
3 

Early Capability Architectures 

3. I Introduction 

Although the Burroughs, Rice, and BLM systems included 
capability-like addressing structures, the word “capability” 
was not introduced until 1966, by Dennis and Van Horn of 
MIT [Dennis 661. Dennis and Van Horn defined a hypotheti- 
cal operating system supervisor for a multiprogramming sys- 
tem. Multiprogramming systems were already in use at that 
time; however, many difficult problems had yet to be solved. 
The MIT design used the concept of capability addressing to 
provide a uniform solution to several issues in multiprogram- 
ming systems, including sharing and cooperation between 
processes, protection of processes, debugging, and naming of 
objects. 

The concept of capability addressing presented by Dennis 
and Van Horn quickly found its way into several hardware and 
software systems. This chapter first describes the Dennis and 
Van Horn supervisor and its use of capabilities and then exam- 
ines some of the early systems influenced by its design. 

3.2 Dennis and Van Horn’s Supervisor 

Dennis and Van Horn’s operating system supervisor is de- 
fined by a set of objects and a set of operations for each type of 
object. The operations, implemented by the supervisor, are 
called meta-instructions. To describe this system and its meta- 
instructions involves the introduction of the following terms: 41 



42 

l segment- an addressable collection of consecutive 
memory words, 

l process- a thread of control through an instruction 
stream, and 

l computation-one or more processes that share an ad- 
dressing environment and cooperate to solve a task. 

A process is the basic execution entity. A process executes 
within an environment called a sphere of protection or domain. 
The sphere of protection for a process defines the segments 
that it can address, the I/O operations that it can perform, and 
other objects, such as directories, that it can manipulate. 

As part of its state, a process in the Dennis and Van Horn 
system contains a pointer to a list of capabilities, called a C-list 
for short. Each capability in the C-list names an object in the 
system and specifies the access rights permitted to that object. 
The name is a pointer that the supervisor can use to locate the 
object; however, the authors suggest that systems avoid the use 
of physical attributes such as addresses for pointers. The name 
is a unique bit string assigned to an object when it is created. 
The naming of objects in an address-independent manner sim- 
plifies relocation and management of memory. 

The access rights in a capability are specific to the type of 
object named. For example, the rights bits allow execute, read, 
read/execute, read/write, or readiwriteiexecute access for seg- 
ments. Each capability also contains a single bit indicating 
whether or not its possessor is the owner of the object. An 
object’s owner has special rights with respect to the object, 
such as the ability to delete it. 

Each process in the system, then, has a pointer to a single 
C-list containing capabilities naming all of the objects it can 
access. When executing a supervisor meta-instruction, the 
process specifies capabilities by their index in the C-list. A 
computation consists of several potentially cooperating proc- 
esses that share a single sphere of protection. That is, the proc- 
esses in a computation share the same C-list. Figure 3-1 shows 
three processes that make up two distinct computations. 

The supervisor allows the creation of tree-structured proc- 
esses. Using a FORK operation, a process can create a parallel 
process executing within its sphere of protection. In addition, a 
process can create and control subprocesses, called inferior 
spheres, that execute in separate subordinate domains. To 
create an inferior sphere, a process executes a CREATE SPHERE 
meta-instruction. As a parameter to the meta-instruction, the 



1 Segment 

Directory 

Process 
C-list 

Computation Segmenf 

Segment 

C-M 

Figure 3-1: Processes, Computations, and C-Lists 

process specifies an entry in its C-list, in which the supervisor 
places a capability for the inferior. This capability can then be 
used to control the inferior process. 

When a process executes a CREATE SPHERE meta-instruction, 
the supervisor creates the inferior with an empty C-list. Using 
its capability for the inferior, the parent process can execute 
meta-instructions to: 

l move capabilities from its C-list to the inferior’s C-list, 
l start and stop the inferior, 
l examine or change the inferior’s state, and 
l remove capabilities from the inferior’s C-list. 

The creating process can construct any sphere of protection 
desired for the inferior, with the restriction that the superior’s 
C-list must contain any capabilities to be copied to the inferi- 
or’s C-list. Table 3-l lists the Dennis and Van Horn meta- 
instructions that operate on inferior spheres, capabilities, and 
directories (which are described in Section 3.6). 

Inferior spheres are useful for debugging. When testing a 
new procedure, a user might like to constrain the environment 
in which the procedure can execute so that an error will not 
accidentally destroy the user’s objects. When a process creates 
an inferior sphere, it specifies the address of a procedure to 
handle any special conditions. If an error or exception is de- 

3.2 Dennis and Van 
Horn’s Supervisor 

43 



Early Capability 
Architectures CREATE SPHERE 

GRANT 

EXAMINE 

UNGRAN'I 
ENTER 

RELEASE 
CREATE 

PLACE 

ACQUIRE 

REMOVE 

DELETE 
LINK 

create an inferior sphere and return a proc- 
ess capability to the creator 
copy a capability to an inferior’s C-list with 
specified access rights 
copy inferior’s capability into superior’s C- 
list 
delete capability from inferior’s C-list 
call protected procedure with one capability 
parameter 
remove capability from C-list 
create a new segment, entry, or 
directory 
insert capability and text name into 
directory 
search directory for text name and copy as- 
sociated capability into C-list 
remove named item and associated capabil- 
ity from directory 
delete object specified by name 
obtain capability for another user’s root di- 
rectory and insert in C-list 

Tab/e 3-l: Dennis and Van Horn Supervisor Capability Operations 

44 

tected in the inferior, the supervisor creates a new process 
within the sphere of the parent process to execute the error- 
handling procedure. Or, the inferior can explicitly signal the 
parent through special meta-instructions. This feature allows a 
superior to build a supervisory environment for its inferior 
which is equivalent to that provided by the superior’s parent 
(or by the supervisor). 

