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CHAPTER TWELVE 

Memory Organization 

12.1 Early Memory 
Every year new memory technologies are developed promising 

faster response and higher throughput. This makes it difficult to 
maintain a printed document discussing the latest advances in memory 
technologies. Although this chapter does present some basic memory 
technologies and how they are used to improve performance, the focus 
is on how memory is organized and how processors communicate with 
them. 

One of the earliest types of computer memory was called magnetic 
core memory. It was made by weaving fine copper wires through tiny 
rings of magnetic material in an array. Figure 12-1 shows the basic 
arrangement of core memory. 

 
 
 
 
 
 
 
 
 
 

Figure 12-1   Diagram of a Section of Core Memory 

Much like recording music to a magnetic tape, when electrical 
current was sent through the center of one of the magnetic rings, it 
polarized it with a magnetic charge. Each of these rings could have a 
charge that flowed clockwise or counter-clockwise. One direction was 
considered a binary 1 while the other was considered a binary 0.  

The horizontal and vertical wires of the core memory were used to 
write data to a specific ring. By putting half the current necessary to 
polarize the magnetic material on one of the horizontal wires and the 
same level of current on one of the vertical wires, the ring where the 
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two wires intersected had enough total current to modify the ring's 
polarity. The polarity of the remaining rings would be left unaltered. 

The diagonal wires, called sense wires, were used to read data. They 
could detect when the polarity on one of the rings was changed. To 
read data, therefore, the bit in question would be written to with the 
horizontal and vertical wires. If the sense wire detected a change in 
polarity, the bit that had been stored there must have been opposite 
from the one just written. If no polarity change was detected, the bit 
written must have been equal to the one stored in that ring.  

Magnetic core memory is considered beautiful by many people who 
have seen it, the visible rings nestled among the lacework of glistening 
copper wires. It is for these reasons, however, that it is also impractical. 
Since the rings are enormous relative to the scale of electronics, a 
memory of 1024 bytes (referred to as a 1K x 8 or "1K by 8") had 
physical dimensions of approximately 8 inches by 8 inches. In addition, 
the fine copper wires were very fragile making manufacturing a 
difficult process. A typical 1K x 8 memory would cost thousands of 
dollars. Therefore, magnetic core memory disappeared from use with 
the advent of transistors and memory circuits such as the latch 
presented in Chapter 10. 

12.2 Organization of Memory Device 
Modern memory has the same basic configuration as magnetic core 

memory although the rings have been replaced with electronic memory 
cells such as the D-Latch. The array of cells is arranged so that each 
row represents a memory location where a binary number or program 
instruction would be stored and the columns represent different bits of 
those memory locations. This is where the terminology "1K x 8" used 
in Section 12.1 comes from. Memory is like a matrix where the number 
of rows identifies the number of memory locations in the memory and 
the number of columns identifies the number of bits in each memory 
location. 

To store to or retrieve data from a memory device, the processor 
must place a binary number called an address on special inputs to the 
memory device. This address identifies which row of the memory 
matrix or array the processor is interested in communicating with, and 
enables it.  

Once a valid address is placed on the address lines, the memory cells 
from that row are connected to bi-directional connections on the 
memory device that allow data either to be stored to or read from the 
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latches. These connections are called the data lines. Three additional 
lines, chip select, read enable, and write enable, are used to control the 
transaction. 

Figure 12-2 presents the basic organization of a memory device. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12-2   Basic Organization of a Memory Device 

Remember from Chapter 8 that a decoder with n inputs has 2n 
outputs, exactly one of which will be active for each unique pattern of 
ones and zeros at its input. For example, an active-low 2-input decoder 
will have four outputs. A different output will equal zero for each 
unique input while all of the other inputs will be ones. 

An address decoder selects exactly one row of the memory matrix 
or array to be active while the others remain inactive. When the 
microprocessor places a binary number onto the address lines, the 
address decoder will select a single row in the memory array to be 
written to or read from. For example, if the number 0112 = 310 is placed 
on the address lines, the third row of the memory will be connected to 
the data lines. 

The processor uses the inputs read enable and write enable to 
specify whether it is reading data from or writing data to the selected 
row of the memory array. These signals are active low. When read 
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enable is zero, we are reading data from memory, and when write 
enable is zero, we are writing data to memory. These two signals 
should never be zero at the same time. 

Sometimes, the read enable and write enable signals are combined 
into a single line called R/W (pronounced "read write-bar"). In this 
case, a one on this line indicates we are reading data and a zero 
indicates we are writing data. 

If latches are used for the memory cells, this means that the data 
lines are connected to the D inputs of the latches in the memory 
location when data is being stored, and they are connected to the Q 
outputs when data is being read.  

The last input to the memory device shown in Figure 12-2 is the 
chip select. The chip select is an active low signal that enables or 
disables the memory device. If the chip select equals zero, the memory 
activates all of its input and output lines and uses them to transfer data. 
If the chip select equals one, the memory becomes idle, effectively 
disconnecting itself from all of its input and output lines. The reason for 
this is that the typical memory device shares the address and data lines 
of a processor with other memory devices. 

