30 Reusable designs

The last chapter illustrated some simple uses of inheritance and polymorphism. It
is these programming techniques that distinguish "Object Oriented Programming"
from the "object based" (or abstract data type) style that was the main focus of Part
IV of this text. These Object Oriented (OO) techniques originated in work on
computer simulation of real world systems. The "dungeon game" is a simulation
(of an unreal world) and so OO programming techniques are well suited to its
implementation.

Although OO programming techniques were originally viewed as primarily
applicable to simulations, they have over the last ten years become much more
widely utilised. This greater use is largely a consequence of the increased
opportunity for "reuse" that OO techniques bring to application devel opment.

Reuse, whether of functions, components, or partial designs, always enhances
productivity. If you can exploit reusable parts to handle "standard" aspects of an
application, you can focus your efforts on the unique aspects of the new program.
Y ou will produce a better program, and you will get it working sooner than if you
have to implement everything from scratch.

Approaches to Reuse

Reusable algorithms

If you are using the "top down functional decomposition” strategy that was
illustrated in Part 111, you are limited to reusing standard algorithms; the code in the
function libraries implements these standard algorithms. Reusing algorithms is
better than starting from scratch. These days, nobody writes their own si n()
function, they use the version in the maths library. Computer science students are
often made to rewrite the standard sorting and searching functions, but
professionals use gsort () andbsear ch() (standardized sort and binary search
functionsthat are available in almost every development environment). Asnoted in
Chapter 13, over the years huge libraries of functions have been built up,
particularly in science and engineering, to perform standard cal cul ations.

30

Reuse with functions

1066

Reusable designs

Function librariesfor
interactive programs

Limitations of
function libraries

Reusable classes and
object based design

Can we reuse more?

Similar patterns of
interactionsin
different programs

Reusable functions are helpful in the case where al you need to do is calculate
something. But if you want to build an interactive program with windows and
menus etc, you soon discover problems.

There are function libraries that are intended to be used when building such
programs. Multi-volume reference manuals exist to describe them. For example,
the Xlib reference manuals define the functions you can used to work with the X-
windows interface on Unix. The series "Inside Macintosh" describes how to create
windows and menus for the Mac. OS. These books include the declarations of
literally hundreds of functions, and dozens of data structures. But these function
libraries are very difficult to use.

The functions defined in these large libraries are disjoint, scattered,
inconsistently named. Thereis no coherence. It is amost impossible to get a clear
picture of how to organize a program. Instead you are faced with an arbitrary
collection of functions, and the declarations of some types of structures that you
have to have as globals. Programs built using just these function libraries acquire
considerable entropy (chaotic structure). Each function call takes you off to some
other arbitrary piece of code that rapes and pillages the global data structures.

Reusable components

The "object based" techniques presented in Part IV give you a better handle on
reuse. Class libraries and object based programs alow you to reuse abstract data
types. The functions and the data that they operate on are now grouped. The data
members of instances of classes are protected; the compiler helps make sure that
data are only accessed viathe appropriate functions.

Program design is different. Y ou start by identifying the individual objects that
are responsible for particular parts of the overall data. You define their classes.
Often, you will find that you can reuse standard classes, like the collection classes
in Chapters 21 and 24. Aswell as providing working code, these classes give you a
way of structuring the overall program. The program becomes a sequence of
interactions between objects that are instances of standard and application specific
classes.

Essentially, the unit of reuse has become larger. Programs are built at least in
part from reusable components. These reusable components include collection
classes and, on Unix, various forms of "widget". (A widget is essentially a class
that defines a"user interface”" component like amenu or an alert box.)

Reusable patterns of object interactions and program designs

When inheritance was introduced in Chapter 23, it was shown that this was a way
of representing and exploiting similarities. Many application programs have
substantial similaritiesin their behaviour; such similarities lead to reusable designs.

You launch a program. Once it starts, it presents you with some form of "file
dialog" that allows you to create a new file, or open an existing file. The fileis
opened. One or more windows are created. If the file existed previously, some

Introduction 1067

portions of its current contents get displayed in these new windows. The system's
menu bar gets changed, or additional menus or tool bars appear associated with the
new window(s). You use the mouse pointer and buttons to select a menu option
and a new "tools palette" window appears aongside the document window. You
select atool from the palette. Y ou use the tool to add data to the document.

The behaviour is exactly the same. It doesn't matter whether it is a drawing
program or spreadsheet. The same patterns of behaviour are repeated.

Object oriented programming techniques provide a way of capturing common
patterns of behaviour. These patterns involve standardized interactions between
instances of different classes.

Capturing standard patterns of interaction in code

The "opening seguence for a program" as just described would involve interactions
between an "application” object, a "document” object, several different "window"
objects, maybe a"menu manager" object and severa others.

An "opening sequence” pattern could specify that the "application” object
handle theinitial File/New or File/Open request. It should handle such arequest by
creating a document object and giving it the filename as an argument to an
"OpenNew()" or "OpenOld()" member function. In "OpenOld()", the document
object would have to create some objects to store the data from the file and arrange
to read the existing data. Once the "open" step is complete, the application object
would tell the new document object to create its display structure. This step would
result in the creation of various windows.

Much is standard. The standard interactions among the objects can be defined
in code:

Appl i cati on: : Handl eCommand(conmmand#, ..)
swi t ch(command#)

newConmand:
doc = this->DoMakeDocunent () ;
doc->penNew() ;
doc->Creat eDi spl ay() ;
br eak;

openCommand:
filename = this->PoseFileb al og();
doc = this->DoMakeDocunent () ;
doc->pend d(fi |l enarre, .);
doc->Creat eDi spl ay() ;
br eak;

Docurrent : : pend d(fil enane, .)
t hi s- >DoMakeDat aSt r uct ur es()
thi s->DoRead(fil enane, .)
Docurrent : : DoVakeDat aStruct ures() ?

Docunent : : DoRead(..) ?

Reusable patterns of
interaction?

Default
implementation
defined

Default
implementation
defined

Pure abstract
functions,
implementation is
application specific

1068

Reusable designs

Utilize class
inheritance

An abstract class
Document

Possible specialized
subclasses

Building complete
programs

Reusing a design

Of course, each different program does things differently. The spreadsheet and
drawing programs have to create different kinds of data structure and then have to
read differently formatted files of data.

Thisis where inheritance comesin.

The situation is very much like that in the dungeon game with class Monst er
and its subclasses. The Dungeon code was written in terms of interactions between
the Dungeon object and instances of class Monst er . But there were never any
Monst er objects. Class Monst er was an abstraction that defined a few standard
behaviours, some with default implementations and some with no implementation.
When the program ran, there were instances of specialized subclasses of class
Monst er ; subclasses that owned their own unique data and provided effective
implementations of the behaviours declared in class Monst er .

Now, class Docunent isan abstraction. It defines something that can be asked
to open new or old files, create displays and so forth. All kinds of document
exhibit such behaviours; each different kind does things slightly differently.

Specialized subclasses of class Docunment can be defined. A Spr eadSheet Doc
would be a document that owns an array of Cel | objects where each Cel | is
something that holds either a text label, or a number, or aformula. A Dr awDoc
would be a document that owns a list of Pi ctureEl ements. Each of these
specialized subclasses would provide effective definitions for the empty
Docunent : : DoRead() and Docurrent : : DoMakeDat aSt ruct ures() functions (and
for many other functions as welll).

A particular program won't create different kinds of document! Instead, you
build the "spreadsheet" program or the "draw" program.

For the "draw" program, you would start by creating class Dr awApp a minor
specidization of class Appl i cati on. Theonly thing that Dr awApp does differently
is that its version of the DovakeDocurnent () function creates a Dr awDoc. A
Dr awDoc is pretty much like an ordinary Docunent , but it has an extraLi st data
member (to storeits Pi ct ur eEl enrent s) and, as already noted, it provides effective
implementations of functions like DoRead() .

Such a program gets built with much of its basic structure defined in terms of
classes that are specializations of standardized, reusable classes taken from a
library. These reusable classes are the things like Appl i cat i on, Docurent , and
W ndow. Some of their member functions are defined with the necessary code in
the implementation files. Other member functions may have empty (do nothing)
implementations. Still other member functions are pure virtual functions that must
be given definitions in subclasses.

Reusing a design

A program built in this fashion illustrates reuse on a new scale. It isn't just
individual components that are being reused. Reuse now extends to design.

Design ideas are embedded in the code of those functions that are defined in the
library. Thus, the "standard opening sequence” pattern implements a particular
design idea as to how programs should start up and allow their users to select the
datafiles that are to be manipulated. Another defined pattern of interactions might

Introduction 1069

specify how an Appl i cat i on object was to handle a "Quit" command (it should
first give any open document a chance to save changes, tell the document to close
its windows and get rid of data, delete the document, close any application
windows e.g. floating tool palettes, and finally quit).

The code given for the standard classes will embody a particular "look and feel"
as might be required for all applications running on a particular type of machine.
The specifications for a new application would normally require compliance with
"standard look and feel". If you had to implement a program from scratch, you
would have to sort out things like the "standard opening sequence" and "standard
quit" behaviours and implement al the code. If you have a class library that
embodies the design, you simply inherit it and get on with the new application
specific coding.

It is increasingly common for commercial products to be built using
standardized framework classlibraries. A "framework class library" hasthe classes
that provide the basic structure, the framework, for al applications that comply
with a standardized design. The Integrated Development Environment that you
have on your personal computers includes such aclasslibrary. You will eventually
get to use that library.

A simplified example framework

The real framework class libraries are relatively complex. The rest of this chapter
illustrates a simplified framework that can serve as an introduction.

While real frameworks allow for many different kinds of data and document;
this "RecordFile" framework is much more restricted. Real frameworks allow for
multiple documents and windows; here you make do with just one of each. Real
frameworks alow you to change the focus of activity arbitrarily so one moment
you can be entering data, the next moment you can be printing some graphic
representation of the data. Here, the flow of control is much more predefined. All
these restrictions are needed to make the example feasible. (The restrictions on
flow of control are the greatest simplifying factor.)

30.1 THE RECORDFILE FRAMEWORK: CONCEPTS

The "RecordFile" framework embodies a simple design for any program that
involves updating "records’ in a data file. The "records" could be things like the
customer records in the examplein Chapter 17. It is primarily the records that vary
between different program built using this framework.

Figure 30.1 shows the form of the record used in a program, " StudentMarks",
built using the framework. This program keeps track of students and their marksin
a particular subject. Students' have unique identifier numbers, e.g. the student
number 938654. The data maintained include the student's name and the marks for
assignments and exams. The name is displayed in an editable text field; the marks
are in editable number entry fields. When a mark is changed, the record updates
the student's total mark (which is displayed in a non-editable field.)

Default code
implements the

" standard look and
feel"

Framework class
libraries

Example program
and record

1070 Reusable designs
S S S e e +
| Record identifier 938654 <€«—— Unique record identifier |
| I
| o ot m m o o e o e e e e e oo —a—o— oo + |
| |Student Name Nornman, Harvey <— Text in editable field | |
| e + |
| I
| oo e e e oo oo + o oo e e oo oo +
| | Assignnent 1 (5) 4 | | M dSessi on (15) 11 ||
| e + i +|
| | Assi gnnment 2 (10) 9 | | Exam nati on (50) 0]
| oo e e e oo + o oo e e e oo +
| | Assi gnment 3 (10) 4 | |
| E Y + e mmmmm e e ememaeeenaeaaaa +
| | Assi gnnment 4 (10) 0| | Tot al 28 |
| o e e + o oo e e oo oo +
I I
I .) I
| Number in editable field |
o +

Figure 30.1 A "record" as handled by the "RecordFile Framework".
St%”iﬂgi) ’\(‘geW When the "StudentMarks' program is started, it first presents the user with a
" Open", " Quit"

Changing the
contents of afile

Handling a" New
record" command

Handling " Delete
.. and " View/edit
..." commands

Handling a" Close"
command

Another program,
another record

display

menu offering the choices of "New (file)", "Open (existing file)", or "Quit". If the
user selects "New" or "Open", a "file-dialog" is used to prompt for the name of the
file.

Once a file has been selected, the display changes, see Figure 30.2. It now
displays details of the name of the file currently being processed, details of the
number of records in the file, and a menu offering various options for adding,
deleting, or modifying records.

If the user selects "New record", the program responds with a dialog that
requires entry of a new unique record identifier. The program verifies that the
number entered by the user does not correspond to the identifier of any existing
record. If theidentifier is unique, the program changes to arecord display, like that
shown in Figure 30.1, with all editable fields filled with suitable default values.

If the user picks "Delete record" or "View/edit record", the program's first
response is to present a dialog asking for the identifier number of an existing
record. The number entered is checked; if it does not correspond to an existing
record, no further action is taken.

A "Delete record" command with avalid record identifier results in the deletion
of that record from the collection. A "View/edit" command leads to a record
display showing the current contents of the fields for the record.

After performing any necessary updates, a"Close" command closes the existing
file. The program then again displays its origina menu with the options "New",
"Open", and "Quit".

"Loans' is another program built on the same framework. It isvery similar in
behaviour, but this program keeps track of movies that a customer has on loan from
asmall video store. Itsrecord isshown in Figure 30.3.

RecordFile Framework: Concepts 1071

oo e e e m e e e e e e eieeeeaon +
| CS204 Filename | Nunber of records: 138 |
e m e mm e e e e e meemieeoaaaoo +
==> New record Record count
Del ete record Menu,

(current choice highlighted, changed
_ by tabbing between choices, "enter"
Viewedit record to select processing)

Qose file

(use 'option-space' to switch between choices, '"enter' to select)

e e oo e e e eeoioo- +
| Record identifier 16241 |
I I
| e + e + |
| | Qust oner Nane Jones, David | | Phone 818672 | |
| o oo e e o oo + oo m e e eo oo +
I I
| Movie title Charge $ |
| A + Fomm oo + |
| | Gone Wth The Wnd | | 4 | |
| e + Fomemmm + E - + |
| | Casabl anca | | 4 | | Total 12 | |
| A + Fomm oo + S + |
| |Atizen Kane | | 4 | |
| e + +ommmmm + E - + |
| | | | 0 | | Year 290 | |
| A + [S + S + |
|1 | | 0| |
| A + [S + |
e +

Figure 30.3 Record from another "RecordFile" program.

The overall behaviours of the two programs are identical. It is just the records
that change. With the StudentMarks program, the user is entering marks for
different pieces of work. In the Loans program, the user enters the names of
movies and rental charges.

1072

Reusable designs

Class browser

30.2 THE FRAMEWORK CLASSES: OVERVIEW

The classes used in programs like " StudentMarks' and "Loans" are illustrated in the
class hierarchy diagram shown in Figure 30.4.

Most IDEs can produce hierarchy diagrams, like that in Figure 30.4, from the
code of aprogram. Such a diagram is generated by a "class browser". A specific
class can be selected, using the mouse, and then menu commands (or other
controls) can be used to open the file with the class declaration or that with the
definition of a member function chosen from a displayed list. A class declaration
or function definition can be edited once it has been displayed. As you get more
deeply into the use of classes, you may find the "browser" provides a more
convenient editing environment than the normal editor provided by the IDE.

MRec
M App
M/ Doc

I nput Fi | eDi al og |

MyDoc inherits from
ArrayDoc OR BTDoc

[—

ArrayDoc
BTDoc
Edi t Num
MenuW ndow
Text Di al og

Edi t Text

Recor dW ndow

Nunber Di al og

Document
Nunber | t em
Edi t W ndow

Record

BTCol | ection
Application

ADCol | ection

BTree

W ndowRep
W ndow

BTr eeNode
Col | ection

Dynami cArray
ConmandHandl er

I KeyedSt or abl el tem I—|

Figure 30.4 Class hierarchy for "RecordFile" Framework.

