29 The Power of Inheritance
and Polymorphism

This chapter is another that presents just a single example program illustrating how
to apply features of the C++ language. In this case, the focusis on class inheritance
and the use of polymorphism. The application program is asimple game.

In the days before "Doom", "Marathon", and "Dark Forces', people had to be
content with more limited games! The basic game ideas were actually rather
similar. The player had to "explore a maze", "find items', and avoid being
eliminated by the "monsters" that inhabited the maze. However, details of graphics
and modes of interaction were more limited than the modern games. A maze would
be represented as an array of characters on the screen (walls represented by '#
marks, staircases between levels by characters like '<' and so forth). Single
character commands allowed the player to move the maze-explorer around within
the boundaries of the maze. "Rogue" and "Moria" are typical examples of such
games; you may find that you have copies on old floppies somewhere.

You aren't quite ready to put Lucas Arts out of business by writing a
replacement for "Dark Forces', but if you have got this far you can write your own
version of Moria.

The example code given here is simplified with lots of scope for elaboration. It
employs a single level maze (or "dungeon"). A map of the dungeon is always
displayed, in full, on the screen. The screen size limits the size of the map; having
the complete map displayed simplifies play. (Possible elaborations include
showing only those parts of the map already explored and "scrolling" maps that are
too large to fit on a screen.) The map and other data are displayed using the same
system features as used in the "cursor graphics' examples from Chapter 12.

The map, details of the items to be found, and the monsters that are to be
avoided (or destroyed) are taken from text file input. Again, thisisasimplification.
Games like Moria usually generate new maps for every game played.

The playing mechanism islimited. The user is prompted for a command. After
a user command has been processed, al the "monsters’ get a chance to "run". A
"Monster:: Run()" function captures the essence of "monsterdom” i.e. a desire to
eliminate the human player.

Naturally, such a game program requires numerous obvious objects — the
"monsters’, the "items" that must be collected, the "player" object, the dungeon

29

Example program

Objects everywhere

Inheritance and Polymorphism 1016

Windows hierarchy

" Dungeon Items’
hierarchy

Polymorphic pointers

object itself. In addition there will have to be various forms of "window" object
used to display other information. Since there will be many "monsters* and many
"items", standard collection classes will be needed.

There are two separate class hierarchies as well as a number of independent
classes. One limited class hierarchy defines "windows'. Thereisabasic "window"
class for display of data with a couple of specializations such as a window used to
output numeric data (e.g. player's "health") and a window to get input. (These
"window" classes are further elaborated in the next chapter.)

There is also a hierarchy of "things found in the dungeon”. Some, like the
"items" that must be collected, are passive, they sit waiting until an action is
performed on them. Others, like the player and the monsters, are active. At each
cycle of the game, they perform some action.

Naturally, there are many different kinds of monster. Each different kind
(subclass) employs a slightly different strategy when trying to achieve their
common objective of "eliminating the player". This is where the polymorphism
comesin. The "dungeon" object will work with a collection of monsters. When it
isthe monsters' turn, the code has aloop that lets each monster "run" (Monster *m
.+ m>Run();). The pointer mis polymorphic — pointing to different forms of
monster at different times. Each different form hasits own interpretation of Run() .

29.1 THE "DUNGEON" GAME
The "dungeon” game program isto:

¢ Read game details from atext file. These details are to include the map layout,
theinitial positions and other data defining collectable items, the monsters, and
the player.

¢ Provideadisplay similar to that shown in Figure 29.1. Thisdisplay isto
include the main map window (showing fixed features like walls, position of
collectable items, and current positions of active items) and other windows that
show the player's status.

¢ Runthegame. The game terminates either by the player object acquiring all
collectable items or by its "health” falling to zero.

e Operatea'"run cycle" where the user enters amovement command (or "magic
action" command — see below), the command is executed, and then all other
active items get a chance to run.

« Arrange that the player object acquire a collectable item by moving over the
point where the item islocated. Acquisition of a collectableitem will change
one or more of the player object's "health”, "wealth", or "manna" attributes.
Once taken by the player object, collectable items are to be deleted from the
game.

* Employ ascheme where single character commands identify directional
movements or "magic actions' of the player.

Introduction 1017

Main window "Monsters" Collectable

. Items

(map display)
oo /-------\--- --------------- / -\---- -
| w # w # g# #$ * = # |
| HHHERHE H# #HHHHE # T # T T |
| # # HAHHAAAT H OH H#H\ HHHHH O# ## S HHE HH# |
| # #t # # W # # # #p# #HHE H# # H#HH # ## |
| # # # # # $# # # #H# H# H# HHHHHHHHHWHHE # 4|
| # # ## # # O A H# O# O # # HH # ## # |
| # #HHEHH # # ## # # # # HHRHHE H#
| # # #H B H R # # B B H # |
| ## ### # # # # # # ###H OB
| # # ## # # #HH HHHHHE # HHHHHHHHHH # #H#H# #|
| # # #HH # HHHHH # HHEHH # #H#H#H#H
| H R B # # # #H## # # = # ### |
| #H #H# # # H#H#u#g # #HHEHH
| HHHHHT # HHE # # HHHHT #HHBHEHHY
| #d # # HHHH R #HHBEHHY
| $#$ # # # g # ##HEHs |
| $# # h # # ## #
| # HAHHH O# # HHHHHH R |
e +

| Heal th 37| Manna 6| | Wal th 30|

oo B S [S + oo +

|Direction 4 | Number window

e R + Player

Edit window object
Figure 29.1 "Dungeon" game's display.

Handle attacks by monster objects on the player. A monster object adjacent to
the player will inflict damage proportiona to its strength. This amount of
damage is deducted from the player object's health rating. Some monster
objects have the option of using a projectile weapon when not immediately
adjacent to the player.

Handle attacks by the player on a monster object. A movement command that
would place the player object on a point occupied by a monster isto be
interpreted as an attack on that monster. The player inflicts afixed amount of
damage. Such an attack reduces the monster's health attribute. 1f a monster
object's health attribute falls to zero, it isto be deleted from the game.

Handle movements. The player and most types of monster are limited in their
scope for movement and cannot pass through walls or outside of the map area.
More than one monster may be located on the same point of the map; monsters
are alowed to occupy the same points as collectable items. When several
dungeon items are located at the same point, only oneis shown on the map.

The player's health and manna ratings increase slowly as moves are made.

Inheritance and Polymorphism 1018

e Support "magic action" commands. Magic action commands weaken or
destroy monsters at a distance from the player; like movement commands, they
aredirectional.

A magic action command inflicts a predefined amount of damage on any
monster located on the neighbouring square in the specified direction, half that
amount of damage on any monster two squares away along the specified
directional axis, aquarter that amount on a monster three squares away etc.
Magic does not project through walls.

Use of amagic action command consumes "manna’ points. If the player
object has insufficient manna points, the player suffers damage equal to twice
the deficit. So, if acommand requires 8 manna points and the player object's
mannais 3, the manna.is reduced to zero and the player object's health is
reduced by 10 after executing the command.

¢ Provide the following basic behaviours for monster objects.
A monster object will attack the player object if it is on an adjacent point.

If not immediately adjacent to the player object, some monsters "look™ for the
player and, if they can "see" the player, they may advance toward it or launch a
projectile.

If they are not able to detect the player object, a monster object will perform its
"normal movement" function. This might involve random movement, no
movement, or some more purposive behaviour.

Monster objects do not attempt to acquire collectable items.

Monster objects do not interact with other monster objects.

29.2 DESIGN
29.2.1 Preliminaries

This"preliminaries" section explores a few aspects of the program that seem pretty
much fixed by the specification. The objective isto fill out some details and get a
few pointers to things that should be considered more thoroughly.

For example the specification implies the existence of "class Dungeon"”, "class
Player", "class Monster", a class for "collectable items" and so forth. We might as
well jot down a few initial ideas about these classes, making a first attempt to
answer the perennia questions "What does class X do? What do instances of class
X own?". Only the most important responsibilities will get identified at this stage;
more detailed consideration of specific aspects of the program will result in further
responsibilities being added. Detailed analysis later on will also show that some of
the classes are interrelated, forming parts of a class hierarchy.

Design preliminaries 1019

Other issues that should get taken up at this preliminary stage are things like the
input files and the form of the main program. Again, they are pretty much defined
by the specification, but it is possible to elaborate alittle.

main()

We can start with the easy parts — like the mai n() function! This is obviously
going to have the basic form "create the principal object, tell it to run™:

int main()

Dungeon *d;
d = new Dungeon;

Pronpt user for name of file and read in name

d- >Load(aNane) ;

int status = d->Run();
Ter nmi nat e(st at us) ;

return O;

}

The principal object isthe "Dungeon” object itself. This hasto load datafrom afile
and run the game. When the game ends, a message of congratulations or commis-
erations should be printed. The Dungeon: : Run() function can return awin/lose
flag that can be used to select an appropriate message that is then output by some
smpleTer m nat e() function.

First idea for files

The files are to be text files, created using some standard editor. They had better
specify the size of the map. It would be simplest if the map itself were represented
by the '#' and ' ' characters that will get displayed. If the map istoo large, the top-
left portion should be used.

Following the map, the file should contain the data necessary to define the
player, the collectable items, and the monsters. The program should check that
these data define exactly one player object and at least one collectable item. The
program can simply terminate if dataareinvalid. (It would help if an error message
printed before termination could include some details from the line of input where
something invalid was found.)

Collectable items and other objects can be represented in the file using a
character code to identify type, followed by whatever number of integers are
needed to initialize an object of the specified type. A sentinel character, e.g. 'q', can
mark the end of thefile.

A plausible form for an input file would be:

Inheritance and Polymorphism 1020

wi dth and height (e.g 70 20)
several (20) lines of (70) characters, e.g.
P . . HHHHHEHHE T

... #

HHHHAE # # ... T H#

dungeon itens

h 30 18 ... human (i.e. player), coords, other data
w2210 .. wanderi ng nonster, coords,

$266 0300 collectable item coords, val ues

q end mark

Any additional details can be resolved once the objects have been better
characterized.

class Dungeon

Consideration of the mai n() function identified two behaviours required of the
Dungeon object: loading afile, and running the game.
The Dungeon: : Load() functionwill be something along the following lines:

Dungeon: : Load
Qpen file with name given
Load nap
Load ot her data

Dungeon: : | oad map
read size
| oop reading |ines of characters that define
the rows of the map

Dungeon: : | oad other data
read type character
whil e character !'="q
create object of appropriate type
tell it toread its own data
if it is a nonster, add to nonster collection
if it is acollectable, add to coll ectabl e
itens collection
if player, note it (make sure no existing player)

check that the data defined sone itens to collect

The Dungeon: : Run() function could have the following genera form:

Dungeon: : Run()
Finalize setting up of displays
Drawinitial state

whi | e(pl ayer "alive")
pl ayer "run"

Design preliminaries 1021

if(all collectables now taken)
br eak;

for each Monster min nonster collection
m >Run() ;

return (player "alive");

The displays must be set up. Obviously, the Dungeon object owns some window
objects. (Some might belong to the Pl ayer object; this can be resolved later.) The
Dungeon object will get primary responsibility for any work needed to set up
display structures.

