choose; for example, some APIs provide
additional functionality (such as START TLS). Most programming languages today in-
cluding Perl with the Net::LDAPmodule, PHP, C, have support for LDAP.

If you have a heavy DNS maintenance load, it will almost certainly be worth your while
creating custom tools for updating your zones and resource records. On the other hand,
some people are satisfied with Web-based management tools, which we discuss next.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

462 Alternative DNS Servers – Jan-Piet Mens

19.5 Web-based management

Web-based management of zones and zone data might well be one of the most sought-after
tools when you set up your DNS infrastructure, because they can ease your way into the
sometimes daunting task of creating records in SQL databases or entries in LDAP directory
servers. There is a large amount of programs written to satisfy their authors’ needs, and you
may well find that some of these programs satisfy your DNS requirements.
Unfortunately, many Web-based tools are far from perfect. Common problems include:

• Difficult installation requiring a specific version of PHP, for example, can mean you
can’t install this tool without breaking some other component on your machine.

• Some of the interfaces we tested assume just a handful of zones. As soon as you try to
use thousands of zones the tools fall to pieces or take ages to do anything.

• Most of the programs support just a handful of DNS resource record types (probably
because the authors didn’t have the need for more).

However, the programmers went to a lot of work, and we are grateful that they made their
work available for everyone to use. We have selected a handful of programs you might
consider adding to your DNS infrastructure:

Web-based tools for PowerDNS

PowerAdmin for PowerDNS with a MySQL or PostgreSQL back-end. The original
PowerAdmin project was abandoned and has been replaced by a “com-
plete(r) PowerAdmin” with support for all zone types (master, slave,
native), support for Superslaves, DNS RR validation, multiple lan-
guages, custom skins and a new user and permission management
system (see www.poweradmin.org).

ZoneAdmin for a PowerDNS with a MySQL back-end (see http://open.megabit.

net/index.php?section=pro_home&project=ZoneAdmin).

PDNS-Admin for PowerDNS with a MySQL back-end. It can create and restore your
database, it has a skinnable interface, and support for multiple lan-
guages (see http://pdnsadmin.iguanadons.net/).

Web-based tools for BIND

NicTool NicTool calls itself a “management solution for DNS”. It implements
some very interesting concepts, providing “provisioning agents” that
communicate via XML-RPC or SOAP with a mod perl module to pop-
ulate a MySQL database. It then generates output for tinydns and BIND
zone files from the database (see http://www.nictool.com/).

ProBIND This PHP-based tool manages zones in a MySQL database and gener-
ates zone files for BIND on demand (see http://probind.org/).

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 19. Updating DNS zones and their associated records 463

Web-based tools for Bind DLZ

dnsEditor This program (Figure 19.3) by Lokkju Brennr makes some use of AJAX
but unfortunately loads all zones from the MySQL database tables on
startup, which makes it very slow if you have many zones. It is avail-
able via subversion at https://svn.lokkju.com/svn/dnsEditor .

Figure 19.3: dnsEditor for Bind DLZ

Ant This program, by Kris Nielander, is for the PostgreSQL back-end to
Bind DLZ (see http://antdns.sourceforge.net/).

Web-based tools for tinydns

NicTool See above.

VegaDNS This stores DNS zones and records in a MySQL database from which
a data file is created on the fly for tinydns (Figure 19.4). A very useful
feature is that you can specify a set of records that are automatically
added to new domains you create via theWeb interface; for example, if
most of the zones you create have 4MX records and 2Web servers, you
can have VegaDNS add these when you create new zones (see http:

//www.vegadns.org).

That completes our overview of some of the Web-based management tools for DNS data. In
the next section we discuss how you manage Dynamic DNS Updates.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

464 Alternative DNS Servers – Jan-Piet Mens

Figure 19.4: VegaDNS in action

19.6 Dynamic DNS Updates (RFC 2136)

Dynamic DNS Updates as defined in RFC 2136 allow the data of a DNS server to be updated
in real time (Figure 19.5). When a user’s workstation starts up, you can ensure its IP address
is registered in the DNS, allowing it to be addressed within your domain. Dynamic DNS
allows an updater to add, modify or delete individual resource records and RRsets. (How-
ever, neither the Start of Authority (SOA) nor the Name Server (NS) records may be added or
modified: the standard thus prohibits the creation or deletion of zones.)
Of the name servers discussed in this book, only two support RFC 2136 Dynamic DNS

Updates:

• MyDNS (Chapter 5). Dynamic updates can be written directly to its back-end database.
As discussed, it has a simple IP-based access control to prevent unauthorized hosts
from performing updates.

• BIND (Chapter 7). For each master zone, you can specify whether dynamic updates are
allowed. You limit which clients can perform updates, with IP-based access control,
or you create and deploy TSIG keys that authorize select clients to perform updates.
Note that BIND SDB back-ends do not support RFC 2136, nor does Bind DLZ. BIND can
also update DNSSEC-signed zones (Chapter 22).

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 19. Updating DNS zones and their associated records 465

Figure 19.5: Dynamic DNS Updates

We show you how you submit dynamic updates to a suitably configured name server,
from the command-line with the nsupdate utility in the next section, and with Perl’s Net::DNS
package in Section 19.6.3.

19.6.1 Dynamic updates from the command-line with nsupdate

nsupdate submits Dynamic DNS update requests to a name server. nsupdate reads commands
from a file (or from standard input) and processes these in order. Each command must be
on exactly one line of input. An update request consists of zero or more prerequisites and
zero or more updates; a prerequisite allows you to ensure nsupdate performs an update
only if certain resource records are present or absent. For example, you may wish to add
an Address record for a host only if that host does not yet exist. Here’s a simple example,
adding a TXT record for the domain i5.qupps.biz:

$ nsupdate
> server 192.168.1.20
> zone qupps.biz.
> update add i5.qupps.biz 3600 TXT "Hello World"
> send
> quit

$ dig @192.168.1.20 i5.qupps.biz any
;; ANSWER SECTION:
i5.qupps.biz. 3600 IN TXT "Hello World"

Commands understood by nsupdate

server The address of the server to be updated. If the server command is omit-
ted, nsupdate determines the address it from the MNAME field (primary
name server field) of the Start of Authority (SOA) of the zone it is operat-
ing on.

server 192.168.1.20

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

466 Alternative DNS Servers – Jan-Piet Mens

zone All updates are to be made to the specified zone name. If omitted, nsup-
date determines the zone from the rest of the input.

zone qupps.biz.

prereq nxdomain Requires that no resource records of any type exist with the domain-name.

prereq nxdomain www.qupps.biz.

prereq yxdomain Requires that domain-name does exist, with at least one resource record of
any type.

prereq yxdomain www.qupps.biz.

prereq nxrrset Requires that no resource records of the specified domain-name, class and
type exist.

prereq nxrrset imap.qupps.biz. IN A

update delete Deletes any resource records named domain-name. If type or type and data
are specified, only matching resource records will be removed.

update delete imap2.qupps.biz. A
update delete imap4.qupps.biz. A 192.168.4.39

update add Adds a new resource record with the specified domain-name, ttl, type and
data.

update add imap.qupps.biz. 3600 A 192.168.1.201

send Sends the current update request. (Entering a blank line does the same.)

quit Exits nsupdate.

So, that is the nsupdate’s syntax, and now, we show you an example of using it to update a
record in the MyDNS name server.

19.6.2 Using nsupdate to add a host to MyDNS

We mentioned above that dynamic updates can add, modify or delete domain names in
a zone only, if the name server is authoritative for that zone. For MyDNS that means the
database must contain a record for the zone in the soa table. You can’t add new zones to the
server via dynamic DNS; if you attempt to do so anyway, MyDNS logs an error:

... REFUSED Zone_not_found 1 0 0 0 LOG N QUERY ""

Let’s see how MyDNS processes a dynamic update, next:

1. Before we begin, let’s prove that the host we want to add (pc.qupps.biz) does not exist:

mysql> SELECT origin, name, type, r.ttl, data FROM soa s, rr r
-> WHERE s.id = r.zone AND name LIKE ’pc%’;

mysql>

2. Use the nsupdate program to send a set of updates to a name server. Here is the simple
script we use:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 19. Updating DNS zones and their associated records 467

$ nsupdate
> server 127.0.0.1
> update add pc.qupps.biz. 3600 A 192.168.1.178
> send
> quit
$

If you watch the MyDNS log in verbose mode, you will see two queries:

(a) The first query is for the Start of Authority (SOA) of the domain we are adding. If
the server is not authoritative for the domain, it will refuse any updates on it:

IN SOA pc.qupps.biz. NOERROR - 1 0 1 0 LOG N QUERY ""

(b) The second query is the update proper:

IN SOA qupps.biz. NOERROR - 1 0 0 0 LOG N UPDATE←֓
"ADD pc.qupps.biz. 3600 IN A 0 192.168.1.178"

3. Check that MyDNS has created the domain in the rr table; yes, it has:

mysql> SELECT origin, name, type, r.ttl, data FROM soa s, rr r
-> WHERE s.id = r.zone AND name LIKE ’pc%’;

+------------+---------------+------+------+------- --------+
| origin | name | type | ttl | data |
+------------+---------------+------+------+------- --------+
| qupps.biz. | pc.qupps.biz. | A | 3600 | 192.168.1.178 |
+------------+---------------+------+------+------- --------+

4. Check that we can query MyDNS for the resource record, by sending a DNS query:

$ dig @127.0.0.1 pc.qupps.biz
;; ANSWER SECTION:
pc.qupps.biz. 3600 IN A 192.168.1.178

The domain name has been created and we can query it via DNS.

Using nsupdate with TSIG

In Chapter 5 we discussed how you set up IP-based ACLs to authorize dynamic updates
to MyDNS. If you have a BIND server, you can also use IP-based ACLs, but a more secure
approach is to use TSIG authorization to protect your server. Then you can invoke nsupdate
with the TSIG key. nsupdate reads the key either from an option on the command-line (not
recommended), or from a file:

$ nsupdate -k key-file
...

Note:

• You can pass the key on the command line, but this is dangerous, as any user on your
system can see the key by running a ps command at the right moment.

• When you invoke nsupdatewith:

$ nsupdate -y keyname: hash

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

468 Alternative DNS Servers – Jan-Piet Mens

you specify a colon-separated keyname and the key as hash. If the key name does not
match the server’s key name, the update fails with a NOTAUTH(BADKEY)error.

• The clocks on the client machine and the DNS name server must be synchronized for
TSIG to work, so we recommend you use the Network Time Protocol (NTP) for that. If
your clocks are not synchronized, updates fail with NOTAUTH(BADTIME).

19.6.3 Net::DNS

We introduced you to Net::DNS in Chapter 15. Net::DNS::Update implements Perl modules
for sending dynamic updates. The two examples presented here are just small variations on
the excellent samples in the Net::DNS distribution.

1. This example works with suitably configured MyDNS and BIND servers. It first checks
that the domain mypc.qupps.biz doesn’t exist, by specifying a prerequisite, and then
adds the domain and an associated Address (A) record.

Listing 19.1: Perform an RFC 2136 Dynamic DNS Update with Net::DNS

#!/usr/bin/perl

use Net::DNS;
use strict;

my $zone = ’qupps.biz’;

Create the update packet.
my $update = Net::DNS::Update->new($zone);

Prerequisite is that no A records exist for the name.
$update->push(pre => nxrrset("mypc.$zone. A"));

Add an A record for the name.
$update->push(update => rr_add("mypc.$zone. 86400 A 192. 168.1.189"));

Send the update to the zone’s primary master; specify
it either as a domain name that will be resolved via
your system’s resolver, or as an IP address.
my $res = Net::DNS::Resolver->new;
$res->nameservers("127.0.0.1");

my $reply = $res->send($update);
if ($reply) {

if ($reply->header->rcode eq ’NOERROR’) {
print "Update succeeded\n";

} else {
print ’Update failed: ’, $reply->header->rcode, "\n";

}
} else {

print ’Update failed: ’, $res->errorstring, "\n";
}

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 19. Updating DNS zones and their associated records 469

2. This example uses TSIG to authorize itself with the DNS server and then adds a TXT
record. Currently this examplewill work only against a suitably configured BIND name
server that has a TSIG key defined as described in Section 7.4.

Listing 19.2: Perform an RFC 2136 Dynamic DNS Update with Net::DNS and TSIG

#!/usr/bin/perl

use Net::DNS;
use strict;

my $zone = ’qupps.biz’;
my $keyname = ’ma-clef’;
my $keyblob = ’t3Q+wdd6Nzt0VnKslPuHk5JkE931QqPyntA33Z1 AjEo=’;

Create the update packet.
my $update = Net::DNS::Update->new($zone);

Add a TXT record for the name.
my $txt = "Hello " . time;
$update->push(update => rr_add("mypc.$zone. 3600 TXT \"$ txt\""));

Sign the update
$update->sign_tsig($keyname, $keyblob);

Send the update to the zone’s primary master.
my $res = Net::DNS::Resolver->new;
$res->nameservers("127.0.0.1");

my $reply = $res->send($update);

Did it work?
if ($reply) {

if ($reply->header->rcode eq ’NOERROR’) {
print "Update succeeded\n";

} else {
print ’Update failed: ’, $reply->header->rcode, "\n";

}
} else {

print ’Update failed: ’, $res->errorstring, "\n";
}

19.7 Dynamic DNS updates performed by DHCP client or server

DHCP, the Dynamic Host Configuration Protocol, can automatically configure new and exist-
ing hosts on your network. The aspect of DHCP that most concerns us here is IP address
allocation. When a DHCP client machine starts up, it requests an IP Address from a DHCP
server. The server, which has been configured by its administrator with a pool of available
addresses, chooses an available address, and assigns it to the client. The client then config-
ures itself to use the server-assigned address. The client doesn’t own the address forever,
but is only given a time-limited lease on the address; the server specifies how long the lease
is valid; before the lease expires, the client should ask the server to renew it.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

470 Alternative DNS Servers – Jan-Piet Mens

A DHCP client can obtain other settings, in addition to its IP address: addresses of DNS
servers and routers, routing information, addresses of mail and time servers, etc.
From the DNS point of view that doesn’t really help very much; you have a whole bunch

of hosts that have addresses assigned, but how do you access services on these hosts by
name (rather than by IP address)? In the next sections we look at how you configure DHCP,
how it operates on a client host, and how it can dynamically update the DNS.

19.7.1 ISC DHCP

A widely-used DHCP server is the distribution from ISC, who also make BIND (see http:

//www.isc.org/products/DHCP/). The package contains a DHCP server (dhcpd), a DHCP
client (dhclient) and a DHCP relay agent. You configure dhcpd with the file dhcpd.conf .
While a full discussion of the dhcpd.conf and dhcpd is beyond the scope of this book (see
Notes) we show you a sample dhcpd.conf below, which we will refer to in the following
sections.

Listing 19.3: A dhcpd.conf file

server-identifier home.mens.de;
authoritative;

ddns-update-style interim;
ddns-updates on;

include "/etc/our.key";

zone mens.de. {
primary 192.168.1.20;
key our;

}
zone 1.168.192.in-addr.arpa. {

primary 192.168.1.20;
key our;

}

subnet 192.168.1.0 netmask 255.255.255.0 {
range 192.168.1.101 192.168.1.200;
option subnet-mask 255.255.255.0;
option broadcast-address 192.168.1.255;

option domain-name "mens.de";
option time-offset -18000;

option routers 192.168.1.1;
option domain-name-servers 192.168.1.20, 192.168.1.164 ;

}

The format is similar to named.conf ’s, but do note that clauses such as subnet or zone are
not terminated by a semi-colon outside the closing brace.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 19. Updating DNS zones and their associated records 471

19.7.2 ISC’s dhclient

When a GNU/Linux workstation boots up, it typically launches dhclient. dhclient reads the
file dhclient.conf for configuration instructions, and gets a list of all network interfaces
installed on the system. For each interface, dhclient contacts the DHCP server and retrieves
a list of options and values with which it configures that interface. The actual configuration
is often performed by a shell script called dhclient-script. The list of DHCP variables that
dhclient requests from the server is controlled by options given to dhclientwhen it’s invoked,
but there is a sensible list of defaults.

dhclient invokes dhclient-script and passes to it (by means of exported environment vari-
ables) the option values that dhclient received from the DHCP server. A set of options and
values will contain something like this:

interface=eth0
reason =REBOOT
new_broadcast_address=192.168.1.255
new_dhcp_lease_time=14400
new_dhcp_message_type=5
new_dhcp_server_identifier=192.168.1.40
new_domain_name=mens.de
new_domain_name_servers=192.168.1.20 192.168.1.164
new_expiry=1200112399
new_ip_address=192.168.1.202
new_network_number=192.168.1.0
new_ntp_servers=192.168.1.20
new_routers=192.168.1.1
new_subnet_mask=255.255.255.0
new_time_offset=-18000

Note that the dhclient-script script may be invoked more than once with differing $reason

depending on the state of the DHCP initialization. The reasons currently defined are de-
scribed in full in the program’s documentation and include: MEDIUM, PREINIT, BOUND,
RENEW, REBIND, REBOOT, EXPIRE, FAIL and TIMEOUT.

19.7.3 How an IP address is registered in the DNS

When a client obtains an IP address from a DHCP server, there are several ways to register
the client address in your DNS (Figure 19.6):

A. The DHCP server updates the DNS using RFC 2136 dynamic updates.

B. The DHCP client (i.e. the workstation) updates the DNS using RFC 2136 from dhclient.

C. dhclient-script can run “hooks” – scripts that you write to perform special processing,
perhaps because you want to secure your communication between client and the DNS
server. Depending on your environment, your hook scripts may or may not use RFC
2136.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

472 Alternative DNS Servers – Jan-Piet Mens

The following two methods don’t use RFC 2136:

D. If the DNS server doesn’t support RFC 2136: the DHCP server writes leases (i.e. IP
address allocations) to the file dhcpd.leases , and a program can automatically scan
the file for modifications and update your DNS from that.

E. The “poor man’s” way. We discuss this in Section 19.8 below.

We cover each of these in later sections. But first, if we are going to use method A, B, or C,
we must configure the DNS server so it will accept dynamic update requests.

Figure 19.6: DHCP and dynamic DNS updates

To have your DHCP server perform dynamic DNS updates:

Configure your DNS server

Set up your name server to allow incoming RFC 2136 updates:

BIND For BIND, create one or more keys using rndc-keygen, and include an allow-update
statement in each of the zones that is to be dynamically updatable:

zone "mens.de" IN {
type master;
file "mens.zone";
allow-update { key our; };

};

MyDNS For MyDNS, add the update acl column to the soa database table, populate it
with the address of the DHCP server, and set allow-update in mydns.conf :

allow-update = yes

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 19. Updating DNS zones and their associated records 473

A – The DHCP server updates the DNS

1. Configure your DHCP server to perform RFC 2136 updates. We assume you’re using
the ISC DHCP server; as both DHCP and BIND are ISC products, their configuration
syntaxes are similar, and it’s easy to get confused: the following statements are for the
DHCP server:

ddns-update-style The update style of dynamic DNS. The only style that works is the
interim style.

ddns-updates Controls whether the DHCP server will attempt to submit DNS
updates when a DHCP lease is confirmed. Set this to on if the
server will submit the updates, or to off if the DHCP client will
perform the updates instead.

ddns-ttl The Time to Live (TTL) for resource records that the DHCP server
adds to the DNS.

key If you want dhcpd to update a BIND name server that uses TSIG,
you need a key that you share between dhcpd and named. Ideally
you store the key in a file and include that file in both named.conf

and dhcpd.conf . The key name is used in the allow-update

statement of BIND’s zone clause. If you are using MyDNS you do
not require keys, as MyDNS does not support TSIG.

zone The zone clauses specify which zones dhcpd will attempt to send
updates for. The clauses specify the name of the zone (which
should be qualified with a period), the address of the primary
name server (which must correspond to the MNAME of the Start of
Authority (SOA) record) and an optional key with which updates
are authenticated.

For example, we set the following:

ddns-update-style interim;
ddns-updates on;

in dhcpd.conf and define the zones and optional keys (for BIND) that are used to
authorize updates (see example in Section 19.7.1 above).

2. When the DHCP client (dhclient) is invoked, it contacts the DHCP server and requests
that the server perform an update to DNS, which it does upon successful allocation of
a lease to the client.

You might set up your dhclient.conf to contain

$ cat /etc/dhclient.conf
send fqdn.fqdn "joey.mens.de.";
send fqdn.server-update on;

in which case dhclient will request that the DHCP server perform the DNS updates on
its behalf. The DHCP server logs show:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

474 Alternative DNS Servers – Jan-Piet Mens

Added new forward map from joey.mens.de to 192.168.1.202
added reverse map from 202.1.168.192.in-addr.arpa. to joe y.mens.de

This confirms that the DHCP server has been able to “convince” the name server to do
the updates. The logs of the target name server confirm the update was successful:

client: updating zone ’mens.de/IN’: adding an RR
journal file mens.zone.jnl does not exist, creating it
zone mens.de/IN: sending notifies (serial 200712224)
client: updating zone ’1.168.192.in-addr.arpa/IN’: dele ting an rrset
client: updating zone ’1.168.192.in-addr.arpa/IN’: addi ng an RR
zone 1.168.192.in-addr.arpa/IN: sending notifies (seria l 200612686)

B – dhclient updates the DNS

In the preceding section we discussed how you set up the DHCP server to perform the up-
dates on behalf of the client. If you want to, you can have the client itself update the DNS. If
you enable this functionality it means of course, that the RFC 2136-conforming name server
has to allow the client to do the dynamic DNS update, something you probably don’t want
to allow, because you would have to open up dynamic updates on your name server to all
possible clients.
To configure dhclient to perform updates:

1. Edit dhclient.conf :

$ cat /etc/dhclient.conf
send fqdn.fqdn "alex2.mens.de.";
send fqdn.server-update off;

zone mens.de. {
primary 192.168.1.164; # primary name server

}

2. Configure the target DNS server to allow updates. For example, if you are using
MyDNS, set up the update acl column to allow the machine on which dhclient will per-
form the update to do so. Now, when the machine boots, we see the following MyDNS
logs:

UDP 192.168.1.202 IN SOA mens.de. NOERROR - 1 0 0 0 LOG N UPDATE ←֓
"ADD alexi.mens.de. 7113 IN A 0 192.168.1.202"

UDP 192.168.1.202 IN SOA mens.de. NOERROR - 1 0 0 0 LOG N UPDATE ←֓
"ADD alexi.mens.de. 7113 IN TXT 0 00b9c4d2c00fa90e5cc1c96 38055ab565a"

and if you follow dhclient’s progress, you will see the following messages logged via
syslog:

bound to 192.168.1.202 -- renewal in 7114 seconds.
Added new forward map from alexi.mens.de. to 192.168.1.202

The IP address of the client in both logs proves that dhclient and not the DHCP server
performed the dynamic DNS update.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 19. Updating DNS zones and their associated records 475

To complicate the issue, if your DHCP server allows ddns (the server has ddns-updates
enabled), you would see the server updating DNS with the pointer (PTR) and the client
(dhclient) perform the update for the A and TXT records. The reason is that the client
doesn’t update PTR records.

If you forget to configure dhclient on your workstation, or if you are using a Microsoft Win-
dows PC (and thus no dhclient), nothing happens. Literally: no DNS update will be per-
formed.

C – Use dhclient-script to update the DNS

We have discussed how either the DHCP server or client can initiate the DNS updates. How-
ever, if you have high security requirements (e.g. if you need SIG(0) – see Notes) you can’t
use the methods discussed so far. However, you can still perform dynamic DNS registra-
tion from dhclient-script, rather than dhclient itself. First, disable updates by dhclient itself by
unsetting:

send fqdn.fqdn ... ;
send fqdn.server-update ... ;

in dhclient.conf . When dhclient runs dhclient-script, the script receives a number of values
passed to it as environment variables. For example:

interface=eth0
reason =REBOOT
new_dhcp_lease_time=14400
new_domain_name=mens.de
new_domain_name_servers=192.168.1.20 192.168.1.164
new_ip_address=192.168.1.202

dhclient-script sources a script called dhclient-exit-hooks, typically from /etc , and it is in this
script that you add your extra functionality. For example, you can:

• Use the environment variables as arguments to an nsupdate command, to perform the
dynamic DNS update.

• Create a custom script or program that issues SQL statements or LDAP modification
requests to the back-end DNS store to reflect the new DNS resource.

Note that dhclient-script is invoked as user root .
Only MyDNS and BIND support Dynamic DNS Updates. The next two methods don’t use

RFC 2136, so you can use them even if your name server doesn’t support the standard.

D – Processing the dhcpd.leases file

If you cannot use RFC 2136 updates from the DHCP server or the DHCP client, you can
process the lease file that the DHCP server creates when it grants a lease, and from there
update your DNS data back-end. The lease file is called dhcpd.leases . It is usually located
in /var/lib/dhcpd . A typical entry is:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

476 Alternative DNS Servers – Jan-Piet Mens

lease 192.168.1.133 {
starts 6 2008/01/12 11:54:18;
ends 6 2008/01/12 15:54:18;
binding state active;
next binding state free;
hardware ethernet 00:0c:29:6b:19:1f;
uid " \001\000\014)k \031\037";
set ddns-rev-name = "133.1.168.192.in-addr.arpa.";
set ddns-txt = "31f80d4b48e282fd6c0fbebcbe8ba0b0df";
set ddns-fwd-name = "domi6.mens.de";
client-hostname "domi6";

}

Michael Stella has created a small Perl program that parses the dhcpd.leases file and cre-
ates output suitable for tinydns-data and tinydns (not for zone master files). For the above
lease, the program generates:

=domi6.mens.de:192.168.1.133:300

The program lives at www.thismetalsky.org/magic/projects/dhcp_dns.html .

E – Updating your DNS the “poor man’s” way

If none of the above methods are satisfactory, you can use what we call the “poor man’s”
way. We discuss this next.

19.8 Poor man’s dynamic updates

At a customer site that has a large PowerDNS installation, we designed a mechanism so a
client machine can register itself with a DNS server, irrespective of whether RFC 2136 support
is available or not. The DNS name for a workstation is based on the name of the user who
last logged on to it. There were a number of prerequisites and issues:

• The solution had to work on Microsoft Windows PCs, Mac OS X, and *nix worksta-
tions, and work with both DHCP and non-DHCP workstations.

• When a user logs on to a workstation, the login (user) name is to be used as the host
name and entered in a special DNS zone. So, if user alexi logs on to a PC, a DNS
record of alexi.domain-name has to be created. System administrators use this to deter-
mine the IP address of a user without having to ask the user, by querying the domain
users.qupps.biz for an A record based on the user’s name:

$ dig alexi.users.qupps.biz
...

• If a user logs on to two different workstations, the last one wins. For example, if our
user alexi has a laptop and a desktop, her DNS entry will point to the last machine
she logged on to.

• We remove DNS records created for users from the DNS servers during non-working
hours, by an automatic process. In the current PowerDNS solution, an SQL DELETE

FROM ... does the job satisfactorily.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 19. Updating DNS zones and their associated records 477

We wrote a single executable client program, pmc, that can be compiled on multiple plat-
forms, and distributed it to the workstations. The implementation ensures that the com-
plexity is centralized on the server, not on the clients. This approach has the following
benefits:

• Because the program distributed to user’s workstations is so simple, it requires no
maintenance or updates.

• Authentication and authorization are performed by the server. The server decides if
the DNS entry is allowed, and if so, how to add it.

• The back-end DNS servers can be replaced if necessary, without requiring the client
program to be altered.

To limit the complexity of the client program, we determine the client’s IP address address
on the server, not on the client. At this point, you must be asking yourself, whether we’ve
gone off our rocker. Hang on.

Figure 19.7: poor man’s Dynamic DNS

The server program, pms, runs under the control of a Web server. The client contacts the
server via HTTP, and in the HTTP request, gives the username of the user currently logged
on (Figure 19.7). The server, pms, then determines the client’s IP address: it is passed to the
HTTP server in the $REMOTEADDRvariable, which is generally made available to a Common
Gateway Interface (CGI) program or to a PHP script. pms then creates a DNS resource record
or two (an Address (A) and a PTR) for the client.
The service provided by our “poorman’s dynamic DNS” is comparable to that offered by

dyndns.org (see Notes) and similar providers. We developed this idea for a closed corporate
environment. Consider using it if Dynamic DNS Updates a la RFC 2136 aren’t possible or are
too cumbersome.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

478 Alternative DNS Servers – Jan-Piet Mens

19.8.1 pmc: the poor man’s dynamic DNS client

Wewrote the pmc client program in the C programming language because it is very portable.
We use libcurl from the cURL project (see Notes). You can compile the program on any UNIX
platform, as well as on Mac OS X or Microsoft Windows (with the Visual C or the MingW
compilers, or GCC for Cygwin). The program performs the following steps (Figure 19.8):

1. pmc initializes the cURL environment and sets options for the connection to the HTTP
server. It builds a POST request containing the username and submits the HTTP re-
quest to the Web server.

2. The Web server invokes the PHP or CGI program and passes it standard variables,
such as the IP address of the requestor (i.e. the client workstation), and also the vari-
ables set by pmc (i.e. the username).

3. The pms server, on the Web server host, updates the corresponding database, LDAP
directory, or file, to record the workstation’s address in the DNS.

4. The DNS server now has access to the record, and it can start answering queries for it.

5. pms answers the client request with a “thank you” (or an error-message) to indicate
success or failure. This is passed back to the Web server, which transforms it to an
HTTP response and returns it to the client.

6. The client displays (or ignores) the response and cleans up the cURL environment.

Figure 19.8: pms data flow

Listing 19.4: pmc.c: the poor man’s dynamic DNS client (☞D191)

#include <stdio.h>
#ifdef WIN32
include <windows.h>
include <wininet.h>
#else
include <unistd.h>
include <pwd.h>
#endif
#include <curl/curl.h>
#include <curl/easy.h>
#define Cso(opt, val) curl_easy_setopt(con, (opt), (val))

#define URL "http://webbin.qupps.biz/pms.php"

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 19. Updating DNS zones and their associated records 479

static char *userid(void);

int main(int argc, char **argv)
{

CURL *con;
CURLcode rc;
struct curl_httppost *post = NULL, *last = NULL;

curl_global_init(CURL_GLOBAL_DEFAULT);
con = curl_easy_init();

Cso(CURLOPT_URL, URL);
Cso(CURLOPT_VERBOSE, 0);
Cso(CURLOPT_USERAGENT, "pmc 3.1");

curl_formadd(&post, &last,
CURLFORM_COPYNAME, "username",
CURLFORM_COPYCONTENTS, userid(), CURLFORM_END);

Cso(CURLOPT_POST, 1);
Cso(CURLOPT_HTTPPOST, post);

rc = curl_easy_perform(con);
if (rc != CURLE_OK) {

fprintf(stderr, "Can’t GET %s: easy-error: 0x%X", URL, rc) ;
}

curl_formfree(post);
curl_easy_cleanup(con);
curl_global_cleanup();
return (0);

}

static char *userid()
{

char *username = "unknown";

#ifdef WIN32
static char lpName[128] = "unknown";
long rc, dlen = sizeof(lpName);

rc = WNetGetUser(NULL, lpName, &dlen);
if (rc == NOERROR) {

username = lpName;
}

#else
struct passwd *pw;

if ((pw = getpwuid(getuid())) != NULL) {
username = pw->pw_name;

}
#endif

return (username);
}

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

480 Alternative DNS Servers – Jan-Piet Mens

Hardcoding the URL to the pms service into the client is a Bad Thing™, because when-
ever the URL to the service changes (e.g. because you relocate the server, change the path
to the pms server, switch from using PHP to CGI, etc.) you have to rollout a new version of
pmc to all workstations. We show you, in Appendix G, how you can use DNS TXT records to
“configure” applications from “outside”, using the DNS as a configuration database.

Invoking pmc on *nix

On a *nix host, there are a several places where you can invoke the pmc client program:

• From /etc/profile when a user logs on.

• From a user’s .profile (or .bashrc) initialization file, allowing finer control over
which users get their DNS registered.

• You might think we could run pmc from the dhclient-exit-hooks script (Section 19.7.3)
which is sourced by the dhclient-script invoked by dhclient. However, because the pro-
gram is invoked as the root user, you don’t have access to the “real” username of the
user who will be utilizing the workstation, so you can’t really use this in our context.

Invoking pmc on Microsoft Windows

On Microsoft Windows you can launch pmc:

• From a login script that your users execute when they log in to your domain; this
avoids the need for software distribution, as the program is launched from the net-
work.

• From the “Run” tree of the registry. (The commands listed in this tree are launched
when a user logs in to a workstation.)

• From the “Startup” folder of the Microsoft Windows start menu.

pmc is usually compiled to not show a console, so your users will not see pmc while it exe-
cutes.

19.8.2 pms: a server for pmc

The server component for the poor man’s dynamic DNS is implemented as a program, pms,
under the control of a Web server. We use PHP running on an Apache Web server, but you
could implement it in any language. Our sample implementation assumes the Bind DLZ
name server (Chapter 9), but adapting it to work with any of the other SQL-database or
LDAP schemas is trivial. The program does the following:

1. It retrieves the IP address of the pmc client, as well as the username sent by pmc in the
HTTP request.

2. It constructs the name of the client by concatenating the username with our special
zone name (users.qupps.biz). This is the host name by which the client will be known.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 19. Updating DNS zones and their associated records 481

3. It connects to the database using a Pear module (which allows you to easily adapt the
program to a different SQL database back-end).

4. If the entry for this host does not exist, it is created and inserted into the dns records

table with an Address (A).

5. If the entry for the host name exists, the IP address of its Address (A) record is updated.

6. The program issues a small message. You can disable this in a production environ-
ment, as your users will not usually see it.

Listing 19.5: pms.php: the poor man’s dynamic DNS server component (☞D192)

<?php
pms.php (C)2008 by Jan-Piet Mens
Server for poor man’s dynamic DNS

require_once "DB.php";

$zone = ’users.qupps.biz’;

$driver = "mysql"; # driver name
$user = "dnsadmin";
$password = "hah!";
$host = "192.168.1.164";
$db = "perfdlz"; # database name
build DSN (data set name)
$dsn = "$driver://$user:$password@$host/$db";

$conn =& DB::connect ($dsn);
if (DB::isError ($conn))

die ("Cannot connect: " . $conn->getMessage () . "\n");

$ip = $_SERVER[’REMOTE_ADDR’];
$host = $_POST[’username’];

$sql = "SELECT zone FROM dns_records
WHERE zone = ’$zone’ AND host = ’$host’ AND type = ’A’";

$result =& $conn->query($sql);
if (DB::isError ($result))

die ("SELECT failed: " . $result->getMessage () . "\n");

if ($result->numRows() == 0) {
$sql = "INSERT INTO dns_records (zone,host,ttl,type,data)

VALUES (’$zone’, ’$host’, 3600, ’A’, ’$ip’)";
$result =& $conn->query ($sql);
if (DB::isError ($result))

die ("INSERT failed: " . $result->getMessage () . "\n");

$message = "INSERTED $host.$zone with IP=$ip";
} else {

$sql = "UPDATE dns_records SET data = ’$ip’
WHERE zone = ’$zone’ AND host = ’$host’ AND type = ’A’";

$result =& $conn->query ($sql);
if (DB::isError ($result))

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

482 Alternative DNS Servers – Jan-Piet Mens

die ("UPDATE failed: " . $result->getMessage () . "\n");

$message = "UPDATED $host.$zone with IP=$ip";
}
$conn->disconnect();
echo "Thanks: $message\n";

?>

When pmc runs, it contacts the Web server via HTTP, and the Web server invokes the pms
PHP script. The “echo” on the last line of the program causes pmc to print out the server’s
summary of what it did:

$ pmc
Thanks: INSERTED alexi.users.qupps.biz with IP=192.168.2.22

Running it from a workstation with a different IP address would produce:

$ pmc
Thanks: UPDATEDalexi.users.qupps.biz with IP=192.168.2.83

Our sample pms server inserts or updates a record in an SQL database table, but you could
do things differently:

• If you use tinydns, your pms could just create a line in a tinydns-data file, which is peri-
odically transformed to a CDB database (e.g. via cron, or inotify – see Notes)

• If you use a DNS server with an LDAP directory back-end, you change pms to add or
modify LDAP directory entries accordingly.

The source code for pmc and pms is available from this book’s Web site (☞D190).

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 19. Updating DNS zones and their associated records 483

Summary

• We recommend you set up a DNS registry in your organization if you manage more
than a handful of domains.

• How you update and manage DNS data depends on the name server you’re using.
It can involve editing zone master files, adding a record to a database with an SQL
INSERT, or adding an entry to an LDAP directory server.

• Make your life easier and use existing tools, or fashion new ones, to administer and
quickly modify DNS resource records.

• Dynamic DNS Updates are specified in RFC 2136. However, only MyDNS and BIND
support it.

• Combining dynamic updates with DHCP lets you automatically register new clients
in the DNS. The DHCP client program (dhclient) can be configured to suit your infras-
tructure.

• If you can’t use RFC 2136 Dynamic DNS, you can use our “poor man’s” DNS instead,
within your organization, or you can process the dhcpd.leases file and update your
DNS from that.

Related topics

• MyDNS Chapter 5.

• BIND Chapter 7

• dnsmasq Chapter 13

• In Chapter 15 we show you how we use the DNS data entered via our Poor man’s
dynamic DNS together with user’s details taken from an LDAP directory, to provide
an information system you query via the DNS, using a custom-made Perl name server.

Notes and further reading

SIG(0)

SIG(0) is defined in RFC 2931, DNS Request and Transaction Signatures. It provides protection
for DNS transactions. SIG(0) is beyond the scope of this book, but you can learn about it
at http://www.ietf.org/rfc/rfc2931.txt , and you can use it with dynamic updates as
described in the Secure dynamic DNS howto at http://ops.ietf.org/dns/dynupd/secure-

ddns-howto.html

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

484 Alternative DNS Servers – Jan-Piet Mens

inotify

inotify is a GNU/Linux kernel subsystem that provides file system event notification (think
trigger for file system operations). It allows applications to request the monitoring of a set
of files against a list of events; when the event occurs, the application is notified. The inotify
API is available in a number of programming languages.

DHCP information

• The DHCP Handbook (2nd edition) by Ralph Droms and Ted Lemon (Sams) is a com-
plete reference for DHCP clients and servers. Chapters on configuration, Microsoft
Windows, DHCPv6, and DNS-interaction address problems that network administra-
tors are bound to encounter. Ted Lemon is one of the main authors of ISC DHCP, and
the book covers that program extensively (see http://www.dhcp-handbook.com/).

• For a more concise coverage of DHCP, read the companion book in this series, Practical
TCP/IP by Niall Mansfield.

Storing DHCP configuration data in LDAP

If you store DNS information in LDAP, why not store DHCP data in an LDAP directory as
well? The ISC DHCP server can be made to store its configuration in an LDAP directory
server, in the same data store as the DNS data:

dn: cn=192.168.1.0, ou=DHCP, ou=dev, o=qupps.biz
cn: 192.168.1.0
objectClass: top
objectClass: dhcpSubnet
objectClass: dhcpOptions
dhcpOption: domain-name-servers 192.168.1.20
dhcpOption: routers 192.168.1.1
dhcpOption: subnet-mask 255.255.255.0
dhcpOption: broadcast-address 192.168.1.255
dhcpNetMask: 24

In large environments, this canmake distribution andmaintenance of DHCP’s configuration
as easy to manage as the DNS resources that we also keep in the same directory. Brian Mas-
ney created a patch to version 3.0.5 of the ISC DHCPD server to add LDAP functionality to
dhcpd. You will find the patch at http://home.ntelos.net/˜masneyb/dhcp-3.0.5-ldap-

patch ; the file README.ldap contains information on how the patch works and how you
apply it.

The cURL program and libcurl library

cURL, created by Daniel Stenberg, is a command line tool for transferring files with URL
syntax, supporting FTP, FTPS, HTTP, HTTPS and many other protocols. libcurl is a well
documented library which allows you to embed cURL’s capabilities into a program (see
http://curl.haxx.se/).

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 19. Updating DNS zones and their associated records 485

The DynDNS Update Specifications

Dynamic Network Services, Inc. is well known for its free DynDNS services at www.dyndns.

com. Computers that have non-fixed IP addresses can register a domain name which points
to that IP address and can update the DNS details whenever the IP address changes. This
lets you run publicly accessible servers on the Internet without having to get a fixed IP
address. Their DynDNS system has a published API, the DNS Update API (see https:

//www.dyndns.com/developers/specs/).

tinyddns

If you use tinydns (Chapter 11), you may be interested in tinyddns, a simple dynamic-DNS
client and server. The client uses a secret to authenticate with the server and sends that
with a configurable hostname to the server over UDP. The server determines the client’s IP
from the UDP socket, decrypts the secret and, if it validates, adds or replaces the client’s
address in the data file for tinydns-data to process. tinyddns lives at http://sourceforge.

net/projects/tinyddns/

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

486 Alternative DNS Servers – Jan-Piet Mens

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter

20 The Name Service Switch

A box of crayons and a big sheet of paper
provides a more expressive medium for kids
than computerized paint programs.

Clifford Stoll

20.1 How the resolver operates

20.2 NSS – the Name Service Switch

20.3 Using LDAP (RFC 2307) with the Name Service Switch

Introduction

On a DNS client machine, hostname and IP-address resolution begins with a stub resolver. Onmodern
UNIX andGNU/Linux systems this is handled by a library of functions called theName Service Switch
(NSS). We discuss NSS and how you modify it to query an LDAP directory server directly.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

488 Alternative DNS Servers – Jan-Piet Mens

20.1 How the resolver operates

We discussed in Section 1.1.5 that the first step in a possibly long chain of events that leads
to a client program getting the answer to a query of “what is the address of www.qupps.biz
please?” is a resolver. A resolver is the component of a system that performs queries on
behalf of a client program, to translate a hostname to an IP address or vice versa. The
resolver isn’t a separate program, but just a set of library functions and system calls. In
the simplest case, a resolver receives a request for name translation via a function call (i.e.
gethostbyname ()), contacts a name server to obtain the desired information and returns it
to the calling application. For example, a Web browser calls gethostbyname () with code
similar to this Perl example, when you click on a hyperlink:

#!/usr/bin/perl

use strict;
use Socket;

my $packed_ip = gethostbyname("www.qupps.biz");
if (defined $packed_ip) {

Convert bytes to printable representation
my $ip_address = inet_ntoa($packed_ip);
print "IP Address: $ip_address\n";

}

20.1.1 Unix stub resolver

On *nix, the resolver is a set of functions contained in a library linked to the program. Orig-
inally, these functions used a static file named /etc/hosts . When the DNS was introduced,
the file /etc/host.conf let you control in which order the resolution procedure tried the
/etc/hosts file and the DNS; on modern GNU/Linux systems the file still exists, but it
is no longer used. The flexibility of the name lookup system was greatly enhanced by the
introduction of the Name Service Switch (NSS) (Section 20.2) which adds a level of both
complexity and flexibility to the resolution process. NSS is used on most *nix systems to-
day.

Configuring the resolver

You configure how a *nix system uses the DNS with the file /etc/resolv.conf . You typ-
ically specify a number of DNS caching servers that this host’s stub resolver should send
its DNS queries to. The file contains a sequence of lines of the form keyword value(s), with
whitespace separating the entries on a line. Two of the keywords supported are:

search This is optional. It specifies a list of up to six domains1. The values are used
only if the queried name isn’t an FQDN (i.e. if it doesn’t end with a dot).

If the queried name contains a dot somewhere in the middle, the resolver
first queries it “as is”; if that doesn’t succeed, or if the name doesn’t contain
a dot, the resolver appends the first element of the search list, and tries to

1Defined as MAXDNSRCH in resolv.h .

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 20. The Name Service Switch 489

resolve that; if that doesn’t succeed, it appends the next element instead,
and so on, until a match is found or the resolution fails. E.g. if you set:

search dev.es.qupps.biz qupps.biz

ping foo can generate queries foo.dev.es.qupps.biz followed by foo.qupps.biz,
whereas ping foo.bar might generate foo.bar, foo.bar.dev.es.qupps.biz and
foo.bar.es.qupps.biz.

nameserver Specify an address of a DNS server to use. You may use multiple name-
server2. The resolver attempts to contact name servers in the order you
specify to find one that answers, so if you have a local DNS caching server
on the machine, you should specify the local address first.

A typical resolv.conf will specify a search and two or three nameserver entries:

search qupps.biz.
nameserver 127.0.0.1
nameserver 192.168.1.20
nameserver 192.168.1.164

Note that you might not have to manually maintain this configuration if your networking
software is configured via DHCP.

20.1.2 The lightweight resolver

We discuss in Section 20.2, that NSS can use the lightweight resolver daemon (lwresd) to
query the DNS. lwresd is essentially a stripped-down version of a BIND caching-only name
server that answers queries (on UDP port 921) using the lightweight resolver protocols in-
stead of using the DNS protocol. lwresd can be used only by processes running on the local
machine, due to its hard-coded use of the 127.0.0.1 address. If you use lwresd, note that it uses
the nameserver entries of resolv.conf to find addresses of upstream “normal” caching
DNS servers. If it cannot find any nameserver entries, it resolves queries starting at a built-
in list of root name servers.

20.1.3 Microsoft Windows DNS Client

On windows, applications perform DNS lookups by calling functions contained in a dy-
namic link library (DLL), which also supports legacy NetBIOS name lookup functionality.
These functions handle all communications with the DNS servers and return DNS answers
back to the application. Modern Microsoft Windows systems include a caching resolver ser-
vice called the DNS Clientwhich clients “talk to” via local IPC. The DNS Client service itself
communicates with DNS servers, and caches the results that it receives. Upon startup, the
DNS client service loads an /etc/hosts -type file from %SYSTEMROOT%\system32 \drivers \

etc \hosts , and it reloads it periodically whenever it detects a modification to the file.

2Themaximumnumber of entries is defined asMAXNSwhen the resolver code is built. On our system, MAXNS
is defined as 3.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

490 Alternative DNS Servers – Jan-Piet Mens

The process of resolving a name on a modern Microsoft Windows system is as follows.
As soon as a step succeeds, the requested value is returned and the procedure terminates.

1. If the name is the local host name, the library returns the local address.

2. Search the cache of the DNS Client service. If the name is not in the cache, the DNS
Client service contacts DNS servers to attempt to resolve the name. If the query can be
satisfied, the reply is cached and returned to the client.

3. If the name contains a period or is 16 characters or longer, jump to step 4, below.

Otherwise, convert the name to a 15-character NetBIOS name by converting to upper-
case and appending spaces as required, and check the local NetBIOS cache for this
name.

4. If the name isn’t in the NetBIOS cache, Microsoft Windows contacts its configured
WINS server(s) for resolution.

5. If there is no reply to the NetBIOS name query request, Microsoft Windows searches
its local LMHOSTSand hosts files.

Due to the interaction with NetBIOS (if configured), we strongly recommend you do not
test your DNS with a ping on Microsoft Windows, to ensure you don’t run into the NetBIOS
trap – a ping on a simple name can be resolved via NetBIOS instead of using the DNS, and
you can’t see the difference. Use dig instead (Chapter 14 tells you how to get dig for Microsoft
Windows).

20.2 NSS – the Name Service Switch

Many aspects of a *nix host require configuration files containing lists of “things” – users
and passwords, user groups, host names and addresses, network service names and ports,
etc. Originally these were stored in static files, and each host had to have its own copy of
each file. This obviously caused maintenance and distribution problems. To get over these,
several systems have been developed that allow the information to be stored centrally on
the network and queried from the separate hosts. Other systems have been developed that
still require local storage, but perform well even with very large numbers of items.
The Name Service Switch (NSS), introduced by Sun, lets you control which databases

and other data sources are used for which configuration information. The NSS has been
adopted by most *nix implementations.
The functions that use the NSS include: gethostbyname () and gethostbyaddr () for re-

solving host names and addresses, and getpwnam () and getpwuid () for retrieving username
and password information.

NSS provides a common interface for simple system database lookup operations (Figure
20.1). This interface lets the system administrator configure which data sources the lookup
functions use, and in which order.
In this book, we limit the discussion of NSS to the routines needed to perform name-to-

address resolution, although much of what we discuss applies in a similar form to the other
library function groups.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 20. The Name Service Switch 491

Figure 20.1: Name Service Switch architecture

20.2.1 How NSS determines where to look for information

The Name Service Switch typically offers the following services for name-to-address and
address-to-name mapping:

files Use files (i.e. /etc/hosts) on the machine’s file system for linear lookup of host
names and addresses.

nis Use NIS, the Network Information System. NIS is an RPC (Remote Procedure-
Call)-based client/server system that allows a group of machines to share a set
of configuration files, typically passwd , group , hosts and others. It is an indus-
try standard. (Many organizations are now moving their user data from NIS to
LDAP because NIS is quite dated and doesn’t scale well.)

db Use Berkeley DB files. NSS on GNU/Linux supports different versions of Berke-
ley DB files (2.4, 2.7 and 3.0). db is great because it uses indexed rather than linear
searching, so on huge files it still performs very well. Berkeley DB’s key/value
databases are typically used on systems with large passwd files because they are
very effective. Look at the Makefile in /var/db for information on how to build
the Berkeley DB files with makedb.

ldap Use an LDAP directory server (Section 20.3).

lwres provides (gethostby () functions only) support for the lightweight resolver on
systems that use the GNU C library. The lightweight resolver can replace the
DNS module in NSS for name server lookups. To use this module, you have to
ensure that the lightweight resolver daemon (lwresd) is running.

dns Use the DNS. The stub resolver needs the /etc/resolv.conf file to determine
the address(es) of the name server(s) to contact for query resolution.

NSS uses the services in the order you specify. On a typical *nix system, the file controlling
the Name Service Switch (/etc/nsswitch.conf) contains the following line for host name
resolution:

hosts: files dns

indicating that the system should consult /etc/hosts before attempting to resolve via DNS.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

492 Alternative DNS Servers – Jan-Piet Mens

20.3 Using LDAP (RFC 2307) with the Name Service Switch

The Name Service Switch lets you to configure the system lookup functions to retrieve their
information from an LDAP directory server. RFC 2307, An Approach for Using LDAP as a Net-
work Information Service, defines mechanisms for outsourcing to an LDAP directory server
the information usually contained in static system files. The reference implementation of
RFC 2307 is NSS LDAP (see http://www.padl.com/OSS/nss_ldap.html). A newer imple-
mentation that attempts to address some of the limitations of the reference implementation
is nss-ldapd (see http://ch.tudelft.nl/˜arthur/nss-ldapd/).
Most modern GNU/Linux systems already contain NSS LDAP, so you will not have to

install it from source. Before you use it, you will have to configure it:

A. Configure the NSS LDAPmodule to use your LDAP directory server.

B. Prepare your LDAP directory server.

C. Load your LDAP directory server with entries containing hosts and their IP addresses.

D. Configure nsswitch.conf .

E. Test your NSS LDAP setup.

20.3.1 A – Configure NSS LDAP with /etc/ldap.conf

NSS LDAP uses the file /etc/ldap.conf to determine the addresses of your LDAP direc-
tory server(s) and where it can find the required LDAP entries. (Do not mistake this file
for OpenLDAP’s client configuration file which is called /etc/openldap/ldap.conf .) A
minimal ldap.conf that you can use to enable NSS LDAP to look up host information is:

Listing 20.1: ldap.conf for NSS LDAP

uri ldap://192.168.1.20/
base ou=dev,o=qupps.biz
ldap_version 3
scope sub
nss_base_hosts ou=Hosts,ou=dev,o=qupps.biz?sub

A typical ldap.conf contains a large number of additional options, many of which also
enable the system’s Pluggable Authentication Modules (PAM) to work hand in hand with
NSS LDAP.

20.3.2 B – Prepare your LDAP directory server

Your LDAP directory server must accommodate the object classes used by NSS LDAP. For
host information, the auxiliary object class is called ipHost .

• OpenLDAP supplies the required object classes in a file called nis.schema . To activate
this include the schema file in your server’s slapd.conf :

include path/schema/nis.schema

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 20. The Name Service Switch 493

• If you use Microsoft Active Directory, you typically extend its schema by installing
Services for Unix (SFU).

20.3.3 C – Migrating /etc/hosts to NSS LDAP

The Migrationtools (see http://www.padl.com/OSS/MigrationTools.html) contain scripts
that facilitate the migration from existing static system files to NSS LDAP. For example,
the migrate hosts.pl program converts an existing /etc/hosts file to LDIF format. It uses
$LDAP BASEDNto form the distinguished name of the entries.

Listing 20.2: Migrating /etc/hosts to NSS LDAP

$ cat /etc/hosts
127.0.0.1 localhost
192.168.1.20 home mail server
192.168.1.179 ls1 storage
192.168.1.185 pc2

$ export LDAP_BASEDN=’ou=dev,o=qupps.biz’
$ migrate_hosts.pl /etc/hosts
dn: cn=localhost,ou=Hosts,ou=dev,o=qupps.biz
objectClass: top
objectClass: ipHost
objectClass: device
ipHostNumber: 127.0.0.1
cn: localhost

dn: cn=home,ou=Hosts,ou=dev,o=qupps.biz
objectClass: top
objectClass: ipHost
objectClass: device
ipHostNumber: 192.168.1.20
cn: home
cn: mail
cn: server

dn: cn=ls1,ou=Hosts,ou=dev,o=qupps.biz
objectClass: top
objectClass: ipHost
objectClass: device
ipHostNumber: 192.168.1.179
cn: ls1
cn: storage

dn: cn=pc2,ou=Hosts,ou=dev,o=qupps.biz
objectClass: top
objectClass: ipHost
objectClass: device
ipHostNumber: 192.168.1.185
cn: pc2

You can feed the LDIF directly to ldapadd to add the entries to your LDAP directory server.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

494 Alternative DNS Servers – Jan-Piet Mens

20.3.4 D – Configure nsswitch.conf

Ensure that you modify nsswitch.conf to include LDAP:

hosts: files ldap dns

NSSwill use the order you specify when processing a query it receives (Figure 20.2).

Figure 20.2: How NSS processes a name request

20.3.5 E – Testing your NSS LDAP

At this point you you have configured the Name Service Switch to access your LDAP di-
rectory server and have created some host entries in the directory server, so you can start
putting it to use. Use the getent utility to test your lookups. (Make sure you don’t acciden-
tally lookup a host name contained in your local /etc/hosts file.)

$ getent hosts storage
192.168.1.179 ls1 storage

From now on, any program that uses the system’s gethostbyname () and related routines,
will use your LDAP directory server to find results. (You can’t use dig to test, because dig
doesn’t use gethostbyname (), and doesn’t use the NSS functions.)

$ ping -c 1 storage
PING ls1 (192.168.1.179) 56(84) bytes of data.
64 bytes from ls1 (192.168.1.179): icmp_seq=1 ttl=128 time =0.184 ms

Note howNSS LDAP returns the ”official” host name (ls1) for the IP address when the name
we query is an alias, just like when using the hosts file.
Your LDAP directory server receives a query for each lookup. E.g. if a user uses lynx:

$ lynx http://www.yahoo.de

you might see the following search on your LDAP directory server:

SRCH filter="(&(objectClass=ipHost)(cn=www.yahoo.de))"

Why is this happening? Any name-to-address query by gethostbyname () or address-to-
name query by gethostbyaddr () usesNSS. As we have configuredNSS to use LDAP before
it uses DNS, it is forced to query LDAP in order to determine whether or not the requested
name (or address) exists, before continuing on to ask the Domain Name System. This can
and will impose a load on your LDAP directory servers.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 20. The Name Service Switch 495

Theoretically you could deploy an LDAP directory server and configure all your *nix
workstations with NSS LDAP and not worry about DNS. However, that isn’t a real solution
because (a) you still need DNS for Microsoft Windows and devices that don’t support NSS
LDAP, and (b) NSS LDAP is much more “heavyweight” than DNS.

20.3.6 Points to note when you implement RFC 2307 LDAP in NSS

Implementing the Name Service Switch over LDAPwith RFC 2307 is not a panacea; there are
several points we recommend you keep in mind:

• NSS LDAPwill impose an additional load on your LDAP directory servers, as already
mentioned. You might wish to implement the Name Service Cache Daemon (nscd), a
program designed to cache lookups. Although nscd dramatically reduces the load on
your directory servers, older implementations did cause problems, so we recommend
you test it carefully.

• If your LDAP servers are unreachable, NSS LDAP will cause delays for all lookups.
This will be visible when a user attempts to log in to a system configured to use NSS
LDAP; the login “hangs” for a while.

• Just as resolution via DNS requires that you configure every machine by modifying
its /etc/resolv.conf 3, NSS LDAP also requires local configuration. You can sim-
plify the configuration because NSS LDAP can use Service (SRV) records to find its
LDAP servers. This allows NSS LDAP to be self-configuring from information stored
in the DNS. To enable this support, comment out the host and uri entries in the
ldap.conf file; this forces the NSS library to search the DNS for a domain name like
ldap. tcp.qupps.biz.

• NSS LDAP can ”override” answers that would otherwise be returned by the DNS, if
you configure NSS to use LDAP before DNS. For example, if you create a host entry
for www.singleclick.com, a query for this will be answered byNSS LDAP instead of being
answered by the DNS.

3This is usually automated for workstations by the use of DHCP.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

496 Alternative DNS Servers – Jan-Piet Mens

Summary

• The Name Service Switch is used by the stub resolvers on *nix systems. It determines
which data sources are used to find host information, and in which order.

• If NSS is incorrectly configured, users will experience delays when programs perform
name lookups.

• You can implement NSS LDAP to lookup host information in an LDAP directory.

Notes and further reading

• When writing programs that make heavy use of hostname resolution, you do not typ-
ically use gethostbyname () because it “blocks”, and your program can’t do anything
else while it is waiting for the answer. Instead, you can:

– Use the routines from the resolver library (-lresolv) to query the DNS directly
(res query (), etc.).

– We discussed in Chapter 17 that the Unbound caching name server builds on libun-
bound, a library of functions you use to control name resolution, both synchronous
and asynchronously. These give you the functionality of Unbound directly in your
application but don’t require a caching name server, because libunbound imple-
ments one itself.