RecordFile Framework: Concepts 1073

Asillustrated in Figure 30.4, a program built using the framework may need to
define as few asthree classes. These are shown in Figure 30.4 as the classes My App,
My Doc, and MyRec; they are specializations of the framework classes Appl i cat i on,
Docunent , and Recor d.

Classes KeyedStorableltem, Record, and MyRec

The class KeyedSt or abl el t emis simply an interface (same as used in Chapter 24
for the BTr ee). A KeyedSt or abl el t emis something that can report its key value
(in this case, the "unique record identifier"), can say how much disk space it
occupies, and can be asked to transfer its permanent data between memory and file.
Its functions are "pure virtual"; they cannot be given any default definition, they
must be defined in subclasses.

Class Recor d adds a number of additional behaviours. Recor d objects have to
be displayed in windows. The exact form of the window depends on the specific
kind of Recor d. So aRecor d had better be able to build its own display window,
dlotting in the various "EditText" and "EditNum" subwindows that it needs. Since
the contents of the "edit" windows can get changed, a Recor d had better be capable
of setting the current value of a data member in the corresponding edit window, and
later reading back a changed value. Some of these additional functions will be pure
virtual, but others may have "partial definitions'. For example, every Recor d
should display its record identifier. The code to add the record identifier to the
display window can be coded as Recor d: : AddFi el dsToW ndow(). A specidized
implementation of AddFi el dsToW ndow(), as defined for a subclass, can invoke
this standard behaviour before adding its own unique "edit" subwindows.

Every specialized program built using the framework will define its own
"MyRec" class. (This should have a more appropriate name such as St udent Rec or
LoanRec.) The"MyRec" classwill define the data members. So for example, class
St udent Rec would specify a character array to hold the student's name and six
integer data members to hold the marks (the total can be recomputed when needed).
A LoanRec might have an array of fixed length strings for the names of the movies
on loan.

The specialized MyRec class usually wouldn't need to add any extra functionality
but it would have to define effective implementations for all those pure virtual
functions, like Di skSi ze() andReadFrony(), declared in class KeyedSt or abl e
I'tem It would also have to provide the rest of the implementation of functions like
Recor d: : AddFi el dsToW ndow() .

Collection classes and "adapters"

Programs work with sets of records: e.g. all the students enrolled in a course, or all
the customers of the video store.

A program that has to work with a small number of records might chose to hold
them all in main memory. It would use a simple collection class like a dynamic
array, list, or (somewhat better) something like a binary tree or AVL tree. It would
work by loading all its records from file into memory when a file was opened,

KeyedStorablel tem

Record

MyRec

1074

Reusable designs

Collection classes

Adapter classesfor
different collections

ADCollection and
BTCollection

CommandHandler
::Run()

letting the user change these records and add new records, and finally write all
records back to thefile.

A program that needed a much larger collection of records would use something
like aBTree to store them.

The actual "collection classes' are just those introduced in earlier chapters. The
examples in this chapter use class Dynani cArr ay and class BTr ee, but any of the
other standard collection classes might be used. An instance of the chosen
collection class will hold the different Recor d objects. Figure 30.4 includes class
Dynami cArray, classBTr ee and its auxiliary class BTr eeNode.

The different collection classes have dightly different interfaces and behaviours.
For example, class BTr ee looks after its own files. A simpler collection based on
an in-memory list or dynamic array will need some additional component to look
after disk transfers. But we don't want such differences pervading the main code of
the framework.

Conseguently, the framework uses some "adapter" classes. Most of the
framework code can work in terms of a "generic" Col | ect i on that responds to
requests like "append record”, "delete record". Specialized "adapter" classes can
convert such requests into the exact forms required by the specific type of
collection classthat is used.

Figure 30.4 shows two adapter classes: ADCol | ect i on and BTCol | ecti on. An
ADCol | ect i on objection contains adynamic array; a BTCol | ect i on ownsaBTr ee
object (i.e. it hasa BTree* datamember, the BTr ee object is created and deleted by
codein BTCol | ecti on). These classes provide implementations of the pure virtual
functionsCol | ecti on: : Append() etc. These implementations call the approp-
riate functions of the actual collection class object that is used to store the data
records. The adapter classes also add any extra functions that may be needed in
association with a specific type of collection.

Command Handlers: Application, Document and their subclasses

Although classes Appl i cat i on and Docunent have quite different specific roles
there are some similarities in their behaviour. In fact, there are sufficient
similarities to make it worth introducing a base class, class CommandHand! er , that
embodies these common behaviours.

A CommandHand! er issomething that has the following two primary behaviours.
Firstly it "runs'. "Running" means that it builds a menu, loops handling commands
entered via the menu, and finally tidies up.

voi d CommandHandl er: : Run()
{

t hi s- >MakeMenu() ;

thl s- >CommandLoop() ;

thi s->Fi ni sh():

RecordFile Framework: Concepts 1075

The second common behaviour is embodied in the CommandLoop() function.
Thiswill involve menu display, and then processing of a selected menu command:

voi d CommandHand| er : : ConmandLoop()
whi | e(! f Fi ni shed) {

i”r'1t c = pose nenu dialog ...
t hi s- >Handl eConmand(c) ;

}
}

A CommandHandl! er object will continue in its command handling loop until aflag,
f Fi ni shed, getsset. Thef Fi ni shed flag of an Appl i cat i on object will get set by
a"Quit" command. A Docunent object finishesin responseto a"Close" command.
As explained in the previous section, the Appl i cat i on object will have amenu
with the choices "New", "Open" and "Quit". Its Handl eCormand() functionis.

voi d Appli cation:: Handl eCommand(i nt crdnum)

swi t ch(cndnum) {

case cNEW
f Doc = this->DoMakeDocunent () ;
fDoc->Dolnitial State();
f Doc- >QpenNew() ;
f Doc->Run() ;
del et e fDoc;
br eak;

case cCPEN
fDoc = this->DoNMakeDocunent ();
fDoc->Dolnitial State();
f Doc->(pend d() ;
f Doc->Run() ;
del et e fDoc;
br eak;

case CQUT:
fFini shed = 1;
br eak;
}

}

The "New" and "Open" commands result in the creation of some kind of Docunent
object (obviously, this will be an instance of a specific concrete subclass of class
Docunent). Once this Docunent object has been created, it will be told to open a
new or an existing file, and then it will be told to "run".

The Docunent object will continue to "run" until it getsa"Close" command. It
will then tidy up. Finally, the Docunent : : Run() function, invoked via f Doc
->Run(), will return. The Appl i cati on object can then delete the Docunent
object, and resume its "run" behaviour by again displaying its menu.

How do different applications vary?

The application objects in the "StudentMarks" program and "Loans' program
differ only in the kind of Document that they create. A "MyApp" specialized

CommandHandler
::CommandL oop()

Application

Application::
HandleComand()

class MyApp

1076

Reusable designs

class Document

Document::Handle
Command()

Document hierarchy

subclass of class Appli cati on need only provide an implementation for the
DoMakeDocurrent () function. Function Appl i cati on: : DoMakeDocunent () will
be "pure virtual", subclasses must provide an implementation. A typical
implementation will be along the following lines:

Docurent *M/App: : DoMakeDocurrent ()

return new MyDoc;

}

A St udent Mar kApp would create a St udent Mar kDoc while aLoanApp would create
aLoanDoc.

Specialized subclasses of class Appl i cati on could change other behaviours
because all the member functions of class Appl i cati on will be virtual. But in
most cases only the DoMakeDocurent () function would need to be defined.

Class Document is substantially more complex than class Appl i cati on. It
shares the same "run" behaviour, as defined by CommandHandl er : : Run() , and has
arather similar Handl eConmand() function:

voi d Docunent : : Handl eCommand(i nt cndnunj)

{
swi t ch(cmdnum) {

case CNEWREC.
DoNewRecor d() ;
br eak;

case cDELREC
DoDel et eRecord() ;
br eak;

case cVI EW
DoVi ewkdi t Recor d() ;
br eak;

case cCLCBE
Dod oseDoc() ;
f Fi ni shed = 1;
br eak;
}

}

Functions like DoNewRecord() are implemented in terms of a pure virtual
DoMakeRecor d() function. ItisthisDocunent : : DoMakeRecor d() function that
gets defined in specialized subclasses so as to create the appropriate kind of Recor d
object (e.g. aSt udent Rec or aLoanRec).

Document objects are responsible for several other activities. They must create
the collection class object that they work with. They must put up dialogs to get file
names and they may need to perform other actions such as getting and checking
record numbers.

While the "adapter" classes can hide most of the differences between different
kind of collection, some things cannot be hidden. As noted in the discussion above
on ADCol | ecti on and BTCol | ect i on, there are substantial differences between
those collections that are loaded entirely into memory from file as a program starts

RecordFile Framework: Concepts 1077

and those, like the BTr ee based collection, where individual records are fetched as
needed.

There has to be a kind of parallel hierarchy between specialized collection
classes and specialized Docunent classes. Thisis shown in Figure 30.4 with the
classes ArrayDoc and BTDoc. An ArrayDoc object creates an instance of an
ADCol | ect i on asitsCol | ect i on object while a BTDoc createsaBTCol | ect i on.
Apart from DoMakeCol | ecti on() (the function that makes the Col | ection
object), these different specialized subclasses of Document differ in their
implementations of the functions that deal with opening and closing of files.

Different programs built using the framework must provide their own
specialized Document classes — class St udent Mar kDoc for the StudentMarks
program or LoanDoc for the Loans program. Figure 30.4 uses class MyDoc to
represent the specialized Docunent subclass needed in a specific program.

Class MyDoc won't be an immediate subclass of class Documnent , instead it will
be based on a specific storage implementation like Ar r ay Doc or BTDoc.

Window hierarchy

As is commonly the case with frameworks, most of the classes are involved with
user interaction, both data display and data input. In Figure 30.4, these classes are
represented by the "Window" hierarchy. (Figure 30.4 also shows class W ndowRep.
This serves much the same role as the W ndowRep class used Chapter 29; it
encapsul ates the low level details of how to communicate with a cursor addressable
screen.)

The basic W ndow class is an extended version of that used in Chapter 29. It
possesses the same behaviours of knowing its size and location on the screen,
maintaining "foreground" and "background" images, setting characters in these
images etc. In addition, these W ndow objects can own "subwindows" and can
arrange that these subwindows get displayed. They can also deal with display of
text strings and numbers at specific locations.

Class Nurber I t emis a minor reworking of the version from Chapter 29. An
instance of class Nurber | t emcan be used to display the current value of avariable
and can be updated as the variable is changed.

The simple Edi t Text class of Chapter 29 has been replaced by an entire
hierarchy. The new base classisEdi t W ndow. Edi t W ndow aobjects are things that
can be told to "handle input". "Handling input" involves accepting and processing
input characters until a'\ n' character is entered.

Class Edi t Numand Edi t Text are simple specializations that can be used for
verified numeric or text string input. An Edi t Num object accepts numeric
characters, using them to determine the (integer) value input. An Edi t Numobject
can be told the range permitted for input data; normally it will verify that the input
value is in this range (substituting the original value if an out of range value is
input). An Edi t Text object accepts printable characters and builds up a string
(with afixed maximum length).

A MenuW ndow allows a user to pick from a displayed list of menu items. A
MenuW ndow is built up by adding "menu items' (these have a string and a numeric

ArrayDoc and BTDoc

MyDoc

class Window

Numberltem

EditWindow

EditNum and
EditText

MenuWindow

1078

Reusable designs

Classes
NumberDialog and
TextDialog

RecordwWindow

identifier). When a MenuW ndow is displayed, it shows its menu items along with
an indicator of "the currently selected item" (starting at the first item in the menu).
A MenuW ndow handles "tab" characters (other characters are ignored). A "tab"
changes the currently selected item. The selection moves cyclically through the list
of items. When "enter" (\ n") is input, the MenuW ndow returns the numeric
identifier associated with the currently selected menu item.

The "dialogs"' display small windows centered in the screen that contain a
prompt and an editable field (an instance of class Edi t Numor class Edi t Text). The
user must enter an acceptable value before the dialog will disappear and the
program continue. Class | nput Fi | eDi al og is a minor specialization of
Text Di al og that can check whether a string given asinput corresponds to the name
of an existing file.

Class Recor dW ndowis adightly more elaborate version of class MenuW ndow.
A Recor dW ndowownsalist of Edi t Numand Edi t Text subwindows. "Tabbing" in
aRecor dW ndow selects successive subwindows for further input.

The "MyRec" class used in a particular program implements a function,
AddFi el dsToW ndow(), that populates a Recor dW ndow with the necessary
Edi t Numand Edi t Text subwindows.

30.3 THE COMMAND HANDLER CLASSES

30.3.1 Class declarations
CommandHandler

The declaration of class CommandHandl er is;

cl ass CommandHandl er {

public:
CommandHandl er (i nt mai nnenui d) ;
virtual ~ComrandHandl er ();

virtual void Run();
pr ot ect ed:
virtual void MakeMenu() = 0;
virtual void GommrandLoop();
virtual void PrepareToRun() { }
virtual void Handl eConmand(int command) = O;
virtual void UpdateState() { }
virtual void Finish() { }

MenuW ndow *f Menu;

i nt f Fi ni shed;

i nt f Menul D,
b

A CommandHandl! er is basically something that owns a MenuW ndow (with an
associated integer identifier). A CommandHandl er can "run". It doesthis by filling
in the menu entries, "preparing to run", executing its command loop, and finally

Command Handler classes: declarations 1079

tidying up. The command loop will involve an update of status, acceptance of a
command number from the MenuW ndow and execution of Handl eCommand() . One
of the commands must set the f Fi ni shed flag.

Some of the functions are declared with "empty" implementations, e.g.
PrepareToRun() . Such functions are fairly common in frameworks. They
represent points where the framework designer has made provision for "unusual"
behaviours that might be necessary in specific programs.

Usually there is nothing that must be done before an Appl i cat i on displaysits
main menu, or after its command handling loop is complete. But it is possible that
a particular program would need special action (e.g. display of a "splash screen”
that identifies the program). So, functions Pr epar eToRun() and Fi ni sh() are
declared and are called from within defined code, like that of function Run() .
These functions are deliberately given empty definitions (i.e. { }) ; thereis no
need to force every program to define actual implementations.

In contrast functions like MakeMenu() and Handl eCommand() are pure virtual.
These have to be given definitions before you have aworking program.

Application

Class Application is a minor specialization of ConmandHandl er. An
Appl i cati onisakind of CommandHandl er that ownsaDocumnent that it createsin
its DoMakeDocunent () function. AnAppl i cati on provides effective implement-
ationsfor the pure virtual functions CormandHand! er : : MakeMenu() and Cormand
Handl er: : Handl eConmand() .

class Application : public CommandHandl er {

public:

Application();

virtual ~Application();
pr ot ect ed:

virtual void MakeMenu();

virtual void Handl eCommand(int command);

vi rtual Docunent * DoMakeDocunent () = O;
Docunent *f Doc;

b

Function DoMakeDocument () isinthe protected section. Inanormal program, itis
only used from within Handl eConmand() and consequently it does not need to be
public. Itisnot made private because it is possible that it might need to be called
from a function defined in some specialized subclass of class Appli cati on.
Because function DoMakeDocunent () is pure virtual, class Appl i cation isstill
abstract. Real programs must define a specialized subclass of class Appl i cat i on.

Document

Class Docunent isasubstantially more elaborate kind of ConmandHand| er ; Figure
30.5isadesign diagram for the class.

Functionswith
empty bodies

Purevirtual
functions

1080

Reusable designs

Document's data
members

All member functions, and

(" cl ass Docunent : N destructt_)rarevirtual.
public CommandHandl er All non-public members are
protected.
char fFileNane[64]; Owned data Functions shown in
| nt fveri fyl nput; bold are pure virtual.
Col l ection *fStore;
Nunber | t em *f NunDi spl ay: Link to collaborator
Docunent () ; N
virtual ~Docunent();
File opening

voi d QpenNew() ;
voi d Qpend d();
void Dolnitial State();
Record *MakeEmptyRecord(); Create record when reading from file.