The main loop has two ways of terminating — "death" of player, and all
collectable abjects taken. The game waswon if the player isalive at the end.

The Dungeon object owns the collection of monsters, the collection of
collectable items, and the player object. Collections could use class Li st or class
Dynam cArray.

The Pl ayer object will need to access information held by the Dungeon object.
For example, the Pl ayer object will need to know whether a particular square is
accessible (i.e. not part of a wall), and whether that square is occupied by a
collectable item or amonster. When the Pl ayer takes a collectable item, or killsa
monster, the Dungeon should be notified so that it can update itsrecords. Similarly,
the monsters will be interested in the current position of the Pl ayer and so will
need access to thisinformation.

Consequently, in addition to Load() and Run(), class Dungeon will need many
other member functions in its public interface — functions like "Accessible()", and
"Remove Monster()". The full set of member functions will get sorted out steadily
as different aspects of the game are considered in detail.

Most "dungeon items" will need to interact with the Dungeon object in some
way or other. It would be best if they all have aDungeon* data member that gets
initialized as they are constructed.

class Player

The Pl ayer object's main responsibility will be getting and interpreting a command
entered by the user.

Commands are input as single characters and define either movements or, in this
game, directional applications of destructive "magic”. The characters 1...9 can be
used to define movements. If the keyboard includes a number pad, the convenient
mapping is 7 = "north west", 8 = "north", 9 = "north east", 4 = "west" and so forth
(where "north™ means movement toward the top of the screen and "west" means
movement leftwards). Command 5 means "no movement" (sometimes a user may
want to delay alittle, e.g. to let the player object recover from injury).

The "magic action" commands can use the keys g, w, e, a, d, z, X, and ¢ (on a
standard QWERTY keyboard, these have the same relative layout and hence define
the same directional patterns as the keys on the numeric keypad).

Themain Pl ayer: : Run() functionwill be something like:

Movement commands

Magic action
commands

Player::Run()

Inheritance and Polymorphism 1022

Auxiliary private
member functions
used by Run()

Monster::Run()

Pl ayer:: Run()
char ch = Get User Command() ;
i f(isdigit(ch)) Perfornivenent Comrand(ch);
el se Perf ormvagi cCommand(ch);
Updat eStat e() ;
Showst at us() ;

It will involve several auxiliary (private) member functions of class Pl ayer .

A Get User Command() function can arrange to read the input. Input is echoed at
the current location of the cursor. This could mess up the map display.
Consequently it will be necessary to position the cursor prior to reading a command
character. This work of cursor positioning and actual data input will involve
interactions with window object(s).

A function Updat eSt at e() can deal with the business about aPl ayer object's
health and manna levels increasing. A ShowSt at us() function can keep the
displays current; again this will involve interactions with windows.

The Perform... functions will involve interactions with the Dungeon object, and
possibly other objects as well.

class Collectable

The collectable items could be made instances of a class Col | ect abl e. It does not
seem that there will be any differences in their behaviours, so there probably won't
be any specialized subclasses of class Col | ect abl e. At this stage, it doesn't appear
asif Col | ect abl e objectswill do much at all.

They have to draw themselves when asked (presumably by the Dungeon object
when it is organizing displays); they will own a character that they use to represent
themselves. They will aso need to own integer values representing the amounts by
which they change the Pl ayer object's health etc when they get taken. Some
access functions will have to exist so that the Pl ayer object can ask for the relevant
data.

A monster object moving onto the same point as a Col | ect abl e object will
hide it. When the monster object moves away, the Col | ect abl e object should be
redrawn. The Dungeon object had better arrange to get all Col | ect abl e objects
draw themselves at regular intervals; this code could be added to the whi | e() loop
inDungeon: : Run() .

class Monster

As explained in the dungeon game specification, the basic behaviour of a Monst er
is to attack whenever possible, otherwise to advance toward the Pl ayer when this
is possible, otherwise to continue with some "normal action". This behaviour could
be defined in the Monst er: : Run() function which would involve a number of
auxiliary functions:

Monster: : Run()
i f(CanAttack())

Design preliminaries 1023

Attack();
el se
i f(CanDetect())
Advance();
el se
Nor mal Move() ;

Different subclasses of class Monst er can specialize the auxiliary functions so asto
vary the basic behaviour. Naturaly, these functions will be declared asvi r t ual .

Default definitions are possible for some member functions. The default
CanAt t ack() function should return true if the Pl ayer object is adjacent. The
default At t ack() function would tell the Pl ayer object that it has been hit for a
specified number of points of damage. The default implementations for the other
functions could all be "do nothing" (i.e. just an empty body { } for Advance()
and Nor nal Move() anda return O for CanDet ect ()).

Checking adjacency will involve getting a pointer to the PI ayer object (this can
be provided by the Dungeon object) and then asking the Pl ayer for its position. It
might be worth having some simple class to represent (X, y) point coordinates. A
Monst er object could have an instance of class Pt to represent its position. The
Pl ayer could return its coordinates as an instance of class Pt . Thefirst Pt could be
asked whether it is adjacent to the second.

29.2.2 WindowRep and Window classes

Previous experience with practical windowing systems has influenced the approach
developed here for handling the display. Asillustrated in Figure 29.2, the display
system uses class W ndowRep and class W ndow (and its specialized subclasses).

WindowRep

Actual communication with the screen is the responsibility of a class W ndowRep
(Window Representation). Class W ndowRep encapsulates all the sordid details of
how to talk to an addressable screen (using those obscure functions, introduced in
Chapter 12, likecgot oxy(x, y, st dout) ;). Inaddition, it isresponsible for trying
to optimize output to the screen. When the W ndowRep object gets a request to
output a character at a specific point on the screen, it only performs an output
operation if the character given is different from that already shown. In order to do
this check, the W ndowRep object maintains a character array in memory that
duplicates the information currently on the screen.

The program will have exactly one instance of class W ndowRep. All "window"
objects (or other objects) that want to output (or input) a character will have to
interact with the W ndowRep object. (There can only be one W ndowRep object ina
program because there is only one screen and this screen has to have a unique
owner that maintains consistency etc.)

Auxiliary private
member functions
used by Run()

Inheritance and Polymorphism

1024

owns
array of characters
with screen content
Does
put character on screen
nove cursor

Oowns
position relative to screen
arrays of characters

r® wi th background and
't 'S current content
' di nensions, framing fla
W ndow Does ¢ 9
m ;
A¢-4d put character in current

(or background) inmage
organi ze drawi ng (all
just content area)

or

get input clear current inmage
_del ays return size details etc.
Singleton class;
r_ _""‘\““ I" ‘b“\“’A
Nunber | t em Edi t Text
k»‘-"-‘l ‘_—_““"
Oowns . owns
nuneric value and | abel | abel . text buffer

Does

set val ue (and change di spl ay)
return current val ue

Figure 29.2

" Singleton” pattern

size limt
Does
accept input characters
return text buffer
set text buffer

Class WindowRep and the Windows class hierarchy.

A class for which there can only be a single instance, an instance that must be

accessible to many other objects, an instance that may have to create auxiliary data
structures or perform some specialized hardware initialization — this is a common
pattern in programs. A specia term "singleton class' has been coined to describe
this pattern. There are some standard programming "cliches" used when coding
such classes, they are followed in thisimplementation.

The unique W ndowRep object used in a program provides the following

services:

PutCharacter

Outputs a character at a point specified in screen coordinates.

MoveCursor

Positions the "cursor" prior to an input operation.

GetChar

Inputs a character, echoing it at the current cursor position

Clear
Clears the entire screen.

CloseDown

Closes down the windowing system and getsrid of the program’'s W ndowRep

object

WindowRep and Window classes 1025

There is another specialized static (class) function, | nst ance() . This handles
aspects of the "singleton pattern” (programming cliche) as explained in the
implementation (Section 29.3). Essentially, the job of this function is to make
certain that there is an instance of class W ndowRep that is globally available to any
other object that needs it (if necessary, creating the program's unique W ndowRep
object).

Window

Window objects, instances of class W ndow or its subclasses, are meant to be things
that own some displayable data (an array of characters) and that can be "mapped
onto the screen". A W ndow object will have coordinates that specify where its
"top-left” corner is located relative to the screen. (In keeping with most cursor-
addressable screen usage, coordinate systems are 1-based rather than 0-based so the
top left corner of the screen is at coordinate (1,1).) W ndow objects also define a
size in terms of horizontal and vertical dimensions. Most W ndow objects are
"framed", their perimeters are marked out by "', '|', and '+' characters (as in Figure
29.1). A W ndow may not fit entirely on the screen (the fit obviously depends on
the size and the origin). The W ndowRep object resolves this by ignoring output
requests that are "off screen".

W ndow objects have their own character arrays for their displayable content.
Actually, they have two character arrays: a "background array” and a "current
array". When told to "draw" itself, awW ndow object executes afunction involving a
double loop that takes characters from the "current array", works out where each
should be located in terms of screen coordinates (taking into account the position of
the W ndow object's top-left corner) and regquests the W ndowRep object to display
the character at the appropriate point.

The "background array" defines the initial contents of the window (possibly all
blank). Before a window is first shown on the screen, its current array is filled
from the background. A subsequent "clear" operation on a specific point in the
window, resets the contents of the current window to be the same as the
background at the specified point.

A specific background pattern can be loaded into a window by setting the
characters at each individual position. In the dungeon game, the Dungeon object
owns the window used to display the map; it sets the background pattern for that
window to be the same as its map layout.

The W ndow class has the following public functions:

e Constructor
Sets the size and position fields; creates arrays.

» Destructor
Getsrid of arrays. (Thedestructor isvi rtual because class W ndowisto serve
asthe base class of a hierarchy. In class hierarchies, base classes must always
define virtual destructors.)

Background and
current (foreground)
window contents

What does a Window
do?

Inheritance and Polymorphism 1026

What does a Window
own?

Provision for class
hierarchy

" Inheritance for
extension" and
"inheritance for
redefinition”

e Set, Clear
Change the character at a single point in the current (foreground) array.

e SetBkgd
Change the character at a single point in the background array.

e Accessfunctions: X, Y, Width, Height
Return details of data members.

e PrepareContent
Initialize current array with copy of background and, if appropriate, add frame.

e ShowAll, ShowContent
Output current array viathe W ndowRep.

The class requires a few auxiliary member functions. For example, the coordinates
passed to functions like Set () must be validated.

A W ndow owns its dimension data and its arrays. These data members should
be pr ot ect ed; subclasses will require access to these data.

The functionality of class W ndow will be extended in its subclasses. However
the subclasses don't change the existing functions like ShowAl | () . Consequently,
these functions are not declared as virtual.

