
 247

CHAPTER TWELVE

Memory Organization

12.1 Early Memory
Every year new memory technologies are developed promising

faster response and higher throughput. This makes it difficult to
maintain a printed document discussing the latest advances in memory
technologies. Although this chapter does present some basic memory
technologies and how they are used to improve performance, the focus
is on how memory is organized and how processors communicate with
them.

One of the earliest types of computer memory was called magnetic
core memory. It was made by weaving fine copper wires through tiny
rings of magnetic material in an array. Figure 12-1 shows the basic
arrangement of core memory.

Figure 12-1 Diagram of a Section of Core Memory

Much like recording music to a magnetic tape, when electrical
current was sent through the center of one of the magnetic rings, it
polarized it with a magnetic charge. Each of these rings could have a
charge that flowed clockwise or counter-clockwise. One direction was
considered a binary 1 while the other was considered a binary 0.

The horizontal and vertical wires of the core memory were used to
write data to a specific ring. By putting half the current necessary to
polarize the magnetic material on one of the horizontal wires and the
same level of current on one of the vertical wires, the ring where the

248 Computer Organization and Design Fundamentals

two wires intersected had enough total current to modify the ring's
polarity. The polarity of the remaining rings would be left unaltered.

The diagonal wires, called sense wires, were used to read data. They
could detect when the polarity on one of the rings was changed. To
read data, therefore, the bit in question would be written to with the
horizontal and vertical wires. If the sense wire detected a change in
polarity, the bit that had been stored there must have been opposite
from the one just written. If no polarity change was detected, the bit
written must have been equal to the one stored in that ring.

Magnetic core memory is considered beautiful by many people who
have seen it, the visible rings nestled among the lacework of glistening
copper wires. It is for these reasons, however, that it is also impractical.
Since the rings are enormous relative to the scale of electronics, a
memory of 1024 bytes (referred to as a 1K x 8 or "1K by 8") had
physical dimensions of approximately 8 inches by 8 inches. In addition,
the fine copper wires were very fragile making manufacturing a
difficult process. A typical 1K x 8 memory would cost thousands of
dollars. Therefore, magnetic core memory disappeared from use with
the advent of transistors and memory circuits such as the latch
presented in Chapter 10.

12.2 Organization of Memory Device
Modern memory has the same basic configuration as magnetic core

memory although the rings have been replaced with electronic memory
cells such as the D-Latch. The array of cells is arranged so that each
row represents a memory location where a binary number or program
instruction would be stored and the columns represent different bits of
those memory locations. This is where the terminology "1K x 8" used
in Section 12.1 comes from. Memory is like a matrix where the number
of rows identifies the number of memory locations in the memory and
the number of columns identifies the number of bits in each memory
location.

To store to or retrieve data from a memory device, the processor
must place a binary number called an address on special inputs to the
memory device. This address identifies which row of the memory
matrix or array the processor is interested in communicating with, and
enables it.

Once a valid address is placed on the address lines, the memory cells
from that row are connected to bi-directional connections on the
memory device that allow data either to be stored to or read from the

 Chapter 12: Memory Organization 249

latches. These connections are called the data lines. Three additional
lines, chip select, read enable, and write enable, are used to control the
transaction.

Figure 12-2 presents the basic organization of a memory device.

Figure 12-2 Basic Organization of a Memory Device

Remember from Chapter 8 that a decoder with n inputs has 2n
outputs, exactly one of which will be active for each unique pattern of
ones and zeros at its input. For example, an active-low 2-input decoder
will have four outputs. A different output will equal zero for each
unique input while all of the other inputs will be ones.

An address decoder selects exactly one row of the memory matrix
or array to be active while the others remain inactive. When the
microprocessor places a binary number onto the address lines, the
address decoder will select a single row in the memory array to be
written to or read from. For example, if the number 0112 = 310 is placed
on the address lines, the third row of the memory will be connected to
the data lines.

The processor uses the inputs read enable and write enable to
specify whether it is reading data from or writing data to the selected
row of the memory array. These signals are active low. When read

 A D
 d e
 d c
 r o
 e d
 s e
 s r

Address
lines

Data lines

Chip
select

Write
enable

Read
enable

250 Computer Organization and Design Fundamentals

enable is zero, we are reading data from memory, and when write
enable is zero, we are writing data to memory. These two signals
should never be zero at the same time.

Sometimes, the read enable and write enable signals are combined
into a single line called R/W (pronounced "read write-bar"). In this
case, a one on this line indicates we are reading data and a zero
indicates we are writing data.

If latches are used for the memory cells, this means that the data
lines are connected to the D inputs of the latches in the memory
location when data is being stored, and they are connected to the Q
outputs when data is being read.

The last input to the memory device shown in Figure 12-2 is the
chip select. The chip select is an active low signal that enables or
disables the memory device. If the chip select equals zero, the memory
activates all of its input and output lines and uses them to transfer data.
If the chip select equals one, the memory becomes idle, effectively
disconnecting itself from all of its input and output lines. The reason for
this is that the typical memory device shares the address and data lines
of a processor with other memory devices.