-

T
voi d PrepareToRun(); Put filename etc. in MenuWindow;
voi d UpdateState(); Update record count in MenuWindow
Col l ection *DoMakeCollection(); Create "Collection" object

voi d MakeMenu(); Build record handling menu
voi d Handl eConmand(i nt conmand) ; Handle commands to manipulate records
void InitializeNewFile(); Defined by subclasses, involve file
voi d OpenO dFile(); handling actions that vary according
voi d DoCl oseDoc(); to type of collection used.
voi d DoNewRecord() ; Prompt for unique record id and create record
voi d DoDel et eRecord(); Prompt for existing record id, then delete record
voi d DoVi ewEdi t Record() ; Prompt for existing record id, arrange display and editng
Record *DoLoadRecor d(!l ong recnun); "Load" a record (i.e.g get from collection.
voi d DoEdi t Record(Record *); Set up call to RecordWindow that handles editing
long GetKey(); Return unique identifier
Record *DoMakeRecord(long recnum Create record with newly allocated unique id.
I'ong Get Exi sti ngRecor dNun() ; Organize dialog to get exising record id.

\. 4

Figure 30.5 Design diagram for class Document.

As shown in Figure 30.5, in addition to the data membersthat it has because it is
a CommandHand! er (e.g. the MenuW ndow) a Docunent has, as owned data members,
the file "base name" (a character array), an integer flag whose setting determines
whether file names should be verified, and a Col | ect i on object separately created
in the heap and accessed viathe f St or e pointer. (Of course, this will point to an
instance of some specialized subclass of class Col | ecti on.) A Docunent aso has
alink aNunber I t em this (display window) object gets created by the Docunent but
ownership istransferred to the MenuW ndow.

In some cases, the contents of f Fi | eName will be the actual file name. But in
other cases, e.g. with the BTree storage structure, there will be separate index and
datafilesand f Fi | eNane is used simply asabase name. If asinglefileisused for
storage, then file names can be checked when opening an old file.

All the member functions, and the destructor, are vi rt ual so asto allow
redefinition as needed by subclasses. Quite a few functions are still pure virtual;

Command Handler classes: declarations 1081

examples include the functions for creating Recor d objects and some of those
involved in file handling. The data members, and auxiliary member functions, are
al protect ed (rather than pri vat e). Again, thisis done so as to maximize the
potential for adaptation in subclasses.

The public interface defines a few additional functions; most of these involve
file handling and related initialization and are used in the code of Appl i cati on: :
Handl eCommand() .

cl ass Docurent : public CommandHandl er {

public:
Docunent () ;
virtual ~Docunent();
virtual void penNew() ;
virtual void pend d();
virtual void Dolnitial State();

The other additional public function is one of two used to create records.
Function MakeEnpt yRecord() isused (by aCol | ecti on object) to create an
empty record that can then be told to read data from afile:

virtual Record *MakeEnpt yRecord() = O;

The other record creating function, DoMakeRecord() is used from within
Docunent : : DoNewRecor d() ; it creates arecord with anew identifier. Sinceitis
only used from within class Docurrent , it is part of the protected interface.

pr ot ect ed:
virtual void Pr epar eToRun() ;
virtual void UpdateState() ;
virtual void MakeMenu() ;
virtual void Handl eCommand(i nt command) ;

The default implementations of the protected functions Pr epar eToRun() and
Updat eSt at e() simply arrange for the initial display, and later update, of the
information with the filename and the number of records.

Functions MakeMenu() and Handl eConmand() define and work with the
standard menu with its options for creating, viewing, and deleting records. These
definitions cover for the pure virtual functions defined in the base ConmandHandl er
class.

Class Document has two functions that use dialogs to get keys for records.
Function Get Key() is used to get a new unique key, while Get Exi st i ngRecor d
Nun() isused to get akey aready associated with arecord. Keys are restricted to
positive non zero integers. Function Get Key() checks whether the given key is
new by requesting the Col | ect i on object to find arecord with the given identifier
number. The function fails (returns -1) if the Col | ecti on object successfully
finds arecord with the given identifier (an "aert" can then be displayed warning the
user that the identifier is already in use).

Redefining empty and
purevirtual functions
inherited from
CommandHandler

Dialogsfor getting
record identifiers

1082

Reusable designs

Default definitions of
command handling
functions

Loading and editing
records

Pure virtual member
functions

Functions provided
in framework
subclasses

Program specific
function

Data members

virtual |ong Get Key();
virtual |ong Get Exi sti ngRecor dNun() ;

Class Docunent can provide default definitions for the functions that handle
"new record”, "view record" and "delete record" commands. Naturally, these
commands are handled using auxiliary member functions called from Handl e
GCommand() :

virtual void DoNewRecor d() ;
virtual void DoDel et eRecord() ;
virtual void DoVi ewkdi t Record() ;

For example, DoVi ewEdi t Record() can define the standard behaviour as
involving first a prompt for the record number, handling the case of an invalid
record number through an alert while avalid record number leads to calls to "load"
the record and then the invocation of DoEdi t Recor d() .

virtual Record *DoLoadRecor d(| ong recnunj;
virtual void DoEdi t Recor d(Record *r);

Function DoEdi t Recor d() can ask the Recor d to create its own Recor dW ndow
display and then arrange for this Recor dW ndow to handle subsequent input (until
an "enter", '\ n', character is used to terminate that interaction).

The remaining member functions are all pure virtual. The function that defines
the type of Col | ecti on to use is defined by a subclass defined in the framework,
e.g. ArrayDoc or BTDoc. These classes also provide effective definitions for the

remaining file handling functions.

virtual Collection *DoMakeCol | ection() = 0;
virtual void InitializeNewFile() = 0;
virtual void enA dFile() = 0;
virtual void Dod oseDoc() = O;

Function DoMakeRecor d(), like the related public function MakeEnpt y
Recor d() , must be defined in a program specific subclass ("MyDoc" etc).

virtual Record * DoMakeRecor d(1 ong recnun) = 0;

The class declaration ends with the specification of the data members and links
to collaborators:

char fFi | eNane[64] ;
Nunber | t em *f NunD spl ay;
Col | ecti on *fStore;

i nt fVerifylnput;

b

Command Handler classes: declarations 1083

Classes BTDoc and ArrayDoc

Classes BTDoc and ArrayDoc are generally similar. They have to provide
implementations of the various file handling and collection creation functions
declared in class Docunent . Class BTDoc has the following declaration:

class BTDoc : public Docurent {

public:
BTDoc() ;

pr ot ect ed:
virtual Collection *DoMakeCol | ection();
virtual void InitializeNewFile();
virtual void enadFile();
virtual void Dod oseDoc();

b

The constructor for class BTDoc simply invokes the inherited Docunent constructor
and then changes the default setting of the "file name verification" flag (thus
switching off verification). Since a BTr ee uses multiple files, the input file dialog
can't easily check the name.

The declaration of class Ar r ayDoc issimilar. Sinceit doesn't require any special
action in its constructor, the interface consists of just the three protected functions.

30.3.2 Interactions
Principal interactions when opening a file

Figure 30.6 illustrates some of the interactions involved when an application object
deals with an "Open" command from inside its Handl eComvand() function. The
illustration is for the case where the concrete "MyDoc" document class is derived
from class BTDoc.

All the interactions shown in Figure 30.6 are already implemented in the
framework code. A program built using the framework simply inherits the
behaviour patterns shown

The only program specific aspect is the implementation of the highlighted call to
DoMakeDocument () . Thiscall to DoMakeDocunent () is the first step in the
process; it resultsin the creation of the specialized MyDoc object.

Once created, the new document object is told to perform its
Dol nitial State() routineinwhich it createsaCol | ecti on object. Sincethe
supposed MyDoc class is derived from class BTDoc, this step results in a new
BTCol | ecti on.

The next step, opening the file, isrelatively simple in the case of aBTDoc. First
the document uses a dialog to get the file name; an | nput Fi | eDi al og object is
created temporarily for this purpose. Once the document has the file name, it
proceeds by telling its BTr eeCol | ect i on to "open the BTree". This step leadsto
the creation of the actual BTr ee object whose constructor opens both index and data
files.

Inherited pattern of
interactions

A single program
specific function call

Create the collection

Open thefile

1084 Reusable designs

"My App" " MyDoc*" "BTCol | ection”
obj ect obj ect obj ect

| DoMakeDocument ()

/

] + construct or
< I.l.l DoMakeCol | ection()

Dolnitial State() / +
]

P

A/

InputFile
Di al og

A/

BTee
obj ect

Opend dFi | e() +

<_I_| OpenBTr ee() b[] ﬂ

+
» 1
Opend d() PoseMbdal | y() . Ii‘l

Run()
CommandLoop()

Other interactions
involved in record
handling

| oop

DoC oseDoc()

1 del ete
: | Cl oseBTree() [.I

del ete del ete

—_

Figure 30.6 Framework defined interactions for an Application object handling
an "Open" command.

The next step would get the document to execute its Run() function. This
would involve processing any record handling commands (none shown in Figure
30.6) and eventually a"Close" command.
Closing A "Close" command gets forwarded to the collection. This responds by deleting
the BTr ee object (whose destructor arranges to save all "housekeeping data' and
then close its two files).

Command Handler classes: interactions 1085

A return is then made from Document : : Run() back to Application::
Handl eCommand() . Since the document object is no longer needed, it gets deleted.
As shown in Figure 30.6 this also leads to the deletion of the BTCol | ect i on object.

Additional interactions for a memory based collection

A document based on an "in memory" storage structure would have a dightly more
elaborate pattern of interactions because it has to load the existing records when the
fileis opened. The overal pattern is similar. However, as shown in Figure 30.7,
the pend dFi | e() function resultsin additional interactions.

In this case, the collection object (an ADCol | ect i on) will betold to read all its
data from the file. This will involve control switching back and forth among
several objects as shown in Figure 30.7. The collection object would read the
number of records and then have a loop in which records get created, read their
own data, and are then added to the Dynani cArray. The collection object hasto
ask the document object to actually create the new Recor d (this step, and the
M/Rec: : ReadFr on() function, are the only program specific parts of the pattern).

" MyDoc" " ADCol | ection” "MyRec" "Dynani cArray"
obj ect obj ect obj ect obj ect
ReadFr on()
[MakeEmpt yRecor d(|) construct or
| oop > Q

ReadFr o
R

11—

Append()

—
—

Figure 30.7 Opening a document whose contents are memory resident
(interactions initiated by a call to ArrayDoc::OpenOldFile()).

Interactions while creating a new record

Figure 30.8 illustrates another pattern of interactions among class instances that is
almost entirely defined within the framework code. It shows the overall steps
involved in creating a new record (Docunent : : DoNewRecor d() function).

The interactions start with the document object using a Nuber Di al og object to
get a (new) record number from the user. The check to determine that the number
is new involves a request to the collection object to perform a Fi nd() operation
(thisFi nd() should fail).

1086 Reusable designs

" MyDoc* "Col | ection”
obj ect obj ect
Nunber
| Di al og
CGet Key() +
———
PoseModal | y() ”
| " M/Rec”
Fi nd() > [] obj ect
LoadRecor d()
+
DoMakeRecord()
DoEdi t Recor d() " Recorqw ndow"
obj ect

> +

DoMakeRecor dW ndow(
»

ShowText ()
ShowNunber ()
AddSubwi ndow()
>
Poselbdal | y() O
| oop
<+ delete
>
Append()
>
Save()

Figure 30.8 Some of the interactions resulting from a call to Document::
DoNewRecord().

If the newly entered record identifier number is unique, a new record is created
with the given record number. This involves the program specific implementation
of the function MyDoc: : DoMakeRecor d() .

The next step involves the new MyRec object being asked to create an
appropriate Recor dW ndow. The object created will be a standard Recor dW ndow;
but the code for M/Rec: : DoMakeRecor dW ndow() will involve program specific
actions adding a specific set of text labels and editable fields.

Once created, the Recor dW ndowwill be "posed modally"”. It hasaloop dealing
with subsequent input. In thisloop it will interact with the MyRec object (notifying
it of any changes to editable fields) as well as with the editable subwindows that it
contains.

When control is returned from Recor dW ndow. : PoseModal | y() , the MyRec
object will already have been brought up to date with respect to any changes. The

Command Handler classes: interactions 1087

Recor dW ndow can be deleted. The new record can then be added to the
Col | ecti on (the Append() operation).

Although the new record was created by the document object, it now belongs to
the collection. The call to Save() represents an explicit transfer of ownership.
Many collections will have empty implementations for Save() (because they don't
have to do anything special with respect to ownership). A collection that uses a
BTr ee will delete the memory resident record because it will already have made a
permanent copy on disk (during its Append() operation).

30.3.3 Implementation Code
CommandHandler

The constructor for class CommandHand| er setsis state as "unfinished" and creates
a MenuW ndow. (All W ndow objects have integer identifiers. In the current code,
these identifiers are only used by Recor dW ndowand Recor d objects.)

CommandHand| er : : ConmandHandl er (i nt mai nnenui d)
f Menul D = mai nnenui d;
f Menu = new MenuW ndow(f Menul D) ;
f Fi ni shed = 0;

}

The destructor naturally getsrid of the MenuW ndow.

CommandHandl er : : ~ComrandHandl er ()
{

}

del ete fMenu;

TheRun() function completes the construction of the MenuW ndow and other
initial preparations and then invokes the CormandLoop() function. When this
returns, any specia tidying up operations are performed in Fi ni sh() .

voi d CommandHandl er: : Run()

{
t hi s- >MakeMenu() ;
t hi s- >Pr epar eToRun() ;
t hi s- >ComrandLoop() ;
thi s->Fi ni sh();

}

It may appear that there is something slightly odd about the code. The
MenuW ndow is created in the CoomandHandl er 's constructor, but the (virtual)
function MakeMenu() (which adds menu items to the window) is not called until
thestart of Run(). It might seem more natural to have the call to MakeMenu() as
part of the CormandHand| er 's constructor.

1088 Reusable designs

However, that arrangement does not work. Constructors do not use dynamic
calls to virtual functions. If the call to MakeMenu() was part of the Cormand
Handl er's constructor, it would be the (non existent) CommandHandl er: :
MakeMenu() function that was invoked and not the desired Appl i cati on: :
MakeMenu() or Docurent : : MakeMenu() function.
Beware: no " virtual Constructors that do invoke virtual functions dynamically (so called "virtual
constructors’ congtructors”) are a frequently requested extension to C++ but, for technical
reasons, they can not be implemented.
Class CommandHandl er provides the default implementation for one other
function, the main ConmandLoop() :

voi d CommandHandl er : : CommandLoop()

whi [e(! f Fi ni shed) {
this->UpdateState();
int ¢ = fMenu->PoseMdal |l y();
t hi s- >Handl eCommand(c) ;
}

Application

Class Appl i cati on is straightforward. Its constructor and destructor add nothing
to those defined by the base CommandHand! er class:

Application:: Application() : ConmandHandl er (KAPPMENU | D)

}

Appl i cation::~Application()
{
}

Its MakeMenu() function adds the three standard menu items to the
MenuW ndow. (Constants like kAPPEMENU_| D, cNEWand related constants used by
class Document are all defined in a common header file. Common naming
conventions have constants that represent "commands' take names starting with 'c’
while those that define other parameters have names that begin with 'k'.)

voi d Application:: MakeMenu()

f Menu- >AddMenul t en(" New', cNEW;

f Menu- >AddMenul t en(" Qpen", cCPEN) ;

f Menu- >AddMenul tem{("Quit", cQU T);
}

The code implementing Appl i cat i on: : Handl eConmand() was given earlier
(in Section 30.2).

Command Handler classes: implementation 1089

Document

The constructor for class Document has a few extra data members to initialize. Its
destructor getsrid of thef St or e (Col | ect i on object) if one exists.