Although C-lists provide for object addressing, they do not 
satisfy the need for object naming. Users in a multiprogram- 
ming system must be able to identify objects (particularly 
long-term objects such as files) using mnemonic character 
string names. They must also be able to share objects with 
other users in the system. In order to allow users to name 
objects and retain them indefinitely, the supervisor provides 
primitives for the creation and manipulation of capability direc- 
tories. 

A directory contains a list of directory entries. Each entry 
consists of a text name, an associated capability, and a single 
bit specifying whether the entry is private or free. The 
private/free bit allows a user to share a directory without per- 
mitting access to all of the directory entries. Directory entries 



3.2 Dennis and Van 
are accessed by text name, and meta-instructions are provided Horn’s Supervisor 

to copy a directory capability to the user’s C-list, place a C-list 
capability in a directory along with an associated name, or re- 
move a directory entry. The directory meta-instructions- 
PLACE,ACQUIRE,REMOVE,DELETE, andLINK--arelistedamong 
the capability operations in Table 3-l. 

Each user has a single root directory that contains capabili- 
ties for the user’s permanent objects. When a user initiates a 
session (that is, when the user logs into the system), the super- 
visor creates a new process and places a capability for the root 
directory in the process’s C-list, giving the process access to 
these objects. A process can then load capabilities from the 
root directory into the C-list by executing an ACQUIRE meta- 
instruction. The ACQUIRE specifies three parameters: the capa- 
bility for the root directory, the text name of the object to be 
loaded, and the C-list location in which to place the associated 
capability. 

New directories can be created and capabilities for direc- 
tories can be stored in other directories. Thus, a user can build 
graph-structured directory mechanisms and share directories 
or subdirectories. To facilitate object sharing, the supervisor 
allows a process to obtain a capability for another process’s root 
directory. In turn, the root directory can be traversed to locate 
subdirectories, and so on. However, when examining another 
user’s directory structure, only those entries marked as free 
can be accessed. 

The Dennis and Van Horn supervisor does not support a 
separate concept of files. Any segment or directory is potenti- 
ally long-lived and can be used to store information from ses- 
sion to session or over system restarts. An object is maintained 
by the system as long as a capability exists for that object. 
Therefore, to make a segment or directory long-lived, a user 
simply stores a capability for that object in the root directory or 
any long-lived directory reachable through the root. The su- 
pervisor automatically deletes an object when the last 
capability for that object is deleted. Deleting any single capa- 
bility for an object does not necessarily cause the object to be 
deleted because other capabilities for the object may still exist. 
The supervisor does support an explicit DELETE meta-instruc- 
tion that can be used by a process with owner privileges to an 
object. 

One of the most important aspects of the Dennis and Van 
Horn supervisor is its support for protected procedures. 
Within a multiprogramming system, it should be possible for a 45 



Early Capability 
Architectures user to create a procedure that provides service to many differ- 

ent users. However, this procedure must be able to protect 
local objects from its callers, and the callers may wish to guar- 
antee that the procedure does not destroy or compromise any 
of their local objects. The protected procedure meets both of 
these needs. 

A process creates a protected procedure by obtaining an 
entry capability through a supervisor meta-instruction. The 
entry capability contains a pointer to the C-list of the process 
that created it. It also contains an index, i, and a range, n, for a 
set of sequential procedure capabilities within the C-list of the 
creating process. The entry capability can then be passed to 
any process (through the directory mechanism, for example) 
and used to call any of the n procedures. To call a protected 
procedure, a process executes an ENTER meta-instruction speci- 
fying: 

l an entry capability, 
l the index of one of the n procedures to be called, and 
l a capability parameter to be passed to the protected proce- 

dure. 

The entry capability and capability parameter must be in 
the caller’s C-list. As a result of the ENTER instruction, the 
supervisor creates a new process to execute the protected pro- 
cedure. This new process executes in the sphere of protection 
specified by the C-list pointer contained in the entry capability. 
Figure 3-2 shows this change from the sphere of the caller to 
the sphere of the protected procedure. The entry capability in 
Figure 3-2 allows its owner to call one of two procedures de- 
fined by capabilities in the protected C-list. 