The relationships between class W ndow and its subclasses, and class Monst er
and its subclasses, are subtly different. The subclasses of W ndow add functionality
to a working class, but don't change its basic behaviours. Consequently, the
member functions of class W ndow are non-virtual (apart from the destructor).
Class Monst er defines a general abstraction; e.g. all Monst er object can execute
some "NormalMove" function, different subclasses redefine the meaning of
"NormalMove'. Many of the member functions of class Monst er are declared as
virtual so asto permit such redefinition. Apart from the differences with respect to
the base class member function being virtual or non-virtual, you will also see
differences in the accessibility of additional functions defined by subclasses. When
inheritance is being used to extend a base class, many of the new member functions
appear in the public interface of the subclass. When inheritance is being used to
specialize an existing base class, most of the new functions will be private
functions needed to implement changes to some existing behaviour. Both styles,
"inheritance for extension" and "inheritance for redefinition”, are common.

Subclasses of class Window

This program has two subclasses for class W ndow: Nunber I t emand Edi t Text .
Instances of class Nurber I t emare used to display numeric values; instances of
class Edi t Text can be used to input commands. Asillustrated in Figure 29.3, these
are displayed as framed windows that are 3 rows deep by n-columns wide. The left
part of the window will normally contain a textual label. The right part is used to
display a string representing a (signed) numeric value or as input field where input
characters get echoed (in addition to being stored in some data buffer owned by the
object).

WindowRep and Window classes 1027

Frame
+- K ------------- + o +
| Heal t h 100 |Direction | |
N + e -+
T NumberT Cursor positioned so that
Label output here input characters appear here

Figure 29.3 Numberltem and EditText Windows

Numberltem

The class declaration for Nunber | t emis:

class Nunberltem: public Wndow {
public:
Nurmberlten{int x, int y, int width, char *|abel,
long initval = 0);
voi d Set Val (1 ong newval) ;
| ong GetVal () { return fval; }
private:
voi d Set Label (int s, char*);
voi d Showval ue() ;
| ong fVal ;
int f Label Wdt h;
¥

In addition to the character arrays and dimension data that a Nunber | t emobject What doesa
aready has because it is a kind of W ndow, aNumber I t emowns along integer Numberltem own?
holding the value to be displayed (and, also, an integer to record the number of
characters used by the label so that numeric outputs don't overwrite the label).

The constructor for class Number | t em completes the normal initialization What doesa
processes of class W ndow. The auxiliary private member function Set Label () is Numberltem do?
used to copy the given label string into the background array. The inherited
Pr epar eCont ent () function loads the current array from the background and adds
theframe. Finaly, using the auxiliary Showval ue() function, theinitial number is
converted into characters that are added to the current image array.

Once constructed, a Nunber | t emcan be used by the program. Usually, usage
will be restricted to just three functions — Get Val () (return fVal;), Set Val ()

(changes f Val and uses Showval ue() to update the current image array), and
ShowAl | () (the function, inherited from class W ndow, that gets the window
displayed).

Inheritance and Polymorphism 1028

What does a EditText
own?

What does a
Numberltem do?

EditText

The primary responsibility of an Edi t Text object is getting character input from
the user. In the dungeon game program, individual input characters are required as
command characters. More generally, the input could be a multicharacter word or a
complete text phrase.

An Edi t Text object should be asked to get an input. It should be responsible
for getting characters from the W ndowRep object (while moving the cursor around
to try to get the echoed characters to appear at a suitable point on the screen). Input
characters should be added to a buffer maintained by the Edi t Text object. This
input process should terminate when either a specified number of characters has
been received or a recognizably distinct terminating character (e.g. 'tab', 'enter’) is
input. (The dungeon program can use such a more generalized Edi t Text object by
specifying that the input operation is to terminate when a single character has been
entered). Often, the calling program will need to know what character terminated
the input (or whether it was terminated by a character limit being reached). The
input routine can return the terminating character (a \0' could be returned to
indicate that a character count limit was reached).

The Edi t Text class would have to provide an access function that lets a caller
read the charactersin its buffer.

The class declaration for class Edi t Text is.

class EditText: public Wndow {
public:
EditText(int x, int y, int width, char *label, short size);
voi d Set Val (char*);
char *GetVal () { return fBuf; }
char Getlnput();
private:
voi d Set Label (int s, char*);
voi d Showval ue() ;
i nt f Label W dt h;
char f Buf [256] ;
i nt fSize;
i nt fEntry;
|3

In addition to the data members inherited from class W ndow, aEdi t Text owns
a(large) character buffer that can be used to store the input string, integers to record
the number of characters entered so far and the limit number. Like the
Nunmber | t em an Edi t Text will aso need arecord of the width of its label so that
the input field and the label can be kept from overlapping.

The constructor for class Edi t Text completes the normal initialization
processes of classW ndow. The auxiliary private member function Set Label () is
used to copy the given label string into the background array. The inherited
Prepar eCont ent () function loads the current array from the background and adds
the frame. The buffer, f Buf , can be "cleared" (by settingf Buf [0] to"\0)..

The only member functions used in most programs would be Get I nput (),
Get Val () and ShowaAl | (). Sometimes, a program might want to set aninitial text
string (e.g. aprompt) in the editable field (function Set Vval ()).

WindowRep and Window classes 1029

29.2.3 Dungeonltem hierarchy

Class Monst er is meant to be an abstraction; the real inhabitants of the dungeon are
instances of specialized subclasses of class Monst er .

Class Monst er has to provide the following functions (there may be others
functions, and the work done in these functions may get expanded later, this list
represents an initial guess):

* Constructor and destructor
The constructor will set aDungeon* pointer to link back to the Dungeon object
and set a char data member to the symbol used to represent the Monst er onthe
map view.
Since class Monst er isto bein ahierarchy, it had better define avirtual
destructor.

* Reod
A Monst er issupposed to read details of itsinitial position, its "health" and
"strength" from an input file. It will need data membersto store this
information.

« Accessfunctionsto get position, to check whether "aive",

« A Run() function that asaready outlined will work through redefinable
auxiliary functionslike CanAt t ack() , At t ack(), CanDet ect () , Advance()
and Nor mal Move() .

e Draw and Erase functions.

e A Movefunction.
CallsEr ase() , changes coords to new coords given as argument, and calls
Draw().

e GetHit function
Reduces "health" attribute in accord with damage inflicted by Pl ayer .

The example implementation has three specializations: Ghost , Pat r ol , and
Wander er. These classes redefine member functions from class Monst er as
needed.
A Ghost isaMonst er that: class Ghost

e usesthedefault "do nothing" implementation defined by Monster: :
Nor mal Move() adong with the standard CanAt t ack(), Attack() functions;

* hasacCanDetect () function that returnstrue when the player iswithin afixed
distance of the point where the Ghost islocated (the presence of intervening
walls makes no difference to a Ghost object's power of detection);

Inheritance and Polymorphism 1030

class Patrol

class Wanderer

e hasan Advance() function that movesthe Ghost one square vertically,
diagonally, or horizontally so as to advance directly toward the player; a Ghost
can move through walls;

e hasahighinitia "health" rating;
e inflictsonly asmall amount of damage when attacking the Pl ayer .

Class Ghost needsto redefine only the Advance() and CanDet ect () functions.
Since a Ghost does not require any additional data it does not to change the
Read() function.

A Patrol isaMonster that:

e usesthedefault CanAttack(), Attack() functionsto attack an adjacent
player;

e hasaCanDetect () function that returnstruethereisaclear line of sight
between it and the Pl ayer object;

e hasan Advance() function that instead of moving it toward the Pl ayer allows
it to fire a projectile that follows the "line of sight” path until it hitsthe Pl ayer
(causing asmall amount of damage), the movement of the projectile should
appear on the screen;

e hasaNormal Move() function that causesit to follow a predefined patrol route
(it never departs from this route so it does not attempt to pursue the Pl ayer).

¢ hasamoderate initial "health" rating;

¢ inflictsalarge amount of damage when making a direct attack on an adjacent
player.

The patrol route should be defined as a sequence of points. These will have to be
read from the input file and so class Pat r ol will need to extend the Monst er : :
Read() function. ThePatrol : : Read() function should check that the given
points are adjacent and that all are accessible (within the bounds of the dungeon
and not blocked by walls).

Class Pat r ol will need to define extra data members to hold the route data. It
will need an array of Pt objects (this can be a fixed sized array with some
reasonable maximum length for a patrol route), an integer specifying the number of
points in the actual route, an integer (index value) specifying which Pt in the array
the Pat r ol is currently at, and another integer to define the direction that the
Patrol iswalking. (The starting point given for the Pat r ol will be the first
element of the array. Itsinitial moves will cause it to move to successive elements
of the Pt array; when it reaches the last, it can retrace its path by having the index
decrease through the array.)

A Wander er isaMnst er that:

e usesthedefault CanAttack(), Attack() functionsto attack an adjacent
player;

Dungeonltem hierarchy 1031

 hasaCanDet ect () function that returnstruethereisaclear line of sight
between it and the Pl ayer object;

e hasan Advance() functionthat causestheWander er to move one step along
the line of sight path toward the current position of the PI ayer ;

e hasaNormal Mve() functionthat causesit to try to movein a constant
direction until blocked by awall, when its movement is blocked, it picks a new
direction at random;

e hasasmall initia "health" rating;

« inflicts amoderate amount of damage when making a direct attack on an
adjacent player.

A Wander er will need to remember its current direction of movement so that it can
keep trying to go in the same direction. Integer data members, representing the
current delta-x, delta-y changes of coordinate, could be used.

There are similarities between the Monst er and Pl ayer classes. Both classes
define things that have a Pt coordinate, a health attribute and a strength attribute.
There are similarities in behaviours. both the Pl ayer and the Monst er s read initial
datafrom file, get told that they have been hit, get asked whether they are till alive,
get told to draw themselves (and erase themselves), have a "move" behaviour that
involves erasing their current display, changing their Pt coordinate and then
redrawing themselves. These commonalities are sufficient to make it worth
defining a new abstraction, "active item", that subsumes both the Pl ayer and the
Monst er s.

This process of abstracting out commonalities can be repeated. There are
similarities between class Collectable and the new class Acti vel t em Both are
things with Pt coordinates, draw and erase behaviours; they respond to queries
about where they are (returning their Pt coordinate). These common behaviours
can be defined in a base class: Dungeonl t em

The Dungeonl t emclass hierarchy used in the implementation is shown in Figure
294.

29.2.3 Finalising the classes
Completion of the design stage involves coming up with the class declarations of
all the classes, possibly diagramming some of the more complex patterns of

interaction among instances of different classes, and devel oping agorithms for any
complicated functions.

Class Dungeon

The finalised declaration for class Dungeon is.

Commonalities
between class Player
and class Monster

Inheritance and Polymorphism 1032

PRl
- - owns
~ \ link to Dungeon, point
Dungeonl t em coord, display symbol
v - does
draws itself, erases
sy

itself, reads data from
Nle, reports where it is
"—f\ 4——1— “J_-‘

Col | ectabl e i owns
A - Activeltem health & strength
=~)
vo?