Docunent : : Docurent () : CommandHand| er (KDOOMENU | D)

{
fStore = NULL;
fFileName[O] = "\O";
fVerifylnput = 1;

}

The MakeMenu() function adds the standard menu options to the document's
MenuW ndow() function. Member Dol nitial State() simply uses the (pure
virtual) DoMakeCol | ecti on() function to make an appropriate Col | ecti on
object. The function actually called would be BTDoc: : DoMakeCol | ecti on() or
ArrayDoc: : DoMakeCol | ection (or other similar function) depending on the
particular type of document that is being built.

voi d Docunent : : MakeMenu() Initialization
{ functions

f Menu- >AddMenul t en(" New record", cNEWREC);

f Menu- >AddMenul t en(" Del et e record", cDELREQ) ;

f Menu- >AddMenul ten("Vi ew edit record", cV EW;

f Menu- >AddMenul tem("d ose file", cCLCBE);
}

voi d Docunent::Dolnitial State()

fStore = DoMakeCol | ection();
}

Functions Pr epar eToRun() and Updat eSt at e() deal with theinitial display Display of document
and subsequent update of the display fields with document details. (The details
Nurber | t emused for output is given to the MenuW ndow as a "subwindow". As
explained in Section 30.6, subwindows "belong" to windows and, when
appropriate, get deleted by the window. So although the Docunent createsthe
Nunber I t emand keepsalink toit, it never deletesit.)

voi d Docunent : : Prepar eToRun()

f NunDi spl ay = new Nunberlten{0, 31, 1, 40,
"Nunber of records:",0);
f Menu- >AddSubW ndow(f NunDi spl ay) ;
}

voi d Docunent: : Updat eSt at e()

f NunDi spl ay- >Set Val (f Store->Si ze());
f Menu- >ShowText (f Fi | eNarre, 2, 2, 30, 0, 1);

1090

Reusable designs

Getting keysfor new

The functions Get Key() and Get Exi sti ngRecor dNun{() both use dialogsfor

and existing records jnpyt. Function Get Key() , viathe DoLoadRecor d() function, lets the document

Provision for further
extension

Running and
handling commands

interact with the Col | ect i on object to verify that the key is not already in use:

| ong Docurrent : : Get Key()

{
Nunber Di al og n("Record identifier", 1, LONG NAX);
I ong k = n. PoseModal | y(1);
i f(NULL == DoLoadRecor d(k))
return k;
Aert("Key already used");
return -1,
}

| ong Docurrent : : Get Exi sti ngRecor dNun()

if(fStore->S ze() == 0) {
Alert("No records defined.");
return -1,

}
Nunber D al og n("Record nunmber"”, 1, LONG MAX);
return n. PoseMdal | y(1);

}
Record *Docurrent : : DoLoadRecor d(| ong recnum)
{
return fStore->Fi nd(recnunj;
}

Function DoLoadRecord() might seem redundant, after all the request to
fStoretodoaFind() operation could have been coded at the point of call.
Again, thisis just a point where provision for modification has been built into the
framework. For example, someone working with a disk based collection of records
might want to implement a version that maintained a small "cache" or recordsin
memory. He or she would find it convenient to have a redefinable
DoLoadRecord() function because this would represent a point where the
"caching" code could be added.

Function Al ert () isdefined along with the windows code. It puts up adialog
displaying an error string and waits for the user to press the "enter" key.

Class Docunent usesthe inherited CommandHandl er : : Run() function. Itsown
Handl eCommand() function was given earlier (Section 30.2). Docunent::
Handl eConmmand() isimplemented in terms of the auxiliary member functions
DoNewRecor d(), DoDel et eRecor d() , DoVi ewkdi t Recor d() , and Dod oseDoc() .
Function Dod oseDoc() ispurevirtual but the others have default definitions.

Functions DoNewRecor d() and DoEdi t Record() implement most of the
interactions shown in Figure 30.8; getting the key, making the record, arranging for
it to be edited through a temporary Recor dW ndow abject, adding and transferring
ownership of the record to the Col | ect i on object:

voi d Docunent : : DoNewRecor d()

I ong key = GetKey();

Command Handler classes: implementation 1091

i f (key<=0)
return;
Record *r = DoMakeRecord(key);
DoEdi t Record(r);
f St or e- >Append(r) ;
f Store->Save(r);
}

voi d Docurrent : : DoEdi t Recor d(Record *r)

Recor dW ndow *rw = r->DoMakeRecor dW ndow() ;
rw >PoseMbdal | y();
delete rw

}

Function DoDel et eRecord() getsarecord identifier and asksthe Col | ecti on
object to delete that record. (The Col | ect i on object is expected to return a success
indicator. A failure resultsin awarning to the user that the key given did not exist.)

voi d Docunent : : DoDel et eRecor d()

{
I ong recnum = Get Exi sti ngRecor dNun{) ;
i f (recnunx0)
return;
if(!fStore->Delete(recnun)
A ert (NoRecMsQ) ;
}

Function DoVi ewEdi t Recor d() first usesadialog to get arecord number, and
then "loads" that record. If the load operation fails, the user is warned that the
record number was invalid. If the record was loaded, it can be edited:

voi d Docunent : : DoVi ewEdi t Recor d()

{
I ong recnum = Get Exi sti ngRecor d\unq) ;

i f (recnunx0)

return;
Record *r = DoLoadRecord(recnun);
if(r == NLL) {

A ert (NoRecMsQ) ;

return;

}
DoEdi t Record(r);
f St ore- >Save(r);
}

Functions CpenNew() and Qpend d() handle standard aspects of file opening Standard file
(such as display of dialogs that allow input of afile name). Aspectsthat depend on Nandiing
the type of collection structure used are handled through the auxiliary (pure virtual)
functionsinitial i zeNewFi | e() and Qoend dFi | e():

voi d Docurrent : : QpenNew()

Text D al og onew("Nane for new file");

1092 Reusable designs

onew. PoseMbdal | y("exanpl e", f Fi | eNane) ;
InitializeNewFile();

}
voi d Docunent : : Qpend d()
I nput Fi | eD al og ool d;

ool d. PoseMbdal | y("exanpl e", fFi |l eNane, fVerifylnput);
QpenA dFi l e();

ArrayDoc

Class Ar r ayDoc hasto provide implementations for the DoMakeCol | ecti on() and
the related file manipulation functions.
It creates an ADCol | ect i on (aDynami cAr r ay within an "adapter"):

Creating a collection Col | ection *ArrayDoc: : DoMakeCol | ecti on()
object {

}

return new ADCol | ection(this);

The Opend dFi | () function has to actualy open the file for input, then it
must get the ADCol | ect i on toload all the data. Notethetypecastonf Store. The
type of fStore isCol |l ection*. We know that it actually points to an
ADCol | ecti on object. So we can use the typecast to get an ADCol | ecti on*
pointer. Then it ispossibletoinvokethe ADCol | ect i on: : ReadFr on() function:

Handling file void ArrayDoc: : Quend dFi | e()

transfers {
fstreamin;
in.open(fFileNane, ios::in | io0s::nocreate);
if(!'in.good()) {
Aert("Bad file");
exit(1);
((ADCol | ection*)f Store)->ReadFron(in);
in.close();
}

Function DoCl oseDoc() isvery similar. It opens the file for output and then
arranges for the ADCol | ect i on object to save the data (after this, the collection has
to be told to delete all its contents):

void ArrayDoc: : Dod oseDoc()
{
f st ream out ;
out. open(fFileName, ios::out);
if('out.good()) {
Alert("Can not open output");
return;

}

Command Handler classes: implementation 1093

((ADCol | ection*)fStore)->WiteTo(out);
out.close();

((ADCol | ection*)fStore)->Del eteContents();

BTDoc

As noted earlier, a BTDoc needs to change the default setting of the "verify file
names' flag (normally set to true in the Docunent constructor):

BTDoc: : BTDoc() { fVerifylnput = 0; }

Its DoMakeCol | ection() function naturally makes a BTCol | ect i on aobject (the
t hi s argument provides the collection abject with the necessary link back to its
document):

Col | ection *BTDoc: : DoMakeCol | ecti on()
{

}

return new BTCol | ection(this);

The other member functions defined for class BTDoc are simply an interface to
functions provided by the BTCol | ect i on object:

void BTDoc::InitializeNewFi | e()

((BTCol | ecti on*) f St ore)->QenBTree(f Fi | eNane) ;
}

voi d BTDoc: : Qpend dFi | e()

((BTCol I ection*)f St ore)->QoenBTr ee(f Fi | eNane) ;

voi d BTDoc: : Dod oseDoc()

((BTCol | ection*)fStore)->0 oseBTree();

30.4 COLLECTION CLASSES AND THEIR ADAPTERS

The underlying collection classes are identical to the versions presented in earlier
chapters. ClassDynami cArray, asused in ADCol | ect i on, isasdefined in Chapter
21. (The W ndow classes also use instances of class Dynam cArray.) Class
BTCol | ect i on uses an instance of class BTr ee as defined in Chapter 24.

Class Col | ecti on itself is purely an interface class with the following
declaration:

Let the BTree object
handlethefiles

1094 Reusable designs

Abstract base class class Col lection {
collection public:
Col | ection(Docurrent *d) { this->fDoc = d; }
virtual ~Collection() { }

virtual void Append(Record *r) = 0;
virtual int Del ete(l ong recnun = O;
virtual Record *Find(long recnun) = 0;
virtual void Save(Record *r) { }
virtual |ong Size() = 0;

pr ot ect ed:
Docunent *f Doc;

b

It should get defined in the same file as class Document . A Col | ectionis
responsible for getting Recor d objects from disk. It hasto ask the Docunent object
to create a Recor d of the appropriate type; it isfor this reason that a Col | ecti on
maintains alink back to the Docunent to which it belongs.

The declarations for the two specialized subclasses are:

Specialization using class ADCol l ection : public Collection {
an array public:
ADCol | ection(ArrayDoc *d) : Collection(d) { }

virtual void Append(Record *r);
virtual int Del ete(l ong recnuny;
virtual Record *Find(1ong recnun;
virtual |ong Size();
virtual void ReadFr on(fstream& fs);
virtual void WiteTo(fstrean& fs);
virtual void Del et eContents();

pr ot ect ed:
Dynam cArray fD

b

and
Specialization using class BTCollection : public Collection {

aBTree public:
BTCol | ecti on(BTDoc *d) : Collection(d) { }

virtual void Append(Record *r);

virtual int Del et e(l ong recnunj;
virtual Record *Find(1ong recnun;
virtual |ong Si ze();

virtual void Save(Record *r);

voi d penBTree(char* fil enane);

voi d d oseBTree();

RecordFile Framework: Collection classes and adaptors 1095

private:
BTree *fBTree;
b

Each class defines implementations for the basic Col | ecti on functions like
Append(), Find(), Si ze() . In addition, each class defines a few functions that
relate to the specific form of storage structure used.

In the case of Append() and Si ze(), these collection class adapters can simply
pass the request on to the actual collection used:

voi d ADCol | ecti on: : Append(Record *r) { fD Append(r); }
voi d BTCol | ecti on: : Append(Record *r)

f BTr ee- >Add(*r);
}

| ong ADCol | ection:: Size()
{

}

| ong BTCol | ection:: Size()
{

}

return fD. Lengt h();

return fBTree->Num tens();

A Dynanmi cArray doesn't itself support record identifiers, so the Fi nd() Adaptingadynamic
operation on an ADCol | ect i on must involve an inefficient linear search: array to fulfil therole

of Collection
Record *ADCol | ection:: Find(l ong recnum
{
int n=fD Length();
for(int i =1; i<=n; i++) {
Record *r = (Record*) fD.Nth(i);
long k = r->Key();
if(k == recnun
return r;
}
return NULL;
}

This Fi nd() function has to be used to implement Del et e() because the
record must first be found before the Dynami cArray: : Renove() operation can be
used. (Function Del et e() takesarecord identifier, Renove() requiresapointer).

int ADCol | ection:: Del ete(long recnun
{
Record *r = Find(recnun;
if(r = NUL) {
f D. Renove(r);
return 1;

el se return O;

1096 Reusable designs

}

The linear searches involved in most operations on an ADCol | ect i on make this
storage structure unsuitable for anything apart from very small collections. A more

efficient "in-memory" structure could be built using abinary tree or an AVL tree.
Adapting a BTreeto The corresponding functions for the BTCol | ect i on also involve work in
fulfil tge”rolgof addition to the basic Fi nd() and Renpve() operations on the collection. Function
ollection BTCol | ection:: Find() has to return a pointer to an in-memory record. All the
recordsin the BTr ee itself are on disk. Consequently, Fi nd() had better create the
in-memory record. This gets filled with data from the disk record (if it exists). If
the required record is not present (the BTr ee: : Fi nd() operation fails) then the

newly created record should be del eted.

Record *BTCol | ecti on: : Fi nd(l ong recnum

{
Record *r = f Doc- >MakeEnpt yRecord();
i nt success = fBTree->Fi nd(recnum *r);
i f (success)
return r;
delete r;
return NULL;
}

(Therecord is created via a request back to the document object: f Doc- >MakeEnpt y
Record();.)

The function BTree: : Renove() does not return any success or failure
indicator; "deletion” of anon-existent key fails silently. A Col | ecti on issupposed
to report success or failure. Consequently, the BTCol | ect i on hasto do aFi nd()
operation on the BTr ee prior to a Renove() . If thisinitial BTree: : Fi nd() fails,
the BTCol | ect i on can report afailure in its delete operation.

int BTCol | ection:: Del ete(long recnun

Record *r = Find(recnunj;

if(r '= NULL) {
delete r;
f BTr ee- >Renove(recnunj ;
return 1;

else return O;

}

The other member functions for these classes mostly relate to file handling.
Function ADCol | ecti on: : ReadFron() implementsthe scheme shown in Figure
30.7 for loading the entire contents of a collection into memory:

voi d ADCol | ecti on: : ReadFron{ f strean& fs)

long | en;
fs.read((char*)& en, sizeof(len));
for(int i =1; i <=1len; i++) {

RecordFile Framework: Collection classes and adaptors

1097

Record *r = f Doc->MakeEnpt yRecord();
r->ReadFron(fs);

f D Append(r);

}

}

The WiteTo() function handles the output case, getting called when a
document is closed. It writes the number of records, then loops getting each record
to write its own data:

void ADCol | ection:: WiteTo(fstrean& fs)

long len = fD Length();
fs.wite((char*)& en, sizeof(len));
for(int i =1; i <=len; i++) {
Record *r = (Record*) fD.Nth(i);
r->WiteTo(fs);

}

A Dynami cArr ay does not delete its contents. (It can't really. It only hasvoi d*
pointers). When a document is finished with, all in memory structures should be
freed. The ADCol | ect i on has to arrange this by explicitly removing the records
from the Dynani cAr r ay and deleting them.

voi d ADCol | ecti on: : Del et eCont ent s()

int len = fD. Length();

for(int i =len; i>=1; i--) {
Record* r = (Record*) fD. Renmove(i);
delete r;
}

}

(The code given in Chapter 21 for class Dynami cAr r ay should be extended to
include a destructor that does get rid of the associated array of voi d* pointers.)