Rarely does a processor communicate with only one memory device
on its data lines. Problems occur when more than one device tries to
communicate with the processor over these lines at the same time. It
would be like ten people in a room trying to talk at once; no one would
be able to understand what was being said.

The processor uses digital logic to control these devices so that only
one is talking or listening at a time. Through individual control of each
of the chip select lines to the memory devices, the processor can enable
only the memory device it wishes to communicate with. The processor
places a zero on the chip select of the memory device it wants to
communicate with and places ones on all of the other chip select inputs.

The next section discusses how these chip selects are designed so
that no conflicts occur.

12.3 Interfacing Memory to a Processor
The previous section presented the input and output lines for a

memory device. These lines are shared across all of the devices that
communicate with the processor. If you look at the electrical traces
across the surface of a motherboard, you should see groups of traces or
connections running together in parallel from one memory device to the
next and eventually to the processor. These groups of wires are referred

 Chapter 12: Memory Organization 251

to as the bus. The bus is an extension of the internal structure of the
processor and includes connections for address, data, and control. This
section discusses how the memory devices share the bus.

12.3.1 Buses
In order to communicate with memory, a processor needs three

types of connections: data, address, and control. The data lines are the
electrical connections used to send data to or receive data from
memory. There is an individual connection or wire for each bit of data.
For example, if the memory of a particular system has 8 latches per
memory location, i.e., 8 columns in the memory matrix or array, then it
can store 8-bit data and has 8 individual wires with which to transfer
data.

The address lines are controlled entirely by the processor and are
used to specify which memory location the processor wishes to
communicate with. The address is in unsigned binary representation
which means that the pattern of ones and zeros placed on the address
lines corresponds to a positive integer identifying a unique location
where the processor wishes to store or retrieve data. Since this unique
location could be in any one of the memory devices, the address lines
are also used to specify which memory device is enabled.

The control lines consist of the signals that manage the transfer of
data. At a minimum, they specify the timing and direction of the data
transfer. The processor also controls this group of lines. Figure 12-3
presents the simplest connection of a single memory device to a
processor with n data lines and m address lines.

Unfortunately, the configuration of Figure 12-3 only works with
systems that have a single memory device. This is not very common.
For example, a processor may interface with a BIOS stored in a non-
volatile memory while its programs and data are stored in the volatile
memory of a RAM stick. In addition, it may use the bus to
communicate with devices such as the hard drive or video card. All of
these devices share the data, address, and control lines of the bus.
(BIOS stands for Basic Input/Output System and it is the low-level
code used to start the processor when it is first powered up.)

A method had to be developed to allow a processor to communicate
to multiple memory devices across the same set of wires. If this wasn't
done, the processor would need a separate set of data, address, and
control lines for each device to which it intended to communicate.

252 Computer Organization and Design Fundamentals

Figure 12-3 Basic Processor to Memory Device Interface

With this method, the processor can communicate with exactly one
device at a time even though it is physically connected to many
devices. If only one device on the bus is enabled at a time, the
processor can perform a successful data transfer. If two devices tried to
drive the data lines simultaneously, the result would be lost data, much
like two people trying to talk at the same time. This condition is called
bus contention.

Figure 12-4 presents a situation where data is being read from
memory device 1 while memory device 2 remains "disconnected" from
the bus. Disconnected is in quotes because the physical connection is
still present; it just doesn't have an electrical connection across which
data can pass.

Notice that Figure 12-4 shows that the only lines disconnected from
the bus are the data lines. This is because bus contention only occurs
when multiple devices are trying to output to the same lines at the same
time. Since only the microprocessor outputs to the address and control
lines, they can remain connected.

In order for this scheme to work, an additional control signal must
be sent to each of the memory devices telling them when to be
connected to the bus and when to be disconnected. This control signal
is called a chip select.

 D0
 D1

 P :
 r Dn-1
 o
 c A0
 e A1
 s :
 s Am-1
 o
 r R
 W
 Clock

D0
D1
:
Dn-1 M
 e
A0 m
A1 o
: r
Am-1 y

R
W
Clock

: :

: :

Data Lines Address Lines

Control Lines

 Chapter 12: Memory Organization 253

Figure 12-4 Two Memory Devices Sharing a Bus

A chip select is an active low signal that is connected to an enable
input on the memory device. If the chip select is high, the memory
device remains idle and its data lines are disconnected from the bus.
When the processor wants to communicate with the memory device, it
pulls that device's chip select low thereby enabling it and connecting it
to the bus.

Each memory device has its own chip select, and at no time do two
chip selects go low at the same time. For example, Table 12-1 shows
the only possible values of the chip selects for a system with four
memory devices.