Rarely does a processor communicate with only one memory device 
on its data lines. Problems occur when more than one device tries to 
communicate with the processor over these lines at the same time. It 
would be like ten people in a room trying to talk at once; no one would 
be able to understand what was being said. 

The processor uses digital logic to control these devices so that only 
one is talking or listening at a time. Through individual control of each 
of the chip select lines to the memory devices, the processor can enable 
only the memory device it wishes to communicate with. The processor 
places a zero on the chip select of the memory device it wants to 
communicate with and places ones on all of the other chip select inputs. 

The next section discusses how these chip selects are designed so 
that no conflicts occur. 

12.3 Interfacing Memory to a Processor 
The previous section presented the input and output lines for a 

memory device. These lines are shared across all of the devices that 
communicate with the processor. If you look at the electrical traces 
across the surface of a motherboard, you should see groups of traces or 
connections running together in parallel from one memory device to the 
next and eventually to the processor. These groups of wires are referred 
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to as the bus. The bus is an extension of the internal structure of the 
processor and includes connections for address, data, and control. This 
section discusses how the memory devices share the bus. 

12.3.1 Buses 
In order to communicate with memory, a processor needs three 

types of connections: data, address, and control. The data lines are the 
electrical connections used to send data to or receive data from 
memory. There is an individual connection or wire for each bit of data. 
For example, if the memory of a particular system has 8 latches per 
memory location, i.e., 8 columns in the memory matrix or array, then it 
can store 8-bit data and has 8 individual wires with which to transfer 
data. 

The address lines are controlled entirely by the processor and are 
used to specify which memory location the processor wishes to 
communicate with. The address is in unsigned binary representation 
which means that the pattern of ones and zeros placed on the address 
lines corresponds to a positive integer identifying a unique location 
where the processor wishes to store or retrieve data. Since this unique 
location could be in any one of the memory devices, the address lines 
are also used to specify which memory device is enabled. 

The control lines consist of the signals that manage the transfer of 
data. At a minimum, they specify the timing and direction of the data 
transfer. The processor also controls this group of lines. Figure 12-3 
presents the simplest connection of a single memory device to a 
processor with n data lines and m address lines. 

Unfortunately, the configuration of Figure 12-3 only works with 
systems that have a single memory device. This is not very common. 
For example, a processor may interface with a BIOS stored in a non-
volatile memory while its programs and data are stored in the volatile 
memory of a RAM stick. In addition, it may use the bus to 
communicate with devices such as the hard drive or video card. All of 
these devices share the data, address, and control lines of the bus. 
(BIOS stands for Basic Input/Output System and it is the low-level 
code used to start the processor when it is first powered up.)    

A method had to be developed to allow a processor to communicate 
to multiple memory devices across the same set of wires. If this wasn't 
done, the processor would need a separate set of data, address, and 
control lines for each device to which it intended to communicate. 
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Figure 12-3   Basic Processor to Memory Device Interface 

With this method, the processor can communicate with exactly one 
device at a time even though it is physically connected to many 
devices. If only one device on the bus is enabled at a time, the 
processor can perform a successful data transfer. If two devices tried to 
drive the data lines simultaneously, the result would be lost data, much 
like two people trying to talk at the same time. This condition is called 
bus contention.  

Figure 12-4 presents a situation where data is being read from 
memory device 1 while memory device 2 remains "disconnected" from 
the bus. Disconnected is in quotes because the physical connection is 
still present; it just doesn't have an electrical connection across which 
data can pass. 

Notice that Figure 12-4 shows that the only lines disconnected from 
the bus are the data lines. This is because bus contention only occurs 
when multiple devices are trying to output to the same lines at the same 
time. Since only the microprocessor outputs to the address and control 
lines, they can remain connected. 

In order for this scheme to work, an additional control signal must 
be sent to each of the memory devices telling them when to be 
connected to the bus and when to be disconnected. This control signal 
is called a chip select.  
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Figure 12-4   Two Memory Devices Sharing a Bus 

A chip select is an active low signal that is connected to an enable 
input on the memory device. If the chip select is high, the memory 
device remains idle and its data lines are disconnected from the bus. 
When the processor wants to communicate with the memory device, it 
pulls that device's chip select low thereby enabling it and connecting it 
to the bus. 

Each memory device has its own chip select, and at no time do two 
chip selects go low at the same time. For example, Table 12-1 shows 
the only possible values of the chip selects for a system with four 
memory devices. 