– adns is an alternative asynchronous stub resolver by Ian Jackson and Tony Finch.
(see http://www.chiark.greenend.org.uk/˜ian/adns/).

Note however, that these three methods all bypass NSS.

• Section 20.1.3 explained that a Microsoft Windows workstation has a caching DNS
Client resolver service which is normally enabled. This is useful because it lowers the
load on your caching name servers. Nevertheless, because of the way it has been
implemented, it also impedes DNS round robin from functioning (because an an-
swer to the query is already cached). If you want to disable the cache you can do
so permanently by disabling the service, but you can also tune the service (see http:

//support.microsoft.com/kb/318803).

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter

21 Internationalized Domain
Names

It’s been a long time coming.

anonymous

21.1 Converting internationalized domain names to ASCII

21.2 Adding internationalized domains to your DNS server

21.3 Using IDNA in applications

Introduction

An internationalized domain name is a domain that contains non-ASCII characters. Because the DNS
does not allow eight-bit-characters, a standard was developed to support international domain names.
We discuss IDNA, Internationalizing Domain Names in Applications, which is the current standard.
This allows a client application to use a non-ASCII domain name, while the DNS server represents the
same name in a special way, using ASCII characters only.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

498 Alternative DNS Servers – Jan-Piet Mens

The DNS does not allow eight-bit/non-ASCII characters. Instead of changing the DNS
to allow such characters, RFC 3490 the IDNA (Internationalizing Domain Names in Applica-
tions) standard lets client-side applications use international domain names (containing non-
ASCII characters – see Notes); the application converts an international domain name to a
special ASCII format before passing it to the DNS, and converts it back again when it re-
ceives it from the DNS. The internationalized name remains displayed in the user program.
IDNA has security problems – it is vulnerable to “homograph spoof attacks”, which we
cover in Section 21.1.
The benefit of the IDNA approach is that resolvers and DNS servers remain unchanged –

the whole DNS infrastructure doesn’t have to be changed at all. The downside is that IDNA
puts the burden of translation on the applications (Web browsers, e-mail clients, etc.) that
need to support internationalized domain names.
An IDNA-conforming application takes the internationalized (i.e. non-ASCII) domain

name entered by the user, translates it to its ASCII representation, and queries the DNS for
this; the internationalized name remains displayed in the user program.
In the rest of this chapter we discuss how internationalized domain names are converted,

and how you enter those into your DNS. As our example internationalized domain name,
we use théâtre.qupps.biz; as you’ve probably guessed, théâtre is the French word for theatre.

21.1 Converting internationalized domain names to ASCII

An application uses the algorithm called ToASCII to convert from a domain name in IDN
(Internationalized Domain Name) format, and the algorithm ToUnicode to convert from the
ASCII representation to IDN.
The application applies these algorithms to each label of a domain name, not to the name as
a whole. For example, for domain théâtre.qupps.biz, théâtre is translated first, then qupps, and
finally biz. Here’s how ToASCIIworks (Figure 21.1):

1. Transform each label using the Nameprep algorithm (RFC 3491). Broadly speaking,
Nameprep converts the label to lowercase and removes code points (i.e. characters)
that are invisible.

2. Transform each resulting lower-cased label to ASCII using Punycode (RFC 3492). A
full discussion is beyond our scope, but broadly, in a first pass over a label, Punycode
groups together all ASCII characters, and then all Unicode code points (i.e. characters).
The process first outputs the ASCII characters; if any Unicode characters were found,
it outputs these, separated from the first group by a single dash.

3. Prepend to the result the four-character string constant "xn--" , called the ASCII Com-
patible Encoding (ACE) prefix (see Notes). This distinguishes Punycode-encoded labels
from ordinary ASCII labels.

The reverse procedure, ToUnicode, is applied when converting a domain name back to its
internationalized form, for example to display the result in an application.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 21. Internationalized Domain Names 499

Figure 21.1: How ToASCII converts from IDN format to ACE

Homograph attacks on internationalized domain names

Unfortunately, international domain names are vulnerable to so-called “homograph” spoof-
ing attacks. (A homograph is a word that shares the same spelling as another, but has a differ-
ent meaning – e.g. wind as in weather and wind as in clock.) In the case of internationalized
domain names, homograph spoofing comes about because there are many different charac-
ters that have indistinguishable glyphs (graphical representations in a particular typeface).
Homograph attacks consist of choosing and registering a suitable domain, sending so-

called phishing e-mail to users and waiting for them to react, for example, by clicking on a
link in the e-mail. That click takes them to a Web page that appears to be that of a known
organization, but is in fact a fake.
A well-known example1 used in a paper on homograph attacks is Paypal: the first “a” in

the word should be the English lowercase “a”, represented with a decimal 91 – hexadecimal
0x61. However, if you replace that first letter with the Cyrillic lowercase “a” (which has
a decimal value of 1072 – hex 0x430), it looks exactly like an English “a”, but it is in fact a
completely different character. So, instead of sending the victim to www.paypal.com , the
attacker was able to send the victim to www.paypal.com (remember, they look the same,
right?), resulting in the victim actually reaching the site www.xn--pypal-4ve.com !
Unfortunately, there is little that you can do to protect your users (see Notes).

21.2 Adding internationalized domains to your DNS server

Adding an internationalized domain name to your DNS server is not terribly much more
difficult than adding an ASCII domain name. Ensure that your shell is set up to utilize a
correct character set. You must be sure that when you enter a non-ASCII character, you get
the Unicode character, and not one of a different code set (such as ISO-8859-1). If you aren’t
sure of how to do that, you may prefer to use a Web interface (see Notes).
If, in the next step, you’re using idn and it gives an error message saying that it cannot

convert your domain name, then $CHARSETif defined, or $LANG, is incorrectly set.

1. Use one of the tools (e.g. idn, see Section 21.3.3 for others) to translate a non-ASCII
name to Punycode format:

$ idn --quiet --idna-to-ascii th éâtre.qupps.biz
idn: Could not convert from ANSI_X3.4-1968 to UTF-8.

1See http://www.shmoo.com/idn/

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

500 Alternative DNS Servers – Jan-Piet Mens

$ export CHARSET=UTF-8
$ idn --quiet --idna-to-ascii th éâtre.qupps.biz
xn--thtre-4qa2c.qupps.biz

The character set UTF-8 is the 8-bit Universal Character Set/Unicode Transformation
Format – a variable-length character encoding for Unicode. The IDN we need for
the domain théâtre.qupps.biz is xn--thtre-4qa2c.qupps.biz . We add that domain
name to our name server.

In this second example, the encoding appears to work, but it produces incorrect re-
sults. After you set the character set to ISO-8859-1, and feed idn not with an ISO-8859-1
string containing accents but with UTF-8 encoded accents, the program appears to do
its job correctly but in actual fact it produces an IDN which is useless.

$ export CHARSET=ISO-8859-1
$ idn --quiet --idna-to-ascii th éâtre.qupps.biz
xn--thtre-5fa2c35ab.qupps.biz

To double-check the result, try converting back to Unicode. When we do that on our
terminal, we get something resembling this:

$ idn --quiet --idna-to-unicode xn--thtre-5fa2c35ab.qupps.b iz
th ””tre.qupps.biz

That is a very visible example that we did something wrong. (Unfortunately not all
conversions will be so obviously incorrect.)

2. Query the server to check whether it answers correctly. dig doesn’t know about IDNA,
so you have to give it a domain name that has already been converted using idn:

$ export CHARSET=UTF-8
$ dig ` idn --quiet -a th éâtre.qupps.biz `
; <<>> DiG 9.2.4 <<>> xn--thtre-4qa2c.qupps.biz
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 30000
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 2, ADDIT IONAL: 2

;; QUESTION SECTION:
;xn--thtre-4qa2c.qupps.biz. IN A

;; ANSWER SECTION:
xn--thtre-4qa2c.qupps.biz . 60 IN A 192.168.1.20

Look at what happens when you query the DNS for a domain name containing UTF-8
characters without first converting them with idn:

$ dig th éâtre.qupps.biz
;; ->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 54411

;; QUESTION SECTION:
; th \195\169\195\162tre .qupps.biz. IN A

The result is garbage, because the DNS doesn’t handle 8-bit characters. As a rule of thumb,
whenever you see strange escaped characters in domain names of DNS replies, you are
dealing with an illegal non-ASCII character, and something is going wrong.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 21. Internationalized Domain Names 501

21.3 Using IDNA in applications

21.3.1 Using IDNA in Web browsers

Web browsers should support internationalized domain names when the user types them
into the address bar, or when used in a link on a Web page. Current versions of Mac OS X
Safari, Mozilla’s Firefox and the Netscape offerings are IDNA-aware. Here’s an example of
how you can verify this. Enter a URL such as http://th éâtre.qupps.biz in your Web
browser’s URL bar, and assuming you’re using a BIND server, look at its query log to see
the query the server received:

client 192.168.1.181#2591: query: xn--thtre-4qa2c.qupp s.biz IN A

which is correct – the IDN has been converted as expected.
However, Microsoft Windows Internet Explorer versions prior to version IE7 are not

IDNA-capable. In this case the query you see in the log is:

client 192.168.1.181#3582: query: th \195\169\195\162tre.qupps.biz IN A

Figure 21.2 illustrates how IDNs are handled, emphasizing that the application displays
IDNs but converts them ToASCII before looking them up in the DNS. The page we’re con-
necting to in this example uses PHP’s phpinfo () to show details about the server it’s run-
ning on. You can see that our Mozilla Firefox browser, which supports IDNA, displays the
internationalized domain name in the URL bar, whereas the server’s real name is xn–thtre-
4qa2c.qupps.biz – the ASCII conversion of the IDN.

Figure 21.2: Mozilla Firefox supports IDN

The ISC has an open source plug-in for Internet Explorer versions 5 and 6 on Windows
(see http://idn.isc.org/). Setting it up is trivial as it has a nice installer. Upon starting
the plug-in, it appears in the Windows task bar and intercepts IDN URLs, converting them
before giving them to the Windows DNS Client for resolution (Figure 21.3).

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

502 Alternative DNS Servers – Jan-Piet Mens

Figure 21.3: IDN OSS Plug-in on Microsoft Windows

21.3.2 Using IDNA in e-mail clients

On UNIX and GNU/Linux systems, the MuttMail User Agent (MUA) supports IDN, trans-
lating the domain names and submitting correct ACE domain names to the mail server for
processing. Here is an example of a message which we received, that was sent with a Mutt
e-mail client:

Envelope-to: alexi@xn--thtre-4qa2c.qupps.biz
Delivery-date: Sat, 08 Mar 2008 21:44:26 +0100
Received: from jpm by home.mens.de (Exim 4.43)

with local (:userid=jpm) id 1JY5u6-0000sN-DA;
for alexi@xn--thtre-4qa2c.qupps.biz; Sat, 08 Mar 2008 21: 44:26 +0100

Date: Sat, 8 Mar 2008 21:44:26 +0100
From: Jan-Piet Mens <jp@home.mens.de>
To: Alexandra <alexi@ th éâtre.qupps.biz >
Subject: Connaissez vous IDNA?
Message-ID: <20080308204426.GB3237@home.mens.de>
MIME-Version: 1.0
Content-Type: text/plain; charset=us-ascii
Content-Disposition: inline
User-Agent: Mutt/1.5.16 (2007-06-09)

This is a test sent to an internationalized e-mail address.

-JP

Neither Mozilla Thunderbird nor Microsoft Outlook Express support internationalized
domain names; both programs warn the user, when setting up new accounts, that host
names containing non-ASCII characters in them are illegal. When submitting a message
for an internationalized e-mail address, both programs attempt to submit the non-ASCII
characters in the domain name directly to the Mail Transfer Agent (MTA), which is illegal.
We didn’t detect support for IDNA in any other popular e-mail clients, not even the

commercial offerings. This would indicate that the market hasn’t yet requested the feature.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 21. Internationalized Domain Names 503

21.3.3 Programming IDNA applications

If you are interested in adding IDNA capabilities to your own programs, check the following
sources for the respective languages:

C • The GNU IDN Library (libidn) implements an API for C, C# and Java (see
http://www.gnu.org/software/libidn/).

• idnkit included in the contrib directory of the BIND source distribution.

Perl • Net::LibIDN by Thomas Jacob. This module links against libidn.

• The Internet Mail Consortium has an IDNA test tool with Perl code at http:

//www.imc.org/idna/ .

• Net::IDN::Encode from the Net-IDN-tools distribution on CPAN.

PHP • The PHP API for the GNU LibIDN implementation. This was written by
Turbo Fredriksson (see http://php-idn.bayour.com/).

• An online tool that allows translation of Unicode to Punycode names and
links to a downloadable PHP class (see http://idnaconv.phlymail.de/

index.php)

Python The contrib directory of the GNU libidn package contains a Python interface.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

504 Alternative DNS Servers – Jan-Piet Mens

Summary

• DNS clients have to translate Internationalized Domain Names to ASCII before query-
ing the DNS, because DNS servers don’t understand non-ASCII domain names.

• Not all Web browsers and applications natively support IDNA.

• Two toolkits and a number of Application Programming Interfaces exist adding Inter-
nationalized Domain Name support to your own programs.

Notes and further reading

• Character sets and encoding are difficult topics, but you have to learn a bit about them
to work with Unicode. We suggest you start your journey at http://en.wikipedia.

org/wiki/Character_encoding

• The selection of the two-character ACE code (”xn”) was performed with an interesting
“protocol”, described in (http://www.atm.tut.fi/list-archive/ietf-announce/

msg13572.html).

Web interface to the libidn toolkit

AWeb interface to the libidn toolkit is available at http://josefsson.org/idn

Preventing homograph spoofing attacks

There is little you and your users can do to protect yourselves against homograph spoofing
attacks, although if you use Mozilla’s Firefox Web browser or Thunderbird e-mail client,
there are a few options available:

• Disable IDN support entirely by setting the preference network.enableIDN to false;
the browser will neither parse nor attempt to resolve internationalized domain names
(Figure 21.4).

• Whitelist individual TLDs by setting or clearing network.IDN.whitelist. tld.

• Force Firefox to show the Punycode URL instead of the IDN in the URL bar, by setting
network.IDN show punycode (default is false).

Figure 21.4: Firefox IDN settings in about:config

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter

22 Introducing DNSSEC

To give real service you must add something
which cannot be bought or measured with
money, and that is sincerity and integrity.

Douglas Adams

22.1 The problem

22.2 A very brief introduction to cryptography

22.3 An overview of DNSSEC

22.4 Implementing DNSSEC on an authoritative server

22.5 Implementing DNSSEC on a caching name server

22.6 The chain of trust for delegated zones; DS records

22.7 Using DNSSEC automatically – DLV, look-aside validation

22.8 Housekeeping and DNSSEC key management

22.9 Points to note when you deploy DNSSEC

Introduction

The DNS was originally designed when security on the Internet was not a big issue so security wasn’t
built in. Attackers can compromise the DNS, and tamper with answers, causing users to connect to
wrong, usually fraudulent, servers. DNSSEC – Secure DNS – overcomes this, by letting you verify that
the DNS answers you receive are genuine. Even so, there are many other security issues that DNSSEC
does not address.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

506 Alternative DNS Servers – Jan-Piet Mens

22.1 The problem

If you receive an e-mail message from a national lottery saying you have won a million
dollars, would you send off your bank details as requested, or would you check the message
headers to see if the message is a forgery, because you know that e-mail messages can easily
be forged? Something similar can happen with the DNS. If you visit your favorite daily
news Web page, only to find a horrible site in your browser, do you think you clicked the
wrong page, even though your browser is apparently displaying the correct address? In
fact, the DNS answer your browser received when about to connect to the site may not have
been genuine: DNS – just like SMTP – was not designed to withstand forgery. However,
most people trust the DNS implicitly, and this can lead to clients contacting bad servers,
which can cause financial losses or damage to your organization. (At a personal level, think
what would happen if you thought you’d paid for something with Payfriend, but the DNS
had been compromised, so that instead of giving your browser the IP address of the real
payfriend.com, it gave the IP address of a criminal site instead.)
In the DNS, replies from authoritative servers can be replaced by spoofed data, some-

where on the path between the authoritative server and your caching servers that sent the
request. DNSSEC attempts to solve this problem by adding a “transparent envelope” around
DNS replies:

• This envelope is sealed (i.e. licked closed and stamped) by the authoritative server.
The recipient can verify that the content – the DNS answer – has not been altered.
The server “seals” the envelope with cryptographic functions that we describe in Sec-
tion 22.2.

• The envelope is transparent: anybody can see its content – which is the DNS answer.
This is important, for two reasons:

1. The system is “backwards compatible”. DNS clients that do not support DNSSEC
can still use the reply as normal, but DNSSEC-aware clients get the benefits of the
extra security.

2. DNSSEC does not make your DNS queries and replies confidential. (It was not
designed to do so.)

The next section is a short introduction to cryptography, which we need because DNSSEC
uses standard cryptographic techniques, and because DNSSEC solves some management
problems in a way similar to some other cryptographic systems. After that we explain:

• If you run your own authoritative servers: how you can use DNSSEC so that clients
(within your own organization, or on the public Internet) can verify they are receiving
genuine answers for your domains (Section 22.4.3).

• If you administer caching name servers: how to use configure your caching servers to
use DNSSEC to validate DNS replies (Section 22.5).

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 22. Introducing DNSSEC 507

22.2 A very brief introduction to cryptography

You can keep information confidential, even when transmitted in public, by encrypting it
– transforming it in some way, so that (ideally) only the recipient can un-transform it and
view the original content. Broadly, there are two general forms of encryption: symmetric
(secret key) encryption, and asymmetric (public key) encryption, which we now describe.

22.2.1 Symmetric encryption

Symmetric or Secret key encryption has been used for thousands of years. It includes any
form of encryption in which the same key is used to both encrypt and decrypt the informa-
tion (Figure 22.1).

Figure 22.1: Symmetric encryption

As an example, suppose your encryption algorithm consists of “rotating” the letters in
your message, and the key specifies how many positions to rotate by. For example, a key
of 2 means A rotates to C, B to D, C to E, etc. The algorithm is public, but the key is secret,
although susceptible to brute-force attacks (start off with key = 1, key = 2, . . .). You use
the same key to encrypt (rotate forward by 2 positions) and to decrypt (rotate back by 2
positions). A very popular example is the ROT13 substitution cipher (popular with Usenet
postings), that uses key = 13. For example, if you apply ROT13 to the very secret message
“Nygreangvir QAF Freiref ” you get the title of the book you hold in your hands, and
when you apply ROT13 to the title of this book, you get the secret message above.
Symmetric cryptography is fast, but it has a number of problems:

• The key has to be known to all parties that communicate with each other. If Alice and
Bob want to exchange messages, both need the key, and they must exchange that key
securely, e.g. by Alice visiting Bob and giving him a printout or a USB drive containing
the key.

• The more parties involved in communication, the more have to know the key. If Alice
and Bob want to exchange messages with Charlie, Charlie needs to know Alice’s and
Bob’s key, and he can then also decrypt messages that Alice had intended for Bob’s
eyes only.

• Symmetric keys usually don’t expire, so there is no method by which you can conve-
niently stop somebody who knows your key decrypting your messages. If Alice and
Bob decide they don’t like Charlie any longer, they have to create a new key and use
that instead. (Charlie knows the first key.)

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

508 Alternative DNS Servers – Jan-Piet Mens

22.2.2 Asymmetric encryption

Public key (asymmetric) encryption solves the problems of symmetric encryption by using
two different keys:

1. A private key, which you keep secret.

2. A public key, which you make public. Public keys are typically published in directory
systems, or on a Web page. They can also be transported via insecure mechanisms
such as via an e-mail.

The two keys are called a key pair, and they are mathematically related (see Notes).
Consider Figure 22.2: the sender has a copy of the recipient’s public key, and he uses that

to encrypt a message with the recipient’s public key before transmitting it. A message en-
crypted to a public key can only be decrypted by the corresponding private key; the sender
is sure that only the owner of the private key can see the sender’s message. So even though
both Alice and Bob have used the same key to encrypt their messages, neither can read the
other’s message; everyone can use the same public key to send to Carol, without any loss of
security.

Figure 22.2: Asymmetric encryption

Because public keys are, well, public, they are readily available and don’t have to be pro-
tected. This deals with the problem of key distribution: the public key can be transmitted by
any means, even insecurely over e-mail for example, without endangering confidentiality.
Asymmetric cryptography is slow because of the very large computations involved. Be-

cause of this, it is often combinedwith symmetric cryptography, which ismuch faster: asym-
metric encryption is used for an initial brief conversation, e.g. to agree on a shared secret,
and then the shared secret is used with symmetric encryption for the real task of exchanging
larger quantities of data securely.
You are already using public key encryption if you use PGP or S/MIME for your e-mail,

and you have certainly used public key encryption when you visited an online shopping
site with your Web browser. The Transport Layer Security (TLS) protocol (formerly Secure
Socket Layer (SSL) protocol) uses public key encryption to encrypt the communication be-
tween your Web browser and a TLS-enabled Web server. When your browser first connects

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 22. Introducing DNSSEC 509

to the server, the server sends its public key to the browser. Your browser then encrypts
a random number with the public key of the server (which it now has) and sends that en-
crypted number back to the server. Only the server can decrypt that number, as only it
holds the corresponding private key. Based on that initial encrypted exchange, the client
Web browser and Web server then generate new, symmetric, keys that are used for encryp-
tion of the rest of the communication.
So far we’ve only shown how you can use public key cryptography to preserve the con-

fidentiality of data, by encrypting it. In the next Section we show you how a sender can use
public key cryptography to “sign” data: anybody who has the sender’s public key can ver-
ify that it really was the sender who sent the message, and that the message was not altered
in transit.

22.2.3 Using public key encryption

Signatures, hashes and digests – verifying the sender of a message

An important feature of public key cryptography is that a message encrypted with a private
key can be decrypted by its corresponding public key, and not just the other way round. If
our bank sends us something encrypted with their private key, we can decrypt it with their
public key (Figure 22.3). While that doesn’t keep the contents of the message confidential,
it does give us a way of proving that it was the bank and not some intruder that sent us the
message. Later on, we’ll see that this functionality is crucial to DNSSEC: we will want to be
sure that the server sending us DNS answers really is the authoritative server.
As we said, asymmetric encryption is slow, so to save time, instead of encrypting a whole

message, we send the message in clear text, and attach a public key digital signature. This is
the computing equivalent of a handwritten signature: both prove that the sender is who we
think he is. Here’s how digital signatures work.
Loosely, what we do is “summarize” the message, and then encrypt the summary with

our private key. The recipient decrypts the encrypted summary, using our public key, so they
now have a copy of our summary. They make their own summary of the clear-text message:
if their summary is the same as ours, they know we genuinely sent the message, because
nobody else could have encrypted with our private key, and the decryption wouldn’t have
worked if any other key had been used to encrypt it.
Formally, to summarize the message we use a hash function; this takes a message of

any length as input, and produces a fixed-length output called a message digest (which is
our “summary”). The output of hash functions is short – between about 20 and 64 bytes –
irrespective of the size of the input message. Popular hash functions include: MD4, MD5,
SHA-1, and SHA-256.
A hash function is considered secure if it’s “one-way” (given the output, it’s computa-

tionally infeasible to find what the input message was) and if it’s computationally infeasible
to find two different messages that produce the same message digest as output.
As an example, the MD5 hash value of the file containing the text of this chapter1 is

ce5eca7d2ee7044782eae8c3b301ad99 . If we change the first lowercase “d” in the chapter

1At the time it was written; the book’s editor is sure to mess up alter the MD5 hash of the chapter before you get
to see it. . .

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

510 Alternative DNS Servers – Jan-Piet Mens

to the letter “e”, and apply the same MD5 hash algorithm, it gives us a completely different
hash value: c3b8dad3fd116b85a0219a44102a36fa .

Figure 22.3: Verifying the contents of a message – simple but slow method

Figure 22.4 shows how a hash function (i.e. a message digest algorithm) is used to create
a digital signature, which is then attached to the clear-text messages to prove it is authentic.
(We use the term “message”, which suggests an electronic mail message, but the term is
not limited to e-mail. It refers to an arbitrary set of data, such as DNS queries and replies
transmitted between DNS clients and name servers.)

Figure 22.4: Using a digital signature to verify the contents of a message

1. The sender runs the message through a one-way hash function (message digest al-
gorithm) to create a message digest. He encrypts this message digest using his own
private key to produce a digital signature, which he attaches to the message.

2. To authenticate the message, the recipient detaches the digital signature and decrypts
it with the sender’s public key, to obtain the original message digest. He runs the clear-
text message through the same hash function, to produce a second message digest; if
this is identical to the original message digest, the recipient knows the message is
authentic.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 22. Introducing DNSSEC 511

Note that in the steps above, the sender wanted to prove that he sent the message; he wasn’t
concerned about the confidentiality of the message, and sent it in clear. To have made the
message confidential as well as verifiable, he could have additionally encrypted the message
with the recipient’s public key.

Typical applications of public key cryptography

Once Alice and Bob have their own separate key pairs, and have exchanged public keys,
they can use public key cryptography to perform many different, useful, tasks:

• When Alice wants to send Bob a secret message she encrypts it with Bob’s public key.
By doing that, she well knows that only Bob will be able to decrypt the message2.
When Bob receives Alice’s message, he uses his private key to decrypt the message.

Note that the message Bob has successfully been able to decrypt could have been sent
by anybody with access to his public key. There is no way to determine from the
encrypted message sent by Alice, that it was Alice who actually sent it. To solve that
problem. . .

• Alice owes Bob some money and he wants her to send him an IOU, but he wants to be
quite sure that it is from Alice, so he asks her to sign it.

Alice signs the message by encrypting it with her private key. When Bob gets the
message, if he can decrypt the message with Alice’s public key, he knows that Alice
sent it. Note once again that the security of the private key remains a very important
aspect of public key cryptography.

• Both Alice and Bob can encrypt and digitally sign a message they send to one an-
other. By doing so, they ensure that no third party can read the message (because it is
encrypted), and that the recipient can verify who the sender is (because it is signed).

Ensuring public keys are genuine: certificates and authorities

We said in Section 22.2.2 that a public key is public: you can publish it in a directory, on
the Internet, for example, without compromising the security of your encryption. But when
Bob retrieves Alice’s public key from the directory, how does he know that it really is Alice’s
public key and not a key introduced by Eve? (If Eve can trick Bob into mistaking her public
key for Alice’s, then Eve can pretend to be Alice when communicating with Bob.)
This problem is solved by having trusted organizations called Certification Authorities

(CAs). A CA generates a certificate for Alice. Alice’s certificate is amessage containing Alice’s
name and her public key (and perhaps additional information, such as her e-mail address,
locality, country of residence, etc.), signed with the CA’s private key.
The Certification Authority also has public keys which everyone trusts (because they

have been distributed to computers with the software that uses them – e-mail clients and
Web browsers). Bob imports the CA’s keys into his computer system via an out-of-band
mechanism (software distribution, magnetic data carriers, etc.). Once Bob trusts the CA’s

2Unless Bob has been very stupid and has shared his private key with somebody. . .

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

512 Alternative DNS Servers – Jan-Piet Mens

public key (called the CA’s root certificate) and the CA’s integrity, he can trust certificates that
the CA has issued. Therefore he can now trust Alice’s certificate, and can use that to verify
that her public key is genuine. Because Bob trusts the CA, he trusts certificates issued by the
CA; this process results in a chain of trust.
Certificates can be, and are, published in directories. While an intruder might be able

to create or modify a certificate in the directory, the affected certificate won’t be valid: the
intruder can’t produce a valid certificate, because only the CA can generate the correct sig-
nature on it.
Certificates generally contain an expiration date, after which they should not be trusted

any longer. (You have probably seen warning messages in your Web browser when visiting
sites with expired certificates.) Certification Authorities also publish Certificate Revocation
Lists (CRLs) containing lists of certificates that have been revoked. These are used, for exam-
ple, when a private key has been reported lost or stolen.
You can create your own CA within your organization, and there are several tools for

this: Lotus Domino has a CA database, Microsoft Windows provides the functionality in
its server component, and the OpenSSL tool chain lets you create your own CA. However,
creating your own CA creates an isolated island of trust: certificates issued by your own CA
are trusted only within your own organization, and not by third parties. To set up trust with
third parties, you must explicitly exchange the root certificate(s) of your CA with them out
of band, and have them explicitly recognize your certificates as trustworthy.
As we shall see in Section 22.5.1, key distribution is a major issue in DNSSEC, because

name servers must exchange keys in order to validate DNS replies. We will be using public
and private keys later in the chapter, but we won’t be using certification authorities at all –
we discussed them only as an analogy for the DNS’ own system for key distribution, which
is DLV (Section 22.7).
That completes our introduction to general cryptography, and we discuss DNSSEC now.

22.3 An overview of DNSSEC

DNSSEC is complex, and it is difficult to deploy. Quoting Paul Vixie (of DNS fame)3:

DNSSEC is the worst design-by-committee effort I’ve ever seen, both in terms of
how late it is, how fuzzy the goals have been, how often the goals have changed,
and how complicated and heavy it is now that it is trying to be all-things-to-all-
people.

DNSSEC ensures the integrity of the DNS data. It is specifically not intended to keep your
DNS data confidential (which would be quite stupid, as nobody would be able to connect to
your services), nor does it improve the availability of your DNS data. (It might even degrade
it as we’ll see in Section 22.9.)
DNSSEC uses asymmetric public key encryption. If a caching name server receives an

answer from an authoritative server and DNSSEC validates the answer successfully, then
you know that:

3http://psg.com/lists/namedroppers/namedroppers.2006/msg01514.html

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 22. Introducing DNSSEC 513

• The reply came from an authoritative source for that data.

• The reply has not been altered between the authoritative name server and your caching
name server.

• If the authoritative name server says that a host does not exist (NXDOMAIN), you can
believe it.

22.3.1 The scope of DNS data integrity in DNSSEC

DNSSEC ensures the integrity of the data only between name servers that implement DNSSEC,
but not beyond: it is not end-to-end. For example, in Figure 22.5, the caching name server
and the authoritative name server exchange DNSSEC messages, but the workstation clients
that use the caching name server don’t.

Figure 22.5: DNSSEC is not an end-to-end encryption of DNS

To understand the difference between an end-to-end encryption and one that only en-
crypts a portion of the path, consider this analogy with electronic mail:

1. When you send an e-mail, yourMail User Agent might securely connect to your e-mail
provider via SSL or TLS to deliver the message. Your provider then typically passes
your message on to its final destination (possibly via other hosts) unencrypted. Sim-
ilarly, when you use a Web browser to “securely” access your on-line e-mail account,
the interaction between your Web browser and the HTTP server that shows your mes-
sages, is secured, but any mail you send is not. In both cases, only a portion of the path
uses encryption.

2. If, on the other hand, you use S/MIME or PGP to encrypt your messages, they are
encrypted by your e-mail client and are transported encrypted to their final destination
mail box. This is end-to-end encryption.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

514 Alternative DNS Servers – Jan-Piet Mens

DNSSEC is more like the first example: it secures traffic from the authoritative name server
to your local caching server, and it will typically not secure DNS traffic all the way to your
workstation4. Note however, that it is typically acceptable to “stop” at the caching name
server because from there on the traffic is within your organization and you trust its net-
work.

22.3.2 How a zone file is signed for DNSSEC

DNSSEC protects clients from forged DNS data by adding additional information to DNS
replies. The information allows clients to check that the response is authentic and complete.
To achieve this, DNSSEC uses public/private keys to sign zone data, and it adds the signa-
tures and other DNSSEC information to the zone file, in the form of several additional DNS
resource records.
Now let’s look at how you sign a zone file, and what the resulting signed zone file looks

like. The numbers in the list below refer to items in the Figure on page 515 (which you can
also print from our Web site (☞D221), for ease of reference). This overview emphasizes the
broad principles of operation; for precise details of the new resource record types see the
Notes.

0. The starting point is the (small) zone for es.qupps.biz which we’re going to sign. The
original zone file contains four resource records, and three RRsets or resource record
sets, because the two A records make up a single RRset. (Remember, an RRset is a
collection of resource records that share a common domain name, class and type.)

1. We generate two key pairs for this zone, using the dnssec-keygen program. One key
pair is the Key Signing Key (KSK) and the other is the Zone Signing Key (ZSK). We ex-
plain why we use two keys in Section 22.4.1. We will use the notation Xpriv to mean
“the private key of key pair X” (and Xpub to mean the corresponding public key).

We manually insert the KSKpub and ZSKpub into the zone file, in the form of DNSKEY
resource records. For clarity, in the figure we show newly-inserted records with their
record type in bold. Later on, clients will use these keys when verifying answers from
this zone’s server.

es.qupps.biz. 86400 DNSKEY 257 3 5 (
uuNP35sG1rfIWH0ZM64mSEs7vxv8+2kRNEUX
+Q0=
) ; key id = 29062

es.qupps.biz. 86400 DNSKEY 256 3 5 (
nKA+tqy1lMex0JpfsIc8HuXWaeoq1/9w5Pzq
) ; key id = 56172

2. We run the dnssec-signzone program on the zone file containing the DNSKEY resource
records. We discuss this utility in detail in Section 22.4.2: it does all the hard work, and
signs the contents of the zone file with the private keys of the key pairs we generated in
step 1, above. The rest of this section explains in detail what dnssec-signzone has done,

4To achieve end-to-end security, you’d have to install and run a caching name server that supports DNSSEC,
such as Unbound, on each of your workstations.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 22. Introducing DNSSEC 515

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

516 Alternative DNS Servers – Jan-Piet Mens

and how this can secure a zone. But bear in mind that all this resulted from a single
command: the amount of work we had to do was very small.

3. For each RRset, dnssec-signzone generates a digital signature, and inserts it immedi-
ately after the RRset, in the form of an RRSIG record. To help us keep track of what’s
happening, the RRSIG contains the original RRtype of the record that the RRSIG refers
to. (The example RRSIG record below relates to an SOA RRset.) Later on, clients will use
the RRSIG to verify that the contents of this RRset are unchanged, and that they were
sent by the genuine authoritative server.

es.qupps.biz. 84600 RRSIG SOA 5 3 84600 20080613171456 (
20080514171456 56172 es.qupps.biz.
DUQPAuXEPmSkgw==)

Our small zone started off with three RRsets, so dnssec-signzone inserts three RRSIGs –
one for each.

The reason why DNSSEC signs RRsets and not the individual resource records, and not
the zone file as a whole, is that a name server replies to a query with the RRset and not
individual RRs.

4. Back in step 1 we manually added another RRset – the two DNSKEYs – so dnssec-
signzone has to sign this RRset too. In fact, dnssec-signzone signs this RRset twice:
once with KSKpriv and once with ZSKpriv, so it inserts two RRSIGs for this RRset (and
only this one – all other RRsets get just a single RRSIG).

es.qupps.biz. 86400 DNSKEY 257 3 5 (
uuNP35sG1rfIWH0ZM64mSEs7vxv8+2kRNEUX
+Q0=
) ; key id = 29062

es.qupps.biz. 86400 DNSKEY 256 3 5 (
nKA+tqy1lMex0JpfsIc8HuXWaeoq1/9w5Pzq
) ; key id = 56172

es.qupps.biz. 86400 RRSIG DNSKEY 5 3 86400 20080613171456 (
20080514171456 56172 es.qupps.biz.
DTUVTGHzURlssA==)

es.qupps.biz. 86400 RRSIG DNSKEY 5 3 86400 20080613171456 (
20080514171456 29062 es.qupps.biz.
NSKp3Ol+PaVCWKmfVeGoYih65XtpYIq9AA==)

5a,b,c,d The RRSIG records let a client verify that RRsets returned in DNS answers are genuine.
However, DNSSEC has to protect against one more risk: that an intruder might spoof
a reply, stating incorrectly that a requested domain doesn’t exist. How do you verify
that a negative answer (NXDOMAIN) is genuine? Digital signing doesn’t help, because
by definition, there is no RRset to return.

DNSSEC solves this usingNext Secure (NSEC) resource records. DNSSEC sorts the domain
names in the signed zone in a particular order, and for each distinct domain name (as
opposed to each RRset) inserts an NSEC (5a, 5b) that points from this name to the next

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 22. Introducing DNSSEC 517

one. Let’s say mail and www are successive domain names in our signed zone file. If a
client queries for smtp (which, if it existed, would sort betweenmail andwww) the server
will reply with an NXDOMAIN. The way DNSSEC protects this is by returning mail’s
NSEC record in the NXDOMAIN answer. The NSEC points to www as the next domain
name in the file: in other words, there are no domains between mail and www, so the
client knows the NXDOMAIN for smtp is genuine. 5c in the figure shows how the NSEC
for es.qupps.biz points to www.es.qupps.biz, and then the NSEC for www.es.qupps.biz (5d)
points back to the beginning of the zone file, to show that this is the last domain name
in the zone.

Of course, the client must be able to verify that the NSEC itself is genuine, so DNSSEC
signs all the NSEC RRsets, as usual. (DNSSEC has inserted seven RRSIGs in total.)

es.qupps.biz. 3600 NSEC www.es.qupps.biz. NS SOA RRSIG NSE C DNSKEY

es.qupps.biz. 3600 RRSIG NSEC 5 3 3600 20080613171456 (
20080514171456 56172 es.qupps.biz.
7aB7hbbSzNicRw==)

6a,b The last thing DNSSEC has to protect is another aspect of NXDOMAIN operation: how
to verify a reply that says an existing domain doesn’t contain a record of the requested
type. For example, how do you verify an NXDOMAIN for an MX for www.es.qupps.biz?
The NSEC as described above doesn’t help, because domain www.es.qupps.biz does exist
and contains several resource records – it just doesn’t have an MX.

DNSSEC solves this by including in each NSEC record a list of the record types that do
exist for this domain. For example, www.es.qupps.biz’s NSEC says www has A, RRSIG and
NSEC records. If the server returns this NSEC with the NXDOMAIN for the MX, we know
the NXDOMAIN is genuine.

That’s how DNSSEC signs a zone, and how the information in the signed zone lets a DNSSEC
client verify the answers it receives from the DNSSEC-enabled server. Now we have to ex-
plain how you implement this – first of all on the authoritative servers for the DNSSEC signed
zones, and after that on caching servers that want to use DNSSEC to verify answers from au-
thoritative servers.

22.4 Implementing DNSSEC on an authoritative server

Figure 22.6 shows the steps involved in implementing DNSSEC on your authoritative servers:

A. Create the necessary keys for signing your zones.

B. Sign your zones with these keys.

C. Configure your authoritative name servers to provide the signed zones via DNS. Cur-
rently the only servers you can use for this are NSD and BIND.

D. Provide the necessary information (public keys) about your signed zones to the ad-
ministrators of caching servers that want to validate answers from your authoritative
servers.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

518 Alternative DNS Servers – Jan-Piet Mens

Figure 22.6: Steps for signing and publishing zones

22.4.1 A – Generating your keys

When signing a zone file, you use two different types of key pairs:

• The Zone Signing Key (ZSKpriv) is used to sign every RRset within the zone; the cor-
responding ZSKpub is inserted in the zone file as a DNSKEY record at the zone’s apex.
For example, when you sign a zone called es.qupps.biz, the public key ZSKpub is in a
DNSKEY record for domain name es.qupps.biz.

• The Key Signing Key (KSKpriv) is used to sign only the keys at the apex of a zone, i.e.
the DNSKEY RRset; the corresponding KSKpub is inserted in the zone file as a DNSKEY
record at the zone’s apex. (So, at the apex of every DNSSEC zone, you expect to see two
DNSKEYs – one the KSK and the other the ZSK.)

Later on (Section 22.5.1) you will give a copy of your KSKpub to caching server owners
that want to DNSSEC-validate answers from your zone.

Note that the DNSKEYs themselves form an RRset, which – like every other RRset – is signed
with ZSKpriv. It is this RRset, not just the ZSKpub DNSKEY, that is signed with the KSKpriv,
adding another RRSIG. Therefore, at the apex of every DNSSEC zone, you expect to see two
RRSIGs as well as two DNSKEYs.

DNSKEY records (Figure 22.9 on page 540) contain a “flags” field, indicating what type of
key this is:

256 This value indicates that the key is a ZSK.

257 This value indicates that the key is a KSK.

Why two separate keys?

The DNSSEC protocol does not distinguish between ZSK and KSK keys (so you could make
do with a single key pair). We recommend you do use two different keys because:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 22. Introducing DNSSEC 519

• You can update (i.e. renew) your ZSK without having to inform anybody else. This
lets you manage your signed zones, and change keys (“roll over” keys, see Notes)
frequently, which is good security practice, with minimum effort.

(By contrast, administrators of caching servers that use DNSSEC to validate data from
your server have to have a copy of your KSKpub. Therefore, when you change your
KSK, a lot have people have to be informed, or else something will break.)

• You can afford to create a stronger KSK (a key with more bits), as you use it to sign
only a small amount of zone data. And you want a stronger KSK, because you are
likely not to change it as frequently as your ZSK – because of the need to inform other
people, as we explained above.

There are two widely-available tools you can use to create keys and sign zones. In our
examples we use dnssec-keygen from the BIND distribution, because it’s more widespread,
but you could use the tools from the ldns package (see Notes).

Creating your Zone Signing Key (ZSK) :

Create the Zone Signing Key (ZSK) for the zone using the command below. Option
-r specifies the source of random data (see Notes), -a the key algorithm, -b the key
length in bits and -n that we are signing a zone. The last argument is the name of the
zone file we are signing.

$ dnssec-keygen -r /dev/random -a RSASHA1 -b 512 -n ZONE es.qupps.biz.zone
Kes.qupps.biz.+005+56172

This command creates two files in the current directory. The file names begin with the
string that dnssec-keygen prints to standard output:

.key Contains the public key (i.e. ZSKpub) in the form of a DNSKEY resource
record.

es.qupps.biz. IN DNSKEY 256 3 5 AwEAAaRYLrJ6+tDtTDfnKA+ ←֓
tqy1lMex0JpfsIc8 HuXWaqFlGMHFttlDA8=

In Section 22.4.2 you will include this file without change in your zone
master file. The key’s flag value of 256 indicates it should be used as a
Zone Signing Key, and not as a Key Signing Key.

.private Contains the private key (i.e. ZSKpriv), that you keep securely, and never
publish.

Private-key-format: v1.2
Algorithm: 5 (RSASHA1)
Modulus: pFgd6BrqHtZKGBfouYNLusO1MN+cHQml+whzwe5dZp. ..
PublicExponent: AQAB
PrivateExponent: QGbPgW9ao67x5jDr5Lw658mSwyf9d7C...
Prime1: z3qdb+Pw42QnoF3qaF68jx1AOdEPuvyVykyzSyc=
Prime2: yscaXIQNMJrGbAeHCO+bknlj+baqrE+jnaeZ6Nk=
Exponent1: nyvsOHjgxzKBDBDA0o1LP5shfjmbHdLFf8vUCSU=
Exponent2: Uac3EEYEYawRdnLZh1mk/y12/pj1xQkUo2lX6pE=
Coefficient: XzbHBHsv5ODiiBO5NszG6SSTx8x/IQHtVhTiNKM =

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

520 Alternative DNS Servers – Jan-Piet Mens

Creating your Key Signing Key (KSK) :

To create a Key Signing Key (KSK), use dnssec-keygen’s -f option, to indicate that the
program should generate a KSK:

$ dnssec-keygen -a RSASHA1 -b 1280 -n ZONE -f KSK es.qupps.biz.zone
Kes.qupps.biz.+005+ 29062

The program prints the so-called key tag as the last number in its output (29062 here);
this is in effect a numeric name or ID for the key, and lets you refer conveniently to a
particular key. As for the ZSK, this command creates two files: the .key file (KSKpub)
and the .private file (KSKpriv). The key’s flags are set to 257, indicating it is a KSK:

es.qupps.biz. IN DNSKEY 257 3 5 AwEAAbyaEjQit0Evpo6C9qgh7maTf+ThQkB8Y58 ←֓
TZN/bWuJOSxNpHYkMhjhuC3Pmc68nEf3AYgxCee←֓
OD0pzTCryG2aXruy8MGVee9A3pobw0FA3A8e0HX←֓
Qwf2J8p8XYIk5SBI4U2xEtXZtUkH1efBxSbzDk9 ←֓
hXLjRY92qVOUNTbJslONNjY7uuNP35sG1rfIWH0 ←֓
ZM64mSEs7vxv8+2kRNEUX+Q0=

We store the key files for a zone with that zone’s zone file, but in a subdirectory appro-
priately called keys .

Here are a few points to keep in mind regarding your keys:

• Don’t rename the files that are produced by the key generation tools.

• Use $INCLUDE statements to embed key files in your zone files, instead of cutting and
pasting the file contents. That way, it’s easier to see where a particular key came from
and what it refers to.

• Key sizes: as we said in Section 22.4.1, your KSK can be larger than your ZSK, because
it is used less frequently. The larger the key size, the more resistant your keys will be
to brute-force attacks, but the larger your signed zones will be, too. In the sections that
follow, we use short key lengths so that our listings are readable, but in real life you
will normally use key lengths of 1 024 bits or longer: perhaps 1 024 bits for the ZSK,
and 1 280 bits for the KSK. (dnssec-keygen can generate keys of up to 4 096 bits.)

22.4.2 B – Sign the zone with your keys

1. Include the public keys of both key pairs in your zone file, either copying and pasting,
or with the $INCLUDEdirective which both BIND and NSD support, as in:

$INCLUDE keys/Kes.qupps.biz.+005+56172.key; Zone Signi ng Key
$INCLUDE keys/Kes.qupps.biz.+005+29062.key; Key Signin g Key

2. Increment your zone’s SOA serial number.

3. Sign the zone with dnssec-signzone:

$ dnssec-signzone \
-k keys/Kes.qupps.biz.+005+29062 \ KSK
es.qupps.biz.zone \ zone file

es.qupps.biz.zone.signed

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 22. Introducing DNSSEC 521

Option -k specifies the filename prefix of the KSK’s .key and .private files. The
first non-option argument is the name of the zone file that is to be signed. To sign
the resource records, dnssec-signzone uses the ZSKpriv that corresponds to the ZSKpub
that’s in the zone file.

Run as above, the dnssec-signzone program produces three files:

.signed This is the most important: it contains the result of the signing of your
zone. By default the name of the file is created by appending .signed

to the input zone filename. (Look at the file: you will be happy that
you didn’t have to calculate and enter the information manually.)

This is the zone file you use when configuring your authoritative
name server (Section 22.4.3).

.keyset The key set is a small file (with the same syntax as a zone file) that
contains one or more key-signing keys. You provide this file to ad-
ministrators of caching name servers (Section 22.5.3).

.dsset The ds-set is a small file (with the same syntax as a zone file) that
contains the DS resource records to be included in the parent zone.
(We explain DS records in Section 22.6; ignore them for now.)

At the end of this procedure, your signed zone file contains two DNSKEY records forming a
single RRset, and that RRset has been signed twice, once with ZSKpriv and oncewith KSKpriv.
Your signed zone file is ready to be served. In the next section we show you how to set up
your authoritative name server to serve your newly signed DNSSEC zone.

22.4.3 C – Configure your authoritative servers

Your DNSSEC zones are served by an authoritative name server, so you have to set that up,
and test it:

1. Configure your authoritative name server to load the signed zone file – the one with
the .signed extension. Warning: a common mistake is to use the unsigned file, out of
forgetfulness; if you load that, no DNSSEC answers will be returned to queries.

We show you how to configure NSD and BIND:

NSD Edit the zone clause in your nsd.conf to include the signed version of the
zone file:

zone:
name: "es.qupps.biz"
zonefile: "es.qupps.biz.zone. signed "

Rebuild the nsd.db database, reload NSD, and your zone is ready; there
is nothing else you have to do, as NSD has DNSSEC support built in and
enabled by default.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

522 Alternative DNS Servers – Jan-Piet Mens

BIND Configure your BIND name server similarly, by setting your master zone
to load the signed zone file. To enable named to respond appropriately
to DNS requests from DNSSEC-aware clients, the dnssec-enable option
must be set to yes . We recommend you set up BIND to log DNSSEC queries
to a dedicated file, so that you can follow what it is doing.

options {
...
dnssec-enable yes;

};

zone "es.qupps.biz" IN {
type master;
file "es.qupps.biz.zone. signed ";

};

logging {
channel dnssec_log {

file "/tmp/dnssec" size 20m;
severity debug 9;
print-time yes;
print-category yes;
print-severity yes;

} ;
category dnssec { dnssec_log; };

};

Reload your name server, and your zone is ready.

2. Two utilities (and two options to dig) are worth mentioning, as they provide useful
information and they can help you in debugging your setup:

• unbound-host from the Unbound caching server (Chapter 17) provides an easy in-
terface to test whether queries are being returned securely:

$ unbound-host -v www.es.qupps.biz
www.es.qupps.biz has address 192.168.1.20 (secure)
www.es.qupps.biz has address 192.168.1.21 (secure)
www.es.qupps.biz has no IPv6 address (secure)
www.es.qupps.biz has no mail handler record (secure)

$ unbound-host -v mail.es.qupps.biz
Host mail.es.qupps.biz not found: 3(NXDOMAIN). (secure)

$ unbound-host -v www.yahoo.de
www.yahoo.de is an alias for www.euro.yahoo-eu1.akadns.n et. (insecure)
www.euro.yahoo-eu1.akadns.net has address 217.12.3.11 (insecure)
www.euro.yahoo-eu1.akadns.net has no IPv6 address (insecure)
www.euro.yahoo-eu1.akadns.net has no mail handler record (insecure)

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 22. Introducing DNSSEC 523

• drill (the name is a pun on dig) is a dig-like program specifically designed to be
used with DNSSEC. It has many options, but one interesting one is shown here:

$ drill -S @192.168.1.164 www.es.qupps.biz
;; flags: qr aa rd ; QUERY: 1, ANSWER: 3, AUTHORITY: 2, ADDITIO NAL: 0

;; ANSWER SECTION:
www.es.qupps.biz. 83972 IN A 192.168.1.20
www.es.qupps.biz. 83972 IN A 192.168.1.21
www.es.qupps.biz. 83972 IN RRSIG A 5 4 84600 200803...

...

[XX] VERIFY RRSET:
www.es.qupps.biz. 83972 IN A 192.168.1.20
www.es.qupps.biz. 83972 IN A 192.168.1.21
[XX] RESULT: All OK

DNSSEC Trust tree :
www.es.qupps.biz. (A)
|---es.qupps.biz. (DNSKEY keytag: 56172)

|---es.qupps.biz. (DNSKEY keytag: 29062)
You have not provided any trusted keys.
;; Chase successful

Note how drill displays the key tags of the keys used to sign the zone.

• When using dig, use the +dnssec option for DNSSEC queries, and the +multiline

option makes the output easier to read.

That completes the (simple) task of configuring your authoritative name server to serve
signed zones.

22.4.4 D – Provide your public keys to caching server administrators

To validate replies returned by your DNSSEC authoritative servers, administrators of caching
servers need a copy of your KSKpub. They will use that to verify your ZSKpub, and then they
are able to use that and the RRSIG digital signatures to verify the “real” records – A, SOA, MX,
etc. (“Verifying” the KSKpub is trivial: the copy in the zone file must be identical to the copy
retrieved by the system administrator.)
Cache administrators could just retrieve your KSKpub directly via the DNS:

$ dig +multiline es.qupps.biz dnskey
;; ANSWER SECTION:
es.qupps.biz. 86400 IN DNSKEY 257 3 5 (

AwEAAbyaEjQit0Evpo6C9qgh7maTf+ThQkB8Y58TZN/b
...
NjY7uuNP35sG1rfIWH0ZM64mSEs7vxv8+2kRNEUX+Q0=
) ; key id = 29062

es.qupps.biz. 86400 IN DNSKEY 256 3 5 (
AwEAAaRYHega6h7WShgX6LmDS7rJ6+tDtTDfnKA+tqy1
lMex0JpfsIc8HuXWaeoq1/9w5PzqFl2FhG4WfaMHFttl
DA8=
) ; key id = 56172

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

524 Alternative DNS Servers – Jan-Piet Mens

There you are, those are the zone’s keys (go ahead: compare the base 64-encoded key of the
first one to the KSK we generated on page 520; you’ll see they are identical).
The question however, is: are those really the keys that es.qupps.biz’s administrator, Fred,

created, or are these keys in a spoofed reply sent by an intruder? (We’ve shown you that
they are identical, but in real life you can’t look up other people’s KSK keys on page 520 of
this book.)
To solve this problem, you have to provide your KSKpub key securely via an out-of-band

method to any cache administrator who wants to DNSSEC-validate answers from your zone.
The relevant key is in the .keyset file that dnssec-signzone produced when you signed
your zone. To distribute this you can:

• Place the key on a secure (and trusted) Web site, for anybody to retrieve. Ensure you
let people know when your key expires and how and when you plan to publish a new
key.

• Assuming you have a secure (S/MIME or PGP) mail system, send the key in a signed
e-mail to anybody who asks.

You should also create a mailing list or RSS feed that cache administrators can sub-
scribe to, in order to receive notifications of new keys, key expiry etc.

That completes the DNSSEC installation on your authoritative server. Unfortunately, to
fully test out your configuration you have to wait until you have finished installing a
DNSSEC-enabled caching server (Section 22.5.5).

Managing your key distribution can involve a lot of work. We discuss this further in
Section 22.8. Later on in this chapter we’ll show how you can automate key distribution
slightly for a chain of delegated zones (parent, child, grand-child, . . .), and then how you
can use the DNSSEC equivalent of a certification authority to automate key management as
fully as is currently possible.
However, for now we stay with the simplest case, and in the next section we change

hats, and show how to implement DNSSEC on a caching name server, to verify answers from
a DNSSEC-enabled authoritative server.

22.5 Implementing DNSSEC on a caching name server

The two caching servers that support DNSSEC are Unbound and BIND. We first explain why
using DNSSEC does require a configuration change on your your caching servers. Then we
show you how to make the necessary changes, first for Unbound (in Section 22.5.3), and then
for BIND (in Section 22.5.4).
Up to now we’ve been explaining how you sign your zone files and configure your au-

thoritative servers to serve those zones. Here we cover the opposite side of the coin: how
you as a caching server administrator use DNSSEC to validate replies for a zone on someone
else’s authoritative servers. (A special case is where you’ve set up DNSSEC on your own
authoritative servers, and you want to use DNSSEC between your own caching and author-
itative servers. This is exactly the same as working with another site, except that you use
data about your own servers instead of theirs.)

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 22. Introducing DNSSEC 525

One important point may not be obvious: given that all the keys, etc. are in the signed
zone on the authoritative server, why does a caching server need any extra configuration at
all (other than a “use DNSSEC” directive, perhaps)? The reason is that anyone, including an
intruder, can generate a signed zone file for any zone. The signed zone file will be internally
consistent – because the intruder can use exactly the same tools for zone signing as you do.
So how can you determine whether the data you’re receiving is from the correct zone file? To
solve this problem you must somehow create a degree of trust between your caching server
and the authoritative server, and that’s what the caching server configuration is all about.
There are several ways of creating this trust, depending on what you want to do. Here

we cover only the simplest case: configuring your server to DNSSEC-validate one zone from
one authoritative server. (A master server for a zone, and all its slaves count as “one server”
here.) If you want to be able to validate many different zones, you repeat the configuration
process we describe, once for each extra zone. Later on in this chapter we explain how to
handle the more complex scenarios.

22.5.1 How a caching server validates a DNSSEC-signed answer

Let’s assume you want to use DNSSEC when you query our es.qupps.biz domain names, and
you know that es.qupps.biz’s authoritative server is DNSSEC-enabled, because you phoned
our administrator, Fred, and asked him. You want to query for the A record for the domain
www.es.qupps.biz.
To do this, your caching server needs to know es.qupps.biz’s KSKpub. Fred reads this out

to you over the phone, or sends it by e-mail, or you retrieve it from a trusted Web site, and
you store it in your caching server configuration files. Then you proceed as follows. (It will
soon become obvious why you had to get the KSKpub from Fred.)

1. You query our server for es.qupps.biz’s DNSKEY records. This gives you our KSKpub and
ZSKpub keys.

2. You compare that KSKpub with the copy that Fred sent you previously. You now know
you have the genuine KSKpub.

3. Using the KSKpub, you verify the digital signature (the RRSIG) on the DNSKEY RRset. If
this is valid, you now know that the ZSKpub you’ve just retrieved is valid. (That’s why
the KSK is so-called: it’s a key used to sign the zone signing key.)

4. You query our server for www.es.qupps.biz’s A record.

5. Our DNSSEC server returns the corresponding RRset for the A record with its RRSIG
(which is the second-last block in the Figure on page 515):

;; ANSWER SECTION:
www.es.qupps.biz. 86400 IN A 192.168.1.20
www.es.qupps.biz. 86400 IN A 192.168.1.21
www.es.qupps.biz. 86400 IN RRSIG A 5 4 86400 20080613171456 (

20080514171456 56172 es.qupps.biz.
f4+w1GftLNloqGQhgCpe1phRoSyz0fwdozkx5ICqIaE+
EPhGZp6SA9xg99XndhpvC4VC6uqv9Tea/Sy6NJmijQ==)

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

526 Alternative DNS Servers – Jan-Piet Mens

6. You extract the digital signature from the RRSIG.

7. You verify this signature using the method shown in Figure 22.4 on page 510.

8. If all these checks succeed, you know that the DNS response is complete and authentic.

Step 3 is why you had to phone Fred for es.qupps.biz’s KSKpub. If you haven’t received a
“trustworthy” copy of it by some out-of-band method, all the checks above (except 3, of
course) would succeed, even on a bogus signed zone file. Obtaining the KSKpub through
some other (trusted) means is a non-DNSSEC way to establish trust between you and us.
(This is a bit like your bank sending you the PIN for your ATM card by post. It would
be very difficult for an intruder to hijack your mailman or your mailbox to steal the letter
containing the PIN, as well as burgling your house to get your physical ATM card.)
In practice, many of the steps above can happen simultaneously: the authoritative server

can send DNSKEY and RRSIG records in the Additional Information section of the same packet
it sends the A record in.
That explains in principle how your caching server DNSSEC-validates an answer. Now

we’ll show you how to configure your server so it can do that.

