
8

The IBM System/38

8.1 Introduction

IBM’s capability-based System38 [Berstis 80a, Houdek 81,
IBM Sa, IBM 82b], announced in 1978 and delivered in 1980,
is an outgrowth of work that began in the late sixties and early
seventies on IBM’s future system (FS) project. Designers at
the IBM Development Laboratory in Rochester, Minnesota
incorporated ideas from FS, modified by their needs, to pro-
duce a system for the commercial marketplace. It is interesting
that such an advanced, object-based architecture has been ap-
plied to a very traditional product space. Initially, only the
COBOL and RPG III languages were provided. The system,
which includes the CPF (Control Program Facility) operating
system, is intended to support transaction processing and data-
base applications constructed in commercial languages.

A major goal of the System38 design is to maintain pro-
grammer independence from the system implementation
[Dahlby SO]; IBM wished to retain maximum flexibility to
modify System38’s implementation for future technologies
while supporting previously written System38 programs. The
designers also wished to support a high level of integrity and
security at the machine interface and to support commonly
executed user and system functions efficiently, such as data-
base searches and memory management [Hoffman 801. To
meet these goals, IBM chose a layered machine structure with
a high-level programming interface. The layers of this design
are shown in Figure 8-l.

At the lowest level is a hardware machine that directly exe- 137

The IBM System/38 User Applications

Verticai Microcode

Horizon&/ Microcode

Hardware Machine

Figure 8-1: System/38 Implementation Layers

cutes 32-bit horizontal microcode. This horizontal microcode
implements a more-or-less standard 32-bit register machine
that executes vertical microcode.’ The interface above the ver-
tical microcode, called the high-level architecture interface in
Figure 8-1, is the level described in this chapter; it supports
the user-visible (or CPF-visible) System38.

This high-level architecture interface is supported across
implementations, while the structure of the underlying layers
can change. For example, performance-critical functions, such
as interprocess communication and memory allocation, are
handled by the horizontal microcode. The system object and
capability support is handled in part by both microcode layers.
Different functions can be moved between microcode levels or
into hardware in future versions, as performance experience is
gained. In fact, this movement has already occurred on newer
System38 releases and models.

The CPF operating system and the vertical microcode are
implemented in PLiS, a PLiI-like system programming lan-
guage. There are approximately 900,000 lines of high-level
PWS code and an additional 400,000 lines of microcode sup-
port needed to implement CPF and its program products, The
System38 hardware includes a non-removable disk that holds
this large store of microcode.

The System38’s high-level architecture interface is actually
an intermediate language produced by all System38 compilers.
Before a program is executed, CPF translates this intermediate
language into vertical microcode and calls to vertical microcode

138

‘Although IBM calls this layer vertical microcode, it would generally not be
considered microcode because it resembles a traditional IBM 370-like 32-bit
instruction set and is programmed in a high-level language.

procedures. That is, the high-level interface is not directly exe- 8.2 System Objects

cuted. This translation process is described later.
IBM terminology is used throughout this chapter for com-

patibility with System/38 publications; it differs somewhat
from that used in previous chapters. In particular, IBM uses
the following terms: space for segment, pointer for capability,
authority for rights, and context for directory. These synonyms
will be presented again as each of the terms is introduced.

8.2 System Objects

System/38 instructions operate on two types of entities:
scalar data elements and system objects. The scalar types are 16-
and 32-bit signed binary, zoned and packed decimal, and char-
acter strings. The machine supports 14 types of system objects,
described in Table 8-1. A set of type-specific instructions is
provided for each system type.

SPACE byte-addressable storage segment
PROGRAM procedure instructions and associated data
USER PROFILE object containing information about user’s

resource limits and authority to access any
system objects

CONTEXT directory of object names and capabilities
QUEUE message queue for interprocess communica-

tion
DATA SPACE collection of identically-structured records
DATA SPACE INDEX

object used to provide logical ordering for
data space entries

CURSOR direct interface to entries in a data space, or
indirect interface through a data space index

INDEX accesses data sequences based on key values
PROCESS CONTROL SPACE

object containing state information for a
process

ACCESS GROUP set of objects grouped together for paging
performance reasons

LOGICAL UNIT DESCRIPTION
object describing an I/O device

CONTROLLER DESCRIPTION
object describing the attributes of a device
controller

NETWORK DESCRIPTION
object describing a communications port

Tab/e 8-1: Systemi System Object Types 139

The IBM System138 Each system object consists of two parts: a functional por-
tion and an optional space portion, as shown in Figure 8-2.
The functional portion of an object is a segment containing ob-
ject state (its representation); the data in the functional portion
can be examined and modified only by microcode as a result of
type-specific instructions. Thus, the functional portion is said
to be encapsulated because it is not accessible to programs
[Pinnow 801. Optionally, a space portion can be associated with
an object (IBM uses the word space to refer to a storage seg-
ment). The space portion is an attached segment for storing
scalars and pointers that can be directly manipulated by user
programs.