Table 12-1   The Allowable Settings of Four Chip Selects 

 

 CS0 CS1 CS2 CS3 
Only memory device 0 connected 0 1 1 1 
Only memory device 1 connected 1 0 1 1 
Only memory device 2 connected 1 1 0 1 
Only memory device 3 connected 1 1 1 0 
All devices disconnected 1 1 1 1 

 
This disconnection is performed using tristate outputs for the data 

lines of the memory chips. A tristate output is digital output with a third 
state added to it. This output can be a logic 1, a logic 0, or a third state 
that acts as a high impedance or open circuit. It is like someone opened 
a switch and nothing is connected.  
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This third state is controlled by the chip select. When the active low 
chip select equals 1, data lines are set to high impedance, sometimes 
called the Z state. A chip select equal to 0 causes the data lines to be 
active and allow input or output. 

In Figure 12-5a, three different outputs are trying to drive the same 
wire. This results in bus contention, and the resulting data is 
unreadable. Figure 12-5b shows two of the outputs breaking their 
connection with the wire allowing the first output to have control of the 
line. This is the goal when multiple devices are driving a single line. 
Figure 12-5c is the same as 12-5b except that the switches have been 
replaced with tristate outputs. With all but one of the outputs in a Z 
state, the top gate is free to drive the output without bus contention. 

The following sections describe how memory systems are designed 
using chip selects to take advantage of tristate outputs. 

12.3.2 Memory Maps 
Think of memory as several filing cabinets where each folder can 

contain a single piece of data. The size of the stored data, i.e., the 
number of bits that can be stored in a single memory location, is fixed 
and is equal to the number of columns in the memory array. Each piece 
of data can be either code (part of a program) or data (variables or 
constants used in the program). Code and data are typically stored in 
the same memory, each piece of which is stored in a unique address or 
row of memory. 

 
 
 
 
 
 
 
 
 
 
 

Figure 12-5   Three Buffers Trying to Drive the Same Output 
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Some sections of memory are dedicated to a specific purpose which 
may place constraints on how it is implemented. For example, the 
BIOS from which the computer performs its initial startup sequence is 
located at a specific address range in non-volatile memory. Video 
memory may also be located at a specific address range. 

Both hardware and software designers need to have a method to 
describe the arrangement of memory in a system. Since multiple 
memory devices and different types of memory may be present in a 
single system, hardware designers need to be able to show what 
addresses correspond to which memory devices. Software designers 
also need to have a way to show how the memory is being used. For 
example, which parts of memory will be used for the operating system, 
which parts will be used to store a program, or which parts will be used 
to store the data for a program.  

System designers describe the use of memory with a memory map. 
A memory map represents a system's memory with a long, vertical 
column. It is meant to model the memory array where the rows 
correspond to the memory locations. Within the full range of addresses 
are smaller partitions where the individual resources are present. Figure 
12-6 presents two examples of memory maps. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12-6   Sample Memory Maps 
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The numbers along the left side of the memory map represent the 
addresses corresponding to each memory resource. The memory map 
should represent the full address range of the processor. This full 
address range is referred to as the processor's memory space, and its 
size is represented by the number of memory locations in the full range, 
i.e., 2m where m equals the number of address lines coming out of the 
processor. It is up to the designer whether the addresses go in ascending 
or descending order on the memory map. 

As an example, let's calculate the memory space of the processor 
represented by the memory map in Figure 12-6b. The top address for 
this memory map is FFFFF16 = 1111 1111 1111 1111 11112. Since the 
processor accesses its highest address by setting all of its address lines 
to 1, we know that this particular processor has 20 address lines. 
Therefore, its memory space is 220 = 1,048,57610 = 1 Meg. This means 
that all of the memory resources for this processor must be able to fit 
into 1 Meg without overlapping. 

In the next section, we will see how to compute the size of each 
partition of memory using the address lines. For now, however, we can 
determine the size of a partition in memory by subtracting the low 
address from the high address, then adding one to account for the fact 
that the low address itself is a memory location too. For example, the 
range of the BIOS in Figure 12-6a starts at FF0016 = 65,28010 and goes 
up to FFFF16 = 65,53510. This means that the BIOS fits into  
65,535 – 65,280 +1 = 256 memory locations.  

It is vital to note that there is an exact method to selecting the upper 
and lower addresses for each of the ranges in the memory map. Take 
for example the memory range for Program A in Figure 12-6b. The 
lower address is 2000016 while the upper address is 27FFF16. If we 
convert these addresses to binary, we should see a relationship. 

 
 2000016 =  0010 0000 0000 0000 00002 
 27FFF16 = 0010 0111 1111 1111 11112 
 
It is not a coincidence that the upper five bits of these two addresses 

are identical while the remaining bits go from all zeros in the low 
address to all ones in the high address. Converting the high and the low 
address of any one of the address ranges in Figure 12-6 should reveal 
the same phenomenon. 

The next section shows how these most significant address bits are 
used to define which memory device is being selected. 
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12.3.3 Address Decoding 
Address decoding is a method for using an address to enable a 

unique memory device while leaving all other devices idle. The method 
described here works for many more applications than memory though. 
It is the same method that is used to identify which subnet a host 
computer is connected to based on its IP address. 