22.5.2 Trust anchors, and islands of trust

The KSKpub that you obtain from a zone’s administrator (Fred, in our example), and that
you add to your caching server’s configuration, is called a trust anchor: it’s a definite point
(an anchor) within the domain tree where you can trust the KSKpub that you have.
The trust anchor is the starting point of a chain of authority (or chain of trust). You can

trust the anchor, so things that are derived or validated from there – the ZSKpub, for example
– can also be trusted, and using the now-trusted ZSKpub you can verify and trust the RRSIG,
and using that you can trust the related A records. The trust anchor is said to be an entry
point or secure entry point (SEP) into the chain of trust. (See the Notes, and Section 22.6, for a
more formal definition of SEP.)

Figure 22.7: Trust anchors and islands of trust

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 22. Introducing DNSSEC 527

Figure 22.7 illustrates this. Zones es.qupps.biz and nlnetlabs.nl use DNSSEC, but most of the
DNS tree doesn’t, so these two are isolated “islands of trust” in a sea of untrusted zones.
You can enter the chains of authority in these secured zones at the trust anchors (secure
entry points), i.e. where you have obtained trustworthy KSKpubs.
Ideally, you’d need only a single entry point – the public key of the root zone – for the

whole DNS: the root zone would be signed and it would contain chains of trust through all
top-level domains to the second-level domains and further down into your own domains. In
that case, validating DNSSEC-aware caching name servers would need only the single trust
anchor into the root zone. However, the root isn’t signed (yet), and therefore you have to set
up trust anchors for all DNSSEC zones you want your caching name servers to validate.

22.5.3 Configuring trust anchors in your caching server – Unbound

To configure your caching server for a secured zone, you first obtain the KSKpub – the trust
anchor – of the signed zone from the zone’s administrator (Section 22.4.4). In this section we
show you how you configure the trust anchor for Unbound, and in the next section for BIND.
To configure Unbound to validate replies from your DNSSEC-signed zone(s):

1. Unbound’s “validator ” module is responsible for validating DNSSEC replies from se-
cured DNS name servers. This module is enabled by default, but ensure that you
haven’t disabled it in your unbound.conf :

module-config: " validator iterator"

2. Set up trust anchors for the zones you want to validate. You can use either or both of
the following options in the unbound.conf file:

• The trust-anchor attribute specifies the trust anchor for a single zone. You copy the
whole key into the value of the trust-anchor attribute and surround it in quotes.
Remember, you can take the key from the keyset- zone file:

trust-anchor: "es.qupps.biz. IN DNSKEY 257 3 5 AwEAAb ... +2 kEUX+Q0="

Use multiple instances of trust-anchor to include the trust anchors for multiple
zones.

• The trust-anchor-file option specifies a filename containing the DNSKEY resource
records.

trust-anchor-file: "/etc/unbound/my.anchors"

You copy the content of your trust-anchor-file directly from your key file(s):

cat keys/Kes.qupps.biz.+005+29062.key >> my.anchors

We prefer this method as it can be automated, and avoids the error-prone copying
of chunks of text needed above.

3. Reload your unbound server by signaling it with a SIGHUP signal, after checking that
the configuration is correct.

If you run unbound with a verbosity setting of 2, and you query your caching name server,
you should see messages like these:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

528 Alternative DNS Servers – Jan-Piet Mens

info: finishing processing for <es.qupps.biz. DNSKEY IN>
info: validator operate: query <es.qupps.biz. DNSKEY IN>
info: validator: inform_super, sub is <es.qupps.biz. DNSKEY IN>
info: super is <www.es.qupps.biz. A IN>
info: verify rrset <es.qupps.biz. DNSKEY IN>
info: validate keys with anchor (DNSKEY): sec_status_secure
info: Successfully primed trust anchor <es.qupps.biz. DNSKEY IN>
info: validator operate: query <www.es.qupps.biz. A IN>
info: validator: FindKey <www.es.qupps.biz. A IN>
info: verify rrset <www.es.qupps.biz. A IN>
info: verify rrset <es.qupps.biz. NS IN>
info: verify rrset <torres.es.qupps.biz. A IN>
info: verify rrset <sherry.es.qupps.biz. A IN>
info: validate(positive): sec_status_secure
info: validation success <www.es.qupps.biz. A IN>

If you have configured your trust anchor(s) incorrectly, Unboundwill show you:

info: verify rrset <es.qupps.biz. DNSKEY IN>
info: validate keys with anchor(DNSKEY): sec_status_bogus
info: failed to prime trust anchor -- could not fetch secure DNSKEY ←֓

rrset <es.qupps.biz. DNSKEY IN>
info: validator operate: query <www.es.qupps.biz. A IN>
info: Could not establish a chain of trust to keys for <es.qupps.biz. DNSKEY IN>

A clear indication of failure is returned to the client. Since the caching name server cannot
trust the data it received from the authoritative name server, it drops it entirely, and dig
shows:

$ dig +dnssec +multiline @192.168.1.164 www.es.qupps.biz
;; ->>HEADER<<- opcode: QUERY, status: SERVFAIL, id: 46972
;; flags: qr rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 0, ADDITIO NAL: 1

If you want to force Unbound to supply the response, even if it is bogus, set val-permissive-
mode in unbound.conf :

val-permissive-mode: yes

The value of this attribute defaults to “no” and we recommend you use the default.

22.5.4 Configuring trust anchors in your caching server – BIND

For BIND to validate answers from other servers, you must set both dnssec-enable and
dnssec-validation , and configure some trusted-keys in your named.conf :

options {
...
dnssec-enable yes;
dnssec-validation yes;

};

You configure trust anchors in your BIND caching server in a trusted-keys clause. Copy
the data from your Key Signing Key (the .key file with the 257 on it) into a trusted key:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 22. Introducing DNSSEC 529

trusted-keys {
"es.qupps.biz" 257 3 5 "AwEAAbyaEjQit0Evpo6C9qgh7maTf+ ←֓

ThQkB8Y58TZN/bWuJOSxNpHYkMhjhu←֓
C3Pmc68nEf3AYgxCeeOD0pzTCryG2a←֓
Xruy8MGVee9A3pobw0FA3A8e0HXQwf←֓
2J8p8XYIk5SBI4U2xEtXZtUkH1efBx ←֓
SbzDk9hXLjRY92qVOUNTbJslONNjY7 ←֓
uuNP35sG1rfIWH0ZM64mSEs7vxv8+2 ←֓
kRNEUX+Q0=";

};

Note how the domain name of the key is optionally enclosed in double quotes, whereas the
base64-blob of the key (all on a single line) must be quoted.
If you’ve enabled logging (as shown in Section 22.4.3), BIND logs details to the file you

specify:

debug 3: validating: www.es.qupps.biz A: starting
debug 3: validating: www.es.qupps.biz A: attempting positive response validation
debug 9: validating: www.es.qupps.biz A: get_key: creating fetch for es.qupps.biz DNSKEY
debug 3: validating: es.qupps.biz DNSKEY: starting
debug 3: validating: es.qupps.biz DNSKEY: attempting positive response validation
debug 3: validating: es.qupps.biz DNSKEY: verify rdataset (keyid=29062): success
debug 3: validating: es.qupps.biz DNSKEY: signed by trusted key; marking as secure
debug 3: validator : dns_validator_destroy
debug 3: validating: www.es.qupps.biz A: in fetch_callback_validator
debug 3: validating: www.es.qupps.biz A: keyset with trust 7
debug 3: validating: www.es.qupps.biz A: resuming validate
debug 3: validating: www.es.qupps.biz A: verify rdataset (keyid=56172): success
debug 3: validating: www.es.qupps.biz A: marking as secure
debug 3: validator : dns_validator_destroy

That concludes the simple way of configuring caching servers to use DNSSEC.

22.5.5 Example of a DNSSEC validation

At last you are in a position to test your caching server setup with dig; we recommend you
use the +multiline switch to make output easier to read:

$ dig +dnssec +multiline @192.168.1.20 www.es.qupps.biz
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 41792
;; flags: qr aa rd; QUERY: 1, ANSWER: 3, AUTHORITY: 2, ADDITIO NAL: 1
;; ANSWER SECTION:
www.es.qupps.biz. 86400 IN A 192.168.1.20
www.es.qupps.biz. 86400 IN A 192.168.1.21
www.es.qupps.biz. 86400 IN RRSIG A 5 4 86400 20080613171456 (

20080514171456 56172 es.qupps.biz.
f4+w1GftLNloqGQhgCpe1phRoSyz0fwdozkx5ICqIaE+
EPhGZp6SA9xg99XndhpvC4VC6uqv9Tea/Sy6NJmijQ==

)

;; AUTHORITY SECTION:
es.qupps.biz. 86400 IN NS www.es.qupps.biz.
es.qupps.biz. 86400 IN RRSIG NS 5 3 86400 20080613171456 (

20080514171456 56172 es.qupps.biz.
Mth2xiu4yyNArX4t45oFZZmlAgck8qBopIMvZ48imZla
jrr1DrEC8BNdujI6yJ4pWdB6GpGNJYzK8jenqmbc2w==

)

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

530 Alternative DNS Servers – Jan-Piet Mens

The above command was sent to an authoritative name server for the es.qupps.biz zone,
so dig’s flags don’t give us any DNSSEC-specific information, because dig doesn’t validate
DNSSEC responses. If, however, we ask a caching name server for the same information, we
see the Authenticated Data (see Notes) flag in the response: the caching server has DNSSEC
validated the reply, and set the flag (and dig has just passed it on to us as it received it).

$ dig +dnssec +multiline www.es.qupps.biz
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 13668
;; flags: qr rd ra ad ; QUERY: 1, ANSWER: 3, AUTHORITY: 2, ADDITIONAL: 1
...

In both cases, the respective RRSIG is returned with the A RRset.

22.6 The chain of trust for delegated zones; DS records

In Section 22.5.3 we explained how you must obtain a trust anchor (a zone’s KSKpub) via an
out-of-band method, to establish a level of trust in that anchor. You then configure this trust
anchor into your caching server. If there is a tree of delegation – zone to sub-zone (to sub-
sub-zone . . .) – you can treat each zone individually with respect to DNSSEC, and configure
each separately, as described in Section 22.5.
However, DNSSEC has a special mechanism for handling delegated zones, to reduce the

admin load on owners of caching servers. DNSSEC lets you build, on the authoritative
servers handling the zones, a chain of trust – a mechanism that lets a client trust suitably-
configured child zones automatically, as long as it trusts the parent zone. On the caching
server you don’t have to do anything extra at all – it works automatically, as long as you’ve
configured the trust anchor of the topmost DNSSEC zone in the delegation tree into your
caching server as normal.
The starting point of the chain of trust is called an entry point. Consider a parent zone

with a child zone that in turn has a grand-child zone. A caching server can “enter” this
chain at any level, as long as it has the trust anchor (i.e. the KSKpub) for the zone at that
level: the KSKpub is the “entry point” into the chain of trust. Once a caching server has
securely obtained a public key high in your DNS hierarchy, it can automatically follow the
chain to validate DNS replies given by name servers that host your child zones.
To create the necessary chain of trust on authoritative servers, you use a new type of

resource record, the Delegation Signer (DS). You insert the DS record into the parent zone.
No change is required to the child zone. The DS resource record contains the child zone’s
name (so the DS points to the child zone) and a digest of the child zone’s KSKpub. Figure 22.8
shows how the DS record in the parent qupps.biz points to es.qupps.biz.
To validate a child zone’s DNSKEY record, presumably when following a referral from

qupps.biz to es.qupps.biz, a client proceeds as follows:

1. The client retrieves the DS from the parent zone, and validates it just like any other
RRset in a trusted zone. (Remember, the parent zone is trusted, because that’s where
the trust anchor/entry point is.)

2. The client queries for the DNSKEY records of the child, es.qupps.biz, and looks for a key
that matches the key tag listed in the DS record. This is the child’s KSKpub.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 22. Introducing DNSSEC 531

Figure 22.8: Chain of trust formed with DS secure delegations

3. Having found the the child’s KSKpub, the client creates a digest of that, using the cor-
rect hash algorithm specified in the DS record. If this calculated digest is the same as
the digest in the DS resource record, we know the child’s KSKpub is genuine, and we
can proceed as before (Section 22.5.1), but this time we haven’t had to configure the
child zone’s trust anchor manually,

22.6.1 To configure the chain of trust from parent to child zone

1. When we signed our (child) zone es.qupps.biz (Section 22.4.2) dnssec-signzone automat-
ically created a file called dsset- domain (dsset-es.qupps.biz in this case). The file
is a so-called ds-set – a small file (in zone master file syntax) containing one or more
digests of a child zone’s KSKpub.

The child’s administrator, Fred, sends the child’s dsset to the parent zone administra-
tor, Tim – by secure e-mail, or by publishing it on a secure web site, etc. The dsset for
es.qupps.biz currently contains:

$ cat dsset-es.qupps.biz
es.qupps.biz. IN DS 29062 5 1 5BE64B2CC32616B419C2ED5C332D9E223F40127E
es.qupps.biz. IN DS 29062 5 2 02B80FB9EA40C2A9286C6C7BF8AAF4240F5880C6←֓

DBF0655BC234C217 2145665F

Note how there are two DS records (see Notes).

2. Tim, the parent zone administrator, includes the dsset file into the parent zone. So,
the qupps.biz zone file now contains the KSK and ZSK for qupps.biz as well as the DS
records from its child zone es.qupps.biz:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

532 Alternative DNS Servers – Jan-Piet Mens

qupps.biz. 84600 IN SOA ns1.qupps.biz. tim.mens.de. (18 10 800 900 604...
IN NS ns1.qupps.biz.

ns1 IN A 192.168.1.164

$ORIGIN es.qupps.biz.

@ IN NS www.es.qupps.biz.
www.es.qupps.biz. IN A 192.168.1.20 ; Glue RR

$INCLUDE qkeys/Kqupps.biz.+005+03507.key; ZSK
$INCLUDE qkeys/Kqupps.biz.+005+02329.key; KSK
$INCLUDE keysets/ dsset-es.qupps.biz; DS of child

3. Tim, the parent’s administrator, signs the parent zone, using dnssec-signzone, but with
a new option, -d , specifying the directory containing the children’s dsset file(s). So
he runs:

$ dnssec-signzone \
-o qupps.biz \ zone origin
-d keysets \ directory
-k qkeys/Kqupps.biz.+005+02329 \ KSK
qupps.biz.zone \ zone file
qkeys/Kqupps.biz.+005+03507 ZSK

If you have several signed child zones, you use the same command – all the child
dsset s are in the directory you specify with the -d option, and you are signing the
single parent zone.

Warning: it is a bit confusing that the parent’s own keyset and dsset files land in the
directory specified with the -d option. You can ignore the files, or even delete them,
unless you want your own parent (.biz in this example) to set up a chain of trust to
you, in which case you’ll have to send your own keyset to .biz’s administrator.

4. The resulting signed zone file for qupps.biz contains (signatures truncated for brevity):

qupps.biz. 84600 IN SOA ns1.qupps.biz. tim.mens.de. (...)
84600 RRSIG SOA 5 2 84600 20080624120443 (

20080525120443 3507 qupps.biz. ...
84600 NS ns1.qupps.biz.
84600 RRSIG NS 5 2 84600 20080624120443 (

20080525120443 3507 qupps.biz. ...
3600 NSEC es.qupps.biz. NS SOA RRSIG NSEC DNSKEY
3600 RRSIG NSEC 5 2 3600 20080624120443 (

20080525120443 3507 qupps.biz. ...
84600 DNSKEY 256 3 5 (

AwEAAaEW+zydEhqpwH3iSBF/ihaZYdyZNmSN
/QKlW//Q9M8YB1jHl8eo7LVrUeUrvmOeyDp8
jos=
) ; key id = 3507

84600 DNSKEY 257 3 5 (
AwEAAedjD68wxmNp6slv7IF5OfRhKd29btKF
H/hbpn0kVASwXVFybzdwgma6adWl31KkQZYQ
aP8=
) ; key id = 2329

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 22. Introducing DNSSEC 533

84600 RRSIG DNSKEY 5 2 84600 20080624120443 (
20080525120443 3507 qupps.biz. ...

84600 RRSIG DNSKEY 5 2 84600 20080624120443 (
20080525120443 2329 qupps.biz. ...

es.qupps.biz. 84600 IN NS www.es.qupps.biz.
84600 DS 29062 5 1 (

5BE64B2CC32616B419C2ED5C332D9E223F40
127E)

84600 DS 29062 5 2 (
02B80FB9EA40C2A9286C6C7BF8AAF4240F58
80C6DBF0655BC234C2172145665F)

84600 RRSIG DS 5 3 84600 20080624120443 (
20080525120443 3507 qupps.biz. ...

3600 NSEC ns1.qupps.biz. NS DS RRSIG NSEC
3600 RRSIG NSEC 5 3 3600 20080624120443 (

20080525120443 3507 qupps.biz. ...
www.es.qupps.biz. 84600 IN A 192.168.1.20
ns1.qupps.biz. 84600 IN A 192.168.1.164

84600 RRSIG A 5 3 84600 20080624120443 (
20080525120443 3507 qupps.biz. ...

3600 NSEC qupps.biz. A RRSIG NSEC
3600 RRSIG NSEC 5 3 3600 20080624120443 (

20080525120443 3507 qupps.biz. ...

At this point the parent zone is signed, so any caching servers that want to query it
will have to be configured as normal (Section 22.5.1). What’s important, though, is
that no caching servers need to be configured now for the delegated sub-zones in the
chain of trust.

Note that the only thing the child zone administrator, Fred, had to dowas send the dsset

file to Tim.

22.7 Using DNSSEC automatically – DLV, look-aside validation

So far, we covered setting up DNSSEC for an individual zone, or for a delegated tree of zones.
In both cases we end up with an island of trust, and a trust anchor for it must be set up in
every caching server that wants to DNSSEC-validate the zone’s records. The more zones
there are, and the more clients there are, the more work has to be done: this system does not
scale well.
An extension to the DNSSEC protocol calledDLV (DNSSEC Look-aside Validation), RFC 5074,

gets over this. In the same way that trusted organizations become Certification Authorities
(CAs) in the public-key infrastructure (Section 22.2.3), trusted organizations set up DLV reg-
istries for the DNS. The administrator of an authoritative server for a zone, example.com say,
registers the zone’s KSKpubwith the registry. The administrator of a caching server con-
figures their server to use the DLV registry. When the caching server wants to check the
authenticity of replies from example.com’s server, the caching server obtains example.com’s
KSKpub – the trust anchor – it requires from the DLV registry. Here, unlike the previous
two scenarios, the caching server’s administrator has no direct contact with example.com’s
administrator at all. (A different way of looking at this is that a DLV registry provides an
additional, higher, entry point at which you can enter the chain of trust.)

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

534 Alternative DNS Servers – Jan-Piet Mens

If you explicitly set up trust to a DLV registry, you subsequently trust the keys that that
registry returns to your name servers (in the same way that if you trust a Certification Au-
thority, you also trust certificates that the CA issues).
One of the better known DLV registries is run by the Internet Systems Consortium (ISC)

at http://www.isc.org/ops/dlv .
In the next two sections we show how the administrator of an authoritative server, and

the administrator of a caching server, respectively, configure their servers to use a DLV reg-
istry.

22.7.1 Authoritative server: create records to include in a DLV registry

Assume that Fred, es.qupps.biz’s administrator, wants to register es.qupps.biz with the ISC
DLV registry. He submits es.qupps.biz’s KSKpub (trust anchor) to the ISC, who include it in
their dlv.isc.org zone. DLV-aware servers retrieve the KSK from the DLV.
The easiest way to submit the KSKpub is by using the -l option when you sign the zone

with dnssec-signzone. This option generates a DLV-set (similar to a keyset or dsset) – a
small file (in zone file format) containing the keys to be inserted at the DLV registry.

$ dnssec-signzone \
-o es.qupps.biz \ zone origin
-l dlv.isc.org \ DLV domain
-k keys/Kes.qupps.biz.+005+29062 \ KSK
es.qupps.biz.zone \ zone file
keys/Kes.qupps.biz.+005+56172 ZSK

es.qupps.biz.zone.signed

This generates a DLV set for the DLV registry operator’s domain (dlv.isc.org), in addition to
the DNSKEY and DS sets. In our example, the resulting file contains:

$ cat dlvset-es.qupps.biz.
es.qupps.biz.dlv.isc.org. IN DLV 29062 5 1 5BE64B2CC3261. ..C3E223F40127E
es.qupps.biz.dlv.isc.org. IN DLV 29062 5 2 02B80FB9EA40C. ..BF4240F5880C6 ←֓

DBF0655BC234C217 2145665F

For how to submit this DLV set to the ISC, see Notes.
Now we discuss what you have to do to configure your caching name server to use a

DLV registry.

22.7.2 Caching server: configure to use a DLV registry

As the administrator of a caching server, you have to configure your caching name servers
to consult a DLV registry, and to enable look-aside validation. Currently, only BIND 9.3.3 and
9.4.0 or later have support for DLV.
To implement the ISC DLV registry in your caching BIND name server:

1. Obtain dlv.isc.org’s KSKpub key from the ISC Web site (see Notes) and verify its PGP
signature.

2. Enable DNSSEC in the options clause in named.conf and instruct BIND to use DLV in
addition to normal DNSSEC validation with the dnssec-lookaside statement:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 22. Introducing DNSSEC 535

options {
...
dnssec-enable yes;
dnssec-validation yes;
dnssec-lookaside "." trust-anchor " dlv.isc.org ";

};

3. Add the key you downloaded in Step 1 to a trusted-keys statement in named.conf :

trusted-keys {
rd.qupps.biz 257 3 5 "BbaEa ... ";
dlv.isc.org 257 3 5 "BEAAA ... ";

};

Note how in the example above, we have configured a trust anchor for our own zone
rd.qupps.biz (e.g. an internal zone we don’t want to submit to ISC’s DLV registry) as
well as for ISC’s DLV zone.

If you have set everything up correctly, you should be able to query any DLV-registered
domain via your caching server, and for those zones that are signed, get validated responses.

Testing DLV: off to Brazil

We know that the zone maintainers for Brazil’s .BR ccTLD zone have DNSSEC enabled, so
we’ll query that:

$ drill -S a.dns.br
;; ->>HEADER<<- opcode: QUERY, rcode: NOERROR, id: 47853
;; flags: qr rd cd ra ; QUERY: 1, ANSWER: 2, AUTHORITY: 6, ADDIT IONAL: 0

;; ANSWER SECTION:
a.dns.br. 172800 IN A 200.160.0.10

...

...

[XX] VERIFY RRSET:
a.dns.br. 172800 IN A 200.160.0.10
[XX] RESULT: All OK

[XX] VERIFY RRSET:
dns.br. 86400 IN DS 943 5 1
1880e0a19bdd1187747214b84a2f50f63ae539dc
[XX] RESULT: All OK

DNSSEC Trust tree :
a.dns.br. (A)
|---dns.br. (DNSKEY keytag: 943)

|---dns.br. (DS keytag: 943)
|---br. (DNSKEY keytag: 23238)

|---br. (DNSKEY keytag: 61207)

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

536 Alternative DNS Servers – Jan-Piet Mens

If you look at the trust tree at the bottom of the above example, you see the signing hierarchy,
shown bottom first.
Look at BIND’s log to see what is happening; here is a short excerpt from it:

debug 3: validating: . NS: starting
debug 3: validating: . NS: looking for DLV
debug 3: validating: . NS: plain DNSSEC returns unsecure (.): looking for DLV
debug 3: validating: . NS: looking for DLV dlv.isc.org
debug 9: validating: . NS: finddlvsep: creating fetch for dlv.isc.org DLV
debug 3: validating: . NS: DLV lookup: wait
debug 3: validating: dlv.isc.org DLV: starting
debug 3: validating: dlv.isc.org DLV: attempting negative response validation
debug 9: validating: dlv.isc.org DLV: nsecvalidate: creating validator for dlv.isc.org SOA
debug 3: validating: dlv.isc.org SOA: starting
debug 3: validating: dlv.isc.org SOA: attempting positive response validation
debug 9: validating: dlv.isc.org SOA: get_key: creating fetch for dlv.isc.org DNSKEY
debug 3: validating: dlv.isc.org DNSKEY: starting
debug 3: validating: dlv.isc.org DNSKEY: attempting positive response validation
debug 3: validating: dlv.isc.org DNSKEY: verify rdataset (keyid=14383): success
debug 3: validating: dlv.isc.org DNSKEY: signed by trusted key; marking as secure
debug 3: validator : dns_validator_destroy
...

Points to note about DLV

• If you enable DLV in your caching name servers, you must keep an eye out for key-
rollovers (see Notes) performed by your DLV registry. If the registry has a mailing list
or an RSS feed, be sure to subscribe to that in order to be forewarned of any changes
they make to their keys.

• Unbound currently does not support DLV, so with Unbound you have to maintain trust
anchors manually.

• BIND currently does not support DLV for non-root zones, so you cannot implement
look-aside validation for your hierarchy and for a public DLV registry simultaneously.
In other words, if you implement DLV for your own internal zones, you cannot simul-
taneously use a public DLV registry with BIND.

• Although DLV eases the administrative effort required to deploy DNSSEC, it does not
scale well. A different scheme – the signing of the root zone (currently under consid-
eration by ICANN) – would scale. If the root zone gets signed, DLV will diminish
in importance, although it might remain useful for private use within large organiza-
tions.

22.8 Housekeeping and DNSSEC key management

We’ve discussed how you get started with DNSSEC, and you’ve seen that there is quite a lot
of housekeeping andmanagement you have to perform. We’ve collected themost important
points here, for reference.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 22. Introducing DNSSEC 537

22.8.1 Organizing your keys to avoid confusion

If you use two keys as recommended, and if you have to manage keys for more than one
zone (which you probably will), organize your keys as follows:

• Create a dedicated directory for your key files. Carefully protect the private keys by
setting file system permissions and file ownership appropriately.

• The names of the key files generated by dnssec-keygen are not obvious (the first four
lines below). Create symbolic links to make the names clearer. We specially recom-
mend you clearly mark which keys are KSK and which are ZSK (last two lines below).

$ ls -l keys
-r--r--r-- 1 dns mens 256 Feb 16 21:41 Kes.qupps.biz.+005+2 9062.key
-r-------- 1 dns mens 1125 Feb 16 21:41 Kes.qupps.biz.+005+ 29062.private
-r--r--r-- 1 dns mens 126 Feb 16 21:37 Kes.qupps.biz.+005+5 6172.key
-r-------- 1 dns mens 549 Feb 16 21:37 Kes.qupps.biz.+005+5 6172.private
lrwxrwxrwx 1 dns mens 28 Feb 16 21:42 KSK -> Kes.qupps.biz.+0 05+29062.key
lrwxrwxrwx 1 dns mens 28 Feb 16 21:40 ZSK -> Kes.qupps.biz.+0 05+56172.key

• Create a registry of keys for yourself. Use a database table, a spreadsheet or even a
plain text file to record which keys you used for what, and which keys you sent to
whom.

22.8.2 Administering your keys

Before launching your own DNSSEC zones, there are several points regarding key manage-
ment that you should consider:

• How will administrators of caching name servers obtain your public keys, and how
will they be able to verify them? You can:

– Place the key on a secure (and trusted) Web site, for anybody to retrieve. Ensure
you inform potential takers of when your key expires and how and when you
plan to publish a new key.

– Assuming you have a secure (S/MIME or PGP) mail system, send the key in a
signed mail to anybody who asks.

Additionally create a mailing list that cache administrators can subscribe to, in
order to receive notifications of new keys, key expiry etc.

• How often your keys will roll over, i.e. how often you will re-issue them (see Notes).

• How will you signal a key rollover, or how can you ensure that all interested parties
are aware of your key rollover? If you deploy DNSSEC within your own organization
only, then you will typically know when that happens, but if you have distributed
your keys to third parties, they must be informed when your keys roll over, or they
won’t be able to validate your DNS replies any more.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

538 Alternative DNS Servers – Jan-Piet Mens

22.9 Points to note when you deploy DNSSEC

• When sent over UDP, DNS messages are limited to 512 octets in size, but that is too
small to handle some of the large records that DNSSEC requires. RFC 2671 defines
EDNS0, the Extension Mechanisms for DNS, which allows clients and server to nego-
tiate a maximum packet size. Name servers that implement DNSSEC must implement
EDNS0 as well. This might be affected by firewalls, which might block UDP DNS
traffic which is larger than 512 octets. If your authoritative name servers are behind a
firewall, keep that in mind when implementing DNSSEC.

• DNSSEC does not prevent unauthorized access to name servers. To do that you use
TSIG (Chapter 7). You can use both TSIG and DNSSEC on the same server.

• DNSSEC increases the load on your authoritative name servers. The cryptographic
calculations involved require CPU, and your servers will be queried for more resource
records than with unsecured DNS.

Caching servers will spend additional CPU time validating responses.

The size of zone files increases. For example, in 2003 a test signing was performed on
the .nl ccTLD, containing approximately 800 000 delegations. The zone file increased
from about 40 MB to over 350 MB when signed, and signing took around 1.5 hours,
with an additional 15 minutes to load the zone.

• If you implement strict DNSSEC validation on your caching servers, and validation fails
(e.g. because a key has become invalid), your DNS clients will not see any replies. This
might be termed a degradation of service. Apart from monitoring that your caching
servers have valid trust anchors, there is little you can do about this.

• When using non-DNSSEC DNS, you always disable zone transfers to non-authorized
clients, so that unauthorized people can’t get get a full listing of your zone, because
zone data can reveal information about your network that you don’t want published.

However, DNSSEC-enabling your zones makes their content fully visible, even with
zone transfers disabled. This is because a NSEC resource record points to the next
domain in a zone, and by judiciously walking the list of NSEC records, you can enu-
merate a zone’s content. Note however, that NSEC3 (defined in RFC 5155) mitigates
this zone walking. DNSSEC servers can choose to send an NSEC3 record instead of an
NSEC record to indicate that a specific record is not found (i.e. NXDOMAIN). The NSEC3
record is signed, but instead of including the domain name (which enables zone walk-
ing), the NSEC3 record includes a hashed value of the name. NSEC3 is implemented in
the Unbound and NSD servers, and in the ldns package which you can use instead of
dnssec-signzone to sign zones (see Notes),

• RFC 5011,Automated Updates of DNS Security (DNSSEC) Trust Anchors, proposes mecha-
nisms for renewing trust anchors automatically. In theory, you could implement some-
thing similar with a clever shell script. NLnet Labs is working on a tool for it, and you
can look at trustman (see http://www.dnssec-tools.org/) for something similar.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 22. Introducing DNSSEC 539

• We have not discussed how and when you perform key rollovers. Consult the ex-
cellent DNSSEC Howto (see Notes) on what to watch out for when rolling over your
keys.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

540 Alternative DNS Servers – Jan-Piet Mens

Summary

• DNSSEC provides security by guaranteeing that the DNS replies you get are authentic.
It does not make your DNS queries and their replies confidential.

• DNSSEC adds additional data to the DNS protocol that provides information to allow
clients to authenticate responses.

• Only BIND, NSD and Unbound support DNSSEC.

• DNSSEC is complex tomanage because you have to create keys, secure the private keys,
distribute public keys and manage key rollover.

• DLV is a mechanism for publishing DNSSEC trust anchors; it allows caching name
servers (resolvers) to validate DNSSEC-signed data from zones that don’t publish Del-
egation Signer (DS) records. DLV greatly eases the migration to DNSSEC. Only BIND
has support for DLV.

Related topics

• Two of the authoritative name servers we discuss have support for DNSSEC-signed
zones: BIND (Chapter 7) and NSD (Chapter 10).

• Unbound (Chapter 17) is a validating DNSSEC-aware caching name server.

Notes and further reading

DNSKEY records

Every secured DNS zone has at least one public/private key pair associated with it, gener-
ated by the zone’s administrator. The administrator keeps the private key secure and secret,
but publishes the public key in the zone file in the form of a DNSKEY resource record (Fig-
ure 22.9).

Figure 22.9: The DNSKEY resource record

As explained in Section 22.4.1, you usually use two different key pairs, a Zone Signing
Key (ZSK) pair and a Key Signing Key (KSK) pair. The DNSKEY record contains a “flags”
field (Figure 22.9) which indicates the type of key:

256 The key is a ZSK.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 22. Introducing DNSSEC 541

257 This value indicates that the key additionally has the Secure Entry Point (SEP) bit set.
This is used as the Key Signing Key (KSK), and the public portion of the KSK is what
you use to configure trust anchors.

Because zones can contain more than a single DNSKEY resource record (ZSK and KSK, as
we have used them), RFC 3757 defines a Secure Entry Point (SEP) as a key that is either used
to generate DS resource records (Section 22.6) or that is distributed to caching name servers
(resolvers) as the root of a trusted subtree. The SEP is the key with an odd flags value – 257.

RRSIG records

DNSSEC generates the digital signature for an RRset by creating an SHA-1 digest of the
RRset, and encrypting the digest with the zone administrator’s private key, ZSKpriv. Signing
the DNSKEY RRset is a special case: DNSSEC signs this twice, once with ZSKpriv and once with
KSKpriv.
Comparing the key tag in the RRSIG record (56172 in Figure 22.10) with the key id com-

ments, if present, in the DNSKEY records lets you work out which is the KSK and which the
ZSK.

Figure 22.10: The RRSIG resource record

NSEC records

The Next Secure (NSEC) resource records (Figure 22.11), defined in RFC 3845, are created by
dnssec-signzone, after it has sorted the entire zone into “canonical order” (see below). The
NSEC record for one domain name points to the next domain in order, in the zone, which
allows clients to verify that NXDOMAIN replies are genuine.
The NSEC for a domain name (note – not for an RRset) lists which resource record types the
name has. For example, www.es.qupps.biz has A, RRSIG and NSEC records.
A different way of looking at NSEC is: the “next name” part defines the gap between this

domain name and the next. The “RRs for this domain” defines the extent of the non-gap, so
the sums of all the NSEC records defines all the gaps and all non-gaps, i.e. they define the full
extent of the zone.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

542 Alternative DNS Servers – Jan-Piet Mens

Figure 22.11: The NSEC resource record

Here’s an example of how NSECworks. If a DNSSEC-aware client queriesmail.es.qupps.biz,
it receives the following response:

$ dig +dnssec mail.es.qupps.biz
;; ->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 4122
;; flags: qr aa rd; QUERY: 1, ANSWER: 0, AUTHORITY: 4, ADDITIO NAL: 1

;; AUTHORITY SECTION:
es.qupps.biz. 3600 IN NSEC www.es.qupps.biz. NS SOA RRSIG NSEC DNSKEY

The status remains NXDOMAIN as in a non-DNSSEC query, but the NSEC resource record
securely announces to the client that the requested name doesn’t exist, and that the “next
available” name is www.es.qupps.biz.
Canonical order is defined in RFC 4034. Roughly, here’s how it works: sort the names

according to their most significant (rightmost) labels (.com, .biz, etc.). Within that, sort the
next most significant label (e.g. example, qupps, . . .) alphabetically, and so on. See section 6.1
of RFC 4034 for examples of canonical ordering.

DS records

DS resource records (Figure 22.12) have different digest types: type 1 uses the SHA-1 hash
algorithm, and predates type 2 (RFC 4509), which uses the SHA-256 algorithm, and which is
considered to be more resilient to attack than SHA-1.
The digest is calculated by concatenating the domain name and the rdata portion of the

zone’s DNSKEY record (flags, protocol, algorithm, and public key), and hashing the result with
the algorithm.
A caching server can choose which DS record to use, according to which of the listed

algorithms it knows about. This is so that new algorithms (“4” say) can be added without
suddenly breaking older implementations that don’t know about “4” algorithm. In this
case, the “older” implementation would use algorithm type 1 or 2 if those DS records are
still provided.

Figure 22.12: The DS resource record

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 22. Introducing DNSSEC 543

Mathematical relationship between keys

The RSA algorithm is the most widely used in public/private encryption. It defines the
mathematical relationship between the private and public keys used in asymmetric en-
cryption. It was published by Ron Rivest, Adi Shamir, and Leonard Adleman at MIT (see
http://en.wikipedia.org/wiki/RSA).

The ldns package

The ldns package we introduced in Chapter 10 also provides tools for generating keys and
signing zones. They are called ldns-keygen and ldns-signzone respectively.

Random numbers

When you create keys, you require a lot of random data. UNIX and GNU/Linux systems
provide /dev/random as a source of entropy, but it typically blocks until enough “noise” is
created to fill the pool with random numbers, so on a quiet system it can take five minutes
to create a single 1 280 bit key.
Furthermore, the random numbers produced by these pseudo-devices may not be strong

enough for your needs, and you might want to consider using an external device to provide
reliable random numbers or a different implementation of a pseudo-number generator. See
http://openfortress.org/cryptodoc/random/ or http://random.org/ .

Header bits

DNSSEC introduces three new DNS message header bits:

• Authenticated Data (“ad”) is set by DNSSEC-enabled caching name servers in replies if
they have verified all the DNSSEC-related resource records before returning an answer
to the client. If any records fail to verify, the caching name server clears the flag, and
you won’t see it in dig’s flags line.

• Checking Disabled (“cd”) is used by resolvers (e.g. libunbound) to indicate that they are
able to do DNSSEC verification on their own. By setting this flag, the resolver instructs
upstream caching name servers not to bother verifying DNSSEC records, because it can
handle the task itself.

• DNSSEC OK (“do”) specifies that the client supports DNSSEC and wants DNSSEC-
related records in the response.

ISC’s DLV registry

The Internet Systems Consortium (ISC) runs a DLV (DNSSEC look-aside validation) service.
It defines a set of procedures for submitting your data to be included in their DLV zone. (See
http://www.isc.org/ops/dlv)

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

544 Alternative DNS Servers – Jan-Piet Mens

Key management

• The RIPENCChas a suite of tools (created byOlaf Kolkman) designed to ease theman-
agement of keys in DNSSEC: maintkeydb is a shell for creating andmaintaining keys, and
dnssigner signs zones (see https://www.ripe.net/projects/disi/dnssec_maint_

tool/).

• You’ll find some more tools for managing authoritative DNSSEC zones and settings for
caching name servers at http://www.dnssec-tools.org/

Key rollover

Signed RRSIGs created when you sign a zone for DNSSEC have a default lifetime of 30 days,
starting 1 hour prior to the current time. You can specify different start and end validity
times for keyswhen running dnssec-signzonewith the -s and -e options respectively; specify
the option’s value as either +N, where N is a number of seconds, or as an absolute time in
YYYYMMDDHHMMSS notation.
Because DNSSEC keys – technically, the RRSIGs – have a limited lifetime (i.e. they expire),

you have to replace them occasionally, taking great care to not break existing chains of trust
during this so-called key rollover.
Here’s what happens when the keys used to sign a zone have expired:

$ unbound-host -v www.es.qupps.biz
www.es.qupps.biz has address 192.168.1.20 (BOGUS (securi ty failure))
www.es.qupps.biz has address 192.168.1.21 (BOGUS (securi ty failure))
www.es.qupps.biz has no IPv6 address (BOGUS (security fail ure))
www.es.qupps.biz has no mail handler record (BOGUS (securi ty failure))

$ dig www.es.qupps.biz
;; ->>HEADER<<- opcode: QUERY, status: SERVFAIL, id: 49100
;; flags: qr rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 0, ADDITIO NAL: 0

If you compare this with unbound-host’s output on page 522, you get an inkling of the prob-
lems that DNSSEC can cause: programs start failing because their addresses cannot be re-
solved.
We don’t discuss key rollover further; read the DNSSEC HOWTO (see below) for infor-

mation on how to go about this.

Signing metrics

A report on the signing of a large TLD zone (.CA) discusses methods and signing character-
istics (see http://www.nlnetlabs.nl/downloads/ca-reg.pdf).

Further reading

• Olaf Kolkman’s DNSSEC HOWTO, is a must-read. It contains tips on key rollover,
troubleshooting etc. (see http://www.nlnetlabs.nl/dnssec_howto/).

• http://www.dnssec.net/ is a gateway to a huge selection of documents, articles and
presentations about DNSSEC.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter

23 Performance

If your experiment needs statistics, you
ought to have done a better experiment.

Ernest Rutherford

23.1 How we carried out the performance tests

23.2 Performance results for the authoritative name servers

23.3 How the back-ends influence performance

23.4 Performance results for caching name servers

23.5 How important is performance?

Introduction

So, you are going to set up your preferred DNS server, but how much can it actually deliver? Is
performance important for you? (Surprisingly perhaps, for many sites it won’t be a major concern.) In
this chapter we discuss how we tested both the authoritative and the caching servers, the results we
obtained, and what you should observe when measuring performance.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

546 Alternative DNS Servers – Jan-Piet Mens

Benchmarks are difficult to conduct and even more difficult to trust, as they reflect only the
requirements of the people who conducted the benchmarks. (As the saying goes, “Never
believe a statistic unless you have forged it yourself”.) We have not conducted the ultimate
benchmark – we don’t have the means to do so. We have not measured network latency, just
as we haven’t measured the impact a firewall imposes on serving DNS.
Our intention is to gather information on the possible throughput that the authoritative

and caching name servers can deliver, and what the memory requirements are. How fast
these program run depends on many factors including, but not limited to: hardware (CPU,
disks, memory), software (operating system, swapping behavior), network throughput and
latency, and the SQL or LDAP back-end used, if any.

23.1 How we carried out the performance tests

Figure 23.1: Lab environment for performance tests

23.1.1 Test environment

We used the following hardware and software environment:

• A dual core Intel T7300 CPU running at 2.0 GHZ with 32K of L1 and 4MB of L2 cache
enabled, 2GB RAM, a single ST9120823AS hard disk, and an Ethernet NIC (PCI Ex-
press) running at 100Mb/s.

• Centos 5 release (x86 64 Final) operating system running a GNU/Linux kernel version
2.6.18-8.1.14.el5 SMP, with 3993.77 BogoMIPS.

• OpenLDAP version 2.3.38 provided as Symas OpenLDAP Gold by Symas Corp.

• MySQL version 5.0.22 (in tests that required an SQL database).

• Wherever possible we used the latest versions of the name servers, and we compiled
them ourselves from their respective source distributions.

We set up the lab shown in Figure 23.1 to conduct the performance tests. The following
sections explain how we configured the servers, and the results we obtained.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 23. Performance 547

23.1.2 Creating thousands of zone names

We created 100 001 zones (qupps.biz and another artificial 100 000 zones) as follows:

• We obtained a list of words (see Notes), chose the first 100 000, and appended “01” to
each. (Our test setup should not contact the public DNS at all, but just in case wemake
a mistake, we used zone names that are unlikely to exist in the real world.)

• We randomly appended one of net, org and com to each name:

#!/usr/bin/perl
srand (time ˆ $$ ˆ unpack "%L*", ‘ps axww | gzip‘);
@tld = qw(net org com);
while (<>) {

chomp;
$n = rand(3) % 3;
print "$_" . "01." . $tld[$n] . " \n";

}

Loading the zones

Our zones are small. All zones except qupps.biz have eight resource records, giving a total of
800 036 records. You might very well have huge zones with a lot of records in them. If so,
the results of your performance tests may vary from ours.
We created programs to generate consistent zone data for each of our artificial zones.

The programs have options to generate plain text files (for MaraDNS, tinydns, BIND and NSD),
LDIF files for the OpenLDAP directory server back-ends, and SQL INSERT statements for
MySQL. Note the following points specific to the different output formats:

file system Performance of UNIX file systems degrades when you have very large num-
bers of files in a directory. For this reason, we stored the zone files for
MaraDNS, BIND and NSD in a series of subdirectories, named after the first
two characters in the zone name, in order to limit the directory sizes. This
gave us 176 subdirectories, each containing 1–5 954 zone files; most directo-
ries contained 100–1 000 files.

LDAP We reconfigured the OpenLDAP directory server, and repopulated it with
zone data, before each server test. (I.e. each test had its own directory server
configuration and database.) When populating the database with slapadd,
we were able to use the quick load option (-q) because we knew that the
data we were loading was valid.

• If you use OpenLDAP, you know that it uses Berkeley DB databases as
its back-end storage. We ran all tests of name servers with an LDAP
directory back-end, with BDB’s environment containing a DB CONFIG

file with these settings:

set_cachesize 0 26214400 0
set_lg_max 10485760
set_lg_bsize 2097152

This gives Berkeley DB a 1

4
GB of cache.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

548 Alternative DNS Servers – Jan-Piet Mens

• The size of slapd’s cache for entries has a big effect on OpenLDAP’s
performance. We used the following settings in all tests:

cachesize 50000
idlcachesize 50000

You will typically configure the cache settings for slapd according to the
data you load into your directory and the amount of memory you have
available. (Consult the OpenLDAP documentation for more informa-
tion on tuning.)

• We didn’t use any access control lists on the OpenLDAP server.

• We always used the bdb back-end in OpenLDAP, but you might well
achieve better results with the hierarchical hdb back-end.

MySQL • One of the main reasons for using an SQL database is to use transac-
tions. In particular, PowerDNS with the SQL back-ends requires transac-
tions, to be able to handle incoming AXFR zone transfers safely.

• We configured our MySQL 5.0.22 server to use the InnoDB storage en-
gine, and to separate tables into distinct files, with the following direc-
tives in my.cnf :

[mysqld]
datadir=/var/lib/mysql
socket=/var/lib/mysql/mysql.sock
default_storage_engine = InnoDB
innodb_file_per_table
old_passwords=1

• We didn’t tune the MySQL server in any other way.

23.1.3 How we ran the tests

1. We generated a file of test queries (Section 23.1.4).

Then, for each name server, we did the following, always in the same order:

2. We started the name server.

3. To ensure that the server was serving the correct data, we ran a small preliminary
test suite that performed ten queries with the “short” option of dig. This prints only
an answer, and we compared that answer (automatically of course) to the answer we
expected to see.

$ dig +short foo.qupps.biz cname
qupps.biz.

We ran this preliminary test with logging enabled on the name server to check that the
server was actually receiving and processing the queries correctly. We then disabled
logging and restarted the name server (and the MySQL or OpenLDAP server, if used).

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 23. Performance 549

4. We ran the queryperf benchmark.

For this test, we ran queryperf on the loop-back interface, to ensure that the results are
independent of the network. (We perform the same test, but over a network, in the next
step, so we can compare the two.) The downside is that, in this step, queryperf’s use of
the CPU reduces the CPU time available to the name server. We ran the benchmark
three times, and took the average result, which we label “Queries /sec” in the results
tables below.

5. We ran the same test over a 100Mb switched network from a GNU/Linux client. We
conducted this test three times and took the average. (The result is labeled “Queries
/sec (LAN)”.)

6. We ran the queryperf benchmark from the same client machine, starting it ten times
simultaneously. The result is labeled “Queries /sec (10 clients)”.

7. We then ran the zone transfer test. The elapsed time is labeled “AXFR test”.

8. We stopped the name server.

23.1.4 Queries per second

queryperf is a program created by Stephen Jacob of Nominum1. It is primarily intended for
measuring the performance of authoritative DNS servers, but we also use it for measuring
caching server performance. The documentation accompanying queryperf explicitly warns
against running queryperf and the name server on the same machine, as the CPU usage of
queryperf may adversely affect the name server process(es). We ignore this advice so as to
isolate the network effects.
We generated an input file, queryperf.input , for queryperf from the list of zones we

created above. We used the same queryperf.input to drive each of the tests 4—6 above.
To create queryperf.input :

• We fed our list of zones from Section 23.1.2 through the following filter to randomize
(un-sort) them:

$ rev < zonenames | sort | rev > zonenames.new

• We fed this new list through the following Perl program:

Listing 23.1: Generating queryperf.input

#!/usr/bin/perl

use strict;

my @qtypes = qw(A MX TXT);

srand (time);

1You will find queryperf in the directory contrib/queryperf of the BIND source distribution.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

550 Alternative DNS Servers – Jan-Piet Mens

my $nzone = 0;
while (<>) {

chomp;
my $n = rand(5) % 5;

next if (++$nzone % 9 == 0);
if ($nzone % 20 == 0) {

do {
my $q = rand($#qtypes) % $#qtypes + 1;
print "$_ " . $qtypes[$q] . "\n";

} while ($n--);
} elsif ($nzone % 8 == 0) {

print "qupps.biz A\n";
print "qupps.biz MX\n";
print "$_ A\n";

} elsif ($nzone % 25 == 0) {
print "www.qupps.biz A\n";

}
}

• The resulting file contains queries such as the following:

qupps.biz A
qupps.biz MX
cayubaba01.org A
qupps.biz A
qupps.biz MX
calaba01.net A
araba01.org TXT
qupps.biz A
qupps.biz MX
artaba01.net A
www.qupps.biz A
...

The list contains:

– 13 335 unique zones chosen randomly from the total set of zones.

– 42 712 total queries in the data set, which are distributed as:

* 20 445 queries for records of type A.

* 15 663 queries for records of type MX.

* 6 604 queries for records of type TXT.

• This distribution of query types closely resembles a sample that we took on live DNS
servers at an ISP. Depending on the type of service you provide, the distribution of
query types may vary in your environment. For example, a lot of CNAME records can
alter the throughput of your name server, because CNAME records cause additional
overhead.

• All queries are for zones from our list. While this isn’t true in real life, we had to do
this or the results for the tinydns server would have plummeted, because tinydns drops
queries on zones it is not authoritative for. These queries then result in timeouts on the
queryperf client, which drastically reduces throughput.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 23. Performance 551

23.1.5 Testing the performance of zone transfers

If you run slave name servers, zone transfer performance may be important to you.
Tomeasure the performance of outgoing zone transfers from our name servers, wewrote

a small Perl program that uses the Net::DNS module to transfer zones. We did this, rather
than use a script that invokes a dig command for each transfer, so that we don’t have to
worry about process execution overheads, etc.

Listing 23.2: Zone transfers (AXFR) with Net::DNS

#!/usr/bin/perl

use Net::DNS;
use Time::HiRes qw(gettimeofday tv_interval);
use strict;

my @zones = qw(qupps.biz aa01.net mazdaist01.net);

my $tstart = [gettimeofday];

my $reso = Net::DNS::Resolver->new(
nameservers => [qw(127.0.0.1)],
recurse => 0,
debug => 0,
port => 53,
);

for (my $n = 0; $n < 100; $n++) {
foreach my $z (@zones) {

my @zone = $reso->axfr($z) or
warn "Can’t transfer: ". $reso->errorstring;

#foreach my $rr (@zone) {
$rr->print;
#}

}
}

my $tend = [gettimeofday];

printf "Elapsed %.2lf\n", tv_interval($tstart, $tend);
exit 0;

23.1.6 Process sizes

The ps program displays information about a process’s resource utilization. Outputs RSS
(resident set size) and VSZ (virtual set size) show how much memory the process is con-
suming. As we can’t gather an exact representation of how much memory a program is
consuming, we use ps to show us the information, using:

$ ps -eo pid,rss,vsize,cmd -ww

The numbers obtained for the “resident set size” and “virtual set size” are labeled “RSS size”
and “VSZ size” respectively in the result tables below.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

552 Alternative DNS Servers – Jan-Piet Mens

23.2 Performance results for the authoritative name servers

23.2.1 Performance results for MaraDNS

To determine the time required for MaraDNS to start up and load all its zones, we invoked
MaraDNS as an authoritative-only daemon via duende (which spawns MaraDNS and logs its
output to syslog). While MaraDNS offers very respectable throughput, it takes a long time
– nearly 20 minutes – before it is ready to answer queries. The performance results for
MaraDNS are in Table 23.1.

Name server MaraDNS
Version 1.3.07.08

Startup time 00:19:41
RSS size 691 668
VSZ size 694 904

Queries /sec 33 572
Queries /sec (LAN) 33 054

Queries /sec (10 clients) 5 439
AXFR test 00:02:50

KB disk usage 409 248

Table 23.1: Performance results of MaraDNS

23.2.2 Performance results for tinydns

As mentioned in Section 23.1.4, because tinydns drops queries on zones for which tinydns is
not authoritative, we had to construct the queries for zones for which tinydns was authorita-
tive. Failure to do so would have caused queryperf to wait for a timeout before continuing,
which would have distorted the results.

Name server tinydns
Version 1.05

Startup time minimal
RSS size 716
VSZ size 8 404

Queries /sec 14 354
Queries /sec (LAN) 15 054

Queries /sec (10 clients) 1 515
AXFR test 132.25

KB disk usage 123 960 a

Table 23.2: Performance results of tinydns

aSize includes data and data.cdb .

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 23. Performance 553

23.2.3 Performance results for MyDNS

Startup time for MyDNS is very low; there is no messing about on the back-end initially,
because MyDNS just waits for the first query before searching the database. In our tests,
MyDNS and its MySQL database ran on the same machine. We ran the MyDNS tests with
caching disabled and enabled. The different settings are:

• With zone cache disabled we had the following settings active:

zone-cache-size = 0
zone-cache-expire = 0
reply-cache-size = 0
reply-cache-expire = 0

• We then re-ran the test with the zone cache enabled:

zone-cache-size = 65536
zone-cache-expire = 240
reply-cache-size = 65535
reply-cache-expire = 240

The results we obtained for the MyDNS test are in Table 23.3.

Name server MyDNS MyDNS
Special settings no caching with zone cache

Version 1.1.0 1.1.0
Startup time minimal minimal
RSS size 1 698 182 028
VSZ size 94 010 280 418

Queries /sec 1 288 5 964
Queries /sec (LAN) 1 332 26 141

Queries /sec (10 clients) 141 6 657
AXFR test 00:00:03 00:00:06

Loading timea 00:08:31 00:08:31
KB disk usageb 627 340 627 340

Table 23.3: Performance results of MyDNS

aMySQL bulk-load time.
bMySQL size on disk.

During the local queryperf tests with caching disabled, the MySQL database server was
handling upwards of an average of 4 800 SQL queries per second, running on the same
machine as the MyDNS server.

23.2.4 Performance results for BIND

As with NSD later on, we stored the 100 000 zone files for BIND into sub directories keyed on
the first two characters of the zone name. named logs to syslog, fromwhich we can determine
how long the program needed to start. named initially loads zone files at a rate of about

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

554 Alternative DNS Servers – Jan-Piet Mens

1 000/sec, slowing down to about 150/sec at the end of the load. Only when named logs that
it is “running” is it ready to answer queries; until that time, it is “deaf”. The results are in
Table 23.4.

Name server BIND
Version 9.5.0b1

Startup time 00:11:34
RSS size 899 536
VSZ size 992 260

Queries /sec 21 378
Queries /sec (LAN) 26 375

Queries /sec (10 clients) 2 939
AXFR test 00:01:35

KB disk usagea 412 244

Table 23.4: Performance results of BIND

aFile system space used by zone files.

Note, that stopping the BIND name server is also slow: it took 1 minute and 28 seconds
for the named process to stop after being told to with rndc.

23.2.5 Performance results for PowerDNS

We ran tests for the PowerDNSwith three back-ends: A) the LDAP back-end, B) the OpenDBX
back-end with the MySQL driver, C) the bind back-end.

A – PowerDNS with the LDAP back-end

The schema used by the LDAP back-end of PowerDNS has an attribute type named dNSTTL

which can store a string value containing the TTL of each individual DNS record which will
be returned by the back-end. When an entry has the dNSTTL attribute type set, the LDAP
back-end must convert that to an integer – a computation which might not be necessary.
If all or most of your DNS records served by the LDAP back-end use the same TTL, it is
preferable to set the PowerDNS global variable default-ttl, leaving the attribute type unset,
than to set dNSTTL on every record. Nevertheless, individual LDAP entries that require a
specific TTL can have the attribute type set to the required value. We ran our tests with only
the default-ttl set.
The authors of the LDAP back-end suggest you design your LDAP tree with the “tree”

method instead of using the default of “simple”, because you gain an additional 7% increase
in throughput. Our measurements indicate that there is indeed a small difference, and we
would suggest using the “tree” design as well, which is why we did so.
Using indexes can make a huge difference to your LDAP directory’s performance (Sec-

tion A.3.12). OpenLDAP, at least, makes good use of an index when a search operation can
utilize it.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 23. Performance 555

We ran the tests for PowerDNSwith the LDAP back-end twice: once with caching enabled
and once with caching disabled.

B – PowerDNS with the OpenDBX back-end

We ran the tests for PowerDNSwith the OpenDBX back-end twice: once with caching enabled
and once with caching disabled.

C – PowerDNS with the BIND back-end

We ran the tests with the “bind” back-end several times, because we couldn’t quite believe
our eyes. The startup time of PowerDNSwith the “bind” back-end is about 20 times less than
that of the BIND name server. Note that we used exactly the same named.conf as a source
for the BIND name server and for PowerDNSwith the “bind” back-end.

Back-end OpenDBX OpenDBX bind LDAP LDAP
Special settings nocache cache nocache nocache cache

Version 3.0-svn 3.0-svn 3.0-svn 3.0-svn 3.0-svn
Startup time minimal minimal 00:00:36 minimal minimal
RSS size 5 652 10 000 213 492 4 852 9 276
VSZ size 353 012 289 228 541 888 261 276 262 744

Queries /sec 4 153 23 441 23 943 2 133 24 591
Queries /sec (LAN) 4 308 31 983 28 363 3 289 34 235

Queries /sec (10 clients) 464 3 622 5 261 338 3 705
AXFR test 00:00:04 00:00:04 00:00:04 00:00:07 00:00:07

Loading time 00:09:39a 00:09:39 ◦ 00:39:18 b 00:39:18
KB disk usage 191 844 191 844 412 244 1 002 464 1 002 464

Table 23.5: Performance results of PowerDNS

aMySQL loading time.
bslapadd bulk loading time.

23.2.6 Performance results for Bind DLZ

We tested Bind DLZwith: A) the LDAP driver, B) the MySQL driver, C) the BDBHPT driver.