The remaining functions of class BTCol | ecti on are all simple. Function
penBTree() creates the BTr ee object itself (letting it open the files) while
d oseBTree() ddetestheBTr ee.

voi d BTCol | ecti on:: penBTree(char* fil enane)

f BTree = new BTree(fil enane);

}
voi d BTCol | ection:: d oseBTree()

del ete fBTree;
}

Class BTCol | ect i on provides an implementation for Save() . Thisfunctionis
called whenever the Docunent object has finished with a Recor d object. In the

1098 Reusable designs

case of an in-memory collection, like ADCol | ect i on, no action isrequired. But
with the BTCol | ecti on, it is hecessary to get rid of the now redundant in-memory
record.

voi d BTCol | ection:: Save(Record *r)

delete r;

30.5 CLASS RECORD

As noted earlier, class KeyedSt or abl el t emis simply an interface (it is the
interface for storable records as defined for class BTr ee in Chapter 24):

cl ass KeyedStorabl el t em {

public:
vi rtual ~KeyedStorabl elten() { }
virtual long Key(void) const = 0;
virtual void PrintQh(ostream& out) const { }
virtual long D skSize(void) const = 0;
virtual void ReadFron{(fstrean& in) = 0;
virtual void WiteTo(fstrean& out) const = 0;

b

Class Recor d provides a default implementation for the Key() function and
adds the responsibilities related to working with a Recor dW ndow that allows
editing of the contents of data members (as defined in concrete subclasses).

class Record : public KeyedStorableltem {

public:
Record(l ong recNum) { this->f RecNum= recNum }
virtual ~Record() { }
virtual long Key() const { return this->f RecNum }

virtual RecordW ndow * DoMakeRecor dW ndow() ;

virtual void SetD splayFiel d(Edi t Wndow *e);

virtual void ReadD spl ayFi el d(Edit Wndow *e);

virtual void GConsistencyUpdat e(Edi t Wndow *e) { }
pr ot ect ed:

virtual void O eateWndow);

virtual void AddFi el dsToW ndow();

| ong f RecNum

RecordWndow *f RW

b

Data members Class Recor d defines two data membersitself. Oneisalong integer to hold the
defined bF{ C'ascsj unique identifier (or "key"), the other isalink to the Recor dW ndow collaborator.
ecor Function DoMakeRecor dW ndow() usesan auxiliary function Cr eat eW ndow()
to actually create the window. Once created, the window is "populated” by adding
subwindows (in AddFi el dsToW ndow()).

RecordFile Framework: Record class 1099

Recor dW ndow * Recor d: : DoMakeRecor dW ndow()

O eat eWndow() ;
AddFi el dsToW ndow() ;
return fRW

}

Function O eat eW ndow() is another "unnecessary" function introduced to
increase the flexibility of the framework. It is unlikely that any specific program
would need to change the way windows get created, but it is possible that some
program might need to use a specialized subclass of Recor dW ndow. Having the
window creation step handled by a separate virtual function makes adaptation
easier.

voi d Record:: O eat eW ndow()

f RW= new Recor dWndow(t hi s);
}

Function Recor d: : AddFi el dsToW ndow() can add any "background" text
labels to the Recor dW ndow. A concrete "MyRec" class would also add Edi t Num
and Edi t Text subwindows for each editable field; an example is given later in
Section 30.8. Each of these subwindows is specified by position, a label (possibly
empty) and a unique identifier. These window identifiers are used in subsequent
communications between the Recor dW ndow and Recor d objects.

voi d Record: : AddFi el dsToW ndow() Building the display
{ structure

f RW>ShowText ("Record identifier ", 2, 2, 20, 0);

f RW >ShowNunber (f RecNum 24, 2, 10);

// Then add data fields

/1 typical code
// EditText *et = new EditText (1001, 5, 4, 60,

1/ "Student Name ");

/1 f RW >AddSubW ndow(et) ;

// Edi t Num *en = new Edi t N\unm(1002, 5, 8, 30,
/1 "Assignment 1 (5) ", 0, 5,1);

/1 f RW >AddSubW ndow(en) ;

}

When a Recor dW ndow s first displayed, it will ask the corresponding Recor d
to set valuesin each of its editable subwindows. Thisisdone by calling Recor d: :
Set Di spl ayFi el d(). TheEdi t W ndow passed viathe pointer parameter can be
asked its identity so alowing the Recor d object to select the appropriate data to be
used for initialization:

voi d Record:: Set D spl ayFi el d(Edi t Wndow *e) Showing current data
{ values
[l Typical code:

/1 long id =e->d();

[l switch(id) {

1100

Reusable designs

Getting newly edited
values

[/ case 1001:

/1 ((Edi t Text*)e)->Set Val (f Student Narre, 1);
/] br eak;

[/ case 1002:

/] ((Edi t Nunt) e) - >Set Val (f Mark1, 1) ;

/] br eak;

/1]

}

Function Recor d: : ReadDi spl ayFi el d() is called when the contents of an
Edi t W ndow have been changed. The Recor d can identify which window was
changed and hence determine which data member to update:

voi d Record:: ReadD spl ayFi el d(Edi t Wndow *e)

{
/1 Typical code:

/1 longid =e->ld();

/1 switch(id) {

// case 1001:

/1l char* ptr = ((EditText*)e)->Get Val ();
/1 strcpy(fStudent Narre, ptr);

/1 break;

// case 1002:

/1 fMarkl = ((Edi tNun¥)e)->GetVal ();

/1 break;

/1l

}

Interactions between Recor d and Recor dW ndow objects are considered in more
detail in the next section (see Figure 30.9).

30.6 THE WINDOWS CLASS HIERARCHY

30.6.1 Class Responsibilities
WindowRep

The role of the unique W ndowRep object is unchanged from that in the version
given in Chapter 29. It "owns" the screen and deals with the low level details
involved in input and output of characters.

The version used for the "RecordFile" framework has two small extensions.
There is an extra public function, Beep() ; this function (used by some dialogs)
produces an audible tone to indicate an error. (The simplest implementation
involves outputting "\ a' "bell" characters.)

The other extension arranges for any characters input via Get Char () tobe
copied into thef | mage array. Thisimproves the consistency of screen updates that
occur after data input.

The implementation of this extension requires additional f XC, f YC integer data
members in class W ndowRep. These hold the current position of the cursor. They

Window class hierarchy: class responsibilities 1101

are updated by functions like MoveCur sor () and Put Char act er (). Function
Get Char () storesan input character at the point (f XC, f YC) inthef | mage array.
These extensions aretrivial and the code is not given.

Window

Class W ndow is an extended version of that given in Chapter 29. The major
extension is that a W ndow can have alist (dynamic array) of "subwindows" and so
has some associated functionality. In addition, W ndow objects have integer
identifiers and there are a couple of extra member functions for things like
positioning the cursor and outputting a string starting at a given point in the
W ndow.

The additional (protected) data members are:

Dynam cArray f SubWndows; "List of subw ndows"
int fld; "ldentifier"

The following functions are added to the public interface:
i nt Id() const { return this->fld; }
Function 1 d() returns the W ndow object's identifier. The constructor for class

W ndow is changed so that this integer identifier number is an extra (first)
parameter. (The destructor is extended to get rid of subwindows.)

voi d ShowText (const char* str, int x, int vy,
int width, int multiline =0, int bkgd = 1);
voi d ShowNunber (I ong value, int x, int y, int width,
int bkgd = 1);
voi d AearArea(int x0, int yO, int x1, int y1,
int bkgd);

These functions are just generally useful output functions. Function
ShowText () outputs a string, possibly on multiple lines, starting at the defined x,
y position . Function ShowNunber () converts a number to atext string and uses
ShowText () to output this at the given position. Function Cl ear Area() fillsthe
specified areawith ' 'characters. Each of these functions can operate on either the
"foreground” or "background" image array of the W ndow. The code for these
functionsis straightforward and is not given.

virtual void SetPronptPos(int x, int y);

The default implementation of Set Pronpt Pos() i nvolves a call to the
W ndowRep object's MoveCur sor () function. It is necessary to changethex, vy
values to switch from W ndow coordinates to screen coordinates before invoking
MoveQur sor () .

Window identifier

Utility output
functions

1102

Reusable designs

Provision for
subwindows

The function Pr epar eToDi spl ay() isjust an extra "hook" added to increase
flexibility in the framework. It gets called just before a W ndow gets displayed
allowing for any unusual special case initializations to be performed.

virtual void PrepareToD splay() { }

The first of the extra functions needed to support subwindows is
CanHand! el nput () . Essentialy thisreturns"true" if aw ndow object is actually an
instance of some class derived from class Edi t W ndowwherea Get | nput ()
function is defined. In some situations, it is necessary to know which
(sub)windows are editable so this function has been added to the base class for the
entire windows hierarchy. By default, the function returns "false”.

vi rtual i nt CanHandl el nput () { return 0; }

The three main additions for subwindows are the public functions
AddSubW ndow() and Di spl ayW ndow() and the protected function Of f set () .

voi d AddSubW ndow(W ndow *w) ;
voi d Cfset(int x, int vy);
voi d D spl ayWndow() ;

Member function AddSubW ndow(W ndow *w) adds the given W ndow w as a
subwindow of the W ndow executing the function. This just involves appending w
tothe"list" f SubW ndows.

When creating a subwindow, it is convenient to specify its position in terms of
the enclosing window. However, the f X, fY position fields of a W ndoware
supposed to be in screen coordinates. The function Of f set (), called from
AddSubW ndow() , changesthef X, fY coordinates of a subwindow to take into
account the position of its enclosing parent window.

The function Di spl ayW ndow() , whose implementation is given later, prepares
awindow, and its subwindows for display. Thisinvolves cals to functions such as
Pr epar eCont ent (), Prepar eToDi spl ay(), and ShowAl | ().

Numberltem

The role of class Nunber | t emis unchanged from that of the version presented in
the last chapter; it just displays a numeric value along with a (possibly null) label
string.

The constructor now has an additional "i nt i d" argument at the front of the
argument list that is used to set awindow identifier. Function Set val () also has
anextra"i nt redraw' parameter; if thisisfase (which is the default) a change to
the value does not lead to immediate updating of the screen.

The implementation of Nunber | t emwas changed to use the new functionality
like ShowText () and ShowNunber () added to the base W ndow class. The
implementation code is not given, being left as an exercise.

Window class hierarchy: class responsibilities 1103

EditWindow

The significant changes to the previously illustrated W ndow classes start with class
Edi t W ndow.

Class Edi t W ndow is intended to be simply an abstraction. It represents a
W ndow object that can be asked to "get input".

"Getting input" means different things in different contexts. When an Edi t Num
window is "getting input” it consumes digitsto build up anumber. A MenuW ndow
"gets input” by using "tab" characters to change the selected option. However,
although they differ in detail, the various approaches to "getting input" share a
similar overall pattern.

There may have to be some initialization. After this is completed, the actual
input step can be performed. Sometimes, it is necessary to validate an input. If an
input value is unacceptable the user should be notified and then the complete
process should be repeated.

The actual input step itself will involve aloop in which characters are accepted
(viathe W ndowRep object) and are then processed. Different kinds of Edi t W ndow
process different kinds of character; thus a MenuW ndow can basically ignore
everything except tabs, an Edi t Numonly wants to handle digits, while an Edi t Text
can handle more or less any (printable) character. The character input step should
continue until some terminator character is entered. (The terminator character may
be subclass specific.) The terminator character is itself sometimes significant; it
should get returned as the result of the Get | nput () function.

This overall pattern can be defined in terms of a Get | nput () function that
works with auxiliary member functions that can be redefined in subclasses.
Pseudo-code for this Get | nput () functionisasfollows:

Initializelnput();
do {
Set Qur sor Posi tion();
Get character (ch)
while(ch '="\n") {
i f(!Handl eCharact er(ch))
br eak;
Get character (ch)

Ter m nat el nput () ;

v = Validate();
} while (fMustValidate & !v);
return ch;

The outer loop, the do ... whil e() loop, makes the Edi t W ndow keep on
processing input until a"valid" entry has been obtained. (An entry is"valid" if it
satisfiesthe val i dat e() member function, or if thef Must Val i dat e flag isfase).

Prior to the first character input step, the cursor is positioned, so that input
characters appear at a suitable point within the window.

The "enter" key (\ n') is to terminate all input operations. The function
Handl eChar acter () may return false if the character ch corresponds to some

Getting input

Overall input process

Consuming
characters

Inner loop getting
characters until
terminator

Validate

1104

Reusable designs

EditWindow
declaration

Main Getlnput()
function

Auxiliary functions
for Getlnput()

Other member

other (subclass specific) terminator; if this function returns true it means that the
character was "successfully processed" (possibly by being discarded).

The virtual function Ter mi nat el nput () gets called when a terminating
character has been read. Class Edi t Text isan example of where this function can
be useful; Edi t Text : : Ter mi nat el nput () addsanull character (\ 0") at the end of
the input string.

In addition to checking the data entered, the Val i dat e() function should deal
with aspects like notifying a user of an incorrect value.

Class Edi t W ndow can provide default definitions for most of these functions.
These defaults make all characters acceptable (but nothing gets done with input
characters), make all inputs "valid", do nothing special at input termination etc.
Most subclasses will need to redefine several if not al these virtual functions.

By default, an Edi t W ndow is expected to be a framed window with one line of
content area (asillustrated in Figure 30.1 with its editable name and number fields).

The class declaration is:

class Edi tWndow : public Wndow {
public:
EditWndow(int id, int x, int y, int width,
int height = 3, int nustValidate = 0);
virtual char Getlnput();

virtual int CanHandl el nput () { return 1; }
virtual int Cont ent Changed() { return 0; }
pr ot ect ed:
virtual void Initializelnput() {
t hi s- >Prepar eToD spl ay();

}
virtual void SetCQursorPosition() {
t hi s->Set Pronpt Pos(fWdth-1, fHeight-1);
}
virtual int Handl eChar acter (char ch) { return 1; }
virtual void Termnatelnput() { }
virtual int Validate() { return 1; }
i nt fEntry;
i nt f Must Val i dat e;

b

The inherited function W ndow: : CanHandl el nput () isredefined. As specified

functions by Edi t Wndow: : CanHandl el nput (), al Edi t W ndow objects can handle input.

A Cont ent Changed() function is generally useful For example, an Edi t Num
object has an "initial value" which it displays prior to an input operation; it can
detect whether the input changes thisinitial value. If an Edi t Numobject indicates
that it has not been changed, there is no need to copy its value into a Recor d object.
The Cont ent Changed() behaviour might aswell be defined for class Edi t W ndow
although only it is only useful for some subclasses. It can be given a default
definition stating "no change”.

Functions like Cont ent Changed() andlInitializel nput() have been
defined in the class declaration. This is simply for convenience in presentation.
They should either be defined separately in the header file asi nl i ne functions, or

Window class hierarchy: class responsibilities 1105

defined normally in the implementation file. The definition of Getlnput (),
essentially the same as the pseudo code given, isincluded in Section 30.6.2.

The two data members added by class Edi t W ndow are a flag to indicate whether
input values should be validated (f Must Val i dat e) and the variablef Ent ry (which
is used in several subclasses to do things like record how many characters have
been accepted).

EditText

An Edi t Text isan Edi t W ndowthat can accept input of astring. Thisstringisheld
(in a 256 character buffer) within the Edi t Text object. Some other object that
needs text input can employ an Edi t Text , require it to perform a Get | nput ()
operation, and, when input is complete, can ask to read the Edi t Text object's
character buffer.

Naturally, class Edi t Text must redefine a few of those virtual functions
declared by class Edi t W ndow. An Edi t W ndow can simply discard characters that
are input, but an Edi t Text must save printable characters in its text buffer;
consequently, Handl eChar act er () must be redefined. An Edi t W ndow positions
the cursor in the bottom right corner of the window (an essentially arbitrary
position), an Edi t Text should locate the cursor at the left hand end of the text input
field; so function Set Cur sor Posi ti on() gets redefined.

Normally, there are no "validation" checks on text input, so the default "do
nothing” functionslike Edi t W ndow: : Val i dat e() do not need to be redefined.

The declaration for classEdi t Text is:

class EditText: public EditWndow {
public:
EditText(int id, int x, int y, int width, char *|abel,
short size = 256, int nustValidate = 0);
voi d Set Val (char* val, int redraw = 0);
char *GetVal () { return this->fBuf; }

virtual int Cont ent Changed() ;

pr ot ect ed:
virtual void Initializelnput();
virtual void SetCQursorPosition();
virtual int Handl eChar act er (char ch);
virtual void Term natelnput();

voi d Showval ue(i nt redraw;
int f Label Wdt h;

char f Buf [256] ;

int fSze;

int f Changed;

b

Class Edi t Text adds extra public member functions Set Val () and Get Val ()
that allow setting of the initial value, and reading of the updated value in its f Buf

EditWindow's extra
data members

Extra functionsto
set, and read string

Redefining auxiliary
functions of
Getl nput()

Extra data members

1106

Reusable designs

Data members

Validating numeric
input

Extra functionsto

set, and read integer

Redefining auxiliary
functions of
Getl nput()

Data members

text buffer. (There is an extra protected function Showval ue() that getsusedin
the implementation of Set Val () .)