All address decoding schemes have one thing in common: the bits of 
the full address are divided into two groups, one group that is used to 
identify the memory device and one group that identifies the memory 
location within the selected memory device. In order to determine how 
to divide the full address into these two groups of bits, we need to 
know how large the memory device is and how large the memory space 
is. Once we know the size of the memory device, then we know the 
number of bits that will be required from the full address to point to a 
memory location within the memory device. 

Just as we calculated the size of the memory space of a processor, 
the size of the memory space of a device is calculated by raising 2 to a 
power equal to the number of address lines going to that device. For 
example, a memory device with 28 address lines going into it has 228 = 
256 Meg locations. This means that 28 address bits from the full 
address must be used to identify a memory location within that device. 
All of the remaining bits of the full address will be used to enable or 
disable the device. It is through these remaining address bits that we 
determine where the memory will be located within the memory map. 

Table 12-2 presents a short list of memory sizes and the number of 
address lines required to access all of the locations within them. 
Remember that the memory size is simply equal to 2m where m is the 
number of address lines going into the device. 

Table 12-2   Sample Memory Sizes versus Required Address Lines 

Memory  
size 

Number of 
address lines

 Memory 
size 

Number of 
address lines 

1 K 10  256 Meg 28 
256 K 18  1 Gig 30 
1 Meg 20  4 Gig 32 
16 Meg 24  64 Gig 36 
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The division of the full address into two groups is done by dividing 
the full address into a group of most significant bits and least 
significant bits. The block diagram of an m-bit full address in Figure 
12-7 shows how this is done. Each bit of the full address is represented 
with an where n is the bit position. 

 
full address of m-bits 

am–1 am–2 am–3 … ak ak–1 ak–2 … a2 a1 a0 
m – k bits defining when

memory device is enabled
k bits wired directly 
to memory device 

Figure 12-7   Full Address with Enable Bits and Device Address Bits 

The bits used to enable the memory device are always the most 
significant bits while the bits used to access a memory location within 
the device are always the least significant bits. 

Example 
A processor with a 256 Meg address space is using the address 

35E3C0316 to access a 16 Meg memory device. 
 

• How many address lines are used to define when the 16 Meg 
memory space is enabled? 

• What is the bit pattern of these enable bits that enables this 
particular 16 Meg memory device? 

• What is the address within the 16 Meg memory device that this 
address is going to transfer data to or from? 

• What is the lowest address in the memory map of the 16 Meg 
memory device? 

• What is the highest address in the memory map of the 16 Meg 
memory device? 

Solution 
First, we need to determine where the division in the full address is 

so that we know which bits go to the enable circuitry and which are 
connected directly to the memory device's address lines. From Table 
12-2, we see that to access 256 Meg, we need 28 address lines. 
Therefore, the processor must have 28 address lines coming out of it. 
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The memory device is only 16 Meg which means that it requires 24 
address lines to uniquely identify all of its addresses. 

 
a27 a26 a25 a24 a23 a22 … a2 a1 a0 
4 bits that enable
memory device 

24 bits going to address  
lines of memory device 

 
Therefore, the four most significant address lines are used to enable 

the memory device. 
By converting 35E3C0316 to binary, we should see the values of 

each of these bit positions for this memory location in this memory 
device. 

 
 35E3C0316 = 0011 0101 1110 0011 1100 0000 00112 

 
The four most significant bits of this 28-bit address are 00112. This, 

therefore, is the bit pattern that will enable this particular 16 Meg 
memory device: a27 = 0, a26 = 0, a25 = 1, and a24 = 1. Any other pattern 
of bits for these four lines will disable this memory device and disallow 
any data transactions between it and the processor. 

The 16 Meg memory device never sees the most significant four bits 
of this full address. The only address lines it ever sees are the 24 that 
are connected directly to its address lines: a0 through a23. Therefore, the 
address the memory device sees is: 

 
 0101 1110 0011 1100 0000 00112 = 5E3C0316 
 

As for the highest and lowest values of the full address for this 
memory device, we need to examine what the memory device interprets 
as its highest and lowest addresses. The lowest address occurs when all 
of the address lines to the memory device are set to 0. The highest 
address occurs when all of the address lines to the memory device are 
set to 1. Note that this does not include the four most significant bits of 
the full address which should stay the same in order for the memory 
device to be active. Therefore, from the standpoint of the memory map 
which uses the full address, the lowest address is the four enable bits 
set to 00112 followed by 24 zeros. The highest address is the four 
enable bits set to 00112 followed by 24 ones.  
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 4 bits that enable
memory device 

24 bits going to address  
lines of memory device 

 a27 a26 a25 a24 a23 a22 … a2 a1 a0 
Highest address 0 0 1 1 1 1 … 1 1 1 
Lowest address 0 0 1 1 0 0 … 0 0 0 

 
Therefore, from the perspective of the memory map, the lowest and 

highest addresses of this memory device are: 
 