A – LDAP driver

The schema you use for your Bind DLZ LDAP system can make a significant difference. We
tested the DLZ-proposed schema, and the minimal schema we presented in Section 9.8.1,
page 237, on identical hardware, with an otherwise identical configuration of OpenLDAP.
The minimal schema was twice as fast as the DLZ schema in serving entries via Bind DLZ. We
believe there are three reasons for this:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

556 Alternative DNS Servers – Jan-Piet Mens

1. The LDIF file for our 100 000 zones is 121MB for the minimal schema, and 236 MB for
the DLZ schema, so the DLZ schema produces objects that are about twice as large.

2. The DLZ schema recommends many indexes for attribute types, whereas the minimal
schema has only two indexes (objectClass and cn).

3. The DLZ schema has a multitude (15) of attribute types, which require much more pro-
cessing than the three attribute types of the minimal schema. With the DLZ schema,
individual attribute types have to be retrieved from the directory server and then con-
catenated to form a string, whereas the minimal schema supplies a ready-made string.

For these reasons, we chose to test with our minimal schema, and the numbers below were
obtained with that schema.

DLZ driver LDAP MySQL BDBHPT
Version 9.5.01b 9.5.01b 9.5.01b

Startup time minimal minimal minimal
RSS size 11 844 11 308 14 864
VSZ size 103 904 93 156 151 512

Queries /sec 535 1 185 6 715
Queries /sec (LAN) 573 1 116 6 790

Queries /sec (10 clients) 60 114 570
AXFR test 00:00:02.31 00:00:01.74 00:00:01.42

Loading time 00:02:58a 00:07:29b 00:21:04c

KB disk usage 1 037 808 151 964 195 588

Table 23.6: Performance results of Bind DLZ

aslapadd loading time.
bMySQL loading time.
cBerkeley DB loading time.

B – MySQL driver

As per instructions, the named built with MySQL support must be run single-threaded.
(Use -n 1 when launching named.)
How you formulate the queries when designing your database can have a huge effect on

performance. As an example, when we ran the queryperf tests, MySQL registered on average
740 SQL queries per second. With the simple query (i.e. without using SQL functions) the
SQL queries per second shot up to 3 700.
We ran the query tests without the hits table (the update query that you can specify in

DLZ’s database statement in named.conf).

C – Berkeley DB High Performance Text driver

The Berkeley DBHigh Performance Text driver is the fastest driver in Bind DLZ, although the
time required to load its database fully is very long.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 23. Performance 557

23.2.7 Performance results for BIND-sdb-LDAP

We had a problem with BIND version 9.5.01b: if we used more than about 15 000 zones
it always crashed. We therefore conducted our tests with with version 9.4.1-P1, and we
launched BIND with a single worker thread (-n 1): this version had no trouble with our
large LDAP directory.

Name server SDB-LDAP
Version 9.4.1-P1

Startup time 00:09:17
RSS size 534 988
VSZ size 588 016

Queries /sec 772
Queries /sec (LAN) 788

Queries /sec (10 clients) 95
AXFR test 00:00:02

Loading time 00:02:49 a

KB disk usage 884 240

Table 23.7: Performance results of BIND SDB LDAP

aslapadd bulk loading time.

23.2.8 Performance results for NSD

We stored the zone files for NSD into subdirectories as described in Section 23.2.4. A rebuild
of a fresh nsd.db with NSD’s zone compiler took just over two minutes of elapsed time, and
NSD was ready to answer within a few seconds (Table 23.8). As you will see from the table,
NSD is undoubtedly the server that offers the best performance in our environment.

Name server NSD
Version 3.0.7

Startup time minimal
RSS size 267 738
VSZ size 284 034

Queries /sec 78 757
Queries /sec (LAN) 38 806

Queries /sec (10 clients) 3 856
AXFR test 00:20:06

Loading time 00:02:17 a

KB disk usage 470 856 b

Table 23.8: Performance results of NSD

aLoading time is the time to compile all zones with nsdc rebuild.
bSize includes all zone files and nsd.db .

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

558 Alternative DNS Servers – Jan-Piet Mens

23.2.9 Servers not included in the performance tests

There are two servers we don’t include values for, because we had problems with both.

ldapdns This server attained peaks of up to 2 920 queries/sec, but it froze after a
while when flooded with queries.

Windows DNS This server took a very long time to load and we didn’t obtain any fig-
ures.

23.3 How the back-ends influence performance

The performance tables show that the servers that use file system-based storage for zone
data are an order of magnitude (or more) faster than the servers with a database or an LDAP
directory back-end.

23.3.1 Databases and LDAP directories

We recommend you place your SQL database server or your LDAP directory server as close
as possible, network-wise, to your name server. In fact, we recommend you run the back-
end on the same machine as the name server. This eliminates network latency, and makes
debugging your DNS more straightforward. The downside is a larger total load on the
machine, but for many installations this will not be important.

LDAP

• You can improve performance by tuning Berkeley DB’sDB CONFIGfile. Read the Berke-
ley DB documentation on how to do that.

• OpenLDAP profits tremendously by setting its cache sizes to the size of the database
if possible. The values of cachesize and idlcachesize greatly influence slapd’s per-
formance, and you are well advised to experiment with your data set.

• Access Control Lists in slapd can reduce performance considerably. Try and determine
exactly what ACLs you need and keep them to a minimum.

MySQL

• Which database engine you choose for MySQL affects performance. We chose the
InnoDB engine because it supports transactions. This is important for slave servers
loading a zone into your database tables; by treating the whole zone load as a single
transaction, it can be safely rolled back to the pre-zone-load state if anything goes
wrong. However, you might wish to deploy a different database engine to achieve
better performance if zone transfers aren’t a consideration at your site.

• Bind DLZ cannot make use of multi-threaded connections due to limitations in MySQL.
You might be better off using PostgreSQL if you intend to deploy Bind DLZ and want
to squeeze the last drop of performance out of it.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 23. Performance 559

• Read the resources in the Notes section below for more information onMySQL perfor-
mance.

23.3.2 Caching

The figures provided for MyDNS and PowerDNS show that enabling query and reply caching
increases throughput, to the detriment of currency of the data. If a query (or its answer) is
cached for a long time, a name server can quickly return a reply, but it takes a long time for
an update to the back-end database to be refreshed by the name server. Nevertheless, we
think you will probably want to enable packet caching, which also reduces the load on your
back-end database servers.

23.4 Performance results for caching name servers

We were also interested in determining which of the caching name servers we discussed in
Chapter 17 offered the best throughput. Since it is very difficult (if not impossible) to per-
form DNS queries over the public DNS with deterministic results, we proceeded as follows:

• We set up a private root server. To make sure that the root name server isn’t the bottle-
neck, we chose the name server which performed best in the authoritative name server
tests: NSD, the Name Server Daemon.

• On the same machine we ran the caching name server, which was set up to query its
root name server on 127.0.0.1.

• We then ran the queryperf tests.

We did not tune the memory limits for the servers; we left them at their default settings. The
values obtained for the caching name servers are in Table 23.9. Note also, that we have not
measured how well these servers perform with DNSSEC queries.

MaraDNS BIND dnscache Recursora Unbound
Queries /secb 13 846 16 066 14 957 10 796 25 072

Queries /sec (LAN) 13 308 26 656 13 114 21 218 30 569
Queries /sec (10 clients) 3 068 3 003 2 928 2 074 8 276

RSS size 1 336 40 916 1 712 14 336 16 828
VSZ size 168 408 195 380 6 044 26 500 180 648

Table 23.9: How the caching name servers performed

aPowerDNS Recursor
bIncludes first run which is generally slow.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

560 Alternative DNS Servers – Jan-Piet Mens

23.5 How important is performance?

The question “is performance important?” is a difficult one to answer generally. The answer
will usually be “yes, but. . . ”. The “but” is important.

• If you operate a root name server installation or you are a huge ISP, performancemight
be important to you. (On the other hand, for an ISP, functionality, manageability, etc.
might be more important than the performance offered by a particular name server
brand.)

• At the other end of the scale, performance is the very least of your worries in a Small
Office / Home Office environment; ease of use is much more important.

• Performance requirements depend on the query load on your name servers. We have
discussed that it is difficult to predict the load, but we recommend you keep an eye on
the load of your name servers so that you can react quickly if need be.

• One of our customers has several companies and a few thousand DNS zones in its
portfolio. Their four Internet-facing name servers have to serve a total of about 400
queries per minute (i.e. about 7 queries per second). To them, performance is very low
on the list of requirements, so their choice of name server depends not on throughput
but on manageability.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 23. Performance 561

Summary

• Performance depends on a number of factors, some of which you can influence di-
rectly, such as hardware.

• The performance data we obtained relate to our environment, with our test methods,
on our hardware. The data you obtain may be quite different.

• For some installations, performancemay be crucial. For others, ease ofmaintenance, or
the ability of a specific brand of name server to integrate with existing infrastructure,
will be more important than straight performance.

Notes and further reading

Tuning MySQL

Tuning can improve the performance of MySQL. We recommend the following for more
information:

• High Performance MySQL by Jeremy Zawodny (O’Reilly).

• The tuning-primer program on http://day32.com/MySQL/ prints suggestions on adapt-
ing MySQL’s configuration to your running system.

• http://tinyurl.com/ovmzq

Tuning OpenLDAP

Two good sources of documentation for setting up your OpenLDAP directory server are:

• The OpenLDAP Admin Guide (see http://www.openldap.org/doc/admin/)

• The OpenLDAP Faq-O-Matic (see http://www.openldap.org/faq/)

Getting words

The list of words we used to synthetically create names of zones were taken from resources
on the Web, including:

• http://wordlist.sourceforge.net/

• http://www.net-comber.com/wordurls.html

• http://www.outpost9.com/files/WordLists.html

Further reading

• Nonimum Inc. has a very interesting paper on How to Measure the Performance of a
Caching DNS Server (see http://www.nominum.com/info_center/dns_dhcp/).

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

562 Alternative DNS Servers – Jan-Piet Mens

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter

24 Securing and monitoring
your DNS servers

As soon as the boss decides he wants his
workers to do something, he has two
problems: making them do it and
monitoring what they do.

Robert Krulwich

24.1 Securing your DNS name servers

24.2 Monitoring

24.3 Gathering statistics about your DNS operation

Introduction

Because the DNS is such an important service, both on the Internet as well as within your organization,
you need to make sure it is secure, and you should monitor it to ensure it is always available and
performing adequately. Set up a monitoring system (if you don’t yet have one) to monitor the health
of your DNS service.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

564 Alternative DNS Servers – Jan-Piet Mens

Avery embarrassing, and frequently encountered, situation is where a prospective customer
tries to contact a company’s Web site, but gets a “can’t find the server at www.qupps.biz”
error message, instead of the very expensive corporate-branded Web site. While an error
message like “can’t establish a connection to the server” clearly indicates a temporary prob-
lem in some unspecified place, the first message is a no-no and you should never let it hap-
pen. “Domain name does not exist” (NXDOMAIN) answers are often cached, sometimes for
long periods, so even if the client retries a few minutes later, they are likely to get the same
error, and to give up for good. Bye bye prospective client.

24.1 Securing your DNS name servers

The DNS requires1 every zone to have at least two authoritative servers, to maintain a high
level of availability: if one server cannot be reached, the remaining server(s) can answer the
queries. Here are some points to keep in mind:

• DNS is important, not just for “computer systems”. You might be using VOIP tele-
phony, which relies on DNS. If your telephone system cannot get DNS replies, it may
prevent you from using your phone system in an emergency.

• Have two or more servers serving your DNS data, whether you are offering authori-
tative zones on the public Internet, or whether you are hosting DNS within your orga-
nization.

• If disaster strikes, you don’t want your complete DNS infrastructure to go down with
you. Place the servers as far apart, geographically, as possible. If you can, place your
servers in different countries, or within your organization, in different buildings. If
you have different data centers, use them for your DNS servers as well.

• If you cannot spread your servers to different locations because you don’t have offices
there, you might be able to find some friendly organization who is willing to host
servers for you. In this case, the hoster must allow you to monitor your infrastructure
at their site.

• Within your organization, or within a single building, place your servers as far apart
as possible from a network point of view. Ensure that if a single switch or router fails,
it doesn’t make your DNS infrastructure inaccessible.

• DNS servers do not typically require a tremendous amount of processing power, as we
saw in Chapter 23, so the cost of providing a hot (or cold) standby-system that takes
over in an emergency can be low. If your data is relatively static, a VMware system
or other virtual machine image that you can boot up in case of emergency might even
satisfy your needs in terms of serving DNS when disaster strikes.

1RFC 1034, section 4.1

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 24. Securing and monitoring your DNS servers 565

• You will want to secure the systems on which you provide DNS services, and per-
mit only authorized personnel to access them. Securing *nix systems is beyond the
scope of this book, but there is a lot of good literature on the topic (see Notes), and we
recommend you protect your machines.

• Use TSIG wherever possible to secure zone transfers to or from your DNS servers.

• Use DNSSEC to secure your zone data if you can, i.e. if you’re using BIND or NSD.

• Always deploy more than one caching name server. Place a caching name server on
each machine (such as mail servers, proxy servers, etc.) that makes heavy use of the
DNS.

• Carefully consider where you place your caching servers on your network. You almost
certainly don’t want a caching server open to the public Internet, for the following
reasons:

– Resources.

Your network and system resources are consumed.

– Cache poisoning attacks.

Attackers can generate spoofed traffic to caching DNS servers in so-called cache
poisoning attacks, causing caching name servers to return bogus (forged) results
to queries.

– DDoS attacks.

Name servers can be used as distributed denial of service (DDoS) attack ampli-
fiers. The attacker sends a small spoofed UDP name service query to an open
name server, forging the victim’s IP address; the open name server then returns a
large answer, such as a TXT record, to the forged IP address. If this is done on an
ongoing basis with a large number of open name servers, it can flood the victim’s
IP address with responses from thousands (or tens of thousands) of name servers,
exhausting the victim’s available network bandwidth.

• If you use a DNS server with a database back-end, such as PowerDNS, MyDNS or Bind
DLZ, secure the SQL database or LDAP directory servers as carefully as you secure
the DNS servers. Place the back-end as close as possible, network wise, to the DNS
server. Use Access Control Lists (ACL) to protect data from unauthorized clients, and
disable network access to the services from all but your DNS servers and management
stations.

• Most sites use firewalls to protect their DNS servers and networks. While a firewall
will increase DNS query-reply round trip time, the increase will not typically be a
problem unless you want the last drop of performance.

• Use secure mechanisms to replicate your SQL database or LDAP directory data. Set-
ting up SSL/TLS is not difficult and it ensures confidentiality.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

566 Alternative DNS Servers – Jan-Piet Mens

• Use ssh, scp, and rsync securely, by creating and using SSH keys to access your systems.
Not only is this more secure than passwords, you can even dispense with passwords
altogether if you take the time to set up your SSH environment appropriately.

If you use an LDAP directory server for authentication purposes, consider the patch
to OpenSSH that allows it to look up public keys in an LDAP directory2. We use this
extensively, as it enables us to lock out accounts when an authorized user decides to
leave the organization (so we don’t have to mess around with authorized keys files
but just modify the departing user’s LDAP entries).

• Place configuration files, zone files (if you use them), notes on what to do in a disaster
scenario, etc. into a revision control system. Systems such as subversion are easy to set
up, and allow you to back out of trouble if you misconfigure something.

• Back up your systems, your configuration files, and your zone data.

DNS is a vital network service, and as such it needs to bemonitored. We discuss monitoring,
what it does and what you should monitor, next.

24.2 Monitoring

You have set up your DNS infrastructure using one or other of the name server brands
discussed, or you may already have a DNS infrastructure, but do you monitor it to ensure
smooth and reliable service? Aswith all important IT services, it is vital to ensure continuous
DNS operation with a minimum of unplanned downtime. Monitoring helps you do this and
helps you detect when things go wrong. It is like Murphy says: “if anything can go wrong,
it will”, and you should be informed when your services fail.

24.2.1 What does the monitoring system do?

Broadly, monitoring a service can do three things for you:

1. Constantly check the state of services, and machines, and perhaps record this informa-
tion for later analysis, if required.

2. Alert an administrator – or preferably a group of administrators – when an important
service fails (e.g. a DNS server fails to answer a test query), or starts to degrade (e.g. a
server answers a test query, but takes an abnormally long time to do so).

3. Attempt a recovery of the failed service (e.g. restart the server daemon if a DNS server
fails to answer a test query).

Unfortunately, automatic recovery is difficult to implement, as the reasons for failure
can be sundry (Section 3.1.3).

2http://dev.inversepath.com/trac/openssh-lpk

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 24. Securing and monitoring your DNS servers 567

By monitoring, you check that your vital DNS service is performing smoothly, that the
machine on which the service is running isn’t overloaded, and that it has enough spare
capacity to handle any likely load growth in the near future. An increase in load can be due
to normal growth (you have added a handful or a couple of hundred additional zones to
your servers), or it could be due to a sudden high volume of queries being sent your way
(imagine one of yourWeb sites gets “Slashdotted”3). Or it could be due to a Denial of Service
attack.
Keeping an eye on your system is not always easy, but there are tool chains that help a

lot. You might already have an enterprise monitoring system, but if you don’t, look at mon
(see http://www.linux-ha.org/mon) or Nagios, which we highly recommend (see Notes).

24.2.2 What should you monitor?

Decidingwhich components tomonitor can be a daunting task, depending on the infrastruc-
ture you have set up. Here are some things we recommend you include in your monitoring.
(If you use Nagios, it supplies ready-made plug-ins for many of them.)

• Hardware.

Modern server hardware can detect and alert you about problems on components
within the system. For example, a failure on a RAID system can be announced via
SNMP or a defective NIC can trigger an alert on a management card. In all cases,
we recommend you try and integrate hardware monitoring into your overall network
monitoring system.

• System health.

Monitor the overall health of the machine’s operating system (c.f. plug-ins, item 1,
page 576). This includes:

– System availability. Has the machine recently rebooted? If so, why did that hap-
pen? Was it due to human intervention, power failure, or hardware failure?

– Software updates. Are the versions of the software deployed on your systems up
to date?

– CPU utilization. Is your machine overloaded? Is it swapping too much?

– RAID status. If you have RAID disks, is the RAIDworking? Is the software RAID
mirroring your disks?

• Disk space.

If your systems are low on free disk space, incoming zone transfers might fail because
they can’t be stored anywhere, and low disk space means log messages warning you
of that can’t be written either (c.f. plug-ins, item 2, page 576).

3The term stems from the huge amount of traffic produced by a link on the popular Slashdot news site, that can
overwhelm underpowered sites.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

568 Alternative DNS Servers – Jan-Piet Mens

• Processes.

When you deploy a brand of name server, note howmany instances of it are displayed
in the process table. (Some programs are displayed more than once if they are multi-
threaded). You can then monitor if the count of process-table entries changes, to detect
whether the process(es) are running correctly (c.f. plug-ins, item 3, page 576).

• Connectivity.

The DNS server host is network-connected on all its interfaces (c.f. plug-ins, item 4,
page 576)

• Logs.

Monitor your log files for unusual error-messages. Ensure that the system has enough
free disk space to write messages to them (c.f. plug-ins, item 5, page 577)

You should monitor these components specific to the DNS:

• DNS replies: are your name servers replying to queries?

• Start of Authority (SOA) serial numbers: are your master and slave DNS servers up to
date? Are zone transfers falling behind? (c.f. plug-ins, item 6, page 577)

• Are your slave servers performing incoming zone transfers correctly and in a timely
fashion? Imagine you update your master server and your slaves fall behind. What
happens when a client queries a domain name that exists only on the master server
and not yet on the slaves? The reply depends on which of the servers the query was
directed at – a Bad Thing.

Are your BIND servers transferring zones from another name server with a database
back-end to which you or a colleague have erroneously added an Address (A) record
to a CNAME record4? BINDwill fail to load the zone because of that.

• DNS notifications: are your servers sending out notifications? We discussed (Sec-
tion 15.2.2) thatNet::DNS::Nameserver has beenmodified at our request to add a handler
for detecting DNS NOTIFY requests; you can use this in your monitoring software to
detect whether DNS notifications are being received by your systems.

The way we do this is with a small server written with Perl’s Net::DNS::Nameserver
module:

4No CNAME and other data. . .

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 24. Securing and monitoring your DNS servers 569

Listing 24.1: NOTIFY handler with Perl’s Net::DNS::Nameserver

#!/usr/bin/perl -w

use strict;
use Net::DNS::Nameserver;

sub notification {
my ($qname, $qclass, $qtype, $peer, $packet) = @_;

We are being notified (NOTIFY) for domain $qname.

print "WOW. Got NOTIFY for $qname!\n";

Submit this notification to your monitoring system. In
the case of Nagios, you could update a database table
from which it later reads the result, or you can
implement a passive notification, etc.

return (’NOERROR’, [], [], [],
{ aa => 1, opcode => ’NS_NOTIFY_OP’});

}

sub handler {
my ($qname, $qclass, $qtype, $peer) = @_;
my (@ans, @auth, @add);

return (’SERVFAIL’, \@ans, \@auth, \@add);
}

my $ns = Net::DNS::Nameserver->new(
LocalAddr => ’127.0.0.2’,
LocalPort => 53,
ReplyHandler => \&handler, # Unused, but needs defining
NotifyHandler => \¬ification,
Verbose => 0,
Debug => 0,

) || die("Can’t create nameserver object: $!");

$ns->main_loop;

With NSD for example, you set it up so that it sends an additional notification to your
handler. In nsd.conf we configure:

zone:
name: "qupps.biz"
zonefile: qupps.biz.zone
notify: 127.0.0.2 NOKEY
notify: ...

That causes NSD to notify the host at address 127.0.0.2 (on the loop-back interface),
thus contacting our notification handler.

• If you have a large group of DNS servers, you want ensure they are all running the
same version number of the software. Use your monitoring infrastructure to check
periodically whether your server versions differ. (Once a week should be enough).

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

570 Alternative DNS Servers – Jan-Piet Mens

If you haven’t forbidden your name server answering to version.bind queries, you can
check with a simple DNS query:

$ dig +short @192.168.1.20 version.bind ch txt
"9.2.4"

$ dig +short @192.168.1.164 version.bind ch txt
"NSD 3.0.7"

• Here’s an example of a cheap form of load balancing that we implemented for a cus-
tomer, which makes good use of the monitoring system. The site has twoWeb servers;
one is a hot-standby for the other. By default, the DNS entry for www.site points to the
primary Web server. We implemented a Nagios plug-in that determines whether the
primary is responding correctly (Figure 24.1). As soon as the primary doesn’t respond,
Nagios updates the back-end database of the DNS server, and changes the www.siteAd-
dress (A) record to point to the secondary Web server. The TTL of the DNS record is set
to a very low value, so that the switch from primary to secondary happens quickly.

Figure 24.1: Nagiosmonitors Web servers and updates DNS

If your DNS servers make use of an SQL database or an LDAP directory server, you should
also monitor these components:

• Connectivity between the DNS server and the external database or LDAP server, if
these components are not both on the same physical machine (c.f. plug-ins, item 4,
page 576)

• Replication between back-ends. Let’s say you have two name servers, each with an
LDAP back end. If the back-ends are not replicating correctly, a query to one DNS

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 24. Securing and monitoring your DNS servers 571

server could obtain a different answer than from the other DNS server, but only while
the back-ends are out of sync. These intermittent errors are hard to detect.

Here’s an easy way to check your SQL or LDAP replication. Periodically, update a
counter in the master back end; you can use cron or your monitoring system to do this
regularly. Then use another tool to check the value of this counter in each instance
of your back-end; if the counter is the same on all back-end instances, replication is
working correctly Figure 24.2).

Figure 24.2: Using a “probe” to check back-end replication

That concludes our discussion on monitoring of your DNS service. In the following section
we look at how you can gather statistics about your DNS operation.

24.3 Gathering statistics about your DNS operation

In the chapters about the individual brands of name servers, we discussed how (if at all) they
produce their own statistics. Some don’t produce the detailed statistics you might want, in
which case you can use one or more of the tools below. These tools are name server agnostic:
they sniff DNS packets on the wire, so they work with any name server implementation.
Even though some servers can produce their own statistics, if you are using more than

one brand, or think you might change later, you might want to deploy a solution that caters
for any brand of name server, as described in the next section.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

572 Alternative DNS Servers – Jan-Piet Mens

24.3.1 DNS Statistics Collector: dsc

DNS Statistics Collector, dsc, is a program by The Measurement Factory, written by Du-
ane Wessels and Ken Keys (see http://dns.measurement-factory.com/tools/dsc/). It
is designed to collect and aggregate statistics from busy authoritative servers, such as those
used by TLD and root server operators, but you can use it to collect statistics for any DNS
servers you use. The program consists of two major components (Figure 24.3):

1. The collector process sniffs DNS messages received and sent on a network interface.
You typically run it either on the machine on which your DNS server is located or on a
system connected to a switch port configured with port mirroring, in which case you
monitor the port that mirrors your DNS traffic. A configuration file specifies which
datasets the collector should collect. The collector dumps the datasets to XML files
every 60 seconds.

Each machine on which DNS is monitored is called a “node”, and nodes that have
something in common (e.g. location) are called a “system” or “system cluster”. For
example, you could group the DNS servers for Spain (i.e. the hosts ns1.es.qupps.biz
and ns2.es.qupps.biz) into a system you call “Spain”.

Figure 24.3: Architecture of the DNS Statistics Collector

2. The presenter component receives the XML files from collectors. It uses an extractor
process to parse and convert them to a different text-based format. dsc provides scripts
for “uploading” the XML files from your collectors to the presenter, but you are free to
use any means at your disposal.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 24. Securing and monitoring your DNS servers 573

The presenter then uses a CGI script to display the data in a Web browser, where
you select time scales or particular nodes within a server cluster you are interested in
(Figure 24.4).

The presenter CGI lets you view your DNS traffic in many different ways, including:
by node; by query type (including DNSSEC types); by client geography; by queried
TLD; by IP version; by transport (UDP or TCP).

You can install the collector and the presenter on a single machine (i.e. they don’t have to
be on separate hosts). The documentation for dsc is excellent, and a guide gets you started
quickly.

Figure 24.4: One of dsc’s many views

24.3.2 Other interesting programs

collectd

If you are interested in collecting performance statistics about services on your machines –
including DNS – we recommend collectd, a small daemon that periodically gathers data and
stores it in RRD files. collectd doesn’t draw the graphs itself, leaving that task to other pro-
grams (although the package does include a sample script to call some standard graphing
tools). collectd includes numerous plug-ins that collect data, which you enable depending
on the statistics you are interested in (see http://collectd.org).

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

574 Alternative DNS Servers – Jan-Piet Mens

dnstop

You’re probably familiar with the *nix top program, which displays a list of processes in
order of CPU consumption. The Measurement Factory’s dnstop is to DNS queries what top is
to processes (see http://dns.measurement-factory.com/tools/dnstop/). What are the
top DNS queries arriving at my host’s network interface? dnstop has the answer:

• First-level domains:

Query Name Count %
------------ --------- ------
com 696 50.6
net 228 16.6
de 82 6.0
nl 41 3.0
uk 15 1.1
...

• Second level domains:

Query Name Count %
----------------- --------- ------
google.com 138 10.0
ntp.org 53 3.9
mens.de 24 1.7
dsbl.org 14 1.0
sun.com 11 0.8
co.uk 11 0.8
...

• Query types and query sources:

Query Type Count % Sources Count %
---------- --------- ------ ------------- --------- ---- --
A? 1024 74.6 192.168.1.20 1077 78.6
TXT? 54 3.9 192.168.1.179 23 1.7
MX? 9 0.7 192.168.1.173 22 1.6
PTR? 8 0.6 192.168.1.203 1 0.1
NS? 7 0.5
...

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 24. Securing and monitoring your DNS servers 575

Summary

• Monitor the health of your DNS name servers and the services they depend on, to
preserve business continuity.

• Monitoring should not be taken lightly; we recommend you invest time and effort to
set up a reliable network operations monitoring.

• Use any combination of the many tools available to graph your name server utiliza-
tion.

Where now?

There are hundreds of utilities and programs that involve the DNS, and we discussed only
some of the more interesting ones. We recommend you take some time to peruse the offer-
ings at:

• SourceForge (see http://sourceforge.net/).

• FreshMeat (see http://freshmeat.net/).

Notes and further reading

Nagios

Nagios (Figure 24.5) is a popular Open Source system monitoring tool developed and main-
tained by Ethan Galstad. It runs on *nix systems, but it can monitor all sorts of machines5.
Nagios runs intermittent checks on hosts and services by spawning external “plug-ins” that
perform the actual checking. Plug-ins can be quite simple: the following small example
shows a tiny but functional Nagios plug in that checks for the existence of a file. If the file ex-
ists, an “OK” is returned to Nagios, otherwise a “CRITICAL ” situation is announced by exiting
with a status of 2:

#!/bin/sh

define exit codes for Nagios
OK=0
WARNING=1
CRITICAL=2
UNKNOWN=3

check for ‘something’ (eg. existence of file)
if [-f "/path/to/some/file"]; then

echo "Ok, file exists"
exit $OK

fi
echo "Critical: file not found"
exit $CRITICAL

5We deployed Nagios at a customer site and actually drove out a major-league commercial network monitoring
systemwith it. At that site, Nagios today runs on 3 production servers, andmonitors 2 800 hosts with 11 200 services
on them.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

576 Alternative DNS Servers – Jan-Piet Mens

The plug-in returns status information to Nagios, stating whether a service is operational or
not (and a line of text that Nagios displays for human consumption). Based on those results,
Nagios can send out alerts via e-mail or pagers, and you can configure Nagios to, say, restart
a failed service, by hooking an appropriate script into it.

Figure 24.5: Nagiosmonitoring interface

Nagios delivers a whole array of plug-ins to check services, and you can quite easily create
customized plug-ins (or download plug-ins written by others). Some of the available plug-
ins include checks for:

1. System health: check apt checks for software updates, and check loadwarns when your
machine’s load rises above a pre-defined threshold.

2. Disk space: check disk checks for available space on locally attached disks, check swap
does the same for swap space, and check smb runs availability checks for remote SMB
shares.

3. Processes: check procs checks processes andwarns if the number or names of processes
you specify aren’t running.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Chapter 24. Securing and monitoring your DNS servers 577

4. Connectivity: check ftp , check ldap , check http , check imap , check mysql and check pop
warn you if FTP, LDAP, HTTP, IMAP, MySQL and POP-3 servers are behaving, and
check tcp and check udp can query arbitrary TCP and UDP services.

5. Logs: check log detects patterns in log files you specify.

6. DNS: check dns and check dig query the DNS with nslookup and dig respectively. The
Measurement Factory has two interesting plug-ins which you can download and in-
stall: with check zone auth you ensure all authoritative name servers for a zone re-
main in sync, and check zone rrsig expirationwarns you when the DNSSEC signatures of
your zones are about to expire (see http://dns.measurement-factory.com/tools/

nagios-plugins/).

Nagios is available at http://www.nagios.org/ .

whatmon

If you use Mozilla’s Firefox browser or Mozilla’s Thunderbird e-mail client, you may be
interested in a tiny extension (add-on) we wrote called whatmon.

1. Your monitoring software creates an XML file that contains an integer code indicating
a success, warning or critical condition, together with a string that whatmon displays
on the client’s status bar.

For example, your XML file could contain the following text describing the status of 3
DNS servers:

<whatmon>
<code> 0</code>
<text> NS1: 23, NS2: 14, NS3: 21 </text>
<xhover>All is well.</xhover>

</whatmon>

The code 0 indicates success, and the string within the text element is what you
want displayed. The content of the xhover element will be shown as tooltip text. You
can display whatever you like – whatmon doesn’t interpret the content.

2. whatmon periodically reads that XML from aURL and displays the result on the client’s
status bar (Figure 24.6). The integer code instructs whatmon to use a different colour
(green, yellow, red) for the status bar.

Figure 24.6: whatmon at work

We typically create the XML on the fly, with a CGI program or PHP script, for example.
whatmon is available from theMozilla add-ons site, and the latest version and documentation
are at http://fupps.com/extensions/ .

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

578 Alternative DNS Servers – Jan-Piet Mens

Further reading

• Building Internet Firewalls, 2nd ed. by Elizabeth D. Zwicky, D. Brent Chapman, and Si-
mon Cooper, (O’Reilly), is a step-by-step guide to building firewalls. The book covers
UNIX, GNU/Linux and Microsoft Windows NT.

• Real World Linux Security: Intrusion Prevention, Detection and Recovery, 2nd ed. by
Bob Toxen (Prentice Hall), is a guide to protecting GNU/Linux from security risks,
including firewalls, break-in studies, and recovery from intrusions.

• We recommend two books for Nagios version 2:

– Pro Nagios 2.0, by James Turnbull (Apress).

– Nagios System and Network Monitoring, by Wolfgang Barth (O’Reilly).

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Appendix

A Getting started with
(Open)LDAP

LDAP directory servers are less well known than SQL databases, so here we give you a short
introduction to LDAP, and show you how to get an OpenLDAP server running quickly and
painlessly.

A.1 A brief introduction to directories

A directory is a collection of information that is generally readmore frequently than it is writ-
ten to. A prime example is an internal telephone directory, which you consult frequently
(when you look up a telephone number), but which is seldom updated (only when some-
one relocates). Most people (even in the computing world) talk of a ”database” when they
actually mean a directory. For example, the file on *nix systems containing user entries
(/etc/passwd) is called the ”passwd database”, but it is essentially a directory. Directories
are used throughout the computing world; in particular, the DNS is a directory.

A.1.1 LDAP – the Lightweight Directory Access Protocol

Directories are frequently made available via LDAP, the Lightweight Directory Access Proto-
col. LDAP is a protocol for accessing directories. It is similar to SQL in that it is also a lan-
guage for interacting with directories, but the similarity ends there: LDAP is not a relational
database system, nor does it provide relational integrity, or transactions. LDAP is ideally
suited to storing relatively small objects which are frequently read and seldom updated.
LDAP provides client-server access to directories over a network: it is a directory service.

It offers an interface to search and read information from the directory, as well as an interface
to add, modify and delete that information. LDAP lacks an SQL-like reporting and query
interface, although there are programs that can guide you in obtaining the information you
want. Generally LDAP is used with a set of programs that utilize it as a directory service.
LDAP is very widely used for usernames (and their authentication information), e-mail ad-
dresses, telephone numbers, contacts, and e-mail routing information (for mail servers), but
it can also be used as a data store for DNS zone data, as we have seen with the LDAP direc-
tory server back-ends to BIND SDB, Bind DLZ, ldapdns, and PowerDNS.

A.1.2 The Directory Information Tree

Data in an LDAP directory is organized hierarchically. Reasons for storing data hierarchi-
cally include:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

580 Alternative DNS Servers – Jan-Piet Mens

• You may wish to grant permissions to a group of individuals (or an application) based
on the directory structure. For example you will want to allow only the HR depart-
ment to access employee payroll data, but allow anybody to see the DNS data in your
directory.

• You can combine replication with individual branches of the tree. For example, you
might replicate the branch containing data for a department to a dedicated distant
server for that department.

LDAP data is stored hierarchically in a tree starting at a root (usual local to your LDAP
server), and branching down into individual entries, just like the DNS or a computer’s file
system (Figure A.1). The top level entry, just below the root of the hierarchy, typically repre-
sents your organization. Under that in the hierarchy might be entries for smaller groupings,
such as departments, etc. The hierarchy might end with entries for individual people or
resources.

Figure A.1: LDAP tree

The tree structure is called the Directory Information Tree (DIT). Each entry in a directory
is an object. Objects are of two types: containers and leaves. A leaf is an object at the end of
a branch. A container is like a folder: it contains other containers or leaves. (In Figure A.1
we show containers as ovals and leaves as rectangles). Note that containers can be empty,
and leaves can, at any time, be converted to containers by creating subordinate leaves. In
other words, there is nothing really special about a container: you can create a container as
a “person” object and later decide to change it to store “furniture” objects in it.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Appendix A. Getting started with (Open)LDAP 581

A.1.3 Entries in an LDAP directory

A directory consists of entries: each node in the directory information tree is an entry, that
contains descriptive information. For example, entries might describe people or network
resources such as printers or fax machines, or contain DNS data, which is what we want to
do in this book. Each entry is uniquely identified in its hierarchical level by its distinguished
name (DN) which is analogous to the full path of file in a file system. For example, the
distinguished name for an entry for user aa01 in Figure A.1 is:

uid=aa01, ou=usr, dc=qupps, dc=biz

To construct the DN take the name of the entry itself (called the Relative Distinguished Name
or RDN) and concatenate the names of its ancestor entries, separating them with a comma
and an optional space. In the example above, “uid ” represents the user ID of the entry, “ou”
represents the organizational unit in which the entry belongs (i.e. the container), and the
rest (i.e. “dc=qupps, dc=biz ”) represents the the base DN. The RDN of an entry must be an
attribute within the entry itself; for example, you cannot create an RDN of uid= something if
the LDAP entry doesn’t have an attribute called uid with a value of something.
RDNs can be multivalued (i.e. made up of more than one attribute-value pair), in which

case the attribute-value pairs are separated by plus signs (+). This is typically used if it is
difficult to ensure uniqueness of RDNs within a single container. For example, if you have a
container called ou=People , and you have two Jane Smiths, you can use their e-mail address
to construct unique RDNs; you’d specify cn=Jane Smith+mail=jane.smith@example.net

as the RDN of one, and cn=Jane Smith+mail=j.s@example.net as the RDN of the second.
The top level of an LDAP directory tree is referred to as the base DN. The base DN (all

objects in Figure A.1 are in dc=qupps,dc=biz) is a distinguished namewhich typically takes
one of three forms:

dc= qupps, dc= biz Here, the base DN is derived from the company’s DNS domain.
Each label of the domain name is a domain component. A domain
component (dc=) is defined for each of the labels in the DNS domain
name.

o=qupps.biz Here, the base DN is derived from an organization’s Internet pres-
ence. The o= stands for “organization”.

o=qupps, c=DE Here, the base DN is in what is sometimes called “organization/
country” form. o= refers to the organization (QUPPS in this exam-
ple) and c= to the country in which the organization has its head-
quarters.

You typically create containers under your base DN to logically separate your data. His-
torically, most LDAP directories create containers called ou (Organizational Units), but you
can use a different naming convention if you prefer. (Microsoft Active Directory uses cn , for
example.) The containers in Figure A.1 have short names (“dev ” for devices, “usr ” for users
or people, etc.), but whether you use short container names or long ones is simply a matter
of taste1.

1We are lazy. We prefer short names because they are quicker to type.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

582 Alternative DNS Servers – Jan-Piet Mens

A.1.4 Object classes and attribute types

Entries in an LDAP directory are made up of objects that contain similar attributes. An
object class defines the set of attributes or attribute types (i.e. the descriptive information) that
an object may contain:

• Each attribute describes a specific type of information. For example, attributes describ-
ing a person might include the person’s name, telephone number, and e-mail address,
whereas attributes describing a DNS domain name might contain an IP address and a
Time to Live (TTL).

Attributes can contain binary data – such as a person’s photograph, or an SSL certifi-
cate – and not just textual information.

• For each attribute, the object class specifies whether it is:

– Mandatory or optional.

– Single-valued (i.e. may contain only one value), or multi-valued.

• While an object class specifies a set of attributes, it is itself also an attribute, and you
can search for it. For example, you can search a directory for all objects of class person ,
or, expressed differently, for objects whose objectclass attribute is person .

• An object is part of an object class hierarchy, and it inherits all the properties of its
parents. For example, the class inetOrgPerson is a child of organizationalPerson ,
which is a child of person which in turn is a child of top . (top is an abstract object
class which is the common root of the object class hierarchy.)

• (This item may not be relevant to you unless you intend to define your own schema.)

An object class can be of one of three types:

structural Every entry must belong to exactly one structural object class, which
defines the contents of the entry. This object class usually represents a
“real world” object. For example, you cannot define an object as being
of type inetOrgPerson and account , as both of these object classes are
structural.

auxilliary This type of object class indicates additional attributes that can be as-
sociated with an entry belonging to a particular structural object class.
Although an entry belongs to a single structural object class only, it
may belong to multiple auxiliary object classes. For example, the ob-
ject class pkiUser is defined as an auxilliary class containing a single
attribute called userCertificate . You can add this pkiUser object to
any person for example, to contain an X.509 certificate for that person.

abstract This is used as a kind of “template” for defining other structural object
classes and defines a set of attributes common to a number of structural
object classes. Objects created from these classes inherit the attributes
defined therein. For example, the class inetOrgPerson inherits from

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Appendix A. Getting started with (Open)LDAP 583

organizationalPerson which inherits from person (which inherits
from top). So, the surname attribute (sn) defined in the person class
is available in all these classes and need not be specifically defined in
them.

Here’s an example of a directory entry for a person object, with its attributes:

dn: uid=aa01, ou=usr, dc=qupps, dc=biz
cn: Anna Ackland
mail: aa01@example.net
mail: anna.ackland@example.net
telephoneNumber: +34 54891-3358
roomNumber: A5

A.1.5 LDAP schema

The definition of what object classes and attribute types are permitted in your LDAP direc-
tory is called an LDAP schema. You can have multiple schemas, to allow different classes of
objects in your directory. For example, you might use the inetOrgPerson schema to define
entries you’ll use for people in your organization, and the songs schema to let you catalog
your music. Schemas are contained in schema files, which you add to the configuration of
your directory server. In this way, your directory schema is configurable, not fixed. For
example, when you decide to use your directory for an additional purpose (such as storing
DNS zone data) you can define new object classes in your LDAP server’s schema, by adding
an appropriate schema file, and the new classes then become available to LDAP client ap-
plications using that server. (E.g. in Figure A.1 we have entries for people, printers, groups
and DNS data in a single tree). There are quite a few predefined schemas, including:

• The cosine schema defines Internet-related objects in X.500. (The ldapdns and BIND-
sdb-LDAP name servers use this schema for storing DNS zone data.)

• The inetOrgPerson schema defines a very useful object that represents a person.

• The nis schema for Network Information Services.

If you do configure your LDAP directory server to support more than one schema in a single
Directory Information Tree, we recommend you use different containers in which to do so
(e.g. we have people in ou=usr,dc=qupps,dc=biz , devices in ou=dev,dc=qupps,dc=biz ,
DNS zone data in ou=dns,dc=qupps,dc=biz , etc.).

A.2 The OpenLDAP directory server

OpenLDAP is the LDAP directory server of choice: it is rock-solid, fast, Open Source, and
standards-compliant. You might already have it installed as part of your GNU/Linux distri-
bution. Some distributions, currently including Red Hat, provide outdated versions of the
OpenLDAP directory server, which we recommend you do not use. Instead, do one of the
following:

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

584 Alternative DNS Servers – Jan-Piet Mens

• Download and install OpenLDAP from source. It is not terribly difficult to do that,
but there are a number of prerequisite software packages that you have to download
and install as well. Exact details of how you do that are beyond the scope of this book;
consult the official OpenLDAP documentation for further information.

• Use a ready made binary package. Symas Inc. provide binary packages of OpenLDAP
formany distributions, including GNU/Linux (both i386 and x86 64), Solaris, HP/UX,
andMicrosoftWindows as a Silver edition, free to use, and aGold editionwith support
and a few more features.

A.2.1 Symas OpenLDAP Silver

Symas has graciously made available a packaged version of OpenLDAP with all prerequi-
sites, free of charge to our readers. It contains all you need to get started with OpenLDAP.
If you require more functionality, you can later upgrade to Symas OpenLDAP Gold and
purchase support for it.
The installation of Symas OpenLDAP is non-destructive; it will not modify existing li-

braries or binary programs on yourmachine, so even if, say, you already have anOpenLDAP
package (which you don’t want to or cannot use), you can install Symas OpenLDAP Silver
without affecting existing components.

A – Download Symas OpenLDAP

To download Symas OpenLDAP:

1. Visit http://www.symas.com/dns-silver.shtml . Click on “Downloads”, and then
on “Get an account”.

2. Create an account by registering your full name, and the e-mail address to which your
account password will be sent.

Read the Terms of Service, and press one of the buttons at the bottom of the page. If
you agree to the Terms of Service, an account is created for you, and a password to the
account is e-mailed to the address you specified above.

3. As soon as you receive the e-mail from Symas, you can login to your account with
your e-mail address and the password you received; you will be taken to the “Symas
Products” page.

4. From here, find yourway to the download of “Symas OpenLDAP Silver Edition”. (The
site’s navigation might change, so we can’t give you exact instructions.) You require
two packages:

(a) The cdssserver package (note the three “s”s in the name), containing the OpenL-
DAP server and its associated files and utilities.

(b) The cdssclient package, containing the OpenLDAP client utilities.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Appendix A. Getting started with (Open)LDAP 585

B – Install Symas OpenLDAP

After downloading the software, you install the packages. All libraries, programs, support-
ing files, and manuals are installed into /opt/symas .

• On Red Hat-based GNU/Linux you typically install these with the rpm program:

rpm -i cdssserver-3.9-2.i686.rpm
rpm -i cdssclient-3.9-2.i686.rpm

• On Debian-based systems we’ve had good results with alien for installing RPM pack-
ages:

alien -i cdssserver-3.9-2.i686.rpm
alien -i cdssclient-3.9-2.i686.rpm

You should configure your syslog daemon to store log messages issued by the OpenLDAP
server into a file you specify; this will greatly help you detect problems, and we show you
below how you can determine what queries your LDAP client programs are submitting.
syslog is typically configured via the file syslogd.conf , and you add the following line of
tab-separated fields to it:

local4.* -/var/log/slapd

After creating the log-file, restart syslogd for these changes to take effect. We said above that
OpenLDAP is installed into /opt/symas ; from now on, you should add the bin directory to
your $PATHenvironment variable:

$ export PATH=$PATH:/opt/symas/bin

(If you have older versions of the OpenLDAP tools installed, you might want to add the
new path component to the front of $PATH.)
Note again, that the installation of Symas OpenLDAP is non-destructive (i.e. it doesn’t

modify any standard components of your machine), so you will want to tweak the installa-
tion:

• Add the Symas manuals directory to your $MANPATHvariable.

• Copy the cdsserver startup script to /etc/init.d .

C – Configure the server with our silverinst.sh script

Instead of boring you with all the details you need to know about how to configure and
set up an OpenLDAP server, we’ve written a program for use on *nix systems, to “mag-
ically” configure a basic OpenLDAP server tailored to your environment. Download the
silverinst.sh program from the book’s Web site (☞D251), and run it as shown below. (You
can run silverinst.sh over and over again if you make a mistake and want to start over.)

cd /opt/symas/etc
wget http://fupps.com/dnsbook/ldap/silverinst.sh
bash silverinst.sh

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

586 Alternative DNS Servers – Jan-Piet Mens

After warning you that your current configuration (if you have one) will be destroyed, the
program does the following:

1. Asks you for your DNS domain name (e.g. example.net); from this, the program deter-
mines the base DN of your directory (e.g. dc=example,dc=net). In the examples that
follow, we used qupps.biz as our DNS name, so our base DN is dc=qupps,dc=biz .

2. Asks you to specify the manager-password which will be used to protect the directory.
This password, which you re-enter to confirm, is hashed with the slappasswd utility in
SSHA format. The hash is stored in the server’s main configuration file (slapd.conf)
as well as in the directory entry for the user manager (see below). You will need the
password when you perform online modifications to the directory server (i.e. add or
delete entries).

3. Kills any currently running slapd processes.

4. Creates three configuration files with sensible values for initial testing:

cds.conf is specific to Symas OpenLDAP: it controls how the cdsserver startup
script operates2.

ldap.conf is used by the OpenLDAP client utilities such as ldapsearch. It con-
tains configuration variables that point to your directory server (on
address 127.0.0.1) and contains the base DN of your installation.

slapd.conf is themain configuration file for the directory server process (slapd). It
specifies where the files containing the database reside, which ACLs
should apply to the directory server, etc.

Symas’ original commented configuration files are left intact in /opt/symas/etc with
names ending in .default ; we recommend you study these later to learn of other
features offered by OpenLDAP.

5. (Re)-creates a directory /var/symas/openldap-data/dnsdemo (called $DATADIRin sil-
verinst.sh). In this directory, the program creates a DB CONFIGfile for the Berkeley DB
database used by slapd, and it also creates an LDIF file called demo.ldif containing
most of the hierarchy depicted in Figure A.1, plus a few dozen entries for fictitious
people.

6. Bulk-loads slapd’s database by invoking slapadd for you. During this procedure, the
content of demo.ldif is loaded into the Berkeley DB database from which slapd later
serves LDAP data.

7. When the silverinst.sh program finishes, it tells you how to start your OpenLDAP
server:

cd /opt/symas/etc
./ cdsserver start

This command launches slapd, the OpenLDAP directory server daemon. Run it now.

You are now ready to start manipulating your directory, and we discuss this next.

2CDS stands for Connexitor Directory Services, the former name of Symas OpenLDAP Directory Services.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Appendix A. Getting started with (Open)LDAP 587

A.3 Manipulating your LDAP directory

Your LDAP directory

At this point, you have started your directory server and can access the data loaded by
silverinst.sh and can view ormanipulate the directory’s content, perhaps using one of the GUI
clients (Section 2.5.4). A GUI such as Apache Directory Studio (Figure A.2) will typically ask
you for the following configuration parameters:

hostname The hostname or the IP address of the host running OpenLDAP.

bindDN bindDN or username is the distinguished name of the user entry that is allowed
to view and modify directory entries. We have configured the directory with
a “user” called cn=manager,dc=qupps,dc=biz , so that is the DN you enter.

bindPW The password that corresponds to the bindDN above. It is the password you
entered in step 2 when you ran silverinst.sh.

search base The search base is the distinguished name (DN) of the entry in your directory
where you want to start searching. In our example, it is dc=qupps,dc=biz ,
but if you want to restrict searches to say, the container in which you store
DNS entries, you specify ou=dns,dc=qupps,dc=biz . In other words, set the
search base to the DN in the tree where you want the search to begin.

Figure A.2: Using Apache Directory Studio to browse your LDAP directory server

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

588 Alternative DNS Servers – Jan-Piet Mens

A.3.1 LDIF – LDAP Data Interchange Format

LDIF is the LDAP Data Interchange Format, an ASCII-based format both for representing en-
tries in an LDAP directory, and for performing additions, modifications and deletions to it.
As the internal representation of an LDAP directory is purely the business of the implemen-
tor, a standard was needed for representing entries in an LDAP directory; LDIF is the result.
It is supported by all major vendors of directory servers, including OpenLDAP. LDIF, like
LDAP itself, was designed to be as simple as possible. Conveniently, its pure ASCII-based
representation also makes it human-readable.
An LDAP entry is represented in LDIF by a series of lines:

• The first line is the distinguished name (DN) of the entry.

• Next, there is one line for each object class in the entry, as well as one for each attribute
type and attribute value pair.

• One entry is separated from the next with a blank line.

An LDIF representation of a person in a directory might look like this:

dn : uid=aa01,ou=usr,dc=qupps,dc=biz
objectclass: inetorgPerson
uid: aa01
givenname: Anna
sn: Ackland
cn: Anna Ackland
displayname: Anna Ackland
telephoneNumber: +34 54891-3358
roomnumber: A5
mail: aa01@example.net
mail: anna.ackland@example.net
description: Managing directory QUPPS Holland
l: Eindhoven
. . . blank line . . .

dn : uid=alexi,ou=usr,dc=qupps,dc=biz
uid: alexi
givenName: Alexandra
...

Note: LDIF uses a single space at the start of a line to indicate continuation of the previ-
ous line. When editing LDIF files, ensure you don’t introduce extraneous whitespace; most
programs that parse LDIF don’t like that and will produce errors if you try to use the LDIF.
Many LDIF generators wrap text at 72 characters, although most parsers are happy to accept
much longer lines.

A.3.2 Loading data into your OpenLDAP directory

For simplicity, you used the silverinst.sh program (Section A.2.1) to create an initial data set
for your directory, and load that into your directory. When you ran silverinst.sh, it created
a full LDIF file called demo.ldif in $DATADIR (which you can use as a starting point for
creating your own LDIF files, later on, if you wish). silverinst.sh used the slapadd program to
bulk-load your LDIF data into the server.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Appendix A. Getting started with (Open)LDAP 589

Figure A.3 shows the relationship between slapadd and typical LDAP clients:

• You typically use slapadd only once, when you bulk-load your directory. Even if the
the “bulk” you are loading is only very small (because you will be adding more entries
online later), you never run slapadd on a live directory.

• When your directory system is running live, you use LDAP clients to add new en-
tries to your directory server. These clients (e.g. ldapadd, ldapmodify) connect to your
directory server and perform LDAP additions and modifications to it.

Figure A.3: slapd: bulk-load vs. LDAP clients

A.3.3 Access control

To make your life as easy as possible as you get started, silverinst.sh allowed anonymous
access to the directory: everybody is able to see everything it contains, except passwords.
You will typically protect a live LDAP directory server by adding a number of access control
lists that:

• Force users of your LDAP directory to authenticate with valid credentials.

• Allow modifications to be performed by authorized users only.

• Allow users to “see” (i.e. search) only certain branches of your directory tree, and allow
them to retrieve a limited number of entries only.

• Restrict access to certain attribute types to a specific subset of users.

Before bringing the server into production, you must fix this; consult the OpenLDAP docu-
mentation to see how.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

590 Alternative DNS Servers – Jan-Piet Mens

A.3.4 Adding entries

To add entries to your OpenLDAP server, you use your favorite LDAP browser/editor, or
the ldapadd command-line utility, which we show here:

1. Create an LDIF file representing the entry or entries you want to add to your directory.
For example, to add a new user (i.e. an LDAP object of class person):

$ cat john.ldif
dn: cn=John Doe, ou=usr, dc=qupps, dc=biz
objectclass: person
cn: John Doe
sn: Doe
description: a test user

2. Use the ldapadd program. You specify options to “bind” (log on) as an authorized user
(i.e. a user allowed to modify the directory):

$ ldapadd -x -D cn=manager,dc=qupps,dc=biz -W < john.ldif
Enter LDAP Password: . . . manager password here . . .
adding new entry "cn=John Doe, ou=usr, dc=qupps, dc=biz"

A.3.5 Introducing LDAP search filters

LDAP search filters (or just filters) are strings that you use to specify which data items you
want to retrieve from an LDAP directory. An LDAP filter consists of one or more boolean
expressions, optionally with logical operators (“&” for AND, “| ” for OR) prefixed to the
expression list. The boolean expressions have the following format:

attribute operator value

where attribute is the LDAP attribute-type name, and value is the the attribute value. These
triplets are typically surrounded by parentheses. The operators include equality (=), negation
(!), and substring match (*). The full syntax of LDAP filters is specified in RFC 2254, The
String Representation of LDAP Search Filters. Here are some examples:

• You want to search your directory for entries with a surname of “Doe”. The attribute
type for surname is sn , so your filter is:

(sn=doe)

In simple search filters, like this, you can omit the parentheses if you prefer.

• In addition, you are interested only in entries whose given name (i.e. first name) is
“Jane”. The attribute type for a given name is called (can you guess?) givenname . Our
filter is now:

(& (sn=doe)(givenname=jane))

Note how the two filters (sn=doe) and (givenname=jane) are ANDed in a prefix
notation, and the whole filter is then surrounded in parentheses.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Appendix A. Getting started with (Open)LDAP 591

• Suppose further you want to find either all entries with a surname of “Doe” and a
given name of “Jane”, or those that have a room number A1. You join the two sub-
filters with a boolean OR:

(| (&(sn=doe)(givenname=jane))(roomnumber=A1))

• Youwant to search your directory for all names starting with the string “Smith” to find
people called “Smith”, as well as “Smithsonian”. The asterisk allows you to specify a
substring in a search:

(sn=Smith *)

A.3.6 Search scopes

When searching an LDAP directory, you specify how “deeply” within the DIT the directory
server should search for you. The depth is called the search scope. The search scope defines
the set of entries at the search base that the directory server should consider for a search
operation (Figure A.4). (Remember that the search base specifies the DN in the hierarchy
where your search starts.) There are three search scope values:

base The search operation should be performed only against the entry specified as
the search base DN. No subordinate entries will be considered.

one The search operation is performed against entries that are immediate subordi-
nates (i.e. children) of the entry specified as the search base DN. The base entry
itself is not included, nor are any entries below the immediate children.

subtree The directory searches the entry specified as the search base DN and all of its
subordinates to any depth.

Figure A.4: Search scopes

The areas your in directory that are searched through, for the respective scopes, when you
start searching at ou=usr,dc=qupps,dc=biz are shown in Figure A.4.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

592 Alternative DNS Servers – Jan-Piet Mens

A.3.7 Searching entries

You use the ldapsearch program to search your LDAP directory from the command line.
(Check the manual for your version of the ldapsearch command to determine the options
you need. OpenLDAP’s implementation uses -x to specify simple authentication, -b for the
search base, and -LLL modifies the LDIF output to omit unnecessary comments.)
To search your directory, specify a search base, the scope level of the search (default

is subtree) and the LDAP search filter to apply. The search base is where in the directory
hierarchy where you want to start searching: specify the base DN of your DIT to search the
entire tree, or the DN of the container you want to limit the search to.

$ ldapsearch -x -LLL -b "dc=qupps,dc=biz" "(sn=steward)"
dn: uid=as00,ou=usr,dc=qupps,dc=biz
objectClass: inetOrgPerson
uid: as00
givenName: Anita
sn: Steward
cn: Anita Steward
displayName: Anita Steward
telephoneNumber: +34 71989-1803
roomNumber: S6
l: Utrecht

You can omit the parentheses around the filter if it doesn’t use the logical operators “&” or
“| ”. Although not shown here, you typically also limit the attribute types youwant returned
by the directory server, specifying these as additional arguments to ldapsearch. (* means
all attributes, + returns so-called operational attributes, and if you specify 1.1 , ldapsearch
returns just the DN.)