Every object in the system has several associated attributes.
First is a type that identifies it as one of the 14 system object
types listed in Table 8-1. (Objects can also have subtypes for
further software classification.) Second is a symbolic text name
chosen by the user to refer to the object. Last is a unique identi-
fier (ID) that uniquely specifies an object for the life of the
system. Object identifiers are never reused. When an object is
created, the object ID is assigned by the system, while the text
name and type are specified by the programmer.

Although the contents and format of the encapsulated data
in an object are not programmer accessible, programmers must
be able to specify initial object values or examine an object’s
state. The System/38 instruction set uses templates to convey
initial information and communicate encapsulated data. A
template is simply a data structure with defined fields used to
transmit information at the instruction level. For example, the
CREATE QUEUE instruction needs to specify some information
about the maximum number of messages, the size of messages,
the queueing discipline, and so on. This information is

140 Figure 8-2. IBM System138 System Object

conveyed by creating a template in a space and specifying a 8.3 Object Addressing

capability to that space as a parameter to the instruction.
Later, an instruction can be executed to produce a template
showing information about the queue. Although the architec-
ture fixes the format of the template used to communicate in-
formation at the high-level interface, it does not dictate how
that information is maintained once it is encapsulated within
the object.

The only object not containing a functional part is a space
object. A space object is a contiguous segment and is the only
object that can be manipulated at the byte level by scalar
instructions.

A system object, then, is an instance of an abstract data
type. System/38 instructions exist to create, manipulate, exam-
ine, and delete each of the system object types. The machine
provides an interface that hides the implementation of an ob-
ject from the user. An object’s state is stored in one or more
segments; its attributes include a type that indicates what oper-
ations are allowed and an identifier that uniquely specifies the
object. A base segment for each object contains pointers to any
other segments composing the object, as well as type and ID
information.

8.3 Object Addressing

Before examining object addressing in detail, it is necessary
to describe memory management and segment addressing on
the System38. Object addressing, using capabilities, is based
on lower-level segment addressing mechanisms.

8.3.1 Virtual Memory

The IBM System38 architecture supports a flat, single-
level, 64-bit virtual address space. To the user at the high-level
interface (either the operating system or application program-
mer), all addressable objects and segments are in directly ac-
cessible memory; there is no concept of secondary storage. The
System/38 microcode is responsible for moving segments be-
tween primary and secondary storage to create this virtual
memory environment.

The structure of a 64-bit virtual address is shown in Figure
8-3. The System38 segment size is 64K bytes. Each segment is
divided into 512-byte pages. The low-order 16 bits of the ad- 141

The IBM System138

p~o~i--

24 8 7 9

Segmeni Group Page Byte
extended identification ID number offset

L -----

Figure 8-3: System138 Virtual Address

dress thus provide the page number and byte offset for the.
pages of a segment. For larger objects, up to 256 segments can
be grouped together into segment groups. The group ID field
specifies which 64K-byte segment is being addressed within a
16M-byte segment group. The next 24 bits of the address pro-
vide a unique segment ID for the segment group.

The System38 hardware only supports 48-bit physical ad-
dresses composed of these fields. However, when an object is
created, the microcode extends the address to 64 bits by adding
an additional 16-bit field.

The full 64-bit address is stored in a special header with the
segment. When a 64-bit address is used to access a segment,
the upper 16 bits of the address are compared with the upper
16 bits of address in the segment’s header. If a mismatch oc-
curs, the addressed object has been destroyed and the refer-
ence is not allowed. At any one time, then, there can only be
224 or 16 million segment groups in existence.