 Highest = 0011 1111 1111 1111 1111 1111 11112 = 3FFFFFF16 
 Lowest = 0011 0000 0000 0000 0000 0000 00002 = 300000016 

 
The memory map below shows how this 16 Meg memory is placed 

within the full range of the processor's memory space. The full address 
range of the processor's memory space is determined by the fact that 
there are 28 address lines from the processor. Twenty-eight ones is 
FFFFFFF16 in hexadecimal and 28 zeros is 000000016. 
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The method for resolving the subnet of an IP address is the same as 

enabling a specific memory device within a processor's memory space. 
When configuring a computer to run on a network that uses the Internet 
Protocol version 4 addressing scheme, it must be assigned a 32-bit 
address that uniquely identifies it among all of the other computers on 
that network. This 32-bit address serves a second purpose though: it 
identifies the sub-network or subnet that this computer is a member of 
within the entire network. A subnet within the entire IP network is 
equivalent to a memory device within the memory space of a processor. 



 Chapter 12: Memory Organization    261 
 

 32-bit IP address  
Network address Host or local address 

Bits used to  
identify subnet 

Bits used to identify  
host within subnet 

Figure 12-8   IPv4 Address Divided into Subnet and Host IDs 

According to IPv4 standard, there are four classes of addressing, 
Class A, Class B, Class C, and Class D. Each of these classes is defined 
by the number of bits that are assigned to identify the subnet and how 
many bits are left for the host ID. For example, a Class A subnet uses 8 
bits to identify the subnet. This leaves 24 bits to identify the host within 
the subnet. Therefore, a Class A network can ideally contain a 
maximum of 224 = 16,777,216 hosts. The actual number of hosts is two 
less. Two addresses for every subnet are reserved: one for a broadcast 
address and one for the subnet itself. 

A Class C network uses 24 bits to identify the subnet and 8 bits to 
identify the host within the subnet. Therefore, a Class C network can 
have at most 28 – 2 = 254 machines on it, far fewer than a Class A. The 
drawback of a Class A network, however, is that if the entire network 
were assigned to Class A subnets, then there would ideally only be 
room for 28 = 256 subnets. Whenever the number of bits used to 
identify the subnet is increased, the number of possible subnets is 
increased while the number of hosts within a subnet is decreased. 

Example 
The IPv4 address 202.54.151.45 belongs to a Class C network. What 

are the subnet and the host ids of this address? 

Solution 
First, IPv4 addresses are represented as four bytes represented in 

decimal notation. Therefore, let's convert the IP address above into its 
32-bit binary equivalent. 
 20210 =  110010102 
 5410 =  001101102 
 15110 =  100101112 
 4510 =  001011012 

 
This means that the binary address of 202.54.151.45 is: 
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11001010.00110110.10010111.00101101 
 
Remember that the Class C network uses the first twenty-four bits 

for the subnet id. This gives us the following value for the subnet id. 
 

Subnet id202.54.151.45 = 1100101000110110100101112 
 

Any IPv4 address with the first 24 bits equal to this identify a host in 
this subnet. 

The host id is taken from the remaining bits. 
 

Host id202.54.151.45 = 001011012 

12.3.4 Chip Select Hardware 
What we need is a circuit that will enable a memory device 

whenever the full address is within the address range of the device and 
disable the memory device when the full address falls outside the 
address range of the device. This is where those most significant bits of 
the full address come into play. 

Remember from our example where we examined the addressing of 
a 16 Meg memory device in the 256 Meg memory space of a processor 
that the four most significant bits needed to remain 00112. In other 
words, if the four bits a27, a26, a25, and a24 equaled 00002, 00012, 00102, 
01002, 01012, 01102, 01112, 10002, 10012, 10102, 10112, 11002, 11012, 
11102, or 11112, the 16 Meg memory device would be disabled. 
Therefore, we want a circuit that is active when a27 = 0, a26 = 0, a25 = 1, 
and a24 = 1. This sounds like the product from an AND gate with a27 
and a26 inverted. Chip select circuits are typically active low, however, 
so we need to invert the output. This gives us a NAND gate. 

 
 
 
 

Figure 12-9   Sample Chip Select Circuit for a Memory Device 

So the process of designing a chip select is as follows: 
 

a27
a26
a25
a24
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• Using the memory space of the processor and the size of the 
memory device, determine the number of bits of the full address 
that will be used for the chip select. 

• Using the base address where the memory device is to be located, 
determine the values that the address lines used for the chip select 
are to have. 

• Create a circuit with the address lines for the chip select going into 
the inputs of a NAND gate with the bits that are to be zero inverted. 

Example 
Using logic gates, design an active low chip select for a 1 Meg 

BIOS to be placed in the 1 Gig memory space of a processor. The 
BIOS needs to have a starting address of 1E0000016. 

