

20 Dynamic data and
pointers

In all the examples considered so far, we have known how many data elements there
will be, or we have at least decided on some maximum number that we are prepared to
deal with. The data may be global, their space can be sorted out at compile-time (or
link-load time); or the data may be temporary such as variables that belong to a function
and which exist on the stack only while the code of that function is being executed. But
a lot of problems involve data that aren't like that. You know that you have to deal with
data objects, but you really don't know how many there will be, and nor do you know
for how long you will need them.
 The main example in this chapter is an "Air Traffic Control" game. The game
involves the player controlling the movements of aircraft, giving them orders so that
they line up with a runway, moving at an appropriate speed and rate of descent so that
they can land safely. The game simulates the passage of time and introduces new
aircraft into the controlled air space at a predefined frequency. The "lifetime" of an
individual aircraft varies depending on the skill of the player. Aircraft get created by
the game component; they get removed on successful landing (or by running out of
fuel). If the player is skilful, the correct sequence orders is given to adjust the aircraft's
speed, height and bearing through a number of stages until it is aligned with the
runway. If the player makes a mistake, an aircraft may have to overshoot and circle
around for a second try (or may run out of fuel). So the lifetime of aircraft does vary in
essentially arbitrary ways. The number of aircraft in existence at a particular moment
will also vary. At simple game levels there will be one or two (plus any making second
attempts after aborted landings); at higher game levels there could be dozens.
 The game program would represent the aircraft using data structures (either structs
or instances of some class Aircraft). But these data structures have to be handled in
ways that are quite different from any data considered previously.
 Section 20.1 introduces the "heap" and the operators that can be used to create and
destroy data objects in the heap. The "heap" is essentially an area of memory set aside

20

Objects with variable
lifetimes

The "heap"

2 Dynamic data and pointers

for a program to use to create and destroy data structures that have varied lifetimes like
the example aircraft.
 The actual allocation of space in the heap for a new data object is handled by a run-
time support routine. This "memory manager" routine will select some space in the
heap when asked to create an object of a given size. The memory manager reports
where the object has been placed by returning its address. This address becomes the
value held in a "pointer variable". The heap-based object has to be accessed "indirectly
via the pointer". Section 20.2 looks at issues like the definition of pointer variables, the
use of pointers to access data members of an object, and operations on entire structures
that are accessed through pointers.
 A simple Air Traffic Control game is used in Section 20.3 as a practical illustration.
This version doesn't have a particularly attractive user interface; it is just a framework
with which to illustrate creation, access, and destruction of objects.
 You can work with pointers to data elements other than those allocated on the heap.
We have already had cases where the '&' address of operator was used to get a pointer
value (when passing an address to the read() and write() low level i/o functions).
Section 20.4 looks at the use of the & operator and a number of related issues. Many of
the libraries that you use are still C language libraries and so you must learn something
of C's styles of pointer usage.
 Another legacy of C is the rather poorly defined concept of an array. C
programming idioms often abandon the concept of an array as a composite structure of
many elements identifiable and accessible using their index value. Instead the C hacker
style uses the assembly language level notions of a block of memory that can be
accessed via address registers that have been loaded with the addresses of byte
locations in memory. In this style, the contents of arrays are accessed using pointers
and arithmetic operations are performed on pointers to change their values so as to
identify different array elements. Because of the large amount of existing C code that
you will need to work with, you need a "reading knowledge" of some of these pointer
idioms. This is the content of Section 20.5. Note, it should be a "reading knowledge";
you should not write code employing these coding idioms.
 Section 20.6 discusses "networks", showing how complicated structures can be built
out of separate parts linked together with pointers.

20.1 THE "HEAP"

As illustrated in Figure 20.1, the memory allocated to a program is divided into four
parts or "segments". The segments are: "code", "static data", "stack", and "heap". (This
organization is conceptual only. The actual realization on a given computer
architecture may well be considerably more complex.)

Addresses and
"Pointers"

"Air Traffic
Controller"

The "address of"
operator

Pointers and arrays

The Heap 3

0110110000010101
1010110010110100
1001001101100110
1101100011001011
0101000100101111
0010101110010101
1001010000010101
1001000001010100
0100101001010010
0010100101010010
1000100101001010
0010100101001010
0101000100100100
1011110010010101
0101010010101001
0100100010101001
0100101010100101
1010010101010100
0100101010101001
0101110000101010
0010101001000101
0010011101001001
0010101001010010
1001001010101001
0100010101000010

Code Static data

Stack Heap
Frame for
"runtime"

Frame for
main()

int gScreen;
Name gDir[] = {
 "North"
 "East"
};
…

 0
 N o r t
 h
 E a s t
…

free

free

free

Frame for
DoCommand()

Frame for
Move()

int main()
{
…
}
void DoCommand()
{
…
}
void Move (int dir)
{
…
}

iostream library

stdlib library

structure A

structure D

structure X

structure Z

Figure 20.1 Program "segments" in memory: code, static data, stack, and "heap".

 The "code" segment contains the bit patterns for the instructions. The contents of
the code segment are composed largely by the compiler; the linking loader finalises
some of the addresses needed in instructions like function calls. The code segment will
include library routines that have been linked with the code specifically written for the
program. On machines with "memory protection" hardware, the code segment will be
effectively "read only".
 The "static data segment" is used for those data variables that are global or at least
filescope. These are the variables that are defined outside of the body of a function. (In
addition, there may be some variables that have been defined within functions, and
which have function scope, but which have been explicitly allocated to the static data

Code segment

"Static data
segment"

4 Dynamic data and pointers

segment. Such variables are rarely used; there are none in this text book.) Space for
variables in the static data segment is allocated by the linking loader. The variables are
initialized by a run-time support routine prior to entry to main(). In some cases,
special "at exit" functions may manipulate these variables after a return from main()
(i.e. after the program is nominally finished!). Such variables remain in existence for
the entire duration of the program (i.e. their lifetime exceeds that of the program).
 The stack holds stack frames. The stack frames hold the local variables of a
function together with the housekeeping details needed to record the function call and
return sequence. A stack frame is created as a function is called and is freed on exit.
Local variables of a function remain in existence during the execution of their own
function and all functions that it calls.
 The heap is a completely separate region of memory controlled by a run-time
"memory manager" support routine. (This is not the operating system's memory
manager that sorts out what space should be given to different programs. This run-time
memory manager is a library function linked to your code.) This run-time memory
manager handles requests for fixed sized blocks of memory.
 In C it is normal to make requests direct to the memory manager specifying the size
of blocks in terms of the number of bytes required. C++ has provided a higher level
interface through the new operator explained below. Using new, a function can request
the creation of a heap-based struct, a class instance, an array of variables of simple
types (e.g. an array of characters) or even an array of class instances. The new operator
works out the number of bytes needed and deals with all the other low level details
associated with a call to the actual run-time memory manager.
 When a program starts, the operating system gives it some amount of memory for its
heap segment. The amount obviously varies with the system, but typical initial
allocations would be in the range from a quarter megabyte to eight megabytes. On
some systems, a program may start with a small area for its heap but is able to request
that the OS enlarge the heap later. One of the start up routines would record details of
the heap allocation and mark it all as "free".
 When asked for a block of memory, the memory manager will search the heap
looking for a "free" area that is large enough provide the space required and hold a little
additional housekeeping information. The memory manager needs to keep track of the
space it allocates. As illustrated in Figure 20.2, its "housekeeping records" are placed
as "headers" and "trailers" in the bytes just before and just after the space reserved for a
new structure. These housekeeping records note the size of the block and mark it as "in
use". When the memory manager function has finished choosing the space to be
allocated and has filled in its records, it returns the address of the start of the data area.
 Structures allocated on the heap eventually get discarded by the program (as when,
in the example, the aircraft land or crash). Even if your programs starts with an eight
megabyte heap, you will eventually run out of memory if you simply created, used, and
then discarded the structures.

Stack

The "heap"

"new" operator

Allocating space for
data structures

Freeing unneeded
structures

The Heap 5

Block "trailer"

Block "header"; contains
information like
 size of block,
 is it still in use

Address of start of useable
data area

Block with
N

bytes

A "freed" block

Another
block

Heap space
not yet used

Heap

Figure 20.2 "Blocks" allocated on the heap.

 If you create dynamic structures in the heap, you are expected to give them back to
the memory manager when you no longer need them. The memory manager can then
reclaim the space they occupied. The memory manager will mark their headers as
"free". Subsequently, these blocks may get reallocated or merged with neighboring free
blocks. In C++, you pass discarded data structures back to the memory manager using
the delete operator.
 It is common for programmers to be a bit careless about giving discarded data
structures back to the memory manager. Some dynamically allocated structures just get
forgotten. Such structures become "dead space" in the heap. Although they aren't used
they still occupy space. A part of the program's code that creates, uses, but fails to
delete structures introduces a "memory leak". If that code gets called many times, the
available heap space steadily declines ("my memory appears to be leaking away").
 If your code has a memory leak, or if you are allocating exceptionally large
structures you may eventually run out of heap space. The C++ language has defined
how the memory manager should handle situations where it is asked to create a new
structure and it finds that there is insufficient space. These language features are a bit
advanced; you will get to them in later studies. Initially, you can assume that requests
for heap space will always succeed (if a request does fail, your program will be
terminated and an error message will be printed).

delete operator

"Memory leaks"

Failure to allocate
memory

6 Dynamic data and pointers

 The headers and trailers added by the memory manager would typically come to
about 16 bytes, maybe more. This is a "space overhead" associated with every structure
allocated in the heap. A program that tries to allocate individual char or int variables in
the heap almost certainly has a fundamental design error. The heap is meant to be used
for creation of reasonable sized data objects like structs or arrays.
 The work that the memory manager must perform to handle calls via new and
delete is non-trivial. Quite commonly, profiling a program will reveal that a
measurable percentage of its time is spent in the memory management routines. You
should avoid creating and destroying structures inside deeply nested loops. The heap is
meant to be used for the creation of data objects that have reasonable lifetimes.
 The following illustrate use of the new operator to create structures in the heap:

struct Point3d { double fX, fY, fZ, fR, fTheta, fPhi; }
class Bitmap; // as declared in Chapter 19
class Number; // as declared in Chapter 19
…

… = new Point3d;
…
… = new Bitmap;
…
… = new Number("77777666555");
…
… = new char[kMAX];

Each of these uses of the new operator results in the return of the address of the start of
a newly allocated block of memory in the heap. These address values must be assigned
to pointer variables, as explained in the next section.
 The first example creates a Point3d data structure. The data block allocated in the
heap would be just the right size to hold six double precision numbers.
 The second example does a little more. The memory manager would allocate block
of heap space sufficient to hold a bit map object (an instance of class Bitmap from
chapter 19). Class Bitmap has a constructor function that initializes a bit map. The
code generated for the new operator has a call to this constructor function so as to
initialize the newly allocated data area.
 The third example is similar, except that it involves an instance of class Number .
Class Number has several possible constructors; the one needed here is the one that
takes a character string. The code generated for the new operator would include a call
to that constructor so the newly allocated Number would be correctly initialized to a
value a little over seventy seven thousand million.
 The final example creates an array of characters. (The size of the array is
determined by the value in the [] brackets. Here the value is a constant, but an
expression is allowed. This make it possible to work out at run time the size of the
array needed for some specific data.) Technically, this last example is using a different
operator. This is the new [] operator (the "make me an array operator").

Overheads when
allocating heap

structures

Using the new
operator

new [] operator

The Heap 7

 It is quite common for a program to need to create an array of characters; some
examples will occur later.
 Illustrations of uses of the delete (and delete []) operators come toward the end
of the next section after pointer variables have been discussed.