Table 12-1 The Allowable Settings of Four Chip Selects

 CS0 CS1 CS2 CS3
Only memory device 0 connected 0 1 1 1
Only memory device 1 connected 1 0 1 1
Only memory device 2 connected 1 1 0 1
Only memory device 3 connected 1 1 1 0
All devices disconnected 1 1 1 1

This disconnection is performed using tristate outputs for the data

lines of the memory chips. A tristate output is digital output with a third
state added to it. This output can be a logic 1, a logic 0, or a third state
that acts as a high impedance or open circuit. It is like someone opened
a switch and nothing is connected.

DATA

ADDRESS

CONTROL

Micro-

processor

Memory
1

Memory
2

Data lines
are connected
to the bus.

Data lines are
disconnected
from the bus.

254 Computer Organization and Design Fundamentals

This third state is controlled by the chip select. When the active low
chip select equals 1, data lines are set to high impedance, sometimes
called the Z state. A chip select equal to 0 causes the data lines to be
active and allow input or output.

In Figure 12-5a, three different outputs are trying to drive the same
wire. This results in bus contention, and the resulting data is
unreadable. Figure 12-5b shows two of the outputs breaking their
connection with the wire allowing the first output to have control of the
line. This is the goal when multiple devices are driving a single line.
Figure 12-5c is the same as 12-5b except that the switches have been
replaced with tristate outputs. With all but one of the outputs in a Z
state, the top gate is free to drive the output without bus contention.

The following sections describe how memory systems are designed
using chip selects to take advantage of tristate outputs.

12.3.2 Memory Maps
Think of memory as several filing cabinets where each folder can

contain a single piece of data. The size of the stored data, i.e., the
number of bits that can be stored in a single memory location, is fixed
and is equal to the number of columns in the memory array. Each piece
of data can be either code (part of a program) or data (variables or
constants used in the program). Code and data are typically stored in
the same memory, each piece of which is stored in a unique address or
row of memory.

Figure 12-5 Three Buffers Trying to Drive the Same Output

0 0

1 1

0 0

a.) Bus
contention

0 0

1

0

b.) Open
connection

0 0

1 Z

0 Z

c.) Tristate
buffers

CS0 = 0

CS1 = 1

CS2 = 1

 Chapter 12: Memory Organization 255

Some sections of memory are dedicated to a specific purpose which
may place constraints on how it is implemented. For example, the
BIOS from which the computer performs its initial startup sequence is
located at a specific address range in non-volatile memory. Video
memory may also be located at a specific address range.

Both hardware and software designers need to have a method to
describe the arrangement of memory in a system. Since multiple
memory devices and different types of memory may be present in a
single system, hardware designers need to be able to show what
addresses correspond to which memory devices. Software designers
also need to have a way to show how the memory is being used. For
example, which parts of memory will be used for the operating system,
which parts will be used to store a program, or which parts will be used
to store the data for a program.

System designers describe the use of memory with a memory map.
A memory map represents a system's memory with a long, vertical
column. It is meant to model the memory array where the rows
correspond to the memory locations. Within the full range of addresses
are smaller partitions where the individual resources are present. Figure
12-6 presents two examples of memory maps.

Figure 12-6 Sample Memory Maps

FFFF16

FF0016
BIOS

FEFF16

800016

Empty

7FFF16

700016

Video
memory

6FFF16

000016

RAM

FFFFF16

C000016
Program

C
BFFFF16

8000016

Program
B

7FFFF16

2800016
Unused

27FFF16

2000016
Program

A
1FFFF16

0000016
O/S

a.) Hardware-specific b.) Software-specific

256 Computer Organization and Design Fundamentals

The numbers along the left side of the memory map represent the
addresses corresponding to each memory resource. The memory map
should represent the full address range of the processor. This full
address range is referred to as the processor's memory space, and its
size is represented by the number of memory locations in the full range,
i.e., 2m where m equals the number of address lines coming out of the
processor. It is up to the designer whether the addresses go in ascending
or descending order on the memory map.

As an example, let's calculate the memory space of the processor
represented by the memory map in Figure 12-6b. The top address for
this memory map is FFFFF16 = 1111 1111 1111 1111 11112. Since the
processor accesses its highest address by setting all of its address lines
to 1, we know that this particular processor has 20 address lines.
Therefore, its memory space is 220 = 1,048,57610 = 1 Meg. This means
that all of the memory resources for this processor must be able to fit
into 1 Meg without overlapping.

In the next section, we will see how to compute the size of each
partition of memory using the address lines. For now, however, we can
determine the size of a partition in memory by subtracting the low
address from the high address, then adding one to account for the fact
that the low address itself is a memory location too. For example, the
range of the BIOS in Figure 12-6a starts at FF0016 = 65,28010 and goes
up to FFFF16 = 65,53510. This means that the BIOS fits into
65,535 – 65,280 +1 = 256 memory locations.

It is vital to note that there is an exact method to selecting the upper
and lower addresses for each of the ranges in the memory map. Take
for example the memory range for Program A in Figure 12-6b. The
lower address is 2000016 while the upper address is 27FFF16. If we
convert these addresses to binary, we should see a relationship.