Because the address space is so large, particularly with the
i6-bit extension to the segment ID field, segment IDS are
never reused. The system assigns a new segment ID at creation
that is unique for the life of the system. If the object is deleted,
references to the segment ID are not allowed. The system need
not search for dangling references when an object is deleted.
The segment ID, therefore, provides a mechanism for deter-
mining the unique ID for system objects. System objects are
named with the unique ID of the first segment containing the
functional portion of the object. The unique ID is the upper
six bytes of the virtual address.

142

8.3.2 Pointers

As in other capability systems, objects as well as scalar data
elements are addressed through capabilities. System/38 capa-
bilities are known as pointers. There are four types of pointers
in the System38:

l system pointers address the 14 system object types (listed in
Table 8-l),

l space pointers address a specific byte within a space object
(segment),

l data pointers address a specific byte within a space and also
contain attribute information describing the type of element
(e.g., character or decimal), and

l instruction pointers address branch targets within programs.

8.3 Object Addressing

Each System/38 pointer is 16 bytes long. In order to access an
object or an element within a segment, a program must specify
a pointer that addresses the object or segment element. Point-
ers can contain different information at various times, includ-
ing symbolic text names, authorization information (access
rights), the object type, and the unique ID for system pointers
or virtual address for data and space pointers. The information
within a pointer can be modified, for example, from text name
to unique ID, to allow for late binding of the pointer to the
object.

Unlike the systems previously examined, which use C-lists
for the storage of capabilities, System38 pointers can be freely
mixed in segments along with scalar data. To allow storing of
capabilities with data in the same segment while still maintain-
ing capability integrity, the System38 implements a memory
tagging scheme. Memory is byte addressable and words are
32 bits long. However, physical words of primary memory are
actually 40 bits wide. Invisible to the programmer are a l-bit
tag field and a 7-bit error correcting code. Pointers must be
aligned on 16-byte boundaries. When a pointer is stored in a
segment by a valid pointer instruction, the hardware sets the
associated tag bits for the four consecutive 32-bit words used to
hold the pointer. Any instruction that requires a pointer oper-
and checks that the pointer is aligned and that the four tag bits
are set before using the element for addressing. Program data
instructions can freely examine pointers. However, if a pro-
gram instruction modifies any data in a pointer, the microcode
turns off the tag bit in the associated word or words, invali-
dating the pointer.

Table 8-2 lists some of the instructions that operate on Sys-
tem/38 pointers. Note that a space object (a memory segment)
is a system object that is addressed by a system pointer. A space
pointer, on the other hand, is a capability that addresses a
particular byte in a space object. 143

The IBM System138 ADD SPACE POINTER
adds a signed offset to the byte address in a
space pointer

COMPARE POINTER FOR ADDRESSABILITY
compares two pointers to see if they address
the same object, the same space, or the same
space element

RESOLVE POINTER searches a directory (see Section 8.3.3) for a
named object and returns a pointer for that
object

SET DATA POINTER
returns a data pointer for an element in a
space

SET SPACX POINTER
returns a space pointer for an element in a
space

SET SPACE POINTER FROM POINTER
if the source is a space or data pointer,
creates a space pointer for the specified byte;
or if the source is a system pointer, returns a
space pointer for the associated space

SET SYSTEM POINTER FROM POINTER
if the source is a space or data pointer, re-
turns a pointer for the system object con-
raining the associated space; if the source is a
system pointer, returns a system pointer for
that same object

Tab/e 8-2: Svstemi38 Pointer Instructions

i44

8.3.3 Contexts

Pointers are used to address objects; however, users refer to
objects by symbolic text names. System objects called contexts
implement directories for storing symbolic object names and
pointers. When a new object is created, its symbolic name and
an associated pointer are stored in a specified context. Table
8-3 lists the context instructions supported by the Systemi38.

The symbolic names stored in contexts are not necessarily
unique, and a user can possess several contexts containing the
same name but referring to different objects. This feature al-
lows for testing and logical object substitution. A program that
refers to an object by name can receive different objects de-
pending on what context is used for name resolurion. When a
reference is made to a pointer containing an object name, the
system examines the user’s Name Resolution List (NRL). The
NRL contains pointers to user contexts in the order that they
should be searched. By changing the context ordering or ma-
nipulating entries, the user can change the objects on which
the program operates.