20.2 POINTERS

20.2.1 Some "pointer" basics

Defining pointer variables

Pointers are a derived data type. The pointyness, represented by a '*', is a modifier to
some basic data type (either built in like int or a programmer defined struct or class
type). The following are definitions of pointer variables:

int *ptr1;
char *ptr2;
Bitmap *ptr3;
Aircraft *ptr4;

These definitions make ptr1 a pointer to a data element that is an int; ptr2 is a pointer
to a character; ptr3 is a pointer to a Bitmap object; and ptr4 is a pointer to an
Aircraft object. Each of these pointer variables can be used to hold an address; it has
to be the address of a data variable of the specified type.
 Pointers are type checked to the same degree as anything else is in C++. If you want
to store a value in ptr1, the value will have to be the address of a variable that is an
integer.
 Definitions of pointer variables can cause problems. Some of the problems are due
to the free format allowed. As far as a C++ compiler is concerned, the following are
identical:

int *ptr1;
int* ptr1;
int * ptr1;

but strictly the * belongs with the variable name. It does matter. Consider the
following definition:

int* pa, pb;

What are the data types of pa and pb?
 In this case pa is a pointer to an integer (something that can hold the address of an
integer variable) while pb is an integer variable. The * belongs on the variable name;

8 Dynamic data and pointers

the definition really is int *pa, pb;. If you wanted to define two pointers you
would have to write int *pa, *pb;.
 Although the "pointyness" qualifier * associates with a variable name, we need to
talk about pointer types independent of any specific instance variable. Thus, we will be
referring to int* pointers, char* pointers, and Aircraft* pointers.

Pointers and arrays

At the end of the last section, there was an example that involved creating an array of
characters on the heap. The address returned by new char[10] has the type "address
of array of characters". Now char* is a pointer to a character can therefore hold the
address of a character. What would be the correct type declaration for a pointer to an
array of characters (i.e. something that can hold the address of an array of characters)?
 For reasons partly explained in 20.5, a pointer to an array of characters is also
char*. This makes reading code a bit more difficult. If you see a variable of pointer
type being defined you don't know whether it is intended to hold the address of a single
instance of the specified data type or is meant to be used to refer to the start of an array
of data elements.

"Generic pointers"

Although pointers have types, you quite often need to have functions that use a pointer
to data of arbitrary type. A good example is the low-level write() function. This
function needs a pointer to the memory area that contains the data to be copied to disk
and an integer specifying the number of bytes to be copied. The actual write operation
involves just copying successive bytes from memory starting at the address specified by
the pointer; the same code can work for any type of data. The write() function will
accept a pointer to anything.
 Originally in C, a char* was used when the code required a "pointer to anything".
After all, a "pointer to anything" must hold the address of a byte, a char is a byte, so a
pointer to anything is a char*. Of course, this just increases the number of possible
interpretations of char*. It may mean a pointer to a character, or it may mean a pointer
to an array of characters, or it may mean a pointer to unspecified data.
 These days, the special type void* is generally preferred when a "pointer to
anything" is needed. However, a lot of older code, and almost all the older C libraries
that you may use from C++, will still use char*.

void* pointer type

Pointer basics 9

Pointer casts

C++ checks types, and tries to eliminate errors that could arise if you assign the wrong
type of data to a variable. So, C++ would quite reasonably object to the following:

char *aPtr;
…
aPtr = new Point3d;

Here the new operator is returning "address of a Point3d", a char* is something that
holds an "address of a character". The type "address of a Point3d" is not the same as
"address of a character". So, the assignment should be challenged by the compiler,
resulting in at least a warning if not an error message.
 But you might get the same error with the code:

Point3d *bPtr;
…
bPtr = new Point3d;
…
theOutputFile.write(bPtr, sizeof(Point3d));

Function write() requires a pointer with the address of the data object, you want it to
write the contents of the Point3d whose address is held in bPtr. You would get an
error (depends on your compiler and version of iostream) if the function prototype was
something like:

write(char*, int);

The compiler would object that the function wanted a char* and you were giving it a
Point3d*.
 In situations like this, you need to tell the compiler that you want it to change the
interpretation of the pointer type. Although the bPtr really is a "pointer to a Point3d"
you want it to be treated as if it were a "pointer to char".
 You achieve this by using a "type cast":

char *aPtr;
Point3d *bPtr;
…
…
bPtr = new Point3d;
…
theOutputFile.write((char*)bPtr, sizeof(Point3d));

aPtr = (char*) new Point3d;

The construct:

Casting to char* or
void*

10 Dynamic data and pointers

(char*)
 (some address value from a pointer, a function,
 or an operator)

tells the compiler to treat the address value as being the address of a character. This
allows the value to be assigned to a char* variable or passed as the value of a char*
argument.
 If a function requires a void* argument, most compilers allow you to use any type
of pointer as the actual argument. A compiler allowing this usage is in effect putting a
(void*) cast into your code for you. Occasionally, you might be required to put in an
explicit (void*) cast.
 Casting from specific pointer types like Aircraft*, Point3d*, or Bitmap* to
general types like char* and void* is safe. Casts that convert general pointers back
to specific pointer types are often necessary, but they do introduce the possibility of
errors.
 In Chapter 21, we look at a number of general purpose data structures that can be
used to hold collections of data objects. The example collection structures don't store
copies of the information from the original data objects, instead they hold pointers to
the data objects. These "collection classes" are intended to work with any kind of data,
so they use void* data pointers. There is a difficulty. If you ask the object that
manages the collection to give you back a pointer to one of the stored data objects you
are given back a void* pointer.
 Thus you get code like the following:

class Job {
public:
 Job(int codenum, Name customer,);
…
 int JobNumber(void) const;
…
};

class Queue {
public:
 …
 void Append(void* ptr_to_newitem);
 int Length(void) const;
 void *First(void);
 …
};

// make a new job and add it to the Queue
Job* j = new Job(worknum++, cName, ...);
…
theQueue.Append(j);
…
// Look at next queued job
 ?? = theQueue.First();

Casting a void* to a
specific pointer type

Pointer basics 11

The Queue object returns a void* pointer that holds the address of one of the Job
objects that was created earlier. But it is a void* pointer. You can't do anything
much with a void* .
 A type cast is necessary:

Job *my_next_task = (Job*) theQueue.First();
cout << "Now working on " << my_next_task->JobNumber() <<
endl;

A cast like this is perfectly reasonable and safe provided the program is properly
designed. The programmer is telling the compiler, "you think it could be a pointer to
any kind of data, I know that it is a pointer to a Job object, let me use it as such".
 These casts only cause problems if there are design flaws. For example, another
programmer might incorrectly imagine that the queue held details of customers rather
than jobs and write code like:

Customer* c;
// get customer from queue, type cast that void*
c = (Customer*) theQueue.First();

The compiler has to accept this. The compiler can't tell that this programmer is using
the queue incorrectly. Of course, the second programmer will soon be in difficulties
with code that tries to treat a Job object as if it were a Customer object.
 When you write or work with code that type casts from general (void*) to specific
(Job* or Customer*) you should always check carefully to verify the assumptions
being made in relation to the cast.

Null pointers and uninitialized pointers

Pointers don't have any meaningful value until you've made them point somewhere!
You make a pointer variable point somewhere by assigning a value; in C++ this will
most often be a value returned by the new operator. There is a constant, NULL, defined
in several of the header files, that represents the concept of "nowhere". You can assign
the constant NULL to a pointer variable of any type:

char *ptr1 = NULL;
Aircraft *ptrA = NULL;
…

 Often you will be working with collections of pointers to data items, a pointer whose
value is NULL is frequently used to mark the last element of the collection. The loops
that control working through the collection are set up so that they stop on finding a
NULL pointer. These NULL pointers serve much the same role as "sentinel values" used
in loops that read input (as discussed in Chapter 9).

NULL

12 Dynamic data and pointers

 You can test whether a pointer is NULL using code like:

if(ptrA != NULL) {
 // Process Aircraft accessed via ptrA
 …;
 }

or:

if(ptrA) {
 // Process Aircraft accessed via ptrA
 …;
 }

In effect, NULL equates to 0 or "false". The second form is extremely common; the first
version is actually slightly clearer in meaning.
 Global and filescope pointer variables are initialized to NULL by the linking-loader.
Automatic pointer variables, those defined as local to functions, are not normally
initialized. Their initial contents are arbitrary; they contain whatever bit pattern was in
memory at the location that corresponds to their place in the function's stack frame.
 An amazingly large proportion of the errors in C and C++ programs are due to
programmers using pointers that have never been set to point anywhere. The arbitrary
bit pattern in an uninitialized pointer may represent an "illegal address" (e.g. address -5,
there is no byte whose address is -5). These illegal addresses are caught by the
hardware and result in the operating system stopping the program with an error such as
"segmentation fault", "bus error", "system error 2" etc.
 Other uninitialized pointers may by chance hold addresses of bytes in one of the
program's segments. Use of such an address may result in changes to arbitrary static,
stack-based, or heap-based variables or even overwriting of code. Such errors can be
quite hard to track down because the problems that they cause frequently don't show up
until long after the time that the uninitialized pointer was used. Fortunately, modern
compilers can spot many cases where code appears to be using an uninitialized variable;
these cases result in warning messages that must be acted on.

Input and output of pointers?

No input, and not much output!
 You can get the value of a pointer printed. This is sometimes useful for debugging
purposes (the output format usually defaults to hex: for pointers):

cout << "ptrA now holds address " << hex << ptrA << endl;

In some cases you will need to convert the pointer to a long integer, e.g. long(ptrA).

Beware of
uninitialized pointers

Pointer basics 13

 There is no purpose in writing the value of a pointer to a disk file (nor of writing out
a structure that contains pointer data members). The data written would be useless if
read back in on a subsequent run of the program.
 The value in a pointer is going to be an address, usually one chosen by the run-time
memory manager and returned by the new operator. If you run the program another
time, the run-time memory manager might start with a different area of memory to work
with and almost certainly will allocate data areas differently. Consequently, data
objects end up at quite different places in memory on different runs. Yesterday's
addresses are no use.

20.2.2 Using pointers

Assignment of pointers

Consider the following code fragment:

class Demo {
public:
 Demo(int i, char c);
 …
private:
 int fi;
 char fc;
};

Demo::Demo(int i, char c) { fi = i; fc = c; }

int main()
{
 Demo *ptr1 = NULL;
 Demo *ptr2 = NULL;
// stage 1
 ptr1 = new Demo(6, 'a');
 ptr2 = new Demo(7, 'b');
// stage 2
 ptr2 = ptr1;
// stage 3
 …
}

The situation in memory after each stage is illustrated in Figure 20.3.
 At the end of stage 1, the stack frame for main() has been built in the stack and the
two pointer variables are both NULL; the heap is empty. In stage 2, the two data
structures are built in the heap; the addresses returned by new are copied into the
pointer variables so that these now "point to" their heap structures.

14 Dynamic data and pointers

Frame for
runtime
Frame for

main

Stack Heap

ptr1
ptr2

NULL
NULL

1

Frame for
runtime
Frame for

main

Stack Heap

ptr1
ptr2

2

6, A

7, B

Frame for
runtime
Frame for

main

Stack Heap

ptr1
ptr2

3

6, A

7, B

Figure 20.3 Pointer assignment.