A) -‘- 'L,-‘ll attributes
-
does

owns) reads extra data

3 integer value fields "runs" (define in subclass)
does gets hit

reads extra data, reports if still "alive"

reports val ues noves

%rﬁﬁ 4’_\:"-\‘*

Pl ayer Monst er
owns owns
“manna", wealth attributes, (nothing extra)
novecount, |inks to w ndows does)
used to display status "runs" using

"Can Attack", "Attack",
"Can Detect", "Advance",
" Nor mal Move"

does
reads extra data
gets user command, takes
col |l ect abl es, attacks
nonsters, interprets
novenment & magi ¢ commands

AT P

Ghost Wander er Patrol
LY
- Pw - " 24 '-"\‘ Y

Subcl asses of Monster own
uni que data (patrol "route", wanderer record
of |ast nove)
does
substitute specialized Normal Move(), Advance(),
functions; read any extra data parans.

Figure 29.4 Dungeonltem class hierarchy.

cl ass Dungeon {
public:
Dungeon() ;
~Dungeon() ;
voi d Load(const char filenane[]);
int Run();
i nt Accessi bl e(Pt p) const;
Wndow *Di spl ay();
Pl ayer *Human();

i nt Val i dPoi nt (Pt p) const;

Monster *Mat_Pt (Pt p);

Col l ectable *Pl _at_Pt (Pt p);

voi d RenovePr op(Col | ectabl e *pi);
voi d RermoveM Monster *n) ;

Finalising the clases 1033

int dearLinedSight(Pt pl, Pt p2, int max,
Pt path[]);

privat e:
int dearRowW(Pt pl, Pt p2, int max, Pt path[]);
int dearColum(Pt pl, Pt p2, int max, Pt path[]);
int dearSem Vertical (Pt pl, Pt p2, int nax,
Pt path[]);
int d ear Seni Hori zontal (Pt pl, Pt p2, int nax,
Pt path(]);
voi d LoadMap(i fstrean& in);
voi d Popul at eDungeon(i f strean& in);
voi d QO eat eWndow() ;

Dynanmi cArray fProps;
Dynam cArray flnhabitants;

P ayer *f P ayer;

char f DRep[MAXHEI GHT] [MAXW DTH | ;
W ndow *f DW ndow,

int f Hei ght ;

int fWdt h;

b

The Dungeon object owns the map of the maze (represented by its data elements
fDRep[][],fHeight,andfW dt h). It also owns the main map window
(f DW ndow), the Pl ayer object (f Pl ayer) and the collections of Monst ers and
Col | ect abl es. Data members that are instances of class Dynami cArr ay are used
for the collections (f I nhabitants for the Monsters,fProps for the
Col | ect abl es).

The Load() andRun() functions are used by the main program. Function
Load() makes uses of the auxiliary private member functions LoadMap() and
Popul at eDungeon() ; these read the various data and create Monst er,
Col | ect abl e, and Pl ayer object(s) as specified by theinput. The auxiliary private
member function Cr eat eW ndow() is called from Run() ; it creates the main
window used for the map and sets its background from information in the map.

Access functions like Di spl ay() and Human() allow other objects to get
pointers to the main window and the Player object. The Act i vel t emobjectsthat
move are going to need access to the main Window so as to tell it to clear and set
the character that is to appear at a particular point.

TheVval i dPoi nt () function checks whether a given Pt is within the bounds of
the maze and is not a"wall".

The functions M at _Pt() andPl _at _Pt() involve searches through the
collections of Monst er s and Col | ect abl es respectively. These function return the
first member of the collection present at aPt (or NULL if there are no objects at that
Pt). The Remove... function eliminate members of the collections.

Class Dungeon has been given responsibility for checking whether a"clear line
of sight" exists between two Pt s (this function is called in both Wanderer: :
CanDet ect () and Patrol : : CanDet ect ()). The function takes as arguments the
two points, a maximum range and a Pt array in which to return the Pt s along the

What does a
Dungeon own?

What does a
Dungeon do?

Inheritance and Polymorphism 1034

line of sight. Its implementation uses the auxiliary private member functions
d ear Row() etc.

The agorithm for the d ear Li neOf Si ght () function is the most complex in
the program. There are two easy cases; these occur when the two points are in the
same row or the same column. In such cases, it is sufficient to check each point
from start to end (or out to a specified maximum) making certain that the line of
sight is not blocked by awall. Pseudo code for thed ear Row() functionis:

Dungeon: : d earRowW(Pt pl, Pt p2, int nmax, Pt path[])

delta = if pl left of p2 then 1 else -1

current point = pl

for i < max do
current point's x += delta;
if(current point is not accessible) return fail
path[i] = current point;
if(current point equal p2) return success
i ++

return fail

Cases where the line is oblique are a bit more difficult. It is necessary to check
the squares on the map (or screen) that would be traversed by the best
approximation to a straight line between the points. Thereis a standard approach to
solving this problem; Figure 29.5 illustrates the principle.

The squares shown by dotted lines represent the character grid of the map or
screen; they are centred on points defined by integer coordinates. The start point
and end point are defined by integer coordinates. The real line between the points
has to be approximated by a sequence of segments joining points defined by integer
coordinates. These points define which grid squares are involved. In Figure 29.5
the squares traversed are highlighted by ¢ marks.

A

— (11, 5)

I O I L

(1, 1)

Figure 29.5 A digitized line.

Finalising the clases 1035

The algorithm has to chose the best sequence of integer points, for example
choosing point (2, 1) rather than (2, 2) and (8, 4) rather than (8, 3) or (8, 5). The
algorithm works by calculating the error associated with different points (shown by
the vertical linesin Figure 29.5). The correct y value for say x=8 can be calculated;
the errors of takingy = 3, or 4, or 5 are easy to calculate and the best approximation
ischosen. When the squares traversed have been identified, they can be checked to
determine that they are not blocked by walls and, if clear, added to the pat h array.

The algorithm is easiest to implement using two separate versions for the cases
where the change in x is larger or the changeiny islarger. A pseudo-code outline
for the algorithm for where the change in x islarger is asfollows:

Dungeon: : d ear Seni Hori zontal (Pt pl, Pt p2, int nax,
Pt path[])
ychange = difference in y values of two points
xchange = difference in x values of two points
i f(xchange > nax)

return fail
deltax = if x increasing then 1 else -1
deltay = if y increasing then 1 else -1

sl ope = change in y divided by change in x
error = slope*del tax

current point = pl
for i < abs(xchange) do
i f(error*del tay>0.5) Pick best next point
current point y += deltay
error -= deltay

error += sl ope*del t ax
current point x += deltax

if(current point not accessible) return fail Check accessibility
path[i] = current point Add to path
if(current point equal p2) return success
i ++

return fail

Class Pt

It is worth introducing a simple class to represent coordinates because many of the
functions need coordinates as arguments, and there are also several places in the
code where it is necessary to compare the coordinates of different objects. A
declaration for classPt is:

class Pt {

public:
Pt(int x =0, int y=0);
i nt X() const;
int Y() const ;

voi d SetPt(int newx, int newy);

Inheritance and Polymorphism 1036

voi d Set Pt (const Pt& other);

int Equal s(const Pt & ot her) const;

i nt Adj acent (const Pt& other) const;

i nt D stance(const Pt & other) const;
private:

i nt fx;

i nt fy;

b

Most of the member functions of Pt are sufficiently simple that they can be defined
asinl i ne functions.

Classes WindowRep and Window

The declaration for class WindowRep is

cl ass WndowRep {
public:
stati c WndowRep *Instance();
voi d d osebDown() ;
voi d Put Character(char ch, int x, int y);
voi d dear();
voi d Del ay(int seconds) const;
char Get Char () ;
voi d MoveQursor(int x, int y);

private:
W ndowRep() ;
voi d Initialize();

voi d Put Char act er (char ch);

stati c WndowRep *sW ndowRep;

char f 1 mage[OG_HEl GHT] [GG WDTH] ;
1

The size of the image array is defined by constants CG_HEI GHT and CG_W DTH (their
values are determined by the area of the cursor addressable screen, typically up to
24 high, 80 wide).

The static member function | nst ance(), and the static variable sW ndowRep
are used in the implementation of the "singleton" pattern as explained in the
implementation section. Another characteristic of the singleton nature is the fact
that the constructor is private; a W ndowRep object can only get created via the
public1 nst ance() function.

Most of the members of class W ndow have already been explained. The actua
classdeclaration is:

cl ass Wndow {

public:
Wndow(int x, int y, int width, int height,
char bkgd ="' ', int framed = 1);
virtual ~W ndow() ;

void Qear(int x, int vy);
voi d Set(int x, int y, char ch);
voi d Set Bkgd(int x, int y, char ch);

Finalising the clases 1037

int X() const;
int Y() const;
int Wdth() const;
int Hei ght () const;

voi d ShowAl | () const;
voi d ShowCont ent () const;
voi d Pr epar eCont ent () ;
pr ot ect ed:
voi d Change(int x, int y, char ch);
int Valid(int x, int y) const;
char Get(int x, int y, char **ing) const;
voi d Set Frane();
char **f Bkgd;
char **fQurrent | ny;

int fX
int fyY;
int fWdth;
int f Hei ght ;
int f Fr anmed;

b

The declarations for the specialized subclasses of class W ndow were given
earlier.

Dungeonltem class hierarchy

The base class for the hierarchy definesaDungeonl t emas something that can read
its data from an input stream, can draw and erase itself, and can say where it is. It
owns alink to the Dungeon object, its Pt coordinate and a symbol.

cl ass Dungeonl tem { Dungeonltem
public:

Dungeonl t en{ Dungeon *d, char syn);

virtual ~Dungeonltent);

Pt Where() const;

virtual void Draw();

virtual void Read(ifstrean& in);

virtual void FErase();

pr ot ect ed:
Dungeon *f D,
Pt f Pos;
char f Sym
b

Since class Dungeonl t emis the base class in a hierarchy, it provides a virtual
destructor and makes its data members protected (allowing access by subclasses).

A Col | ect abl e object isjust a Dungeonl t emwith three extra integer data
members and associated access functions that can return their values. Because a
Col | ect abl e needsto read the values of its extra data members, the class redefines
the Dungeonl t emread function.

Inheritance and Polymorphism 1038

Collectable

Activel tem

Player

class Collectable : public Dungeonltem {

public:
Col | ect abl e(Dungeon* d, char syn;
i nt Hth();
i nt Wth();
i nt Manna() ;
virtual void Read(ifstrean& in);
private:
i nt f Hval ;
i nt fWal ;
i nt f Mal ;
b

An Acti vel t emisaDungeonl t emthat gets hit, gets asked if is alive, moves,
and runs. Member function Run() is pure virtual, it has to be redefined in
subclasses (because the "run" behaviours of subclasses Pl ayer and Monst er are
quite different). Default definitions can be provided for the other member
functions. All Acti vel t emobjects have "strength" and "health" attributes. The
inherited Dungeonl t em : Read() function will have to be extended to read these
extradata.

class Activeltem: public Dungeonltem {
public:
Activel ten{Dungeon *d, char sym;
virtual void Read(ifstrean& in);
virtual void Run() = 0;
virtual void GetHt(int damage);
virtual int Aive() const;

pr ot ect ed:
virtual void Myve(const Pt& newpoint);
Pt Step(int dir);

i nt fHeal t h;
i nt fStrength;

b

(Function St ep() got added during implementation. It returns the coordinate of
the adjacent point as defined by the di r parameter; 7 => north west neighbor, 8 =>
north neighbor etc.)