ClassEdi t Text adds several data members. In addition to the text buffer, f Buf ,
there is an integer f Label W dt h that records how much of the window's width is
taken up by alabel. Thef Si ze parameter has the same role as the size parameter
inthe Edi t Text classused in Chapter 29. It is possible to specify a maximum size
for the string. The input process will terminate when this number of characters has
been entered. The class uses an integer flag, f Changed, that gets set if any input
characters get stored in f Buf (so changing its previous value).

EditNum

An Edi t Numisan Edi t W ndow that can deal with the input of ainteger. This
integer ends up being held within the Edi t Numobject. Some other object that needs
integer input can employ an Edi t Num, require it to perform a Get | nput ()
operation, and, when input is complete, can ask the Edi t Numobject for its current
value.

The extensions for class Edi t Num are similar to those for class Edi t Text . The
class adds functions to get and set its integer. It provides effective implementations
for Handl eChar act er () and Set Cur sor Posi tion() . It hasan extra (protected)
Showval ue() function used by itsSet Val () public function.

ClassEdi t Nun({) redefinesthe Val i dat e() function. The constructor for class
Edi t Numrequires minimum and maximum allowed values. If the "must validate"
flag is set, any humber entered should be checked against these limits.

The class declaration is:

class EditNum public Edit Wndow {
public:
EditNun{int id, int x, int y, int width, char *Iabel,
long mn, long nmax, int nustValidate = 0);
voi d SetVal (long, int redraw = 0);
| ong GetVal () { return this->fVval; }

virtual int Cont ent Changed() ;

pr ot ect ed:
virtual void Initializelnput();
virtual void SetCQursorPosition();
virtual int Handl eChar acter (char ch);
virtual void Termnatelnput();
virtual int Val i date();

voi d Showval ue(int redraw;
i nt f Label W dt h;

| ong fMn;

| ong f Max;

| ong f Set Val ;

| ong fval ;

i nt fsign;

Window class hierarchy: class responsibilities 1107

The data members include the minimum and maximum limits, the value of the
Edi t Num its"set value", and alabel width. The f si gn field is used during input to
note the + sign of the number.

MenuWindow

A MenuW ndowis aspecialized input handling (Edi t W ndow) type of window that
allows selection from amenu. By default, it isa"full screen” window, (70x20).

The class declares two extra public member functions: AddMenul t en() and
PoseMbdal | y() .

Function AddMenul t en() addsamenu item (a string and integer combination)
to the MenuW ndow. There is a limit on the number of items, function
AddMenul ten{) returns"false” if thislimit is exceeded. Thelimit is defined by the
constant kMAXCHOI CES (a suitable limit value is 6). The menu strings are written
into the window's "background image" at fixed positions; their identifier numbers
areheldinthearray f Cmds.

Function PoseModal | y() does some minor setting up, calls Get I nput ()
(using the standard version inherited from class Edi t W ndow) and finally returns the
selected command number. (A "modal" window is one that holds the user in a
particular processing "mode". When a MenuW ndow is "posed modally", the only
thing that a user can do is switch back and forth among the different menu choices
offered.)

Two of the auxiliary functions for Get | nput () haveto beredefined. Function
Set Cur sor Posi tion() now displaysacursor marker (the characters ==>). The
position is determined by the "currently chosen™ menu item (as identified by the
datamember f Chosen).

Function Handl eChar act er () isredefined. Thisversion ignores all characters
apart from "tabs'. Input of a "tab" character changes the value of fChosen (which
runs cyclically from 0..f Choi ces- 1 wheref Choi ces isthe number of menu items
added). Whenever the value of f Chosen is changed, the cursor is repositioned.
(The extra private member function Cl ear Cur sor Posi ti on() isneeded to clear
the previous image of the cursor.)

cl ass MenuWndow : public Edi t Wndow {
public:
MenuWndow(int id, int x =1, int y =1,
int width = 70, int height = 20);

int AddMenul ten{ const char *txt, int nunj;
int PoseMbdal | y();
pr ot ect ed:

virtual void SetCQursorPosition();
virtual int Handl eChar act er (char ch);

voi d d earQursorPosition();
int f Qmds[KMAXCHQO CES]
int f Choi ces;

int f Chosen;

AddMenultem()

PoseModally() and
"modal" windows

MenuWindow
declaration

Additional
functionality
Redefining auxiliary

functionsfor
Getl nput()

Data members

1108

Reusable designs

b
The Dialogs: NumberDialog, TextDialog, and InputFileDialog

The "dialogs" (Number Di al og, Text Di al og and its specialization
I nput Fi | eDi al og) are essentialy little windows that pop up in the middle of the
screen displaying a message and an editable subwindow. A Nunber Di al og works
with an Edi t Num subwindow, while a Text Di al og works with an Edi t Text
subwindow.

They have constructors (the constructor sets the message string and, in the case
of the Nunber Di al og limits on the range permitted for input values) and a
PoseMbdal | y() function. The PoseMdal | y() function takes an input argument
(avaue to be displayed initially in the editable subwindow) and returns as a result
(or as aresult parameter) the input data received.

The PoseMdal | y() function arranges for the editable subwindow to "get
input" and performs other housekeeping, e.g. the | nput Fi | eDi al og may try to
open afile with the name entered by the user.

The class declarations are:

class NunberD al og : public EditWndow {
public:
Nunber D al og(const char* nsg,
long mn = LONGMN, |ong nax = LONG MAX) ;
| ong PoseMbdal | y(l ong current);
pr ot ect ed:
Edi t Num *f E;
b

class TextDial og : public EditWndow {
public:
Text Di al og(const char* nsg);
virtual void PoseMdally(char *current,
char newdata[]);
pr ot ect ed:
Edi t Text *fE
1

class InputFileD alog : public TextD al og {
public:
Input Fi Il eD al og();
voi d PoseMbdal | y(char *current, char newdata[],
int checked = 1);

RecordWindow

As noted earlier, class Recor dW ndowis a dightly more sophisticated version of the
same idea as embodied in class MenuW ndow. Rather than use something specific
like a set of "menu items', a Recor dW ndow utilizes its list of "subwindows".
"Tabbing" in a MenuW ndow moves a marker from one item to another; "tabbing” in

Window class hierarchy: class responsibilities 1109

aRecor dW ndow resultsin different editable subwindows being given the chance to
"get input".
The class declaration is:

cl ass RecordWndow : public EditWndow {
public:

Recor dW ndow Record *r);

voi d PoseModal | y();

pr ot ect ed:
voi d Count Edi t Wndows() ; Auxiliary functions
voi d Next Edi t Wndow() ; for PoseModally
virtual void [nitEditWndows();
Record *f Recor d; Data members
int fNunEdi t s;
int fQurrent;

Edi t W ndow *f EWn;
b

The data members include the link to the associated Recor d, a count of the number
of editable subwindows, an integer identifying the sequence number of the current
editable subwindow and a pointer to that subwindow. (Pointersto subwindows are
of course stored in the f SubW ndows data member as declared in class W ndow.)

The constructor for class Recor dW ndow simply identifies it as something
associated with a Recor d. The Recor dW ndow constructor makes it a full size
(70x20) window.

The only additional public member function is PoseModal | y(). Thisisthe
function that arranges for each editable subwindow to have aturn at getting input.
The function is defined as follows:

voi d Recor dW ndow. : PoseModal | y()
{
char ch;
D spl ayW ndow() ; Initialization
Count Edi t Wndows() ;
I ni t Edi t Wndows() ;
fQurrent = fNunkEdits;
Loop until user ends

do { input with " enter
Next Edi t Wndow() ; Activate next edit
f Recor d- >Set D spl ayFi el d(f EWn) ; subwindow
ch = fEWn->Get I nput (); Subwindow gets
input

i f (f EWn->Cont ent Changed()) {
f Recor d- >ReadDi spl ayFi el d(f EWn) ; Update record
f Recor d- >Consi st encyUpdat e(f EW n) ;

}
} while(ch I="\n');

1110

Reusable designs

Example trace of
interactions

The initialization steps deal with things like getting the window displayed and
determining the number of editable subwindows.

The main body of the PoseModal | y() function is its loop. This loop will
continue execution until the user terminates al input with the "enter" key.

The code of the loop starts with calls to an auxiliary private member function
that picks the "next" editable subwindow. The associated Recor d object is then
told to (re)initialize the value in the subwindow. Once its contents have been reset
to correspond to those in the appropriate member of the Recor d, the edit window is
given its chance to "get input".

The editable item will return the character that stopped its "get input” loop. This
might be the "\ n' ("enter") character (in which case, the driver loop in
PoseModal | y() canfinish) or it might be a"tab" character (or any other character
that the edit window can not handle, e.g. a™ ' in an Edi t Nunj.

When an editable subwindow has finished processing input, it is asked whether
its value has changed. |If the value has been changed, the associated Recor d object
is notified. A Record will have to read the new value and copy it into the
corresponding data member. Sometimes, there is additional work to do (the
"consistency update” call).

Figure 30.9 illustrates a pattern of interactions between a Recor dW ndow and a
Recor d. The example shown isfor a St udent Rec (as shown in Figure 30.1). It
illustrates processes involved in changing the mark for assignment 1 from its
default O to a user specified value.

When the loop in Recor dW ndow: : PoseMbdal | y() starts, the Edi t Text
subwindow for the student's name will become the active subwindow. This results
in the first interactions shown. The Recor dW ndowwould ask the Recor d to set that
display field; the Recor d would invoke Edi t Text : : Set Val () to set the current
string. Then, the Edi t Text object would beaskedto Get | nput ().

If the user immediately entered "tab", the Get | nput () function would return
leaving the Edi t Text object unchanged.

After verifying that the subwindow's state was unchanged, the Recor dW ndow
would arrange to move to the next subwindow. Thiswould be the Edi t Numwith
the mark for the first assignment.

The Recor d would again be asked to set a subwindow's initial value. This
would result in acall to Edi t Num : Set Val () to settheinitial mark.

The Edi t Numsubwindow would then have a chance to Get I nput () . It would
loop accepting digits (not shown in Figure 30.9) and would calculate the new value.

When this input step was finished, the Recor dW ndow could check whether the
value had been changed and could get the Recor d to deal with the update.

30.6.2 Implementation Code

This section contains example code for the implementation of the window classes.
Not all functions are given, but the code here should be sufficient to allow
implementation. (The complete code can be obtained by ftp over the Internet as
explained in the preface.)

Window class hierarchy: implementation 1111

Edi t Text Edi t Num
Recor dW ndow Record (Wndow id = 1001) (id 1002)

1 PoseModal | 'y()

Set D spl ayFi el d() > Set Val ()

Get I nput ()

Cont ent Changed()

| Next Edi t W ndow()

Set D spl ayFi el d() ’|] Setval ()

Get I nput ()

Cont ent Changed()

ReadDi spl ayFi el d() >|-' Getval ()

Consi st encyUpdat e()

T

Figure 30.9 Example trace of specific object interactions while a
RecordWindow is "posed modally".

Window

Most of the code is similar to that given in Chapter 29. Extra functions like
ShowText () and ShowNunber () should be straightforward to code.

TheDi spl ayW ndow() function gets the contents of a window drawn, then
arranges to get each subwindow displayed:

voi d Wndow: : Di spl ayW ndow()
{
PrepareContent ();
Pr epar eToD spl ay();
ShowAl | () ;
int n = fSubWndows. Lengt h();
for(int i=1; i<=n; i++) {
Wndow* sub = (Wndow) fSubWndows. Nth(i);
sub->Di spl ayW ndow() ;

}

The destructor will need to have a loop that removes subwindows from the
f SubW ndows collection and deletes them individually.

1112

Reusable designs

Normal " get input”
behaviour

EditWindow

The constructor for class Edi t W ndow passes most of the arguments on to the
constructor of the W ndow base class. Its only other responsibility is to set the
"validation" flag.

Edi t Wndow. : EditWndow(int id, int x, int y, int wdth,

}

int height, int nustValidate)
: Wndow(id, x, y, width, height)

f Must Val i date = nust Val i dat €;

The Get I nput () function implements the algorithm given earlier. Characters
are obtained by invoking the Get Char () function of the W ndowRep object.

char Edi t Wndow. : Get | nput ()

t
int v;
char ch;
Initializelnput();
do {
Set Qur sor Posi tion();
fEntry = O;
ch = WndowRep: : | nst ance() - >Get Char () ;
while(ch I'="\n") {
i f(!Handl eCharacter(ch))
br eak;
ch = WndowRep: : I nst ance() - >CGet Char ();
Term nat el nput () ;
v = Validate();
} while (fMustValidate & !'v);
return ch;
}
EditText

The Edi t Text constructor is mainly concerned with sorting out the width of any
label and getting the label copied into the "background" image array (viathe call to
ShowText ()). The arguments passed to the Edi t W ndow base class constructor fix
the height of an Edi t Text to three rows (content plus frame).

EditText::EditText(int id, int x, int y, int wdth,

char *label, short size, int rnustValidate)
Edi tWndow(id, x, y, width, 3, nustValidate)

fS ze = size;

f Label Wdth = 0;

int s = (label == NUL) ? 2 : strlen(label)+2;
width -= 6;

fLabel Wdth = (s < width) ? s : wdth;

Window class hierarchy: implementation 1113

ShowText (| abel , 2, 2, flLabel Wdth);
fBuf[0] ="'\0';
f Changed = 0;

}

The Set Val () member function copies the given string into the f Buf array
(avoiding any overwriting that would occur if the given string was too long):

void EditText::SetVal (char* val, int redraw
{

int n=strlen(val);

i f(n>254) n = 254;

strncpy(fBuf, val, n);

fBuf[n] = '\0";

Showval ue(redraw) ;

f Changed = 0;
}

The Showval ue() member function outputs the string to the right of any label
already displayed in the Edi t Text . The output areaisfirst cleared out by filling it
with spaces and then characters are copied from the f Buf array:

voi d Edit Text:: Showval ue(i nt redraw EditText::
ShowValug()
int left = fLabel Wdt h;
int i,j;
for(i=left; i<fWdth;i++)
fQurrenting[1][i-1] =" ';

for(i=left,j=0; i<fWdth; i++ j++) {

char ch = fBuUf[j1];

if(ch =="\0") break;

fQurrentlng[1][i-1] = ch;

i f(redraw
ShowCont ent () ;
}

If the string is long, only the leading characters get shown.
Function Edi t Text : : Handl eChar act er () acceptsall characters apart from
control characters (e.g. "enter") and the "tab" character:

i nt EditText:: Handl eChar act er (char ch) Handling input
{ characters
if(iscentrl(ch) || (ch == KTABQ)) Return " fail" if
return O; unacceptable
character
if(fEntry == 0) {
d ear Area(flLabel Wdth, 2, fWdth-1, 2,0); I nitialization for first
Set (f Label Wdth, 2, ch); character
Set Pronpt Pos(f Label Wdt h+1, 2);
}
fBuf [fEntry] = ch; Store character
f Changed = 1,

f Ent ry++;

1114 Reusable designs

if(fEntry == fSize) return O;
else return 1;

}

Normally, an Edi t Text will start by displaying the default text. This should be
cleared when the first acceptable character isentered. Variablef Entry (setto zero
inInitializelnput()) countsthe number of characters entered. If itsvalueis
zero a d ear Area() operation is performed. Acceptable characters fill out the
f Buf array (until the sizelimit is reached).