 In stage 3, the contents of ptr1 (the address of the Demo object with values 6, A) is
copied into ptr2. This makes both pointers hold the same address and so makes them
point to the same object. (Note that this code would have a memory leak; the second
Demo object, 7,B, has been abandoned but remains in the heap.)
 Assignment of pointer variables simply means copying an address value from one to
another. The data addressed by the pointers are not affected.

Using pointers to access the data members and member functions of structures

If a structure can be accessed by a pointer, its data members can be manipulated. C and
C++ have two styles by which data members can be referenced.
 The more common style uses the -> (data member access) operator: The -> operator

Using pointers 15

struct Thing {
 int fNum;
 double fD;
 char fX;
};

int main()
{
 Thing *pThing;
 pThing = new Thing;
 pThing->fNum = 17;
 pThing->fX = '?';
 pThing->fD = 0.0;
 …
 …
 if(pThing->fNum < kLIM)
 …;
 …
 xv += pThing->fD;

The -> operator takes the name of a (typed) pointer variable on its left (e.g. pThing, a
Thing* pointer), and on its right it takes the name of a data member defined as part of
that type (e.g. fX; the compiler checks that fX is the name of a data member of a
Thing). The -> operator produces an address: the address of the specified data
member of a structure starting at the location held in the pointer. (So pThing->fNum
would typically return the address held in pThing, pThing->fD would return an
address value 4 greater, while pThing ->fX would return an address value 12
greater than the starting address.)
 If the expression involving the -> operator is on the left side of an = assignment
operator (i.e. it is an "lvalue"), the calculated address specifies where something is to be
stored (e.g. as in pThing->fX = '?', where the address calculated defines where the
'?' is to be stored). Otherwise, the address is interpreted as the place from where a data
value is to be fetched (e.g. as in if(pThing->fNum …) or += pThing->fD;).
 There is a second less commonly used style. The same operations could be coded as
follows:

 (*pThing).fNum = 17;
 (*pThing).fX = '?';
 (*pThing).fD = 0.0;
 …
 …
 if((*pThing).fNum < kLIM)
 …;
 …
 xv += (*pThing).fD;

 This uses * as a "dereferencing" operator. "Dereferencing" a pointer gives you the
object pointed to. (Lots of things in C and C++ get multiple jobs to do; we've seen '&'
work both as a bit wise "And" operator and as the "address of" operator. Now its *'s

(*). operator
combination

16 Dynamic data and pointers

turn; it may be an innocent multiply operator, but it can also work as a "dereferencing"
operator.)
 Dereferencing a pointer gives you a data object, in this case a Thing object. A
Thing object has data members. So we can use the "." data member selection operator
to chose a data member. Hence the expressions like (*pThing).fD.
 If you have a pointer to an object that is an instance of a class, you can invoke any
of its member functions as in the example in 20.2.1:

Job *my_next_task;
…
cout << "Now working on " << my_next_task->JobNumber() <<
endl;

Manipulating complete structures referenced by pointers

Though you usually want to access individual data members (or member functions) of
an object, you sometimes need to manipulate the object as a whole.
 You get the object by dereferencing the pointer using the * operator. Once you
have the object, you can do things like assignments:

int main()
{
 Demo *ptr1 = NULL;
 Demo *ptr2 = NULL;
 ptr1 = new Demo(6, 'a');
 ptr2 = new Demo(7, 'b');

// Change the contents of second Demo object to make it
// identical to the first
 *ptr2 = *ptr1;
 …
}

The *ptr2 on the left side of the = operator yields an address that defines the target
area for a copying (assignment) operation. The *ptr1 on the right hand side of the =
operator yields an address that is interpreted as the address of the source of the data for
the copying operation.
 In the example on class Number, we sometimes needed to initialize a new Number
(result) to the same value as the current object. The code given in the last chapter
used an extra CopyTo() member function. But this isn't necessary because we can
code the required operation more simply as follows:

Number Number::Subtract(const Number& other) const
{
 Number result;
 result = *this;

 if(other.Zero_p()) return result;

Calling member
functions

*this

Using pointers 17

 …
}

The implicitly declared variable this is a Number*. It has been initialized to hold the
address of the object that is executing the Subtract() function. If we want the object
itself, we need to dereference this (hence *this). We can then directly assign its
value to the other Number result.
 Alternatively we could have used the copy constructor Number(const Number&).
This function has to be passed the Number that is to be copied. So we need to pass
*this:

Number Number::Subtract(const Number& other) const
{
 Number result(*this);

 if(other.Zero_p()) return result;
 …
}

Working with a pointer to an array

The following code fragment illustrates how you could work with an array allocated in
the heap. The array in this example is an array of characters. As explained previously,
the pointer variable that is to hold the address returned by the new [] ("give me an
array" operator) is just a char*. But once the array has been created, we can use the
variable as if it were the name of a character array (i.e. as if it had been defined as
something like char ptrC[50]).

#include <iostream.h>

int main()
{
 cout << "How big a string do you want? ";
 int len;
 cin >> len;

 char *ptrC = new char[len];
 for(int i = 0; i < len-1; i++)
 ptrC[i] = '!';
 ptrC[len - 1] = '\0';
 cout << "Change some letters:" << endl;
 for(;;) {
 int lnum;
 char ch;
 cout << "# ";
 cin >> lnum;
 if((lnum < 0) || (lnum >= len-1)) break;

 cout << "ch : ";

18 Dynamic data and pointers

 cin >> ch;

 ptrC[lnum] = ch;
 }

 cout << "String is now ";
 cout << ptrC;
 cout << endl;

 delete [] ptrC;
 return 0;
}

Note that the programmer remembered to invoke the delete [] operator to get rid of
the array when it was no longer required.
 The code shown makes certain that character change operations are only attempted
on characters that are in the range 0 … N-2 for a string of length N (the last character
in position N-1 is reserved for the terminating '\0'). What would happen if the checks
weren't there and the code tried to change the -1th element, or the 8th element of an
array 0…7?
 The program would go right ahead and change these "characters". But where are
they in memory?
 If you look at Figure 20.2, you will see that these "characters" would actually be
bytes that form the header or trailer housekeeping records of the memory manager.
These records would be destroyed when the characters were stored.
 Now it may be a long time before the memory manager gets to check its
housekeeping records; but when it does things are going to start to fall apart.
 Bugs related to overwriting the ends of dynamically allocated arrays are very
difficult to trace. Quite apart from the delay before any error is detected, there are other
factors that mean such a the bug will be intermittent!
 It is rare for programs to have mistakes that result in negative array indices so
overwriting the header of a block containing an array is not common. Usually, the
errors relate to use of one too many data element (and hence overwriting of the trailer
record). But often, the trailer record isn't immediately after the end of the array, there is
a little slop of unused space.
 The program will have asked for an array of 40 bytes; the memory manager may
have found a free block with 48 bytes of space (plus header and trailer). This is close
enough; there is no need to find something exactly the right size. So this block gets
returned and used. An overrun of one or two bytes won't do any damage.
 But the next time the program is run, the memory manager may find a free block of
exactly the right size (40 bytes plus header and trailer). This time an overrun causes
problems.
 Be careful when using dynamically allocated arrays!

Deleting unwanted structures

Awful warning on
dynamically allocated

arrays

Using pointers 19

If you have a pointer to a dynamically allocated struct or class instance you don't want,
simply invoke the delete operator on that pointer:

Aircraft *thePlane;
…
if(thePlane->OutOfFuel())
 delete thePlane;

The delete operator passes details back to the memory manager which marks the
space as free, available for reallocation in future.
 The pointer isn't changed. It still holds the value of the now non-existent data
structure. This is dangerous. If there is an error in the design of the code, there may be
a situation where the data object is accessed after it is supposed to have been deleted.
Such code will usually appear to work. Although the memory area occupied by the
data object is now marked as "free" it is unlikely to be reallocated immediately; so it
will usually contain the data that were last saved there. But eventually, the bug will
cause problems.
 It is therefore wise to change a pointer after the object it points to is deleted:

if(thePlane->OutOfFuel()) {
 delete thePlane;
 thePlane = NULL;
 }

Setting the pointer to NULL is standard. Some programmers prefer to use an illegal
address value:

thePlane = (Aircraft*)0xf5f5f5f5

Any attempt to reuse such a pointer will immediately kill the program with an address
error; such an automatic kill makes it easier to find the erroneous code.
 The delete [] operator should be used to free an array created using the new []
operator.

20.2.3 Strings and hash tables revisited

These new pointer types permit slightly better solutions to some of the examples that
we have looked at previously.

Strings

delete operator

delete [] operator

20 Dynamic data and pointers

Section 11.7 introduced the use of character arrays to hold constant strings and string
variables. Things like Message were defined by typedefs:

typedef char Message[50];

(making Message a synonym for an array of 50 characters) and arrays of Message
were used to store text:

Message gMessage[] {
 "Undefined symbol",
 "Illegal character",
 …
 "Does not compute"
};

Similar constructs were used for arrays of keywords, or menu options, and similar
components introduced in Chapter 12 and later chapters.
 These things work. But they are both restricting and wasteful. They are restricting
in that they impose a maximum length on the keywords or menu messages. They are
wasteful in that usually the vast majority of the keywords are very much shorter than
the specified size, but each occupies the same amount of memory.
 Sometimes it is helpful to have all data elements the same size. For example, if we
want to write some Messages to a binary disk file it is convenient to have them all the
same size. This gives structure to the file (we can find a specific entry in the Message
file) and simplifies input.
 But if the data are only going to be used in main memory, then there is less
advantage in having them the same size and the "wasted space" becomes a more
important issue.
 The following structure would take up much less overall memory than the
gMessage[] table defined above:

char *gMsgPtrs[] = {
 "Undefined symbol",
 "Illegal character",
 …
 "Does not compute"
};

 Figure 20.4 illustrates how this gMsgPtrs[] structure might represented in
memory. This representation has the overhead of a set of pointers (estimate at 4 bytes
each) but each individual message string occupies only the amount of space that it
needs instead of the 50 bytes previously allocated. Usually, this will result in a
significant saving in space.

Strings and hash tables revisited 21

U n d e
f i n e
d s y
m b o l
0 I l l
e g a l
 c h a
r a c t
e r 0 T
…………
…………
…………
…… 0 D
o e s
n o t
c o m p
u t e 0

gMsgPtrs[0]

gMsgPtrs[1]

…

…

gMsgPtrs[20]

Part of the static
data segment

Figure 20.4 Representing an array of initialized character pointers.

 The messages referred to by the gMsgPtrs[] array would probably be intended as
constants. You could specify this:

const char *gMsgPtrs[] = {
 "Undefined symbol",
 "Illegal character",
 …
 "Does not compute"
};

This makes gMsgPtrs[] an array of pointers to constant character strings. There will
be other examples later with definitions of pointers to constant data elements.
 Many standard functions take pointers to constant data as arguments. This is very
similar to const reference arguments. The function prototype is simply indicating that it
doesn't change the argument that it can access by the pointer.
 Fixed size character arrays are wasteful for program messages and prompts, and
they may also be wasteful for character strings entered as data. If you had a program
that had to deal with a large number of names (e.g. the program that sorted the list of
pupils according to their marks), you could use a struct like the following to hold the
data:

Pointers to const data

22 Dynamic data and pointers

struct pupil_rec {
 int fMark;
 char fName[60];
};

but this has the same problem of wasting space. Most pupils will have names less than
sixty characters (and you are bound to get one with more than 60).
 You would be better off with the following:

struct Pupil_Rec {
 int fMark;
 char *fName;
};

 The following example code fragment illustrates creation of structs and heap-based
strings:

Pupil_Rec *GetPupilRec(void)
{
 cout << "Enter mark, or -1 if no more records" << endl;
 int mark;
 cin >> mark;
 if(mark < 0)
 return NULL;

 Pupil_Rec *result = new Pupil_Rec;
 result->fMark = mark;
 cin.ignore(100,'\n');
 cout << "Enter names, Family name, then given names"
 << endl;
 char buffer[200];
 cin.getline(buffer,199,'\n');

 int namelen = strlen(buffer);
 result->fName = new char[namelen+1];

 strcpy(result->fName, buffer);

 return result;
}

 This function is defined as returning a pointer to a Pupil_Rec; it will have to create
this Pupil_Rec structure on the heap using the new operator. If the mark input is
negative, it means there is no more input; in this case the function returns NULL. This is
a very typical style in a program that needs to create a number of data records based on
input data. The calling program can have a loop of the form while((rec =

GetPupilRec()) != NULL) { … }.
 If the mark is not negative, another Pupil_Rec struct is created using the new
operator and its fMark field is initialized. Any trailing input following the mark is
removed by the call to ignore(). The function then prompts for the pupil's names.