A Pl ayer isaspecialized Act i vel t em The class has one extra public member
function, Showst at us() , and several additional private member functions that are
used in the implementation of its definition of Run() . A Pl ayer has extra data
members for its wealth and manna attributes, a move counter that gets used when
updating health and manna. The Pl ayer object owns the Number | t emand
Edi t Text windows that are used to display its status and get input commands.

class Player : public Activeltem{
public:
Pl ayer (Dungeon* d);
virtual void Run();
virtual void Read(ifstrean& in);
voi d Showst at us() ;
private:
voi d TryMove(int newx, int new);

Finalising the clases 1039

voi d Attack(Mnster *nj;

voi d Take(Col | ect abl e *pi);

voi d Updat eSt at e() ;

char Get User Command() ;

voi d Per f or mvbvenent Command(char ch);
voi d Per f or nivagi cCommand(char ch);

int f MoveCount ;
int f\Wal t h;
int f Manna;

Nunber |t em *f WnH,

Nunber | t em *f WnW

Nunber | t em *fWnM

Edi t Text *f WnE;
b

Class Monst er isjust an Act i vel t emwith a specific implementation of Run()
that involves the extra auxiliary functions CanAt t ack() etc. Since instances of
specialized subclasses are going to be accessed via Monst er * pointers, and there
will be code of theform Monster *m ...; del ete m, the class should define a
virtual destructor.

class Monster : public Activeltem/{ Monster
public:
Monst er (Dungeon* d, char sym;
virtual ~Monster();
virtual void Run();
pr ot ect ed:
virtual int CanAttack();
virtual void Attack();
virtual int CanDetect();
virtual void Advance();
virtual void Norrmal Mve() { }
¥

Class Ghost defines the simplest specialization of classMonst er . It has no extra
data members. It just redefines the default (do nothing) CanDetect () and
Advance() member functions.

class Ghost : public Mnster { Ghost
public:

CGhost (Dungeon *d);
pr ot ect ed:

virtual int CanDetect();
virtual void Advance();

b

The other two specialized subclasses of Monst er have additional data members.
In the case of class Pat r ol , these must be initialized from input so the Read()
function is redefined. Both classes redefine Normal Move() as well as
CanDet ect () and Advance().

Inheritance and Polymorphism 1040

cl ass Wanderer : public Mnster {
public:
Wander er (Dungeon *d);
pr ot ect ed:
virtual void Normal Mve();
virtual int CanDetect();
virtual void Advance();
i nt fLast X, flLastY;

P f Pat h[20] ;
b
class Patrol : public Mnster {
public:

Pat r ol (Dungeon *d);

virtual void Read(ifstrean& in);
pr ot ect ed:

virtual void Normal Mve();

virtual int CanDetect();

virtual void Advance();

P f Pat h[20] ;
P f Rout e[100] ;
i nt f Rout eLen;

i nt fNdx, fDelta;

Object Interactions

Figure 29.6 illustrates some of the interactions involved among different objects
during acycle of Dungeon: : Run() .

Dungeon f 1 nhabi tants Monst er Pl ayer
obj ect (Dynami c Array) obj ect (s) obj ect
|
Run()
Nth(i)
> CanAt t ack()
Run()
I oop] Wher e()
Human()
< _—
Human() <« GtHt
T '|' Attack()

Figure 29.6 Some of the object interactions in Dungeon::Run.

The diagram illustrates aspects of the loop where each Monst er object in the
f 1 nhabi t ant s collection is given a chanceto run. The Dungeon object will first
interact with the Dynami cArray f I nhabitants to get apointer to a particular
Monst er. This will then be told to run; its Run() function would call its
CanAtt ack() function.

Finalising the clases 1041

In CanAt t ack(), the Monst er would have to get details of the Pl ayer object's
position. This would involve first a call to member function Human() of the
Dungeon object to get a pointer, and then acall to Wier e() of the Pl ayer object.

The diagram in Figure 29.7 illustrates the case where the Player is adjacent and
the Monst er object'sAt t ack() functioniscaled. Thiswill againinvolve acall to
Dungeon: : Human() , and thenacall tothe Get H t () function of the Pl ayer object.

Figure 29.7 illustrates some of the interactions that might occur when the a
movement command is given to Pl ayer : Run() .

Pl ayer Edi t Text Dungeon Monst er
obj ect wi ndow obj ect obj ect
Run() Get User Command()
Getval () Ll
.Movenent ...
Monst er At () .
Attack() i“"’”)
GetHit() >
Alive() >Q
> !
< RenobveM)) +
<« del ete

Figure 29.7 Object interactions during Player::Run.

The Pl ayer object would have had to start by asking its Edi t Text window to
get input. When Edi t Text: : Get I nput () returns, the Pl ayer object could inspect
the character string entered (acall to the Edi t Text 'sGet Val () function, not shown
in diagram). If the character entered was a digit, the PI ayer object's function
Per f or MMovement Command would be invoked. This would use St ep() to
determine the coordinates of the adjacent Pt wherethe Pl ayer object wasto move.
The Pl ayer would have to interact with the Dungeon object to check whether the
destination point was occupied by a Monst er (or aCol | ect abl e).

The diagram in Figure 29.7 illustrates the case where there is an adjacent
Monst er. The Pl ayer object informs the Monst er that it has been hit. Then it
checks whether the Monst er is till alive. Intheillustration, the Monst er object
has been destroyed, so the Pl ayer must again interact with the Dungeon object.
This removes the Monst er from the f I nhabi t ant s list (interaction with the
Dynani cAr r ay isnot shown) and deletesthe Monst er .

29.3 AN IMPLEMENTATION

The files used in the implementation, and their interdependencies are summarized
in Figure 29. 8.

Inheritance and Polymorphism 1042

W ndowRep. h Geom h D. h
L

Dungeon. h Ditemh

HIRE
P!
il

]

mai n. cp Ditemcp Geom cp
Dungeon. cp W ndowRep. cp D.cp
o414 o44 i 44 (=] o44
100 ’AOO 100 100 100 100
040 040 040 o410 040 010
nai n. o Ditemo Geom o

Dungeon. o W ndowRep. o

O
o

Figure 29.8 Module structure for Dungeon game example.

The files D.h and D.cp contain the Dynani cArr ay code defined in Chapter 21.
The Geom files have the definition of the simple Pt class. The W ndowRep files
contain W ndowRep, W ndow and its subclasses. DItem.h and DItem.cp contain the
declaration and definition of the classes in the Dungeonl t emhierarchy while the
Dungeon files contain class Dungeon.

An outline for mai n() hasaready been given; function Ter mi nat e(), which
prints an appropriate "you won" or "you lost" message, istrivial.

29.3.1 Windows classes

There are two aspects to class W ndowRep: its "singleton" nature, and its
interactions with a cursor addressable screen.

The constructor is private. W ndowRep objects cannot be created by client code
(we only want one, so we don't want to allow arbitrary creation). Clients (like the

code of class Dungeon) always access the unique W ndowRep object through the
static member function I nst ance() .

W ndowRep *W ndowRep: : | nst ance()

i f(sWndowRep == NULL)
sWndowRep = new W ndowRep;

Implementation: Windows classes 1043

return sWndowRep;
}

W ndowRep *W ndowRep: : sWndowRep = NULL;

Thefirst timethat it is called, function | nst ance() createsthe W ndowRep object;
subsequent calls always return a pointer to the same object.

The constructor calls function I nitialize() which performsany system
dependent device initialization. It then sets up the image array, and clears the
screen.

W ndowRep: : W ndowRep()

Initialize();
for(int row = 0; row < GG HEl GHT; row++)
for(int col =0; col< GG WDTH col ++)
flmage[row[col] =" ";
dear();

The implementation of functionslike I ni tialize() involvesthe same system
dependent calls as outlined in the "Cursor Graphics' examples in Chapter 12.
Some exampl e functions are:

void WndowRep: : I nitialize()

{

#i f defi ned(SYNANTEC)

/*

Have to change the "node" for the 'consol e screen.
Putting it in C_ CBREAK allows characters to be read one by
one as they are typed

*/

cset node(C_CBREAK, stdin);
#el se
/*

No special initializations are needed for Borland | DE
*/

#endi f

}

voi d WndowRep: : MoveQursor (int x, int y)
{
if((x<1l) || (x>CG_WDTH)) return;
if((y<1) || (y>CG HEIGHT)) return;
#i f defi ned(SYNANTEC)
cgot oxy(Xx,y, stdout);
#el se

got oxy(X, y);
#endi f

}

voi d W ndowRep: : Put Char act er (char ch)
{

Inheritance and Polymorphism 1044

#i f defi ned(SYVANTEC)
fputc(ch, stdout);
fflush(stdout);

#el i f
put ch(ch);

#endi f

}

Functions like W ndowRep: : Del ay() and W ndowRep: : Get Char () similarly
repackage code from "Cursor Graphics' example.

The W ndowRep: : Put char acter () function only does the cursor movement
and character output operations when necessary. This function also keeps the
W ndowRep object'simage array consistent with the screen.

voi d WndowRep: : Put Character (char ch, int x, int y)

{
if((x<l) || (x>CG_WDTH)) return;
if((y<l) || (y>CG HEIGHT)) return;
if(ch !'=flnmage[y-1][x-1]) {
MoveQur sor (X, Y);
Put Char act er (ch) ;
flmage[y-1][x-1] = ch;
}
}

The Cl oseDown() function clears the screen, performs any device specific
termination, then after a short delay letsthe W ndowRep object self destruct.

voi d W ndowRep: : A oseDown()

Qdear();
#i f defi ned(SYVANTEC)

cset mode(C ECHQ stdin);
#endi f

sWndowRep = NULL;

Del ay(2);

delete this;

Window

The constructor for class W ndow initializes the simple data members like the width
and height fields. The foreground and background arrays are created. They are
vectors, each element of which represents an array of characters (one row of the

image).