 2000016 = 0010 0000 0000 0000 00002
 27FFF16 = 0010 0111 1111 1111 11112

It is not a coincidence that the upper five bits of these two addresses

are identical while the remaining bits go from all zeros in the low
address to all ones in the high address. Converting the high and the low
address of any one of the address ranges in Figure 12-6 should reveal
the same phenomenon.

The next section shows how these most significant address bits are
used to define which memory device is being selected.

 Chapter 12: Memory Organization 257

12.3.3 Address Decoding
Address decoding is a method for using an address to enable a

unique memory device while leaving all other devices idle. The method
described here works for many more applications than memory though.
It is the same method that is used to identify which subnet a host
computer is connected to based on its IP address.

All address decoding schemes have one thing in common: the bits of
the full address are divided into two groups, one group that is used to
identify the memory device and one group that identifies the memory
location within the selected memory device. In order to determine how
to divide the full address into these two groups of bits, we need to
know how large the memory device is and how large the memory space
is. Once we know the size of the memory device, then we know the
number of bits that will be required from the full address to point to a
memory location within the memory device.

Just as we calculated the size of the memory space of a processor,
the size of the memory space of a device is calculated by raising 2 to a
power equal to the number of address lines going to that device. For
example, a memory device with 28 address lines going into it has 228 =
256 Meg locations. This means that 28 address bits from the full
address must be used to identify a memory location within that device.
All of the remaining bits of the full address will be used to enable or
disable the device. It is through these remaining address bits that we
determine where the memory will be located within the memory map.

Table 12-2 presents a short list of memory sizes and the number of
address lines required to access all of the locations within them.
Remember that the memory size is simply equal to 2m where m is the
number of address lines going into the device.

Table 12-2 Sample Memory Sizes versus Required Address Lines

Memory
size

Number of
address lines

 Memory
size

Number of
address lines

1 K 10 256 Meg 28
256 K 18 1 Gig 30
1 Meg 20 4 Gig 32
16 Meg 24 64 Gig 36

258 Computer Organization and Design Fundamentals

The division of the full address into two groups is done by dividing
the full address into a group of most significant bits and least
significant bits. The block diagram of an m-bit full address in Figure
12-7 shows how this is done. Each bit of the full address is represented
with an where n is the bit position.

full address of m-bits

am–1 am–2 am–3 … ak ak–1 ak–2 … a2 a1 a0
m – k bits defining when

memory device is enabled
k bits wired directly
to memory device

Figure 12-7 Full Address with Enable Bits and Device Address Bits

The bits used to enable the memory device are always the most
significant bits while the bits used to access a memory location within
the device are always the least significant bits.

Example
A processor with a 256 Meg address space is using the address

35E3C0316 to access a 16 Meg memory device.

• How many address lines are used to define when the 16 Meg
memory space is enabled?

• What is the bit pattern of these enable bits that enables this
particular 16 Meg memory device?

• What is the address within the 16 Meg memory device that this
address is going to transfer data to or from?

• What is the lowest address in the memory map of the 16 Meg
memory device?

• What is the highest address in the memory map of the 16 Meg
memory device?

Solution
First, we need to determine where the division in the full address is

so that we know which bits go to the enable circuitry and which are
connected directly to the memory device's address lines. From Table
12-2, we see that to access 256 Meg, we need 28 address lines.
Therefore, the processor must have 28 address lines coming out of it.

 Chapter 12: Memory Organization 259

The memory device is only 16 Meg which means that it requires 24
address lines to uniquely identify all of its addresses.

a27 a26 a25 a24 a23 a22 … a2 a1 a0
4 bits that enable
memory device

24 bits going to address
lines of memory device

Therefore, the four most significant address lines are used to enable

the memory device.
By converting 35E3C0316 to binary, we should see the values of

each of these bit positions for this memory location in this memory
device.

 35E3C0316 = 0011 0101 1110 0011 1100 0000 00112

The four most significant bits of this 28-bit address are 00112. This,

therefore, is the bit pattern that will enable this particular 16 Meg
memory device: a27 = 0, a26 = 0, a25 = 1, and a24 = 1. Any other pattern
of bits for these four lines will disable this memory device and disallow
any data transactions between it and the processor.

The 16 Meg memory device never sees the most significant four bits
of this full address. The only address lines it ever sees are the 24 that
are connected directly to its address lines: a0 through a23. Therefore, the
address the memory device sees is:

 0101 1110 0011 1100 0000 00112 = 5E3C0316

As for the highest and lowest values of the full address for this
memory device, we need to examine what the memory device interprets
as its highest and lowest addresses. The lowest address occurs when all
of the address lines to the memory device are set to 0. The highest
address occurs when all of the address lines to the memory device are
set to 1. Note that this does not include the four most significant bits of
the full address which should stay the same in order for the memory
device to be active. Therefore, from the standpoint of the memory map
which uses the full address, the lowest address is the four enable bits
set to 00112 followed by 24 zeros. The highest address is the four
enable bits set to 00112 followed by 24 ones.