Return NULL if no
structure needed

Create structure if
necessary

Read string into
temporary "buffer"

Make character array
of required size and

link to struct
Fill in character

array

Strings and hash tables revisited 23

 There has to be some character array allocated into which the name can be read.
This is the role of buffer. It gets filled with a complete line from the input.
 The number of characters needed for the name is then determined via the call to
strlen(). A character array is allocated on the heap using new [] (the character
array is one longer than the name so as to leave room for a terminating '\0' character).
The name is then copied into this array.
 The new structure has been built and so it can be returned. Note how every
structure is represented by two separate blocks of information in the heap, with the
character array linked to the main Pupil_Rec struct. In most of your later programs
you will have hundreds if not thousands of separate objects each stored in some block
of bytes on the heap. Although separately allocated in the heap, these objects are
generally linked together to represent quite elaborate structural networks.

Hash table

Sections 18.2.2 and 18.2.3 contained variations on a simple hash table structure. One
version had an array of with fixed 20 character words, the other used an array of structs
incorporating fixed sized words and an integer count. These arrays again "wasted"
space.
 Ideally, a hash table should be not much more than half occupied; so many, perhaps
almost half of the table entries will not be used even when all the data have been
loaded. Most of the words entered into the hash table would have been less than twelve
characters so much of the space allocated for each word is wasted (and of course the
program can't deal with the few words that do exceed twenty characters).
 A slightly more space-efficient variation would use a table of pointers to character
arrays (for the version that is to store words) or pointers to structs for the version that
needs words and associated integer data values). This arrangement for the table for
words would be as shown in Figure 20. 5 (compare with version in Figure 18.1). Note
that the words represented as separately allocated arrays in the heap do require those
headers and trailers. The space costs of these cut into the savings made by only using
the number of characters required for each word. The only significant saving is going
to be that due to the fact that only half the table is populated.

24 Dynamic data and pointers

NULL

604

618

297

99

Index

A p p l
i c a t
i o n 0

F u n c
t i o n
0

P r o g
r a m 0

T e s t
i n g 0

NULL

NULL

NULL

NULL

NULL

Hash table in static data
segment Strings allocated in heap

Figure 20.5 Hash table using pointers to strings.

 The changes to the code needed to use the modified structure aren't substantial. The
following are rewrites of a couple of the functions given in Section 18.2.

const int kTBLSIZE = 1000;

char *theTable[kTBLSIZE];

void InitializeHashTable(void)
{
 for(int i=0; i< kTBLSIZE; i++)
 theTable[i] = NULL;
}

int NullEntry(int ndx)

Strings and hash tables revisited 25

{
 return (theTable[ndx] == NULL);
}

 Functions InitializeHashTable() and NullEntry() both have minor
changes to set pointers to NULL and to check for NULL pointers.
 The code for MatchEntry() is actually unchanged! There is a subtle difference.
Previously the argument was an array of characters, now it is a pointer to an array of
characters. But because of the general equivalence of arrays and pointers these can be
dealt with in the exact same manner.

int MatchEntry(int ndx, const char str[])
{
 return (0 == strcmp(str, theTable[ndx]));
}

 The InsertAt() function has been changed so that it allocates an array on the
heap to store the string that has to be inserted. The string's characters are copied into
this new array. Finally, the pointer in the table at the appropriate index value is filled
with the address of the new array.

void InsertAt(int ndx, const char str[])
{
 char *ptr;
 ptr = new char[strlen(str) + 1];
 strcpy(ptr,str);
 theTable[ndx] = ptr;
}

20.3 EXAMPLE: "AIR TRAFFIC CONTROLLER"

Problem

Implement the simulated "Air Traffic Control" (ATC) trainer/game described below.
 The ATC trainer is to give users some feel for the problems of scheduling and
routing aircraft that are inbound to an airport. Aircraft are picked up on radar at a range
of approximately150 miles (see Figure 20.6). They are identified by call sign, position,
velocity, acceleration, and details of the number of minutes of fuel remaining. An
aircraft's velocity and acceleration are reported in terms of x', y', z' and x'', y'', z''
components. The user (game-player, trainee air-controller, or whatever) must direct
aircraft so that they land successfully on the single east-west runway (they must
approach from the west).

26 Dynamic data and pointers

RunwayApproach
path

Inbound
aircraft

Limit of
radar
coverage

Figure 20.6 The "Air Traffic Control" problem.

 There are a number of potential problems that the controller should try to avoid. If
an aircraft flies to high, its engines stall and it crashes. If it flies too low it runs into one
of the hills in the general vicinity of the airport. If it runs out of fuel, it crashes. If its
(total) horizontal speed is too low, it stalls and crashes. If the horizontal speed is too
high, or if it is descending too fast, the wings fall off and, again, it crashes.
 At each cycle of the simulation, the controller may send new directives to any
number of inbound aircraft. Each cycle represents one minute of simulated time. A
directive specifies the accelerations (as x'', y'', z'' components) that should apply for a
specified number of minutes. Subsequent directives will override earlier settings. The
aircraft pilot will check the directive. If accelerations requested are not achievable, or it
is apparent that they would lead to excessive velocities within a minute, the directive is
ignored. An acceptable directive is acknowledged.
 At each cycle of the simulation, every aircraft recomputes its position and velocity.
Normally, one unit of fuel is burnt each minute. If an aircraft has a positive vertical
acceleration ("Climb!", "Pull out of that dive!", …) or its horizontal accelerations lead
to an increase in its overall horizontal speed, it must have been burning extra fuel; in
such cases, its remaining fuel has to be decremented by one extra unit.
 Aircraft must be guided so that they line up with the approach path to the runway. If
they are flying due east at an appropriate velocity, within certain height limits and with
some remaining fuel, they may be handed over to the airport's automated landing

Example: Air traffic controller 27

system. These aircraft are considered to have been handled successfully, and are
deleted from the simulation.

Details

Controlling aircraft by specifying accelerations is unnatural, but it makes it easy to
write code that defines how they move. You need simply remember your high school
physics equations:

u initial velocity
v final velocity
s distance travelled
α acceleration
t time

v = u + α * t
s = u * t + 0.5 * α * t2

When recomputing the position and velocity of an aircraft, the x, y (and x' , y')
components can be treated separately. Just calculate the distance travelled along each
axis and update the coordinates appropriately. The total ground speed is given by:

speed = •((x')2 + (y')2)

 The following limits can be used for aircraft performance (pure inventions, no
claims to physical reality):

Maximum height 40000 feet
Minimum safe height 450 feet
Maximum horizontal speed 12 miles per minute (mpm)
Minimum horizontal speed 2 mpm
Maximum rate of descent 600 feet per minute (fpm)
Maximum rate of ascent 1000 fpm
Maximum acceleration/
 deceleration (horizontal) 2 miles per minute per
minute
Maximum positive vertical
 acceleration 800 feet per minute per
minute
Maximum negative vertical
 acceleration 400 fpmpm

The maximum rate of ascent is simply a limit value, you cannot go faster even if you
try, but nothing disastrous happens if you do try to exceed this limit. The other speed
limits are critical, if you violate them the aircraft suffers.

Equations of motion
for aircraft

Aircraft limits

28 Dynamic data and pointers

 For an aircraft to achieve a safe landing, the controller must bring it into the pick up
area of the automated landing system. The aircraft must then satisfy the following
constraints:

Approach height (600 … 3000) feet
Distance west of the runway 4 miles … 10 miles
Distance north/south of runway < 0.5 miles
Fuel remaining > 4 minutes
x' +2 … +3 mpm
 (i.e. flying east 120-180mph)
y' -0.1…+0.1 mpm
 (minimal transverse speed)
z' -500 … 0 fpm
 (descending, but not too fast)
x'', y'', z'' •0 (no accelerations)

 A relatively crude status display, and command line interface for user input will
suffice. For example, a status report listing details of all aircraft in the controlled space
could be something like:

BA009 (…,…,…) (…,…,…) (…,…,…) fuel = …
JL040 (…,…,…) (…,…,…) (…,…,…) fuel = …

Each line identifies an aircraft's call sign; the first triple gives its x, y, z position
(horizontal distances in miles from the airport, height in feet); the second triple gives
the x', y', z' velocities (miles per minute, feet per minute); the third triple is the
accelerations x'', y'', z'' (miles per minute per minute, feet per minute per minute);
finally the number minutes of fuel remaining is given. For example:

BA009 (-128,4.5,17000) (4,-0.5,-1000) (0,0,0) fuel = 61

This aircraft is flying at 17000 feet. Currently it is 128 miles west of the airport and 4.5
miles north of the runway. Its total ground speed is approximately 4.03 miles per
minute (241mph). It is descending at 1000 feet per minute. It is not accelerating in any
way, and it has 61 minutes of fuel remaining.
 The user has to enter commands that tell specific aircraft to accelerate (decelerate).
These commands will have to include the aircraft's call sign, and details of the new
accelerations. For example:

BA009 0 0 100 3

This command instructs plane BA009 to continue with no horizontal accelerations (so
no change to horizontal velocities), but with a small positive vertical acceleration that is
to apply for next three minutes (unless changed before then in a subsequent command).
This will cause the aircraft to reduce its rate of descent.
 Entry of planes into controlled air-space can be handled by a function that uses
arrays of static data. One array of integers can hold the arrival times (given in minutes

Landing conditions

Reports and
command interface

Adding aircraft to the
controlled airspace

Example: Air traffic controller 29

from the start of simulation), another array of simple structs can hold details of flight
names and the initial positions and velocities of the aircraft. If this function is called
once on each cycle of the simulation, it can return details of any new aircraft (assume at
most one aircraft arrives per minute).