Wndow : Wndow(int x, int y, int width, int height,
char bkgd, int framed)
{

fX=x-1;
fyY =y-1;

Implementation: Windows classes 1045

fwdth = width;
f Hei ght = hei ght;
f Framed = franed;

fBkgd = new char* [height];

fQurrentlmg = new char* [height];

for(int row = 0; row < height; rowt+) {
fBkgd[row] = new char[wi dth];
fQurrentling[row] = new char[width];
for(int col =0; col < width; col ++)

fBkgd[rowj [col] = bkgd,;

}

}

Naturally, the main task of the destructor isto get rid of the image arrays:
W ndow: : ~W ndow()

for(int row= 0; row< fHeight; row+) {
delete [] fQurrentlng[row;
delete [] fBkgd[row;

}
delete [] fQurrentl ny;
delete [] fBkgd;
}

Functions like Cl ear (), and Set () rely on auxiliary routines val i d() and
Change() to organize the real work. Function Val i d() makes certain that the
coordinates are within the window's bounds. Function Change() isgiven the
coordinates, and the new character. It looks after details like making certain that
the window frame is not overwritten (if this is a framed window), arranging for a
reguest to the W ndowRep object asking for the character to be displayed, and the
updating of the array.

void Wndow :dear(int x, int vy)

if(valid(x,y))
Change(x, y, Get (x, y, f Bkgd));
}

void Wndow. : Set(int x, int y, char ch)

if(valid(x,y))
Change(x, y, ch);
}

(Function Change() hasto adjust the x, y values from the 1-based scheme used for
referring to screen positions to a 0-based scheme for C array subscripting.)

void Wndow : Change(int x, int y, char ch)

i f(fFraned) {
if((x == 1)
1)

(x == fWdth)) return;
if((y == (

I
[| (y == fHeight)) return;

Inheritance and Polymorphism 1046

}

W ndowRep: : I nstance()->Put Character(ch, x + fX y + fY);
X--:

fajrrentlng[y][x] = ch;
}

Note the call to W ndowRep: : | nst ance(). ThisreturnsaW ndowRep* pointer.
The W ndowRep referenced by this pointer is then asked to output the character at
the specified point as offset by the origin of this window.

Function Set Bkgd() simply validates the coordinate arguments and then setsa
character in the background array. Function Get () returns the character at a
particular point in either background of foreground array (an example of itsuseis
in the statement Get (x, y, fBkgd) inWndow : Q ear()).

char Wndow. : Get(int x, int y, char **ing) const
{

X<

y--3
return img[y][X];
}

Function PrepareCont ent () |oads the current image array from the background
and, if appropriate, calls Set Frame() to add aframe.

voi d Wndow: : Prepar eCont ent ()

for(int row= 0; row < fHeight; row+)
for(int col =0; col < fWdth; col ++)
fQurrenting[row [col] = fBkgd[row[col];
i f(fFramed)
Set Frane();
}

voi d Wndow. : Set Frane()

for(int x=1; x<fWdth-1; x++) {
fQurrentlmg[O] [x] ="-";
fQurrent| ng[f Hei ght - 1][x] -

}

for(int y=1; y < fHeight-1; y++) {
fQurrentIng[y][0] =']|";
fourrentimg[y] [fWdth-1] = "|";

}
fQurrenting[0][0] ="'+;
fQurrent I nmg[O] [fWdth-1] = ;
fQurrent | mg[f Hei ght-1][0] =
fQurrent| nyg[f Hei ght - 1][deth 1] +;
}

A W ndow object's frame uses its top and bottom rows and leftmost and rightmost
columns. The content area, e.g. the map in the dungeon game, cannot use these

Implementation: Windows classes 1047

perimeter points. (The input file for the map could define the perimeter as all
"wall".)
The accessfunctionslike X(), Y() , Hei ght () etcareadl trivial, e.g.:

int Wndow. : X() const
{

}

return fX;

The functions ShowAl | () and ShowCont ent () are similar. They have loops
take characters from the current image and send the to the WindowRep object for
display. The only difference between the functions is in the loop limits; function
ShowCont ent () does not display the periphery of aframed window.

voi d Wndow : ShowAl | () const

{
for(int row=l;row<=fHeight; rowt++)
for(int col = 1; col <= fWdth; col ++)
W ndowRep: : | nst ance() - >
Put Char act er (
fQurrenting[row 1] [col -1],
f X+col , fY+row);
}

Numberltem and EditText

The only complications in class Nunmber I t eminvolve making certain that the
numeric value output does not overlap with the label. The constructor checks the
length of the label given and essentially discardsit if display of the label would use
too much of the width of the Nuber I t em

Nurber [tem : Nunberlten(int x, int y, int width, char *|abel,
long initval) : Wndow(x, y, width, 3)

{
fval = initval;
f Label Wdth = 0;
int s = strlen(label);
if((s>0) & (s < (width-5)))
Set Label (s, |abel);
Pr epar eCont ent () ;
Showval ue() ;
}

(Note how arguments are passed to the base class constructor.)

Function Set Label () copiesthe label into the left portion of the background
image. Function Set Val () simply changes the f Val data member then calls
Showval ue() .

void Nunberltem: SetLabel (int s, char * |)

f Label Wdth = s;

Inheritance and Polymorphism 1048

}

for(int i=0; i<s; i++)
fBkgd[1] [i +1] = I[i];

Function Showval ue() starts by clearing the area used for number display. A
loop is then used to generate the sequence of characters needed, these fill in the
display area starting from the right. Finally, asignisadded. (If the number istoo
large to fit into the available display area, a set of hash marks are displayed.)

voi d Nunber | tem : Showval ue()

{

}

int left =2 + fLabel Wdth;
int pos = fwdth - 1;
long val = fVval;

for(int i =left; i<= pos; i++)
fQurrenting[1][i-1] =" ';

if(val <0) val = -val;

if(val == 0)

fQurrenting[1] [pos-1] ="'0";
while(val > 0) {

int d=val %10;

val = val / 10;

char ch =d +'0";

fQurrent | mg[1] [pos-1] = ch;

pos--;

if(pos <= left) break;

}
i f (pos<=left)

for(i=left; i<fWdth;i++)

fQurrentimg[1][i-1] ="#";

el se
i f(fVal <0)

fQurrentlmg[1] [pos-1] = "'-";
ShowCont ent () ;

Class Edi t Text adopts a similar approach to dealing with the label, it is not
shown if it would use too large a part of the window's width. The contents of the
buffer have to be cleared as part of the work of the constructor (it is sufficient just
to put anull character in the first element of the buffer array).

EditText::EditText(int x, int y, int width, char *Iabel,

{

short size) : Wndow(x, y, width, 3)

fSize = size;

f Label Wdth = 0;

int s = strlen(label);

if((s >0) & (s < (width-8)))
Set Label (s, |abel);

Pr epar eCont ent () ;

fBuf[O] = '\0';

Showval ue() ;

Implementation: Windows classes 1049

The Set Label () function is essentialy the same as that of class Number It em
The Set Val () function loads the buffer with the given string (taking care not to
overfill the array).

voi d EditText:: SetVal (char* val)

{
int n=strlen(val);
i f(n>254) n = 254;
strncpy(fBuf,val,n);
fBuf[n] ="'\0'";
Showval ue();

}

The Showval ue() function displays the contents of the buffer, or at least that
portion of the buffer that fits into the window width.

voi d Edit Text: : Showval ue()

{
int left =4 + flLabel Wdth;
int i,j;
for(i=left; i<fWdth;i++)
fQurrenting[1][i-1] ="'
for(i=left,j=0; i<fWdth; i++ j++) {
char ch = fBuf[j];
if(ch =="\0") break;
fQurrenting[1][i-1] = ch;
}
ShowCont ent () ;
}

Function Get | nput () positions the cursor at the start of the data entry field
then loops accepting input characters (obtained via the W ndowRep object). The
loop terminates when the required number of characters has been obtained, or when
acharacter like a space or tab is entered.

char EditText:: Getlnput()
{
int left = 4 + fLabel Wdt h;
fEntry = O;
Showval ue();
W ndowRep: : | nst ance() - >MoveQur sor (f X+l eft, fY+2);
char ch = WndowRep: : | nst ance() - >Get Char () ;
whi |l e(i sal nunm(ch)) {
fBuf [fEntry] = ch;

fEntry++;
if(fEntry == fSize) {
ch ="'\0";
br eak;

}
ch = WndowRep: : | nst ance() - >Get Char () ;

}
fBuf [fEntry] = '"\0";
return ch;

Inheritance and Polymorphism 1050

The function does not prevent entry of long strings from overwriting parts of the
screen outside of the supposed window area. Y ou could have a more sophisticated
implementation that "shifted existing text leftwards" so that display showed only
the last few characters entered and text never went beyond the right margin.

29.3.2 class Dungeon

The constructor and destructor for class Dungeon are limited. The constructor will
simply involve initializing pointer data members to NULL, while the destructor
should delete "owned" objects like the main display window.

The Load() function will open the file, then use the auxiliary LoadMap() and
Popul at eDungeon() functionsto read the data.

voi d Dungeon: : Load(const char fil enane[])

ifstreamin(filename, ios::in | ios::nocreate);
if(lin.good()) {
cout << "File does not exist. Quitting." << endl;
exit(1);

}
LoadNap(i n);
Popul at eDungeon(i n);
in.close();

The LoadMap() function essentialy reads "lines" of input. It will have to
discard any characters that don't fit so will be making calls to i gnore(). The
argument END_COF_LI NE_CHAR would normally be "\ n' but some editorsuse'\ r'.

const int END OF LINE CHAR = "\r"';

voi d Dungeon: : LoadMVap(i fstrean& in)
{
in>> fWwdth >> f Hei ght;
in.ignore(100, END CF LINE CHAR);
for(int row=1; row <= fHeight; row+) {
char ch;
for(int col =1; col <= fWdth; col ++) {
in.get(ch);
i f((rows=NAXHEl GHT) && (col <= MAXW DTH))
fDRep[row1] [col -1] = ch;

i n.ignore(100, END CF LINE CHAR);

if(lin.good()) {
cout << "Sorry, problens reading that file.
"Quitting." << endl;
exit(1);

Implementation: class Dungeon 1051

cout << "Dungeon map read CK' << endl;

if((fWdth > MMXWDTH || (fHeight > MAXHEI GHT)) {
cout << "Map too large for w ndow, only using "
"part of map." << endl;
fWdth = (fWdth < MMXWDTH ? fWdth : MAXWDTH
fHeight = (fHeight < MAXHEI GHT) ?
fHei ght : NMAXHEl GHT;
}

}

The Dungeonl t em objects can appear in any order in the input file, but each
starts with a character symbol followed by some integer data. The

Popul at eDungeon() function can use the character symbol to control aswi t ch()
statement in which objects of appropriate kinds are created and added to lists.

voi d Dungeon: : Popul at eDungeon(i f strean& i n)

{
char ch;
Monster *m
in >> ch;
while(ch I'="q") {
swi tch(ch) {
case 'h':
if(fPlayer !'= NUL) {
cout << "Limt of one player "
"violated." << endl;
exit(1);
el se {
fPlayer = new Pl ayer(this);
f Pl ayer - >Read(in);
br eak;
case 'w:
m = new Wanderer (this);
m >Read(in);
f I nhabi t ant s. Append(m) ;
br eak;
case 'g':
m = new Chost (this);
m >Read(in);
f I nhabi t ant s. Append(n);
br eak;
case 'p':
m = new Patrol (this);
m >Read(i n);
f I nhabi t ant s. Append(m) ;
br eak;
case '*':
case '=':
case '$':

Col | ectabl e *prop = new Col | ectabl e(this, ch);
pr op- >Read(i n) ;
f Pr ops. Append(prop) ;

Create Player object

Create different
specialized Monster
objects

Create Collectable
items

Inheritance and Polymorphism 1052

br eak;
defaul t:
cout << "Unrecogni zable data in input file."
<< endl ;
cout << "Synbol " << ch << endl;

exit(1);
in >> ch;

}

i f(fPlayer == NULL) {
cout << "No player! No Gane!" << endl;
exit(1);

}

if(fProps.Length() == 0) {
cout << "No itenms to collect! No Gane!" << endl;
exit(1);

cout << "Dungeon popul ation read" << endl;

}

The function verifies the requirements for exactly one Pl ayer object and at least
one Col | ect abl e item.