CREATE CONTEXT 8.3 Object Addressing

creates a new context object and returns a
system pointer to address it

DESTROY CONTEXT
deletes a context object

MATERIALIZE CONTEXT
returns name and pointer for one or more
objects addressed by a context

RENAME OBJECT changes the symbolic name for an object in a
context

Tab/e 8-3: System/38 Context Instructions

8.3.4 Physical Address Mapping

Because of the large size of a System38 virtual address,
standard address translation schemes involving indexing of
segment/page tables with the segment/page number address
field cannot be used. Instead, the System38 hardware uses
hashing with linked list collision resolution to find the primary
memory address for a specified virtual address.

The basic units of physical and virtual storage are 5 12-byte
pages. A translation scheme is used to locate a page in primary
memory. The upper 39 bits of a 48-bit virtual address, encom-
passing the unique segment ID, specify a unique virtual page
address for the page. A hashing function is applied to these bits
to obtain an index into a data structure called the Hash Index
Table (HIT), shown in Figure 8-4. The hashing function is an
EXCLUSIVE-OR of low-order bits from the segment ID and
group ID fields, and reverse-order bits from the page number
field. This function provides uniform mapping from the sparse
address space to the HIT [Houdek 801.

The HIT entry contains an index of an entry in the Page
Directory Table (PDT). The PDT contains one entry for each
page of primary memory. Each entry contains the virtual ad-
dress of a corresponding primary memory page. That is, the
index into the PDT is the page frame number for the virtual
address described in the entry. Each entry also contains a link.
The hardware checks the virtual address at the first entry
pointed to by the HIT and follows the linked list until a virtual
address match is found or the list ends. If a match is found, the
index of that entry is used as the page frame number in the
primary memory address. If no match is found, the page is not 145

The IBM System138 47 98 0

I
Wtual page address Byte

(Hash)

4 Page directory index

L--c Virtual address Link

1
(List search)

Virtual address NM

(P D T index)

Virtual Address

Hash index Table
(H/U

Page Directory Table
(PD T)

146

Physicai page frame Byte

Figure 8-4. System/38 Virtual Address Translation

Physical Address

in primary memory and the hardware must load the page from
secondary storage.

The performance of this search depends on the uniformity
of the hashing function and the length of the lists in the Page
Directory Table. In order to shorten the list lengths, the Hash
Index Table is constructed to be twice the size of the Page
Directory Table.

Two optimizations are used to avoid this two-level table
search on every reference. First, the hardware contains a two-
way associative translation buffer to cache recent address trans-
lations (the buffer size is different for different System38 mod-
els, typically 2 x 64 or 2 x 128 entries). To check the translation
buffer, the virtual page field is hashed to an offset that selects
one entry in each half of the buffer. The two selected entries,
which contain a virtual page address and translated primary
memory page frame number, are checked for a match. If the
virtual address matches, the page frame number is used to
construct the primary memory address. If no match occurs,

8.4 Profiles and
the table search proceeds, eventually replacing one of the se- Authority

lected translation buffer entries with its data, based on a least
recently used bit.

The second optimization is the use of resolved address regis-
ters in the hardware. These registers are used in the CPU to
hold virtual page, physical page, and byte offset information
while a page is being processed. As long as references are made
to the addressed page (e.g., during the sequential search of
elements of an array), the hardware need not search the trans-
lation buffer for consecutive accesses.

8.4 Profiles and Authority

The System/38 hardware provides a mechanism for ensur-
ing privacy and separation of data and for sharing information
between users. The basic unit of computation, from which
protection stems, is the process. Each user process is defined by
a Process Control Space object that contains its state. When a
user logs onto the system, a new process is created; a user pro-
file object is associated with that process based on the user’s
name. The user profile contains:

l the user’s name,
l the user’s password,
l any special authorization or privileges the user possesses,
l the maximum priority,
l the maximum storage usage,
l an initial program to run upon log-in (if any),
l a list of objects that the user owns, and
l a list of non-owned objects that the user is authorized to ac-

cess, and the permitted authorities.

All authority to perform operations on objects is rooted in
the user profile. When an object is created, it is created with an
attribute stating whether the object is permanent or tempo-
rary. The profile associated with the process issuing the
CREATE operation on a permanent object becomes the owner
of the object. An owner has all rights to the object and can
perform any operations, including deletion. Temporary objects
receive no protection and have no owner. They are destroyed
when the system is booted.