Design

To start, what are the objects needed in this program?
 Aircraft are obvious candidates. The program is all about aircraft moving around,
responding to commands that change their accelerations, crashing into hills, and diving
so fast that their wings fall off. Each aircraft owns some data such as its call sign, its
current x, y, z position, its x', y', z' velocities. Each aircraft provides all services related
to its data. For example, there has to be a way of determining when an aircraft can be
handed over to the automated landing system. The controller shouldn't ask an aircraft
for details of its position and check these, then ask for velocities and check these.
Instead the controller should simply ask the aircraft "Are you ready to auto land?"; the
aircraft can check all the constraints for itself.
 So we can expect class Aircraft. Class Aircraft will own a group of data members
and provide functions like "Update accelerations, change to these new values" and
"Check whether ready to auto-land", "Fly for another minute and work out position".
 A class representing the "air traffic controller" is not quite so obvious. For a start,
there will only ever be one instance of this class around. It gets created at the start of
the game and is used until the game ends.
 When you've programmed many applications like this you find that usually it is
helpful to have an object that owns most of the other program elements and provides
the primary control functions.
 In this example, the aircontroller will own the aircraft and will provide a main "run"
function. It is in this "run" function that we simulate the passage of time. The "run"
function will have a loop, each cycle of which represents one minute of elapsed time.
The run-loop will organize things like letting each aircraft update its position,
prompting the user to enter commands, updating some global timer, and checking for
new aircraft arriving.
 The main program can be simplified. It will create an "AirController" and tell it to
"run".
 The process of completing the design will be iterative. Each class will get
considered and its details will be elaborated. The focus of attention may then switch to
some other class, or maybe to a global function (a function that doesn't belong to any
individual class). When other details have been resolved, a partial design for a class
may get reassessed and then expanded with more detail.

class Aircontroller

The objects and their
classes

class Aircraft

class Aircontroller?

30 Dynamic data and pointers

What does an Aircontroller own?
 It is going to have to have some data members that represent the controlled airspace.
These would probably include a count of the number of aircraft in the controlled space,
and in some way will have to include the aircraft themselves. The aircraft are going to
be class instances created in the heap, accessed by Aircraft* pointers. The Aircontroller
object can have an array of pointers.
 What does an Aircontroller do?
 It gets created by the main program and then runs. So it will need a constructor that
initializes its records to show that the airspace is empty, and a "run" function that
controls the simulation loop.
 The main loop is going to involve the following steps:

Update a global timer
Let all planes move
Report current status, getting each plane to list its
details
Get all planes to check whether they've crashed or can
 auto-land, remove those no longer present in the
airspace
if can handle more planes (arrays not full)
 check if any arrived
if airspace is not empty
 give user the chance to enter commands
 check for quit command

Naturally, most of these steps are going to be handled by auxiliary private member
functions of the Aircontroller class.
 The timer will be a global integer variable. It is going to get used by the function
that adds aircraft to the airspace. (In this program, the timer could be a local variable of
the "run" function and get passed as an argument in the call to the function that adds
aircraft. However, most simulations require some form of global variable that
represents the current time; so we follow the more general style.)
 The array of pointers to aircraft will start with all the pointers NULL. When an
aircraft is added, a NULL pointer is changed to hold the address of the new aircraft.
When an aircraft crashes or lands, it gets deleted and the pointer with its address is reset
to NULL. At any particular moment in the simulation, the non-NULL entries will be
scattered through the array. When aircraft need to be activated, a loop like the
following can be used:

for i = 0; i < max; i++
 if aircraft[i] != NULL
 aircraft[i] do something

Similar loop constructs will be needed in several of the auxiliary private member
functions of class Aircontroller.
 For example, the function that lets all the planes move is going to be:

Data owned

Services provided

Example: Air traffic controller 31

move planes
for i = 0; i < max; i++
 if aircraft[i] != NULL
 aircraft[i] move

while that which checks for transfers to the auto lander would be:

check landings
for i = 0; i < max; i++
 if aircraft[i] != NULL
 if aircraft[i] can transfer
 report handoff to auto lander
 delete the aircraft
 aircraft[i] = NULL;
 reduce count of aircraft in controlled space

 Another major role for the Aircontroller object will be to get commands from the
user. The user may not want to enter any commands, or may wish to get one plane to
change its accelerations, or may need to change several (or might even wish to quit
from the game). It would be easiest to have a loop that kept prompting the user until
some "ok no more commands" indicator was received. The following outline gives an
idea for the structure:

Get user commands
 prompt for command entry
 loop
 read word
 if(word is "Quit")
 arrange to terminate program
 if(word is "OK")
 return

 read accelerations and time

 if(any i/o problems) warn, and just ignore data
 else handle command

 Handling commands will involve first finding the aircraft with the call sign entered,
then telling it of its new accelerations:

 Handle command
 identify target aircraft (one with call sign entered)
 if target not found
 warn of invalid call sign
 else tell target to adjust accelerations

The target can be found in another function that loops asking each aircraft in turn
whether it has the call sign entered.

Getting user
commands

32 Dynamic data and pointers

class Aircraft

What does an individual aircraft own?
 There is a whole group of related data elements – the call sign, the coordinates,
velocities. When an aircraft is created, these are to be filled in with predefined data
from a static array that specifies the planes. It would actually be convenient to define
an extra struct whose role is just to group most or all of these data elements. The
predefined data used to feed aircraft into the airspace could be represented as an array
of these structs.
 So, we could have:

struct PlaneData {
 double x, y, z; // coords
 double vx, vy, vz; // velocities
 …
 short fuel; // minutes remaining
 char name[7]; // 6 character call name
};

An Aircraft object would have a PlaneData as a data member, and maybe some
others.
 Aircraft are going to be created; when created they will be given information to fill
in their PlaneData data member. They will get told to move, to print their details for
reports, to change their accelerations, to check whether they can land, and to check
whether they are about to suffer misfortune like flying into the ground. There were
quite a number of "terminating conditions" listed in the problem description; each could
be checked by a separate private member function.
 Some of the member functions will be simple:

toofast
 return true if speed exceeds safe maximum

tooslow
 return true if speed exceeds safe minimum

The overall horizontal speed would have to be a data member, or an extra auxiliary
private member function should be added to calculate the speed.
 The function that checks for transfer to auto lander will also be fairly simple:

making final approach
 if(not in range 4…10 miles west of runway)
 return false
 if(too far north or south)
 return false
 if(speed out of range)
 return false
 …

Data owned

What do Aircraft do?

Example: Air traffic controller 33

 return true

 The "move" and "update" functions are more complex. The update function has to
check that the new accelerations are reasonable:

update
 check time value (no negatives!)

 check each acceleration value against limits
 if any out of range ignore command

 calculate velocity components after one minute
 of new acceleration

 if any out range ignore command

 acknowledge acceptable command

 change data members

The move function has to recompute the x, y, z coordinates and the velocities. If the
specified number of minutes associated with the last accelerations has elapsed, these
need to be zeroed. The fuel left has to be reduced by an appropriate amount.

move

 calculate distance travelled
 assuming constant velocity

 if(command time >0)
 /* Still accelerating */
 work out new velocities,
 (note: limit +ve vertical velocity)
 correct distances to allow for accelerations

 allow for extra fuel burn if accelerating
 decrement command time
 and if now zero clear those
 accelerations

 fix up coordinates
 allow for normal fuel usage

Aircraft generating function

This would use a global array with "arrival times" of aircraft, another global array with
aircraft details, and an integer counter identifying the number of array entries already
used. A sketch for the code is:

new arrivals function
 if time < next arrival time
 return null

34 Dynamic data and pointers

 create new aircraft initializing it with data
 from PlaneData array

 update count of array entries processed

 return aircraft

Refining the initial designs

The initial designs would then be refined. For the most part, this would involve further
expansion of the member functions and the identification of additional auxiliary private
member functions. The process used to refine the individual functions would be the
same as that illustrated in the examples in Part III.
 The design process lead to the following class definitions and function
specifications:

struct PlaneData {
 double x,y,z;
 double vx,vy,vz;
 double ax,ay,az;
 short fuel;
 char name[7];
};

class Aircraft {
public:
 Aircraft(const PlaneData& d);
 void PrintOn(ostream& os) const;
 void Update(double a1,
 double a2, double a3, short timer);
 void Move();
 Boolean MakingApproach() const;
 Boolean Terminated() const;
 Boolean CheckName(const char str[]) const;
 const char* ID() const;
private:
 Boolean Stalled() const;
 Boolean Pancaked() const;
 Boolean NoFuel() const;
 Boolean TooFast() const;
 Boolean TooSlow() const;
 Boolean CrashDiving() const;
 double Speed() const;

 PlaneData fData; // main data
 short fTime; // time remaining for command
};

(The implementation uses a typedef to define "Boolean" as a synonym for unsigned
char and defines false and true.) The member functions would be further documented:

Example: Air traffic controller 35

Aircraft(const PlaneData& d);
Initialize new Aircraft from PlaneData

void PrintOn(ostream& os) const;
Output details as needed in report

void Update(double a1,
 double a2, double a3, short timer);

Verify acceleration arguments, update data members if appropriate,
acknowledge.

void Move();
Recompute position and velocity.

Boolean MakingApproach() const;
Check whether satisfies landing conditions.

Boolean Terminated() const;
Check if violates any flight constraints.

Boolean CheckName(const char str[]) const;
Check str argument against name

const char* ID() const;
Return name string (for reports like "XXX has landed/crashed")

Boolean Stalled() const;
Check if flown too high.

Boolean Pancaked() const;
Check if flown too low.

Boolean NoFuel() const;
Check fuel.

Boolean TooFast() const;
Check if flown too fast.

Boolean TooSlow() const;
Check if flown too slow.

Boolean CrashDiving() const;
Check if exceeding descent rate.

double Speed() const;
Check ground speed

36 Dynamic data and pointers

 The AirControlller class is:

class AirController {
public:
 AirController();
 void Run();
private:
 void Report();
 void MovePlanes();
 void AddPlanes();
 void Validate();
 void CheckCrashes();
 void CheckLandings();

 Boolean GetCommands();
 void HandleCommands(const char name[],
 double,double,double,short);
 Aircraft *IdentifyByCall(const char name[]);

 Aircraft *fAircraft[kMAXPLANES];
 int fControlling;
};

The member functions are:

AirController();
Constructor, initialize air space to empty.

void Run();
Run main loop moving aircraft, checking commands etc

void Report();
Get reports from each aircraft.

void MovePlanes();
Tell each aircraft in turn to move to new position.

void AddPlanes();
Call the plane generating function, if get plane returned add it to array
and notify player of arrival.

void Validate();
Arrange checks for landings and crashes.

void CheckCrashes();
Get each plane in turn to check if any constraints violated.

void CheckLandings();
Get each plane in turn to check if it can autoland, sign off those
 that can autoland.

Example: Air traffic controller 37

Boolean GetCommands();

Get user commands, returns true if "Quit"

void HandleCommands(const char name[],
 double,double,double,short);

Pass a "change accelerations" command on to correct aircraft.

Aircraft *IdentifyByCall(const char name[]);
Identify aircraft from call sign.

(Really, the program should check for aircraft collisions as well as landings and crash
conditions. Checking for collisions is either too hard or too boring. The right way to
do it is to calculate the trajectories (paths) flown by each plane in the past minute and
determine if any trajectories intersect. This involves far too much mathematics. The
boring way of doing the check is to model not minutes of elapsed times but seconds.
Each plane moves for one second, then distances between each pair of planes is
checked. This is easy, but clumsy and slow.)

Implementation

The following are an illustrative sample of the functions. The others are either similar,
or trivial, or easy to code from outlines given earlier.
 The main() function is concise:

int main()
{
 AirController me;
 me.Run();
 return 0;
}

This is actually a fairly typical main() for an object-based program – create the
principal object and tell it to run.
 The file with the application code will have the necessary #includes and then start
with definition of constants representing limits:

// Constants that define Performance Limits
const double kMaxHeight =
40000.0;
const double kMinHeight = 450.0;

…
const double kMaxVDownAcceleration = -400.0;

// Constants that define conditions for landing
const double kminh = 600.0;

38 Dynamic data and pointers

const double kmaxh = 3000.0;

const double kinnerrange = -4.0;
…
const short kminfuel = 4;

 There are a couple of globals, the timer and a counter that is needed by the function
that adds planes:

static long PTimer = 0;
static short PNum = 0;

 The arrays with arrival times and prototype aircraft details would have to be defined:

short PArrivals[] = {
 5, 19, 31, 45, 49,
 …
};

PlaneData ExamplePlanes[] = {
 { -149.0, 12.0, 25000.0,
 7.0, 0.0, -400.0,
 0.0, 0.0, 0.0,
 120, "BA009" },
 { -144.0, 40.0, 25000.0,
 4.8, -1.4, 0.0,
 0.0, 0.0, 0.0,
 127, "QF040" },
 …

 };

static short NumExamples = sizeof(ExamplePlanes) /
 sizeof(PlaneData);

 When appropriate, function NewArrival() creates an Aircraft on the heap
using the new operator; a PlaneData struct is passed to the constructor. The new
Aircraft is returned as a result. The value NULL is returned if it was not time for a
new Aircraft.