A protected procedure, then, executes in the domain de- 

Caller 
c-/is t 

Directory capabiiity 

Entry capabdity - 

) Segment capabiiiiy / 

Sphere of Caiier 

Protected Procedure 

Sphere of Protected Procedure 

46 Fgure 3-2. Protected Procedure Protection Spheres 



3.3 The MIT PDP-1 
fined by the procedure’s creator, not in the domain of the Timesharing System 

caller. In this way, the caller and the protected procedure are 
mutually isolated. The caller has no access to the protected 
procedure’s objects, and the procedure has no access to the 
caller’s objects, with the exception of those objects passed ex- 
plicitly through the capability parameter. Because this parame- 
ter can be a directory capability as well as a segment capability, 
a caller can pass a list of capabilities or an arbitrary data struc- 
ture. A process possessing an entry capability can only use that 
capability to call one of a sequence of procedures. Once that 
procedure begins execution, it has access to all of the objects 
available in its private C-list. 

The Dennis and Van Horn conceptual design became very 
influential on later systems. However, there are many ways to 
apply the concepts and many problems inherent in doing so. 
The first system to incorporate the concept of capability was a 
timesharing system at MIT, which is examined in the following 
section. 

3.3 The MIT PDP-I Timesharing System 

The first computer system to include Dennis and Van 
Horn’s capability operations was a timeshared operating sys- 
tem constructed at MIT from Dennis’ design [Ackerman 67, 
MIT 711. The system ran on a modified 12K-word Digital 
Equipment Corporation PDF’-1 computer, the first minicom- 
puter. The timesharing system supported five “typewriters” 
and used capabilities only to reference a few relatively high- 
level system resources, such as terminals, tapes, and drums. 
However, the operating system allowed users to extend this set 
of resources by creating new protected subsystems. It is the 
protected subsystem mechanism that is briefly examined here. 

Each process running on the PDP-1 timesharing system has 
a C-list (also called the program reference list, after the Bur- 
roughs BSOOO), in which capabilities are held. The C-list is 
actually maintained in locations O-77 of process address space. 
These locations are protected against program examination or 
modification and can only be manipulated by the operating 
system. Each capability is addressed by its index in the list. 

Capabilities are created by special supervisor instructions. 
Each capability represents a resource object owned by the 
process. The supervisor supports a small number of resource 
types: I/O device, inferior process, file, directory, queue, and 
entry. When the process wishes to perform an operation on a 47 



48 

resource object, it invokes the object’s capability through an 
INVOKE instruction. The INVOKE instruction specifies: (1) the 
C-list index of the capability to be invoked and (2) an operation 
to perform on the object represented by the capability. The 
INVOKE is similar to the ENTER instruction in the Dennis and 
Van Horn design. 

Dennis and Van Horn’s supervisor allows a process to create 
protected procedures that execute in private spheres of protec- 
tion to protect local data from access by their callers. The 
PDP-1 system goes a step further. It allows creation of con- 
trolled subsystems that maintain different protected data ob- 
jects on behalf of different processes, just as the operating sys- 
tem maintains files, for example, on behalf of different 
processes. To do this, the subsystem must be able to verify that 
a process is permitted access to an invoked object. 

A subsystem is accessed through entry capabilities in the 
same way that protected procedures are accessed in the Dennis 
and Van Horn supervisor. To identify different subsystem re- 
source objects, however, the PDP-1 system allows a subsystem 
to create different versions of its entry capabilities. The entry 
capabilities for a given subsystem are equivalent except for a 
transmitted word field that can be specified by the subsystem 
when the entry is created. In this way, the subsystem can 
maintain protected data structures on behalf of many proc- 
esses. When a process calls the subsystem to create a new re- 
source, the subsystem returns an entry capability with a trans- 
mitted word uniquely identifying that resource. Subsequently, 
when the user invokes an operation on that resource through 
the entry capability, the subsystem interrogates the transmit- 
ted word to determine which data structures to access. The 
transmitted word field is 6 bits in size, allowing a subsystem to 
support only 64 different objects; however, the PDP-1 sup- 
ports a small user community. 

The system was in operation for student use until the mid- 
1970s. It was distinguished not only by its capability supervi- 
sor but also by its space war game that ran on the PDP-1 video 
display. Following the MIT PDP-1 system, a major step in 
capability systems design took place at the University of Chi- 
cago. This work was significant because it used capabilities as a 
hardware protection mechanism. 

3.4 The Chicago Magic Number Machine 

In 1967 a group at the University of Chicago Institute for 
Computer Research began work on the Multicomputer, later 



3.4 The Chicago 

called the Chicago Magic Number Machine [Fabry 67, Shep- 
Magic Number 
Machine 

herd 68, Yngve 681. The goals of the project were ambitious: to 
provide a general-purpose computing resource for the Insti- 
tute, to allow computer science research, and to interface to 
new peripheral devices. The project was perhaps too ambi- 
tious; in fact, the system was never completed. Nevertheless, 
the Chicago effort was the first attempt to build an integrated 
hardware/software capability system [Fabry 681. The imple- 
mentation of capability-based primary memory protection in 
this machine was to serve as a model for several early capability 
designs. 

The Chicago machine provides a general register architec- 
ture and a segmented memory space. Memory is addressed 
through capabilities, and a process must possess a capability 
for any segment it addresses. Capabilities can be stored in reg- 
isters or in memory; however, they cannot be mixed with data. 
Therefore, the machine supports two sets of registers--data 
registers and capability registers, and two types of segments- 
data segments and capability segments. 