The owner of an object can grant various types of access to
other user profiles in the system. There are a number of au-
thorities, or access rights, that a process can have with respect
to an object. The authorities define what object operations the 147

The IBM System138 process can perform. The authorities also define what opera-
tions can be performed on pointers for the object. Object au-
thorities are divided into three categories:

l object control authority gives the possessor control of the ob-
ject’s existence (for example, the right to delete or transfer
ownership),

l object management authority permits the holder to change
addressability (for example, to rename the object or grant
authority to other profiles), and

l operational management authority includes basic access rights
to the contents of the object, such as retrieve, insert, delete,
and update entry privilege.

The authority information for each object is thus profile-based.
Each user has a profile that indicates what objects are owned
and what access is permitted to other objects. If a user wishes
to allow access for an owned object to another user, the owner
grants authority for the object to the sharer’s profile. To exe-
cute a GRANT AuTHoRrTY instruction, a user must own an
object or have object management rights. A user cannot grant
an authority that the user does not possess.

Table 8-4 lists some of the profile/authority management
instructions supported by the Systemi38. These instructions
allow a properly authorized user to grant access privileges to
other users, to examine what objects are authorized to him or
her, and to see what authorizations have been given to other
users for owned objects.

In addition to specific object authority granted to specific
profiles, each object can have an associated public authorization.
The object’s owner grants public authority with the GRANT
AUTHORITY instruction by omitting the profile parameter.
The public authority is stored in the object’s header and allows
any user to access the object in the permitted modes. When an
attempt is made to access an object, the public authority is
checked first. If the access is not permitted by the object’s
public authority, the user’s profile is then examined.

148

8.4.1 Authority/Pointer Resolution

Thus far, the System38 protection mechanism has been
described from the perspective of the profile object. The pro-
file provides a standard Access Control List mechanism. The
owner of an object can explicitly permit other profiles to have
access to that object and can later revoke that access.

CREATE USER PROFILE
builds a new user profile (this operation is
privileged)

DESTROY USER PROFILE
deletes a profile

GRANT AUTHORITY
grants specified authorities for an object to a
specified user profile

MATERIALIZE AUTHORIZED OBJECTS
returns list of all owned objects or author-
ized objects

MATERIALIZE AUTHORIZED USERS
returns a list of owning or authorized users
for a specified object

RETRACT AUTHORITY
revokes or modifies authority for an object
from a specified user profile

TEST AUTHORITY tests if specified authorities are granted to
the current process for a specified object

TRANSFER OWNERSHIP
transfers ownership of an object to another
profile

Tab/e 8-4: System38 Authority Management Instructions

The ability to revoke object access is an important part of
the System38 design; this feature has not been provided in any
of the previously examined systems. Revocation is, in fact, a
difficult problem in capability systems and is generally expen-
sive to implement in terms of addressing overhead. The IBM
System38 design allows an object’s owner to decide whether
revocation is needed for the object. The System/38 provides
two pointer formats: one for which access can be revoked and
another for which access cannot be revoked. An object’s owner
can decide which type of pointer to use for each object in each
instance depending on the relative importance of revocation
and addressing efficiency.

In order to access an object in the System38 a process must
possess a pointer for that object. Pointers can be stored in two
formats: unauthorized and authorized. An unauthorized pointer
contains an object’s unique identifier but does not contain au-
thorizations (i.e., access rights) to the object. When an unau-
thorized pointer is used to access an object, the hardware
checks the profile of the executing process to verify that the
requested operation is permitted. Without this check, revoca-

8.4 Profiles and
Authority

149

The IBM System138 tion of authority would be impossible. An unauthorized
pointer, then, cannot be used in the way that traditional capa-
bilities can be used. Additional overhead is added to pointer
usage because of the profile check.

In cases where revocation is not required or higher perform-
ance is needed, access rights can be stored in a pointer, creat-
ing an authorized pointer. An authorized pointer acts as a capa-
bility, and reference to an object with an authorized pointer
does not require a profile lookup. The RESOLVE SYSTEM
POINTER instruction is used to create authorized pointers.
An authorized pointer can only be created by a user whose
profile has object management authority for the object; the
created pointer cannot have rights not available to the creating
profile. Once constructed, an authorized pointer maintains
authority to access an object for the life of that object. The
pointer can be stored and passed to other processes. Because
the profile check is avoided with authorized pointer usage, au-
thority cannot be revoked later.

150

8.5 Programs/Procedures

IBM uses the term program to refer to what is typically
called a procedure or subroutine. A System38 program is an
executable system object. A program object is created by a
CREATE PROGRAM instruction, which specifies a template con-
taining System38 instructions and associated data structures.
The CREATE PROGRAM instruction returns a system pointer al-
lowing the program to be called.