$ ldapsearch -x -LLL "(sn=steward)" givenname mail
dn: uid=as00,ou=usr,dc=qupps,dc=biz
givenName: Anita

In the previous example, we wanted two attribute types returned, but only the given name
was returned. There are two reasons why the mail attribute might not have been returned:

1. The mail attribute type doesn’t exist (so it simply cannot be retrieved), or . . .

2. Due to access controls on the server, the directory refuses to return the mail attribute
type unless the client is authorized. In the above example, the connection is “anony-
mous” (i.e. the client hasn’t bound to the directory with credentials), so the server
doesn’t return the requested attribute type.

If we repeat the same search, authenticated asmanager (using -W to have ldapsearch prompt
for a password) we “see” what was hidden:

$ ldapsearch -x -LLL -D cn=manager,dc=qupps,dc=biz -W ←֓
"(sn=steward)" givenname mail

Enter LDAP Password:
dn: uid=as00,ou=usr,dc=qupps,dc=biz
givenName: Anita
mail : as00@example.net
mail : anita.steward@example.net

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Appendix A. Getting started with (Open)LDAP 593

Note how we have omitted the search base (option -b) in the above examples; the OpenL-
DAP client utilities retrieve some default settings from ldap.conf . This is a useful shortcut.
(See the ldapsearchmanual page for more information.)

A.3.8 Modifying entries

To modify entries in your LDAP directory via the command-line you typically use ldapmod-
ify. This program expects an LDIF file describing the modifications you want performed.
For example, to replace the description attribute type in John’s directory entry and add a
telephone number:

1. Create a file containing the changes you want performed:

$ cat john-changes
dn: cn=John Doe, ou=usr, dc=qupps, dc=biz
changetype: modify
replace: description
description: John loves LDAP!
- . . . a single dash . . .
add: telephonenumber
telephonenumber: 555111

2. Submit the changes to the directory server:

$ ldapmodify -x -D cn=manager,dc=qupps,dc=biz -W < john-changes
Enter LDAP Password:
modifying entry "cn=John Doe, ou=usr, dc=qupps, dc=biz"

The syntax for the ldapmodify command takes a bit of getting used to; its manual page con-
tains examples which are instructive.

A.3.9 Deleting entries

Before you can delete something, you have to know what you want to delete, and you
usually determine that by searching for the distinguished names of the LDAP entries you
want removed from your LDAP directory.
Suppose you want to delete John’s directory entry: you search your LDAP directory

using ldapsearch, by specifying a filter:

$ ldapsearch -x -LLL ’cn=john*’ 1.1
dn: uid=jc38,ou=usr,dc=qupps,dc=biz

dn: cn=John Doe,ou=usr,dc=qupps,dc=biz

The search returns the DNs of the matching entries. Choose the DN of the one(s) you want
to delete, and then use ldapdelete:

$ ldapdelete -x -D cn=manager,dc=qupps,dc=biz -W ←֓
’cn=John Doe,ou=usr,dc=qupps,dc=biz’

Enter LDAP Password:

Of course, if you already know the DN of the entry you want to delete, you don’t have to
search for it.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

594 Alternative DNS Servers – Jan-Piet Mens

A.3.10 Interpreting slapd’s log-file

OpenLDAP’s slapd server records voluminous logging information if you want it to. We
recommend however that you only log connections and operations and entries sent (and
that is how silverinst.sh configured your slapd) You can do this manually by setting slapd’s
loglevel to “stats stats2 ” in slapd.conf . When queries are performed by the directory
server, your system’s log will show you what is happening:

conn=22 fd=7 ACCEPT from IP=127.0.0.1:43392 (IP=:: 389)
conn=22 op=0 BIND dn="" method=128
conn=22 op=0 RESULT tag=97 err=0 text=
conn=22 op=1 SRCH base="dc=qupps,dc=biz" scope=2 deref=0 filter="(sn=smith*)"
conn=22 op=1 SRCH attr=mail telephone
conn=22 op=1 ENTRY dn="uid=es04,ou=usr,dc=qupps,dc=biz "
conn=22 op=1 ENTRY dn="uid=ps27,ou=usr,dc=qupps,dc=biz "
conn=22 op=1 ENTRY dn="uid=fs52,ou=usr,dc=qupps,dc=biz "
conn=22 op=1 SEARCH RESULT tag=101 err=0 nentries=3 text=
conn=22 op=2 UNBIND
conn=22 fd=7 closed

By looking at the above log, can you guess what the client asked for? That’s right:

$ ldapsearch -LLL -x ’sn=smith*’ mail telephone
...

(Note that our suggested loglevel can degrade performance; for ultimate performance, set
the loglevel to 0.)

A.3.11 LDAP URLs

Some of the DNS servers require that you specify an LDAPURL (Uniform Resource Locator,
RFC 4516) in their configuration (Figure A.5). An LDAP URL describes a an LDAP search
operation, and the URL syntax is:

ldap:// hostport/ dn[? attrs[? scope[? filter]]]

where each of the components has the following meaning:

hostport the hostname, and optional port number prefixed by a colon, of the LDAP
server.

dn the search base.

attrs a comma-separated list of attribute type names to request (often unused by
applications).

scope the scope of the search (i.e. how deep the search will be). You specify it as one
of the strings base , one or sub to mean a base-level, one-level or sub-level
search respectively (default is base).

filter the search filter as described above.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Appendix A. Getting started with (Open)LDAP 595

Figure A.5: Comparing ldapsearch and an LDAP URL

A.3.12 Features you will probably want to add to your OpenLDAP server

OpenLDAP is a powerful and standards-compliant directory server, andwe’ve only covered
a small portion of its capabilities in this introduction. We strongly recommend you find out
what else it’s capable of. Here are some examples.

Indexes

If you have applications that frequently search specific attribute types, you can index them.
Indexes can greatly improve the performance of searches. For example on our machine,
searching a directory with 100 000 entries on an un-indexed attribute takes 2.636 seconds,
compared to 0.004 seconds for an indexed attribute.
OpenLDAP supports various types of index: equality (for a filter such as sn=Doe),

substring (e.g. to search for sn=Do* , say) and presence (to determine if an attribute type
exists, e.g. sn=*). If you don’t index attributes, the directory server (slapd) has to scan all
entries in the back-end to determine whether the filter applies to entries you are searching
for.
While indexes greatly speed up searches, they do consume CPU, disk, and memory re-

sources. You shouldn’t go overboard in defining indexes, and you should remove unused
indexes.

Access control

We shortly mentioned access control above. OpenLDAP has many ways to limit what users
can “see” in your directory. You can grant access to a set of entries and/or attributes based
on whether the client has connected anonymously, has bound with credentials, belongs to a
particular group, or has connected via a particular transport (SSL, TLS, IPC socket). Consult
the slapd.access manual for details.

Transport Layer Security

OpenLDAP supports Transport Layer Security (TLS) (as well as the non-standard LDAP
over SSL) for encrypting traffic between LDAP clients and the server. To implement TLS
you require X.509 certificates.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

596 Alternative DNS Servers – Jan-Piet Mens

Simple Authentication and Security Layer

OpenLDAP supports Simple Authentication and Security Layer (SASL) for authenticating
users. When correctly configured, OpenLDAP can also use Kerberos via SASL’s GSS-API
interface.

Overlays and back-ends

OpenLDAP has a large number of overlays (modules of code) with which you ensure refer-
ential integrity on the directory, enable unique values (e.g. to ensure uniqueness of attribute
types), rewrite entries on the fly, etc.
Additional back-ends allow you to use a single instance of slapd to serve data retrieved

from a different LDAP directory server, or even from Perl, a shell script, or an SQL database.
A relatively new back-end called config allows you to store slapd’s own configuration in
such a way that you can modify it on-the-fly via LDAP, instead of having to restart slapd
after changing its slapd.conf file.

SLAPI plug-ins

You can extend OpenLDAP’s slapd directory server in a number of different ways with
SLAPI plug-ins – functions that you write and bundle into a shared object library, that is
dynamically linked to slapd. For example, you can validate data before it’s stored in the di-
rectory, notify users when data in the directory changes, or forbid certain changes. Plug-ins
are called by the server when specific events occur, such as before or after an LDAP add or
modify operation is performed.

Replication

The duplication of all or part of a directory information tree (DIT), and the process of keep-
ing the duplicates synchronized, are both called replication. Most LDAP servers can be
configured to replicate all or any specified parts of their data.
OpenLDAP has had replication built in from its inception. OpenLDAP originally used

slurpd; however, this is now deprecated and will be removed from OpenLDAP 2.4. Instead,
whenever possible you should use the LDAP Synchronization Replication, called “syncrepl”
for short (Figure A.6). This method is more configurable and more reliable. It also offers a
pull replication initiated by slave (or consumer) servers, and a pseudo-push replication in
which clients initiate the connection and the master server (provider) then automatically
pushes updates down the pipe to the slave servers.
Instead of modifying the master server every time a new slave server is brought into

operation (as was necessary with slurpd), syncrepl offers the following advantages:

• The master server seldom needs to be interrupted; additional slave servers can be
brought online on the fly.

• You don’t have to manually dump the data from the master to prime a slave; the
slave can do that itself. (However, if you have low bandwidth or fragile network

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Appendix A. Getting started with (Open)LDAP 597

Figure A.6: OpenLDAP syncrepl

connections it might be wise to prime a slave by dumping the contents of the master
directory server with slapcat and adding it to a slave with slapadd.)

• Slave servers retrieve all updates as soon as they come on-line, automatically recover-
ing from any network outages there may have been between slave and master.

A.4 Extending your LDAP directory

We discussed in Section A.1.5, that an LDAP schema defines the set of object classes and
attribute types you are allowed to use, and we said that you can extend that schema. For
some of the DNS name server brands we discuss, you extend the schema of your directory
server to support object classes and attribute types used by the DNS server. This is not
difficult: in most cases to extend the schema for a DNS server you only have to copy a file
into slapd’s configuration. Nevertheless, you might want to know what goes on “behind the
scenes”. It is beyond the scope of this book to fully explain how that works, but we show
you briefly what you have to do in order to add new objects and attribute types.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

598 Alternative DNS Servers – Jan-Piet Mens

A.4.1 Objects and identifiers

The following is an example of an attribute specification, and we discuss its syntax below:

attributetype (1.3.6.1.4.1.7637.100.1.1.1 NAME ’songTi tle’
DESC ’The song title’
EQUALITY caseIgnoreMatch
SUBSTR caseIgnoreSubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.151024
SINGLE-VALUE

)

Each element in the schema (object class, attribute type, and syntax) is identified by a
globally unique Object Identifier (OID), commonly found in protocols described by ASN.1.
In particular, OIDs are heavily used by the Simple Network Management Protocol (SNMP).
OIDs are assigned by IANA, and your organization can easily obtain one by applying for
a Private Enterprise Number (PEN) at http://pen.iana.org/pen/PenApplication.page

(Note that you should never use other people’s Private Enterprise Number to form your own
OID namespace!) For example, the OID for the sn attribute type is 2.5.4.4, and the OID for
the mail type is 0.9.2342.19200300.100.1.3.
LDAP objects have the following characteristics:

• Each object (class or attribute) has a unique OID assigned to it.

• Each object has a unique name assigned to it. The name is used by your client appli-
cations to find the object (e.g. cn , givenname , songTitle , etc.).

• Each attribute type has a syntax associated with it, which defines the kind of values the
attribute may contain. Examples of syntaxes are 1.3.6.1.4.1.1466.115.121.1.28 for a JPEG
photograph and 1.3.6.1.4.1.1466.115.121.1.15{64} for a string with a length of no more
than 64 characters. You can find the list of LDAP syntaxes supported by OpenLDAP
with:

$ ldapsearch -x -s base -b "cn=subschema" "(objectclass=*)" ldapSyntax es
dn: cn=Subschema
ldapSyntaxes: (1.3.6.1.1.16.1 DESC ’UUID’)
ldapSyntaxes: (1.3.6.1.1.1.0.1 DESC ’RFC2307 Boot Parame ter’)
ldapSyntaxes: (1.3.6.1.1.1.0.0 DESC ’RFC2307 NIS Netgrou p Triple’)
ldapSyntaxes: (1.3.6.1.4.1.1466.115.121.1.52 DESC ’Tel ex Number’)
ldapSyntaxes: (1.3.6.1.4.1.1466.115.121.1.50 DESC ’Tel ephone Number’)
ldapSyntaxes: (1.3.6.1.4.1.1466.115.121.1.15 DESC ’Dir ectory String’)
...

• Each attribute type has a matching rule associated with it, which defines the built-in
methods of comparison available in the LDAP server. Examples of matching rules are
caseIgnoreMatch , which matches strings case-insensitively, and integerMatch for
integers. You can find the list of matching rules supported by OpenLDAP with:

$ ldapsearch -x -s base -b "cn=subschema" "(objectclass=*)" matchingru les
dn: cn=Subschema
matchingRules: (1.3.6.1.1.16.3 NAME ’UUIDOrderingMatch ’ SYNTAX ←֓

1.3.6.1.1.16.1)

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Appendix A. Getting started with (Open)LDAP 599

matchingRules: (1.3.6.1.1.16.2 NAME ’UUIDMatch’ SYNTAX 1 .3.6.1.1.16.1)
matchingRules: (1.2.840.113556.1.4.804 NAME ’integerBi tOrMatch’ SYNTAX ←֓

1.3.6.1.4.1.1466.115.121.1.27)
...

• For each attribute type, you define whether the type is single-valued or multi-valued.

• You can give an optional description to an object. This description is typically dis-
played in clients that query your schema.

• For object classes, you then define which attributes are mandatory (MUST) and which
are optional (MAY).

The formal definition of LDAP object classes and attributes types is specified in RFC 4512,
and we won’t discuss the specification in detail. We do however show you an example
below.

A.4.2 Extending your schema

To extend the schema in your LDAP directory server, you typically perform these steps:

1. Obtain a (or use your existing) Private Enterprise Number, for naming new objects.
In the examples that follow, we use the OID 1.3.6.1.4.1.7637 assigned to us, and we
subclass that for object classes and attribute types.

2. We recommend you design your OID namespace hierarchy to separate object classes
and attribute types. For example, you might expand your OID arc (i.e. segment) for
attribute types (1.3.6.1.4.1.7637.100) and for object classes (1.3.6.1.4.1.7637.101).

Irrespective of how you maintain your namespace, we recommend you maintain a
registry (i.e. a list) of the OIDs you have issued to ensure you don’t issue an OID
twice. (You can do this in a simple text file.)

3. In addition to unique OIDs, you will have to give your objects names that will not
clash with existing names. For example, you cannot “create” a new attribute type
called mail . One way of ensuring that names don’t clash is to prefix them with a
string identifying your organization (e.g. qupps-mail).

4. You define the objects of your new schema in a local schema file. Section A.4.3 shows
a complete example.

5. You configure your LDAP server to load the schema file. In OpenLDAP this is simply
a matter of adding it to slapd.conf . For example, for the schema file we show you
below, you would add the following line to slapd.conf :

include / path/to/songs.schema

6. Restart your LDAP server so the new configuration takes effect. Note, that when
restarting the server, syntax errors in schema files can prevent the server from starting.

7. Now you can create new objects for your schema.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

600 Alternative DNS Servers – Jan-Piet Mens

A.4.3 A sample schema file for storing songs

We now show you a simple schema file for cataloging songs. (This file is also installed by
silverinst.sh into the schema directory of your OpenLDAP installation.) This schema defines
a new object class called song and four attribute types for song objects, that are defined in
the schema file. There are a few points you should note:

• Each definition is in fact a single line; whitespace at the beginning of a line indicates a
continuation line. Parenthesis are mandatory where we have placed them.

• Names (NAME) and descriptions (DESC) contain strings enclosed in single quotes.

• The attribute type songGenre is not described as being single-valued and is there-
fore multi-valued, so you may specify more than one value for the attribute type
songGenre .

• The object class has mandatory (MUST) and optional (MAY) attribute types. The types
description and seeAlso are not defined in this schema. They are “imported” from
standard schemas offered by OpenLDAP – the schema files defining these attribute
types are also include d in slapd.conf .

Listing A.1: A schema file for songs

Attribute types
attributetype (1.3.6.1.4.1.7637.100.1.1.1 NAME ’songTi tle’

DESC ’The song title’
EQUALITY caseIgnoreMatch
SUBSTR caseIgnoreSubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{1024}
SINGLE-VALUE
)

attributetype (1.3.6.1.4.1.7637.100.1.1.2 NAME ’songGe nre’
DESC ’Song Genre’
EQUALITY caseIgnoreMatch
SUBSTR caseIgnoreSubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{1024}
)

attributetype (1.3.6.1.4.1.7637.100.1.1.3 NAME ’songAr tist’
DESC ’The singer, not the Song’
EQUALITY caseIgnoreMatch
SUBSTR caseIgnoreSubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{1024}
SINGLE-VALUE
)

attributetype (1.3.6.1.4.1.7637.100.1.1.4 NAME ’songYe ar’
DESC ’Year of publication’
EQUALITY integerMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE
)

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Appendix A. Getting started with (Open)LDAP 601

Object classes
objectclass (1.3.6.1.4.1.7637.101.1.1.1 NAME ’song’

DESC ’A song’
SUP top STRUCTURAL
MUST (songTitle $ songGenre $ songArtist)
MAY (

description $ seeAlso $ songYear
)

)

You can view the description of an object class and its associated attribute types in an LDAP
browser. We show you an example in Figure A.7.

Figure A.7: An LDAP schema browser

A.4.4 A song in LDIF format

We use the schema above for storing songs3. Here is an sample song in LDIF:

dn: songTitle=On the Radio,ou=Music,dc=qupps,dc=biz
objectClass: song
songTitle: On the Radio
songGenre: Pop
songGenre: Favorite
songArtist: Donna Summer
songYear: 1980

Note the following:

• The attribute songGenre is multi-valued, so it can take on more than one value.

• The type songYear is optional, so you can omit it (if you can’t remember when the
song was written).

3The data we use is in no way authoritative; it was created from memory.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

602 Alternative DNS Servers – Jan-Piet Mens

A.4.5 Loading and finding songs

In our directory we create a container in which we store our songs. To illustrate that the
name of the container is independent of the entries it contains, we won’t call it songs, but
“Music”. The LDIF to add the container is:

$ cat music.ldif
dn: ou=Music, dc=qupps,dc=biz
ou: Music
objectclass: organizationalunit

$ ldapadd -x -D cn=manager,dc=qupps,dc=biz -W < music.ldif

We also add the songs themselves, in LDIF format, with ldapadd:

$ ldapadd -x -D cn=manager,dc=qupps,dc=biz -W < songs.ldif

A.4.6 Finding entries with Perl’s Net::LDAP

Section A.3.7 showed how you use ldapsearch to search your directory. To show you that
you can quite easily create a custom program to do that, we use Perl’s Net::LDAP module.
Here is the sample program:

Listing A.2: Searching the directory for songs with Net::LDAP: songl

#!/usr/bin/perl
use Net::LDAP;

my ($msg, @entries, $e, $filter, $st, $sa, $sy, @sg);

die "Usage: $0 filter\n" unless ($#ARGV >= 0);
$filter = $ARGV[0];

my $ldap = Net::LDAP->new(’ldap.qupps.biz’, port => 389, v ersion => 3);
$msg = $ldap->bind();
$msg->code && die("Can’t bind to directory: " . $msg->error);

$msg = $ldap->search(
base => ’ou=Music,dc=qupps,dc=biz’,
scope => ’one’,
filter => "$filter",
attrs => [qw(songTitle songGenre songArtist songYear)],

);
die("search failed with " . $msg->code()) if $msg->code();

my $count = 1;
foreach $e ($msg->entries) {

$st = $e->get_value(’songTitle’);
$sa = $e->get_value(’songArtist’);
$sy = $e->get_value(’songYear’) || ’????’;
@sg = $e->get_value(’songGenre’);

printf "%2d. %s %-20s %-20s %s\n",
$count++, $sy, $st, $sa, join(’:’, @sg);

}

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Appendix A. Getting started with (Open)LDAP 603

Our small songl (song list) program expects an LDAP filter on the command line. For exam-
ple, to find all the songs, run:

$ songl objectclass=song
1. 1980 On the Radio Donna Summer Pop:Favorite
2. 1980 Too Hot Kool & The Gang Pop
3. 1984 Hearts of Stone Charms Soft
4. 1980 Call Me Blondie Rock
5. ???? Ling, Ting, Tong Charms Rock

We can also search with more complex filters. To search for all pop songs written in 1980:

$ songl ’(&(songGenre=pop)(songyear=1980))’
1. 1980 On the Radio Donna Summer Pop:Favourite
2. 1980 Too Hot Kool & The Gang Pop

Note how we quote the filter to avoid meta-characters being interpreted by the shell.
That concludes our introduction to LDAP and to OpenLDAP.

Summary

• Entries in an LDAP directory are organized in a hierarchical tree. Each entry is identi-
fied by a DN, a distinguished name. Each component of a DNis called a relative distin-
guished name (RDN) (e.g. ou=dev).

• Each entry has one or many attribute types, each with one or many values associated
with it. Each entry must have exactly one structural object class that specifies which
attribute types an object may have.

• LDAP has a well-defined API and is supported by many applications and vendors. It
is often faster than a relational database system, at least for search and read operations.

• LDAP entries are represented in a text format called LDIF which is also used to manip-
ulate your LDAP directory.

• An LDAP directory tree is easily replicated and distributed.

• You typically extend the schema of a directory server by adding definitions of ob-
ject classes and attribute types to it with the definition of new schema elements, from
which you build LDAP objects.

Notes and further reading

• The OpenLDAP project and its documentation are hosted at http://www.openldap.

org/

• Understanding and Deploying LDAP Directory Services, by Tim Howes, Mark C. Smith,
and Gordon S. Good (Mcmillan) is a comprehensive tutorial with a thorough treatment
of LDAP directory services.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Appendix

B Use $INCLUDE and fix your SOA

One of the most common errors when working with zone master files is forgetting to incre-
ment the serial number in a zone’s Start of Authority (SOA) record. Time and time again,
system administrators add records and reload the zone, only to find that secondary servers
have not transferred the changes. The reason: a secondary server initiates a zone transfer
only if the zone’s serial number on the master server is higher than the serial number on
the slave. To overcome this (and to protect ourselves from our own forgetfulness) we have
implemented a system we consider foolproof. You can use this for BIND name servers, and
with slight modifications, for NSD too.

1. Choose a top-level directory for your zone files. We use /var/named , but you can use
whatever is convenient.

2. In this directory create a subdirectory for each letter of the alphabet. Store files for each
domain in the subdirectory corresponding to the first letter of the domain name. For
example, store files for qupps.biz in directory q. (You don’t have to organize your zone
files this way, but we find it works well.)

3. We name our zone files domain.zone . So in the zone clause in named.conf we have,
for example:

zone "qupps.biz" {
type master;
file " q/ qupps.biz .zone ";

};

The zone file itself (i.e. q/qupps.biz.zone) uses $INCLUDE directives to include two
files, as follows. The included files are shown in bold. Paths in the $INCLUDEdirectives
are relative to named’s working directory, as specified in the directory option.

$TTL 3600
$ORIGIN .

$INCLUDE q/qupps.biz.soa ; the SOA

$ORIGIN qupps.biz.

qupps.biz. NS nsa.qupps.biz.
NS nsb.qupps.biz.
NS nsc.qupps.biz.

$INCLUDE q/qupps.biz.rr ; the records

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Appendix B. Use $INCLUDE and fix your SOA 605

The two files that are included are:

soa The file domain.soa contains only the Start of Authority (SOA) record:

qupps.biz. 86400 IN SOA ns1.qupps.biz. h.qupps.biz. (
2008020208 ; Serial
10800 ; Refresh
900 ; Retry
604800 ; Expire
3600) ; Minimum TTL

rr The file domain.rr contains the other resource records for the zone:

A 92.168.1.20
MX 10 mail.qupps.biz.

nsa 604800 A 10.1.1.1
nsb 604800 A 10.1.2.1
www3 A 10.1.1.2

This appears a bit complicated, but it isn’t really. You typically create the soa file once,
and forget about it. When you add, modify or delete a resource record, you edit the
domain.rr file.

4. A Makefile (for GNUmake) does the rest. It builds the .zone file from its correspond-
ing .soa and .rr files if they were modified more recently than the .zone , by running
fixserial.pl on the .soa file (see below).

Listing B.1: Makefile for fixing SOA in zone files automatically

1 .SUFFIXES: .zone .soa .inc
2 ZONESDIR=/var/named/?
3 # change the list of SOA files into a list of ZONE files
4 # by replacing the ‘.soa’ suffix with ‘.zone’
5 zones = $(patsubst %.soa,%.zone,$(wildcard $(ZONESDIR)/ *.soa))
6

7 all: $(zones)
8 rndc reload
9 # for NSD:
10 # nsdc rebuild
11 # nsdc reload
12

13 %.zone: %.soa %.rr
14 fixserial.pl $(basename $@).soa > $(basename $@).soa.fix &&←֓
15 mv $(basename $@).soa.fix $(basename $@).soa
16 touch $@

The Makefile works as follows:

• Line 13: domain.zone depends on domain.soa and domain.rr .

• Lines 5–7: check all the files in the a, b , c ,. . . directories below the top-level direc-
tory ($ZONESDIR) to see if they’ve changed.

• Lines 13–16: For any zone where the .soa or the .rr file has changed, run the
fixserial.pl program.

• Line 8: invoke rndc (or optionally nsdc) to reload the name server.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

606 Alternative DNS Servers – Jan-Piet Mens

Note that the Makefile doesn’t concatenate the .soa and .rr files because they are
both $INCLUDEd in the .zone .

5. Whenever you modify domain.soa or domain.rr , you run make. The Makefile builds
the domain.zone file: it runs fixserial.pl on the soa file to “fix” the serial number in it. A
typical session to update a zone will look like this:

$ edit q/qupps.biz.rr
$ make
fixserial.pl q/qupps.biz.soa > q/qupps.biz.soa.fix && ←֓

mv q/qupps.biz.soa.fix q/qupps.biz.soa
touch q/qupps.biz.zone
rndc reload

The fixserial.pl program

Our program fixserial.pl reads a zone file (in our case simply an SOA record) and “fixes” its
serial number, setting it to a value in YYYYMMDDnn format.

Listing B.2: fi xserial.pl “fixes” a serial number in a zone file

#!/usr/bin/perl
fixserial.pl (C)2008 by Jan-Piet Mens
Read SOA from zone file and set new serial number. Prints res ult to stdout.

use POSIX qw(strftime);
use Net::DNS;
use Net::DNS::ZoneFile::Fast;
use strict;

die "Usage: $0 zonefile\n" unless ($ARGV[0]);

my $zonefile = $ARGV[0];
my $today = strftime("%Y%m%d", localtime);

my $zone = Net::DNS::ZoneFile::Fast::parse(file => $zone file);

foreach my $rr (@$zone) {
if ($rr->{type} eq ’SOA’) {

my $n;

$_ = $rr->{serial};
if (/(\d+)(\d\d)/) {

my $olddate = $1;
$n = ($olddate ne $today) ? -1 : $2;

}
my $serial = sprintf("${today}%02d", ++$n);

$rr->{serial} = $serial;
}

}
foreach my $rr (@$zone) {

$rr->print;
}

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Appendix

C BIND SDB

Here we give you the full source code for two items that we discussed in Chapter 8:

• The utility for the special LDAP object class called dNSZoneAXFR, to generate ACLs for
inclusion into your named.conf when using the BIND-sdb-LDAP driver.

• A simple load-balancing driver for BIND SDB.

C.1 Generate zone clauses for BIND-sdb-LDAP

In Section 8.3.9 we discussed a small utility to generate an include file for zones defined for
BIND-sdb-LDAP. This is the program, and you can download it from the Web site (☞D083):

Listing C.1: Generate zone clauses for BIND SDB from LDAP

#!/usr/bin/perl
sdbldap2bind.pl (C)2008 by Jan-Piet Mens
Create an include file for BIND’s ‘named.conf’ with all zon es (dNSZone
objects), adding ‘allow-transfer’ stanzas if the zone ent ries have the
appropriate attribute types.

use strict;
use Net::LDAP;

my $server = ’localhost’;
my $DNSbase = ’ou=dns,dc=qupps,dc=biz’;
my $TTL = 3600; # default RR TTL

my $ldap = Net::LDAP->new($server) or die "$@";

my $mesg = $ldap->bind;

$mesg = $ldap->search(
base => $DNSbase,
filter => ’(&(objectClass=dNSZone)(relativeDomainName =@))’,
attrs => [qw(zonename dnszoneaxfracl)],

);

$mesg->code && die $mesg->error;

foreach my $e ($mesg->entries) {
my $dn = $e->dn();
my $zone = $e->get_value(’zonename’);
my @acl = $e->get_value(’dnszoneaxfracl’);

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

608 Alternative DNS Servers – Jan-Piet Mens

$dn =˜ s/ˆrelativedomainname=[ˆ,]+,//ig;

print <<EndHead;
zone "$zone" {

type master;
database "ldap ldap://$server/$dn $TTL";

EndHead
if ($#acl >= 0) {

print "\tallow-transfer {\n";
foreach my $a (@acl) {

if ($a =˜ /ˆ[\d]+/) {
print "\t\t$a;\n";

} else {
print "\t\t\"$a\";\n";

}
}
print "\t};\n";

}

print "};\n\n";
}

$mesg = $ldap->unbind;
exit 0;

C.2 Simple BIND SDB load-balancer driver

In Section 8.5.1 we developed a simple load-balancing driver for BIND SDB, and we dis-
cussed how you compile and link it to named. Here is the full source code, which you can
also download from the book’s Web site (☞D084). The code consists of three files: load.h ,
load.c , and a sample named.conf .

C.2.1 load.h

Listing C.2: Sample BIND SDB load balancer: jpload.h
#include <isc/types.h>

isc_result_t jpload_init(void);
void jpload_clear(void);

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Appendix C. BIND SDB 609

C.2.2 load.c

Listing C.3: Sample BIND SDB load balancer: jpload.c
#include <config.h>
#include <string.h>
#include <stdio.h>

#include <isc/print.h>
#include <isc/result.h>
#include <isc/util.h>
#include <isc/mem.h>
#include <dns/sdb.h>
#include <dns/log.h>
#include <dns/lib.h>
#include <named/globals.h>

#include <isc/file.h>
#include <isc/lib.h>
#include <isc/log.h>
#include <isc/msgs.h>
#include <isc/msgcat.h>
#include <isc/region.h>

#include "jpload.h"

static dns_sdbimplementation_t *jpload = NULL;

struct jpinfo {
char *path; /* file name containing IPV4 (A) address */
char *mname; /* name of primary NS for this zone */

};

static isc_result_t
jpload_lookup(const char *zone, const char *name, void *db data,

dns_sdblookup_t *l)
{

isc_result_t res;
struct jpinfo *jpi = dbdata;

UNUSED(zone);

printf("*** jpload_lookup start: zone=%s name=%s\n", zon e, name);

if (strcmp(name, "@") == 0) {
/*

* If authority() is not defined, issue RR for SOA
* and for NS here.
*/

} else if (strcmp(name, "www") == 0) {
char buf[BUFSIZ];
FILE *fp;

res = ISC_R_FAILURE;
if ((fp = fopen(jpi->path, "r")) != NULL) {

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

610 Alternative DNS Servers – Jan-Piet Mens

if (fgets(buf, sizeof(buf) - 1, fp) != NULL) {
buf[strlen(buf) - 1] = ’\0’; /* strip nl */

res = dns_sdb_putrr(l, "a", 60, buf);
if (res != ISC_R_SUCCESS)

res = ISC_R_FAILURE;
}
(void)fclose(fp);

}
return (res);

} else if (strcmp(name, "filename") == 0) {
res = dns_sdb_putrr(l, "txt", 60, jpi->path);
if (res != ISC_R_SUCCESS)

return (ISC_R_FAILURE);
} else if (strcmp(name, "dns1") == 0) {

res = dns_sdb_putrr(l, "A", 100, "127.0.0.1");
if (res != ISC_R_SUCCESS)

return (ISC_R_FAILURE);
} else {

return (ISC_R_NOTFOUND);
}
return (ISC_R_SUCCESS);

}

/*
* lookup() does not return SOA or NS records, so authority() m ust be defined.
*/

static isc_result_t
jpload_authority(const char *zone, void *dbdata, dns_sdb lookup_t *l) {

isc_result_t res;
struct jpinfo *jpi = dbdata;

UNUSED(zone);

res = dns_sdb_putsoa(l, "dns1", "root.dns1", 7);
if (res != ISC_R_SUCCESS) {

return (ISC_R_FAILURE);
}

res = dns_sdb_putrr(l, "ns", 86400, jpi->mname);
if (res != ISC_R_SUCCESS) {

isc_log_iwrite(dns_lctx,
DNS_LOGCATEGORY_DATABASE,
DNS_LOGMODULE_SDB, ISC_LOG_ERROR,
isc_msgcat, ISC_MSGSET_GENERAL,
ISC_MSG_FAILED, "dns_sdb_putrr");

return (ISC_R_FAILURE);
}

return (ISC_R_SUCCESS);
}

/*
* An example of ‘allnodes’ which is called for a zone transfer ; note
* that most of this is static data

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Appendix C. BIND SDB 611

*/

static isc_result_t
jpload_allnodes(const char *zone, void *dbdata, dns_sdba llnodes_t *an) {

isc_result_t res;
struct jpinfo *jpi = dbdata;
static const char **tp, *texts[] = {

"These words will be individually quoted",
"\"its fleece was white as snow\""

};

UNUSED(zone);

printf("*** jpload_allnodes start: zone=%s \n", zone);

res = dns_sdb_putnamedrr(an, "filename", "txt", 1800, jpi ->path);
if (res != ISC_R_SUCCESS)

return (ISC_R_FAILURE);

res = dns_sdb_putnamedrr(an, "@", "NS", 100, "dns1");
if (res != ISC_R_SUCCESS)

return (ISC_R_FAILURE);

res = dns_sdb_putnamedrr(an, "dns1", "A", 100, "127.0.0.1 ");
if (res != ISC_R_SUCCESS)

return (ISC_R_FAILURE);

for (tp = texts; tp && *tp; tp++) {
res = dns_sdb_putnamedrr(an, "poem", "TXT", 86400, *tp);
if (res != ISC_R_SUCCESS)

return (ISC_R_FAILURE);
}

res = dns_sdb_putnamedrr(an, "googl", "cname", 3600, "www .google.com.");
if (res != ISC_R_SUCCESS)

return (ISC_R_FAILURE);

res = dns_sdb_putnamedrr(an, "imap", "a", 3600, "192.168. 2.1");
if (res != ISC_R_SUCCESS)

return (ISC_R_FAILURE);
return (ISC_R_SUCCESS);

}

static isc_result_t
jpload_create(const char *zone, int argc, char **argv, voi d *driverdata,

void **dbdata)
{

struct jpinfo *jpi;

UNUSED(zone);
UNUSED(driverdata);

printf("*** jpload_create start\n");

if (argc != 2)

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

612 Alternative DNS Servers – Jan-Piet Mens

return (ISC_R_FAILURE);
jpi = isc_mem_get(ns_g_mctx, sizeof(struct jpinfo));
if (jpi == NULL)

return (ISC_R_NOMEMORY);

if ((jpi->path = isc_mem_strdup(ns_g_mctx, argv[0])) == N ULL)
return ISC_R_NOMEMORY;

if ((jpi->mname = isc_mem_strdup(ns_g_mctx, argv[1])) == NULL)
return ISC_R_NOMEMORY;

printf("*** jpload_create end\n");

*dbdata = jpi;
return (ISC_R_SUCCESS);

}

static void
jpload_destroy(const char *zone, void *driverdata, void * *dbdata)
{

struct jpinfo *jpi = *dbdata;

UNUSED(zone);
UNUSED(driverdata);

isc_mem_free(ns_g_mctx, jpi->path);
isc_mem_free(ns_g_mctx, jpi->mname);
isc_mem_put(ns_g_mctx, jpi, sizeof(struct jpinfo));

}

/*
* This zone supports zone transfer, so allnodes() is defined .
*/

static dns_sdbmethods_t jpload_methods = {
jpload_lookup, /* lookup */
jpload_authority, /* authority */
jpload_allnodes, /* allnodes */
jpload_create, /* create */
jpload_destroy /* destroy */

};

/*
* Wrapper around dns_sdb_register().
*/

isc_result_t
jpload_init(void) {

unsigned int flags;

flags = DNS_SDBFLAG_RELATIVEOWNER | DNS_SDBFLAG_RELATIVERDATA;
return (dns_sdb_register("jpload", &jpload_methods, NU LL, flags,

ns_g_mctx, &jpload));
}

/*
* Wrapper around dns_sdb_unregister().
*/

void

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Appendix C. BIND SDB 613

jpload_clear(void) {
if (jpload != NULL)

dns_sdb_unregister(&jpload);
}

C.2.3 named.conf

Listing C.4: Sample BIND SDB load balancer: named.conf
zone "load.local" {

type master;
database "jpload /var/load/balance.ip dns1";
// ˆ ˆ ˆ
// | | +- mname
// | +----------------- filename
// +----------------------------- driver name

};

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

614 Alternative DNS Servers – Jan-Piet Mens

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Appendix

D Bind DLZ

Here we give you the full source code for two items that we discussed in Chapter 9:

• The utility that loads BDBHPT databases from a MySQL database.

• Helper functions for automatically creating PTR resource records.

D.1 Load BDBHPT from an SQL database

In Section 9.9 we discussed Bind DLZ’s Berkeley DB High Performance Database driver
(BDBHPT), and we explained that you have to create your own tools for populating its
database. We have created a program, mydns2bdbhpt.pl, that you can use as a basis for writ-
ing your own.
This program reads MySQL database tables, and “dumps” their content into individual

Berkeley DB databases for use by Bind DLZ’s BDBHPT driver (Figure D.1). We’ve chosen to
use the database schema used by the MyDNS name server (Chapter 5), but you can easily
modify the program to use a different schema.

Figure D.1: Create BDB databases from MySQL

The mydns2bdbhpt utility performs the following steps:

1. Initialize the connection to MySQL and PREPAREthe SELECTstatements for retrieving
zones and their data.

2. Initialize the Berkeley DB databases.

3. Enumerate all zones and add their reversed names to the DNSzonedatabase.

4. For each zone, enumerate all resource records, and add them to the DNSdata database,
simultaneously creating the DNSaxfr database for zone transfers.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

616 Alternative DNS Servers – Jan-Piet Mens

5. Add permission to transfer each zone by specifying three static IP addresses in the
DNSclient database.

Listing D.1: Convert SQL data to BDB databases for DLZ’s BDBHPT driver

#!/usr/bin/perl

use strict;
use BerkeleyDB;
use DBI;

my $dsn = ’DBI:mysql:mydns:127.0.0.1’;
my $dbpath = ’/var/spool/myns’;
my $dbfile = ’DLZ.db’;

my $dbh = DBI->connect($dsn, "dnsadmin", "hah!")
or die "Can’t connect to $dsn";

my $soaq = "SELECT id,origin,ns,mbox,serial,refresh,ret ry,expire,minimum,ttl";
$soaq .= " FROM soa ORDER BY origin";
my $sth = $dbh->prepare($soaq);

my $rrq = "SELECT name,type,data,aux,ttl FROM rr WHERE zone = ?";
my $rrst = $dbh->prepare($rrq);

my (%DNSdata, %DNSzone, %DNSaxfr, %DNSclient, $rid);

&initBDB(’P’);

$sth->execute();

Find all zones

while (my $soa = $sth->fetchrow_hashref) {
my $line;
my $zone = $soa->{origin};

$zone =˜ s/\.$//; # Remove trailing period

Add a zone; the key is a reversed zone name and its value is emp ty

$DNSzone{reverse $zone} = "";

Add the zone’s data. First the SOA ...

$line = $soa->{ttl} . ’ ’;
$line .= ’SOA ’;
$line .= $soa->{ns} . ’ ’;
$line .= $soa->{mbox} . ’ ’;
$line .= $soa->{serial} . ’ ’;
$line .= $soa->{refresh} . ’ ’;
$line .= $soa->{retry} . ’ ’;
$line .= $soa->{expire} . ’ ’;
$line .= $soa->{minimum};

$DNSdata{"$zone @"} = rec("@ $line");

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Appendix D. Bind DLZ 617

... and then all the other RR

$rrst->execute($soa->{id}) or warn;
while (my $rr = $rrst->fetchrow_hashref) {

my $host = $rr->{name};

$host = ’@’ if (!$rr->{name});

$line = "$host ";
$line .= $rr->{ttl} . ’ ’;
$line .= $rr->{type} . ’ ’;
$line .= $rr->{aux} . ’ ’ if ($rr->{type} eq ’MX’);

if ($rr->{type} eq ’TXT’) {
$line .= ’"’ . $rr->{data} . ’"’;

} else {
$line .= $rr->{data};

}

$DNSdata{"${zone} ${host}"} = rec($line);

Add zone/host pointers to the AXFR data, taking care
to ensure key/value uniqueness for this database

if (!defined($DNSaxfr{$zone}) && ($DNSaxfr{$zone} ne "$h ost")) {
$DNSaxfr{$zone} = $host;

}

}

Allow AXFR for clients? This should use the optional ‘xfer’
column of MyDNS, but we use 3 static addresses.

$DNSclient{$zone} = ’127.0.0.1’;
$DNSclient{$zone} = ’192.168.1.20’;
$DNSclient{$zone} = ’192.168.1.164’;

}

untie %DNSdata;
untie %DNSzone;
untie %DNSaxfr;
untie %DNSclient;

$sth->finish();
$rrst->finish();
$dbh->disconnect();
exit;

Return a record for BDBHPT containing a unique BDB replicat ion
id, a single SPACE and the data.
sub rec {

my ($rr) = @_;

$rid++; # give unique record-id

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

618 Alternative DNS Servers – Jan-Piet Mens

return "${rid} ${rr}";
}

sub fatal {
my ($dbname) = @_;

die "Cannot create $dbfile:$dbname: " . $BerkeleyDB::Erro r . "\n";
}

sub initBDB {
my $mode = shift;

my %DBflags = (
C => DB_INIT_CDB | DB_INIT_MPOOL | DB_CREATE,
T => DB_INIT_TXN | DB_INIT_MPOOL | DB_INIT_LOCK | DB_INIT_L OG | DB_CREATE,
P => DB_PRIVATE | DB_INIT_MPOOL | DB_CREATE,

);

my $BDB = new BerkeleyDB::Env
-Home => $dbpath,
-Flags => $DBflags{$mode},
-ErrFile => *STDERR,
-Verbose => 1 ;

tie %DNSdata, ’BerkeleyDB::Hash’,
-Env => $BDB,
-Flags => DB_CREATE,
-Property => DB_DUP | DB_DUPSORT,
-Filename => "$dbpath/$dbfile",
-Subname => "dns_data"
or fata(’dns_data’);

tie %DNSzone, ’BerkeleyDB::Btree’,
-Env => $BDB,
-Flags => DB_CREATE,
-Filename => "$dbpath/$dbfile",
-Subname => "dns_zone",
or fata(’dns_zone’);

tie %DNSaxfr, ’BerkeleyDB::Hash’,
-Env => $BDB,
-Flags => DB_CREATE,
-Property => DB_DUP | DB_DUPSORT,
-Filename => "$dbpath/$dbfile",
-Subname => "dns_xfr",
or fata(’dns_xfr’);

tie %DNSclient, ’BerkeleyDB::Hash’,
-Env => $BDB,
-Flags => DB_CREATE,
-Property => DB_DUP | DB_DUPSORT,
-Filename => "$dbpath/$dbfile",
-Subname => "dns_client",
or fata(’dns_client’);

}

You can download the program from the book’s Web site (☞D095).

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Appendix D. Bind DLZ 619

D.2 Helper functions for automatically creating PTR records

In Section 9.10.4, on page 253 we discussed how you can automatically create PTR records in
Bind DLZ, using three MySQL functions. We show these three functions here.

1. Function revip4 () takes a dotted-decimal IPv4 address and reverses it:

mysql> SELECT revip4 (’192.168.1.4’);
+-----------------------+
| revip4(’192.168.1.4’) |
+-----------------------+
| 4.1.168.192 |
+-----------------------+

Listing D.2: Custom MySQL function revip4 () in Bind DLZ

-- revip4: return a reversed dotted-quad (JPM)

DELIMITER $$
CREATE FUNCTION revip4 (quad CHAR(15)) RETURNS CHAR(15)
BEGIN

DECLARE hexip CHAR(15);
DECLARE invip CHAR(15);

SET hexip = LPAD(HEX(INET_ATON(quad)), 8, ’0’);
SET invip = CONCAT(

MID(hexip, 7, 2),
MID(hexip, 5, 2),
MID(hexip, 3, 2),
MID(hexip, 1, 2));

RETURN INET_NTOA(CONV(invip, 16, 10));
END $$
DELIMITER ;

2. Function ip4octet () uses MySQL’s inet aton () function to return the rightmost octet
of an IPv4 address:

mysql> SELECT ip4octet (’192.168.1.4’);
+-------------------------+
| ip4octet(’192.168.1.4’) |
+-------------------------+
| 4 |
+-------------------------+

Listing D.3: Custom MySQL function ip4octet () in Bind DLZ

-- ip4octet: return the fourth octet of a dotted-quad (JPM)

DELIMITER $$
CREATE FUNCTION ip4octet (quad CHAR(15)) RETURNS CHAR(15)
BEGIN

RETURN CONV(RIGHT(HEX(INET_ATON(quad)), 2), 16, 10);
END $$
DELIMITER ;

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

620 Alternative DNS Servers – Jan-Piet Mens

3. Function inarpa4 () returns the in-addr.arpa zone name for a dotted-decimal IPv4 ad-
dress. It calls revip4 () to reverse the IPv4 dotted decimal, slices off everything before
the first period in the resulting string, and appends in-addr.arpa:

mysql> SELECT inarpa4(’192.168.1.4’);
+------------------------+
| inarpa4(’192.168.1.4’) |
+------------------------+
| 1.168.192.in-addr.arpa |
+------------------------+

Listing D.4: Custom MySQL function inarpa4 () in Bind DLZ

-- inarpa4: return the in-addr.arpa address for an IPv4 (JPM)

DELIMITER $$
CREATE FUNCTION inarpa4 (quad CHAR(15)) RETURNS CHAR(128)
BEGIN

RETURN CONCAT(
MID(revip4(quad),

LOCATE(’.’, revip4(quad)) + 1,
LENGTH(quad)

), ’.in-addr.arpa’);
END $$
DELIMITER ;

If you use a different brand of name server with an SQL back-end, you can modify the code
above to suit.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Appendix

E Perl DNS name servers

In Chapter 15 we discussed how you use Perl to create your ownDNS name server program,
and we showed you an example in Section 15.3. In the following sections, we show you:

1. The full source code for that example.

2. A sample server using Net::DNS::Nameserver.

3. A sample server using Net::DNS::Server.

E.1 Stanford::DNSserver

This is the full source code for the program clidnsd.pl in Section 15.3, pages 365–368.

Listing E.1: Perl DNS Nameserver: Stanford::DNSserver

#!/usr/bin/perl

use IO::Socket;
use Sys::Syslog;
use Sys::Hostname;
use Stanford::DNS;
use Stanford::DNSserver;
use Net::LDAP;

require ’dnssrv.pl’;

my $ldapsrv = ’_ldap._tcp.qupps.biz’;
my $ldapbase = ’ou=usr,dc=qupps,dc=biz’;

my $myname = hostname();
my $tld = ’info.qupps.biz’;
my $atld = ’users.qupps.biz’;
my $ttl = 3600;
my $ld;

foreach my $srv (dnsSRV($ldapsrv)) {

my $hostport = ${$srv}{address} . ":" . ${$srv}{port};
print "Trying to connect to ", ${$srv}{target}, " at $hostpo rt\n";
$ld = Net::LDAP->new($hostport);

last if (defined($ld));
}

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

622 Alternative DNS Servers – Jan-Piet Mens

$ld->bind() or die "$0: Can’t bind to directory at $_";

$ns = new Stanford::DNSserver (
listen_on => ["127.0.0.1"],
port => 53,
defttl => 60,
debug => 1,
daemon => "no",
pidfile => "/tmp/example.pid",
logfunc => sub { print shift; print "\n" },
exitfunc => sub {

print "Bye!\n";
$ld->disconnect;
});

Add static answers for SOA, NS, and A
$ns->add_static("$tld",

T_SOA, rr_SOA($myname, "hostmaster.$tld",
time, 3600, 3600, 86400, 0));

$ns->add_static("$tld", T_NS, rr_NS($myname));

my $myaddr = inet_ntoa((gethostbyname($myname))[4]);
$ns->add_static("$tld", T_A,

rr_A(unpack(’N’, inet_aton($myaddr))));

Set up handler for dynamic requests
$ns->add_dynamic("$tld" => \&userreq);

Start serving answers...
$ns->answer_queries();

sub userreq {
my ($domain, $host, $qtype, $qclass, $dm, $from) = @_;

print "DOMAIN=[$domain], HOST=[$host], QT=[$qtype] FROM =[$from]\n";

$dm->{rcode} = NOERROR;

$host =˜ s/[\W]//g; # Sanitize
if (!$host) {

$dm->{rcode} = SERVFAIL; # No username specified
return;

}

if ($qtype == T_A || $qtype == T_ANY) {

my @iplist = dnsADDR(9, "$host.$atld");

for my $ip (@iplist) {
push each IP back into Stanford::’s reply

$entry = unpack(’N’, inet_aton($ip));
$dm->{answer} .= dns_answer(QPTR, T_A, C_IN, $ttl, rr_A($ entry));
$dm->{ancount} += 1;

}

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Appendix E. Perl DNS name servers 623

}

if ($qtype == T_TXT || $qtype == T_ANY) {

my $msg = $ld->search(base => $ldapbase,
filter => "(&(objectclass=person)(userid=${host}))",
attrs => [qw(cn telephonenumber)]);

if ($msg->code) {
$dm->{rcode} = SERVFAIL;
return;

}
my @entries = $msg->entries;

foreach my $e (@entries) {
my $cn = $e->get_value(’cn’) or ’unknown’;
my $tel = $e->get_value(’telephonenumber’) or ’unknown’;

$dm->{answer} .= dns_answer(QPTR, T_TXT, C_IN,
$ttl, rr_TXT("name: $cn"));

$dm->{ancount} += 1;
$dm->{answer} .= dns_answer(QPTR, T_TXT, C_IN,

$ttl, rr_TXT("phone: $tel"));
$dm->{ancount} += 1;

}
}

If no answers available, return NXDOMAIN

if (! $dm->{ancount}) {
$dm->{rcode} = NXDOMAIN;

}
}

Listing E.2: Handling Service (SRV) queries in Perl

#!/usr/bin/perl

use strict;
use Net::DNS;
use Net::DNS::RR;

my $reso = Net::DNS::Resolver->new(
nameservers => [qw(127.0.0.1)],
recurse => 0,
debug => 0,
port => 53,

);

#my @ldaphosts = dnsSRV(’_ldap._tcp.qupps.biz’);
#
#foreach my $srv (@ldaphosts) {
print "Target: ", ${$srv}{target}, "\n";
print "Priority: ", ${$srv}{priority}, "\n";
print "Port: ", ${$srv}{port}, "\n";
print "Address ", ${$srv}{address}, "\n\n";
#}

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

624 Alternative DNS Servers – Jan-Piet Mens

sub byprio {
my %a = shift;
my %b = shift;

$a->{priority} <=> $b->{priority};
}

sub dnsSRV {
my ($domain) = @_;
my @results = ();

my $query = $reso->query($domain, ’SRV’);

if ($query) {
my $n = 0;
foreach my $rr ($query->answer) {

$results[$n++] = {
’target’ => $rr->target,

’port’ => $rr->port,
’address’ => dnsADDR(1, $rr->target),
’priority’ => $rr->priority,

};
}

} else {
print "dnsSRV: query failed: ", $reso->errorstring,"\n";

}

return sort byprio @results;
}

sub dnsADDR {
my ($count, $domain) = @_;
my @results;

my $query = $reso->query($domain, ’A’);

if ($query) {
foreach my $rr ($query->answer) {

push(@results, $rr->address);
last unless ($count--);

}

} else {
print "dnsADDR: query failed: ", $reso->errorstring,"\n" ;

}

return @results;
}

1;

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Appendix E. Perl DNS name servers 625

E.2 Net::DNS::Nameserver

The Perl module Net::DNS::Nameserver, created by Michael Fuhr, implements a DNS server
class. The example program below listens on port 9953 and responds with hard-coded an-
swers to queries for Address (A) records and Text (TXT) records. No matter what domain
you specify, it returns 192.168.1.34 as an answer for all A queries, and "hello cruel" and
"world" for all TXT queries. Something like this could be useful if you are a Web hoster and
provide identical answers for queries on many hundreds of domains.

Listing E.3: Perl DNS Nameserver: Net::DNS::Nameserver example

#!/usr/bin/perl -w

use strict;
use Net::DNS::Nameserver;

my $serial = 1;

sub handler {
my ($qname, $qclass, $qtype, $peer) = @_;
my ($rcode, @ans, @auth, @add);
my $ttl = 3600;
my $rdata;

if ($qtype eq ’A’ || $qtype eq ’ANY’) {
$rdata = ’192.168.1.34’;
push @ans, Net::DNS::RR->new("$qname $ttl $qclass A $rdat a");
$rcode = "NOERROR";

}

if ($qtype eq ’TXT’ || $qtype eq ’ANY’) {
$rdata = ’"hello cruel"’;
$qtype = ’TXT’;
push @ans, Net::DNS::RR->new("$qname $ttl $qclass $qtype $rdata");

$rdata = ’"world"’;
push @ans, Net::DNS::RR->new("$qname $ttl $qclass $qtype $rdata");
$rcode = "NOERROR";

}

if ($qtype eq ’AXFR’) {
push @ans, Net::DNS::RR->new(

"$qname $ttl $qclass SOA localhost. ns.localhost. \
$serial 86400 10 10 10");

push @ans, Net::DNS::RR->new("$qname $ttl $qclass NS loca lhost");
push @ans, Net::DNS::RR->new("$qname $ttl $qclass A 127.0 .0.1");
$serial++;
$rdata = ’"hello cruel"’;
push @ans, Net::DNS::RR->new("$qname $ttl $qclass TXT $rd ata");

}

Set ‘aa’ flag on the answer
return ($rcode, \@ans, \@auth, \@add, { aa => 1 });

}

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

626 Alternative DNS Servers – Jan-Piet Mens

my $ns = Net::DNS::Nameserver->new(
LocalPort => 9953,
ReplyHandler => \&handler,
Verbose => 1,

) || die("Can’t create nameserver object: $!");

$ns->main_loop;

If you start the example as it is, and send it the two queries (one for TXT and the other for
an A) you will see the program print diagnostics, thanks to the Verbose mode setting. The
answers to the queries are as expected:

$ dig @127.0.0.1 -p 9953 www.example.com txt
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 11690
;; flags: qr aa rd; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 0

;; ANSWER SECTION:
www.example.com. 3600 IN TXT "hello cruel"
www.example.com. 3600 IN TXT "world"

$ dig @127.0.0.1 -p 9953 something.de a
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 8755
;; flags: qr aa rd; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; ANSWER SECTION:
something.de. 3600 IN A 192.168.1.34

The project has its own site at http://www.net-dns.org/

E.3 Net::DNS::Server

Luis E. Muñoz has written Net::DNS::Server, a set of Perl modules that you can use to imple-
ment a DNS name server. Individual functions you write provide answers to specific query
types. For example, in the listing below, the A() function handles A queries, and the TXT()

function processes TXT queries.

Listing E.4: Perl DNS Nameserver: Net::DNS::Server example

#!/usr/bin/perl -w

use strict;
package Net::DNS::Method::Sample;
use Net::DNS::Method;
use Net::DNS;

our @ISA = qw(Net::DNS::Method);

sub new { bless [], $_[0]; }

sub A {
my $self = shift;
my $q = shift;
my $a = shift;

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Appendix E. Perl DNS name servers 627

’qclass’ => ’IN’, ’qname’ => ’www.qupps.biz’, ’qtype’ => ’ A’

return NS_STOP if ($q->qtype eq ’ANY’);

$a->header->rcode(’NOERROR’);
if ($q->qname eq ’xxddd.de’) {

$a->push(’answer’, new Net::DNS::RR $q->qname . ’ 10 IN A 12 7.0.0.1’);
} else {

$a->push(’answer’, new Net::DNS::RR $q->qname . ’ 1800 IN A 10.0.12.1’);
}
return NS_OK;

}

sub TXT {
my $self = shift;
my $q = shift;
my $a = shift;

$a->header->rcode(’NOERROR’);
$a->push(’answer’, new Net::DNS::RR $q->qname . ’ 89 IN TXT "hello world"’);
return NS_OK;

}

package main;

use Net::DNS;
use Net::DNS::Method;
use Net::DNS::Server;

my $method = Net::DNS::Method::Sample->new;

my $server = new Net::DNS::Server (’127.0.0.1:9553’, [$me thod])
or die "Cannot create server object: $!";

while (my $n = $server->get_question()) {

foreach (0..$n) {
$server->process;

$server->send_response();
my $question = $server->q();
my $answer = $server->answer();

}
}

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

628 Alternative DNS Servers – Jan-Piet Mens

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Appendix

F User Defined Functions in
MySQL

In MySQL you extend the functionality of the database system with User Defined Func-
tions (UDFs). You compile UDFs as object code and add them to the database via the
CREATE FUNCTIONstatement. (Read read the documentation at http://dev.mysql.com/

doc/refman/5.0/en/adding-functions.html for details.)
We discuss two User Defined Functions in the following sections:

A. A UDF to raise an error in a database trigger (Section F.1).

B. A UDF that automatically adds a zone clause to a .conf file when you insert a new
zone in a back-end’s database table (Section F.2).

F.1 A – Raise an error in a MySQL trigger with a UDF

In Section 6.9.6 we defined a trigger to catch illegal inserts of CNAME records when there is
already a different record on the same domain. The trigger deliberately used non-existent
procedure calls in MySQL to simulate an error, and we saw that doing so doesn’t really
work, because the simulation doesn’t produce errors that abort transactions.
In order to really cause an error, we define a UDF to implement the SQL RAISE ERROR

functionality that MySQL lacks.