There are sixteen 16-bit, general-purpose data registers, 
three of which can be used as index registers. Capabilities are 
stored in six capability registers, each holding multiple 16-bit 
fields because capabilities are longer than the machine’s 16-bit 
words. Several bits in each segment capability indicate whether 
the addressed segment contains data or capabilities. Hardware 
LOAD and STORE instructions allow programs to move capabili- 
ties between capability registers and capability segments, but 
programs are prohibited from performing data operations on 
capabilities. A process can have many capability segments, and 
capabilities can be copied freely between them. 

For a program to access an element in a memory segment, 
the program must first load a capability for that segment into a 
capability register. The capability registers therefore act as a 
hardware C-list. A capability for a memory segment describes: 

l the segment base address, 
l the segment length, 
l the type of the segment (data or capability), 
l an activity code, indicating whether the segment is in primary 

memory or secondary store, and 
l an access code, indicating how the segment may be used. 

The access codes for data segments are read, read/execute, 
read/write, and read/write/execute; the access codes for capa- 49 



Early Capability 
Architectures bility segments are enter, enter/read, and enter/read/write. A 

program with capability read and capability write access to a 
capability segment can execute capability load and store opera- 
tions on that segment, but cannot perform data operations on 
the capabilities. A user is never given data access to a capability 
segment, because that would allow the user to fabricate capa- 
bilities. However, the operating system supervisor may keep 
capabilities permitting data access to a user’s capability seg- 
ments. The supervisor uses these capabilities to perform 
meta-instructions that create a new capability or modify a capa- 
bility. 

To access an operand in primary memory, an instruction 
specifies a memory address using three components: 

l a capability register containing a segment capability, 
l a data register or literal value specifying the relative offset of a 

data element in the segment, and 
l an optional index register containing an index that can be 

added to the supplied offset. 

This allows, for example, addressing of an array that is located 
within a data segment. The hardware computes the sum of the 
two offsets and the base address contained in the capability to 
generate the primary memory address. It also verities that the 
address lies within the segment, that the type of access is legal, 
and that the segment is in primary memory. 

Segments can be created, extended, and destroyed by exe- 
cution of supervisor meta-instructions, as shown in Table 3-2. 
A meta-instruction is also available to copy (snapshot) a seg- 
ment onto secondary storage. The snapshot operation requires 
as a parameter the number of days the copy should be main- 
tained. The current state of a segment and all backup copies 
are identified by the same capability, but the backups are dif- 
ferentiated by the time and date the copy was made. When a 
program retrieves a snapshot, the supervisor allocates a mem- 
ory segment, copies the snapshot to that segment, and returns 
a new capability for that new segment to the user. 

The Magic Number Machine is a multiprogramming sys- 
tem in which each process has as part of its state: 

50 

l a name, 
l a capability for an account to be charged for its resource 

usage, 



3.4 The Chicago 
Magic Number 

CREATE SEGMENT create a new segment of given size and type Machine 
and return a capability for it 

CHANGE SEGMENT SIZE 
increase or decrease segment size 

DESTROY SEGMENT delete segment 
SNAPSHOT copy current segment state to backing stor- 

age, marked with current time and date 
RETRIEVE copy specified snapshot from backing store 

into a new segment 
CHANGE ACCESS CODE 

produce a new version of a capability with 
reduced access rights 

EXAMINE CAPABILITY 
several meta-instructions to allow inspection 
of segment size, type, ID, access code, and 
activity code 

CREATE PROCESS create a subordinate process and return a 
process capability 

MAIL , send capability and associated text name to 
specified user 

Tab/e 3-Z: Chicago Magic Number Supervisor Capability Operations 

l a capability for a base capability segment addressing the 
user’s objects, and 

l a capability for a mailbox. 

Interprocess communication takes place between process mail- 
boxes. A mailbox consists of a capability segment and an asso- 
ciated data segment. Using the UAIL meta-instruction, a proc- 
ess can send a capability and an associated informational text 
name to another process that can read, copy, or delete the 
information. 

In addition to the hardware registers and the information 
listed above, each process has two segments associated with its 
context: a process data segment and process capability segment. 
Each of these segments has a fixed-sized storage region fol- 
lowed by a stack for data or capabilities. Two capability regis- 
ters are reserved to address these segments, and two data regis- 
ters act as stack pointers, although there are no explicit stack 
instructions (i.e., the registers must be manually updated). 

A protected procedure mechanism in the Chicago Magic 
Number Machine allows for efficient one-way protection; that 
is, the procedure is protected from its caller but the caller is not 
protected from the procedure. Each protected procedure con- 
sists of at least one program segment and one capability seg- 
ment, called the linkage segment, as shown in Figure 3-3. An 51 



Early Capability 
Architectures 

52 

Caiier’s root 
capabiiify segment 

Protected procedure 
linkage segment 

Domain of Cailer 

” 

Domain of Protected Procedure 

J 

figure 3-3. Chlcago Magic Number Machine Linkage Segment 

entry capability for the procedure points to the linkage seg- 
ment, which contains capabilities for all objects needed by the 
procedure such as instruction segments, data segments, I/O 
operations, and so on. The first capability in the linkage seg- 
ment points to the procedure entry point. Possession of an 
enter-only capability for the linkage segment allows the posses- 
sor to call the procedure using this first capability, but permits 
no other linkage segment access. Thus, the protected proce- 
dure can execute in a richer environment than its caller because 
it can access the entire linkage segment. Parameters can be 
passed either on the stack or in the registers. 