As noted previously, the System38 source language (i.e.,
the high-level architecture interface shown in Figure S-l) is
really an intermediate language produced by compilers. The
effect of the CREATE PROGRAM instruction is to compile
this intermediate language source into microcode that can be
executed on the next lowest “level” of the machine. Source
instructions, depending on their complexity, either compile
directly into System38 vertical micro-instructions or into
micro-procedure calls. The compiled program is thus encapsu-
lated in the program object, and the form of the micro-machine
is hidden by the CREATE PROGRAM instruction. Once en-
capsulated, the format of a program object cannot be exam-
med.

Thus, the System38 high-level architecture is never directly
executed. It is a specification for a language that all System38
implementations support; however, that language is translated

8.5
into a proprietary vertical micro-language before execution. Programs/Procedures

The format of the encapsulated program in this micro-lan-
guage cannot be examined and can be different on different
System38 implementations.

8.5.1 The Instruction Stream

The program template presented to the CREATE PROGRAM
instruction consists of three parts:

l a program consisting of a sequence of instructions,
l an Object Definition Table (ODT), and
l user data.

Each instruction consists of a number of 2-byte fields in-
cluding an operation code, an optional operation code ex-
tender, and one to four operands. The operands can specify
literals, elements in space objects, pointers to system objects,
and so on. The information about operand addressing and
characteristics is stored in the Object Definition Table in-
cluded in the template. The ODT is a dictionary that describes
operands for the instruction stream.

Each instruction operand contains an index into the Object
Definition Table. The ODT actually consists of two parts: a
vector of fured-length (4-byte) elements called the Object Di-
rectory Vector (ODV), and a vector of variable-length entries
called the ODT Enty String (OES). An operand is either com-
pletely described by its 4-byte ODV entry, or the ODV entry
has a partial description and a pointer into the OES, where the
remaining description is found. Most commonly occurring
cases are handled by the fured-length ODV itself. Several ODV
entries can point to the same OES entry. The ODT can contain
information such as operand type (e.g., fixed-length decimal
string), size, location, allocation (static or dynamic), initial
value, and so on. Figure 8-5 shows an example of an insrruc-
tion with three operands. The operands index ODT informa-
tion defining their type and location.

Each instruction operand consists of one or more 2-byte
fields. The first 2-byte field contains a 3-bit mode field and a
13-bit ODV index. The mode field indicates what type of ad-
dressing is required and what additional 2-byte fields (called
secondary operands) follow in the instruction stream to de-
scribe the operand completely. For example, a string operand
may require three 2-byte fields to describe a base, index, and
length. 151

The IBM System138 Opcode Operands Opcode Operands

Instruction - I
-- I I I I I I

152

Stream

Object
Definition
Table
COD Ti

Figure 8-5

l-

1 1 Binary (2) ISpacepointer((

System/38 Example High-level Instruction

Since the ODT completely describes each operand, the sca-
lar opcodes are generic. For example, there is only one ADD
NUMERIC instruction that operates on all numeric data
types. The machine interprets the ODT entry to decide how
the operation should be performed and what conversions are
required.

The Object Mapping Table (OMT) is the final data structure
that is part of the encapsulated program (although not
included in the initial template). It contains 6-byte mapping
entries for each entry in the ODV that maps to a space.

8.5.2 Program Activation and Invocation

A program, then, is a system object that represents a sepa-
rately compiled unit of execution (typically known as a proce-
dure). Programs are called by the CALL instruction. There are
actually two parts to the initiation of a program on the Sys-
tem/38: activation and invocation.

Before a program can be invoked (called), it must be ac-
tivated. Activation of the program causes static storage for the
program to be allocated and initialized. Also, any global varia-
bles in program static storage are made addressable. A process
data structure called the Process Static Storage Area (PSSA)
contains an activation entry for each activated program in the
process. The activation entry contains status information, a
count of the number of invocations using the activation, the

8.5
size of static storage, and the storage itself. The first entry in Programs/Procedures

the PSSA contains headers for the chain of activation entries
and a free space chain.

invocation occurs as the result of a transfer of control to the
program. At invocation time, program automatic (that is, dy-
namic) storage is allocated and initialized in a process data
structure called the Process Automatic Storage Area (PASA).
Each invocation entry contains status information, a pointer to
the previous invocation entry, a pointer to the program, and
the automatic storage. After the invocation entry is allocated
and initialized, control is transferred to the program at its entry
point.