The Run() function starts by creating the main map window and arranging for
al objects to be drawn. The main whi | e() loop shows the Col | ect abl e items,
getsthe Pl ayer move, then letsthe Monst er s have thelr turn.

i nt Dungeon: : Run()
{
O eat eWndow() ;
int n = flnhabitants.Length();
for(int i=1; i <=n; i++) {
Monster *m= (Mnster*) flnhabitants. Nh(i);
m>Draw() ;

}
f Pl ayer->Draw();
f Pl ayer - >Showst at us() ;
W ndowRep: : | nst ance() - >Del ay(1);

whil e(fPlayer->Alive()) {
for(int j=1; j <= fProps.Length(); j++ {
Col l ectabl e *pi =
(Col l ectabl e*) fProps.Neh(j);

pi - >Draw() ;
}

f Pl ayer->Run();
i f(fProps.Length() == 0)
br eak;

int n = flnhabitants.Length();
for(i=1, i<=n; i++) {
Monster *m = (Monster*)
flnhabitants. NN h(i);
m >Run() ;

Implementation: class Dungeon 1053

}

return fPl ayer->Aive();

}

(Note the need for type casts when getting members of the collections; the function
Dynami cArray:: Nth() returnsavoid* pointer.)

The Or eat eW ndow() function creates aW ndow object and sets its background
from the map.

voi d Dungeon: : O eat eW ndow()

f DWndow = new Wndow(1, 1, fWdth, fHeight);
for(int row= 1; row <= fHeight; row+)
for(int col =1; col <= fWdth; col ++)
f DW ndow >Set Bkgd(col , row,
fDRep[row 1] [col -1]);
f DW ndow >Pr epar eCont ent () ;
f DW ndow >ShowAl | () ;

}
Class Dungeon has several trivial access functions:

i nt Dungeon: : Accessi bl e(Pt p) const

} return (" * == fDRep[p. Y()-1][p. X()-1]);

W ndow *Dungeon: : Di spl ay() { return fDWndow, }
Pl ayer *Dungeon::Human() { return fPl ayer; }

i nt Dungeon: : Val i dPoi nt (Pt p) const

{
int x =p.X);
inty=p.Y();
/1l check x range
if((x <=1) || (x > fWdth)) return 0;
/1 check y range
if((y <=1) || (y > fHeight)) return 0;
/1l and accessibility
return Accessi bl e(p);
}

There are similar pairs of functions M at_Pt() and Pl _at _Pt (), and
RenoveM) and RenoveProp() that work with thef | nhabi t ant s list of Monst er s
and the f Pr ops list of Col | ect abl es. Examples of theimplementations are

Col | ectabl e *Dungeon: : Pl _at_Pt(Pt p)
{
int n =fProps.Length();
for(int i=1; i<=n; i++) {
Col l ectable *pi = (Collectable*) fProps. Nh(i);
Pt w = pi->Were();
i f(w Equal s(p)) return pi;

Inheritance and Polymorphism 1054

}
return NULL;
}

voi d Dungeon: : RenoveM Monst er *n)

f1 nhabi t ant s. Renove(nj;
m >Er ase() ;
delete m

}

Thed ear Li neCf Si ght () function checks the coordinates of the Pt arguments
to determine which of the various specialized auxiliary functions should be called:

int Dungeon::dearLinedSight(Pt pl, Pt p2, int max, Pt path[])

{
i f(pl. Equal s(p2)) return O;
if(!ValidPoint(pl)) return O;
i f(!ValidPoint(p2)) return O;
if(pl.Y() == p2.Y())
return dearRow(pl, p2, nax, path);
el se
if(pl. X() == p2.X())
return d ear Col um(pl, p2, nax, path);
int dx = pl. X() - p2.X();
int dy = pl.Y() - p2.Y();
i f (abs(dx) >= abs(dy))
return dearSem Hori zontal (pl, p2, max, path);
el se
return dearSem Vertical (pl, p2, max, path);
}

The explanation of the algorithm given in the previous section dealt with cases
involving rows or oblique lines that were more or less horizontal. The
implementations given here illustrate the cases where the line is vertical or close to

vertical.
int Dungeon::d earColum(Pt pl, Pt p2, int nax, Pt path[])
{
int delta = (pl.Y() <p2.Y()) ?1: -1;
int x = pl. X();
int y=plY();
for(int i =0; i <mx;, i++) {
y += delta;
Pt p(x,y);
i f(!Accessible(p)) return O;
path[i] = p;

i f(p.Equal s(p2)) return 1;
}

return O;

Implementation: class Dungeon 1055

int Dungeon::d earSem Vertical (Pt pl, Pt p2, int nax,

{

Pt path[])

int ychange = p2.Y() - pl.Y();
i f (abs(ychange) > nax) return O;
int xchange = p2. X() - pl. X();

int deltax = (xchange >0) ? 1 : -1;
int deltay = (ychange >0) ? 1 : -1,

float slope = ((float)xchange)/((float)ychange);
float error = sl ope*deltay;

int x = pl. X();
int y =plY();
for(int i=0;i<abs(ychange);i++) {
if(error*deltax>0.5) {
X += del tax;
error -= deltax;

error += sl ope*deltay;

y += del tay;

Pt p(x, y);

i f(!Accessible(p)) return 0O;
path[i] = p;

i f(p. Equal s(p2)) return 1,
}

return O;

29.3.3 Dungeonltems

Dungeonltem

Class Dungeonl t emimplements a few basic behaviours shared by all variants. Its
constructor sets the symbol used to represent the item and sets the link to the
Dungeon object. The body of the destructor is empty as there are no separate
resources defined in the Dungeonl t emclass.

Dungeonl t em : Dungeonl t en{ Dungeon *d, char syn)

}

f Sym = sym
fD = d;

Dungeonl tem : ~Dungeonl ten() { }

The Erase() andDraw() functions operate on the Dungeon object's main map
Window. The call fd->Di splay() returnsaWw ndow* pointer. The W ndow
referenced by this pointer is asked to perform the required operation.

voi d Dungeonltem : Erase()

{

Inheritance and Polymorphism 1056

fD->D spl ay()->0 ear (fPos. X(), fPos.Y());
}

voi d Dungeonltem : Draw()

fD->D splay()->Set(fPos. X(), fPos.Y(), fSym;
}

All bungeonl t emobjects must read their coordinates, and the data given as
input must be checked. These operations are defined in Dungeonl t em : Read() .

voi d Dungeonltem : Read(ifstrean& in)

t
int x, vy;
in>>x >vy;
if(lin.good()) {
cout << "Probl ens readi ng coordi nate data" << endl;
exit(1);
}
if(!fD>ValidPoint(Pt(x,y))) {
cout << "lInvalid coords, out of range or"
"al ready occupi ed" << endl;
cout << "(" << x <«<", " &<y <«<")" << endl;
exit(1);
}
fPos. Set Pt (x,Y);
}
Collectable

The constructor for class Col | ect abl e passesthe Dungeon* pointer and char
arguments to the Dungeonl t emconstructor:

Col | ectabl e: : Col | ect abl e(Dungeon* d, char sym) :
Dungeonl ten(d, sym

fHval = fwal = fMal = 0;
}

Class Col | ect abl e'saccessfunctions (Wt h() etc) simply return the values of
the required data members. Its Read() function extendsDungeonltem : Read() .
Notethe call to Dungeonl t em : Read() at the start; this gets the coordinate data.
Then the extrainteger parameters can be input.

void Col | ectabl e:: Read(ifstrean& in)

{
Invoke inherited Dungeonl tem : Read(in);
Read function in>> fHal >> fWwal >> fMal;
if(!'in.good()) {
cout << "Problemreading a property" << endl;
exit(1);

Implementation: Dungeonltems 1057

Activeltem

The constructor for class Act i vel t emagain just initializes some data members to
zero after passing the given arguments to the Dungeonl t emconstructor. Function
Activeltem : Read() issimilartoCol | ectabl e:: Read() inthatitinvokesthe
Dungeonl t em : Read() function then reads the extra data values (f Heal t h and
f St rengt h).

There are acouple of trivia functions(Get Hit () { fHealth -= damage; };
andAlive() { return fHealth > 0; }). TheMove() operationinvolves calls
to the (inherited) Er ase() and Draw() functions. Function St ep() worksout the
X, y offset (+1, 0, or -1) coordinates of a chosen neighboring Pt .

voi d Activeltem: Move(const Pté& newpoi nt)

{
Erase();
f Pos. Set Pt (newpoi nt) ;
Draw();
Pt Activeltem: Step(int dir)
{
Pt p;
switch(dir) {
case 1. p.SetPt(-1,1); br eak;
case 2: p.SetPt(0,1); br eak;
case 3. p.SetPt(1,1); br eak;
case 4. p.SetPt(-1,0); br eak;
case 6: p.SetPt(1,0); br eak;
case 7. p.SetPt(-1,-1); break;
case 8. p.SetPt(0,-1); br eak;
case 9: p.SetPt(1,-1); br eak;
}
return p;
}
Player

The constructor for class Pl ayer passesits arguments to its parents constructor and
then sets its data members to O (NULL for the pointer members). The Read()
function is similar to Col | ect abl e: : Read() ; it invokes the inherited Dungeon
I'tem : Read() and then getsthe extra"manna' parameter.