Work on the Chicago MulticomputeriMagic Number Ma- 
chine was eventually abandoned due to lack of funding. Al- 
though the project was never completed, the design was passed 
on to others including a group at Berkeley who incorporated 
some of its features into a new operating system, which is de- 
scribed next. 

3.5 The CAL-TSS System 

Started in the summer of 1968 at the University of Califor- 
nia at Berkeley’s computer center, the CAL-TSS project was 
an attempt to implement a general-purpose, capability-based 
operating system on conventional hardware. CAL-TSS was 
designed to supply timesharing services to several hundred 
users of a CDC 6400 computer system, thereby replacing 



CDC’s SCOPE operating system. Work on design and imple- 
mentation continued until the fall of 1971, when it became 
clear that the system could not meet its goals in terms of service 
and performance. Funding was stopped and the project aban- 
doned. Since then, its designers have published several ap- 
praisals of the project’s successes and failures [Sturgis 74, 
Lampson 761. 

The CAL-TSS operating system is a layered design in which 
each layer provides a virtual machine to the next higher layer. 
Each layer is specified as a set of objects and operations on 
those objects. This section examines the innermost layer of the 
supervisor which handles capabilities and object addressing. 

The basic unit of protection in the CAL-TSS system is a 
domain, an environment containing hardware registers, pri- 
mary memory, and a C-list. (A domain corresponds to the 
sphere of protection in the Dennis and Van Horn supervisor.) 
Access to objects outside the domain can occur only through 
invocation of a C-list capability; the possessor of a capability 
invokes an operation on the object it addresses by specifying the 
capability, the operation to be performed, and other optional 
parameters. A process is the execution entity of a domain, and 
its C-list may contain capabilities for other subordinate proc- 
esses over which it exercises control. 

Capabilities in the CAL-TSS system have three compo- 
nents: 

l a type field that specifies the nature of the object addressed, 
l an option bits field that indicates operations which can be per- 

formed by the possessor of the capability, and 
l a value field that identifies the object and contains a pointer to 

the object. 

Each capability occupies two 60-bit words in a C-list. A process 
has a root C-list and can create new second-level C-lists. When 
a process invokes a supervisor operation, it can specify capabil- 
ities stored in either the root C-list or any second-level C-list as 
parameters. A capability specification can therefore consist of 
two indices: one to locate a C-list capability in the root C-list 
and another for the target capability in a second-level C-list. 

The CAL-TSS supervisor implements eight types of ob- 
jects. A process can call supervisor operations to create and 
manipulate the following object types: 

3.5 The CAL-T% 
System 

l kernel fties (simple sequential byte streams), 
l c-lists, 53 



Early Capability 
Architectures l event channels (interprocess communication channels), 

l processes, 
l allocation blocks (for accounting and resource control), 
l labels (for naming short-lived objects and domains), 
l capability-creating authorizations (user subsystems), and 
l operations. 

54 

The last two supervisor-implemented types listed, capability- 
creating authorizations and operations, will be discussed later. 

One important advance of CAL-TSS over its predecessors is 
in its physical object addressing. When the CAL-TSS supervi- 
sor creates a new object, it assigns that object a unique identi- 
fier. The identifier for that object is never reused, even after 
the object is destroyed. The use of unique identifiers solves a 
difficult system problem. If, for example, an object identifier 
could be reused after object deletion, the supervisor would 
have to guarantee that all capabilities for an object are de- 
stroyed before the object is destroyed. Otherwise, the remain- 
ing capabilities would be dangling references, that is, pointers to 
an object that does not exist. Were the supervisor to reuse the 
identifier later for a newly created object, such dangling refer- 
ences could be used inadvertently to modify the new object. 

The CAL-TSS kernel provides a second level of indirection 
in addressing to greatly simplify relocation. Primary memory 
addressing of objects occurs through a single system table: the 
Master Object Table (MOT). The MOT is a kernel data struc- 
ture that contains entries for every object in the system. Each 
MOT entry holds the unique object identifier and the primary 
memory address of one object’s data. CAL-TSS capabilities do 
not contain primary memory addresses. Instead, a capability 
contains the unique identifier for the object it addresses and an 
index into the Master Object Table. 

Figure 3-4 illustrates a C-list capability and the Mas- 
ter Object Table. The capability addresses a file object, as indi- 
cated by the type field shown symbolically as “File.” The 
capability’s value field contains the index of the MOT entry, 
M, which in turn contains the primary memory address of the 
file. All capabilities for the same file will contain the same 
MOT index. If the supervisor needs to relocate the file’s pri- 
mary memory segment, only a single MOT entry will have 
to be changed. 