Aircraft *NewArrival(void)
{

 if(PNum==NumExamples) return NULL;

 if(PTimer < PArrivals[PNum]) return NULL;
 Aircraft *newPlane = new Aircraft(ExamplePlanes[PNum]);
 PNum++;
 return newPlane;
}

Example: Air traffic controller 39

 The constructor for controller simply sets all elements of the array fAircraft to
NULL and zeros the fControlling counter. The main Run() function is:

void AirController::Run()
{
 for(Boolean done = false; !done;) {
 PTimer++;
 MovePlanes();
 Report();
 Validate();
 if(fControlling < kMAXPLANES)
 AddPlanes();
 if(fControlling>0)
 done = GetCommands();
 }
}

 The Report() and MovePlanes() functions are similar; their loops involve
telling each aircraft to execute a member function (PrintOn() and Move()
respectively). Note the way that the member function is invoked using the -> operator
(fAircraft[i] is a pointer to an Aircraft).

void AirController::Report()
{
 if(fControlling < 1) cout << "Airspace is empty\n";
 else
 for(int i=0;i<kMAXPLANES; i++)
 if(fAircraft[i]!= NULL)
 fAircraft[i]->PrintOn(cout);
}

 The AddPlanes() function starts with a call to the plane generator function
NewArrival(); if the result from NewArrival() is NULL, there is no new Aircraft
and AddPlanes() can exit.

void AirController::AddPlanes()
{
 Aircraft* aPlane = NewArrival();
 if(aPlane == NULL)
 return;

 cout << "New Aircraft:\n\t";
 fControlling++;
 aPlane->PrintOn(cout);
 for(int i=0;i<kMAXPLANES; i++)
 if(fAircraft[i] == NULL) {
 fAircraft[i] = aPlane;
 aPlane = NULL;
 break;
 }
 if(aPlane != NULL) {
 cout << "??? Planes array full, program bug??"
 << endl;

40 Dynamic data and pointers

 delete aPlane;
 }
}

In other cases, the count of aircraft in the controlled space is increased, and an empty
slot found in the fAircraft array of pointers. The empty slot is filled with the address
of the newly created aircraft.
 The CheckCrashes() and CheckLanding() functions called from
Validate() are similar in structure. They both have loops that check each aircraft
and dispose of those no longer required:

void AirController::CheckCrashes()
{
 for(int i=0;i<kMAXPLANES; i++)
 if((fAircraft[i] != NULL) &&
 (fAircraft[i]->Terminated())) {
 cout << fAircraft[i]->ID();
 cout << " CRASHED!" << endl;
 delete fAircraft[i];
 fAircraft[i] = NULL;
 fControlling--;
 }

}

 Input to GetCommands() will start with a string; this should be either of the key
words OK or Quit or the name of a flight. A buffer of generous size is allocated to
store this string temporarily while it is processed.
 The function checks for, and acts on the two key word commands. If the input
string doesn't match either of these it is assumed to be the name of a flight and the
function therefore tries to read three doubles (the new accelerations) and an integer (the
time). Checks on input errors are limited but they are sufficient for this kind of simple
interactive program. If data are read successfully, they are passed to the
HandleCommand() function.

Boolean AirController::GetCommands()
{
 char buff[120];
 cout << "Enter Flight Commands:\n"; cout.flush();

 for(;;) {
 cin >> buff;
 if(0 == ::strcmp(buff,"Quit"))return true;
 if(0 == ::strcmp(buff,"OK")) {
 cin.ignore(SHRT_MAX,'\n');
 return false;
 }
 double a1,a2,a3;
 short t;
 cin >> a1 >> a2 >> a3 >> t;
 if(cin.fail()) {

Example: Air traffic controller 41

 cout << "Bad input data\n";
 cin.clear();
 cin.ignore(SHRT_MAX,'\n');
 }
 else HandleCommands(buff,a1,a2,a3,t);
 }

}

 The HandleCommands() function uses the auxiliary function
IdentifyByCall() to find the target. If target gets set to NULL it means that flight
identifier code was incorrectly entered. If the target is found, it is asked to update its
accelerations:

void AirController::HandleCommands(const char* call, double
a1, double a2, double a3, short n)
{
 Aircraft* target = IdentifyByCall(call);

 if(target == NULL) {
 cout << "There is no aircraft with " << call
 << " as call sign.\n";
 return;
 }

 target->Update(a1,a2,a3,n);
}

 Function IdentifyByCall() loops through the collection of aircraft asking each
in turn whether its call sign matches the string entered by the user. The function returns
a pointer to an Aircraft with a matching call sign, or NULL if none match.

Aircraft *AirController::IdentifyByCall(const char name[])
{
 for(int i=0; i < kMAXPLANES; i++)
 if((fAircraft[i] != NULL) &&
 (fAircraft[i]->CheckName(name)))
 return fAircraft[i];
 return NULL;
}

 The constructor for Aircraft initializes its main data from the PlaneData struct
passed as an argument and zeros the command timer. The PrintOn() function simply
outputs the data members:

Aircraft::Aircraft(const PlaneData& d)
{
 fData = d;
 fTime = 0;
}

void Aircraft::PrintOn(ostream& os) const

42 Dynamic data and pointers

{
 os.setf(ios::fixed,ios::floatfield);
 os.precision(2);
 os << fData.name;

 os << "\t(" << fData.x << "," << fData.y << ","
 << fData.z << ")\t(";
 …
 os << endl;
}

 An aircraft's name is needed at a couple of points in the code of AirController.
The ID() function returns the name as a char* ("pointer to array of characters").
 Now the address returned is that of the fData.name data member. If you return
the address of a data member, the "wall around the data" can be breached. The data
values can be changed directly instead of through member functions. Any pointers to
data members that are returned should be specified as "pointers to constant data". So
here the return type is const char* (i.e. a pointer to an array of characters that
shouldn't be changed).

const char* Aircraft::ID() const
{
 return fData.name;
}

 Function Move() sorts out the changes to position, velocity, and fuel:

void Aircraft::Move()
{
 double dx, dy, dz;
 dx = fData.vx;
 dy = fData.vy;
 dz = fData.vz;

 double oldspeed = Speed();

 if(fTime>0) {
 /* Still accelerating */
 fData.vx += fData.ax; dx += fData.ax * 0.5;
 fData.vy += fData.ay; dy += fData.ay * 0.5;
 fData.vz += fData.az; dz += fData.az * 0.5;

 if((fData.az>0) || (Speed() > oldspeed))
 fData.fuel--;

 if(fData.vz>kMaxAscentRate) {
 fData.vz = kMaxAscentRate;
 fData.az = 0.0;
 }

 fTime--;
 if(fTime==0)
 fData.az = fData.ay = fData.ax = 0.0;

Returning const
something*

Example: Air traffic controller 43

 }
 fData.x += dx;
 fData.y += dy;
 fData.z += dz;
 fData.fuel--;
}

 The Update() function performs a series of checks on the new acceleration values.
If all checks are passed, the values in the data members are changed and an
acknowledgment is printed:

void Aircraft::Update(double a1, double a2,
 double a3, short timer)
{
 /* validate input */
 if(timer < 1) return;

/* accelerations, x and y limited by Horizontal
acceleration */
 if(fabs(a1) > kMaxHAcceleration) return;
 if(fabs(a2) > kMaxHAcceleration) return;

 /* Vertical bracketed in range. */
 if(a3 > kMaxVUpAcceleration) return;
 if(a3 < kMaxVDownAcceleration) return;

 /* check that new velocities not excessive */
 double newvertvelocity = fData.vz + a3;
 if(newvertvelocity > kMaxAscentRate) return;
 if(newvertvelocity < kMaxDescentRate) return;

 double newvx, newvy, newtotal;
 newvx = fData.vx + a1;
 newvy = fData.vy + a2;
 newtotal = sqrt(newvx*newvx + newvy*newvy);
 if(newtotal > kMaxSpeed) return;
 if(newtotal < kMinSpeed) return;

 cout << fData.name << ": Roger\n";
 fData.ax = a1;
 fData.ay = a2;
 fData.az = a3;
 fTime = timer;
}

 Function MakingApproach() involves a series of checks against the constraints
that define the "auto landing" conditions:

Boolean Aircraft::MakingApproach() const
{
 /* in pick up range of auto lander? */

 if((fData.x < kouterrange) ||
 (fData.x > kinnerrange)) return false;

44 Dynamic data and pointers

 /* Aligned with runway? */
 if(fabs(fData.y) > koffline) return false;

 /* In height bracket? */
 if((fData.z < kminh) ||
 (fData.z > kmaxh)) return false;

 /* In velocity bracket? */
 if((fData.vx < kxprimelow) ||
 (fData.vx > kxprimehigh)) return false;

 …

 /* and no real accelerations? */
 if(fabs(fData.ax) > kxalphalimit) return false;
 …

 /* and sufficient fuel? */
 if(fData.fuel < kminfuel) return false;

 return true;
}

 Function Terminated() uses the various auxiliary member functions to check for
terminating conditions:

Boolean Aircraft::Terminated() const
{
 return
 Stalled() || Pancaked() || NoFuel() ||
 TooFast() || TooSlow() || CrashDiving();
}

 The remaining functions of class Aircraft are all simple; representative examples
are:

Boolean Aircraft::CheckName(const char str[]) const
{
 return (0 == strcmp(fData.name, str));
}

Boolean Aircraft::Stalled() const
{
 return fData.z > kMaxHeight;
}

double Aircraft::Speed() const
{
 return sqrt(fData.vx*fData.vx + fData.vy*fData.vy);
}

Example: Air traffic controller 45

 The program runs OK but as a game it is a little slow (and directing an aircraft to
land safely is surprisingly hard). The following is a fragment from a recording of the
game:

Airspace is empty
New Aircraft:
BA009 (-149,12,25000) (7,0,-400) (0,0,0) fuel: 120
Enter Flight Commands:
BA009 is west of the runway, a little to the north and
coming in much too fast; slow it down, make it edge south a
bit
BA009 -1 -0.2 0 3
BA009: Roger
OK
BA009 (-142.5,11.9,24600) (6,-0.2,-400) (-1,-0.2,0)
fuel: 119
…
BA009 (-124.5,9.9,23000) (4,-0.6,-400) (0,0,0)
fuel: 115
Enter Flight Commands:
Slow up a little more, increase rate of descent
BA009 -0.5 0 -100 2
BA009: Roger
OK
BA009 (-120.75,9.3,22550 (3.5,-0.6,-500) (-0.5,0,-100)
fuel: 114
…
BA009 (-15.5,0,3350) (3,-0,-500) (0,0,0) fuel: 78
QF040 (-52.77,0.18,11600) (3.01,-0.05,-600) (0,0,0) fuel:
100
NZ164 (-71,-45.95,20500) (1,5.3,-500) (0,0,0) fuel: 70
CO1102 (116,-87,32500) (-5,1,-500) (0,0,0) fuel: 73
Enter Flight Commands:
BA009 0 0 150 1
BA009: Roger
OK
BA009 (-12.5,0,2925) (3,-0,-350) (0,0,0) fuel: 76
QF040 (-49.76,0.13,11000) (3.01,-0.05,-600) (0,0,0) fuel:
99
NZ164 (-70,-40.65,20000) (1,5.3,-500) (0,0,0) fuel: 69
CO1102 (111,-86,32000) (-5,1,-500) (0,0,0) fuel: 72
Enter Flight Commands:
OK
BA009 (-9.5,0,2575) (3,-0,-350) (0,0,0) fuel: 75
QF040 (-46.75,0.08,10400) (3.01,-0.05,-600) (0,0,0) fuel:
98
NZ164 (-69,-35.35,19500) (1,5.3,-500) (0,0,0) fuel: 68
CO1102 (106,-85,31500) (-5,1,-500) (0,0,0) fuel: 71
BA009 transferred to airport traffic control, bye!
One landed safely, QF040 on course as well
Enter Flight Commands:

20.4 & : THE "ADDRESS OF" OPERATOR

46 Dynamic data and pointers

The primary reason for having pointers is to hold addresses of data objects that have
been dynamically allocated in the heap, i.e. for values returned by the new operator.
 You need pointers to heap based structures when representing simple data objects
with variable lifetimes like the Aircraft of the last example. You also need pointers
when building up complex data structures that represent networks of different kinds.
Networks are used for all sorts of purposes; they can represent electrical circuits, road
maps, the structure of a program, kinship relations in families, the structure of a
molecule, and thousands of other things. Networks are built up at run-time by using
pointers to thread together different dynamically created component parts.
 Why would you want pointers to data in the static data segment or to automatics on
the stack? After all, if such variables are "in scope" you can use them directly, you
don't have to work through pointer intermediaries. You should NEVER incorporate the
address of an automatic (stack based) data item in an elaborate network structure. It is
rare to want to incorporate the address of a static data item.
 Really, you shouldn't be writing code that needs addresses of things other than heap-
based objects. Usually you just want the address of an entire heap based object (the
value returned by new), though sometimes you may need the address of a specific data
member within a heap based object.
 But C and C++ have the & "address of" operator. This allows you to get the address
of any data element. Once an address has been obtained it can be used as the value to
be stored in a pointer of the appropriate type. If you look at almost any C program, and
most C++ programs, you will see & being used all over the place to get addresses of
automatics and statics. These addresses are assigned to pointers. Pointers are passed as
arguments. Functions with pointer arguments have code that has numerous expression
using pointer dereferencing (*ptr). Why are all these addresses needed?

Reference arguments and pointer arguments for functions

For the most part, the addresses are needed because the C language does not support
pass by reference. In C, arguments for functions are passed by value. So, simple
variables and struct instances are copied onto the stack (ignore arrays for now, they are
discussed in the next section). The called function works with a copy of the original
data. There are sound reasons for designing a language that way. If you are trying to
model the mathematical concept of a function, it is something that simply computes a
value. An idealized, mathematical style function should not have side effects; it
shouldn't go changing the values of its arguments.
 Function arguments that are "passed by reference" have already been used for a
number of reasons. Thus, in the example in section 12.8.3, there was a function that
had to return a set of values (actually, an int and a double) rather than a single value.
Since a function can only return a single value, it was necessary to have reference
arguments. The example function had an integer reference and a double reference as
arguments; these allowed the function to change the values of the caller's variables.

No "pass by
reference" in C

Uses of "pass by
reference"

&: The "address of" operator 47

 Other examples have used pass by reference for structures. In the case of const
reference arguments, this was done to avoid unnecessary copying of the struct that
would occur if it were passed by value. In other cases, the structs are passed by
reference to allow the called function to modify the caller's data.
 As previously explained, a compiler generates different code for value and reference
arguments. When a function needs a value argument, the compiler generates code that,
at the point of call, copies the value onto the stack; within the function, the code using
the "value" variable will have addresses that identify it by its position in the current
stack frame. Reference arguments are treated differently. At the point of call their
addresses are loaded onto the stack. Within the function, the address of a reference
argument is taken from the stack and loaded into an address register. When the code
needs to access the actual data variable, it uses indirect addressing via this address
register; which is the same way that code uses pointers.
 Consider the Exchange() function in the following little program:

void Exchange(double& data1, double& data2)
{
 double temp;
 temp = data1;
 data1 = data2;
 data2 = temp;
}

int main()
{
 cout << "Enter two numbers : ";
 double a, b;
 cin >> a >> b;
 if(b < a)
 Exchange(a, b);
 cout << "In ascending order: " << a << ", " << b <<
endl;
 return 0;
}

Function Exchange() swaps the values in the two variables it is given as arguments;
since they are reference variables, the function changes data in the calling environment.
The code generated for this program passes the addresses of variables a and b. The
value in a gets copied into temp, replaced by the value in b, then the value of temp is
stored in b. These data movements are achieved using indirect addressing through
address registers loaded with the address of a and b.
 Pass by reference really involves working with addresses and pointers. But the
compiler takes care of the details. The compiler arranges to get the addresses of the
arguments at the point of call. The compiler generates code that uses indirection,
pointer style, for the body of the function.
 Programs need the "pass by reference" mechanism. The C language didn't have it.
But C allowed programmers to hand code the mechanism everywhere it was needed.

Implementation of
pass by value and
pass by reference

Compiler uses
addresses and

pointers for pass by
reference

Programmer uses
addresses and

pointers

48 Dynamic data and pointers

 C has pass by value. An address is a value and can be passed as an argument if the
function specifies that it wants a pointer as an argument. It is easy to use the &
operator to get an address, so at the point of call the addresses can be determined and
their values put onto the stack.
 The code of the function has to use pointers. So, for example, a function that needs
to change a double argument will need a double* pointer (i.e. its argument list will
have to include something like double *dptr). When the code of the function needs
the value of that double, it will have to access it indirectly via the pointer, i.e. it will
have to use the value *dptr.
 Using explicit pointers and address, the previous program becomes:

void Exchange(double *dptr1, double *dptr2)
{
 double temp;
 temp = *dptr1;
 *dptr1 = *dptr2;
 *dptr2 = temp;
}

int main()
{
 cout << "Enter two numbers : ";
 double a, b;
 cin >> a >> b;
 if(b < a)
 Exchange(&a, &b);
 cout << "In ascending order: " << a << ", " << b <<
endl;
 return 0;
}

The function prototype specified pointer arguments, Exchange(double *dptr1,
double *dptr2). The call, Exchange(&a, &b), has the appropriate "address of
operations" getting the addresses of the actual arguments a and b.
 The statement:

temp = *dptr1;

gets the double value accessed indirectly via dptr1 and saves it in the double temp.
The statement

 *dptr1 = *dptr2;

gets the value accessed indirectly via dptr2 and uses it to overwrite the double in the
memory location referenced via dptr1. The final statement changes the value in the
location reference by dptr2 to be the value stored temporarily in temp.

Faking pass by
reference using

explicit addresses and
pointers

&: The "address of" operator 49

 High level source code using explicit pointers and addresses corresponds almost
directly to the actual machine instruction sequences generated by the compiler.
Identical instruction sequences are generated for the high level code that uses
references; it is just that the code with references leaves the mechanism implicit. There
are programmers who prefer the pointer style, arguing that "it is better to see what is
really going on". (Of course, if you follow such arguments to their logical conclusion,
all programs should be written in assembly language because in assembler you can see
the instructions and really truly know what is going on.)
 There are a few situations where the pointer style is more natural. The low level
read() and write() functions are good examples. These need to be given the
address of a block of bytes; the code of the function uses a byte pointer to access the
first byte, then the second, and so on as each byte gets transferred to/from file.
 In most other cases, reference style is easier to read. The reference style leaves the
mechanisms implicit, allowing the reader to focus on the data transformations being
performed. The use of explicit pointers, and the continual pointer dereferencing that
this necessitates, makes it harder to read the code of functions written using the pointer
style.
 While you can adopt the style you prefer for the functions that you write for
yourself, you are often constrained to using a particular style. All the old C libraries
still used from C++ will use pointers and will need to be passed addresses. Because of
the C heritage, many C++ programmers write code with pointer arguments;
consequently, many of the newer C++ libraries use pointers and pointer dereferencing.

Getting the addresses of program elements

You can get the address of any program element. You automatically get the address of
any data object you create in the heap (the return value from new is the address); in
most other cases you need to use the & operator. The following contrived code
fragment illustrates how addresses of a variety of different data elements can be
obtained and used in calls to write(). The prototype for function write() specifies
either a char* or a void* (depending on the particular version of the iostream library
used in your IDE); so at the point of call, a value representing an address has to be
specified.

struct demo { int f1; double f2; };

// Some data in the static data segment
long array[10] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
demo d1 = { 1, 2.2};
demo d2 = { 2, 4.4};

void WriteJunk(ofstream& out)
{
 double auto1 = 3.142;
 demo *demoptrA = new demo;

Explicit pointers and
addresses represent
the underlying
mechanism

Pointer style or
reference style?

50 Dynamic data and pointers

 demoptrA->f1 = -7; demoptrA->f2 = 6.8;
 demo *demoptrB = new demo;
 demoptrB->f1 = 11; demoptrB->f2 = 81.8;
 …
 // The version of iostream and the compiler on your IDE
 // may require an explicit (char*) cast in all these
calls
 // e.g. the first might have to be
 // out.write((char*) &auto1, sizeof(double));
 out.write(&auto1, sizeof(double));
 out.write(&(array[4]), sizeof(long));
 out.write(&d1, sizeof(demo));
 out.write(&(d2.f1), sizeof(int));
 out.write(demoptrA, sizeof(demo)); // No & needed!
 out.write(&(demoptrB->f2), sizeof(double));
}

As shown in this fragment, you can get the addresses of:

• local, automatic (stack-based) variables (&auto1);

• specifically chosen array elements (automatic or global/filescope) (&(array[4]));

• global/filescope variables (&d1);

• a chosen data member of an auto or static struct (&(d2.f1)).

• a chosen data member of a struct accessed by a pointer (&(demoptrB->f2)).

The call

 out.write(demoptrA, sizeof(demo));

doesn't need an & "get address of"; the pointer demoptrA contains the address needed,
so it is the value from demoptrA has to be passed as the argument.
 There are two kinds of program element whose address you can get by just using
their names. These are functions and arrays. You shouldn't use the & address of
operator with these.
 The use of function addresses, held in variables of type "pointer to function", is
beyond the scope of this book. You will learn about these later.
 As explained more in the next section, C (and hence C++) regards an array name as
having an address value; in effect, an array name is a pointer to the start of the array.
So, if you needed to pass an array to the write() function, your code would be:

long Array2[] = { 100, -100, 200, 300, 567 };
…
out.write(Array2, sizeof(Array2));

Pointers as results from functions

Addresses of
functions and arrays

&: The "address of" operator 51

A function that has a pointer return type will return an address value. This address
value will get used after exit from the function. The address is going to be that of some
data element; this data element had better still be in existence when the address gets
used!
 This should be obvious. Surprisingly often, beginners write functions that return
addresses of things that will disappear at the time the functions exits. A simple
example is:

char *GetName()
{
 char buff[100];
 cout << "Enter name";
 cin.getline(buff, 99, '\n');
 return buff;
}

This doesn't work. The array buff is an automatic, it occupies space on the stack while
the function GetName() is running but ceases to exist when the function returns.
 The compiler will let such code through, but it causes problems at run time. Later
attempts to use the pointer will result in access to something on the stack, but that
something won't be the character buffer.
 A function should only return the address of an object that outlives it; which means
an object created in the heap. The following code will work:

char *GetName()
{
 char buff[100];
 cout << "Enter name";
 cin.getline(buff, 99, '\n');
 char *ptr = new char[strlen(buff) + 1];
 strcpy(ptr, buff);
 return ptr
}

20.5 POINTERS AND ARRAYS

When arrays were introduced in Chapter 11, it was noted that C's model for an array is
relatively weak. This model, which of course is shared by C++, really regards an array
as little more than a contiguous block of memory.
 The instruction sequences generated for code that uses an array have the following
typical form:

load address register with the address of the start of the
array
calculate offset for required element
add offset to address register

buggy code!