260 Computer Organization and Design Fundamentals

 4 bits that enable
memory device

24 bits going to address
lines of memory device

 a27 a26 a25 a24 a23 a22 … a2 a1 a0
Highest address 0 0 1 1 1 1 … 1 1 1
Lowest address 0 0 1 1 0 0 … 0 0 0

Therefore, from the perspective of the memory map, the lowest and

highest addresses of this memory device are:

 Highest = 0011 1111 1111 1111 1111 1111 11112 = 3FFFFFF16
 Lowest = 0011 0000 0000 0000 0000 0000 00002 = 300000016

The memory map below shows how this 16 Meg memory is placed

within the full range of the processor's memory space. The full address
range of the processor's memory space is determined by the fact that
there are 28 address lines from the processor. Twenty-eight ones is
FFFFFFF16 in hexadecimal and 28 zeros is 000000016.

FFFFFFF16

400000016

3FFFFFF16

300000016

16 Meg
memory

2FFFFFF16

000000016

The method for resolving the subnet of an IP address is the same as

enabling a specific memory device within a processor's memory space.
When configuring a computer to run on a network that uses the Internet
Protocol version 4 addressing scheme, it must be assigned a 32-bit
address that uniquely identifies it among all of the other computers on
that network. This 32-bit address serves a second purpose though: it
identifies the sub-network or subnet that this computer is a member of
within the entire network. A subnet within the entire IP network is
equivalent to a memory device within the memory space of a processor.

 Chapter 12: Memory Organization 261

 32-bit IP address
Network address Host or local address

Bits used to
identify subnet

Bits used to identify
host within subnet

Figure 12-8 IPv4 Address Divided into Subnet and Host IDs

According to IPv4 standard, there are four classes of addressing,
Class A, Class B, Class C, and Class D. Each of these classes is defined
by the number of bits that are assigned to identify the subnet and how
many bits are left for the host ID. For example, a Class A subnet uses 8
bits to identify the subnet. This leaves 24 bits to identify the host within
the subnet. Therefore, a Class A network can ideally contain a
maximum of 224 = 16,777,216 hosts. The actual number of hosts is two
less. Two addresses for every subnet are reserved: one for a broadcast
address and one for the subnet itself.

A Class C network uses 24 bits to identify the subnet and 8 bits to
identify the host within the subnet. Therefore, a Class C network can
have at most 28 – 2 = 254 machines on it, far fewer than a Class A. The
drawback of a Class A network, however, is that if the entire network
were assigned to Class A subnets, then there would ideally only be
room for 28 = 256 subnets. Whenever the number of bits used to
identify the subnet is increased, the number of possible subnets is
increased while the number of hosts within a subnet is decreased.

Example
The IPv4 address 202.54.151.45 belongs to a Class C network. What

are the subnet and the host ids of this address?

Solution
First, IPv4 addresses are represented as four bytes represented in

decimal notation. Therefore, let's convert the IP address above into its
32-bit binary equivalent.
 20210 = 110010102
 5410 = 001101102
 15110 = 100101112
 4510 = 001011012

This means that the binary address of 202.54.151.45 is:

262 Computer Organization and Design Fundamentals

11001010.00110110.10010111.00101101

Remember that the Class C network uses the first twenty-four bits

for the subnet id. This gives us the following value for the subnet id.

Subnet id202.54.151.45 = 1100101000110110100101112

Any IPv4 address with the first 24 bits equal to this identify a host in
this subnet.

The host id is taken from the remaining bits.

Host id202.54.151.45 = 001011012

12.3.4 Chip Select Hardware
What we need is a circuit that will enable a memory device

whenever the full address is within the address range of the device and
disable the memory device when the full address falls outside the
address range of the device. This is where those most significant bits of
the full address come into play.

Remember from our example where we examined the addressing of
a 16 Meg memory device in the 256 Meg memory space of a processor
that the four most significant bits needed to remain 00112. In other
words, if the four bits a27, a26, a25, and a24 equaled 00002, 00012, 00102,
01002, 01012, 01102, 01112, 10002, 10012, 10102, 10112, 11002, 11012,
11102, or 11112, the 16 Meg memory device would be disabled.
Therefore, we want a circuit that is active when a27 = 0, a26 = 0, a25 = 1,
and a24 = 1. This sounds like the product from an AND gate with a27
and a26 inverted. Chip select circuits are typically active low, however,
so we need to invert the output. This gives us a NAND gate.

Figure 12-9 Sample Chip Select Circuit for a Memory Device

So the process of designing a chip select is as follows:

a27
a26
a25
a24

 Chapter 12: Memory Organization 263

• Using the memory space of the processor and the size of the
memory device, determine the number of bits of the full address
that will be used for the chip select.

• Using the base address where the memory device is to be located,
determine the values that the address lines used for the chip select
are to have.