Both the capability and the MOT entry shown in Figure 3-4 
contain the tile object’s unique identifier, IDx. The supervisor 
verifies that the identifiers in the capability and the MOT entry 



G: 

“File” Rights 

/DX M 
M. IDX 

1 c-/is t 
Master Object 

Tab/e 

. 

Fiie 

Figure 3-4: CAL-TSS Object Addressing 

Fiie 
capabiiity 

are identical for every operation invoked on the capability. 
When an object is deleted, the supervisor increments the iden- 
tifier field of the object’s MOT entry. Any subsequent attempt 
to use a capability for the deleted object (a dangling reference) 
would fail because the identifiers would not match. 

Note that the C-list in Figure 3-4 is also a supervisor object 
and is addressed by the MOT entry at index G. The unique 
identifier for the C-list is IDy, an identifier that would be 
stored in any capabilities addressing the C-list. 

The CAL-TSS system supports two object types that allow 
users to extend the small set of supervisor-implemented ob- 
jects. A capability-creating authorization is an object permitting 
its possessor to create private capabilities for a private user- 
defined subsystem. Each user subsystem implements a single 
new type. To use this facility, a subsystem executes a supervi- 
sor meta-instruction to receive a capability for a capability- 
creating authorization object. The authorization object con- 
tains a new system-wide, unique type field. The subsystem can 
then present this capability to the supervisor, along with a 60- 
bit value, and obtain a new capability containing the subsys- 
tem’s type and the specified value. The value inserted in the 55 



Early Capability 
Architectures 

56 

capability corresponds to the transmitted word field that a sub- 
system can insert into capabilities on the MIT PDP-1 supervi- 
sor; it uniquely identifies an object implemented by the sub- 
system. 

Such private capabilities receive the same protection as sys- 
tem capabilities, and can only be stored in C-lists and manipu- 
lated by kernel meta-instructions. Thus, a private capability 
can be passed to another domain to indicate ownership and 
rights to an object protected by the subsystem. For example, a 
user could implement a protected mail subsystem with the op- 
erations CREATE MAILBOX, DESTROY MAILBOX, 
READ MAIL, and WRITE MAIL. The subsystem would 
first obtain a capability-creating authorization containing a 
unique type field. Another domain calling the create mailbox 
operation would receive a capability containing the mailbox 
subsystem’s type field and a unique value field to identify the 
newly created mailbox. The possessor of the capability could 
later present it to the mail system in order to read, write, or 
delete that mailbox, but could not modify the capability or 
directly access the mailbox representation. In this way, users 
can build subsystems that extend facilities provided by the 
base operating system. 

A CAL-TSS operation is a supervisor-implemented object 
that allows the possessor to request a kernel or private meta- 
instruction; that is, to invoke a service. The operation object is 
a list describing the service to be performed, followed by speci- 
fication of how the parameters are to be obtained. If the opera- 
tion is for a private domain, that domain must be named along 
with an indication of the service requested. The parameter list 
specifies whether each parameter is: (1) data in the caller’s 
memory, (2) a capability in the caller’s C-list, (3) immediate 
data in the operation list itself, or (4) a fixed capability stored 
in the operation list. 

The ability to contain immediate capabilities in the parame- 
ter list of an operation object is a powerful feature. It allows the 
called domain to receive a capability not available to the caller 
and thus is similar to the Chicago machine linkage segment. 
However, because the designers did not realize this advantage 
of operation objects until sometime after the system was con- 
structed, the feature was never used. 

When the CAL-TSS project was finally terminated in 1971, 
it had become clear that the system would never live up to 
expectations for either performance or functionality. There 
were many reasons for this, some being crucial design flaws. 



One of the major design difficulties was the hardware base: a 3.6 Discussion 

CDC 6400 with 32K 60-bit words of primary memory and 
300K words of extended core storage (ECS). ECS is a memory 
device used as high-speed secondary storage. It is not used for 
execution, but data can be block-transferred between ECS and 
main storage at rates of several megawords per second. Man- 
agement of ECS was one of the principal design problems. 
Equally troublesome was the 6400 memory management sup- 
port, consisting of only a single base and limit register pair. 
Nevertheless, much was learned from the CAL-TSS project 
about the design choices available to capability system 
implementors. 

3.6 Discussion 

This chapter has examined early attempts to define and 
implement capability-based hardware and software systems. 
All of the systems described were designed in the late 1960s. 
These systems show one obvious relationship to the machines 
examined in the previous chapter: capabilities are descriptors 
used to address memory segments and other system objects. In 
a sense, the difference is merely one of terminology. The con- 
cept of capabilities and the C-list, as Dennis and Van Horn 
state, follows from the B5000’s descriptors and Program Refer- 
ence Table. However, there are some significant conceptual 
differences in the general way capability addressing is applied, 
in the lifetimes of capabilities and the objects addressed, and in 
the protected procedure mechanism that allows users to extend 
the functions of the operating system supervisor. 