52 Dynamic data and pointers

load data value using indirect address via address register

which is somewhat similar to the code for using a pointer to get at a simple data
element

load address register from pointer variable
load data value using indirect address via address register

and really very similar to code using a pointer to access a data member of a struct:

load address register with the address of the start of the
struct
calculate offset for required data member
add offset to address register
load data value using indirect addressing via address
register

If you think about things largely in terms of the instruction sequences generated, you
will tend to regard arrays as similar to pointer based structs. Hence you get the idea of
the name of the array being a pointer to the start of that array.
 Once you start thinking mainly about instructions sequences, you do tend to focus
on different issues. For example, suppose that you have an array of characters that you
need to process in a loop, you know that if you use the following high level code:

char msg[50];
…
for(int i=0; i < len; i++) {
 …
 … = msg[i];
 …
 }

then the instruction sequence for accessing the ith character will be something like

load an address register with the address of msg[0]
add contents of integer register that holds i to address
register
load character indirectly using address in address register

which is a little involved. (Particularly as on the very first machine used to implement
C, a PDP-7, there was only one register so doing subscripting involved a lot of
shuffling of data between the CPU and memory.)
 Still thinking about instructions, you would know that the following would be a
more efficient way of representing the entire loop construct:

 load address register with address of msg[0]
 load integer register with 0
loop
 compare contents of integer register and value len

Pointers and arrays 53

 jump if greater to end_loop
 …
 load character indirectly using address in address
register
 add 1 to address register // ready for next time
 …

This instruction sequence, which implements a pointer based style for accessing the
array elements, is more "efficient". This approach needs at most two instructions to get
a character from the array where the other scheme required at least three instructions.
(On many machines, the two operations "load character indirectly using address in
address register" and "add 1 to address register" can be combined into a single
instruction.)
 C was meant to compile to efficient instruction sequences. So language constructs
were adapted to make it possible to write C source code that would be easy to compile
into the more efficient instruction sequence:

char msg[50];
char *mptr;
…
mptr = msg;
for(int i=0; i < len; i++) {
 …
 … = *mptr;
 mptr++;
 …
 }

This initializes a pointer with the address of the first array element:

mptr = msg;

(which could also be written as mptr = &(msg[0])). When the character is needed,
pointer dereferencing is used:

 … = *mptr;

Finally, "pointer arithmetic" is performed so as to make the pointer hold the address of
the next character from the array.
 C (and C++) have to allow arithmetic operations to be done on pointers. Once
you've allowed operations like ++, you might as well allow other addition and
subtraction operations (I don't think anyone has ever found much application for pointer
multiplication or division). For example, if you didn't have the strlen() function,
you could use the following:

int StrLen(char *mptr)
{
 char *tmp;
 tmp = mptr;

Pointer arithmetic

54 Dynamic data and pointers

 while(*tmp) tmp++;
 return tmp - mptr;
}

This function would be called with a character array as an argument (e.g.
StrLen("Hello");). The while loop moves the pointer tmp through the array until
it is pointing to a null character. The final statement:

 return tmp - mptr;

subtracts the address of the start of the array from the address where the '\0' character is
located.
 Arithmetic operations on pointers became a core part of the language. Many of the
C libraries, still used from C++, are written in the expectation that you will be
performing pointer arithmetic. For example, the string library contains many functions
in addition to strlen(), strcmp(), and strcpy(); one of the other functions is
strchr():

char *strchr(const char *s, int c)

this finds the first occurrence of a character c in a string s. It returns a pointer to the
position where the character occurs (or NULL if it isn't there). Usually, you would want
to know which array element of the character array contained the character, but instead
of an integer index you get a pointer. Of course, you can use pointer arithmetic to get
the index:

char word[] = "Hello";
char *ptr = strchr(word, 'e');
int pos = ptr - word;
cout << "e occurred at position " << pos << endl;

 Obviously, character arrays can not be a special case. What works for characters
has to work for other data types. This requirement has ramifications. If ++ changes a
char* pointer so that it refers to the next element of a character array, what should ++
do for an array of doubles?
 The following program fragment illustrates the working of ++ with different data
types (all pointer values are printed as long integers using decimal output to make
things clearer):

struct zdemo { int f1; char f2; double f3 ;};

int main()
{
 char cArray[10];
 short sArray[10];
 long lArray[10];
 double dArray[10];
 zdemo zArray[10];

Pointers and arrays 55

 char *cptr = cArray;
 short *sptr = sArray;
 long *lptr = lArray;
 double *dptr = dArray;
 zdemo *zptr = zArray;

 for(int i=0; i < 5; i++) {
 cout << long(cptr) << ", " << long(sptr) << ", "
 << long(lptr) << ", " << long(dptr) << ", " <<
 long(zptr) << endl;
 cptr++; sptr++, lptr++, dptr++, zptr++;
 }
 cout << cptr - cArray << ", ";
 cout << sptr - sArray << ", ";
 cout << lptr - lArray << ", ";
 cout << dptr - dArray << ", ";
 cout << zptr - zArray << endl;

 return 0;
}

22465448, 22465460, 22465480, 22465520, 22465600
22465449, 22465462, 22465484, 22465528, 22465616
22465450, 22465464, 22465488, 22465536, 22465632
22465451, 22465466, 22465492, 22465544, 22465648
22465452, 22465468, 22465496, 22465552, 22465664
5, 5, 5, 5, 5

The arithmetic operations take account of the size of the data type to which the pointer
refers. Increment a char* changes it by 1 (a char occupies one byte), incrementing a
double* changes it by 8 (on the machine used, a double needs 8 bytes). Similarly the
value zptr (22465680) - zArray (22465600) is 5 not 80, because this
operation on zdemo pointers involves things whose unit size is 16 bytes not one byte.
 A lot of C code uses pointer style for all operations on arrays. While there can be
advantages in special cases like working through the successive characters in a string,
in most cases there isn't much benefit. Generally, the pointer style leads to code that is
much less easy to read (try writing a matrix multiply function that avoids the use of the
[] operator).
 Although "pointer style" with pointer dereferencing and pointer arithmetic is a well
established style for C programs, it is not a style that you should adopt. You have
arrays because you want to capture the concept of an indexable collection of data
elements. You lost the benefit of this "indexable collection" abstraction as soon as you
start writing code that works with pointers and pointer arithmetic.

20.6 BUILDING NETWORKS

Output

56 Dynamic data and pointers

The Air Traffic Controller program represented an extreme case with respect to
dynamically created objects – its Aircraft were all completely independent, they
didn't relate in a specific ways.
 There are other programs where the structures created in the heap are components of
a larger construct. Once created, the individual separate structures are linked together
using pointers. This usage is probably the more typical. Real examples appear in the
next chapter with standard data structures like "lists" and "trees".
 In future years, you may get to build full scale "Macintosh" or "Windows"
applications. In these you will have networks of collaborating objects with an
"application" object linked (through pointers) to "document" objects; the documents
will have links to "views" (which will have links back to their associated documents),
and other links to "windows" that are used to frame the views.
 The data manipulated by such programs are also likely to be represented as a
network of components joined via pointers. For example, a word processor program
will have a data object that has a list of paragraphs, tables, and pictures. Each
paragraph will have links to things such as structures that represent fonts, as well as to
lists of sentences.
 Each of the components in one of these complex structures will be an instance of
some struct type or a class. These various structs and classes will have data members
that are of pointer types. The overall structure is built up by placing addresses in the
pointer data members.
 Figure 20.7 illustrates stages in building up a simple kind of list or queue. The
overall structure is intended to keep a collection of structures representing individual
data items. These structures would be called "list cells" or "list nodes". They would be
instances of a struct or class with a form something like the following:

struct list_cell {
 data_type1 data_member_1;
 data_type2 data_member_2;
 …;
 list_cell *fNext;
};

Most of the data members would be application specific and are not of interest here.
But one data member would be a pointer; its type would be "pointer to list cell". It is
these pointer data members, the fNext in the example, that are used to link the parts
together to form the overall structure.
 A program using a list will need a pointer to the place where it starts. This will also
be a pointer to list_cell It would be a static data segment variable (global or
filescope) or might be a data member of yet another more complex structure. For the
example in Figure 20.7, it is assumed that this "head pointer" is a global:

list_cell *Head;

Pointer data member
for link

Head pointer

Building networks 57

 Initially, there would be no list_cells and the head pointer would be NULL
(stage 1 in Figure 20.7). User input would somehow cause the program to create a new
list_cell:

list_cell *MakeCell()
{

NULLHead

Static
data Heap

1

Head

Static
data Heap

2

Data 1

NULL

Head

3

Head

4

Data 1Data 1

Data 2

NULL

Data 2

Data 3

NULL

Figure 20.7 Building a "list structure" by threading together "list nodes" in the heap.

 list_cell *res = new list_cell;
 cout << "Enter data for …";
 …;
 list_cell->data_member_1 = something;
 …
 list_cell->fNext = NULL;
}

58 Dynamic data and pointers

The MakeCell() function would obviously fill in all the various specialized data
members; the only general one is the link data member fNext which has to be
initialized to NULL.
 The function that created the new list_cell would add it to the overall structure:

…
list_cell *newdata = MakeCell();
if(Head == NULL)
 Head = newdata;
else …;
…

As this would be the first list_cell, the Head pointer is changed to point to it. This
results in the situation shown as stage 2, in Figure 20.7.
 When, subsequently, other list_cells get created, the situation is slightly
different. The Head pointer already points to a list_cell. Any new list_cell
has to be attached at the end of the chain of existing list_cell(s) whose start is
identified by the Head pointer.
 The correct place to attach the new list_cell will be found using a loop like the
following:

list_cell *ptr = Head;
while(ptr->fNext != NULL)
 ptr = ptr->fNext;

The list_cell* variable ptr starts pointing to the first list_cell. The while loop
moves it from list_cell to list_cell until a list_cell with a NULL fNext
link is found. Such a list_cell represents the end of the current list and is the place
where the next list_cell should be attached. The new list_cell is attached by
changing the fNext link of that end list_cell:

ptr->fNext = newdata;

 Stages 3 and 4 shown in Figure 20.7 illustrate the overall structure after the addition
of the second and third list_cells.
 A lot of the code that you will be writing over the next few years will involve
building up networks, and chasing along chains of pointers. Two of the examples in
the next chapter look at standard cases of simple pointer based composite structures.
The first of these is a simple List class that represents a slight generalization of the
idea of the list as just presented. The other example illustrates a "binary search tree".
The code for these examples provides a more detailed view of how such structures are
manipulated.

Setting the Head
pointer to the first
cell

Finding the end of a
list

Attaching a new cell
at the end of the list

Building networks 59