F.1.1 The source code of the raise error () UDF function

The UDF consists of two small C functions:

• raise error init () is invoked whenever MySQL calls the UDF, to perform initializa-
tion. By definition (i.e. this is the way MySQL works), if the init function returns an
error, MySQL aborts the SQL statement with an error message and does not call the
UDF’s main or deinitialization functions. Our function always returns a failure code to
MySQL, because that is the only way MySQL can be signaled to return an error to the
caller.

• raise error () simply returns 0 because it will never actually be called, because the
init function (raise error init ()) will always purposely produce an error. We have
to define it though, so that we can “attach” our UDF to MySQL, and to satisfy the
linker.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

630 Alternative DNS Servers – Jan-Piet Mens

Listing F.1: User Defined RAISE ERRORFunction for MySQL

/*
* raise_error(): MySQL UDF by Jan-Piet Mens, based on an
* idea by Roland Bouman in the MySQL forums
* Usage: SET @error := raise_error(’My message’);
*/

#include <string.h>
#include <mysql.h>

#define E_NOSPEC "Unspecified error raised\0"

my_bool raise_error_init(UDF_INIT *initid, UDF_ARGS *ar gs, char *message)
{

unsigned int n;

if (args->arg_count == 1 && args->arg_type[0] == STRING_RE SULT) {
n = strlen(args->args[0]) + 1;
n = (n > MYSQL_ERRMSG_SIZE) ? MYSQL_ERRMSG_SIZE : n;
memcpy(message, args->args[0], n);

} else {
memcpy(message, E_NOSPEC, strlen(E_NOSPEC)+1);

}
return 1;

}

long long raise_error(UDF_INIT *initid, UDF_ARGS *args, c har *is_null, char *error)
{

return 0;
}

F.1.2 Install your UDF

To install your new User Defined Function in MySQL:

1. Compile the code and link it as a shared object library. We call it libudf raise.so .

2. Copy the libudf raise.so library into a directory which will be found by the loader.

The following Makefile handles both steps:

CFLAGS=-I/usr/include/mysql
LDFLAGS=-L/usr/lib64/mysql
DESTDIR=/usr/lib64/mysql
SONAME=libudf_raise.so

$(SONAME): udf_raise.c
gcc -fPIC $(CFLAGS) -shared -o $(SONAME) \

udf_raise.c $(LDFLAGS) -lmysqlclient

install: $(SONAME)
install -m755 $(SONAME) $(DESTDIR)/$(SONAME)

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Appendix F. User Defined Functions in MySQL 631

3. Create the function inMySQL, and specify the name of your shared library (without its
path name, because MySQL searches for the shared object file in standard directories):

mysql> CREATE FUNCTION raise_error RETURNS INT SONAME ’lib udf_raise.so’;

4. Test your User Defined Function:

mysql> SELECT raise_error();
ERROR:
Unspecified error raised

mysql> SELECT raise_error(’Oops, this cannot happen’);
ERROR:
Oops, this cannot happen

5. To fully remove the function from the data dictionary if you decide not to use it any
more, DROPthe function (and remove the shared library containing the UDF):

mysql> DROP FUNCTION raise_error;

You can use this function whenever you want to raise an error within an SQL procedure or
trigger. Download the code from the book’s Web site (☞D291).

F.1.3 Create the trigger

The trigger used is almost identical to the original trigger defined in Section 6.9.6, but instead
of calling undefined procedures, it invokes the UDF:

Listing F.2: Trigger uses raise error () UDF

-- cnametrigger.sql by Jan-Piet Mens
-- Requires raise_error() UDF

DELIMITER $$

CREATE TRIGGER pdnsCNAMEtrigger
BEFORE INSERT ON records
FOR EACH ROW

BEGIN
DECLARE nrows INTEGER;

IF NEW.type = ’CNAME’ THEN
SELECT COUNT(*) INTO nrows

FROM records
WHERE name = NEW.name;

IF nrows > 0 THEN
-- there is an RR already (including CNAME):
-- don’t insert this one!
--
SET @error = raise_error(’Other data exists: CNAME not inse rted’);

END IF;

ELSE -- NEW.type <> ’CNAME’
SELECT COUNT(*) INTO nrows

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

632 Alternative DNS Servers – Jan-Piet Mens

FROM records
WHERE name = NEW.name

AND type = ’CNAME’;

IF nrows > 0 THEN
-- there is already a CNAME: don’t insert!
--

SET @error = raise_error(’CNAME exists: won\’t insert othe r data’);
END IF;

END IF;

END $$
DELIMITER ;

F.1.4 Testing the trigger in PowerDNS

mysql> SELECT id,name,type,content FROM records WHERE dom ain_id = 100011;
+---------+-----------+-------+-------------------- ------+
| id | name | type | content |
+---------+-----------+-------+-------------------- ------+
1000173	jp.xa	SOA	1 1800 900 604800 86400
1000174	jp.xa	NS	dns.jp.xa
1000176	dns.jp.xa	A	192.168.1.11
1000177	www.jp.xa	CNAME	www.qupps.biz.
+---------+-----------+-------+-------------------- ------+

mysql> INSERT INTO records (domain_id, name, type, content) VALUES
> (100011,’dns.jp.xa’, ’CNAME’, ’www.example.’);

ERROR:
Other data exists: CNAME not inserted

mysql> INSERT INTO records (domain_id, name, type, content) VALUES
> (100011,’www.jp.xa’, ’A’, ’127.0.0.3’);

ERROR:
CNAME exists: won’t insert other data

That completes our raise error () UDF. Now we move on and show you a more complex
example, that updates a file in a file system.

F.2 B – Use a UDF to update a fi le in the fi le system

Sections 3.1 and 7.2 explained that you can use a name server with a database back-end as a
stealth server to a slave NSD or BIND. That is easy to set up, but there is one problem: in both
NSD and BIND slaves, you have to configure the list of zones they serve, in their respective
configuration files (nsd.conf or named.conf). In particular, if you add a new zone to the
stealth server, the NSD or BIND slave will not serve that zone until you add it to the .conf

file. So adding a zone is a three-step process:

1. Add the zone to your back-end database.

2. Edit the .conf file for NSD or BIND, and insert the slave zone. In the following we
assume you configure these zones in a file called zones.incl that you include in your
name server’s configuration.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Appendix F. User Defined Functions in MySQL 633

3. Reload the master (stealth) name server so that it performs an AXFR zone transfer.

The program in Section 6.9.3, page 154, automatically enumerates the zones in your back-
end database to create a zones.incl file, but how do you invoke the program? There are
several options:

• Try to remember to launch it manually. This is error-prone – if you forget, your master
name server won’t serve the zone.

• Periodically run the program via cron. This is wasteful of resources if you have many
zones. You need a mechanism that creates the list of zones only when you add or
remove a zone from the database.

We love automation (because we’re lazy) so we use a database trigger, a User Defined Func-
tion, a pinch of make and a squeeze of cron (Figure F.1) to automate the whole process.

Figure F.1: Trigger an update to a file via MySQL with a UDF

1. With your chosen database client (e.g. MySQL command-line client, Web interface,
Perl utility, etc.) you create a zone in your database by performing an SQL INSERT into
the appropriate table.

2. The INSERT on the table fires a database trigger:

DELIMITER $$

CREATE TRIGGER zoneTRIG AFTER INSERT ON domains
FOR EACH ROW
BEGIN

SET @error = newzone(NEW.name);
END $$
DELIMITER ;

This example is for the table used by PowerDNS; adapt the table and column name for
your brand of name server accordingly.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

634 Alternative DNS Servers – Jan-Piet Mens

3. The trigger calls a MySQL UDF for each inserted row in the table, passing to the UDF
the name of the newly added zone. This is not required, but we do it to show you how
you can pass values to a UDF.

Listing F.3: UDF that “touches” a file on the file system

/* newzone.c (C)2008 by Jan-Piet Mens. MySQL UDF */

#include <stdio.h>
#include <string.h>
#include <my_global.h>
#include <my_sys.h>
#include <mysql.h>
#include <m_string.h>

#define TOUCHFILE "/var/nsd/zones.trig"

static pthread_mutex_t LOCK_zonefile;

/* mysql> CREATE FUNCTION newzone RETURNS INTEGER SONAME "newzone.so"; */

my_bool newzone_init(UDF_INIT *iid, UDF_ARGS *args, char *message)
{

if (args->arg_count != 1 || args->arg_type[0] != STRING_RE SULT) {
strmov(message,"Need a STRING arg");
return 1;

}

iid->max_length = 21;
iid->maybe_null = 0;

pthread_mutex_init(&LOCK_zonefile, MY_MUTEX_INIT_SLO W);
return 0;

}

void newzone_deinit(UDF_INIT *iid)
{

pthread_mutex_destroy(&LOCK_zonefile);
}

longlong newzone(UDF_INIT *iid, UDF_ARGS *args, char *isn ull, char *error)
{

uint len;
char buf[512];
FILE *fp;

if (!args->args[0] || !(len = args->lengths[0])) {
*isnull = 1;
return 0;

}

len = (len >= sizeof(buf)) ? sizeof(buf) - 1 : len;

memcpy(buf, args->args[0], len);
buf[len] = 0;

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Appendix F. User Defined Functions in MySQL 635

pthread_mutex_lock(&LOCK_zonefile);

if ((fp = fopen(TOUCHFILE, "a")) != NULL) {
fprintf(fp, "%s\n", buf);
fclose(fp);

}

pthread_mutex_unlock(&LOCK_zonefile);
return 1L;

}

The UDF “touches” (i.e. modifies) a file on the file system, and the name of the newly
added zone is appended to the file contents. Install the UDF as we showed you in
Section F.1.2. (We repeat the steps below, for ease of reference.)

4. Periodically, via cron, you launch make, like this:

$ cd /var/nsd && make -s -f Makefile.dns

Makefile.dns has a dependency on the file zones.trig , which is“touched” by the
UDF, so make knows that it has to do something when the file’s modification time
changes: it calls the program that generates the zones.incl file.

5. This last step is where the enumzonessql.pl program retrieves a list of all zones in your
back-end database, creates the zones.incl file and reloads your name server. The
Makefile.dns we use is:

zones.incl: zones.trig
enumzonessql.pl > /tmp/zf.$$ && mv /tmp/zf.$$ /var/nsd/zo nes.incl

6. You should append any additional steps you require (e.g. nsdc rebuild, rndc reload, etc.)
to this Makefile.dns .

We set up and install the system as follows. This example is for the NSD name server; adapt
for BIND as necessary:

cd /path/to/newzone
make
cp newzone.so /usr/lib64/newzone.so

cd /var/nsd
touch zones.trig
chown mysql:mysql zones.trig

mysql ourpdns
mysql> CREATE FUNCTION newzone RETURNS INTEGER SONAME "newzone.so";
mysql> SOURCE /path/to/newzone/newzone.sql;
mysql> INSERT INTO domains (name, type) VALUES (’example.n et’, ’NATIVE’);
mysql> quit

ls -l zones.trig
-rw-r--r-- 1 mysql mysql 12 May 10 00:05 zones.trig
cat zones.trig
example.net

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

636 Alternative DNS Servers – Jan-Piet Mens

make -f Makefile.dns
enumzonessql.pl > /tmp/zf.$$ && mv /tmp/zf.$$ /var/nsd/zones.incl
make -f Makefile.dns
make: ‘zones.incl’ is up to date.

Note the following:

• It is trivial to modify the trigger to support MyDNS’ or Bind DLZ’s database back-end
tables instead of PowerDNS as we have done here.

• You can also add a trigger that fires when you update or delete a zone in your database.

• Remember that your UDF function operates as part of the MySQL server’s address
space, so if it doesn’t behave, it can crash the database server. Furthermore, the UDF
runs with the permissions of the MySQL daemon, so any files it needs must be acces-
sible by the MySQL user (typically mysql).

• We could easily have launched make from the UDF proper, but because then a make
problem might crash our database server, we prefer not to. You could launch make by
using fork () / exec () (or system ()).

• If you use PostgreSQL as your back-end database, you don’t have to add a function to
it. PostgreSQL can generate notifications with its NOTIFY command, and you create a
client program that receives the notification and acts upon it. This method is more than
adequate to implement something similar to what we’ve just described (see http:

//www.postgresql.org/docs/8.1/static/sql-notify.html).

That completes our short discussion of User Defined Functions and how you implement
them in MySQL.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Appendix

G Bits and pieces

Besides name-to-address and address-to-name mapping, the DNS can be (and is) used for a
number of interesting things. The following sections introduce some of these, mostly using
tools we have discussed in the preceding chapters.

G.1 Using the DNS to store arbitrary (configuration) strings

If you look at the pmc program we developed in Section 19.8.1, you’ll see it uses a compiled-
in URL, containing both the host address and the the full pathname of its related pms server.
Now suppose you have to move the pms service for some reason so its URL changes. You
have a number of choices:

• If the host’s address changes, the solution is easy: you change the A or CNAME record
to the new machine.

• If the host’s name changes, it gets a bit more difficult, although you may be able to
create a CNAME for the old name, pointing to the new name. (However, the Web server
on the new host will have to recognize the new name as being valid.)

• If the location of the resource changes from /pms.php to /support/pms.cgi say, it gets
even more difficult. The solution is to have the Web server redirect the URL to its new
location, but youmay not have the permissions to alter theWeb server’s configuration.

A different approach is not to hard-code the URL, but alter the pmc program to use a URL
supplied externally, in a configuration file, for example. That solves one set of problems,
but now you have to find a way to distribute the revised configuration file to all the clients,
which is easier said than done.
Using the DNS solves all the problems. We store the URL in a TXT record that we config-

ure in our DNS, and then alter pmc to retrieve the TXT record from the DNS. We can change
the URL once, in our DNS, and all copies of pmc can pick up the new value very easily
(Figure G.1). Isn’t that a neat solution? The next section shows you how to implement this.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

638 Alternative DNS Servers – Jan-Piet Mens

G.1.1 Use TXT records to configure an application

Section 2.3.3 explained that a DNS Text (TXT) resource record can contain arbitrary strings,
limited in length to 255 octets. So, for example, to store the URL of our application, we could
create a TXT record such as:

pmsURL.qupps.biz. 600 IN TXT "http://webbin.qupps.biz/p ms.php"

and the pmc client program can retrieve that value by looking up the TXT record for the
domain name pmsurl.qupps.biz (Figure G.1). (Recall that domain names are case-insensitive.)
We configure individual records in our DNS for each configuration variable we need. In
some respects, our TXT record is functioning like an SRV record.

Figure G.1: Application queries the DNS for configuration data

G.1.2 A more sophisticated solution

RFC 1464, Using the Domain Name System To Store Arbitrary String Attributes, specifies how to
associate arbitrary string information with attributes in a TXT record. The TXT record’s rdata
has the syntax:

" attribute-name=attribute-value"

For instance, a sample TXT resource record set could contain:

zoo.qupps.biz. 86400 IN TXT "animal=Leopard"
zoo.qupps.biz. 86400 IN TXT "animal=Pussycat"

Coming back to our example, we want the pmc client to retrieve the URL from the DNS, so
we create an entry for it in our DNS zone:

$ dig pmsservice.qupps.biz txt
;; ANSWER SECTION:
pmsservice.qupps.biz. 600 IN TXT "desc=poor man’s ddns"
pmsservice.qupps.biz. 600 IN TXT "enabled=true"
pmsservice.qupps.biz. 600 IN TXT "url=http://webbin.qup ps.biz/pms.php"

Note the following points:

• The TXT record with the enabled= keyword illustrates how you could globally (and
remotely) disable an application (e.g. during downtime for maintenance) – an inter-
esting concept.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Appendix G. Bits and pieces 639

• Recall that a DNS server will return the records in the RRset in “pseudo-random”
order, so you have to search for your attribute-name= record in the RRset.

• Remember that TXT records in the DNS shouldn’t contain sensitive information be-
cause they are visible to anybody, for the asking.

The code required to query a TXT record is simple, although we don’t implement all RFC
1464 semantics here: (Download this Perl example, and another example in the C program-
ming language, for *nix and Microsoft Windows, from the book’s Web site (☞D311).)

Listing G.1: Query TXT RR for pms URL

#!/usr/bin/perl
use strict;
use Net::DNS;

my $domain = "pmsservice.qupps.biz";
my $key = "uRL"; # attribute requested
my $val = "?";
my $res = Net::DNS::Resolver->new; # create resolver objec t

my $query = $res->search($domain, ’TXT’); # perform query
die "query for $domain failed: ", $res->errorstring, "\n" u nless ($query);

foreach my $rr ($query->answer) { # RRset
if ($rr->type eq ’TXT’) {

my $txt = $rr->txtdata;

if ($txt =˜ /ˆ${key}.*="?(.*)"?$/i) {
$val = $1;
last;

}
}

}
print "value = [$val]\n";

The only application we’re aware of that uses TXT records like this is the clamav anti-virus
system (http://www.clamav.net/). It uses a TXT record to publish the version number of
its signature database. clamav clients query the DNS:

$ dig current.cvd.clamav.net txt
current.cvd.clamav.net. 900 IN TXT "0.93.1:46:7531:1214 123341:1"

to decide if they need to download a new version of the signature database.

G.2 A DNSBL to look up country-codes

The domain countries.nerd.dk hosts DNSBLs in which you look up IP addresses to determine
the country in which that address is located. Andreas Plesner Jacobsen created the ser-
vice (see http://countries.nerd.dk/). The data set is rebuilt every day from a variety of
sources: the Regional Internet Registries (RIPE, ARIN, APNIC, AFRINIC), with some man-
ual additions. Jacobsen makes the zone available over the public DNS, and also as files in

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

640 Alternative DNS Servers – Jan-Piet Mens

rbldnsd format that you can download and periodically synchronize if you make heavy use
of the service.
The hostnames used for the DNS zones at countries.nerd.dk are based on the country

code top-level domain (ccTLD) names for each country – de for Germany, ca for Canada,
us for USA, etc. To access a country-specific DNSBL zone, use cctld.countries.nerd.dk: for
example, the server au.countries.nerd.dk contains the zone for Australia. Or you can use
zz.countries.nerd.dk, which contains the data for all countries.
As with all DNSBLs, you take the IP address you want to look up, reverse the octets, and

append the domain of the blacklist. For example, if your IP address is 84.60.111.207, you
query for the following domain:

$ dig +short 207.111.60.84.zz.countries.nerd.dk txt
"de"

The zone provides answers to queries both as A and TXT records:

• The address in the reply for an A record contains the ISO 3166 country code number
encoded in the last two octets of the answer. For example, Spain has a numeric ISO
code 724, so if you look up a Spanish address, the returned IP is 127.0.2.212 ((2 * 256)
+ 212 = 724). Whereas, if you look up an address assigned to Germany (country code
276), the returned IP is 127.0.1.20 ((1 * 256) + 20 = 276).

You’ll find a list of the two-letter country codes and decimal values used by this black-
list at http://ftp.ics.uci.edu/pub/ietf/http/related/iso3166.txt , and the IP
addresses in the 127/8 network at http://countries.nerd.dk/isolist.txt .

• The TXT record returns the lower-case two-letter ISO 3166 country-code.

The maintainer uses this blacklist in his mail server to block e-mail from specific coun-
tries, but you can also use it, for example, to determine which countries your Web server
visitors arrive from, and we’ll show you how to do that now.

G.2.1 Mirror and serve the blacklist

If you make heavy use of the list, you should set up your own DNS server to serve the
blacklist, as we discussed in Section 16.4. (Remember that rbldnsd can serve multiple DNS-
BLs simultaneously.)
To create your own zone, proceed as follows:

1. Choose a specific directory for the zone files retrieved by rsync. For example:

mkdir /var/spool/geo
chown nobody /var/spool/geo
cd /var/spool

2. Set up rsync to mirror the particular list you’re interested in:

$ rsync rsync://countries-ns.mdc.dk/zone/zz.countries.nerd. dk.rbldnsd geo/

You typically set up rsync to run via cron (but not too frequently, say once a day).

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Appendix G. Bits and pieces 641

3. Choose a name for the zone. We choose qupps.geo. (Because we’ll only be using the
name internally, we can use anything we like.)

4. Set up rbldnsd (Section 16.4) to serve the zone you’ve just chosen:

rbldnsd -u nobody -p /var/run/geo.pid -t 1200 -c 60 -b 127.0.0.3 /53 \
qupps.geo:ip4set:zz.countries.nerd.dk.rbldnsd

Note howwe use an address on the loopback interface. Note also the format of the last
argument to rbldnsd: ip4set is the data type of the file you mirrored in step 2 above,
and the rest is the filename.

5. Perform a test query to see that everything is running:

$ dig @127.0.0.3 +short 207.111.60.84.qupps.geo
127.0.1.20

G.2.2 Using your new country blacklist

Here are some ideas for using your new blacklist:

• Configure yourmail servers to use this list to either block e-mail from specific countries
(not recommended) or to add a message header containing the country of origin, so
your users can simply satisfy their curiosity, or configure their e-mail clients to junk
messages from a specific country.

• Provide language-specific information on a Web site, according to the visitor’s loca-
tion.

• Analyze your Web server log files, so see where your visitors come from. We show
you how to do this now.

Determine country of origin in Apache log files

The Apache web server is typically configured to log, in a file called access log , an entry
for every resource it serves, like this:

192.0.100.2 - - [21/Jun/2008:00:00:24 +0200] "GET /feed/ HTTP/1.0" 302 21 blog.fupps.c...
192.168.1.4 - - [21/Jun/2008:00:04:00 +0200] "GET /category/blackberry HTTP/1.1" 400 926...
192.0.10.109 - [21/Jun/2008:00:07:55 +0200] "GET /category/syncml/page/3/ HTTP/1.1" 400 9...
192.0.18.213 - - [21/Jun/2008:00:10:10 +0200] "GET /extensions/whatmon HTTP/1.1" 200 206...

The first “word” on each line is the IP address of the client that retrieved the resource. We
can create a small program that uses our new geo-DNSBL to find out which country the
request came from.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

642 Alternative DNS Servers – Jan-Piet Mens

Listing G.2: Determine geographic location of Apache clients

#!/usr/bin/perl
Read IP addresses from first field of Apache logfile and det ermine country

use strict;
use Net::DNS;

my $domain = "qupps.geo";
my $res = Net::DNS::Resolver->new(# create resolver objec t

nameservers => [qw(127.0.0.3)]);

my ($ip, $rev, $query);
my %ipcache; # cache identical IP
my %countrylist; # count countries

while (<>) {
chomp;
s/\s.*$//; # leaves only IP

if (defined($ipcache{$ip = $_})) {
$countrylist{$ipcache{$ip}}++; # IP seen; incr.counter
next;

}

my ($a, $b, $c, $d) = split(/\./, $_, 4);
$rev = "$d.$c.$b.$a.$domain";

$query = $res->search($rev, ’TXT’); # perform query
if ($query) {

my $rr = ($query->answer)[0];
if ($rr->type eq ’TXT’) {

$ipcache{$ip} = $rr->txtdata;
$countrylist{$rr->txtdata}++;

}
} else {

warn "query $rev failed: ", $res->errorstring, "\n";
}

}
foreach my $country (keys %countrylist) {

print $countrylist{$country} . " " . $country . "\n";
}

The program caches queries itself, and prints a list of frequency / country pairs to stdout :

$ apachelog < /var/log/htttpd/access_log | sort -n
...
42 nl
52 fr
93 uk
208 cn
776 de
...

That completes our discussion of this special DNSBL.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Appendix G. Bits and pieces 643

G.3 Automatic DNS NOTIFY with OpenLDAP and slapi-dnsnotify

Stefan Walter has created a package that consists of an OpenLDAP SLAPI plug-in called
slapi-dnsnotify and a stand-alone program called notify-dns-slaves (Figure G.2). This combina-
tion lets you set up your LDAP directory server to:

1. Automatically increment a serial number in the zone’s LDAP directory entry when
you modify a zone, and then . . .

2. Automatically send out DNS NOTIFY requests to the corresponding zone’s slave name
servers, using the ancillary notify-dns-slaves utility.

Neither of these functions is provided by PowerDNS’ or BIND SDB’s LDAP back-ends – which
is why the plug-in was needed.
Walter created the plug-in to have a zone’s serial number updated automatically when-

ever he updated a zone’s data, irrespective of how he updated the data. (You could easily
add that functionality in a Web front-end, say, but that wouldn’t notice when you added a
record with an LDAP editor.) Furthermore, instead of waiting until a slave server checks
for a fresh copy of the zone, he wanted the (BIND) slaves to be notified about the zone’s
modification immediately.

Figure G.2: slapi-dnsnotify architecture

After building the plug-in as described in its documentation, you configure the plug-in by
adding it to slapd.conf :

plugin postoperation /usr/local/lib/slapi-dnsnotify.s o plugin_init \
base-dn =dc=qupps,dc=biz \
zone-attribute =associatedDomain \
soa-attribute =sOARecord \
ns-attribute =nSRecord \
enable-auto-serial \
notify-delay =10

When slapd starts up, it instantiates the SLAPI plug-in, loading it from the shared library
specified in the plugin statement. The plug-in launches a single child process, notify-dns-slaves,
and sets up a UNIX pipe to communicate with notify-dns-slaves.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

644 Alternative DNS Servers – Jan-Piet Mens

The plug-in assumes an LDAP entry is a zone if it has an sOARecord attribute (but you
can configure a different attribute). Information about the zone (the zone’s name and its
Name Servers) is taken directly from the LDAP entry containing the sOARecord :

dn: dc=qupps.biz,ou=pdns,ou=dns,dc=qupps,dc=biz
dc: qupps.biz
objectClass: dcObject
objectClass: dNSDomain2
objectClass: domainRelatedObject
sOARecord : ns1.qupps.biz. hostmaster.mens.de. 17 10800 900 604800 3 600
NSRecord : ns1.qupps.biz
NSRecord : ns2.qupps.biz
mXRecord: 10 mail.qupps.biz
aRecord: 192.168.1.20
dNSTTL: 86400
associatedDomain: qupps.biz

When the plug-in detects a modification or addition of an LDAP directory entry, it updates
the zone’s serial number, extracts the corresponding NS records from the LDAP entry, and
communicates those via the pipe to the notify-dns-slaves program. This sends the DNS NO-
TIFYs, efficiently over a single datagram socket, to the specified (slave) servers, without
blocking for each NOTIFY.
Because of the automatic slave server notification, the slaves are quickly informed when

a zone changes, and they retrieve the zone via an AXFR zone transfer.
You can get slapi-dnsnotify and its documentation from http://memberwebs.com/stef/

software/slapi-dnsnotify/ .

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Appendix

H
Scripting PowerDNS Recursor

with the Lua programming
language

Two weeks before this book was delivered to the printers, a new version of PowerDNS Recur-
sor was released. This version includes scripting capabilities, using the Lua language. You
can use this to create or modify on the fly answers to queries received by PowerDNS Recursor.
We give you a (very) short introduction to Lua, an overview of how PowerDNS Recursor uses
it, and explain how you use Lua functions to manipulate DNS queries.

H.1 A (very) short overview of Lua

Lua is a powerful, fast, light-weight, embeddable scripting language, designed by Walde-
mar Celes, Roberto Ierusalimschy, and Luiz Henrique de Figueiredo in 1993.

Figure H.1: You can embed Lua in your applications

It has much of the functionality found in a modern scripting language: scope, control
structures, iterators, and standard libraries for processing strings, performing mathematical
operations and interacting with a machine’s environment. Tables are the the only data-
structuring mechanism in Lua. Tables are dynamic: they grow when data is added to them
(by assigning a value to a hitherto non-existent field) and shrink when data is removed
from them (by assigning nil to a field). You can use a table as an array (indexed from 1),
an associative array (sometimes called a hash or a dictionary), a record, etc. The contents
of tables in Lua can include any combination of types. Tables’ keys can be of any Lua value,
including a function or another table. (For a complete description of the Lua language, see
http://www.lua.org/manual/5.1/ , and the book Programming in Lua at http://www.lua.

org/pil/ . There is also a very lively and helpful mailing list at http://www.lua.org/lua-

l.html .)

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

646 Alternative DNS Servers – Jan-Piet Mens

Lua is portable (it runs on a variety of platforms), it is small, it is free software, and it is
used in a large variety of applications including games (World of Warcraft, SimCity 4), pro-
ductivity tools (Adobe Photoshop Lightroom, LuaTeX), window managers (Ion), databases
(MySQL Proxy), networking utilities (Nmap, Wireshark), and even in some Olivetti printer
firmware.
We said, that Lua is embeddable – it is designed to be used from within your own pro-

grams. But why would you do that? Lua effectively gives your application a “macro lan-
guage”. Lua scripts can extend the host application’s own capabilities, but the host language
can also extend Lua – C functions can call Lua functions and vice versa (Figure H.1).
We show you a small example in the next section. (Skip this if you don’t enjoy program-

ming.)

H.1.1 Example – embedding Lua into your program

Many programs have some sort of configuration file, where you store information your
program needs. Let’s assume your program needs a configurable directory name; youmight
code something like this in your C program, and write a getconfig () function to parse
our.conf and extract the value you need:

char *spooldir = getconfig("our.conf");
printf("Using directory: %s \n", spooldir ? spooldir : "<undefined>");

Let’s look at the function getconfig (), which we’ve Lua-enabled:

Listing H.1: Lua-enabled getconfig () function retrieves a variable

char *getconfig(const char *configfile)
{

lua_State *L = lua_open();
const char *cf;

luaL_openlibs(L);

if (luaL_loadfile(L, configfile) || lua_pcall(L, 0, 0, 0))
bail(L, "can’t run configuration file: %s", lua_tostring(L, -1));

lua_getglobal(L, "SPOOLDIR");
cf = lua_tostring(L, -1);
lua_close(L);

return (cf == NULL) ? NULL : strdup(cf);
}

This initializes Lua and loads Lua’s libraries. After Lua has loaded our.conf and syntax-
checked it, getconfig () retrieves the value of SPOOLDIRfrom Lua, and returns a copy of that
value to the caller, or NULLon failure.
Let us now have a look at three different versions of the our.conf configuration file:

1. Our first version isn’t terribly exciting (but it is a complete, if trivial, Lua program):

1 SPOOLDIR = "/var/spool"

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Appendix H. Scripting PowerDNS Recursor with the Lua programming language 647

When run, our program prints:

Using directory: /var/spool

Note how the double quotes (") have disappeared. (Remember: Lua is interpreting the
file’s content, and for Lua this is a string constant.)

2. Lets add some Lua variables and functions to our.conf : (Names are self-explanatory;
the “.. ” is a string concatenation operator.)

2 t = os.getenv("HOME") -- is $HOME set?
3 t = t or os.getenv("TEMP") -- for Windows
4 SPOOLDIR = t .. "/work" .. ’/’ .. (os.date("%Y-%m-%d")) -- st rftime(3)

and the same program, run on our system, now prints:

Using directory: /home/jpm/work/2008-06-29

3. This time we append the following lines to our.conf ’s content:

5 http = require "socket.http" -- load library
6 url = "http://www.qupps.biz/˜jpm/cf" -- URI
7 body, code = http.request(url) -- perform request
8 if code == 200 then -- success
9 local line = string.gsub(body, "\n", "") -- strip newlines
10 SPOOLDIR = line
11 end

Our program now sets SPOOLDIRas in step 2, but if the HTTP request succeeds (i.e.
the URL can be retrieved), that overwrites the variable’s value. Note that we modified
only our configuration file, not our application program.

This small example shows a bit of the power you get when your application embeds Lua.
Even in such a trivial task as reading a configuration file, Lua adds a wealth of functionality.
(Our tiny program now has a tremendous “configuration back-end” – think /etc/profile

just for us.)

H.2 Add Lua scripting to PowerDNS Recursor

PowerDNS Recursor supports Lua scripts in versions 3.1.7 onwards, and the binary packages
on its Web site (http://www.powerdns.com) include Lua-support.

PowerDNS Recursor’s scripting lets you configure it to modify DNS replies, using one or
both of the following functions, which you define in the Lua script (Figure H.2):

preresolve This is called before the caching server attempts to resolve a DNS query (i.e. be-
fore any upstream servers are contacted). If this function provides an answer,
it overrides the answer the public Internet could have provided otherwise.

nxdomain This function is called after the resolution has occurred, if the answer resulted
in an NXDOMAIN status (not found). You can use nxdomain() to override the
“not found”, by supplying a “found it after all” answer.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

648 Alternative DNS Servers – Jan-Piet Mens

Figure H.2: How PowerDNS Recursor uses the Lua script functions during query processing

Possible scenarios for using Lua functions in your PowerDNS Recursor server include:

• Load balancing within your own organization. You can implement a preresolve func-
tion that answers a query for a specific hostname from a list of addresses managed
by your Lua script. (Note that this load-balancing is used by your internal hosts only,
because it is implemented on your caching server, and not on your Internet-facing
authoritative servers.)

• Catch typos. You know that your general manager always mistypes www.qupps.biz (he
uses an “s” instead of the “z”), so you add an nxdomain script that returns the correct
address anyway. (It avoids you having to answer his questions about the reliability of
your Web servers. . .)

• Advertisement blocking. You want to “protect” your users from certain Web sites, so
you configure a preresolve function that catches queries for those and returns a harm-
less address, say 127.0.0.1 instead. Fredrik Danerklint has implemented such a system,
using an externally acquired hosts file1, together with an optional patch to PowerDNS
Recursor. The patch adds a call-lua-function that dumps statistics of the function’s use
and lets you load new hosts (see http://www.fredan.org/os/). (If you want to block
such domains for Web browsers only, you can use squid instead.)

H.2.1 Configure PowerDNS Recursor to use Lua scripts

Before attempting to get scripts running, we recommend you configure PowerDNS Recursor
normally and get that working (Section 17.3), because the additional level of complexity
introduced by scripting can make errors difficult to find. Then:

1. Create your Lua script, containing a preresolve and/or an nxdomain function. You can
name the file however you want to. (We’ve called it qupps.lua .)

1Danerklint doesn’t maintain the hosts file himself; note the terms of use (which are included in the file itself).

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Appendix H. Scripting PowerDNS Recursor with the Lua programming language 649

2. Configure your recursor.conf file to use the script, by specifying its full pathname:

lua-dns-script =/etc/powerdns/qupps.lua

3. Restart PowerDNS Recursor, and ensure no errors are reported. (A faulty Lua script will
prevent PowerDNS Recursor from starting.)

4. To modify the script’s behavior, edit and save the script file, and use rec control (Sec-
tion 17.3.2) to reload it at runtime (i.e. without restarting the server):

rec_control reload-lua-script
ok - loaded script from ’/etc/powerdns/qupps.lua’

If the script cannot be compiled when you reload it (e.g. it contains syntax errors),
PowerDNS Recursor keeps the currently running script loaded, and warns you there is
a problem:

Retaining current script, error from ’/etc/powerdns/qupp s.lua’: ←֓
Error loading LUA file ’/etc/powerdns/qupps.lua’: ←֓
/etc/powerdns/qupps.lua:5: ’=’ expected near ’ret’

5. You can disable the script entirely, by removing it from PowerDNS at run-time, and you
can reload it again later, if you want:

rec_control unload-lua-script
unloaded current lua script

H.2.2 Writing a Lua function for PowerDNS Recursor

PowerDNS Recursor calls the script function(s) for each query it receives, passing them (a) the
IP address of the requesting client (b) the requested domain name, and (c) the numeric query
type (Table H.1). (Note that the domain name is always fully qualified and always ends in a
dot.)
Your Lua functions have access to the query codes through a table called pdns . For exam-

ple, if your function wants to return a CNAME to PowerDNS Recursor, you can use the numeric
constant 5 or the value pdns.CNAME – they are equivalent.

qtype qcode qtype qcode qtype qcode
A 1 SOA 6 TXT 16
NS 2 PTR 12 SRV 33
CNAME 5 MX 15 ANY 255

Table H.1: Common query types and codes

If your function decides to handle a request, it must return a result code of 0 together
with a Lua table containing records to be put in the DNS reply. If, on the other hand, your
function decides not to handle this request (for example because it realizes it shouldn’t be
overriding an NXDOMAIN for this particular query), it must return -1 and an empty table,
indicating that PowerDNS Recursor should proceed “as normal” for this request – i.e. as if
your function weren’t there.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

650 Alternative DNS Servers – Jan-Piet Mens

H.2.3 Example – Override an NXDOMAIN

Recall that our CEO mistypes frequently, and we want to please him. We create a simple
Lua function in the file qupps.lua , to override an NXDOMAIN for the domain www.qupps.bis
(note the “s” at the end):

Listing H.2: Example Lua function for nxdomain

function nxdomain(ip, domain, qtype)
if domain == ’www.qupps.bis.’ then

return 0, {{ qtype = pdns.A, content = ’192.168.1.20’ }}
end
return -1, {} -- unhandled

end

This nxdomain function checks if the domain name (note the trailing period) equals what
we are searching for, and if so, it returns 0 (indicating it has handled the query) and a Lua
table with a single DNS A reply in it (irrespective of whether the original query was for an A
record).

H.2.4 Example – Redirect a domain

This example uses the preresolve function to intercept a domain: it returns a CNAMEwhenever
something.someyyplace.com is queried:

Listing H.3: Example Lua function for preresolve

function preresolve(ip, domain, qtype)
ret = {} -- create table
if -- for someyyplace.com, return CNAME for any query

string.find(domain, "ˆsomeyyplace.com.$") or
string.find(domain, "[%p]someyyplace.com.$") then

ret[1] = { qtype = pdns.CNAME, content = "www.qupps.biz" }
return 0, ret

end
return -1, ret -- nothing to do; tell Recursor to handle it

end

Note the following points:

• If you need both preresolve and nxdomain handling, add both functions to the same Lua
script file.

• If preresolve doesn’t handle the query (i.e. it returns -1), nxdomain is invoked (if you’ve
configured it, and if the query returns NXDOMAIN).

• Within your Lua script, you can use matchnetmask () (a function provided by Pow-
erDNS Recursor) to match querying clients (consult the documentation at http://doc.

powerdns.com/recursor-scripting.html).

• Carefully consider whether you need to implement scripting in your caching server,
and test it thoroughly before deploying it.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Glossary

ACE ASCII Compatible Encoding
ACL Access Control List
AJAX Asynchronous JavaScript and XML
API Application Programming Interface
ASCII American Standard Code for Information Interchange
ASN.1 Abstract Syntax Notation number 1
AXFR Zone Transfer
BDB Berkeley database
BOOTP Boot Protocol
BSD Berkeley Systems Distribution
ccTLD Country-Code Top-Level Domain
CDB Constant Database
CEST Central European Standard Time
CGI Common Gateway Interface
CLI command-line interface
CPAN Comprehensive Perl Archive Network
CRL Certificate Revocation List
CVS Concurrent Version Control System
DBI Database Interface (Perl)
DHCP Dynamic Host Configuration Protocol
DLV DNS Look-aside Validation
DMZ Demilitarized Zone
DNSBL DNS Black-list
DNSSEC DNS Security Extensions
DNS Domain Name Service
DSN Database Source Name
EDNS0 Extension Mechanisms for DNS
FAQ Frequently Asked Questions
FQDN Fully Qualified Domain Name
FTP File Transfer Protocol
GHz Gigahertz
GID group ID
gTLD generic Top-Level Domain
HMAC Hash Message Authentication

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

652 GLOSSARY

IANA Internet Assigned Numbers Authority
ICANN Internet Corporation for Assigned Names and Numbers
IDN Internationalized Domain Name
IMAP Internet Message Access Protocol
IOU I Owe You
IPC Interprocess Communication
IP Internet Protocol
ISC Internet Software Consortium
ISO International Standards Organization
ISP Internet Service Provider
IXFR Incremental Zone Transfer
KSK Key Signing Key
LAN Local Area Network
LDAP Lightweight Directory Access Protocol
LDIF LDAP Data Interchange Format
LOC location
MIME Multipurpose Internet Mail Extensions
MTA Mail Transfer Agent
MUA Mail User Agent
NAS Network Attached Storage
NFS Network File System
NIC network interface card
NIC network information center
NSD Name Server Daemon
NSS Name Service Switch
NTP Network Time Protocol
ODBC Open Database Connectivity
OID object Identifier
PAM Pluggable Authentication Modules
PGP Pretty Good Privacy
PHP Hypertext Preprocessor
PID process ID
PPP Point to Point Protocol
RAID Redundant Array of Inexpensive Disks
RBL Real-time Black-List
RDBMS Relational Database Management System
RDN Relative Distinguished Name
REST Representational State Transfer
RFC Request For Comments
RR resource record
RRset resource record set
RSA Rivest, Shamir, Adleman
RSS Really Simple Syndication
SASL Simple Authentication and Security Layer
SHA Secure Hash Algorithm

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

GLOSSARY 653

S/MIME Secure MIME
SMTP Simple Mail Transfer Protocol
SNMP Simple Network Management Protocol
SOA start of authority
SOHO Small-Office/Home-Office
SPOF single point of failure
SQL Structured Query Language
SRV service
SSH secure shell
SSL Secure Sockets Layer
SVG Scalable Vector Graphics
TAI Temps Atomique International
TCP Transmission Control Protocol
TLD Top-Level Domain
TLS Transport Layer Security
TSIG Transaction Signatures
TTL Time to Live
UDF User Defined Function
UDP User Datagram Protocol
UID user ID
URI Uniform Resource Identifier
URL Uniform Resource Locator
UTF Unicode Transformation Format
WAN Wide-Area Network
RPC Remote Procedure Call
XML eXtensible Markup Language
ZSK Zone Signing Key

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

654 GLOSSARY

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Index

In the index, many terms are marked with a small superscript (as in access-controlUnbound, for example), to indicate
the program or brand of server the item relates to, or in which chapter the term appears. Page numbers
in italics indicate where terms are defined. Variable names (e.g. $UID) are sorted under their initial
letter, not under “$”.

+tcp dig option , 32, 33
+trace dig option , 33
--authonly MaraDNS option , 93
--enable-bind8-stats NSD option , 265
--prefix confi gure option , 328
--replace mydnsimport option , 107
-H ldns-keygen option , 276
-LLL ldapsearch option , 592
-W ldapsearch option , 592
-a dnssec-keygen option , 519
-b dnssec-keygen option , 519
-b ldapsearch option , 592, 593
-b rbldnsd option , 380
-c rndc-confgen option , 392
-d dnssec-signzone option , 532
-d unbound option , 419
-e dnssec-signzone option , 544
-f dnssec-keygen option , 520
-k dnssec-signzone option , 521
-l dnssec-signzone option , 534
-n dnssec-keygen option , 519
-n netstat option , 112
-o nsd-checkconf option , 270
-r dnssec-keygen option , 519
-s dnssec-signzone option , 544
-t dig option , 92
-v unbound option , 419
-x dig option , 38
-x ldapsearch option , 592
-z nsd-checkconf option , 270

.dsset file DNSSEC, 521

.keyset file DNSSEC, 521, 524

.signed file DNSSEC, 521

.soa file fix-SOA, 605

.zone file fix-SOA, 605

| , see pipe symbol
2038 (year), 313

a6Record LDAP attribute, 194

aAAARecord LDAP attribute, 134, 135, 194

access control, see ACL

access-control Unbound, 421
access log file Misc, 641

account db column, 125, 130

account LDAP class, 582

ACE, 498

IDNA, 498

Protocol selection, 504

ACID database transactions, 71

ACL

BIND views, 179
BIND with hidden PowerDNS, 154
BIND, allow-transfer , 172

BIND, allow-update , 172

BIND, dynamic updates, 178
BIND, example, 170
DLZ, in view, 250
Exim to use DNSBL, 381
LDAP, generate from, for named.conf , 607

MaraDNS, 88

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

656 INDEX

MaraDNS, TCP queries, 87
MaraDNS, admin acl, 83
MaraDNS, for recursion, 90
MaraDNS, recursive acl, 85
MyDNS, dynamic updates, 106
NSD notify, 267
NSD zone protection, 277
nsupdate, 467
OpenLDAP, 589, 595

performance, influence in slapd, 558
rbldnsd, support in, 378
SDB, in zone transfer, 199
slapd, 595

Unbound, 421
use in securing back-ends, 565

acl clause BIND, 171, 172

active db column, 98, 99, 103

Active Directory, Microsoft, 350

Adams, Douglas, 505

add zone

DLZ with MySQL, 231
ldapdns, 323
NSD, 272
BIND SDB, 207
slave,NSD, 273

add-childns program, 295
add-ns program, 295, 303
additional section in dig output, 31
addn-hosts dnsmasq, 336
address dnsmasq, 339
addresses, IP private, see private IP addresses

Adleman, Leonard, 543

admin.php program, 107–109
admin acl MaraDNS, 83
adns package, 496
ADSL, 332

advertisement, blocking with Lua, 648
AFRINIC, 639

aFSDBRecord LDAP attribute, 194

Ahern, William, 249

Aitchison, Ron, 186

Albitz, Paul, 186

Alexandra, v, 588, 695

alexi, 359

algorithm NSD, 268

alias dnsmasq, 337
Alice, 511

alien program, 585
Allen, Robbie, 356

allnodes () function, 204, 207, 210, 211, 221–223,

226, 228, 230, 233, 235, 237–239, 246

allow-axfr MyDNS, 103, 105
allow-axfr-ips PowerDNS, 144, 146
allow-from Recursor, 396

allow-notify NSD, 267–269, 274, 280
allow-recursion statement BIND, 172

allow-recursion PowerDNS, 144, 145, 148
allow-tcp MyDNS, 103
allow-transfer statement BIND, 172, 199, 200, 218,

280, 655

allow-update statement BIND, 172, 177, 178, 473,

655

allow-update MyDNS, 103, 106
allowzonexfer () function, 237, 239, 240

allowzonexfr () function, 215, 221–223, 226, 228,

230, 233, 236, 238, 239, 246

alternative database in DLZ, 233

alternative root servers, 452

Angelo, Anthony J. D’, 187

answer section in dig output, 31
Ant package, 463
Apache

BIND, comparison with, 167
country, in log files, 641

Directory Studio, 54, 587, 601

Web server, 108, 308, 480, 641, 695

API in DLZ, 215

APNIC, 639

Applications (IDNA), 498

apt-get program, 68
aRecord LDAP attribute, 134, 135, 194, 323, 324, 444

ARIN, 639

ARM, 186

AS112, 63, 426, 429, 430

AS112 servers, 399

ASCII (IDNA), 498

ASCII Compatible Encoding, 498

askmara program, 92
ASN.1, 249, 598

Assmann, Claus, 386

associatedDomain LDAP attribute, 134, 135, 138

asymmetric, 507

ATM card, 526

@file, 303, 312, 405, 406, 408, 409, 451

attribute, 265

auth-nxdomain statement BIND, 172

auth-zones Recursor, 396, 400
authenticate, 485

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

INDEX 657

authoritative, 11, 413

authoritative dnsproxy, 415
authoritative-port dnsproxy, 415
authoritative-timeout dnsproxy, 415
authority

defined, 12

how DLZ knows about a zone, 220

section in dig output, 31
authority () function, 203–206, 210, 221, 223, 226,

228, 229, 233, 235, 239

authorized keys file monitoring, 566

auto update ptr MyDNS, 108
auto update serial MyDNS, 108
autoconf program, 68, 93, 281, 385
automake program, 68
automatic DNS updates, 350

aux db column, 99

awk program, 306
AXFR

defined, 17

serial number, relevance, 42

AXFR
GENERALDNS, 17

AXFR
MaraDNS, 87–89

AXFR
Misc, 644

AXFR
MyDNS, 105, 107

AXFR
MySQL, 633

AXFR
NSD, 262, 267, 268, 270, 272

AXFR
Performance, 548, 549, 552–557

AXFR
Perl, 358

AXFR
PowerDNS, 116, 118, 128

AXFR
SDB, 204, 207

AXFR
Windows, 350, 351

AXFR
rbldnsd, 378

AXFR
tinydns, 294, 301, 302, 309, 310

axfr db table, 230

$AXFRvariable, ldapdns, 319, 327

$AXFRvariable, tinydns, 302

axfr-get program, 284, 302–304, 309, 310, 313
axfr.log file BIND, 173

axfrdns program, 284, 285, 287, 297, 301, 302, 310, 679

balance.ip file SDB, 211

bank forgery, 506

Barth, Wolfgang, 578

bash program, 355
basic requirements for NSD, 282

Bauer, Henning, 314

BDB, see also BDBHPT

environment in DLZ, 243

introduction, 259

NSS, 491

operation modes, 243

BDBHPT, 385

DLZ driver, 241
DNSBL with DLZ, 385
layout of databases, 244

loading data from MySQL, 615

manipulating databases, 247

replication of databases, 248

zone configuration, 242

benchmarks, 546

Berkeley DB, see BDB

Berners-Lee, Tim, 261

Bernstein, Daniel J., 168, 283, 284, 312

Beyer, Steffen, 89

BIND, 167–186, 391–395
authoritative server, 169

bind addresses, 171

books, 186

caching server, 169, 392

create zones.incl with a MySQL UDF, 632

delegation, 442

deployment scenarios, 169

DLV, 534

DLZ addon, 215

DNSSEC trust anchors, 528

DNSSEC-signed zone, serving, 522

dynamic DNS updates, 178

dynamic DNS updates, accept, 472

forward queries to ldapdns, 327
forwarding, 394

forwarding zones, 174

front-end to a hidden server, 170

geographical filters in views, 186

hidden server, PowerDNS, 154
hints file for root server, 393

including files in named.conf , 172

limitations when using SDB, 188

load balancing in, 212

logging, 173

logging for DNSSEC, 529

lower startup time with DLZ, 214

master and slave zones, 174

master server with a NSD slave, 279
performance compared with DLZ, 218

performance results of authoritative server, 553

performance results of caching server, 559

private root server, 394

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

658 INDEX

query logging, 181

rbldnsd, forwarding to, 380
reasons for deployment, 169

rndc keys, creating, 392
root hints, 175

root server, configuration for, 450

sample configuration, authoritative server, 170

scenarios, deployment, 169

secure BIND template, 186

slave server with an NSD master, 278

slave to a stealth server with MySQL, 632

SOA serial numbers, automatic, 604

statistics, 181

statistics server, 182

statistics, collecting, 571

stub zones, 175

TSIG keys and NSD, 278, 279
TSIG secure zone transfers and updates, 176

views

Bind DLZ, 250
geographical filters, 186

split horizon, 179

Web-based utilities, 462

Windows, 352

XML statistics, 182

zone configuration, 170

zone file for localhost, 393
zone master files, generate from LDAP, 459

zones in databases with DLZ, 217

zones, mixed SDB and normal, 188

Bind DLZ, see DLZ
BIND SDB, see SDB

bind-config PowerDNS, 121
bind-domain-status PowerDNS, 151
BIND-format zone file, see zone master file
bind-list-rejects PowerDNS, 151
bind-reload-now PowerDNS, 151

bind2csv2 program, 91
BINDInstall.exeWindows program, 352
black-list, see DNSBL

black-lists in Exim, 382

block SRV records, 345

blocklist, 372

Bob, 511

bogus-priv dnsmasq, 337
Boling, Diane M, 59

books

Berkeley DB, 259

BIND, 186

DHCP, 484

firewalls, 578

LDAP, 603

Linux security, 578

Nagios, 578
Postfix, 386

Practical TCP/IP, 28

Sendmail, 386

tuning MySQL, 561

Windows DNS, 356

Bortzmeyer, Stephane, 167, 457

branch office, 389

brand, name server, xxxiii

Brazil, 535

Brenk, A, 315

Brennr, Lokkju, 463

Brisby, Mrs., 316

BSD-type license, 93

buffer overflows, 76

building

ldns, 282
BIND, 185

djbdns, 310

DLZ, 257
dnscache, 310

dnsmasq, 348

dnsproxy, 414

drivers, 207

ldapdns, 328

MaraDNS, 93

MyDNS, 111

NSD, 281

OpenDBX, 163

OpenLDAP, 583

PowerDNS, 162

rbldnsd, 385

software on Cygwin, 355

Stanford::DNSserver, 362

tinydns, 310

Unbound, 418

Butcher, Matt, 58

Butler, Rob, xxxv, 214

C language

create a driver for SDB, 202

IDNA API, 503

poor man’s updating client, 478

programming with libunbound, 431
C++, 131

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

INDEX 659

C# IDNA API, 503

CA, see certification authority

cache poisoning, 565

cache-max-ttl Unbound, 421
cache-size dnsmasq, 340
cache-ttl PowerDNS, 145
caches, 10

$CACHESIZEvariable, dnscache, 408

caching (name) server, 10

caching server configurations, 20

caching servers

checklist, 389

deployment, 388

special case requirements, 390

workstations, 388

calculator, 452

call-lua-function Recursor, 648
callback function

libevent API, 418
SDB, 202

callbacks, 202

canonical name, 39

canonical order in DNSSEC, 542

Carey, Duane G., 213

Carol, 508

Catch 22, 144, 439

ccounts PowerDNS, 149
ccTLD

reserved for experimenting, 58

ccTLDs, 436

CDB, 286, 287, 297, 300, 310, 312, 313, 482

CDS, 586

cds.conf file OpenLDAP, 586

cdsserver program, 585, 586
Celes, Waldemar, 645

Centos, 546

certificate, 511

Certificate Revocation Lists, 512

Certification Authorities, 511

certRecord LDAP attribute, 194

CGI, 477, 573, 577

chain of authority, 526

chain of trust, 512, 530

change date db column, 126

Chaosnet, 32, 266, 423

Chapman, D. Brent, 578

Charlie, 507

$CHARSETvariable, IDNA, 499

check apt (Nagios), 576

check dig (Nagios), 577
check disk (Nagios), 576
check dns (Nagios), 577
check ftp (Nagios), 577
check http (Nagios), 577
check imap (Nagios), 577
check ldap (Nagios), 577
check load (Nagios), 576
check log (Nagios), 577
check mysql (Nagios), 577
check pop (Nagios), 577
check procs (Nagios), 576
check smb (Nagios), 576
check swap (Nagios), 576
check tcp (Nagios), 577
check udp (Nagios), 577
check zone auth (Nagios), 577
check zone rrsig expiration (Nagios), 577
Checking Disabled, 543

checklist for deployment of caching servers, 389

chroot dnsproxy, 415
chroot NSD, 266
chroot Recursor, 397, 399
chroot Unbound, 422
chroot program, 409
chroot () function, 76, 77, 83, 85, 266, 297, 318, 397,

403, 415, 419, 422

chroot dir MaraDNS, 83
CIDR, 452

CIDR calculator, 452

Cisco, 260

clamav package, 639
classless in-addr.arpa delegation, 440

clear-on-reload dnsmasq, 338
clidnsd.pl program, 365, 621
client DLZ, 217, 222, 224, 228
cluster system in dsc, 572
cn LDAP attribute, 237, 239, 493, 494, 556, 581, 598

CNAME

PowerDNS, enforce correct, trigger, 158
cNAMERecord LDAP attribute, 135, 194, 323, 326

collectd package, 573
collector, 572

Collins, Jim, 3

columns, 51

Common Gateway Interface, see CGI

compiling, see building

concurrent mode in BDB, 243

conf-home file tinydns, 311

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

660 INDEX

config-name PowerDNS, 145, 146
config.h file dnsmasq, 340, 348

configuration document, 383

configuration file, reading with Lua, 646
configuration files in revision control, 458, 566

confi gure program, 93, 216, 257, 258, 275, 328, 385
configure programs with TXT RR, 637