• Create a circuit with the address lines for the chip select going into
the inputs of a NAND gate with the bits that are to be zero inverted.

Example
Using logic gates, design an active low chip select for a 1 Meg

BIOS to be placed in the 1 Gig memory space of a processor. The
BIOS needs to have a starting address of 1E0000016.

Solution
First of all, let's determine how many bits are required by the 1 Meg

BIOS. We see from Table 12-2 that a 1 Meg memory device requires
20 bits for addressing. This means that the lower 20 address lines
coming from the processor must be connected to the BIOS address
lines. Since a 1 Gig memory space has 30 address lines (230 = 1 Gig),
then 30 – 20 = 10 address lines are left to determine the chip select.

Next, we figure out what the values of those ten lines are supposed
to be. If we convert the starting address to binary, we get:

1E0000016 = 00 0001 1110 0000 0000 0000 0000 0000

Notice that enough leading zeros were added to make the address 30
bits long, the appropriate length in a 1 Gig memory space.

We need to assign each bit a label. We do this by labeling the least
significant bit a0, then incrementing the subscript for each subsequent
position to the left. This gives us the following values for each address
bit. (a18 through a2 have been deleted in the interest of space.)

a29 a28 a27 a26 a25 a24 a23 a22 a21 a20 a19 a18 … a1 a0
0 0 0 0 0 1 1 1 1 0 0 0 … 0 0

Bits a20 through a29 will be used for our chip select.

264 Computer Organization and Design Fundamentals

Example
What is the largest memory device that can be placed in a memory

map with a starting address of A4000016.

Solution
This may seem like a rather odd question, but it actually deals with

an important aspect of creating chip selects. Notice that for every one
of our starting addresses, the bits that go to the chip select circuitry can
be ones or zeros. The bits that go to the address lines of the memory
device, however, must all be zero. This is because the first address in
any memory device is 010. The ending or highest address will have all
ones going to the address lines of the memory device.

Let's begin by converting the address A4000016 to binary.

A4000016 = 1010 0100 0000 0000 0000 00002

If we count the zeros starting with the least significant bit and
moving left, we see that there are 18 zeros before we get to our first
one. This means that the largest memory device we can place at this
starting address has 18 address lines. Therefore, the largest memory
device we can start at this address has 218 = 256 K memory locations.

Example
True or False: B00016 to CFFF16 is a valid range for a single

memory.

Solution
This is much like the previous example in that it requires an

understanding of how the address lines going to the chip select circuitry
and the memory device are required to behave. The previous example

a29

a27

a25

a23

a21

a28

a26

a24

a22

a20

 Chapter 12: Memory Organization 265

showed that the address lines going to the memory device must be all
zero for the starting or low address and all ones for the ending or high
address. The address lines going to the chip select, however, must all
remain constant.

Let's begin by converting the low and the high addresses to binary.

 a15
a 14

a 13
a 12

a 11
a 10

a 9
a 8

a 7
a 6

a 5
a 4

a 3
a 2

a 1
a 0

Low 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
High 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1

Note that it is impossible to make a vertical division through both

the high and the low addresses where all of the bits to the left are the
same for both the high and the low addresses while every bit to the
right goes from all zeros for the low address to all ones for the high
address. Since we cannot do this, we cannot make a chip select for this
memory device and the answer is false.

Example
What are the high and low addresses of the memory device that is

enabled with the chip select shown below?

Solution
To begin with, the addressing can be determined from the subscripts

of the address lines identified in the figure. The address lines coming
out of the processor go from a0 (always assumed to be the least
significant bit of the address) to a27. This means that the processor has
28 address lines and can access a memory space of 228 = 256 Meg.

The chip select only goes low when all of the inputs to the NAND
gate (after the inverters) equal 1. This means that a27 = 0, a26 = 1,
a25 = 0, a24 = 0, and a23 = 1. We find the lowest address by setting all of
the remaining bits, a22 through a0, to zero and we find the highest
address by setting all of the remaining bits to 1. This gives us the
following binary addresses.

a27
a26
a25
a24
a23

266 Computer Organization and Design Fundamentals

 a27 a26 a25 a24 a23 a22 a21 … a1 a0
High address 0 1 0 0 1 1 1 … 1 1
Low address 0 1 0 0 1 0 0 … 0 0

When we convert these values to hexadecimal, we get:

 High address = 0100 1111 1111 1111 1111 1111 11112 = 4FFFFFF16
 Low address = 0100 1000 0000 0000 0000 0000 00002 = 480000016

12.4 Memory Mapped Input/Output
Some devices do not contain a memory array, yet their interface to

the processor uses data lines and control lines just like a memory
device. For example, an analog-to-digital converter (ADC) reads an
analog value and converts it to a digital number that the processor can
use. The processor reads this digital value from ADC exactly the same
way that it would read a value it had stored in a memory device.