Capabilities are protected addresses; that is, a process can 
create new capabilities in its C-list only by calling a supervisor 
meta-instruction. Once a process receives a capability, it can- 
not directly modify the bits in the capability. The capabilities 
accessible to a process at any time define its sphere of protec- 
tion or domain. All of the addresses (that is, capabilities) which 
a process can specify must either be contained in its domain at 
the time the process is created or be obtained through interac- 
tion with the kernel or other domains. 

Because capabilities must be protected from user modifica- 
tion, these systems chose to isolate them within C-lists. C-lists 
are implemented as one or more segments that user processes 
cannot directly write with data instructions. Capabilities can- 
not be embedded in user data. This requirement is somewhat 57 



Early Capability 
Architectures 

56 

restrictive because complex data structures that include point- 
ers cannot always be naturally represented. The problem often 
can be circumvented by storing a C-list index in the data rather 
than the capability itself. However, storing a C-list index in 
place of a capability makes sharing data structures difficult if 
the processes do not share the same C-list. Another problem 
caused by the segregation of capabilities and data is the need 
for separate stacks and registers. Machines that support capa- 
bilities must have both data and capability stacks and data and 
capability registers. An alternative would be to support tag- 
ging, as in the BLM. 

While the Dennis and Van Horn supervisor allows each 
process to have only one C-list, users of the Chicago Magic 
Number Machine and the CAL-TSS can store capabilities in 
multiple capability segments, chaining them together as de- 
sired to form complex tree or graph structures. The ability to 
construct additional C-lists allows fine-grained sharing of capa- 
bilities. Small C-lists can be created for sharing small collec- 
tions of objects. The C-list addressing mechanism has a signifi- 
cant affect on the sharing of capabilities and the protection of 
objects. For example, if a procedure addresses its objects by 
C-list index, the procedure cannot be shared unless the sharing 
processes store the procedure’s objects in the same locations in 
their respective C-lists. However, if a procedure executes with 
its own C-list, in which it places capabilities passed as parame- 
ters by its callers, this problem does not arise. 

To compensate for the single C-list, Dennis and Van Horn 
allow capability directories for storage of capabilities and asso- 
ciated text names. The capability directory concept is a power- 
ful extension of the directories provided by most operating 
systems. Even on most contemporary computers, directories 
can only be used to name files. In contrast, a capability direc- 
tory allows the user to name and store many different object 
types. Directories can be shared between domains, and the 
Dennis and Van Horn system allows any user to obtain a capa- 
bility for another user’s root directory. A user can protect di- 
rectory entries from external examination by setting a private 
bit associated with each entry. However, this mechanism in 
itself is insufficient for selective sharing among several users, 
because it is impossible to grant privileges to one user that are 
denied to another. 

An additional method for exchanging capabilities between 
domains is the mail facility of the Chicago machine. Each do- 
main has a local mailbox consisting of a capability and data 



segment pair used to receive capabilities and symbolic capabil- 3.6 Discussion 

ity names. Mailing a capability is equivalent to transferring a 
single directory entry between domains. It is unclear whether - 
any additional information is placed in the mailbox, but some 
authentication information for the sender, either with the mes- 
sage or added by the mail system, probably should be re- 
quired. 

All of the systems examined support subordinate processes 
and process tree structures. A superior process is given com- 
plete control of an inferior that it creates. The superior defines 
the domain of the inferior by granting capabilities. It has the 
power to start, stop, modify the state of, generate simulated 
interrupts to, and service faults for the inferior. Mechanisms 
such as this allow users to build and test complex subsystems 
and to debug inferior processes. It may also be possible to 
simulate the kernel or hardware environment and, depending 
on the completeness of the mechanism, to debug kernel proce- 
dures. 

Protected procedure mechanisms are available on all of 
these early systems. Dennis and Van Horn provide protected 
procedures through entry capabilities. The creator of the pro- 
tected procedure obtains an entry and makes it public for users 
of the service. The protected procedure executes in a separate 
process in its creator’s domain and receives a single capability 
parameter from its caller. The caller and callee are isolated 
from each other. In the CAL-TSS system, protected proce- 
dures also execute in a separate domain, with an operation 
object serving as the entry. The operation object specifies some 
number of data and/or capability parameters and methods to 
obtain them. The Chicago machine sacrifices two-way isolation 
for the improved performance of a one-way mechanism. A pro- 
tected procedure on the Chicago machine executes in the do- 
main of its caller and has access to its caller’s objects. The 
protected procedure also has access to private capabilities con- 
tained in its linkage segment. Parameters are passed on the 
stack or in registers. 

In addition to protected procedures, the MIT PDP-1 and 
CAL-TSS systems allow user processes to manufacture private 
capabilities. This type-extension mechanism allows user pro- 
grams to extend kernel facilities in a uniform manner by creat- 
ing new object types. User-created operations are invoked in 
the same way that supervisor meta-instructions are invoked. 