Connexitor Directory Services, 586

constant database, see CDB

content db column, 126, 127

content truncated, 6

control another computer, 369

control channel, 172

controlling zone transfers with an LDAP type in SDB, 199

controls clause BIND, 172, 392

convention for naming machines, 363

convert zone master files to tinydns data file, 304

Cooper, Simon, 578

coprocess, 139

corporate DNS example implementation, 27

Cosine, 190, 192, 194, 316

Costales, Bryan, 386

Costin, Claudiu, 313

country codes, ISO 3166, 640

country data in DNSBL, 639

country mapping, 360

country-coded top-level domains, 436

CPAN, 157, 313

create program, 402
create () function, 203–207, 210

cricket pdns, 153
Cricket package, 153
CRL, 512

cron program, 89, 262, 269, 273, 402, 482, 571, 633,
635, 640

cryptography, see encryption

csv2 MaraDNS, 85
csv2 file Delegation, 442

cURL, 478, 484
poor man’s updating client, 478

current file dnscache, 412

customerID db column, 126

cut program, 306
CVsup program, 300
Cygwin, 68, 76, 350, 352, 355, 356, 386, 478

installing software, 355

name server, on, 355

obtaining and installing, 356

rbldnsd, 386

Cyrillic, IDNA, 499

daemon Recursor, 397
daemon.log file PowerDNS, 121

daemontools package, 285, 306, 310, 311, 313, 318,
321, 328, 404, 411

Danerklint, Fredrik, 648

data file

LDAP, generate from, 459

data db column, 99, 227, 230, 231

data file Delegation, 444

data file Performance, 552

data file Updates, 459, 463, 485

data file tinydns, 286–289, 292, 294–300, 302–304

data.cdb file Performance, 552

data.cdb file tinydns, 286, 287, 297–300, 303

data.mens file tinydns, 302, 303

database

BDBHPT

data manipulation, 247

dns client , 244, 246

dns data , 244–246

dns xfr , 244, 246

dns zone , 244

Bind DLZ trigger for PTR records, 253
lookup operations in NSS, 490

MySQL, DLZ driver, 224
NSD, intermediate, 262
ourdnsdb , 97

ourpdns , 123

performance tests, version used, 546

queries in DLZ, 224
schema for DLZ’s MySQL driver, 231

SDB with LDAP driver, 193

tinydns, provisioning from, 297
view in DLZ, 253

database statement BIND, 188, 189, 193, 197, 205,

207, 218, 225, 234–236, 243, 252, 450, 556

database MyDNS, 101
database NSD, 265
database column

account PowerDNS, 125, 130

active MyDNS, 98, 99, 103

aux MyDNS, 99

change date PowerDNS, 126

content PowerDNS, 126, 127

customerID PowerDNS, 126

data DLZ, 227, 230, 231

data MyDNS, 99

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

INDEX 661

domain id PowerDNS, 126–128

expire MyDNS, 98

host DLZ, 227, 228

id DLZ, 226, 227

id MyDNS, 97, 98, 100

id PowerDNS, 125–128

ip PowerDNS, 129

last check PowerDNS, 125

master PowerDNS, 125

mbox MyDNS, 97, 100

minimum MyDNS, 98

name MyDNS, 98

name PowerDNS, 125–127

nameserver PowerDNS, 130

notified serial PowerDNS, 125

ns MyDNS, 97, 100

ns tinydns, 297

origin DLZ, 233

origin MyDNS, 97, 100

paid MyDNS, 103

pref PowerDNS, 164

prio PowerDNS, 126

refresh MyDNS, 98

retry MyDNS, 98

rr.zone MyDNS, 98

serial MyDNS, 98

soa.id MyDNS, 98

status PowerDNS, 125

supermasters.account PowerDNS, 130

ttl DLZ, 227

ttl MyDNS, 98, 99

ttl PowerDNS, 126, 128, 146

type DLZ, 227

type MyDNS, 98, 99

type PowerDNS, 125–127

update acl MyDNS, 98, 106, 107

xfer MyDNS, 98, 105, 106

zid DLZ, 227

zone DLZ, 226, 228

zone MyDNS, 98

database table

axfr DLZ, 230

dns data DLZ, 246

dns records DLZ, 254, 255

dns records Updates, 481

dns xfr DLZ, 246

DNSaxfr BDBHPT, 615

DNSclient BDBHPT, 616

DNSdata BDBHPT, 615

DNSzone BDBHPT, 615

domains PowerDNS, 124–130, 154

hits DLZ, 231, 232

hits Performance, 556

records PowerDNS, 124, 126–130, 146, 159

rr DLZ, 233

rr MyDNS, 97, 98, 100, 103, 106

rr Updates, 467

rrset DLZ, 226, 227, 229, 230

soa DLZ, 233

soa MyDNS, 97–100, 103, 105, 106, 108

soa Updates, 466, 472

supermasters PowerDNS, 125, 129, 130

zones DLZ, 226, 227, 230

$DATADIRvariable, OpenLDAP, 586, 588

$DATALIMIT variable, dnscache, 408

db-password MyDNS, 101
db-user MyDNS, 101, 106
DB CONFIGfile OpenLDAP, 586

DB CONFIGfile Performance, 547, 558

DBI package, 461
dc LDAP attribute, 138, 317, 324

dc LDAP class, 317

dcObject LDAP class, 135, 324, 325, 444

DD-WRT, 348

DDNS, see dynamic DNS updates

DDoS, 565

debug msg level MaraDNS, 83
decentralized administration, 438

default-ttl PowerDNS, 126, 128, 146, 554
$DEFAULTEXPIRE variable, ldapdns, 319, 322

default mbox MyDNS, 108
$DEFAULTMINIMUMvariable, ldapdns, 319, 322

default ns MyDNS, 108
$DEFAULTREFRESHvariable, ldapdns, 319, 322

$DEFAULTRETRYvariable, ldapdns, 320, 322

delegation, 12

classless, in-addr.arpa, 440

examples, 442

glue, using, 439

in-addr.arpa, 440

ldapdns, 444
MaraDNS, 442
MyDNS, 444
name server records, 439

NSD or BIND, 442
overview, 435

PowerDNS, 443
sub-domain to a server, 438

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

662 INDEX

tinydns, 444
Delegation Signer, 530

demo.ldif file OpenLDAP, 586, 588

DENIC, 43, 61

Denmark, ISO 3166 country code, 640

deployment issues with DNS servers, 14

description LDAP attribute, 239, 323, 324, 593, 600

destroy () function, 203–205

details file dnscache, 412

device LDAP class, 493

dhclient program, 470, 471, 473–475, 480, 483
dhclient-exit-hooks program, 475, 480
dhclient-script program, 471, 475, 480
dhclient.conf file Updates, 471, 473–475

DHCP, 469

books, 484

lease, 469

storing configuration data in LDAP, 484

dhcp-authoritative dnsmasq, 341
dhcp-host dnsmasq, 340, 341
dhcp-hostsfile dnsmasq, 340
dhcp-leasefile dnsmasq, 342
dhcp-option dnsmasq, 341
dhcp-range dnsmasq, 340
dhcp-script dnsmasq, 342
dhcpd program, 470, 473, 484
dhcpd.conf file Updates, 470, 473

dhcpd.leases file Updates, 472, 475, 476, 483

dhcpNetMask LDAP attribute, 484

dhcpOption LDAP attribute, 484

dhcpOptions LDAP class, 484

dhcpSubnet LDAP class, 484

Dictionary variables, 83

difffile NSD, 266, 269, 280
dig

look up IP address, 31

overview, 30

query in IDNA, 500

querying UTF-8, 500

version, of name server, 32

digest, see encryption

digital signature, 509

directory, see LDAP

directory statement BIND, 121, 171, 604

directory Unbound, 422
Directory Information Tree, 580

directory service, 579

disable-axfr PowerDNS, 146
disable-tcp PowerDNS, 146

disaster recovery, 564

distinguished name, 581

distributor-threads PowerDNS, 141, 146
DIT, 580

djbdns, see tinydns
DLL, 355

dlog program, 412, 413
DLV, 533

DLV registries, 533

DLV-set, 534

DLZ, 213–260
$, 258
%, 258
authoritative for zones, 220

automatically create PTR records, 253

BDBHPT database manipulation, 247

BDBHPT driver, 241

bind addresses, 171

configuring BDBHPT driver, 241

configuring LDAP driver, 234

configuring MySQLdriver, 224

DNSBL with the BDBHPT driver, 385

drivers, multiple, 250

finding a zone, 220

getting started, 220

high availability through replication, 253

layout of BDBHPT databases, 244

LDAP driver, 234

LDAP schema, minimal, 237

LDAP schema, normal, 239

limitations, of, 218

looking up records, 221

MyDNS’ database in DLZ, 233
MyDNS, copying zone data to BDBHPT, 615
MySQL driver, 224

MySQL schema, 231

MySQL schema, minimal, 226

patch for token names, 258

performance compared to normal zone files, 218

performance results of authoritative server, 555

processing DNS requests, 218

queried data, how, 224

queries, overview, 220

reasons for implementing, 217

replicate BDBHPT databases with Zoned, 249

replication of BDBHPT databases, 248

split-horizon with views, 250

startup time, 214

values expected by drivers, 222

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

INDEX 663

Web-based utilities, 463

Windows, 353

zone in BDBHPT, 242

dlz clause BIND, 224, 226, 228, 234–236, 242, 250–252,

254, 258

dlz statement BIND, 252

DLZ.db file DLZ, 244

dlzAbstractRecord LDAP attribute, 240

dlzAdminEmail LDAP attribute, 240

dlzdb-util program, 247
dlzExpire LDAP attribute, 240

dlzGenericRecord LDAP attribute, 240

dlzHostName LDAP attribute, 240

dlzIPAddr LDAP attribute, 240

dlzMinimum LDAP attribute, 240

dlzNSRecord LDAP attribute, 240

dlzPrimaryns LDAP attribute, 240

dlzPTRRecord LDAP attribute, 240

dlzRecordID LDAP attribute, 240

dlzRefresh LDAP attribute, 240

dlzRetry LDAP attribute, 240

dlzSerial LDAP attribute, 240

dlzSOARecord LDAP attribute, 240

dlzTTL LDAP attribute, 240

dlzType LDAP attribute, 240

dlzXFR LDAP attribute, 240

dlzZoneName LDAP attribute, 240

dlzZoneName LDAP class, 240

DN, 581

DNLDAP attribute, 603

dNameRecord LDAP attribute, 194

DNS, 4

authority, 4

blacklist filters, 383

clamav, used by, 639
configuration data, stored in, 637

corporate DNS implementation example, 27

data integrity with DNSSEC, 513

data packets, 6

defined, 4

deployment issues with servers, 14

dynamic DNS updates, 22

fictitious domain names, 58

hiding your real name servers, 19

hierarchy, 4

internationalized (IDNA), 498

labels, converting to IDN, 498

manipulating queries with Lua, 647
monitoring infrastructure, 566

name space, 4

naming of domains, 4

notifications with dnsnotify, 112
NOTIFY, 21

NSS, in, 491

performance measurement, 549

provisioning from external source, 459

query, content of, 33

querying with dig, 30
recursive vs. iterative queries, 14

redundancy with master/slave servers, 16

resource records, 34

security extensions – DNSSEC, 22

serving different split horizon servers, 18

statistics collector (dsc), 572
storage of domain information, 15

tree, 4

DNS Client, 489

DNS hierarchy, 436

DNS labels (IDNA), 498

DNS statistics, 571–574

DNS Update API, 485

dns answer () function, 368

dns client DLZ BDBHPT, 244, 246

dns data DLZ BDBHPT, 244–246

dns data db table, 246

dns port MaraDNS, 84
dns records db table, 254, 255, 481

dns sdb putnamedrr () function, 206

dns sdb putrr () function, 202, 206

dns sdb register () function, 205

dns sdlz putrr () function, 216, 222

$DNSTHREADSvariable, ldapdns, 320, 321

dns xfr DLZ BDBHPT, 244, 246

dns xfr db table, 246

dns zone DLZ BDBHPT, 244

dnsADDR() function, 367

DNSaxfr db table, 615

DNSBL, 371–386

adding records to the zone, 376

comparison, of, 386

cost of using, 372

country, determine from, 639

deciding on implementing your own, 372

DLZ, implementing with, 385
Exim, 381

forwarding from Unbound, 430

IBM Lotus Domino, 383

implementation, 372

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

664 INDEX

implementing a simple black-list, 375

mail server configuration, 377

mail server integration, 381

method of operation, 373

MTA, use existing black-list, 373

overview, 372

Postfix, 383

provider list, 386

query types, 374

reasons for implementing, 373

Sendmail, 382

subscribing to, 373

whitelisting, 375

zone name, choice of, 374

dnscache, 402–412
bind addresses, 409

caching behavior, 402

caching server on workstations, 404

central cache with forwarding, 406

centralized cache on the network, 404

configuration options, detailed, 408

configuring client resolvers, 411

deployment scenarios, 404

environment variables, configuring with, 403

forwarder, workstation, 406

forwarding, 411

implicit answers, 411

inbound cache, 407

installation, 403

logging and statistics, 411

performance results of caching server, 559

qualification, 307

root name server, 409

root server, configure to access, 451

starting and testing, 410

dnscache file dnscache, 403

dnscache-conf program, 312, 403, 409, 410
dNSClass LDAP attribute, 135, 194, 200, 448

DNSclient db table, 616

dnscmd.exeWindows program, 351, 352
DNSdata db table, 615

dNSDomain LDAP attribute, 190

dNSDomain LDAP class, 317, 324, 325, 444

dNSDomain2 LDAP class, 135, 138, 443

dNSDomainFlags LDAP attribute, 137

dNSDomainFlags LDAP class, 137

dnsEditor package, 463
dnsfi lter program, 308, 313
dnsip program, 307, 308, 312

dnsipq program, 307
dnslist domain Exim, 381
dnslist text Exim, 381
dnsmasq, 331–348

bind addresses, 335

booting a PC, 346

configuration, advanced, 335

debugging, options for, 342

DHCP configuration, 340

DHCP options, list of, 341

DNS resolution, 337

example, complete, 344

getting started, 333

hosts and domains, 336

interfaces and addresses, 335

live running, 335

options, 335

overview, 332

solving problems, 334

dnsmasq.conf file dnsmasq, 335

dnsmx program, 308
dnsname program, 307
dnsnotify send DNS notifications, 112
dnsnotify program, 106, 112, 302, 663
dnsproxy, 413–416

configuration, 414

bind addresses, 415

dnsproxy.conf file dnsproxy, 414, 416

dnsqr program, 309, 312
dNSRecord LDAP attribute, 316

dnsrewrite file tinydns, 307

dnsroots.global file dnscache, 409

dnsroots.global file tinydns, 312

DNSSEC, 22, 505–545

authenticated data, 543

caching server, configuration of, 524

chain of trust, 530

to child zone, 531

checking disabled, 543

compatibility with normal DNS, 506

data integrity, 513

DLV records (DLV set), 534

DLV records, purpose, 534

DLV registry in BIND, 534

DLV, look-aside validation, 533

ds records, 530

EDNS0, 538

end-to-end encryption, 513

example of validation, 529

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

INDEX 665

failed validation results, 538

getting started, 517

header bits, 543

housekeeping, 536

HOWTO, 544

ISC DLV registry, 534

islands of trust, 530

key administration, 537

key expiration, 544

key generation, 518

key management, 536

key organization, 537

key rollover in DLV, 536

key signing key, 520

lifetime of keys, extending, 544

Look-aside validation, 533

Nagios plug-in, expiring signatures, 577
OK, 543

overview, 512

performance, 538

random data, 543

scope compared with e-mail, 513

secure delegation, 530

signed zone, serving a, 521

signing a zone, 514, 520

sorting NSEC records, 541

supported servers, 521, 524

transparent envelope, 506

trust anchors in caching servers, 527

walking a zone, 538

zone signing key, 519

dnssec-enable statement BIND, 522, 528

dnssec-keygen program, 177, 277, 353, 519, 520, 537
dnssec-lookaside statement BIND, 534

dnssec-signzone program, 353, 514, 516, 520, 521,
531, 532, 534, 538, 544

dnssec-validation statement BIND, 528

dnssigner program, 544
dnsSRV() function, 366

dnssrv.pl file Perl, 367

dnsstats program, 181
dnstop program, 574
dnstrace program, 309
dnstracesort program, 309
dNSTTL LDAP attribute, 56, 135, 138, 146, 193, 194,

197, 200, 448, 554

dnstxt program, 308
dNSView LDAP attribute, 194, 198

DNSzone db table, 615

dNSZone LDAP class, 56, 190, 192–196, 198–200, 448

dNSZoneAXFRLDAP class, 199, 200, 607

dNSZoneAXFRacl LDAP attribute, 200

do-ip4 Unbound, 421
do-ip6 Unbound, 421
do-not-query-address Unbound, 423
do-tcp Unbound, 421
do-udp Unbound, 421
document preparation, 695

domain, 5

comparison to zone, 15

names for testing, 58

naming in the DNS, 4

reserved country codes, 58

domain dnsmasq, 336, 337
domain component, 581

domain controllers, 350

Domain Name System, 4

domain-needed dnsmasq, 337
domain id db column, 126–128

domainComponent LDAP class, 317

domainRelatedObject LDAP class, 135, 138

domains db table, 124–130, 154

domains, lists of in a registry, 456

Domino configuration for DNSBL, 383

dpkg program, 68
drill program, 523
driver, see DLZ, SDB
Droms, Ralph, 484

ds-set, 521, 531

dsc package, 572, 573
dsc program, 573
dSRecord LDAP attribute, 194

dsset file DNSSEC, 531–534

dsset-es.qupps.biz file DNSSEC, 531

dsset- domain file DNSSEC, 531

duende program, 92, 552
dump, 615

dump pdns, 152
dynamic answers, 23, 358, 366

dynamic DNS updates, 22

BIND, 178
command-line with nsupdate, 465
defined, 464

dhclient, from, 474
dhclient-script, from, 475
DHCP server, from, 473

DHCP, via, 469

DLZ, 218

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

666 INDEX

DLZ, ideas, 256
example with MyDNS, 466
MyDNS, 106
Net::DNS, using, 468
poor man’s client, invoking, 480

poor man’s server, 480

poor man’s updating client, 478

poor man’s way, 476

TSIG keys using Net::DNS, 468
URL in TXT RR, 637

Windows DNS, 350

Dynamically Loadable Zones, see DLZ

DynDNS, 485

e-mail

clients with IDNA support, 502

DNSSEC, comparison, 513

forgery, 506

hostmaster address, in SOA RR, 41

resource records for, 37

Eclipse package, 55
Egorov, Roman A., 201

embedded language, see Lua

encapsulated Postscript, 695

encryption

asymmetric, 508

certificates and certification authorities, 511

digests, 509

e-mail, 508

hashes, 509

introduction to, 507

key pairs, 508

public key, 508

public keys, using, 509

ROT13, 507

rotating letters, 507

secret keys, 507

sending a public key message, 508

signatures, 509

symmetric, 507

symmetric, problems with, 507

TLS/SSL, 508

enumzonessql.pl program, 635
envdir program, 285, 318
envelope, 506

environment, 241

environment variable

$AXFRldapdns, 319, 327

$AXFRtinydns, 302

$CACHESIZEdnscache, 408

$CHARSETIDNA, 499

$DATADIROpenLDAP, 586, 588

$DATALIMIT dnscache, 408

$DEFAULTEXPIRE ldapdns, 319, 322

$DEFAULTMINIMUMldapdns, 319, 322

$DEFAULTREFRESHldapdns, 319, 322

$DEFAULTRETRYldapdns, 320, 322

$DNSTHREADSldapdns, 320, 321

$FORWARDONLYdnscache, 406, 408

$GID dnscache, 409

$GID ldapdns, 321

$GID tinydns, 297

$HANDLERSldapdns, 320

$HELPERNOTIFY ldapdns, 320

$HOMELua, 647

$HOSTMASTERldapdns, 320, 324

$IP dnscache, 409

$IP ldapdns, 320

$IP tinydns, 296, 297, 313

$IPSEND dnscache, 409

$LANGIDNA, 499

$LDAP AUTHldapdns, 320

$LDAP AUTHNAMEldapdns, 320

$LDAP AXFRldapdns, 319

$LDAP BASEDNNSS, 493

$LDAP BINDDNldapdns, 320

$LDAP HOSTldapdns, 320

$LDAP HOSTSldapdns, 320

$LDAP SASL ldapdns, 320

$LDAP SUFFIX ldapdns, 320

$LDAP THREADSldapdns, 320, 321

$LOCALDOMAINtinydns, 307

$LOGldapdns, 320, 321

$MANPATHOpenLDAP, 585

$OKCLIENT tinydns, 313

$PATHOpenLDAP, 585

$PORTldapdns, 321

$PREFIX MaraDNS, 94

$reason Updates, 471

$REMOTEADDRUpdates, 477

$ROOTDelegation, 451

$ROOTdnscache, 405, 406, 408, 409

$ROOTldapdns, 320, 321

$ROOTtinydns, 296, 297, 312

$SCHEMAldapdns, 321

$SUPERVISEldapdns, 321

$TEMPLua, 647

$THREADSldapdns, 321

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

INDEX 667

$UID dnscache, 409

$UID ldapdns, 321

$UID tinydns, 297

$ZONESDIRfix-SOA, 605

environment variables

controlling tinydns, 296
dnscache, configuring, 403
ldapdns, 319
tinydns, 285

ephemeral ports in Unbound, 420
EPS, 695

Erat, Daniel, 304

errno.h file tinydns, 310

evdns package, 418
Eve, 511

example file Perl, 363

exec () function, 636

Exim, 372, 375, 381, 382, 655
ACL, 381

IDNA example, 502

black-lists and white-lists, 382

books, 386

configuration for DNSBL, 381

exitfunc () function, 366

expand-hosts dnsmasq, 336
expire db column, 98

expired zone data, 42

export hosts file via DNS, 397

export zones MyDNS, 107
export-etc-hosts Recursor, 397, 400
extensibleObject LDAP class, 324

failover with heartbeat, 259

failure, see spof

fetchzone program, 87–89, 92
Figueiredo, Luiz Henrique de, 645

file

.dsset DNSSEC, 521

.keyset DNSSEC, 521, 524

.signed DNSSEC, 521

.soa fix-SOA, 605

.zone fix-SOA, 605

@, 303, 312, 405, 406, 408, 409, 451

access log Misc, 641

authorized keys monitoring, 566

axfr.log BIND, 173

balance.ip SDB, 211

cds.conf OpenLDAP, 586

conf-home tinydns, 311

config.h dnsmasq, 340, 348

csv2 Delegation, 442

current dnscache, 412

daemon.log PowerDNS, 121

data Delegation, 444

data Performance, 552

data Updates, 459, 463, 485

data tinydns, 286–289, 292, 294–300, 302–304

data.cdb Performance, 552

data.cdb tinydns, 286, 287, 297–300, 303

data.mens tinydns, 302, 303

DB CONFIGOpenLDAP, 586

DB CONFIGPerformance, 547, 558

demo.ldif OpenLDAP, 586, 588

details dnscache, 412

dhclient.conf Updates, 471, 473–475

dhcpd.conf Updates, 470, 473

dhcpd.leases Updates, 472, 475, 476, 483

DLZ.db DLZ, 244

dnscache dnscache, 403

dnsmasq.conf dnsmasq, 335

dnsproxy.conf dnsproxy, 414, 416

dnsrewrite tinydns, 307

dnsroots.global dnscache, 409

dnsroots.global tinydns, 312

dnssrv.pl Perl, 367

dsset DNSSEC, 531–534

dsset-es.qupps.biz DNSSEC, 531

dsset- domain DNSSEC, 531

errno.h tinydns, 310

example Perl, 363

group NSS, 491

host.conf NSS, 488

HOSTMASTERldapdns, 318

hosts BIND, 392

hosts GENERALDNS, 24

hosts Lua, 648

hosts MyDNS, 101

hosts NSS, 488–491, 493, 494

hosts PowerDNS, 144

hosts SDB, 193

hosts dnsmasq, 331–339, 343, 345

HOSTS.TXTGENERALDNS, 4

index.html Recursor, 402

install.locations MaraDNS, 94

IP ldapdns, 318

IP tinydns, 286

ixfr.db NSD, 263, 273, 274

jpload.c fix-SOA, 609

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

668 INDEX

jpload.h fix-SOA, 608

keyset DNSSEC, 532, 534

ldap.conf NSS, 492, 495

ldap.conf OpenLDAP, 586, 593

LDAP AUTHNAMEldapdns, 318, 319

LDAP HOSTSldapdns, 318

LDAP SUFFIX ldapdns, 318, 319

libudf raise.so MySQL, 630

LMHOSTSNSS, 490

load PowerDNS, 142

load.c fix-SOA, 608

load.h fix-SOA, 608

main.c SDB, 191, 208

Makefile MySQL, 630

Makefile NSS, 491

Makefile fix-SOA, 605, 606

Makefile tinydns, 287, 311

Makefile.dns MySQL, 635

Makefile.in SDB, 191, 208

mararc MaraDNS, 77, 81, 82, 86–88, 90, 91, 94

mens.de.zone SDB, 201

messages MyDNS, 96

messages PowerDNS, 121, 152

mini-named.conf PowerDNS, 121, 122

my-root.zone Delegation, 447, 450

my-root.zone NSD, 275

my-subnet.zone Delegation, 441

my.cnf Performance, 548

my.cnf PowerDNS, 123

mydns.conf MyDNS, 97, 100, 106, 112

mydns.conf Updates, 472

named.conf BIND, 170, 172, 175, 178, 180, 183,

186, 391, 392, 395

named.conf DLZ, 216, 224, 226, 227, 234, 237,

242, 250, 251, 254

named.conf DNSSEC, 528, 534, 535

named.conf Delegation, 441, 448

named.conf MySQL, 632

named.conf NSD, 279, 280

named.conf Performance, 555, 556

named.conf PowerDNS, 121, 137, 150, 154, 156

named.conf SDB, 188–191, 193, 196, 197, 199–

202, 205, 207, 209, 210, 212

named.conf Updates, 470, 473

named.conf Windows, 352

named.conf fix-SOA, 604, 607, 608, 613

named.conf rbldnsd, 380

named.stats BIND, 171, 181

nis.schema NSS, 492

ns stats.c NSD, 271

nsd.conf DNSSEC, 521

nsd.conf Delegation, 447

nsd.conf MySQL, 632

nsd.conf NSD, 261–282

nsd.conf PowerDNS, 154

nsd.conf Unbound, 418

nsd.conf monitoring, 569

nsd.conf.sample NSD, 281

nsd.db DNSSEC, 521

nsd.db NSD, 262–264, 266, 269, 272, 274

nsd.db Performance, 557

nsswitch.conf NSS, 491, 492, 494

our.conf Lua, 646, 647

passwd NSS, 491

passwd OpenLDAP, 579

passwd ldapdns, 318

password ldapdns, 320, 321

pdns PowerDNS, 152, 162

pdns.conf PowerDNS, 121, 123, 124, 128, 136,

143, 151, 162

pdns server PowerDNS, 162

profile Lua, 647

profile Updates, 480

queryperf.input Performance, 549

qupps.biz NSD, 264

qupps.biz.csv2 MaraDNS, 91

qupps.biz.zone PowerDNS, 120

qupps.biz.zone SDB, 189

qupps.biz.zone fix-SOA, 604

qupps.lua Lua, 648, 650

random DNSSEC, 543

random dnscache, 404

rbldnsd.8 rbldnsd, 385

READMEtinydns, 306

recursor.conf Lua, 649

recursor.conf Recursor, 396

REQUIREMENTSNSD, 282

resolv.conf GENERALDNS, 30

resolv.conf NSS, 488, 489, 491, 495

resolv.conf NoNE, xxxiv

resolv.conf PROGRAMS, 65, 70

resolv.conf Perl, 359

resolv.conf RECURSION, 389

resolv.conf Unbound, 431

resolv.conf Windows, 353

resolv.conf dnscache, 405, 411

resolv.conf dnsmasq, 334, 335, 338

resolv.conf dnsproxy, 416

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

INDEX 669

resolv.conf tinydns, 307

resolv.dm dnsmasq, 338

resolv.h NSS, 488

reverse.csv MaraDNS, 81

rndc.conf BIND, 392

ROOTldapdns, 318

root dnscache, 403

root.hints BIND, 175

root.zones BIND, 394

run dnscache, 410

run ldapdns, 318

sdlz helper.c DLZ, 258

sendmail.cf rbldnsd, 382

services PowerDNS, 133

slapd.conf Misc, 643

slapd.conf NSS, 492

slapd.conf OpenLDAP, 586, 594, 596, 599, 600

slapd.conf SDB, 192, 199

slapd.sock SDB, 198

soa fix-SOA, 606

soho.csv MaraDNS, 78

SUPPORT.CABWindows, 352

syslogd.conf OpenLDAP, 585

unbound.conf DNSSEC, 527, 528

unbound.conf Delegation, 450

unbound.conf Unbound, 418–420, 425, 429–431

unbound.pid Unbound, 419, 422

urandom MaraDNS, 85

zones.incl MySQL, 632, 633, 635

zones.trig MySQL, 635

file statement BIND, 121

file server, 332

file system

zone data in, 259

file-locking, 458

filterwin2k dnsmasq, 337, 345
Finch, Tony, 496

Findlay, Andrew, xxxv

findzone () function, 215–244

Firefox, 577

IDN preferences, 504

IDNA support in, 501

monitoring add-on, 577

firewalls, 565

book, 578

fi xserial.pl program, 605, 606
flash, 348

flat files for zone data storage, 49

food, 438

force-reload pdns, 152
fork () function, 320, 343, 366, 379, 397, 419, 636

forward statement BIND, 351, 380, 394

forward lookup, 38

forward only statement BIND, 174

forward query, 38

forward-addr Unbound, 428
forward-host Unbound, 428
forward-zone Unbound, 425, 428, 430
forward-zones Recursor, 397
forward-zones-file Recursor, 398
forwarder, 20

forwarders statement BIND, 174, 394

forwarding, 413

BIND, 394
MaraDNS, 87
PowerDNS, 144
PowerDNS Recursor, 397
Unbound, 427

forwarding servers, 20

$FORWARDONLYvariable, dnscache, 406, 408

FQDN, 5

FQDN4 MaraDNS, 78, 80, 81

FQDN4 tinydns, 292

FQDN6 MaraDNS, 81

France, 186

Franks, Dick, 369

Fredriksson, Turbo, 190, 503

FTP, 577

Fuhr, Michael, 369, 625

fully-qualified domain name, 5

Galstad, Ethan, 575

games, see Lua

gateway, 332

GCC package, 355, 478
general manager, 648

generating

Key Signing Key, 520

keys (DNSSEC), 518

secret keys for TSIG in BIND, 176
Zone Signing Key, 519

generic top-level domains, 436

GeoDNS package, 186
Geographic name server in Perl, 360

geographical data

BIND views, 186
countries in DNSBL, 639

database (Maxmind), 369

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

670 INDEX

PowerDNS load-balancer, 165
GeoIP package, 186
Germany, 15, 16, 43, 360, 438

get Recursor, 401
getconfig () function, 646

getent program, 494
gethostbyaddr () function, 14, 358, 490, 494

gethostbyname () function, 14, 358, 488, 490, 494,

496

getpwnam () function, 490

getpwuid () function, 490

$GID variable, dnscache, 409

$GID variable, ldapdns, 321

$GID variable, tinydns, 297

GIMP package, 695
givenname LDAP attribute, 590, 598

glue, 439

glyphs, IDNA, 499

gmysql-something PowerDNS, 123
Good, Gordon S., 603

graphical desktop sharing, 369

grep program, 306, 355
group MyDNS, 101
group file NSS, 491

GSS-API, 596

gTLDs, 436

guardian PowerDNS, 146

handler, 366, 367

$HANDLERSvariable, ldapdns, 320

hash, see encryption

Hazel, Philip, 386

heartbeat program, 253, 259
Heller, Joseph, 144

help desk, 359

$HELPERNOTIFY variable, ldapdns, 320

hidden name server, 20

BIND, 170, 632
MyDNS, 105
NSD, 632
PowerDNS, 154, 156

hide-identity Unbound, 423
hide-version NSD, 266
hide-version Unbound, 423
hide disclaimer MaraDNS, 84
Hildebrandt, Ralf, 386

hInfoRecord LDAP attribute, 135, 194

hint-file Recursor, 398
hints file, 446

HIPPO, 436

hits db table, 231, 232, 556

$HOME, Lua, 647
home office, see SOHO

homograph, 499

homograph, IDNA, 499

host db column, 227, 228

host program, 30, 353, 431
host.conf file NSS, 488

hostmaster e-mail address, 41

HOSTMASTERfile ldapdns, 318

$HOSTMASTERvariable, ldapdns, 320, 324

hostname program, 307
hosts , processing with Lua, 648
hosts file BIND, 392

hosts file GENERALDNS, 24

hosts file Lua, 648

hosts file MyDNS, 101

hosts file NSS, 488–491, 493, 494

hosts file PowerDNS, 144

hosts file SDB, 193

hosts file dnsmasq, 331–339, 343, 345

HOSTS.TXTfile GENERALDNS, 4

Howes, Tim, 603

HR department, 363

HTTP, 152, 478, 577

Lua, example, 647
poor man’s dynamic DNS, in, 477

POST request in pmc, 478
PowerDNS, basic authentication, 152

Hubert, Bert, xxxv, 114

HUP signal, 92

I18N (IDNA), 498

IANA, 598

IBM Lotus Domino configuration for DNSBL, 383

ICANN, 27, 436

id db column, 97, 98, 100, 125–128, 226, 227

id.server

NSD, 266
PowerDNS Recursor, 399
Unbound, 423

identity NSD, 266
identity Unbound, 423
IDN, see IDNA, 498

idn utility for IDNA, 499
IDNA, 497–504

add to DNS, 499

converting domain names, 498

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

INDEX 671

Cyrillic characters, 499

Firefox preferences, 504

homograph, 504

Paypal example, 499

phishing, 499

plugin for Internet Explorer, 501

prevent spoofing, 504

spoofing attacks, 499

théâtre, 498

theatre, 498

Thunderbird preferences, 504

ToASCII, 498

ToUnicode, 498

whitelisting in Firefox, 504

idnkit package, 503
Ierusalimschy, Roberto, 645

Ilexa, 359

IMAP, 577

in-addr.arpa

adding zone to DLZ, 229

classless delegation to, 440

create zone in ldapdns, 325
delegation to, 440

MySQL function to create address, 253

normal delegation to, 440

private addresses in Unbound, 429

inarpa4 () function, 255, 620

include clause BIND, 154, 172

include statement BIND, 192, 201, 607

include NSD, 265, 268
incremental zone transfers, 17

index.html file Recursor, 402

inet aton () function, 255, 619

inetOrgPerson LDAP class, 582, 675

info.qupps.biz, 368

init () function, 205

InkScape package, 695
InnoDB, 72, 548

inotify package, 482, 484
install.locations file MaraDNS, 94

installing, see building

instsrv.exeWindows program, 354
interface dnsmasq, 335, 336
interface Unbound, 420
interface-except dnsmasq, 335, 336
internal dnsproxy, 415, 416
internal name server, 21

international domains, see IDNA

internationalized, see IDNA

Internet Explorer

IDNA support in, 501

IDNA, plugin, 501

Internet Systems Consortium, see ISC

inverse query, 38, 39

MaraDNS, automatically create, 78
IP address reversing, MySQL function, 253

ip db column, 129

IP file ldapdns, 318

IP file tinydns, 286

$IP variable, dnscache, 409

$IP variable, ldapdns, 320

$IP variable, tinydns, 296, 297, 313

ip-address NSD, 265
ip4octet () function, 255, 619

IPC, 489

LDAP over IPC in ldapdns, 318
LDAP over IPC in SDB, 198

ipconfi g.exeWindows program, 346
ipHost LDAP class, 492–494

ipHostNumber LDAP attribute, 493

$IPSEND variable, dnscache, 409

ipv4 alias MaraDNS, 86
ipv4 bind addresses MaraDNS, 84
IPv6

MaraDNS, RR for, 81
ipv6 bind address MaraDNS, 84
ISC, 185, 212, 457, 470, 534, 543

plugin for IDNA, 501

ISDN, 332

island of trust, 512

ISO 3166, 640

ISP, 413

deploying a name server, 23

provisioning tinydns from database, 297

iterative queries, 417

iterative query, 14

iterator, 417

ixfr.db file NSD, 263, 273, 274

Jackson, Ian, 496

Jacob, Stephen, 549

Jacob, Thomas, 503

Jacobsen, Andreas Plesner, 639

Jansen, George, 386

Java, 369

Jones, David, xxxvi

journal file in NSD, 262
jpload.c file fix-SOA, 609

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

672 INDEX

jpload.h file fix-SOA, 608

jumbo patch for tinydns, 313

keep-in-foreground dnsmasq, 343
Kelley, Simon, xxxv, 332

Kerberos, 596

key clause BIND, 177, 178, 279

key statement BIND, 392

key NSD, 268, 276–278, 280
key id, 541

key pair, 508

key rollover, 544

key set, 521

Key Signing Key, 514

generating, 520

key tag, 520, 541

keyboard events, 369

KeyRecord LDAP attribute, 194

keys statement BIND, 172

Keys, Ken, 572

keys, multiple in DNSSEC, 518

keyset file, 527

keyset file DNSSEC, 532, 534

Kirei, 417

Klang, Ben, 459

Koetter, Patrick, 386

Kolkman, Olaf, 361, 369, 544

Krulwich, Robert, 563

KSK, see Key Signing Key

kXRecord LDAP attribute, 194

La Fonera, 348

label, 5

lame delegation, 43

$LANGvariable, IDNA, 499

Langley, Adam, 418

Larson, Matt, 356

last check db column, 125

latency, 63

LaTeX, 695

launch PowerDNS, 121, 123, 132, 136, 147
launchd program, 343
lbnamed package, 360, 361, 370
LDAP, 577, 579–603

adding entries, 590

attribute types, 582

attribute types, BIND SDB, 193
browsers and editors, 54

choosing a server back-end, 60

container, 580

create zone in BIND SDB, 193
deleting entries, 593

DLZ, driver in, 234
DLZ, minimal schema, 237
DLZ, normal schema, 239
editors, 54

entries in a directory, 581

extending your schema, 597

hierarchy, 579

introduction, 579

ldapdns, 316
ldapdns, 318
LDIF, BIND SDB, 193
LDIF, defined, 588

leaf, defined, 580

load on servers caused by NSS, 495

manipulating a directory, 587

matching rule, 598

migration of hosts to LDAP for NSS, 493

modifying entries, 593

named.conf generate clauses, 200

NSS, 492

object classes, 582

object classes, BIND SDB, 193
object, defined, 580

objects and identifiers, 598

objects, characteristics, of, 598

password hash, 586

performance influence of, 558

PowerDNS back-end, 134

replicating data, 54

schema extension, 599

schema for DLZ’s LDAP driver, 237, 239

schema for songs, 600

schema, ldapdns, 316
schema, controlling zone transfers (SDB), 199

schema, defined, 583

search filters, introduction, 590

search scopes, 591

searching entries, 592

searching in DLZ, 224
seealsoOpenLDAP, i

slurpd, 596

song in LDIF format, 601

songs, Perl program to list, 602

SRV records, example, 44

storage requirements, 64

storing DHCP configuration data in, 484

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

INDEX 673

storing SSH keys in LDAP, 566

syncrepl, 596

telephone directory, 363

the Directory Information Tree, 579

tinydns, generate files, 459
tree, ldapdns, 317
tuning tutorial OpenLDAP, 561

URLs, 594

URLs in DLZ, 224
zone master file, convert to LDIF, 201

zone master files, generating, 459

LDAP attribute

a6Record , 194

aAAARecord , 134, 135, 194

aFSDBRecord , 194

aRecord , 134, 135, 194, 323, 324, 444

associatedDomain , 134, 135, 138

certRecord , 194

cn , 237, 239, 493, 494, 556, 581, 598

cNAMERecord, 135, 194, 323, 326

dc , 138, 317, 324

description , 239, 323, 324, 593, 600

dhcpNetMask , 484

dhcpOption , 484

dlzAbstractRecord , 240

dlzAdminEmail , 240

dlzExpire , 240

dlzGenericRecord , 240

dlzHostName , 240

dlzIPAddr , 240

dlzMinimum , 240

dlzNSRecord , 240

dlzPrimaryns , 240

dlzPTRRecord , 240

dlzRecordID , 240

dlzRefresh , 240

dlzRetry , 240

dlzSerial , 240

dlzSOARecord , 240

dlzTTL , 240

dlzType , 240

dlzXFR , 240

dlzZoneName , 240

DN, 603

dNameRecord , 194

dNSClass , 135, 194, 200, 448

dNSDomain, 190

dNSDomainFlags , 137

dNSRecord , 316

dNSTTL, 56, 135, 138, 146, 193, 194, 197, 200,

448, 554

dNSView , 194, 198

dNSZoneAXFRacl , 200

dSRecord , 194

givenname , 590, 598

hInfoRecord , 135, 194

ipHostNumber , 493

KeyRecord , 194

kXRecord , 194

LOCRecord , 135

LocRecord , 194, 200

mail , 322, 324, 592, 598, 599

MDRecord, 194

mInfoRecord , 194

modifyTimestamp , 322, 324

mXRecord, 135, 200, 323, 324

mySpecialTimer , 222

nAPTRRecord , 194

nSECRecord , 194

NSRecord , 135, 194

nSRecord , 200, 323–325, 444, 448

nXTRecord , 194

objectClass , 556

ou , 195, 237, 581, 603

PTRRecord , 135, 194, 198

qupps-mail , 599

RDN, 603

relativeDomainName , 56, 192–202, 448

RRdata , 237

rRSIGRecord , 194

RRttl , 237

RRtype , 237

seeAlso , 600

SigRecord , 194

sn , 583, 590, 598

sOARecord , 135, 138, 194, 196, 200, 322, 324,

448, 644

songGenre , 600, 601

songTitle , 598

songYear , 601

sRVRecord , 135, 194

sSHFPRecord , 194

timeToLive , 222

tXTRecord , 135, 194, 196, 200

uid , 581

userCertificate , 582

zoneName, 56, 192–195, 200, 448

LDAP Browser/Editor package, 54

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

674 INDEX

LDAP Data Interchange Format, see LDIF

LDAP driver in SDB

adding a host to an LDAP zone, 197

adding an LDAP zone, 196

debugging LDAP queries, 197

define zones in named.conf, 193

directory server configuration, 192

installation and configuration, 190

LDAP entries, organization of, 195

LDAP indexes, 192

limitations, 190

overview, 190

LDAP object class

account , 582

dc , 317

dcObject , 135, 324, 325, 444

device , 493

dhcpOptions , 484

dhcpSubnet , 484

dlzZoneName , 240

dNSDomain, 317, 324, 325, 444

dNSDomain2, 135, 138, 443

dNSDomainFlags , 137

dNSZone, 56, 190, 192–196, 198–200, 448

dNSZoneAXFR, 199, 200, 607

domainComponent , 317

domainRelatedObject , 135, 138

extensibleObject , 324

inetOrgPerson , 582, 675

ipHost , 492–494

objectclass , 582

organizationalPerson , 582, 583

person , 582, 583, 590, 675

pkiUser , 582

RR, 237

song , 600

top , 582, 583

LDAP tree in SDB, 195

LDAP URL, 594

ldap-axfr-lookup PowerDNS, 137
ldap-basedn PowerDNS, 136
ldap-binddn PowerDNS, 136
ldap-filter-axfr PowerDNS, 137
ldap-filter-lookup PowerDNS, 137
ldap-host PowerDNS, 136
ldap-method PowerDNS, 137
ldap-secret PowerDNS, 136
ldap-starttls PowerDNS, 136
ldap.conf file NSS, 492, 495

ldap.conf file OpenLDAP, 586, 593

ldap2dns program, 459
ldap2zone program, 459, 460
ldap add () function, 461

$LDAP AUTHvariable, ldapdns, 320

LDAP AUTHNAMEfile ldapdns, 318, 319

$LDAP AUTHNAMEvariable, ldapdns, 320

$LDAP AXFRvariable, ldapdns, 319

$LDAP BASEDNvariable, NSS, 493

ldap bind () function, 461

$LDAP BINDDNvariable, ldapdns, 320

$LDAP HOSTvariable, ldapdns, 320

LDAP HOSTSfile ldapdns, 318

$LDAP HOSTSvariable, ldapdns, 320

ldap init () function, 236

ldap initialize () function, 461

ldap open () function, 461

$LDAP SASLvariable, ldapdns, 320

ldap search () function, 461

ldap set option () function, 461

LDAP SUFFIX file ldapdns, 318, 319

$LDAP SUFFIX variable, ldapdns, 320

$LDAP THREADSvariable, ldapdns, 320, 321

ldap unbind () function, 461

ldapadd, 55, 56, 196, 326, 493, 589, 590, 602
add a host to an LDAP zone in SDB, 197

add a zone to SDB, 196

ldapadmin, 55

ldapaxfr program, 321, 326–328
ldapaxfr-conf program, 326
ldapdelete program, 593
ldapdns, 315–329

add a zone, 323

bind addresses, 318

choosing an LDAP schema, 316

configuration with ldapdns-conf, 317
configure LDAP server, 318

configure zones and resource records, 321

create an in-addr.arpa zone, 325

delegation, 444

design of LDAP tree, 317

environment variables, 319

integration with BIND, 327
LDAP over IPC, 318

manage zone data, 326

provide DNS over TCP, 326

statistics, collecting, 571

tinydns, compared, 316
ldapdns program, 318–321

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

INDEX 675

ldapdns-axfr program, 319
ldapdns-conf program, 317–319, 327, 328
ldapi, 198

ldapmodify program, 55, 137, 326, 589, 593
ldapsearch program, 355, 586, 592, 593, 602
ldapvi program, 55
LDIF, 588

add a zone to ldapdns, 323
add entry with ldapadd, 590
demo loaded by silverinst.sh, 586
DLZ minimal schema, 237
DNS record for DLZ, 239

editing with ldapvi, 55
inetOrgPerson, example, 588

ldapdns, delegation, 444
ldapdns, in-addr.arpa zone, 325
lines, continuation, 588

migrate hosts to LDAP, 493

modify entry, 593

performance test, creating, 547

performance test, size of, 556

person, example, 588

PowerDNS wild card entry, 135
PowerDNS, qupps.biz, 135
PowerDNS, delegation, 443
SDB create DNS zone, 193
SDB, root zone in, 448
shell script, v., 56

song, in format, 601

zone file, convert to, 201

zone2ldap, 137
ldns package, 177, 276, 282, 418, 519, 538, 543
ldns-keygen program, 177, 276, 282, 543
ldns-signzone program, 543
lease, 473

Leitner, Felix von, 297, 314

Lemon, Ted, 484

less program, 309
libcurl package, 478, 484
libevent package, 418
LibIDN package, 503
libidn package, 503, 504
libudf raise.so file MySQL, 630

libunbound, 417, 431, 496, 543
sample code, 431

Lichteblau, David, 55

Lightweight Directory Access Protocol, see LDAP

Linfoot, Chris, 386

Linux security, books, 578

listen dnsproxy, 415
listen MyDNS, 101, 102
listen-address dnsmasq, 336
listen-on statement BIND, 171

Liu, Cricket, 186, 356

LMHOSTSfile NSS, 490

load balancer

BIND SDB driver, example, 204
ISC’s stand, 212

lbnamed in Perl, 370
Nagios plug-in, 570
Perl, 360

PowerDNS, 142
load file PowerDNS, 142

load.c file fix-SOA, 608

load.h file fix-SOA, 608

local dnsmasq, 338, 345
local-address PowerDNS, 147
local-address Recursor, 398
local-data Unbound, 424–426, 428
local-zone Unbound, 424–426, 428, 430
local address PowerDNS, 141
$LOCALDOMAINvariable, tinydns, 307

location, 290

configuring split horizon in tinydns, 289
location name, 289

lochDNS package, 112
lockfi le program, 458
LOCRecord LDAP attribute, 135

LocRecord LDAP attribute, 194, 200

Loeung, Haw, 181

$LOGvariable, ldapdns, 320, 321

log () function, 328

log-dhcp dnsmasq, 343
log-dns-details PowerDNS, 147
log-facility dnsmasq, 343
log-queries dnsmasq, 343
logfile NSD, 265
logfile Unbound, 422
logfunc () function, 366

logging clause BIND, 173

logging-facility PowerDNS, 147
login, 476

loglevel PowerDNS, 147
logrotate program, 420
lookup () function, 202–207, 210, 216, 217, 221, 223,

224, 226, 228, 229, 233, 235, 238, 239, 246

Lotus Domino, 372, 386

certification authority, 512

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

676 INDEX

DNSBL configuration, 383

Lotus Notes, 372

Lua, 645–650
create function for Recursor, 649
embedding, 646

example, in C, 646

overview, 645

portability, 645

Lundman, Jorgen, 247, 385

lwres in NSS, 491

lwresd program, 489, 491
lynx program, 494

Mac OS X

launchd, dnsmasq, 343
macro language, see Lua

magic PTR records in MaraDNS, 78
mail, see e-mail

Mail Exchanger, 37

mail LDAP attribute, 322, 324, 592, 598, 599

Mail Transfer Agent, see MTA

Mail User Agent, see MUA

mailing list, 524, 536

main.c file SDB, 191, 208

maintkeydb program, 544
make package, 695
make program, 287, 348, 355, 459, 605, 606, 633, 635,

636

makedb program, 491
Makefile file MySQL, 630

Makefile file NSS, 491

Makefile file fix-SOA, 605, 606

Makefile file tinydns, 287, 311

Makefile.dns file MySQL, 635

Makefile.in file SDB, 191, 208

makegraphs program, 402
making, see building

management of DNS operations, 456

$MANPATHvariable, OpenLDAP, 585

Mansfield, Niall, xxxv, 28, 484

manual pages, 94

MaraDNS, 75–94
˜ record separator, 79
3-line configuration, 77

addresses to listen on, 77

associative arrays, 83

authoritative server, 77

authoritative-only, 76

automatic zones, 78

automatically create PTR records, 78

bind addresses, 84

caching and authoritative server, 77

caching name server, 77

configuration options, 82

csv2 example, 81

daemonize maradns, 92
daemonize zoneserver, 92
deaf during restart, 77

delegation, 442

dictionary variables, 85

easiest to set up, 77

error-messages, misleading, 82

fetchzone program, 89
forwarder, 90

limitation of scalability, 76

limiting zone transfers, 88

logging and monitoring, 91

master server, 87

memory usage, 84

on Windows, 353

performance results of authoritative server, 552

performance results of caching server, 559

PTR records, automatic, 78

recursion, 90

reverse zones, defining, 81

root servers, defining, 86

script to fetch zone, 89

SOA, synthetic, 78

synthetic SOA, 78

threading model, 76

tilde record separator, 79

TTL command, 79

tutorials on the Web, 94

variables, dictionary, 83

variables, normal, 82

variables, types of, 82

version number, 83

Windows support, 76

zone file format, 79

zone in csv2 files, 79

zone transfer, 87

problems with FQDN4, 88

zones served, 85

maradns program, 77, 78, 82, 84, 87, 89, 90, 92–94
maradns.authonly program, 76, 78, 82, 90, 93
maradns gid MaraDNS, 84
maradns uid MaraDNS, 84
mararc file MaraDNS, 77, 81, 82, 86–88, 90, 91, 94

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

INDEX 677

Masney, Brian, 484

master statement BIND, 218, 394

master PowerDNS, 147
master and slave name servers, 16

master db column, 125

master name server, 17

masters statement BIND, 175

match-clients statement BIND, 186

matchnetmask () function, 650

max-cache-entries Recursor, 398
max total MaraDNS, 84
Maxmind, 186, 369

Mayoff, Rob, 304

mbox db column, 97, 100

MD4, 509

MD5, 509

mDNS program, 337
MDRecord LDAP attribute, 194

Measurement Factory, 577

DNS statistics collector, 572

dnstop, 574
Nagios plug-ins, 577

media server, 332

mens.de.zone file SDB, 201

Meraki, 348

message digest, 509, 510

messages file MyDNS, 96

messages file PowerDNS, 121, 152

Metz, Michael, xxxv

migrate hosts.pl program, 493
Migrationtools package, 493
million dollars, 506

mInfoRecord LDAP attribute, 194

MingW package, 478
mingw32 package, 353
mini-named.conf file PowerDNS, 121, 122

minimal schema for DLZ’s MySQL driver, 226

minimum db column, 98

mod perl package, 462
modifyTimestamp LDAP attribute, 322, 324

module-config Unbound, 423
mon package, 567
monitor pdns, 153
monitoring, 566–578

back-end replication, 570

bind version, 569

defined, 566

DNS components, 568

DNS notifications, 568

fail-over, 570

Firefox, 577

hardware, 567

heartbeat, 259

Nagios, with, 575
name server versions, 569

Perl name server, 360

SOA, 568

system health, 567

the NSD name server, 270

Thunderbird, 577

zone transfers, 568

Moore, Dan, 284

Moore, Don, 96, 111

Morettoni, Luca, 305

mouse events, 369

Mozilla, 501, 502, 504, 577

mrtg pdns, 153
MRTG package, 153, 401
msdns, 316

MTA, 316, 372

Muñoz, Luis E., 361, 626

MUA, 372

IDNA support, in, 502

multilog program, 318, 411, 412
Murphy, 566

Mutt
IDNA support in, 502

Mail User Agent, 372

mXRecord LDAP attribute, 135, 200, 323, 324

my-root.zone file Delegation, 447, 450

my-root.zone file NSD, 275

my-subnet.zone file Delegation, 441

my.cnf file Performance, 548

my.cnf file PowerDNS, 123

MyDNS, 95–112
ACL for dynamic updates, 106

add zone and resource records, 99

BDBHPT, copying zone data to, 615

bind addresses, 101

caching options, 102

configuration, 100

create database tables, 97

create zones from MyDNS, 107
database information, 101

database schema in DLZ, 233

database tables, 97

delegation, 444

dynamic DNS update, example of, 466

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

678 INDEX

dynamic DNS updates, 106

dynamic DNS updates with nsupdate, 466
dynamic DNS updates, accept, 472

export zones to master zone file, 107

import zones via zone transfer, 107

name server options, 103

performance results, 553

query logging, 109

root server, as, 447

server options, 101

statistics, collecting, 571

trigger updates into DLZ databases, 256

utilities, 107

Web administration tool, 112

Web interface, 108

zone replication, 104

zone transfer, 105

mydns program, 100, 104, 106, 109
MyDNS-NG, 111

mydns.conf file MyDNS, 97, 100, 106, 112

mydns.conf file Updates, 472

mydns2bdbhpt program, 615
mydns2bdbhpt.pl program, 615
MyDNSConfi g package, 112
mydnsexport program, 107
mydnsimport program, 107
mySpecialTimer LDAP attribute, 222

MySQL, see also User Defined Function

BDBHPT, dumping data to, 615

DLZ driver, 224

performance influence of, 558

performance tuning, book, 561

queries in DLZ, 224
raise an error with UDF, 629

tinydns provisioning, 297
tips on tuning, 561

touch a file with a UDF, 632

trigger for DLZ, 253
mysql program, 52, 55, 97, 99, 105, 106
MySQL Administrator program, 52
MySQL Query browser program, 52

Nagios, 575–577
DNS plug-ins, 577

XML from BIND stats server, 183
books, 578

plug-in sample, 575

plug-in types, 576

plug-in, expiring signatures, 577

name NSD, 266, 268, 278, 280
name db column, 98, 125–127

name resolution, 6

authoritative servers, 11

caching DNS servers, 10

defined, 6

example, 7

recursive v. iterative queries, 14

resolver, 9

root servers, 10

name server

corporate environment, 25

deployment, 565

deployment scenarios, 23

features you might want to have, 21

ISP, for, 23

MaraDNS, 75

Perl, written in, 359

programmable back-ends, 23

resource record, 43

securing back-ends, 565

SOHO network, 24

synthetic records in MaraDNS, 78
Name Service Switch, see NSS

named program, 169, 172, 179, 181–183, 190–212,
214–258, 334, 353, 395, 473, 522, 553, 554,

556, 604, 608

named.conf

creating zone for, 200

DLZ’s BDBHPT driver, 241
DLZ’s LDAP driver, 234
DLZ’s MySQL driver, 224

named.conf file BIND, 170, 172, 175, 178, 180, 183,

186, 391, 392, 395

named.conf file DLZ, 216, 224, 226, 227, 234, 237,

242, 250, 251, 254

named.conf file DNSSEC, 528, 534, 535

named.conf file Delegation, 441, 448

named.conf file MySQL, 632

named.conf file NSD, 279, 280

named.conf file Performance, 555, 556

named.conf file PowerDNS, 121, 137, 150, 154, 156

named.conf file SDB, 188–191, 193, 196, 197, 199–

202, 205, 207, 209, 210, 212

named.conf file Updates, 470, 473

named.conf file Windows, 352

named.conf file fix-SOA, 604, 607, 608, 613

named.conf file rbldnsd, 380

named.stats file BIND, 171, 181

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

INDEX 679

Nameprep, IDNA, 498

nameserver db column, 130

nameserver directive in resolv.conf , 489

nAPTRRecord LDAP attribute, 194

native zone, PowerDNS, 118
nerd.dk, DNSBL for countries, 639
netWindows program, 353
Net::DNS package, 358, 359, 369, 465, 468, 551
Net::DNS::Nameserver package, 361, 568, 569, 621,

625

Net::DNS::Nameserver program, 625
Net::DNS::SEC package, 359
Net::DNS::Server package, 361, 621, 626
Net::DNS::Server program, 626
Net::DNS::Update package, 468
Net::DNS::ZoneFile::Fast, 606

Net::IDN::Encode package, 503
Net::IP::Match::Regexp package, 360
Net::LDAP package, 157, 326, 461, 602
Net::LDAPapi package, 157
Net::LibIDN package, 503
netstat program, 96, 112
network connections

netstat, 112

Network Information Center, 456

network printer, 332

Network Time Protocol, see NTP

Next Secure, 541

Next Secure, resource record, 516

NicTool package, 462, 463
Nielander, Kris, 463

nis.schema file NSS, 492

NLnet Labs, 262, 276, 281, 282, 417, 538

no-daemon dnsmasq, 343
no-dhcp-interface dnsmasq, 336
no-hosts dnsmasq, 336
no-listen MyDNS, 102
no-poll dnsmasq, 338
node in dsc, 572
nodes assigned to authority, 436

Nominet, 417

Nominum, 549

non-recursive query, 14

Nonimum, 561

notifications, Perl DNS, 568

notified serial db column, 125

notify

axfrdns, 302
defined, 42

DNS notifications, 112

dnsnotify, 112
features you might want to have, 21

ldapdns, 320
MyDNS, no support, 105
NSD ACL, 267
NSD manual notification, 269
NSD slave notification, 267
NSD, sending, 569
Perl handler, 568

Perl Net::DNS::Nameserver, 361

PostgreSQL, 636

PowerDNS, 118, 148
PowerDNS, serial, 125
tinydns, 302
tinydns logging, 313

notify NSD, 267, 268, 272, 273, 278
notify nsdc, 269
notify PowerDNS, 149
notify-dns-slaves program, 643, 644
notify-host PowerDNS, 149
NS records

automatic, added by MaraDNS, 78
synthetic, added by MaraDNS, 78
used in delegation, 439

ns db column, 97, 100, 297

ns stats.c file NSD, 271

nscd program, 280, 495
NSD, 261–282

architecture, 262

bind addresses, 265

check configuration in nsd.conf , 270

configuration file, minimal, 264

configuring, 265

configuring server options, 265

configuring zone options, 266

create zones.incl with a MySQL UDF, 632

delegation, 442

DNSSEC-signed zone, serving, 521

hidden server, PowerDNS, 154
identity string, 266

intermediate database, 262

journal file, 266

keys, declaration, 268

master server, 272

master server with a BIND slave, 278

minimal configuration file, 264

monitoring statistics, 270

notifications in Perl, 568

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

680 INDEX

performance results of authoritative server, 557

root server, 275, 446

security, 275

setting up NSD, 263

slave server, 273

slave server with an BIND master, 279

slave to a stealth server with MySQL, 632

SOA serial numbers, automatic, 604

statistics, collecting, 571

TSIG keys and BIND, 278, 279
utilities for controlling, 268

version number, hide, 266

version number, query, 266

XSTATS, 270

zone database, rebuilding, 264

zone files, compiling, 264

zone master files, generate from LDAP, 459

zone transfer, manual, 270

zone transfer, testing, 277

nsd program, 262, 264–266, 268–270, 272, 274
nsd-checkconf program, 265, 270
nsd-xfer program, 270
nsd.conf file DNSSEC, 521

nsd.conf file Delegation, 447

nsd.conf file MySQL, 632

nsd.conf file NSD, 261–282

nsd.conf file NSD, 263–265, 267–270, 272, 273, 275–

278, 280

nsd.conf file PowerDNS, 154

nsd.conf file Unbound, 418

nsd.conf file monitoring, 569

nsd.conf.sample file NSD, 281

nsd.db file DNSSEC, 521

nsd.db file NSD, 262–264, 266, 269, 272, 274

nsd.db file Performance, 557

nsdc program, 264, 266, 268–270, 272–274, 281, 605
nSECRecord LDAP attribute, 194

nslookup program, 30, 353, 577
NSRecord LDAP attribute, 135, 194

nSRecord LDAP attribute, 200, 323–325, 444, 448

NSS, 487–496

configure nsswitch.conf , 494

LDAP, 492

LDAP directory server, preparation, 492

LDAP integration, 492

LDAP servers, unresponsive, 495

load on LDAP servers, 495

migration of hosts to LDAP, 493

overview, 490

testing LDAP, 494

where it looks for information, 491

nss-ldapd package, 492
nsswitch.conf file NSS, 491, 492, 494

NSTATS

NSD, 270
nsupdate commands, 465
nsupdate example, 466
nsupdate with TSIG keys, 467
nsupdate program, 178, 353, 465–467, 475
NTP, 176, 276