The ADC may also require parameters to be sent to it from the
processor. These parameters might include the method it uses for
conversion, the time it waits between conversions, and which analog
input channels are active. The processor sets these values by writing to
the ADC in the same way it would store data to a memory device.

The practice of interfacing an input/output (I/O) device as if it was a
memory device is called memory mapping. Just like the bus interface
for a memory device, the memory mapped interface to a bus uses a chip
select or clock to tell the device when it's being accessed and data lines
to pass data between the device and the processor. Some memory
mapped I/O even use address lines, although it usually involves only
one or two of them.

Some I/O devices even use the read enable and write enable signals
from the processor. Remember that these lines dictated the direction the
data is moving on the data bus. The only I/O devices that need these
two control lines would be the ones that both accept data from and send
data to the processor.

 Chapter 12: Memory Organization 267

Figure 12-10 Some Types of Memory Mapped I/O Configurations

12.5 Memory Terminology
There are many different purposes for memory in the operation of a

computer. Some memory is meant to store data and programs only
while the computer is turned on while other memory is meant to be
permanent. Some memory contains application code while other
memory is meant to store the low-level driver code to control devices
such as an IDE interface or a video card. Some memory performs better
at the amount of data it can store while other memory may provide
quicker access time.

In order to understand what memory technologies to apply to which
processor operation, we need to understand a little bit more about the
technologies themselves. This section discusses some of the
terminology used to describe memory.

12.5.1 Random Access Memory
The term Random Access Memory (RAM) is typically applied to

memory that is easily read from and written to by the microprocessor.
In actuality, this is a misuse of this term. For a memory to be random
access means that any address can be accessed at any time. This is to
differentiate it from storage devices such as tapes or hard drives where
the data is accessed sequentially. We will discuss hard drive
technologies in Chapter 13.

In general, RAM is the main memory of a computer. Its purpose is
to store data and applications that are currently in use. The operating
system controls the use of this memory dictating when items are to be

a.) Memory-mapped output device

D0
D1
:
Dn-1

Clock

:
Data
lines

:

Chip
select

address
lines

b.) Memory-mapped I/O device

D0
D1
:
Dn-1

R
W

Clock

:
Data
lines

:

Chip
select

address
lines

Direction
control

268 Computer Organization and Design Fundamentals

loaded into RAM, where they are to be located in RAM, and when they
need to be removed from RAM. RAM is meant to be very fast both for
reading and writing data. RAM also tends to be volatile in that as soon
as power is removed, all of the data is lost.

12.5.2 Read Only Memory
In every computer system, there must be a portion of memory that is

stable and impervious to power loss. This kind of memory is called
Read Only Memory or ROM. Once again, this term is a misnomer. If it
was not possible to write to this type of memory, we could not store the
code or data that is to be contained in it. It simply means that without
special mechanisms in place, a processor cannot write to this type of
memory. If through an error of some sort, the processor tries to write to
this memory, an error will be generated.

The most common application of ROM is to store the computer's
BIOS. Since the BIOS is the code that tells the processor how to access
its resources upon powering up, it must be present even when the
computer is powered down. Another application is the code for
embedded systems. For example, it is important for the code in your
car's computer to remain even if the battery is disconnected.

There are some types of ROM that the microprocessor can write to,
but usually the time needed to write to them or the programming
requirements needed to do so make it unwise to write to them regularly.
Therefore, these memories are still considered read only.

In some cases, the processor cannot write to a ROM under any
circumstances. For example, the code in your car's computer should
never need to be modified. This ROM is programmed before it is
installed. To put a new program in the car's computer, the old ROM is
removed and discarded and a new ROM is installed in its place.

12.5.3 Static RAM versus Dynamic RAM
For as long as memory has existed, scientists and engineers have

tried to modify the technologies in order to make RAM faster and to
cram more of it into a smaller space. Usually, these two goals are at
odds with each other, and nowhere is it more obvious than in the two
main classifications of RAM: Static RAM (SRAM) and Dynamic RAM
(DRAM).

SRAM is made from an array of latches such as the D-latch we
studied in Chapter 10. Each latch can maintain a single bit of data

 Chapter 12: Memory Organization 269

within a single memory address or location. For example, if a memory
stores eight bits per memory address, then there are eight latches for a
single address. If this same memory has an address space of 256 K,
then there are 218 · 8 = 221 = 2,097,152 latches in the device.

Latches are not small devices as logic circuits go, but they are very
fast. Therefore, in the pursuit of the performance goals of speed and
size, SRAMs are better adapted to speed. In general, SRAMs:

• store data in transistor circuits similar to D-latches;
• are used for very fast applications such as RAM caches (discussed

in Chapter 13);
• tend to store less data allowing for very fast access due to the

simpler decoding logic; and
• are volatile meaning that the data remains stored only as long as

power is available.