Activation can occur implicitly or explicitly. If invocation is
requested of a program that has not been activated, activation
is done automatically by the hardware.

8.5.3 Protected Procedures

The IBM System38 provides a mechanism for creating pro-
tected subsystems. As on previous systems, a protected subsys-
tem mechanism must allow programs to execute in an ampli-
fied protection environment. That is, some programs must be
able to access objects not available to their caller. Since the
System38 profile object defines a domain of protection, pro-
tected subsystems are provided through profile-based facilities
called profile adoption and profile propagation.

The authority of each System38 process is determined by
its profile. When a process calls a program, that program gen-
erally gains access to the process’s profne and, therefore, to the
process’ objects. However, it is possible to construct System38
programs that can access additional objects not available to the
caller. When a program is created, the program’s owner can
specify that the program retain access to the owneu’s profile, as
well as its caller’s profile. This feature, called profile adoption,
allows a called program to access objects not available to the
caller and can be used to construct a protected subsystem.

Although the general calling mechanism allows a called pro-
gram access to its caller’s profile, a calling process can also
restrict this ability. When a program is created, the program’s
owner can specify whether its profile should be propagated to
programs on calls. Thus, a program can also see that its own-
er’s profile is protected from access by programs further down
the call chain. 153

The IBM System138 8.6 Special Privileges

It is worth noting that there are some special privileges in
the System38 authorization system. In addition to object-
based authorities stored in a user profile, there may be other
permitted authorities that are not connected with any particu-
lar object. For example, the ability to create user profiles, diag-
nose the hardware, or create objects representing physical I/O
devices can be controlled by authorizations in a user profile.
Also, the ability to dump and load objects to removable storage
is protected, as well as the ability to execute operations to mod-
ify or service system hardware attributes. Finally, some ob-
jects, such as user proliles and device descriptions, receive spe-
cial protection and can only be addressed through a special
machine context (directory).

154

8.7 Discussion

The IBM System38 is a complex architecture constructed
from several levels of hardware, microcode, and software. Be-
cause of its commercial orientation and the fact that it is availa-
ble from IBM, the System38 is probably destined to become,
at least in the immediate future, the most pervasive object
architecture.

The most interesting feature of the Systemi38, from the
viewpoint of capability systems, is its use of tagging. Capabili-
ties and data can be freely mixed in segments with no loss of
integrity. The ability to mix data and capabilities generally
permits more natural data structuring than the C-list approach.
A single tag bit associated with each 32-bit word indicates
whether or not the word is part of a capability. This tag bit is
hidden from the programmer and accessible only to the mi-
crocode. To be used for addressing, a pointer must be aligned
on a 16-byte boundary and have all four tag bits set. The align-
ment requirement prohibits the user from specifying four con-
secutive words with tags set that lie within two contiguous
capabilities.

The integrity of a capability system must be ensured on
secondary storage as well as in primary memory, and the
pointer tags must be saved on secondary storage. On the Sys-
tem/38, each disk page is 520 bytes long and stores a 5 12-byte
data page and an 8-byte header. The 8-byte header for each
block contains the virtual address for the page, an indication of
whether or not the page contains any pointers, and if so, which
16-byte quadword contains the first pointer in the page. Each

page can contain, at most, 32 pointers; therefore, only 32 bits 8.7 Discussion

are required to specify whether each quadword contains a
pointer. If a page contains pointers, the tag bits are stored
within some unused bytes in the first 16-byte pointer on the
page. When a page is written to disk, the hardware automati-
cally writes the disk block header. When a page is read into
primary memory, the header is automatically removed and the
tags are reconstructed.

The System38 architecture provides a large single-level
address space. The details of memory management, I/O, and
so on are hidden from the programmer. There is no need for a
traditional file system. All objects can be declared permanent
when created, can be stored for long periods of time, and can
be addressed at any time as if they were in primary memory.
Addressing is independent of the object’s memory residency
characteristics. One problem with schemes that remove the
abstraction of secondary storage is in transaction systems or
reliable data‘base operations. In some instances, the program-
mer may wish to ensure that the latest copy of a segment or
object is checkpointed onto long-term storage. The one-level
memory scheme has removed the ability to express the thought
of writing the segment to disk. To solve this, CPF allows an
object attribute that states how frequently data is to be backed
up for a particular object.