TSIG requirement, 276

num-queries-per-thread Unbound, 421
num-threads Unbound, 420
NXDOMAIN, handling with Lua, 650
nxdomain PowerDNS, 648
nxdomain Recursor, 647, 648, 650
nXTRecord LDAP attribute, 194

Object Identifier, 598

objectClass LDAP attribute, 556

objectclass LDAP class, 582

ODBC, 131

office, see SOHO

OID, 598

$OKCLIENTvariable, tinydns, 313

Olivetti, 369

Olivetti printer, 646

opendbx PowerDNS, 132
OpenDBX package, xxxv, 51, 115, 116, 119, 126, 130–

133, 139, 146, 154, 157, 158, 162–165, 443,

554, 555

OpenDBX PowerDNS back-end, 130

opendbx-backend OpenDBX, 132
opendbx-database OpenDBX, 133
opendbx-host-read OpenDBX, 132
opendbx-host-read PowerDNS, 147
opendbx-host-write OpenDBX, 133
opendbx-password OpenDBX, 133
opendbx-port OpenDBX, 133
opendbx-qdb-host-read PowerDNS, 147
opendbx-sql-infomasters OpenDBX, 165
opendbx-sql-infoslaves OpenDBX, 165
opendbx-sql-insert-record OpenDBX, 165
opendbx-sql-insert-slave OpenDBX, 165
opendbx-sql-list OpenDBX, 165
opendbx-sql-lookup OpenDBX, 164, 165
opendbx-sql-lookupid OpenDBX, 165
opendbx-sql-lookuptype OpenDBX, 165

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

INDEX 681

opendbx-sql-lookuptypeid OpenDBX, 165
opendbx-sql-master OpenDBX, 165
opendbx-sql-supermaster OpenDBX, 165
opendbx-sql-transactabort OpenDBX, 165
opendbx-sql-transactbegin OpenDBX, 165
opendbx-sql-transactend OpenDBX, 165
opendbx-sql-update-lastcheck OpenDBX, 165
opendbx-sql-update-serial OpenDBX, 165
opendbx-sql-zonedelete OpenDBX, 165
opendbx-sql-zoneinfo OpenDBX, 165
opendbx-username OpenDBX, 133
opendbx-string-host-read PowerDNS, 147
OpenLDAP, 583–603

access control, 589

building, 583

configure the server with silverinst.sh, 585
features you will want to add, 595

indexes, 595

loading your directory, 588

manipulating a directory, 587

overlays and back-ends, 596

replication, 596

SASL, 596

slapd’s log-file, 594
SSL, 595

TLS, 595

X.509 certificates, 595

OpenReg package, 457
OpenSSH package, 566
OpenSSL, 512

openssl program, 177
OpenWRT, 348

operating mode, 243

options clause BIND, 121, 171, 181, 534

Organizational Unit, 581

organizationalPerson LDAP class, 582, 583

$ORIGIN ignored in MaraDNS, 91

$ORIGIN in zone master file, 48

origin, 35

origin db column, 97, 100, 233

ou LDAP attribute, 195, 237, 581, 603

our.conf file Lua, 646, 647

ourdnsdb database, 97

ourpdns database, 123

Ousterhout, John, 189

out-of-band, 524

outgoing-interface Unbound, 420
outgoing-port Unbound, 420
outgoing-range Unbound, 420, 421

Outlook, 372

Outlook Express

IDNA support in, 502

owner, 35

Package

adns, 496
Ant, 463
clamav, 639
collectd, 573
Cricket, 153
daemontools, 285, 306, 310, 311, 313, 318, 321,

328, 404, 411

DBI, 461
dnsEditor, 463
dsc, 572, 573
Eclipse, 55
evdns, 418
GCC, 355, 478
GeoDNS, 186
GeoIP, 186
GIMP, 695
idnkit, 503
InkScape, 695
inotify, 482, 484
lbnamed, 360, 361, 370
LDAP Browser/Editor, 54
ldns, 177, 276, 282, 418, 519, 538, 543
libcurl, 478, 484
libevent, 418
LibIDN, 503
libidn, 503, 504
lochDNS, 112
make, 695
Migrationtools, 493
MingW, 478
mingw32, 353
mod perl, 462
mon, 567
MRTG, 153, 401
MyDNSConfi g, 112
Net::DNS, 358, 359, 369, 465, 468, 551
Net::DNS::Nameserver, 361, 568, 569, 621, 625
Net::DNS::SEC, 359
Net::DNS::Server, 361, 621, 626
Net::DNS::Update, 468
Net::IDN::Encode, 503
Net::IP::Match::Regexp, 360
Net::LDAP, 157, 326, 461, 602

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

682 INDEX

Net::LDAPapi, 157
Net::LibIDN, 503
NicTool, 462, 463
nss-ldapd, 492
OpenDBX, xxxv, 51, 114–165, 443, 554, 555
OpenReg, 457
OpenSSH, 566
PDNS-Admin, 462
pgAdmin III, 52
pgpool-II, 52
PHP, 480
phpLDAPadmin, 54
phpMyAdmin, 52
PhpPgAdmin, 52
Postfi x, 372, 383
PowerAdmin, 462
PowerDNS::Backend::MySQL, 157
ProBIND, 462
procmail, 458
RRD, 402, 412
RRDtool, 395
Sendmail, 372, 382, 383
slapi-dnsnotify, 643, 644
SQLite, 22, 51, 115, 131–133
squid, 389
Stanford::DNS, 367
subversion, 418, 458, 459, 695
Time::TAI64, 313
tinyddns, 485
tinydns-data, 107, 108, 286–290, 294, 295, 297,

298, 300, 302, 304, 313, 476, 482, 485

ucspi-tcp, 301, 302, 306, 311, 312
unison, 695
VegaDNS, 463
web2ldap, 55
Wrbldnsd, 386
ZoneAdmin, 462

packages, 68

paid db column, 103

PAM, 492

Pape, Gerrit, 314

Parallels, 70

parsing the dhcpd.leases file, 475

passwd file NSS, 491

passwd file OpenLDAP, 579

passwd file ldapdns, 318

password file ldapdns, 320, 321

patch nsdc, 269
patch for DLZ driver tokens, 258

patches for tinydns, 313
patching SDB to support wildcard queries, 212

patching zone master files, 262

$PATHvariable, OpenLDAP, 585

Paypal example in IDNA, 499

pdns file PowerDNS, 152, 162

pdns program, 124, 145, 146, 149, 150, 152, 162
PDNS-Admin package, 462
pdns.conf file PowerDNS, 121, 123, 124, 128, 136, 143,

151, 162

pdns control program, 118, 146, 149, 151, 395
pdns server file PowerDNS, 162

pdns server program, 112, 123, 124, 146, 149, 150
Pear, 481

PEN, 598

performance, 545–561

determining importance of, 560

DNSSEC, 538

effect caching in authoritative server, 559

influence of back-ends, 558

measuring queries per second, 549

test environment used, 546

zones, very many, creating, 547

zones, very many, loading, 547

Perl, 357–370, 621–627

create a name server, 359

delegation of name server, 368

DNS queries, 358

DNS updates, 358

Geo name server, 360

handle DNS notifications, 568

IDNA API, 503

load balancing server, 360

pseudo-Geo name server, 360

querying SRV records, 365

querying the DNS, 358

resolution, 359

resolvers, using, 358

Stanford::DNSserver module, 362

telephone directory, 363

person LDAP class, 582, 583, 590, 675

Peterson, Dan, 287

pgAdmin III package, 52
PGP, 508, 513, 524, 534, 537

pgpool-II package, 52
phishing, IDNA, 499

PHP, 477, 577

IDNA API, 503

MyDNSWeb interface, in, 108

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

INDEX 683

poor man’s dynamic DNS server, 480

poor man’s dynamic DNS, in, 477

problems with Web tools, 462

Web-based DNS utilities, 462

PHP package, 480
phpinfo () function, 501

phpLDAPadmin package, 54
phpMyAdmin package, 52
PhpPgAdmin package, 52
pickdns program, 295
pidfile Unbound, 419, 422
PIN, 526

ping Recursor, 400
ping program, 490
pipe, 81

pipe symbol, separator in MaraDNS zone file, 78
pipe-command PowerDNS, 141
pipe-regex PowerDNS, 141
pipe-timeout PowerDNS, 141
pipebackend-abi-version PowerDNS, 141
pkiUser LDAP class, 582

Plesner Jacobsen, Andreas, 639

plugin for IDNA, 501

pmc program, 477, 478, 480, 482, 637, 638, 670
pms program, 477, 478, 480, 482, 637, 639
Pointer, 38

poor man’s dynamic updates

configure URL in TXT, 637

overview, 476

port statement BIND, 394

port dnsmasq, 335
port dnsproxy, 415
port Unbound, 420, 422
$PORTvariable, ldapdns, 321

ports, 68

programs bound to ports, 112

show in use, 112

POST request, HTTP, 478

Postel, Jon, 29

Postfix books, 386

Postfix configuration for DNSBL, 383

Postfi x package, 372, 383
postmaster e-mail address, 41

PowerAdmin package, 462
PowerDNS, 113–165

back-end, LDAP, 134

back-end, OpenDBX, 130

back-end, pipe, 139

back-ends, activation, 147

back-ends, available, 114

BIND zone file back-end, 119
bind addresses, 147

cache, packet, 145

cache, query, 147

CNAME usage, correct, 158

configuration directives, global, 143

data, how stored, 114

database, updating, 157

delegation, 443

delegation with LDAP, 443

delegation with OpenDBX, 443

deployment scenarios, 153

forwarding queries, 148

generic MySQL back-end, 122

generic SQL and OpenDBX compared, 116

getting started, 119

guardian process, 146

hidden server for BIND or NSD, 154
installing, 161

LDAP back-end, 134

LDAP schema, 135

load balancer for pipe back-end, 142

logging DNS details, 147

master mode, enable, 147

master server, 116

monitoring, 149

monitoring Web server, 151

native server, 118

OpenDBX back-end, 130

OpenDBX configuration options, 132

overview, 114

packet cache, 145

performance results of authoritative server, 554

periodic checks for master and slave, 148

pipe back-end, 139

query cache, 147

recursion, enable, 144

Recursor, see Recursor

running multiple instances of, 145

server roles, 116

server roles, mixing, 119

slave mode, enable, 148

slave server, 117

statistics, collecting, 571

superslave server, 118

threads, 146

TTL defaults, 146

version information, 148

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

684 INDEX

Web server, built-in, 151

Web-based utilities, 462

wild card queries, 148

Windows, 354

zone data in SQL, 124

zone data, create database, 123

zone transfers, allow, 144

zone transfers, disable, 146

zones in database, managing, 126

zones to LDAP, 137

PowerDNS::Backend::MySQL package, 157
pre-processor for tinydns’ data file, 304

pref db column, 164

$PREFIX variable, MaraDNS, 94

prerequisites for dynamic DNS updates, 465

preresolve PowerDNS, 648
preresolve Recursor, 647, 648, 650
presenter, dsc, 572

primary and secondary name servers, 16

primary name server, see master server, 17

prio db column, 126

Private Enterprise Number, 598

private IP addresses, 360, 399

private mode in BDB, 243

ProBIND package, 462
processing the dhcpd.leases file, 475

procmail package, 458
profile file Lua, 647

profile file Updates, 480

programmable back-ends, 23

programming with libunbound, 431
provide-xfr statement BIND, 154

provide-xfr NSD, 267, 268, 278
provisioning, 24

agents for NicTool, 462
DLZ BDBHPT databases, 248
LDAP directory for DLZ, 234
PowerDNS, tools for, 157
registry to manage, 456

tinydns, 297

Provos, Niels, 418

proxy servers, 20

proxying authoritative and recursive queries, 413

ps program, 467, 551
psql program, 52
PTR

DLZ, automatically create with MySQL trigger, 253
ldapdns, add, 325
MaraDNS, automatically create, 78

resource records, defined, 38

tinydns, automatically create, 291
PTRRecord LDAP attribute, 135, 194, 198

public key, 507

Punycode, IDNA, 498

purge PowerDNS, 150
putrr () function, 205

Python, IDNA API, 503

qtype, 34

qualification in djbdns, 307
query type, 34

query-cache-ttl PowerDNS, 147
query-logging PowerDNS, 128, 148, 150
queryperf program, 549, 550, 552, 553, 556, 559
queryperf.input file Performance, 549

quit Recursor, 400
qupps-mail LDAP attribute, 599

qupps.biz delegation example, 438
qupps.biz file NSD, 264

qupps.biz.csv2 file MaraDNS, 91

qupps.biz.zone file PowerDNS, 120

qupps.biz.zone file SDB, 189

qupps.biz.zone file fix-SOA, 604

qupps.lua file Lua, 648, 650

raise an error in MySQL, 629

raise error () function, 629, 631

raise error init () function, 629

random file DNSSEC, 543

random file dnscache, 404

random seed file MaraDNS, 84
rbldns program, 284, 378, 385
rbldnsd, 371–386

bind addresses, 378

caching name server, with, 380

Exim, 381

forwarding from Unbound, 430

mail server integration, 381

options and startup, 378

overview, 378

Windows, 386

zone file formats, 379

rbldnsd program, 284, 398
rbldnsd.8 file rbldnsd, 385

RD, 14

rdist program, 49
RDN, 581

RDNLDAP attribute, 603

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

INDEX 685

READMEfile tinydns, 306

Reagan, Ronald, 435

real-time standard, 313

$reason variable, Updates, 471

rebuild nsdc, 269
rec control program, 395, 397–402, 649
record DLZ, 217, 221, 224
records db table, 124, 126–130, 146, 159

recursion statement BIND, 172

Recursion Desired, 14

recursive dnsproxy, 415
recursive MyDNS, 104
recursive servers, 10

recursive-cache-ttl PowerDNS, 148
recursive-port dnsproxy, 415
recursive-timeout dnsproxy, 415
recursive acl MaraDNS, 85
Recursor, 395–402, 647–650

bind addresses, 398

configuration, 396

controlling the server, 400

Lua, scripting, 647
Lua, usage scenarios, 648
overview, 395

performance results of caching server, 559

RFC 1918 addresses, serving, 399

serving local zone files, 396

statistics, 401

version with Lua, 647
version.bind, 400

recursor PowerDNS, 145, 148
recursor.conf file Lua, 649

recursor.conf file Recursor, 396

Red Hat, 583

rediscover PowerDNS, 150
redundancy in the DNS with master/slave servers, 16

redundant storage, 363

referrals from root servers, 437

refresh db column, 98

regeditWindows program, 354
registering IP addresses in DNS, 471

registry, 456

deciding on necessity of, 456

how to set up, 457

registry, lists of domains in, 456

Reinhardt, Chris, 369

Relative Distinguished Name, 581

relativeDomainName LDAP attribute, 56, 192–194,

197, 198, 200, 448

reload nsdc, 269
reload PowerDNS, 150
reload-zones Recursor, 400
$REMOTEADDRvariable, Updates, 477

remote admin MaraDNS, 85
remotes-ringbuffer-entries Recursor, 398, 400
replication

BDB databases, 248

BDBHPT databases, with Zoned, 249

DLZ, create high availability, 253
LDAP, 596

OpenLDAP, 596

replicating back-end data, 54

slapd, 596

tinydns data to other servers, 299
reply cache, 102

reply-cache-expire MyDNS, 103
reply-cache-size MyDNS, 102
request-xfr NSD, 267, 268, 274, 280
REQUIREMENTSfile NSD, 282

res query () function, 496

resident set size, 551

resolution

Perl, 359

special case requirements, 390

resolution of domain names, 6

resolv-file dnsmasq, 338
resolv.conf

dnsmasq, using two, 338
resolv.conf file GENERALDNS, 30

resolv.conf file NSS, 488, 489, 491, 495

resolv.conf file NoNE, xxxiv

resolv.conf file PROGRAMS, 65, 70

resolv.conf file Perl, 359

resolv.conf file RECURSION, 389

resolv.conf file Unbound, 431

resolv.conf file Windows, 353

resolv.conf file dnscache, 405, 411

resolv.conf file dnsmasq, 334, 335, 338

resolv.conf file dnsproxy, 416

resolv.conf file tinydns, 307

resolv.dm file dnsmasq, 338

resolv.h file NSS, 488

resolver, 7, 9

configuration of, 488

lightweigth resolver, 489

MaraDNS, 76

method of operation, 488

stub, 9

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

686 INDEX

Windows DNS client, 489

resource, 34

resource record, 34

resource record sets, see RRsets, 36

resource records

A, address, 37

alias, 39

CNAME, canonical name, 39

creating zones, from, 45

details, 37

format of, 35

looking up in DLZ, 221

MX, Mail Exchanger, 37

NS, Name Server, 43

overview, 34

PTR, pointer, 38

sets of, 36

SOA, Start of Authority, 41

SRV, Service RR, 44

TXT, Text RR, 44

restart nsdc, 269
restart pdns, 152
Restrictions and Controls, 383

retrieve PowerDNS, 150
retry db column, 98

reverse, see inverse

reverse delegation, 440

reverse IP address with MySQL function, 253

reverse query, 38, 39

reverse zones, see in-addr.arpa

reverse.csv file MaraDNS, 81

revip4 () function, 255, 619, 620

revision control system, 297, 695

configuration files in, 458, 566

zone data in, 458

RFC

RFC 1034, 40, 158, 564

RFC 1035, 6, 194

RFC 1183, 194

RFC 1274, 194

RFC 1464, 638, 639

RFC 1876, 194

RFC 1886, 194

RFC 1918, 27, 63, 337, 396, 399, 426, 429

RFC 2136, 22, 95, 96, 98, 101, 106, 111, 114, 169,

176, 178, 185, 214, 218, 219, 262, 276, 284,

464, 468, 469, 471–477, 483

RFC 2142, 41

RFC 2230, 194

RFC 2254, 590

RFC 2307, 492, 495

RFC 2308, 42

RFC 2317, 440

RFC 2535, 194

RFC 2538, 194

RFC 2606, 58

RFC 2671, 538

RFC 2672, 194

RFC 2782, 194

RFC 2845, 176, 276

RFC 2874, 194

RFC 2915, 194

RFC 2931, 483

RFC 3490, 498

RFC 3491, 498

RFC 3492, 498

RFC 3658, 194

RFC 3755, 194

RFC 3757, 541

RFC 3845, 541

RFC 4034, 40, 542

RFC 4509, 542

RFC 4512, 599

RFC 4516, 594

RFC 5011, 538

RFC 5074, 533

RFC 5155, 538

Rief, Jacob, 459

Riepel, Rob, 361

RIPE, 639

RIPE NCC, 262, 544

Ritchie, Dennis, 357

Rivest, Ron, 543

rndc program, 171, 172, 353, 391, 392, 554, 605
rndc-confgen program, 172, 353, 392
rndc-keygen program, 472
rndc.conf file BIND, 392

roll back, 51

rollover, key, 536, 537, 539, 544

root certificate, 512

ROOTfile ldapdns, 318

root file dnscache, 403

root server

BIND-sdb-LDAP, 448
BIND queries, 450
configuring NSD to be a root server, 275

MaraDNS, 76

MyDNS, 447

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

INDEX 687

NSD, 446
referrals from, 437

tinydns, 303
Unbound queries, 450

root servers, 8, 436

alternative, 452

configure caching servers, 450

creating your own, 445

dnscache, to query, 451
enumerate for tinydns, 312
hints file in BIND, 393

hints file in Recursor, 398

how clients query the root, 450

querying the, 437

root zone, serving, 446

thirteen installations, 452

$ROOTvariable, Delegation, 451

$ROOTvariable, dnscache, 405, 406, 408, 409

$ROOTvariable, ldapdns, 320, 321

$ROOTvariable, tinydns, 296, 297, 312

root-hints Unbound, 422, 450
root.hints file BIND, 175

root.zones file BIND, 394

root servers MaraDNS, 86
ROT13, 507

router boxes, 348

rpm program, 68, 585
rr db table, 97, 98, 100, 103, 106, 233, 467

RRLDAP class, 237

rr-table MyDNS, 104, 106
rr-where MyDNS, 104
rr.zone db column, 98

RRD package, 402, 412
RRdata LDAP attribute, 237

RRDtool package, 395
RRset, 37

rrset db table, 226, 227, 229, 230

rrset-cache-size Unbound, 421
rRSIGRecord LDAP attribute, 194

RRttl LDAP attribute, 237

RRtype LDAP attribute, 237

RSA, 543

RSS, 551

RSS feed, 524, 536

rsync program, 18, 49, 248, 300, 378, 386, 566, 640
rubbish, 438

Ruby, 89

run file dnscache, 410

run file ldapdns, 318

run program, 286, 296, 403, 404, 408, 410
run maradns.batWindows program, 353
running nsdc, 269
Rutherford, Ernest, 545

S/MIME, 508, 513, 524, 537

Safari

IDNA support in, 501

SASL, 596

scalable vector graphics, 695

schema files, see LDAP

$SCHEMAvariable, ldapdns, 321

Schemers, Roland, 361

Schwer, Augie, 157

scp program, 49, 278, 566
scripting, see Lua

SDB, 187–212
add zone to named.conf , 207

adding a host to an LDAP zone, 197

adding an LDAP zone, 196

anatomy of an SDB driver, 202

available external drivers, 189

bind addresses, 171

callback functions in drivers, 203

callback functions in SDB, 202

configure views with the LDAP driver, 198

debugging LDAP queries, 197

define zones in named.conf, 193

directory server configuration, 192

driver, compiling and linking, 207

functionality, 189

generate named.conf clauses from LDAP, 200

installing and configuring LDAP driver, 190

LDAP attribute types, 193

LDAP driver limitations, 190

LDAP driver overview, 190

LDAP entries, organization, 195

LDAP indexes, 192

LDAP object classes, 193

LDAP over IPC, 198

LDAP tree, 195

LDAP, create zone, 193

LDIF, 193

load balancing driver, 204

overview, 188

performance during startup, 190

performance results of authoritative server, 557

performing lookups, 205

root server, using as, 448

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

688 INDEX

startup behavior, 210

wild card patch, 212

wild-cards in LDAP driver, 190

zone master file, convert to LDIF, 201

zone transfer control with an LDAP type, 199

zone transfer in SDB drivers, 207

zone transfers with the LDAP driver, 199

zones, mixed SDB and normal, 188

sdlz helper.c file DLZ, 258

search directive in resolv.conf , 488

search scopes, LDAP, 591

secondary name server, see slave server

secret, 485

secret NSD, 268, 277, 278, 280
secret key, 507

secret keys, see encryption

secret keys for TSIG in BIND, 176
secure entry point, 526

Secure Socket Layer, 508

secure updates with TSIG, 176

secure zone transfers with TSIG, 176

sed program, 355
seeAlso LDAP attribute, 600

sender address domain Exim, 382
sender host address Exim, 381, 382
Sendetzky, Norbert, xxxv, 130, 134

Sendmail books, 386

Sendmail configuration for DNSBL, 382

Sendmail package, 372, 382, 383
sendmail.cf file rbldnsd, 382

sendto () function, 271

SEP, 526

serial db column, 98

serial number in zone transfers, 42

serve-rfc1918 Recursor, 399
server clause BIND, 279, 280

server dnsmasq, 338, 345
server NSD, 270
server-count NSD, 265
server-id Recursor, 399
service (SRV) resource records, 44

services file PowerDNS, 133

set PowerDNS, 150
setgid Recursor, 399
setgid () function, 321

setrlimit () function, 408

setting up, see building

setuid Recursor, 399
setuid () function, 321

SFU, 493

SHA-1, 509, 542

SHA-256, 509, 542

Shamir, Adi, 543

Shapiro, Gregory, 386

Sheer, Paul, 259

sheerdns, 259

show pdns, 153

show PowerDNS, 150

SIG(0), 475, 483

signature, see encryption

SigRecord LDAP attribute, 194

silverinst.sh program, 585–589, 594, 600, 675, 681
simple name, 5

single point of failure, avoiding in DLZ, 253
singleclick, 428

Skaarup, Rasmus, 412

slapadd program, 547, 555–557, 586, 588, 589, 597
slapcat program, 597
slapd, 318, 548, 558, 586, 589, 594–597

indexes, 595

installation, 585

replication, 596

slapd program, 596, 643
slapd.conf file Misc, 643

slapd.conf file NSS, 492

slapd.conf file OpenLDAP, 586, 594, 596, 599, 600

slapd.conf file SDB, 192, 199

slapd.sock file SDB, 198

SLAPI plug-ins, 596

slapi-dnsnotify package, 643, 644
slappasswd program, 586
Slashdot news site, 567

slave statement BIND, 218

slave PowerDNS, 122, 148
slave name server, 17

slave server, 16

BIND, 174
MaraDNS, 89
NSD, 273

PowerDNS, 117
slave-cycle-interval PowerDNS, 128, 148
slurpd program, 596
Small Office/Home Office, see SOHO

smart host, 27

Smith, Andy, 165

Smith, Mark C., 603

SMTP dialog during black-list, 382

SMTP Inbound Controls, 383

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

INDEX 689

sn LDAP attribute, 583, 590, 598

SNMP, 598

SOA

Nagios plugin to check, 577
soa db table, 97–100, 103, 105, 106, 108, 233, 466, 472

soa file fix-SOA, 606

soa-table MyDNS, 103
soa-where MyDNS, 103, 104
soa.id db column, 98

sOARecord LDAP attribute, 135, 138, 194, 196, 200,

322, 324, 448, 644

Socket module, 358

socket-dir Recursor, 397, 399, 400
SOHO, xxxi, 10, 11, 21, 24, 71, 76, 77, 93, 284, 331,

332, 348, 388, 391, 445, 456, 457, 560

deploying a name server, 24

MaraDNS, 76

soho.csv file MaraDNS, 78

song, 600

song LDAP class, 600

songGenre LDAP attribute, 600, 601

songl program, 603
songTitle LDAP attribute, 598

songYear LDAP attribute, 601

Spain

delegation example, 438

DLZ, MySQL driver, 225
DSC node, 572

food, 438

ISO 3166 country code, 640

primary and secondary, 16

view, geographical filter, BIND, 186
Spam, 372, 386

spam bible, 386

Spamhaus, 390

SpamHaus Project, 386

split horizon, 18

split horizon servers, 18

spoofing, attacks in IDNA, 499

spool directory, Lua, example, 646
spouse, 438

SQL

choosing a server back-end, 60

database transactions, 71

storage requirements, 64

utilities for manipulating records, 52

SQLite package, 22, 51, 115, 131–133
squid package, 389
squid program, 27, 648

SRV records

blocked by dnsmasq, 345
program to create lines for tinydns, 304
querying from Perl, 365

srvany.exeWindows program, 354
sRVRecord LDAP attribute, 135, 194

SSH, 566

keys in LDAP, 566

lpk, 566

ssh program, 278, 386, 566
SSHA, 586

sSHFPRecord LDAP attribute, 194

SSL, 508

Stanford, 370

Stanford::DNS package, 367
Stanford:DNSserver

bind addresses, 366

start nsdc, 269
start pdns, 152
Start of Authority, 41

static answers in Perl, 366

statistics

BIND, 571
BIND XML server, 182
BIND zone, 181
dnscache, 571
NSD, 265, 571
PowerDNS, 571
tinydns, 305
tinydns, 571
Unbound, 571

statistics dnsproxy, 415
statistics NSD, 265
statistics-file statement BIND, 171, 181

statistics-interval Unbound, 424
status pdns, 152
status db column, 125

stealth, see hidden

stealth name server, see also hidden name server

Stella, Michael, 476

Stenberg, Daniel, 484

Stichting NLnet, 214

Stoll, Clifford, 331, 487

stop nsdc, 269
stop pdns, 152
Ströder, Michael, 55

strings in TXT RR, 638

strtol () function, 222

stub resolver, 9, 389, 417, 488

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

690 INDEX

stub zones

BIND, configuring, 175
Unbound, configuring, 427
Windows, 351

stub-addr Unbound, 427
stub-host Unbound, 427
stub-zone Unbound, 425, 428
sub-domain delegation, 438

subdomains, 6

subjectAltName, 136

subnet clause BIND, 470

subversion, 463

subversion package, 418, 458, 459, 695
subversion program, 566
supermaster, 129

supermasters db table, 125, 129, 130

supermasters.account db column, 130

superslave, 129, 462

superslave server, PowerDNS, 118
supervise program, 310, 311, 404
$SUPERVISEvariable, ldapdns, 321

SUPPORT.CABfile Windows, 352

survey, 350

SVG, 695

Symas, 546, 584, 585

Symas OpenLDAP Silver, 584

symmetric, 507

syncrepl, 596

syslog program, 92, 147, 182, 265, 321, 343, 415, 422,
474, 552, 585

syslogd program, 173, 343, 345, 422, 585
syslogd.conf file OpenLDAP, 585

system () function, 636

TAI, see Temp Atomique International

target in SRV records, 45

TCP

ldapdns, 326
tcpclient program, 302
tcprules program, 301
tcpserver program, 301, 302
telephone number, 359

telephone numbers in DNS, 363

telephony, 564

template for securing BIND, 186

Temps Atomique International, 313

test environment in performance tests, 546

test environment, virtualized, 69

text editor, 458

théâtre example in IDNA, 499

Thomas, Rob, 186

threading in MaraDNS, 76

$THREADSvariable, ldapdns, 321

Thunderbird, 372, 577

IDN preferences, 504

IDNA support in, 502

monitoring add-on, 577

TightVNC, 369

time stamp format, 313

Time::TAI64 package, 313
timedb program, 188
timeToLive LDAP attribute, 222

tiny-add program, 295
tinyddns package, 485
tinydns, 283–314

data file pre-processing, 304

authoritative server, 285

bind addresses, 296

components, 284

configuration, 285

configuration files, 286

controlling with environment variables, 296

converting zone master files, 304

data file, format of, 287

delegation, 444

dynamic DNS updates, 485

environment variables, 285

ldapdns, compared, 316
overview, 284

patches and related software, 313

performance results of authoritative server, 552

provisioning from database, 297

qualification, 307

randomizing resource records, 295

replicating data to other servers, 299

root server, create, 303

split-horizon, 289

SRV lines, program to create, 304

startup, 296

statistics, 305

statistics, collecting, 571

syntax summary, 294

utilities, 306

Web-based utilities, 463

wild cards, 296

zone data storage, 286

zone transfer, 301

tinydns-conf program, 286–288, 295, 296, 403

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

INDEX 691

tinydns-data package, 107, 108, 286–290, 294, 295,
297, 298, 300, 302, 304, 313, 476, 482, 485

tinydns-edit program, 287, 288, 295
tinystats program, 305, 306
TLD, 8, 436, 573

reserved for experimenting, 58

TLS, 508

ToASCII conversion with idn, 499
ToASCII, IDNA, 498

Tokarev, Michael, 313, 378

token

DLZ, 224
patch for DLZ drivers, 258

Tomato, 348

tools to update back-end data sources, 460

top LDAP class, 582, 583

top level domain, see TLD

top program, 574
top-level domains, 436

top-remotes Recursor, 400
Torwalds, Linus, xxxvi

ToUnicode conversion with idn, 499
ToUnicode, IDNA, 498

Toxen, Bob, 578

trace Recursor, 399
trace DNS queries with dnstrace, 309
transaction, 71

transactional mode in BDB, 243

transactions, database, 71

translating www.qupps.biz to an address, 7
Transport Layer Security, see TLS, 508

Trenholme, Sam, xxxv, 76, 94

trigger for PowerDNS and CNAME, 158

trust anchor, 526

trust-anchor Unbound, 527
trust-anchor-file Unbound, 527
trusted-keys clause BIND, 528

trusted-keys statement BIND, 528, 535

trustman program, 538
TSIG

ACLs for NSD zones, 277
BIND as master and NSD as slave, 279
defined, 276

generate keys with ldns, 282
generating keys for NSD, 276
key declaration in BIND, 178
key declaration in NSD, 268
keys and nsupdate, 467
NSD as master and BIND as slave, 278

TTL

value in DLZ, 222

$TTL in zone master file, 48

TTL

for NXDOMAIN SOA RR, 42

ttl db column, 98, 99, 126, 128, 146, 227

tuning-primer program, 561
Turnbull, James, 578

TXT

configuration data, in, 637

txt-record dnsmasq, 339
tXTRecord LDAP attribute, 135, 194, 196, 200

type db column, 98, 99, 125–127, 227

ub ctx resolvconf () function, 431

ub ctx set fwd () function, 431

ub resolve () function, 431

ub resolve async () function, 431

UCE, 371

ucspi-tcp package, 301, 302, 306, 311, 312
UDF, see User Defined Function

UDP, 485

DNS data, 6

uid LDAP attribute, 581

$UID variable, dnscache, 409

$UID variable, ldapdns, 321

$UID variable, tinydns, 297

UK, 15, 436, 438

Unbound, 417–433
access control, 421

behavior during reload, 419

bind addresses, 420

caching server, set up, 418

configuration directives, 420

DNSSEC trust anchors, 527

forwarding, 427

installation, 418

intercepting domains, 425

launching, 419

logging for DNSSEC, 527

overview, 417

performance results of caching server, 559

root server, configuration for, 450

sample code using libunbound, 431
scenarios for special forwarding, 428

serving data from a local file, 425

serving local data, 425

signaling and stopping, 419

statistics, 419

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

692 INDEX

statistics, collecting, 571

stub zones, 427

unbound-check program, 426
unbound-checkconf program, 419, 431
unbound-host program, 30, 431, 522, 544
unbound.conf file DNSSEC, 527, 528

unbound.conf file Delegation, 450

unbound.conf file Unbound, 418–420, 425, 429–431

unbound.pid file Unbound, 419, 422

unison package, 695
Unsolicited Commercial E-mail, 372

update nsdc, 269
update file with MySQL UDF, 632

update program, 402
update acl db column, 98, 106, 107

updates, 455–485

upstream port MaraDNS, 85
upstream servers MaraDNS, 87
uptime PowerDNS, 150
urandom file MaraDNS, 85

URL, see LDAP

configured in TXT RR, 637

use-syslog Unbound, 422
use pgsql MyDNS, 108
Usenet, 507

user dnsmasq, 336
user dnsproxy, 415
user MyDNS, 101
User Defined Function

installing, 630

invoke from a trigger, 631

raise an error, 629

update file in file system, 632

User Defined Functions, 629

userCertificate LDAP attribute, 582

username NSD, 266
username Unbound, 422
userreq () function, 366–368

users’ telephone numbers in DNS, 363

users’ workstation names, 363

users.qupps.biz, 363

UTF-8, see IDNA

val-permissive-mode Unbound, 528
validator, 417

value, 265

Vandewege, Ward, 304

variable, see environment variable

VegaDNS package, 463

Venaas, Stig, 190, 459

Venema, Wietse, 371

verbose level MaraDNS, 85
verbose query MaraDNS, 85
verbosity Unbound, 419, 420, 527
Verisign, 417

version statement BIND, 171

version PowerDNS, 150
version Unbound, 423
version, monitoring name server, 569

version-string PowerDNS, 148
version-string Recursor, 400
version.bind

how to query, 32

monitoring versions, 569

NSD hiding, 266
PowerDNS Recursor, 400
tinydns, 305
Unbound, 423

version.server

NSD hiding, 266
Unbound, 423

vertical bar, see pipe symbol

vi program, 355, 695
view

BIND ACL, for, 179
defined, 25

DLZ views with different drivers, 250
geographical in BIND, 186
implementing split-horizon in DLZ, 250

LDAP in views with SDB, 198
split-horizon in BIND, 179

tinydns locations, 289
view clause BIND, 180

vim program, 695
Virtual Network Computing, see VNC

Virtual Private Network, 389

virtual set size, 551

VirtualBox, 70

virtualization

Parallels, 69

VirtualBox, 69

VMware, 69, 112, 350, 352, 564

Vixie, Paul, 512

VMware, see virtualization

VNC, 359, 369

VOIP, 564

VSZ, 551

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

INDEX 693

walldns program, 284
Walter, Stefan, 643

Web

book’s companion site, xxxv

IDNA, browser support, 501

MyDNS administration tool, 112
utilities to manage zone data, 462

web2ldap package, 55
webserver PowerDNS, 151
webserver-address PowerDNS, 151
webserver-password PowerDNS, 152
webserver-port PowerDNS, 152
Wessels, Duane, 572

whatmon program, 577
white-lists in Exim, 382

whitelist, 375

Wijngaards, Wouter, xxxv, 417

Wikipedia, 58, 386

wild card, 49

Bind DLZ, special character, 221
ldap2zone, support in, 459
Makefile , 605

MaraDNS, bind2csv2, 91
MyDNS, 98
patch for SDB, 212

PowerDNS, 148
PowerDNS LDAP back-end, 135
SDB LDAP driver, 190
tinydns, 296

wildcards PowerDNS, 148
Wilkinson, Howard, 111

Windows, 349–357

cygwin *nix environment, 355

invoking poor man’s updating client, 480

MaraDNS, 76
rbldnsd for Windows, 386

Windows 2003, 350

Windows DNS

books, 356

command-line, 352

dynamic DNS updates, 350

forwarders, 351

overview, 350

zone types, 351

wipe-cache Recursor, 401
Wolfermann, Armin, 413

word lists, 561

Wozniak, Steve, 455

wrapper to resolver functions, 358

Wrbldnsd package, 386

X.509, 595

xdvik program, 695
Xen, 112

xfer db column, 98, 105, 106

XML, 572, 577

XSTATS

NSD, 270
xterm program, 355

Yadava, Himanshu, 259

yast program, 68
year 2038, 313

yum program, 68

Zawodny, Jeremy, 561

zcat.pl program, 287
zid db column, 227

zone, 15

add authoritative

MaraDNS, 77

automatic, MaraDNS, 78
BIND, adding, 170
comparison to domain, 15

configure a zone in ldapdns, 323
storage of domain information, 15

storing zone data in file system, 259

synthetic, MaraDNS, 78
zone clause BIND, 121, 154, 171–174, 181, 183, 188–

190, 193, 197, 200, 207, 250, 280, 448, 450,

470, 473, 521, 604

zone DLZ, 217, 220–222, 224, 228, 233
zone NSD, 266, 269, 275
zone cache, 102

zone data

configuration stored in TXT, 637

configure in ldapdns, 321
convert to LDAP for PowerDNS, 137

converting to LDAP with zone2ldap, 138
country codes, in, 639

DNSSEC, signing, 514

editing by hand, 458

expiry of, 42

flat files, 49

generating from external sources, 459

in revision control, 458

LDAP, in, DLZ, 234
LDAP, in, ldapdns, 316

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

694 INDEX

LDAP, in, PowerDNS, 134
manipulating in back-end, 55

manipulating in LDAP, 54

manipulating in SQL, 52

MaraDNS, 79
minimal zone, realistic, 46

PowerDNS, BIND back-end, 119
provisioning, 459

rbldnsd, formats, 379
storage of, 49

storage requirements, 64

stored in Active Directory, 350

tinydns, storage, 286
tinydns data file, 287

tools to update, 460

update, how to, 458

Web-based management, 462

wild card, 48

zone db column, 98, 226, 228

zone files

$ORIGIN , 48

$TTL, 48

configuration stored in TXT, 637

MaraDNS, 79
provisioning from external source, 459

root zone, 436

served by Recursor, 396

tinydns, storage, 286
tools to manage, 458

zone lookup

in SDB, 202

zone management, 436

zone master files

$INCLUDE, using, 604

$ORIGIN ignored in MaraDNS, 91

BIND, adding to, 170
convert to tinydns data , 304

converting to MaraDNS format, 91

exported from MyDNS, 107
in SDB, 188

LDAP, generate from, 459

LDIF, convert to, 201

mixing with DLZ, 218

NSD, 262
patching in NSD, 262
SOA serial numbers, automatic, 604

syntax in MaraDNS, 76

Zone Signing Key, 514

generating, 519

zone transfer, 17

disable in PowerDNS, 146

DLZ’s minimal LDAP schema, 238
enabling in DLZ, 222

finding records, 221

handling in NSD, 262
MyDNS, import zones to, 107
NSD, manual transfer, 270
NSD, testing, 277
performance, 551

refresh/retry times, 42

SDB drivers, 207
serial number, relevance, 42

tinydns, 301
zone-cache-expire MyDNS, 102
zone-cache-size MyDNS, 102
zone-statistics statement BIND, 171, 181, 183

zone.dns , 351

zone2ldap program, 137–139
zone2ldif program, 201, 202
ZoneAdmin package, 462
zonec program, 262, 264, 268, 269, 274
zonectl program, 249
Zoned program, 249
zonefile NSD, 266, 269, 274
zoneName LDAP attribute, 56, 192–195, 200, 448

zones db table, 226, 227, 230

zones.incl file MySQL, 632, 633, 635

zones.trig file MySQL, 635

zonesdir NSD, 266, 270, 275
$ZONESDIRvariable, fix-SOA, 605

zoneserver program, 87, 88, 92, 94
ZSK, see Zone Signing Key

Zwicky, Elizabeth D., 578

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Colophon

This book was produced with Open Source tools. I am extremely grateful to my editor for
not forcing me to use an ugly word processor; quite on the contrary, he actually suggested I
do not.

• We used the LATEX document preparation system on *nix to produce the camera-ready
copy of what you hold in your hands (www.latex-project.org).

• We wrote every word in vi or rather a newer incantation thereof called vim (www.vim.

org).

• We created the figures throughout the book in scalable vector graphics (SVG) with
InkScape, converting them to encapsulated Postscript (EPS) for inclusion in the LATEX
source (www.inkscape.org).

• make is an invaluable tool that we used extensively for “compiling” the book as well
as converting SVG diagrams to EPS (http://www.gnu.org/software/make/).

• The screen shots were made and manipulated with GIMP, the GNU Image Manipula-
tion Program (www.gimp.org).

• We placed all the files that make up the book (diagrams, screen shots, example pro-
grams, etc.) under control of subversion, the revision control system (subversion.

tigris.org) running with the Apache Web server (httpd.apache.org).

• While “in transit”, we worked on a copy of the subversion working set that we kept
synchronized with unison (www.cis.upenn.edu/˜bcpierce/unison).

• Instead of wasting paper, we used xdvik to preview drafts of the book’s chapters2

(xdvi.sourceforge.net).

LATEX produced the completed book as a Device Independent File (DVI) which we converted
to Postscript and then PDF, which the printers used as camera ready copy.

2and that is how Alexandra kept track of the book’s progress.

Copyright © UIT Cambridge Ltd. 2009. All rights reserved. For personal and noncommercial use only. Cheats will have fingers removed.

Web site for this book

Register your book: receive updates, notifications about au-
thor appearances, and discounts on new editions.
www.uit.co.uk/register

Resources for your book: examples, exercises, source code,
downloadable index, downloadable searchable text, and
more. www.uit.co.uk/resources

News: forthcoming titles, events, reviews, interviews, pod-
casts, etc. www.uit.co.uk/news

Join our mailing lists: get e-mail newsletters on topics of in-
terest. www.uit.co.uk/subscribe

Order books: order online. If you are a bookstore, find out
about our distributors or contact us to discuss your par-
ticular requirements. www.uit.co.uk/order

Send us a book proposal: if you want to write – even if you
have just the kernel of an idea at present – we’d love to
hear from you. We pride ourselves on supporting our au-
thors andmaking the process of book-writing as satisfying
and as easy as possible. www.uit.co.uk/for-authors

UIT Cambridge Ltd.
PO Box 145
Cambridge
CB4 1GQ
England

E-mail: inquiries@uit.co.uk

Phone: +44 1223 302 041

ALSO PUBLISHED BY UIT

Typesetting Mathematics with LATEX

Herbert Voss

From a simple equation to a mathematical treatise, this practical guide oUers an in-depth

review of the mathematics typesetting aspects of the industry-leading typesetting software,

LATEX. Among the topics discussed in this manual are mathematics in line with normal text,

the software’s special mathematics mode, color in math expressions, and fonts and math.

Handy features include a list of mathematical symbols for quick-reference, a survey of a

wide range of additional mathematics packages—with a particular emphasis on the American

Mathematical Society package—and ready-to-run examples to enable users to get going

quickly.

This book will:

⊲ Save you time by quickly giving you the detailed command syntax you require.

⊲ Improve your mathematical typesetting by providing a reference to all the available com-

mands.

⊲ Showing the advantages of the packages from the American MAthematical Society

⊲ Show you how to choose suitable math fonts, using the convenient samples of font output.

Contents

1. Introduction

2. Math in inline mode with standard LATEX

3. Math in display mode with standard LATEX

4. Math elements from standard LATEX

5. Colour in math expressions

6. AMS packages

7. Symbols

8. TEX and math

9. Other packages

10. Examples

11. Fonts and math

12. Bibliography

ISBN: 9781906860172

290 pages

ALSO PUBLISHED BY UIT

Typesetting tables with LATEX

Herbert Voss

This is the Vrst-ever book dedicated to typesetting tables in LATEX. With LATEX you can create
just about any kind of table, from simple to extremely complex. But while the table capabilities
in LATEX are powerful, they can be daunting at Vrst sight or when you require a sophisticated
layout. This book describes the additional LATEX packages that are available to simplify your task,
and gives ready-to-run examples of each, to get you working as quickly as possible, and present
your data in the most eUective way.

With this book you will learn:
• How to typeset tables, from basic to advanced.

• How to use advanced features, such as color and multi-page tables.

• How add-on LATEX tables packages can simplify or enhance your work.

Contents
1. Introduction to LATEX’s table-handling

2. LATEX packages for tables

3. Using color in tables

4. Multi-page tables

5. Tips and tricks

6. Examples

Praise for the German Edition

“A concise reference book for those who may already have used LATEX but aren’t aware of the
powerful capabilities provided by LATEX’s extra tables packages.”

ISBN: 9781906860257

240 pages

ALSO PUBLISHED BY UIT

LATEX quick reference

Herbert Voss

This book lists all LATEX macros and environments in a comprehensive reference format. (The
packages array and graphicx are included even though they are not part of standard LATEX,
because they are so widely used.) The book also lists examples of fonts for both plain text and
math, making it a convenient graphical resource.

This book will:
• Save you time by quickly giving you the detailed command syntax you require.

• Improve your LATEX by providing a quick-reference to all the available command options.

• Show you how to choose suitable fonts, using the convenient samples of font output.

Contents
1. The Standard Programs

2. Document Structure

3. Commands for Fine-Tuning your Typography

4. Command List

5. Lengths and Counters

6. Fonts

7. Packages

8. Bibliography

Praise for the German Edition

“An essential resource for LATEX users”

ISBN: 9781906860219

160 pages

ALSO PUBLISHED BY UIT

PSTricks
Graphics and PostScript for LATEX

Herbert Voss

A comprehensive guide to creating and including graphics in TEX and LATEX documents. It is
both a reference work and a tutorial guide.

PSTricks lets you produce very high-quality PostScript graphics, by programming rather
than interactive drawing. For designers, data publishers, scientists and engineers, generating
graphics from data or formulas instead of having to draw manually allows large data collections
or complex graphics to be created consistently and reliably with the minimum of eUort.

There are many special-purpose extensions, for visualizing data, and for drawing circuit
diagrams, barcodes, graphs, trees, chemistry diagrams, etc.

Numerous examples with source code (freely downloadable) make it easy to create your own
images and get you up to speed quickly.

Contents
1. Introduction 2. Getting Started 3. The Coordinate System 4. Lines and Polygons 5.

Circles, Ellipses and Curves 6. Points 7. Filling 8. Arrows 9. Labels 10. Boxes 11. Custom styles
and objects 12. Coordinates 13. Overlays 14. Basics 15. Plotting of Functions and Data 16.

Nodes and Connections 17. Trees 18. Manipulating Text and Characters 19. Filling and Tiling
20. Coils, Springs and Zigzag Lines 21. Exporting PSTricks Environments 22. Color Gradients
and Shadows 23. Three-Dimensional Figures 24. Creating Circuit Diagrams 25. Geographic
Projections 26. Barcodes 27. Bar Charts 28. Gantt Charts 29. Mathematical Functions 30.

Euclidean Geometry 31. Additional Features 32. Chemistry Diagrams 33. UML Diagrams 34.

Additional PSTricks Packages 35. Specials 36. PSTricks in Presentations 37. Examples

Praise for the German Edition

“A nice Christmas present – for me!”

“A detailed current description of PSTricks and the huge variety of PSTricks packages that
are available, and written by an experienced LATEX package developer.”

“Searching through loads of diUerent pieces of documentation is a thing of the past. This
single compendium is a quick reference to everything I need.”

ISBN: 9781906860134

900 pages

Example illustrations from PSTricks

ALSO PUBLISHED BY UIT

Practical TCP/IP

Designing, using, and troubleshooting

TCP/IP networks on Linux and Windows

Niall MansVeld

Reprinted Vrst edition

Key beneVts
1. Explore, hands-on, how your network really works. Build small test networks in a few

minutes, so you can try anything out without aUecting your live network and servers.

2. Learn how to troubleshoot network problems, and how to use free packet sniUers to see
what’s happening.

3. Understand how the TCP/IP protocols map onto your day-to-day network operation – learn
both theory and practice.

What readers have said about this book

“Before this book was released I was eagerly searching for a book that could be used for my
Linux-based LAN-course. After the release of this book I stopped my searching immediately”

Torben Gregersen, Engineering College of Aarhus.

"Accuracy is superb – written by someone obviously knowledgable in the subject, and able
to communicate this knowledge extremely eUectively."

"You won’t Vnd a better TCP/IP book!"

"An excellent book for taking your computer networking career from mediocre to top notch."

"Covers TCP/IP, and networking in general, tremendously."

"This book has been touted as the 21st-century upgrade to the classic TCP/IP Illustrated (by
Richard W. Stevens). These are big boots to Vll, but Practical TCP/IP does an impressive job.
In over 800 pages of well-organized and well-illustrated text, there is no fat, but rather a
lean and – yes – practical treatment of every major TCP/IP networking concept."

"It’s an ideal book for beginners, probably the only one needed for the Vrst and second
semesters of a university networking course. ... (But it is not a book just for beginners. ...)"

ISBN: 9781906860363

880 pages

ALSO PUBLISHED BY UIT

The Exim SMTP Mail Server
OXcial Guide for Release 4

Philip Hazel

Second edition

Email is one of the most widely used applications, and Exim is one of the most widely used mail
servers, handling mail for tens of millions of users daily.

Exim is free software. It’s easy to conVgure. It’s scalable, running on single-user desktop
systems as well as on ISP servers handling millions of users. (It’s the default server on many
Linux systems, and it’s available for countless versions of UNIX.)

Exim is fast, Wexible, and reliable. It is designed not to lose messages even if your server
machine crashes. It can be used as a secure Internet-facing front-end to other, proprietary, mail
systems used internally in your organization.

Exim supports lookups from LDAP servers, SQL databases, and other data sources, letting
you automate maintenance and conVguration. It can work in conjunction with other tools for
virus-checking and spam-blocking, to reject unwanted emails before they even enter your site.

This book will help you deploy Exim as your SMTP email server throughout your organiza-
tion, and to conVgure, tune, and secure your Exim systems.

Praise for the First Edition

“The book is simply amazing. I Vnd the format/style/whatever 100 times better than [other
documentation].”

“If there’s even a whiU of a chance of you having to come into contact with Exim or its
runtime conVguration, then I can do nothing else but strongly recommend this book. The
detail’s there in spades, it reads very well, and is a Vne complement to the reference manual.”

“The book exceeds my expectations.”

“Well presented and easy to follow”

“An excellent book that is very well written”

“So well written I learn new things every time I open it”

ISBN: 9780954452971

xviii + 622 pages

ALSO PUBLISHED BY UIT

The Joy of X
The architecture of the X window system

Niall MansVeld

This is a reprint of the 1993 classic, describing the architecture of the X window system – the
de facto standard windowing system for Linux, UNIX and many other operating systems. The
book has three sections:
1. X in a nutshell – a quick overview.

2. How X works, in detail, and how the user sees it.

3. Using the system, system administration, performance and programming.
The book is written in a clear, uncomplicated style, with over 200 illustrations. For maximum
accessibility, it has a Wexibile, modular structure that makes it easy to skip to the sections that
interest you. The book has been widely recommended as a course text.

Niall MansVeld founded the European X window system User Group. He also wrote The X
window system: a user’s guide, and the widely-acclaimed Practical TCP/IP.

Praise for This Book

“User interfaces come and go, but X remains the standard window system across a range of
operating systems. Niall’s book, The Joy of X, still oUers an excellent look into how X works
and how to make it work better for you.

Keith Packard, X.org project leader

“If you are new to the X Window System environment, we strongly suggest picking up a
book such as The Joy of X” Eric Raymond, in the Linux XFree86 HOWTO

“a great little book called The Joy of X by Niall MansVeld that taught me much of what I
know.” JeU Duntemann’s ContraPositive Diary

“My personal touchstone when looking for a broad introduction to all things X is The Joy of
X . . . by Niall MansVeld” Peter Collinson

ISBN: 9781906860004

xii + 372 pages

ALSO PUBLISHED BY UIT

Alternative DNS Servers
Choice and deployment, and optional SQL/LDAP back-ends

Jan-Piet Mens

This book examines many of the best DNS servers available. It covers each server’s beneVts
and disadvantages, as well as how to conVgure and deploy it, and integrate it into your network
infrastructure. It describes the diUerent scenarios where each server is particularly useful, so
you can choose the most suitable server for your site. A unique feature of the book is that it
explains how DNS data can be stored in LDAP directories and SQL databases, often required for
integrating DNS into large-organization infrastructures.

Other important topics covered include: performance, security issues, integration with DHCP,
DNSSEC, internationalization, and specialized DNS servers designed for some unusual purposes.

Praise for This Book

“The Vrst book to describe NSD and Unbound in excellent detail.”
NLnet Labs, authors of NSD and Unbound

“Finally - a clear, in-depth and accessible guide to using BIND-DLZ! A must read for anyone
considering alternate DNS servers.”

Rob Butler, BIND-DLZ project creator and author

“Takes the reader through the process of conVguring the program from basics to advanced
topics.” Simon Kelley, author of dnsmasq

“An informative accurate guide for anyone interested in learning more about DNS.”
Sam Trenholme, MaraDNS author

“A valuable source of information for every PowerDNS administrator!”
Norbert Sendetzky, author of PowerDNS LDAP & OpenDBX back-ends

“Jan-Piet has done a great job describing PowerDNS.”
Bert Hubert, principal author of PowerDNS

ISBN: 9780954452995

xxxvi + 694 pages

ALSO PUBLISHED BY UIT

OpenStreetMap
Using and enhancing the free map of the world

Frederik Ramm and Jochen Topf, with Steve Chilton

Second edition

OpenStreetMap is a map of the whole world that can be used and edited freely by everyone. In
a Wikipedia-like open community process, thousands of contributors world-wide survey the
planet and upload their results to the OpenStreetMap database. Unlike some other mapping
systems on the Web, the tools and the data are free and open. You can use them and modify
them as you require; you can even download all the map data and run your own private map
server if you need to.

This book introduces you to the OpenStreetMap community, its data model, and the software
used in the project. It shows you how to use the constantly-growing OSM data set and maps in
your own projects.

The book also explains in detail how you can contribute to the project, collecting and
processing data for OpenStreetMap. If you want to become an OpenStreetMap “mapper” then
this is the book for you.

About the authors: Frederik Ramm and Jochen Topf both joined the OpenStreetMap project
in 2006, when they were freelance developers. Since then they have made their hobby their
profession – by founding Geofabrik, a company that provides services relating to OpenStreetMap
and open geodata.

Praise for the First (German) Edition

“A must-have for OSM newcomers. The basics are presented well and are easy to understand,
and you do not need to be an IT specialist to contribute your Vrst data to OSM after a short
time.”

“The book is very well written. It is obvious that the authors have a lot of knowledge and
experience ...”

“A very good OSM introduction. Getting up to speed with OpenStreetMap is much easier if
you have read this book.”

ISBN: 9781906860110

352 pages + 32 pages of color plates

Example illustrations from OpenStreetMap

More about this book

Register your book: receive updates, notiVcations about au-
thor appearances, and announcements about new editions.
www.uit.co.uk/register

News: forthcoming titles, events, reviews, interviews, pod-
casts, etc. www.uit.co.uk/news

Join our mailing lists: get email newsletters on topics of in-
terest. www.uit.co.uk/subscribe

How to order: get details of stockists and online bookstores.
If you are a bookstore, Vnd out about our distributors
or contact us to discuss your particular requirements.
www.uit.co.uk/order

Send us a book proposal: if you want to write – even if you
have just the kernel of an idea at present – we’d love to
hear from you. We pride ourselves on supporting our au-
thors and making the process of book-writing as satisfying
and as easy as possible. www.uit.co.uk/for-authors

UIT Cambridge Ltd.
PO Box 145
Cambridge
CB4 1GQ
England

Email: inquiries@uit.co.uk

Phone: +44 1223 302 041