Solution 
First of all, let's determine how many bits are required by the 1 Meg 

BIOS. We see from Table 12-2 that a 1 Meg memory device requires 
20 bits for addressing. This means that the lower 20 address lines 
coming from the processor must be connected to the BIOS address 
lines. Since a 1 Gig memory space has 30 address lines (230 = 1 Gig), 
then 30 – 20 = 10 address lines are left to determine the chip select.  

Next, we figure out what the values of those ten lines are supposed 
to be. If we convert the starting address to binary, we get: 

 
1E0000016 = 00 0001 1110 0000 0000 0000 0000 0000 

 
Notice that enough leading zeros were added to make the address 30 
bits long, the appropriate length in a 1 Gig memory space. 

We need to assign each bit a label. We do this by labeling the least 
significant bit a0, then incrementing the subscript for each subsequent 
position to the left. This gives us the following values for each address 
bit. (a18 through a2 have been deleted in the interest of space.) 

 
a29 a28 a27 a26 a25 a24 a23 a22 a21 a20 a19 a18 … a1 a0 
0 0 0 0 0 1 1 1 1 0 0 0 … 0 0 
               

 
Bits a20 through a29 will be used for our chip select. 
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Example 
What is the largest memory device that can be placed in a memory 

map with a starting address of A4000016. 

Solution 
This may seem like a rather odd question, but it actually deals with 

an important aspect of creating chip selects. Notice that for every one 
of our starting addresses, the bits that go to the chip select circuitry can 
be ones or zeros. The bits that go to the address lines of the memory 
device, however, must all be zero. This is because the first address in 
any memory device is 010. The ending or highest address will have all 
ones going to the address lines of the memory device. 

Let's begin by converting the address A4000016 to binary. 
 

A4000016 = 1010 0100 0000 0000 0000 00002 
 

If we count the zeros starting with the least significant bit and 
moving left, we see that there are 18 zeros before we get to our first 
one. This means that the largest memory device we can place at this 
starting address has 18 address lines. Therefore, the largest memory 
device we can start at this address has 218 = 256 K memory locations. 

Example 
True or False: B00016 to CFFF16 is a valid range for a single 

memory. 

Solution 
This is much like the previous example in that it requires an 

understanding of how the address lines going to the chip select circuitry 
and the memory device are required to behave. The previous example 

a29 

a27 

a25 

a23 

a21 

a28 

a26 

a24 

a22 

a20 
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showed that the address lines going to the memory device must be all 
zero for the starting or low address and all ones for the ending or high 
address. The address lines going to the chip select, however, must all 
remain constant. 

Let's begin by converting the low and the high addresses to binary. 
 

 a15  
a 14 

a 13  
a 12 

a 11  
a 10

a 9  
a 8 

a 7  
a 6 

a 5  
a 4 

a 3  
a 2 

a 1  
a 0 

Low 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
High 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 

 
Note that it is impossible to make a vertical division through both 

the high and the low addresses where all of the bits to the left are the 
same for both the high and the low addresses while every bit to the 
right goes from all zeros for the low address to all ones for the high 
address. Since we cannot do this, we cannot make a chip select for this 
memory device and the answer is false. 

Example 
What are the high and low addresses of the memory device that is 

enabled with the chip select shown below? 
 
 
 
 
 

Solution 
To begin with, the addressing can be determined from the subscripts 

of the address lines identified in the figure. The address lines coming 
out of the processor go from a0 (always assumed to be the least 
significant bit of the address) to a27. This means that the processor has 
28 address lines and can access a memory space of 228 = 256 Meg. 

The chip select only goes low when all of the inputs to the NAND 
gate (after the inverters) equal 1. This means that a27 = 0, a26 = 1,  
a25 = 0, a24 = 0, and a23 = 1. We find the lowest address by setting all of 
the remaining bits, a22 through a0, to zero and we find the highest 
address by setting all of the remaining bits to 1. This gives us the 
following binary addresses. 

 

a27 
a26 
a25 
a24 
a23 
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 a27 a26 a25 a24 a23 a22 a21 … a1 a0 
High address 0 1 0 0 1 1 1 … 1 1 
Low address 0 1 0 0 1 0 0 … 0 0 

           
 
When we convert these values to hexadecimal, we get: 
 

 High address = 0100 1111 1111 1111 1111 1111 11112 = 4FFFFFF16 
 Low address = 0100 1000 0000 0000 0000 0000 00002 = 480000016 

12.4 Memory Mapped Input/Output 
Some devices do not contain a memory array, yet their interface to 

the processor uses data lines and control lines just like a memory 
device. For example, an analog-to-digital converter (ADC) reads an 
analog value and converts it to a digital number that the processor can 
use. The processor reads this digital value from ADC exactly the same 
way that it would read a value it had stored in a memory device. 

The ADC may also require parameters to be sent to it from the 
processor. These parameters might include the method it uses for 
conversion, the time it waits between conversions, and which analog 
input channels are active. The processor sets these values by writing to 
the ADC in the same way it would store data to a memory device. 