The System 38 permits revocation by adding an access con-
trol list mechanism to the capability addressing mechanism.
Two types of pointers, authorized and unauth&zed, can be
used depending on whether or not revocation is required. Au-
thorized pointers are traditional capabilities because they con-
tain access rights and can be freely copied. Passing an author-
ized pointer passes both the addressing rights and privileges.
The ability to resolve a pointer to load the access rights is
controlled by an authorized pointer authorization. Only suita-
bly privileged profiles can create an authorized pointer.

In contrast, an unauthorized pointer is not a capability in
the traditional sense. The same unauthorized pointer can per-
mit different types of access when used by different processes.
This is because the authorization rights are fetched from the
process’s profile when a reference is made. This extra step in
pointer address evaluation permits explicit control over author-
ity and combines the advantages of standard capability systems
and access control lists. The user can specify (and determine
at any time) what other profues are allowed access to the
user’s objects. If only unauthorized pointers have been distrib- 155

The IBM System138 uted, access can be revoked by removing authorization from
other profiles.

Unauthorized pointers permit revocation but add complex-
ity to the handling of pointers. For example, to pass a pointer
to another process, the possessor of the pointer must be aware
of whether that pointer is authorized or unauthorized. Unau-
thorized pointers, unlike capabilities, are not context inde-
pendent. If the pointer is unauthorized, passing it to another
process will not permit object access unless permission has
been granted to the other process’s profile. Also, unauthorized
pointers cannot easily be used to build and share data struc-
tures. For example, if a user wishes to build a tree structure of
segments and pass the tree or subtrees to other processes, the
authorization scheme requires that authorization for each seg-
ment be granted separately to each profile involved.

The structuring of System/38 authorizations permits close
control of pointers. Given the division of authority into object
control, management, and access, it is possible for one user to
be able to affect the propagation of addresses but not be able to
access object data. Another user may be able to read and write
but not propagate pointers.

The large size of the System38 address space simplifies
many problems. Segment identifiers are large enough that they
are never reused. This allows use of the segment ID as a
unique name for an object. Since the ID is never reused, there
is no problem with dangling references. An attempt to access a
deleted object simply causes an exception. Large IDS also sim-
plify the implementation of the one-level memory system.
There is no separation of long-term unique ID and address.
The unique ID is the virtual address used to access a specific
object, segment, or byte. There is no need for separate inform
and outform capabilities or for transforming capabilities in
memory when a segment is removed from memory.

156

Although the System38 instruction stream and Object Def-
inition Table are never used for direct execution, this interface
has some interesting features. The ODT provides a form of
tagging somewhat different from the tagged architectures ex-
amined earlier. Each data element is tagged; however, the tag
is part of the operand, not part of the element. This allows for
several different views of the same data element; different in-
structions can treat the same word as different data types. Op-
eration codes can be generic, and conversion, truncation, etc.
can be performed based on type information in the ODT. The
information stored in the ODT and I-stream may not be ex-

8.8 For Further
tremely compact, but the program in this form need not be Reading

retained after a program object is created.
Finally, IBM has used the object programming approach to

allow isolated construction of components of a very complex
system. The object approach is intended to hide from the pro-
grammer the implementation details of the System38 hard-
ware, so that future System38 implementations can take ad-
vantage of advances in technology without affecting existing
programs. Although this has been a goal of other architectures,
the System/38 has used the object approach to place the
user/system boundary at an unusually high level, hiding many
details of the machine. For example, the System38 high-level
architecture has no registers, although the vertical microcode is
free to use registers or to use different numbers of registers in
different implementations.

The initial System/38 product, with its limitation to com-
mercial languages, does not stress the architecture. It will be
interesting in future years to see if IBM approaches other mar-
kets with this object-based machine structure.

8.8 For Further Reading

Detailed information about the System/38 high-level archi-
tecture can be found in two IBM manuals [IBM 80a, IBM 821.
IBM has also packaged a collection of 30 short technical pa-
pers, mostly dealing with hardware and implementation issues,
into a document called IBM System138 Technical Developments
[IBM gob]. Several papers describing the addressing and pro-
tection features of System38 have also been published in tech-
nical literature [Berstis 80a, Houdek 81, Soltis 79, Soltis 811.

157

The Intel iAXP 432 computer. (Courtesy Intel Corporation.)