Theremaining Edi t Text member functions are all trivial:

int EditText::ContentChanged() { return fChanged; }
void EditText::Initializelnput()

Edi t Wndow : I nitializel nput();

fEntry = O;
}
voi d EditText:: SetQursorPosition()
{

Set Pronpt Pos(f Label Wdth, 2);
}

voi d EditText:: Term natel nput ()

fBUf[fENtry] = '\0';

EditNum

Class Edi t Numis generaly similar to class Edi t Text . Again, its constructor is
mainly concerned with sorting out the width of any label

EditNum: EditNun{int id, int x, int y, int width,
char *label, long mn, long nax, int nustValidate)
Edi t Wndow(id, x, y, width, 3, nustValidate)

fMn = nin;
fMax = nax;;
fSetval = fval = 0;
int s = (label == NULL) ? 2 : strlen(label)+2;
width -= 6;
fLabel Wdth = (s <width) ? s : width;
ShowText (| abel , 2, 2, flLabel Wdth);
}

It also sets the data members that record the allowed range of valid inputs and sets
the "value" data member to zero.
The Set Val () member function restricts values to the permitted range:

void EditNum: SetVal (1 ong val, int redraw

Window class hierarchy: implementation

1115

}

Member Showval ue() has to convert the number to a string of digits and get
these output (if the number is too large to be displayed it is replaced by '#' marks).
Thereis a dlight inconsistency in the implementation of Edi t Num Theinitial value
is shown "right justified" in the available field. When a new value is entered, it
appears "left justified” in thefield. (Getting the input to appear right justified is not
really hard, itsjust long winded. As successive digits are entered, the display field
has to be cleared and previous digits redrawn one place further left.)

if(val > fMax) val
if(val < fMn) val
fSetval = fvVal = val;
Showval ue(redraw) ;

f Max;
fMn;

voi d Edit Num : Showval ue(i nt redraw)

{

}

TheHand! eChar act er () member function has to deal with a couple of special
cases. An input value may be preceded by a + or - sign character; details of the
sign have to be remembered. After the optional sign character, only digits are
acceptable. The first digit entered should cause the display field to be cleared and
then the digit should be shown (preceded if necessary by a minus sign).

int left = flLabel Wdth;
int pos = fWdth - 1;
long val = fval;

for(int i =left; i<= pos; i++)
fQurrenting[1][i-1] ="'

if(val <0) val = -val;

if(val == 0)

fQurrentlng[1] [pos-1] =
while(val > 0) {

int d=val %10;

val =val / 10;

char ch =d +'0";

"o

fQurrent|ng[1] [pos-1] = ch;

pos--;
if(pos <= left) break;

i f (pos<=left)
for(i=left; i<fWdth;i++)

fQurrentlmg[1] [i-1

el se
i f(fVal <0)

fQurrentlng[1] [pos-1] ="
i f(redraw

ShowCont ent () ;

)= #

1

i nt Edi t Num : Handl eChar act er (char ch)

/1 ignore | eading plus sign(s)
if((fEntry == 0) && (ch =="+"))
return 1;

EditNum::
ShowValueg()

Clear field

Generate digit string
starting at right

"Hash fill" when
number too large

Add sign when
needed

EditNum::
HandleCharacter()

Deal with initial sign

1116 Reusable designs

if((fEntry == 0) & (ch =="'-")) {
fsign = -fsign;
return 1;
Terminate input on if(lisdigit(ch))
non-digit return O;
if(fEntry == 0) {
Clear entry field for d earArea(flLabel Wdth, 2, fWdth-1, 2, 0);
first digit fval = 0;

i f(fsign<0) {
Set (f Label Wdth, 2, '-");
Set (f Label Wdt h+1, 2, ch);

}
el se Set(fLabel Wdth, 2, ch);

Consume ordinary fEntry++;
digits fval = fval*10 + (ch - '0");
return 1;
}

As the digits are entered, they are used to calculate the numeric value which gets
storedinf Val .

The £ sign indication is held in fsi gn. This is initialized to "plus" in
Initializelnput() andis used to set the sign of the final number in
Ter m nat el nput () :

void EditNum:Initializel nput()

Edi t Wndow: : I nitializelnput();
fsign = 1;
}

voi d Edit Num : Ter m nat el nput ()

fVal = fsign*fVval;
}

If the number entered is out of range, the Val i dat e() function fills the entry
field with a message and then, using the Beep() and Del ay() functions of the
W ndowRep object, brings error message to the attention of the user:

EditNum::Validate int EditNum: Validate()
if(!'((fMn <=fVal) & (fVal <= fMax))){
Invalid entry ShowText (" (out of range)", flLabel Wdth , 2,
fwdth-1,0,0);

W ndowRep: : | nst ance() - >Beep() ;
W ndowRep: : I nst ance() - >Del ay(1);
fVal = fSetVal ;
d ear Area(fLabel Wdth, 2, fWdth-1, 2, 0);
Showval ue(1);
Failurereturn return O;

}

Window class hierarchy: implementation 1117

el se return 1;

}
The remaining member functions of class Edi t Numare simple:
i nt Edi tNum: Content Changed() { return fVal != fSetVal; }

voi d Edit Num : Set Qur sor Posi ti on()

Set Pronpt Pos(f Label Wdth, 2);

MenuWindow

The constructor for class MenuW ndow initializes the count of menu items to zero
and adds aline of text at the bottom of the window:

MenuW ndow. : MenuWndow(int id, int x, int y, int width, int

hei ght)
Edi t Wndow(id, X, y, width, height)
{
f Choi ces = 0;
ShowText (" (use 'option-space’ to swtch between
"choi ces, 'enter' to select)",
2, height-1, width-4);
}

Menu items are "added" by writing their text into the window background (the
positions for successive menu items are predefined). The menu numbers get stored
inthe array f Onds.

i nt MenuW ndow: : AddMenul t en{ const char *txt, int nun MenuWindow::
{ AddMenultem()
i f(fChoi ces == kMAXCHO CES)
return O;

int len = strlen(txt);

f Gmds[f Choi ces] = num

int x = 10;

int y =4 + 3*f Choi ces;
ShowText (txt, x, y, fWdth-14);
f Choi ces++

return 1;

}

The PoseModal | y() member function gets the window displayed and then uses
Get I nput () (as inherited from class Edi t W ndow) to allow the user to select a
menu option:

i nt MenuW ndow: : PoseModal | y() MenuWindow::
PoseM odally()
D spl ayW ndow() ;
f Chosen = 0;

1118 Reusable designs

Get I nput ();
return fOxds|[f Chosen] ;
}

The "do nothing" function Edi t W ndow. : Handl eChar act er () is redefined.
Function MenuW ndow: : Handl eChar act er () interprets "tabs' as commands
changing the chosen item.

MenuWindow:: int MenuW ndow: : Handl eChar act er (char ch)
HandleCharacter() {
I gnore anything if(ch I'= kTABQ
except tabs return 1;
Clear cursor d earQursor Position();
Update chosen item f Chosen++;
i f (fChosen==f Choi ces)
f Chosen = 0;
Set Qur sor Posi tion();
return 1;
}

(The"tab" character is defined by the character constant k TABC. On some systems,
e.g. Symantec's environment, actual tab characters from the keyboard get filtered
out by the run-time routines and are never passed through to a running program. A
substitute tab character has to be used. One possible substitute is "option-space”
(const char kTABC = OxCA;).

The auxiliary member functions SetCursorPosition() and
d ear Cusor Post i on() deal withthedisplay of the==> cursor indicator:

voi d MenuW ndow: : Set Qur sor Posi tion()

-
int x =5;
int y =4 + 3*fChosen;
ShowText ("==>", X, vy, 4,0,0);
Set Pronpt Pos(x, y);
}
voi d MenuW ndow: : A ear Cur sor Posi tion()
{
int x =5;
int y =4 + 3*f Chosen;
ShowText (" ", X, y, 4, 0, 0);
}
Dialogs

The basic dialogs, Nunber Di al og and Text Di al og, are very similar in structure
and are actually quite simple. The constructors create an Edi t W ndow containing a

Window class hierarchy: implementation 1119

prompt string (e.g. "Enter record number"). This window also contains a

subwindow, either an Edi t Numor an Edi t Text .
Nunber D al og: : Nunber D al og(const char *nsg, Dialog constructors
long mn, |ong nmax)
Edi t Wndow(kNO_I D, 15, 5, 35, 10)

{
fE = new Edi t Num{kNO ID, 5, 5, 20, NUL, nin, nax, 1);
ShowText (nmsg, 2, 2, 30);
AddSubW ndow(f E) ;

}

Text Di al og: : Text Di al og(const char *nsg)
Edi t Wndow(kNO I D, 15, 5, 35, 10)

fE = new Edi t Text (kNOID, 5, 5, 20, NULL, 63, 1);
ShowText (nmsg, 2, 2, 30);
AddSubW ndow(f E) ;

}

The PoseMbdal | y() functions get the window displayed, initialize the editable
subwindow, arrange for it to handle the input and finally, return the value that was

input.

| ong Nunber D al og: : PoseMbdal | y(I ong current) PoseM odally()
{ functions

D spl ayWndow() ;

fE->SetVal (current, 1);

fE>CGetlnput();

return fE->GetVal ();

}

voi d Text D al og: : PoseMbdal | y(char *current, char newdatal])
{

D spl ayW ndow() ;

fE->SetVal (current, 1);

fE->Get | nput ();

strcpy(newdat a, f E->CGet Val ()) ;

Anlinput Fi | eDi al og issimply aText Di al og whose PoseMdal | y() function
has been redefined to include an optional check on the existence of thefile:
InputFileD al og:: I nputFilebialog() : InputFileDialog
Text D al og("Narre of input file")
{

}

void I nputFileD al og: : PoseMbdal | y(char *current,
char newdata[], int checked)

{
D spl ayW ndow() ;
for(;;) {

1120

Reusable designs

Loop until valid file
name given

Try opening file

Warn of invalid file
name

Global function
Alert()

RecordwWindow::
PoseModally()

fE->SetVal (current, 1);
fE->Get I nput () ;
strcpy(newdat a, f E->Get Val ());
i f(!checked)

return;
ifstreamin;
i n.open(newdata,ios::in | ios::nocreate);
int state = in.good();
in.close();
if(state)

return;
W ndowRep: : | nst ance() - >Beep() ;
fE->SetVal ("File not found", 1);
W ndowRep: : I nst ance() - >Del ay(1);
}

}

The Al ert () function belongs with the dialogs. It displays an Edi t W ndow
with an error message. This window remains on the screen until dismissed by the
using hitting the enter key.

void A ert(const char *nsQ)

{
Edi t Wndow e(kNO I D, 15, 5, 35, 10);
e. D spl ayW ndow() ;
e. ShowText (nmsg, 2, 2, 30, 0, 0);
e. ShowText ("K', 18, 6, 3, 0, 0);
e. Getlnput();

}

RecordWindow

As far as the constructor is concerned, a Recor dW ndowissimply an Edi t W ndow
with an associated Recor d:

Recor dW ndow. : Recor dW ndow(Record *r)
Edi t Wndow(0, 1, 1, 70, 20)

fRecord = r;
}

The main role of aRecor dW ndow is to be "posed modally". While displayed
arranges for its subwindows to "get input”. (These subwindows get added using the
inherited member function W ndow: : AddSubW ndow()). The code for Recor d
W ndow: : PoseMbdal | y() wasgiven earlier.

The auxiliary functions Count Edi t W ndows(), | nitEditW ndows(), and
Next Edi t Wndow() work with the subwindows list. The Count Edi t W ndows()
function runs through the list of subwindows asking each whether it "can handle
input":;

voi d Recor dW ndow: : Count Edi t W ndows()
{

Window class hierarchy: implementation 1121

fNuniEdits = O;
int nsub = f SubWndows. Lengt h();
for(int i =1; i <= nsub; i++) {

Wndow w = (Wndow") fSubWndows. Nth(i);
i f (w>CanHandl el nput ())

f Nunidi t s++;
}

}

Function I ni t Edi t W ndows() , called when the Recor dW ndow is getting
displayed, arranges for the associated Record to load each window with the
appropriate value (taken from some data member of the Recor d):

voi d Recor dWndow: : | ni t Edi t Wndows()

{
int nsub = f SubWndows. Lengt h();
for(int i =1; i <= nsub; i++) {
Wndow w = (Wndow") fSubWndows. Nth(i);
i f (w>CanHandl el nput ())
f Recor d- >Set D spl ayFi el d((Edi t Wndow*)w) ;
}
}

Function Next Edi t Wndow() updates the value of f Curr ent (which identifies
which editable subwindow is "current"). The appropriate subwindow must then be
found (by counting through the f Subw ndows list) and made the currently active
window that will be given the chance to "get input".

voi d Recor dW ndow:. : Next Edi t W ndow()

if(fQurrent == fNunkdi ts)

fQurrent = 1;
el se

f Qurrent ++;
int nsub = f SubWndows. Lengt h();
for(int i =1, j=0; i <= nsub; i++) {

Wndow* w = (Wndow*) fSubWndows. Nth(i);
i f(w>CanHandl el nput ()) {
j ++
if(j ==fQurrent) {
fEWnN = (Edi t Wndow*) w;
return;

}

30.6.3 Using the concrete classes from a framework

The W ndow class hierarchy has been presented in considerable detail.
Here, the detail was necessary. After all, you are going to have to get the
framework code to work for the exercises. In addition, the structure and

1122

Reusable designs

Apparent complexity

Simplicity of use

implementation code illustrate many of the concepts underlying elaborate class
hierarchies.

Classlikel nput Fi | eDi al og or Edi t Numare actually quite complex entities.
They have more than thirty member functions and between ten and twenty data
members. (There are about 25 member functions defined for class W ndow; other
functions get added, and existing functions get redefined at the various levelsin the
hierarchy like Edi t W ndow, Text Di al og €fc).

This apparent complexity is not reflected in their use. As far as usage is
concerned, an | nput Fi | eDi al og is something that can be asked to get the name of
aninput file. The code using such an object is straightforward, e.g.

voi d Docunent : : Qpend d()

{
I nput Fi | eD al og ool d;
ool d. PoseMbdal | y("exanpl e", fFi | eNane, fVerifylnput);
eenA dFi l e();

}

("Give me an InputFileDialog". "Hey, file dialog, do your stuff".)

This is typical. Concrete classes in the frameworks may have complex
structures resulting from inheritance, but their useis simple.

In real frameworks, the class hierarchies are much more complex. For example,
one of the frameworks has a class TScr ol | Bar that handles scrolling of views
displayed in windows. It is basically something that responds to mouse actions in
the "thumb" or the "up/down" arrows and it changes a value that is meant to
represent the origin that isto be used when drawing pictures. Now, aTScr ol | Bar
isakind of TCt | Mgr which is a specialization of TControl . ClassTControl isa
subclass of TVi ew, aTVi ew is derived from TCommandHandl er. A
TCommandHandl! er is actually a specialization of class TEvent Handl er, and,
naturaly, class TEvent Handl er isderived from TQhj ect .

By the time you are six or seven levels deep in a class hierarchy, you have
something fairly complex. A TScrol | Bar will have afair number of member
functions defined (about 300 actually) because it can do anything a TObj ect can
do, and all the extrathings that a TEvent Handl er added, plus the behaviours of a
TComandHandl er , while TVi ew and others added several more abilities.

Usually, you aren't interested. When using a TScr ol | Bar, all you care is that
you can create one, tell it to do its thing, and that you can use a member function
Get Val () to get the current origin value when you need it.

The reference manuals for the class libraries will generally document just the
unique capabilities of the different concrete classes. So something like an
I nput Fi | eDi al og will be described simply in terms of its constructor and
PoseMbdal | y() function.

Of course sometimes you do make some use of functions that are inherited from
base classes. The Recor dW ndow class is an example. This could be described
primarily in terms of its constructor, and PoseMbdal | y() functions. However,
code using aRecor dW ndowwill also use the AddSubW ndows() member function.