The practice of interfacing an input/output (I/O) device as if it was a 
memory device is called memory mapping. Just like the bus interface 
for a memory device, the memory mapped interface to a bus uses a chip 
select or clock to tell the device when it's being accessed and data lines 
to pass data between the device and the processor. Some memory 
mapped I/O even use address lines, although it usually involves only 
one or two of them.  

Some I/O devices even use the read enable and write enable signals 
from the processor. Remember that these lines dictated the direction the 
data is moving on the data bus. The only I/O devices that need these 
two control lines would be the ones that both accept data from and send 
data to the processor. 
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Figure 12-10   Some Types of Memory Mapped I/O Configurations 

12.5 Memory Terminology 
There are many different purposes for memory in the operation of a 

computer. Some memory is meant to store data and programs only 
while the computer is turned on while other memory is meant to be 
permanent. Some memory contains application code while other 
memory is meant to store the low-level driver code to control devices 
such as an IDE interface or a video card. Some memory performs better 
at the amount of data it can store while other memory may provide 
quicker access time.  

In order to understand what memory technologies to apply to which 
processor operation, we need to understand a little bit more about the 
technologies themselves. This section discusses some of the 
terminology used to describe memory. 

12.5.1 Random Access Memory 
The term Random Access Memory (RAM) is typically applied to 

memory that is easily read from and written to by the microprocessor. 
In actuality, this is a misuse of this term. For a memory to be random 
access means that any address can be accessed at any time. This is to 
differentiate it from storage devices such as tapes or hard drives where 
the data is accessed sequentially. We will discuss hard drive 
technologies in Chapter 13. 

In general, RAM is the main memory of a computer. Its purpose is 
to store data and applications that are currently in use. The operating 
system controls the use of this memory dictating when items are to be 
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loaded into RAM, where they are to be located in RAM, and when they 
need to be removed from RAM. RAM is meant to be very fast both for 
reading and writing data. RAM also tends to be volatile in that as soon 
as power is removed, all of the data is lost. 

12.5.2 Read Only Memory 
In every computer system, there must be a portion of memory that is 

stable and impervious to power loss. This kind of memory is called 
Read Only Memory or ROM. Once again, this term is a misnomer. If it 
was not possible to write to this type of memory, we could not store the 
code or data that is to be contained in it. It simply means that without 
special mechanisms in place, a processor cannot write to this type of 
memory. If through an error of some sort, the processor tries to write to 
this memory, an error will be generated.  

The most common application of ROM is to store the computer's 
BIOS. Since the BIOS is the code that tells the processor how to access 
its resources upon powering up, it must be present even when the 
computer is powered down. Another application is the code for 
embedded systems. For example, it is important for the code in your 
car's computer to remain even if the battery is disconnected. 

There are some types of ROM that the microprocessor can write to, 
but usually the time needed to write to them or the programming 
requirements needed to do so make it unwise to write to them regularly. 
Therefore, these memories are still considered read only.  

In some cases, the processor cannot write to a ROM under any 
circumstances. For example, the code in your car's computer should 
never need to be modified. This ROM is programmed before it is 
installed. To put a new program in the car's computer, the old ROM is 
removed and discarded and a new ROM is installed in its place. 

12.5.3 Static RAM versus Dynamic RAM 
For as long as memory has existed, scientists and engineers have 

tried to modify the technologies in order to make RAM faster and to 
cram more of it into a smaller space. Usually, these two goals are at 
odds with each other, and nowhere is it more obvious than in the two 
main classifications of RAM: Static RAM (SRAM) and Dynamic RAM 
(DRAM). 

SRAM is made from an array of latches such as the D-latch we 
studied in Chapter 10. Each latch can maintain a single bit of data 
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within a single memory address or location. For example, if a memory 
stores eight bits per memory address, then there are eight latches for a 
single address. If this same memory has an address space of 256 K, 
then there are 218 · 8 = 221 = 2,097,152 latches in the device. 

Latches are not small devices as logic circuits go, but they are very 
fast. Therefore, in the pursuit of the performance goals of speed and 
size, SRAMs are better adapted to speed. In general, SRAMs: 

 
• store data in transistor circuits similar to D-latches;  
• are used for very fast applications such as RAM caches (discussed 

in Chapter 13);  
• tend to store less data allowing for very fast access due to the 

simpler decoding logic; and  
• are volatile meaning that the data remains stored only as long as 

power is available. 
  
There are circuits that connect SRAMs to a back up battery that 

allows the data to be stable even with a loss of power. These batteries, 
about the size of a watch battery, can maintain the data for long periods 
of time much as a battery in a watch can run for years. On the negative 
side, the extra battery and circuitry adds to the overall system cost and 
takes up physical space on the motherboard 

A bit is stored in a DRAM using a device called a capacitor. A 
capacitor is made from a pair of conductive plates that are held parallel 
to each other and very close together, but not touching. If an electron is 
placed on one of the plates, its negative charge will force an electron on 
the other plate to leave. This works much like the north pole of a 
magnet pushing away the north pole of a second magnet. 