Thefirst call to Showst at us() createsthe Nunber | t emand Edi t Text windows
and arranges for their display. Subsequent calls update the contents of the
Nunber | t emwindows if there have been changes (the call to Set val () resultsin
execution of the Nunber | t emobject's ShowCont ent s() function so resulting in
changes to the display).

voi d Pl ayer: : Showst at us()

if(FWnH == NULL) {

Inheritance and Polymorphism 1058

fWnH = new Nunberlten(2, 20, 20, "Health", fHealth);
fWnM = new Nunberlten(30,20, 20, "Manna ", fMnna);
fWnW= new Nunberlten(58,20, 20, "Walth", fWalth);
fWnE = new EditText (2, 22, 20, "Direction", 1);
fWnH >ShovwAl | ();

anM>ShowNI(),

f WnW >ShowAl | ();

f WnE->ShowAl | ();

el se {
if(fHealth !'= fWnH >GetVal ()) fWnH >SetVal (fHeal th);
if(fManna !'= fWnM>Cet Val ()) fWnM>SetVal (f Manna);
if(fWealth !'= fWnW>GetVal ()) fWnW>SetVal (fWalth);

}
}
The Run() function involves getting and performing a command followed by
update of state and display.
void P ayer:: Run()
{
char ch = Get User Command() ;
i f(isdigit(ch)) PerfornMvenent Comrand(ch);
el se Performvagi cCommand(ch);
UpdateState();
Showst at us() ;
}

void P ayer:: Updat eSt at e()

f MoveCount ++;

if(0 == (f MoveCount % 3)) fHealth++;

if(0 == (fMoveCount %7)) fManna++;
}

The function Pef or mvbvenent Command() first identifies the neighboring point.
Thereis then an interaction with the Dungeon object to determine whether thereisa
Col | ect abl e at that point (if so, it gets taken). A similar interaction determines
whether thereisaMonst er (if so, it gets attacked, after which areturn is made from
this function). If the neighboring point is not occupied by a Monst er , the Pl ayer
object moves to that location.

voi d P ayer: : Perf or mvbvenent Command(char ch)

{
int x = fPos. X();
int y =fPos.Y();
Pt p-Step(ch- 0');
int newx = p. X();
int new = p. Y();
Col lectable *pi = fD>Pl_at_Pt (Pt (newx, newy));
if(pi !'= NULL)
Take(pi);

Monster *m= fD->Mat_Pt (Pt (newx, newy));

Implementation: Dungeonltems 1059

}

if(m!= NALL) {
Attack(n;
return;

}
TryMove(x + p.X(), y + p.Y());

The auxiliary functions, Take(), Attack(), and TryMove() areal simple.
Function Take() updatesthePl ayer objects health and related attributes with data
values from the Col | ect abl e item, and then arranges for the Dungeon to dispose of
that item. Function Att ack() reducestheMonst er object's hedlth (viaacal toits
Get Hi t () function) and, if appropriate, arranges for the Dungeon object to dispose
of the Monst er . Function Tr yMove() vaidates and then performs the appropriate
movement.

Thef

unction Get User Conmand() arranges for the Edi t Text window to input

some text and then inspects the first character of the text entered.

char

}

Thef

Pl ayer : : Get User Conmmand()
fWnE->Get | nput () ;

char *str = fWnE->Get Val ();
return *str;

unction Per f or mvagi cCommand() identifies the axis for the magic bolt.

There is then a loop in which damage is inflicted (at a reducing rate) on any
Monst er objects found along a sequence of pointsin the given direction:

voi d

case
case
case

case '

case

case '
case '

case
def al

M ayer : : Per f or mvagi cCommand(char ch)
int dx, dy;
switch (ch) {
"q': dx = -1; dy = -1; break;
'w: dx = 0; dy = -1; break;
'e': dx =1; dy = -1; break;
a': dx = -1; dy = 0; break;
'd: dx = 1; dy = 0; break;
z': dx = -1; dy = 1; break;
x': dx =0; dy = 1; break;
'c': dx = 1; dy = 1; break;
ult:
return;
}

int x = fPos. X();
int y =fPos.Y();

int power = 8;

f Manna - = power;

if(fManna < 0) {
fHeal th += 2*f Manna;
f Manna = O;

}
whi | e(power > 0) {
X += dx;

Inheritance and Polymorphism 1060

y += dy;
if(!'fD->ValidPoint(Pt(x,y))) return;
Monster* m= fD->Mat_Pt(Pt(x,y));
if(m!= NALL) {
m >CGet H t (powver) ;
if(!m>Aive())
f D >RermoveM) ;

power /= 2;

}

Monster

The constructor and destructor functions of class Monst er both have empty bodies
for there is no work to be done; the constructor passes its arguments back to the
constructor of its parent class (Act i vel t en):

Monst er: : Monst er (Dungeon *d, char syn) : Activelten(d, syn)
{
}

Function Monst er : : Run() wasdefined earlier. The default implementations of
the auxiliary functions are:

int Monster:: CanAttack()

{
Pl ayer *p = fD->Human() ;
Pt target = p->Were();
return fPos. Adj acent (target);
}
void Monster:: Attack()
{

Pl ayer *p = fD >Hunan();
p->GetH t (f Strength);
int Mnster::CanDetect() { return O; }

voi d Monster:: Advance() { }

Ghost

TheGhost : : CanDet ect () functionusesthePt : : Di st ance() member function
to determine the distance to the Player (this function just takes the normal
Euclidean distance between two points, rounded up to the next integral value).

int Chost::CanDetect()

{
Pl ayer *p = fD >Human() ;

Implementation: Dungeonltems 1061

int range = fPos. D stance(p->Were());
return (range < 7);

}

The Advance() function determines the change in x, y coords that will bring
the Ghost closer tothe Pl ayer.

voi d Ghost: : Advance()

{
P ayer *p = fD >Hunan();
Pt pl = p->Were();
int dx, dy;
dx = dy = 0;
if(pl. X() > fPos.X()) dx
el se
if(pl.X() < fPos. X()) dx
if(pl.Y() > fPos.Y()) dy
el se
if(pl.Y() < fPos.Y()) dy

I
=

(T
'
=

I
'
=

Move(Pt (fPos. X() + dx, fPos.Y() + dy));

Wanderer

TheWander er : : CanDet ect () function usesthe Dungeon: : d ear Li neC! Si ght ()
member function to determine whether the Pl ayer object isvisible. This function
call asofillsinthe array f Pat h with the points that will have to be crossed.

i nt Wander er: : CanDet ect ()

{
M ayer *p = fD >Hunan();
return
f D >0 ear Li ner Si ght (f Pos, p->Were(), 10, fPath);
}

The Advance() function moves one step along the path:

voi d Wander er : : Advance()

Move(f Pat h[0]);
}

The Nor mal Move() function tries moving in the same direction as before.
Directions are held by storing the delta-x and delta-y valuesin f Last X and f Last Y
data members (initialized to zero in the constructor). 1f movement in that general
direction is blocked, a new direction is picked randomly.

voi d Wander er : : Nor nal Move()
{
int x
inty

fPos. X();
fPos. Y();

Inheritance and Polymorphism 1062

Movement in same
direction

Movement in similar
direction

Pick new direction at
random

/1 Try to keep going in nmuch the sane direction as last time
if((fLastX!=0) || (fLastY !=10)) {
int newx = x + flLastX;
int newy =y + flLastY;
i f (fD>Accessi bl e(Pt (newx, newy))) {
Move(Pt (newx, newy)) ;
return;

}

el se

i f(fD >Accessible(Pt(new,y))) {
Move(Pt (newx,y)); flLastY = 0;
return;

}

el se

i f(fD >Accessible(Pt(x, newy))) {
Move(Pt (x, newy)); fLastX= 0;
return; }

int dir =rand();

dir =dir %9;

dir++;

Pt p=Step(dir);

X +=p. X();

y +=p.Y();

i f(fD>Accessible(Pt(x,y))) {
fLast X = p. X();
fLastY = p. Y();
Move(Pt(x,y));
}

}
Patrol

The patrol route has to be read, consequently the inherited Read() function must
be extended. There are several possible errors in route definitions, so Pat r ol : :
Read() involves many checks:

void Patrol:: Read(ifstrean& in)
{
Monst er: : Read(in);
f Rout e[0] = fPos;
fNdx = 0;
flelta = 1;
in >> fRout eLen;
for(int i=1; i<= fRoutelLen; i++) {
int x, vy;
in>>x >>vy;
Pt p(x, vy);
if(!'fD>ValidPoint(p)) {
cout << "Bad data in patrol route" << endl;
cout << "(" << x <", " &<y <<")" <<
endl ;
exit(1);

Implementation: Dungeonltems 1063

if(!p. Adjacent(fRoute[i-1])) {
cout << "Non adjacent points in patrol"
"route" << endl;
cout << "(" << x <", " <Ky <«<")" << endl;
exit(1);

fRoute[i] = p;

if(lin.good()) {
cout << "Problenms reading patrol route" << endl;
exit(1);
}
}

The Nor mal Move() function causes a Pat r ol object to move up or down its
route:

voi d Patrol :: Nor nmal Move()

if((fNdx == 0) & (fDelta == -1)) { Reverse direction at
flelta = 1; start
return;
}
if((fNdx == fRouteLen) && (fDelta == 1)) { Reverse direction at
fDelta = -1; end
return;
}
fNdx += fDelta; Move one step along
Move(f Rout e[f Ndx]) ; route

}

TheCanbDet ect () functionisidentical to Wander er : : CanDect (). However,
instead of advancing one step along the path to the Pl ayer, aPatrol firesa
projectile that moves along the complete path. When the projectile hits, it causes a
small amount of damage:

voi d Patrol :: Advance()

{
P ayer *p = fD >Hunan();
Pt target = p->Were();
Pt arrow = fPath[0];

int i =1;
whi | e(!arrow Equal s(target)) {
fD->Display()->Set(arrow X(), arrow Y(), ':');

W ndowRep: : I nst ance() - >Del ay(1);
fD->Display()->Qear(arrow X(), arrow Y());
arrow = fPath[i];

i ++;

}
p->Get H t (2);

EXERCISES

1 Complete and run the dungeon game program.
2 Thisoneisonly for users of Borland's system.

Why should the monsters wait while the user thinks? If they know what they want to do,
they should be able to continue!

The current program requires user input in each cycle of the game. If thereis no input,
the program stops and waits. The game is much more interesting if this wait is limited.
If the user doesn't type any command within a second or so, the monsters should get
their chance to run anyway.

Thisis not too hard to arrange.

First, the main while() loop in Dungeon::Run() should have a call WindowRep::
Instance()->Delay(1). Thisresultsinal second pausein each cycle.

The Player::Run() function only gets called if there have been some keystrokes. If there
are no keystrokes waiting to be processed, the Dungeon::Run() function skips to the loop
that lets each monster have a chance to run.

All that is required is a system function, in the "console" library package, that allows a
program to check whether input data are available (without "blocking" like a normal read
function). The Borland conio library includes such a function.

Using the on-line help system in the Borland environment, and other printed
documentation, find how to check for input. Use this function in a reorganized version
of the dungeon program.

(You can achieve the same result in the Symantec system but only by utilising
speciaized system calls to the "Toolbox" component of the Macintosh operating system.
Itisall alittle obscure and clumsy.)

3 Add multiple levels to the dungeon.

(There are various ways that this might be done. The easiest is probably to define a new
class DungeonLevel . The Dungeon object owns the main window, the Player, and alist
of DungeonLevel objects. Each DungeonLevel object owns amap, alist of collectables,
and alist of monsters. You will need some way of alowing a user to go up or down
levels. When you change level, the new DungeonLevel resets the background map in
the main window and arranges for al datato be redrawn.)

4 Add more challenging Monsters and "traps’.

(Use your own imagination.)