The CAL-TSS capability-creating authorization and the 
MIT PDP-1 transmitted word facilities are sealing mecha- 59 



Early Capability 
Architectures 

60 

nisms. A value is sealed in the capability that is not directly 
usable by the possessor of that capability. When passed back to 
the implementing subsystem, the subsystem-using a special 
capability it maintains-can unseal the value to determine 
which object the capability addresses. Sealing mechanisms are 
also provided by the Chicago machine’s linkage segments and 
by CAL-TSS operations. In these systems, capabilities are 
sealed inside of special linkage segments. An entry capability 
for the linkage segment only allows its possessor to call proce- 
dures through specific entries in the segment. As a result of the 
CALL or ENTER instruction, the linkage segment is unsealed 
and its capabilities made available to the called procedure. 

Perhaps the most important generalization of addressing 
provided by capabilities is support for long-lived objects. Ca- 
pabilities allow uniform addressing of both short-term and 
long-term objects. Traditional computer systems require dif- 
ferent addressing mechanisms for primary memory, secondary 
memory files, and supervisor-implemented objects. A capabil- 
ity can be used to address abstract objects of any type and any 
lifetime, implemented by either hardware or software. This 
advantage of capability systems raises a number of issues: how 
large must capabilities be to address the longer lifetime of ob- 
jects, how can capabilities and objects be saved on secondary 
storage, what happens if capabilities or objects are deleted, 
how does the system know when an object can be deleted, and 
so on? 

The Dennis and Van Horn supervisor allows objects to live 
an arbitrary length of time. An object exists until it is explicitly 
deleted or until all capabilities pointing to the object are re- 
moved. Thus, all objects are potentially long-lived, and the 
system must be capable of determining when the last capability 
for an object is deleted, or secondary storage will eventually 
become filled with garbage objects. Directories are used to 
keep track of long-term objects and their capabilities and ‘to 
allow user reference to these objects by symbolic names. In the 
Chicago Magic Number Machine, snapshots are made of ob- 
jects to force them to secondary storage. The objects can be 
retrieved later, although the issue of storing capabilities was 
not addressed by the design. When an object is retrieved from 
disk in the Chicago system, it is not retrieved as the same 
object but is placed in a new segment for which a new capabil- 
ity is generated. 

One of the critical shortcomings of the CAL-TSS system 
was its failure to provide uniform addressing for permanent 
storage. The CAL-TSS system differentiated between user 



objects, which could be saved on secondary storage, and kernel 3.6 Discussion 

objects, which could not be saved on secondary storage. More- 
over, because user objects were stored merely as byte streams, 
the CAL-TSS system could not save C-lists on disk while 
maintaining protection system integrity. The decision to sup- 
port different object lifetimes, based on the belief that kernel 
objects were short-lived and would not require permanent stor- 
age, led to many quirks in the operating system. 

Finally, one of the most important features in these systems 
was the physical implementation of addressing. Like earlier 
descriptor systems, the Chicago Magic Number Machine 
maintained hardware location information in the capability it- 
self. This led to the relocation problems of descriptor systems; 
that is, relocation of a segment required a search for all capabil- 
ities addressing that segment. CAL-TSS took an important 
step by separating the capability from the addressing informa- 
tion, as recommended by Dennis and Van Horn. The physical 
relocation information is held in a central Master Object Table, 
and the capability contains a MOT index and a unique object 
identifier. Thus, relocation does not require a search for an 
object’s capabilities. Deletion of an object also requires no 
search, because an attempt to use the capability for a deleted 
object will fail when the kernel checks the unique identifier in 
the MOT entry. 

The Dennis and Van Horn supervisor defined the formal 
concepts of capability addressing. The MIT PDP-1 system, 
the Chicago Magic Number Machine, and the CAL-TSS sys- 
tem were the first trial implementations. The MIT timesharing 
system was in operation for several years, providing service to a 
small number of users, although capabilities were not a central 
part of the system’s design. The Chicago and CAL-TSS sys- 
tems were much more ambitious in terms of design, implemen- 
tation, and goals. Perhaps the problem with these systems was 
the expectation that they would provide service to a large user 
community. In this sense, both systems failed, because neither 
was completed. However, when viewed as research projects, 
these early systems explored the crucial design issues and dem- 
onstrated both the advantages and difficulties of using an im- 
portant new addressing technique. 

3.7 For Further Reading 

Dennis and Van Horn’s publication paved the way for re- 
search in capability- and object-based systems [Dennis 661. It 
provided the step from descriptors to more generalized ad- 61 



Early Capability 
Architectures dressing. It is difficult to tell how radical the fundamental con- 

cepts were when compared to systems like the Basic Language 
Machine, which was never completely described in the litera- 
ture. Is it just a matter of terminology? This issue is discussed 
in Iliffe’s letter to the Surveyors’ Forum in the September 1977 
issue of ACM Computing Surveys (Volume 9, Number 3) and 
in Dennis’ response. 

The Chicago and CAL-TSS efforts, while not resulting in 
finished products, did provide much insight about the design 
of capability systems. Fabry’s paper [Fabry 741, based on his 
thesis [Fabry 681, is a detailed discussion of the advantages of 
capability addressing over traditional segmented addressing 
of primary memory. The paper by Lampson and Sturgis 
[Lampson 761, in addition to its technical description of CAL- 
TSS, provides an excellent discussion of the pitfalls of ambi- 
tious research projects. 

62 



The Piessey 250 computer, {Courtesy Plessey Telecommunications Ltd.)