Window classes: implementation 1123

30.7 ORGANIZATIONAL DETAILS

When working with a framework, your primary concerns are getting to understand
the conceptual application structure that is modelled in the framework, and the role
of the different classes.

However, you must also learn how to build a program using the framework.
Thisisafairly complex process, though the integrated development environments
may succeed in hiding most of the complexities.

There are a couple of sources of difficulties. Firstly, you have all the "header"
files with the class declarations. When writing code that uses framework classes,
you have to #include the appropriate headers. Secondly, there is the problem of
linking the code. If each of the classesis in a separate implementation file, you will
have to link your compiled code with a compiled version of each of the files that
contains framework code that you rely on.

Headers
One way of dealing with the problem of header filesis in effect to #include them

al. This is normally done by having a header file, e.g. "ClassLib.h", whose
contents consist of along sequence of #includes:

#i ncl ude "Ondhdl . h"

#i ncl ude " Application. h"
#i ncl ude "Docunent . h"

#i ncl ude "W ndowRep. h"

#.i. ncl ude "D al og. h"

This has the advantage that you don't have to bother to work out which header files
need to be included when compiling any specific implementation (.cp) file.

The disadvantage is that the compiler has to read all those headers whenever a
piece of code is compiled. Firstly, this makes the compilation process slow. With
a full size framework, there might be fifty or more header files; opening and
reading the contents of fifty files takes time. Secondly, the compiler has to record
the information from those files in its "symbol tables'. A framework library may
have one hundred or more classes; these classes can have anything from ten to three
hundred member functions. Recording this information takes a lot of space. The
compiler will need many megabytes of storage for its symbol tables (and this had
better be real memory, not virtual memory on disk, because otherwise the process
becomes too slow).

There are other problems related to the headers, problems that have to be sorted
out by the authors of the framework. For example, there are dependencies between
different classes and these have to be taken into account when arranging
declarations in a header file. In aframework, these dependencies generally appear
as the occurrence of data members (or function arguments) that are pointers to
instances of other classes, e.g:

Problems with
"header" filesand
linking of compiled
modules

" The enormous
header file"

Slow compilations,
large memory usage

I nterdependencies
among class
declarations

1124

Reusable designs

class Record {

I.Q.écor dWndow *fWn;

b
cl ass Recor dW ndow {

Record *fRec;
};

If the compiler encounters class Recor d before it learns about class
Recor dW ndow it will complain that it does not understand the declaration
Recor dW ndow *f W n. If the compiler encounters class Recor dW ndow before it
learns about class Recor d it will complain that it doesn't understand the declaration
Record *f Rec.

One solution to this problem is to have dummy class declarations naming the
classes before any instances get mentioned:

cl ass CommandHandl er;
class Application;

cl ass Docunent ;

cl ass Wndow,

cl ass Record;

cl ass Recor dW ndow,

// Now get first real class declaration
cl ass CommandHand! er {
b

Such alist might appear at the start of the composite "ClassLib.h" file.
An alternative mechanism is to include the keyword cl ass in al the member
and argument declarations:

cl ass Recor dW ndow {
public:

Recor dW ndow(cl ass Record *r);
pr ot (.e.c.:t ed:

<.:.I. ass Record *fRec;

Linking

Thelinking problem isthat a particular program that uses the framework must have
the code for all necessary framework classes linked to its own code.

Window classes: implementation 1125

One way of dealing with thisis, once again, to use asingle giant file. Thisfile
contains the compiled code for all framework classes. The "linker" hasto scan this
fileto find the code that is needed.

Such a file does tend to be very large (several megabytes) and the linkage
process may be quite slow. The linker may have to make multiple passes through
the file. For example, the linker might see that a program needs an
I nput Fi | eDi al og; so it goes to the library file and finds the code for this class.
Then it finds that an | nput Fi | eDi al og needs the code for Text Di al og; once
again, the linker has to go and read through the file to find this class. In unfortunate
cases, it might be necessary for alinker to read the file three or four times (though
there are alternative solutions).

If the compiled code for the various library classes is held in separate files, the
linker will have to be given alist with the names of all thesefiles.

Currently the Symantec system has a particularly clumsy approach to dealing
with the framework library. In effect, it copies all the source files of the framework
into each "project” that is being built using that framework. Consequently, when
you start, you discover that you aready have 150 filesin your program. Thisleads
to lengthy compilation steps (at least for the first compilation) as well as wastage of
disk space. (It also makes it easier for programmers to change the code of the
framework; changing the framework is not awiseidea.)

RecordFile Framework

Figure 30.10 illustrates the module structure for a program built using the
RecordFile framework. Although this example is more complex than most
programs that you would currently work with, it is typical of real programs.
Irrespective of whether you are using OO design, object based design, or functional
decomposition, you will end up with a program composed from code in many
implementation files. You will have header files declaring classes, structures and
functions. There will be interdependencies. One of your tasks as a developer is
sorting out these dependencies.

The figure shows the various files and the #include rel ationships between files.
Sometimes a header file is #included within another header; sometimes a header
fileis#included by an implementation (.cp) file.

When you have relationships like class derivation, e.g. cl ass M/App : public
Appl i cati on, the header file declaring a derived class like My App (My.h) has to
#include the header defining the base class Appl i cat i on (Application.h).

If the relationship is simply a "uses' one, e.g. an instance of class Recor dW n
uses an instance of class Recor d, then the #include of classRecor d can be placed in
the RecordWin.cp file (though you will need a declaration like cl ass Record
within the RecordWin.h file in order to declare Recor d* data members).

Thefilesused are asfollows:

e commands.h
Declares constants for "command numbers" (e.g. cNEWetc). Used by all
CommandHandl er classes so #included in CmdHdl.h

1126 Reusable designs

commands. h

. 1

QuiHdl . h

Docurrent . h

j Application. h
\

™\

nai n. cp M. cp BTDoc. cp Record. cp BTree. cp Dcp Docunent.cp OmdHdl . cp
Recor dWn. cp W ndowRep. cp Application.cp
B, B, B, B, B, B, B,
o414 o414 o414 o414 o414 o414 o414
100 100 100 100 100 100 100 100 100 100
010 010 010 040 040 040 040 040 040 040 040
nain. o M. o BTDoc.o Record.o BTree. o Do Docurrent . o OwiHdl . o
Recor dwn. o W ndowRep. o Application.o

Figure 30.10 Module structure for a program using the RecordFile framework.

e Keydh
Declares pure abstract class KeyedSt or abl el t em This hasto be #included
by BTree.h and Record.h. (The class declaration in Record.h tells the compiler
that aRecor d isa KeyedSt or abl el t em so we had better let the compiler
know what a KeyedSt or abl el t emis)

e D.h
Declares the dynamic array. A W ndow contains an instance of class
Dynami cArray so the header D.h will have to be #included in WindowRep.h.

e CmdHdl.h
Declares the abstract base class CommandHand| er .

¢ BTreeh
Declares class BTree.

¢ WindowRep.h
Declares classes: W ndowRep, W ndow, Nunber I t em Edi t W ndow, Edi t Text ,
Edi t Num and the "dialog" classes. A program that uses the window code
typically uses al different kinds of windows so they might as well be declared
and define as a group.

Window classes: implementation 1127

» Document.h and Application.h
Declare the corresponding "partially implemented abstract classes'.

e BTDoc.h
Declares class BTDoc, #including the Document.h class (to get a definition of
the base class Document), and BTree.h to get details of the storage structure
used.

* Record.h and RecordwWin.h
Declarethe Recor d and Recor dW n classes. Class Recor dW n is separate from
the other Window classes. The main group of Window classes could be used
in other programs; Recor dW n is special for the type of programs considered in
this chapter.

* My.h
Declares the program specific "MyApp", "MyDocument", and "MyRec"
classes.

e The".cp" implementation files
The code with definitions for the classes, additional #includes as needed.

The main program, in file main.cp, will simply declare an instance of the
"MyApp" classand tell it to "run".

30.8 THE "STUDENTMARKS" EXAMPLE PROGRAM

We might aswell start with the main program. It has the standard form:
int main()

St udent Mar kApp a;
a. Run();
return O;

}

The three classes that have to be defined are St udent Mar kApp, St udent
Mar kDoc, and St udent Rec. The "application” and "document” classes are both
simple:

cl ass Student MarkApp : public Application { Application and
pr ot ect ed: Document classes
vi rtual Docunent * DoMakeDocurrent () ;
¥
cl ass Student MarkDoc : public BTDoc {
pr ot ect ed:
virtual Record *DoMakeRecor d(l ong recnum;
virtual Record * MakeEnpt yRecor d() ;
¥

The implementation for their member functionsis as expected:

1128 Reusable designs

I mplementation of Document * St udent Mar kApp : : DoMakeDocunent ()
Application and {

Document classes return new Student Mar kDoc;
}
Record * St udent Mar kDoc: : DovakeRecor d(| ong recnum)
{
return new Student Rec (recnunj;
}
Record * St udent Mar kDoc: : MakeEnpt yRecor d()
{
return new Student Rec (0);
}

Record class The specialized subclass of class Recor d does have some substance, but it is all
quite simple:

class StudentRec : public Record {
public:
Student Rec (I ong recnun);

Redefine virtual void WiteTo(fstrean& out) const;
KeyedStorablel tem virtual void ReadFron(fstrean& in);
functions virtual long D skSize(void) const ;
Redefine Record virtual void SetD splayFiel d(Edi t Wndow *e);
functions virtual void ReadD spl ayFi el d(Edit Wndow *e);
pr ot ect ed:

virtual void ConsistencyUpdat e(Edi t Wndow *e);
virtual void AddFi el dsToW ndow();

Declare unique data char f St udent Narre[64] ;
members | ong f Mar k1;
| ong f Mar k2;
| ong f Mar k3;
| ong f Mar k4;

| ong f M dSessi on;
| ong f Fi nal Exam

Nunber |t em *fN
| ong f Total ;
b

The data required include a student name and marks for various assignments and
examinations. Thereisalso alink to aNunber | t emthat will be used to display the
total mark for the student.

The constructor does whatever an ordinary Recor d doesto initialize itself, then
sets al its own data members:

St udent Rec: : Student Rec(l ong recnun) : Record(recnum

fMarkl = fMark2 = fMark3 = fMark4 =
f M dSessi on = fFi nal Exam = 0;

StudentMarks Program 1129

strcpy(f Student Nane, " Nanel ess") ;

The function AddFi el dsToW ndow() populates the Recor dW ndow with the
necessary Edi t Text and Edi t Numeditable subwindows:

voi d Student Rec: : AddFi el dsToW ndow() Building the display
{ structure
Recor d: : AddFi el dsToW ndow() ;

Edit Text *et = new Edit Text (1001, 5, 4, 60, Adding an EditText
"Student Nane ");
f RW >AddSubW ndow(et) ;

Edi t Num *en = new Edi t Nun{ 1002, 5, 8, 30, Adding some
"Assignnent 1 (5) ", 0, 5,1); EditNum subwindows
f RW >AddSubW ndow(en) ;
en = new Edi t Nun{ 1003, 5, 10, 30,
"Assignnent 2 (10) ", 0, 10,1);
f RW >AddSubW ndow(en) ;

en = new Edit Nun{1007, 40, 10, 30, "Exanination (50) ",
0, 60,1);
f RW >AddSubW ndow(en) ;

fTotal = fMarkl + fMark2 + fMark3 + f Mark4
+ f M dSessi on + fFi nal Exam
fN = new Nunber|ten{2000, 40, 14,30, "Total ", fTotal); Adding a
f RW >AddSubW ndow(f N) ; Numberltem

}

The call to the base class function, Recor d: : AddFi el dsToW ndow() , gets the
Number It em for the record number added to the Recor dW ndow. An extra
Nunber I t emsubwindow is added to hold the total.

Functions Set Di spl ayFi el d() and ReadDi spl ayFi el d() transfer data
to/from the Edi t Text (for the name) and Edi t Numwindows:

void Student Rec :: Set D spl ayFi el d(Edi t Wndow *e) Data exchange with
editable windows
long id = e->1d();
switch(id) {
case 1001: Setting an EditText
((EditText*)e)->SetVal (f Student Nane, 1);
br eak;
case 1002: Setting EditNum
((Edi tNunt)e) - >Set Val (f Markl, 1);
br eak;
case 1003:
((Edi tNunt)e) - >Set Val (f Mark2, 1);
br eak;
case 1004
((Edi tNunt)e) - >Set Val (f Mark3, 1) ;
br eak;
case 1005:

((Edi t Nunt) e) - >Set Val (f Mark4, 1) :

1130 Reusable designs

br eak;

case 1006:
((Edi t Nunt) e) - >Set Val (f M dSessi on, 1) ;
br eak;

case 1007:
((Edi t Nunt) e) - >Set Val (f Fi nal Exam 1) ;
br eak;

}
voi d Student Rec: : ReadD spl ayFi el d(Edi t Wndow *e)

long id = e->ld();
switch(id) {
Reading an EditText case 1001:
char* ptr = ((EditText*)e)->CetVal ();
strcpy(f Student Nane, ptr);
br eak;
Reading an EditNum case 1002:
fMarkl = ((EditNunt¥)e)->GetVal ();
br eak;

case 1007:
f Fi nal Exam = ((Edit Nunt)e)->Get Val ();
br eak;
}

}

TheReadFron() and WiteTo() functionsinvolve a series of low level read
(write) operations that transfer the data for the individual data members of the
record:

Reading from file voi d Student Rec: : ReadFron(f strean& i n)

{
.read((char*) & RecNum si zeof (f RecNun));
.read((char*) &f St udent Nare, si zeof (f St udent Nane)) ;
.read((char*) & Mark1, sizeof (fMarkl));
.read((char*) & Mark2, sizeof (fMark2));
.read((char*) & Mar k3, sizeof (f Mark3));
.read((char*) & Mar k4, sizeof (fMark4));
.read((char*) & M dSessi on, sizeof (f M dSession));

i
i
i
i
i
i
i
i n. read((char*) & Fi nal Exam si zeof (f M dSessi on));

5033333353

}

Writing to file void StudentRec::WiteTo(fstrean& out) const

{
out.wite((char*)& RecNum si zeof (f RecNunm);

out.write((char*)& Student Nane, sizeof (f Student Nane));
out.wite((char*)& Markl, sizeof (fMarkl));

6[:!'[.write((char*) & Fi nal Exam sizeof (f M dSession));
}

(Thetotal does not need to be saved, it can be recalculated.)

StudentMarks Program 1131

The DiskSize() function computes the size of arecord as held on disk:

| ong Student Rec: : D skSi ze(voi d) const

{
return sizeof (f RecNun) + si zeof (f St udent Nane)

+ 6 * sizeof (long);

}

Function Consi st encyUpdat e() is called after an editable subwindow gets
changed. In this example, changes will usually necessitate the recalculation and
redisplay of the total mark:

voi d Student Rec: : Consi st encyUpdat e(Edi t Wndow *e)

fTotal = fMarkl + fMark2 + fMark3 + f Mark4
+ f M dSessi on + fFi nal Exam
fN->SetVal (f Total, 1);

EXERCISES

1. Implement all the code of the framework and the StudentMark application.

2. Create new subclasses of class Collection and class Document so that an AVL tree can
be used for storage of datarecords.

3. Implement the Loans program using your AVLDoc and AVL Collection classes.
The recordsin the files used by the Loans program are to have the following data fields:

customer name (64 characters)

phone number (long integer)

total payments thisyear (long integer)

an array with five entries giving film names (64 characters) and weekly charge
for movies currently on loan.

The program is to use arecord display similar to that illustrated in Figure 30.3.

4. Thereisamemory leak. Findit. Fix it correctly.
(Hint, the leak will occur with a disk based collection. It isin one of the Document
functions. The "obvious" fix iswrong because it would disrupt memory based collection
structures.)

1132 Reusable designs

