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CHAPTER THIRTEEN 

Memory Hierarchy 

13.1 Characteristics of the Memory Hierarchy 
We've discussed the organization and operation of RAM, but RAM 

is only one level of the group of components used to store information 
in a computer. The hard drive, for example, stores all of the data and 
code for the computer in a non-volatile format, and unless a file has 
been opened, this information can only be found on the hard drive.  

Even though the hard drive stores all of the data necessary to operate 
the computer, other storage methods are needed. This is for a number 
of reasons, most notably the hard drive is slow and running programs 
from it would be impossible. When the processor needs data or 
applications, it first loads them into main memory (RAM). 

Main memory and the hard drive are two levels of the computer's 
memory hierarchy. A memory hierarchy is an organization of storage 
devices that takes advantage of the characteristics of different storage 
technologies in order to improve the overall performance of a computer 
system. Figure 13-1 presents the components of the standard memory 
hierarchy of a computer. Each of these components and their function 
in the hierarchy is described in this chapter. 

 
 
 
 
  
 
 
 
 

Figure 13-1   Block Diagram of a Standard Memory Hierarchy 

13.2 Physical Characteristics of a Hard Drive 
At the bottom of the hierarchy is long-term, high-capacity storage. 

This type of memory is slow which makes it a poor choice for the 
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memory that the processor uses for execution of programs and data 
access. This section covers the most common high capacity, non-
volatile storage method: hard drives. 

Hard drives are the most cost-effective method of storing data. In 
the mid-1980's, a 30 Megabyte hard drive could be purchased for 
around $300 or about $10 per MB. In 2005, retailers advertised a 120 
Gigabyte Hard drive for around $110 or about $0.00092 per MB. In 
other words, the cost to store a byte of data is almost 1/11,000th cheaper 
today than it was two decades ago. 

Hard drives store data in well-organized patterns of ones and zeros 
across a thin sheet of magnetic material. This magnetic material is 
spread either on one or both sides of a lightweight, rigid disk called a 
substrate. The substrate needs to be lightweight because it is meant to 
spin at very high speeds. The combination of magnetic material and 
substrate is called a platter.  

The more rigid the substrate is, the better the reliability of the disk. 
This was especially true when the mechanisms that were used to read 
and write data from and to the disks were prone to scraping across the 
substrate's surface if the substrate was not perfectly flat. The condition 
where the read-write mechanism comes in contact with the disk is 
called a hard drive "crash" and would result in magnetic material being 
scraped away from the disk. 

Substrates used to be made from aluminum. Unfortunately, extreme 
heat sometimes warped the aluminum disk. Now glass is used as a 
substrate. It improves on aluminum by adding: 

 
• better surface uniformity which increases reliability;  
• fewer surface defects which reduces read/write errors;  
• better resistance to warping;  
• better resistance to shock; and  
• the ability to have the read/write mechanism ride closer to the 

surface allowing for better data density.  

13.2.1 Hard Drive Read/Write Head 
Data is recorded to the platter using a conductive coil called a head. 

Older drives and floppy drives use the same head for reading the data 
too. The head is shaped like a "C" with the gap between the ends 
positioned to face the magnetic material. A coil of wire is wrapped 
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around the portion of the head that is furthest from the magnetic 
material. Figure 13-2 shows the configuration of this type of head. 

 
 
 
 
 
 
 
 

Figure 13-2   Configuration of a Hard Drive Write Head 

In order to write data, an electrical current is passed through the wire 
creating a magnetic field within the gap of the head close to the disk. 
This field magnetizes the material on the platter in a specific direction. 
Reversing the current would polarize the magnetic material in the 
opposite direction. By spinning the platter under the head, patterns of 
magnetic polarization can be stored in circular paths on the disk. By 
moving the head along the radius, nested circular paths can be created. 
The magnetized patterns on the platter represent the data. 

It is possible to use the same head to read data back from the disk. If 
a magnetized material moves past a coil of wire, it produces a small 
current. This is the same principle that allows the alternator in your car 
to produce electricity. The direction of the current generated by the 
disk's motion changes if the direction of the magnetization changes. In 
this way, the same coil that is used to write the data can be used to read 
it. Just like the alternator in your car though, if the disk is not spinning, 
no current is generated that can be used to read the data. 