There are circuits that connect SRAMs to a back up battery that

allows the data to be stable even with a loss of power. These batteries,
about the size of a watch battery, can maintain the data for long periods
of time much as a battery in a watch can run for years. On the negative
side, the extra battery and circuitry adds to the overall system cost and
takes up physical space on the motherboard

A bit is stored in a DRAM using a device called a capacitor. A
capacitor is made from a pair of conductive plates that are held parallel
to each other and very close together, but not touching. If an electron is
placed on one of the plates, its negative charge will force an electron on
the other plate to leave. This works much like the north pole of a
magnet pushing away the north pole of a second magnet.

If enough electrons are deposited on the one plate creating a strong
negative charge, enough electrons will be moved away from the
opposite plate creating a positive charge. Like a north pole attracting
the south pole of a second magnet, the charges on these two plates will
be attracted to each other and maintain their charge. This is considered
a logic '1'. The absence of a charge is considered a logic '0'.

Since a capacitor can be made very small, DRAM technology is
better adapted to high density memories, i.e., cramming a great deal of
bits into a small space.

There is a problem though. Every once in a while, one of the
electrons will escape from the negatively charged plate and land on the

270 Computer Organization and Design Fundamentals

positively charged plate. This exchange of a negative charge decreases
the overall charge difference on the two plates. If this happens enough,
the stored '1' will disappear. This leakage of electrons from one plate to
the other is referred to as leakage current.

The electrons stored on the plates of the capacitors are also lost
when the processor reads the data. It takes some level of energy to read
data from the capacitors, energy that is stored by the position of the
electrons. Enough reads will remove all of the electrons.

In order to avoid having leakage current or processor reads corrupt
the data stored on the DRAMs, i.e., turning the whole mess to zeros,
additional logic called refresh circuitry is used that periodically reads
the data in the DRAM then restores it with a full charge of electrons to
the capacitors storing ones. This logic also recharges the capacitors
right after the processor reads data from a memory location. The
refresh circuitry makes the process of keeping data valid on the
DRAMs transparent to the processor.

In general, DRAMs:

• have a much higher capacity due to the smaller size of the capacitor
(the sticks of RAM that you use for your computer's main memory
are DRAMs);

• will "leak" current due to the nature of capacitors and will
eventually lose the data they have stored unless it is refreshed
periodically;

• are much cheaper than SRAM; and
• are volatile meaning that the data is fixed and remains stored only

as long as power is available.

12.5.4 Asynchronous versus Synchronous
In all logic circuits, there is a delay between the time that inputs are

set and the outputs appear. Memories have inputs including address
lines, input data lines, and control lines and outputs on which to put
data. Whenever a processor sets the inputs to a memory, it has to wait
for the memory to respond. This is called asynchronous operation.

Asynchronous operation makes it difficult on the circuit board
designers that design motherboards. They have to run the processor
slower to allow for the ambiguous timing of different types and sizes
memories. One memory may be ready with the data before the
processor needs it while a different memory may take longer.

 Chapter 12: Memory Organization 271

Some processors, however, are designed so that the memory follows
a precise timing requirement. This timing is governed by a clock that is
added to the bus keeping everything that is attached to the bus in lock-
step. Memories that are connected to this type of bus are referred to as
synchronous memory. The ability of the processor to predict exactly
when data will be ready on the bus allows it to adhere to more precise
timing requirements, and therefore run faster.

12.6 What's Next?
This chapter has only examined a small part of the information

storage solutions used in a computer system. In the next section, we
will discuss the operation and purpose of all levels of data storage by
examining the different characteristics of each. The major
characteristics that will be examined are speed, size, and whether data
is lost with a power loss. Each level has specific needs and therefore is
implemented with different technologies.

Problems
1. What is the largest memory that can have a starting or lowest

address of 16000016?

2. What are the high and low addresses of the memory ranges defined
by each of the chip selects shown below?

a27
a26
a25
a24
a23

a15
a14
a13
a12

a31
a30
a29
a28
a27

c.)

b.)

a.)

272 Computer Organization and Design Fundamentals

3. What is the processor memory space for each of the chip selects in
problem 2?

4. What is the size of the memory device for each of the chip selects
in problem 2?

5. How many 16 K memories can be placed (without overlapping) in
the memory space of a processor that has 24 address lines?

6. Using logic gates, design an active low chip select for the memory
device described in each of the following situations.

a.) A 256 K memory device starting at address 28000016 in a 4
Meg memory space

b.) A memory device in the range 3000016 to 37FFF16 in a 1 Meg
memory space.

7. How many latches are contained in a SRAM that has 20 address
lines and 8 data lines?

8. True or false: DRAM is faster than SRAM.

9. True or false: DRAM is cheaper per bit than SRAM.

10. True or false: More DRAM can be packed into the same area
(higher density) than SRAM.

11. True or false: DRAM is usually used for smaller memories than
SRAM.

12. When data is passed from a memory chip to the processor, what
values do the bus signals R and W have?

13. What is the subnet and host id of the Class C IPv4 address
195.164.39.2?

14. Taking into account the addresses for the subnet and broadcast,
how many hosts can be present on a Class C IPv4 subnet?