If enough electrons are deposited on the one plate creating a strong 
negative charge, enough electrons will be moved away from the 
opposite plate creating a positive charge. Like a north pole attracting 
the south pole of a second magnet, the charges on these two plates will 
be attracted to each other and maintain their charge. This is considered 
a logic '1'. The absence of a charge is considered a logic '0'. 

Since a capacitor can be made very small, DRAM technology is 
better adapted to high density memories, i.e., cramming a great deal of 
bits into a small space. 

There is a problem though. Every once in a while, one of the 
electrons will escape from the negatively charged plate and land on the 
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positively charged plate. This exchange of a negative charge decreases 
the overall charge difference on the two plates. If this happens enough, 
the stored '1' will disappear. This leakage of electrons from one plate to 
the other is referred to as leakage current. 

The electrons stored on the plates of the capacitors are also lost 
when the processor reads the data. It takes some level of energy to read 
data from the capacitors, energy that is stored by the position of the 
electrons. Enough reads will remove all of the electrons. 

In order to avoid having leakage current or processor reads corrupt 
the data stored on the DRAMs, i.e., turning the whole mess to zeros, 
additional logic called refresh circuitry is used that periodically reads 
the data in the DRAM then restores it with a full charge of electrons to 
the capacitors storing ones. This logic also recharges the capacitors 
right after the processor reads data from a memory location. The 
refresh circuitry makes the process of keeping data valid on the 
DRAMs transparent to the processor. 

In general, DRAMs: 
 

• have a much higher capacity due to the smaller size of the capacitor 
(the sticks of RAM that you use for your computer's main memory 
are DRAMs);  

• will "leak" current due to the nature of capacitors and will 
eventually lose the data they have stored unless it is refreshed 
periodically; 

• are much cheaper than SRAM; and  
• are volatile meaning that the data is fixed and remains stored only 

as long as power is available. 

12.5.4 Asynchronous versus Synchronous 
In all logic circuits, there is a delay between the time that inputs are 

set and the outputs appear. Memories have inputs including address 
lines, input data lines, and control lines and outputs on which to put 
data. Whenever a processor sets the inputs to a memory, it has to wait 
for the memory to respond. This is called asynchronous operation. 

Asynchronous operation makes it difficult on the circuit board 
designers that design motherboards. They have to run the processor 
slower to allow for the ambiguous timing of different types and sizes 
memories. One memory may be ready with the data before the 
processor needs it while a different memory may take longer. 
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Some processors, however, are designed so that the memory follows 
a precise timing requirement. This timing is governed by a clock that is 
added to the bus keeping everything that is attached to the bus in lock-
step. Memories that are connected to this type of bus are referred to as 
synchronous memory. The ability of the processor to predict exactly 
when data will be ready on the bus allows it to adhere to more precise 
timing requirements, and therefore run faster. 

12.6 What's Next? 
This chapter has only examined a small part of the information 

storage solutions used in a computer system. In the next section, we 
will discuss the operation and purpose of all levels of data storage by 
examining the different characteristics of each. The major 
characteristics that will be examined are speed, size, and whether data 
is lost with a power loss. Each level has specific needs and therefore is 
implemented with different technologies. 

Problems 
1. What is the largest memory that can have a starting or lowest 

address of 16000016? 

2. What are the high and low addresses of the memory ranges defined 
by each of the chip selects shown below? 

 

 

 

 

 

 

 

 

 

 

 

 

a27 
a26 
a25 
a24 
a23 

a15 
a14 
a13 
a12 

a31 
a30 
a29 
a28 
a27 

c.) 

b.) 

a.) 
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3. What is the processor memory space for each of the chip selects in 
problem 2? 

4. What is the size of the memory device for each of the chip selects 
in problem 2? 

5. How many 16 K memories can be placed (without overlapping) in 
the memory space of a processor that has 24 address lines?   

6. Using logic gates, design an active low chip select for the memory 
device described in each of the following situations. 

a.) A 256 K memory device starting at address 28000016 in a 4 
Meg memory space 

b.) A memory device in the range 3000016 to 37FFF16 in a 1 Meg 
memory space. 

7. How many latches are contained in a SRAM that has 20 address 
lines and 8 data lines? 

8. True or false: DRAM is faster than SRAM. 

9. True or false: DRAM is cheaper per bit than SRAM. 

10. True or false: More DRAM can be packed into the same area 
(higher density) than SRAM. 

11. True or false:  DRAM is usually used for smaller memories than 
SRAM. 

12. When data is passed from a memory chip to the processor, what 
values do the bus signals R and W have? 

13. What is the subnet and host id of the Class C IPv4 address 
195.164.39.2? 

14. Taking into account the addresses for the subnet and broadcast, 
how many hosts can be present on a Class C IPv4 subnet? 

 