Newer hard drives use two heads, one for reading and one for 
writing. The read head works differently than the old heads in that it is 
made of a special material that changes its resistance depending on the 
magnetic field that is passing under it. These changes in resistance 
affect a current that the hard drive controller is passing through the read 
head during the read operation. In this way, the hard drive controller 
can detect changes in the magnetic polarization of the material directly 
under the read head. 

There is another characteristic of the read/write head that is 
important to the physical operation of the hard drive. As was stated 
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earlier, the size of area of substrate that can be polarized by the head is 
equal to the gap in the write head. In order to polarize a smaller area 
thereby increasing the data density, the gap must be made smaller. To 
do this, the distance between the head and the platter must be reduced. 

When the magnetic material is deposited on a flexible substrate such 
as a floppy diskette or a cassette tape, the flex in the material makes it 
possible for the head to come in contact with the substrate without 
experiencing reliability problems. This is not true for hard disks. Since 
the platters are rigid and because the platters spin at thousands of 
rotations per minute, any contact that the head makes with the platter 
will result in magnetic material being scraped off. In addition, the heat 
from the friction will eventually cause the head to fail. 

These two issues indicate that the read/write head should come as 
close to the platters as possible without touching. Originally, this was 
done by making the platter as flat as possible while mounting the head 
to a rigid arm. The gap would hopefully stay constant. Any defects or 
warpage in the platter, however, would cause the head to crash onto the 
platter resulting in damaged data. 

A third type of head, the Winchester head or "flying head" is 
designed to float on a cushion of air that keeps it a fixed distance from 
the spinning platter. This is done by shaping the head into an airfoil that 
takes advantage of the air current generated by the spinning platter. 
This means that the head can operate much closer to the surface of the 
platter and avoid crashing even if there are imperfections. 

13.2.2 Data Encoding 
It might seem natural to use the two directions of magnetic 

polarization to represent ones and zeros. This is not the case, however. 
One reason for this is that the controllers detect the changes in 
magnetic direction, not the direction of the field itself. Second, large 
blocks of data that are all ones or all zeros would be difficult to read 
because eventually the controller might lose track or synchronization of 
where one bit ended and the next began. 

The typical method for storing data to a platter involves setting up a 
clock to define the bit positions, and watching how the magnetic field 
changes with respect to that clock. Each period of the clock defines a 
single bit time, e.g., if a single bit takes 10 nanoseconds to pass under 
the read-write head when the platter is spinning, then a clock with a 
period of 10 nanoseconds, i.e., a frequency of (10×10-9)-1 = 100 MHz is 
used to tell the controller when the next bit position is coming. 
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Originally, a magnetic field change at the beginning and middle of a 
bit time represented a logic one while a magnetic field change only at 
the beginning represented a logic zero. This method was referred to as 
Frequency Modulation (FM). Figure 13-3 uses an example to show the 
relationship between the bit-periods, the magnetic field changes, and 
the data stored using FM encoding. 

 
 
 
 
 
 
 

Figure 13-3   Sample FM Magnetic Encoding 

To store a one using FM encoding, the polarization of the magnetic 
field must change twice within the space of a bit. This means that in 
order to store a single bit, FM encoding takes twice the width of the 
smallest magnetic field that can be written to the substrate. If the 
maximum number of polarity changes per bit could be reduced, more 
data could be stored to the same disk. 

Modified Frequency Modulation (MFM) does this by changing the 
way in which the magnetic polarization represents a one or a zero. 
MFM defines a change in polarization in the middle of a bit time as a 
one and no change in the middle as a zero. If two or more zeros are 
placed next to each other, a change in polarization is made between 
each of the bit times. This is done to prevent a stream zeros from 
creating a long block of unidirectional polarization. Figure 13-4 uses an 
example to show the relationship between the bit-periods, the magnetic 
field changes, and the data stored using MFM encoding. 

For MFM encoding, the longest period between polarity changes 
occurs for the bit sequence 1-0-1. In this case, the polarity changes are 
separated by two bit periods. The shortest period between polarity 
changes occurs when a one follows a one or a zero follows a zero. In 
these cases, the polarity changes are separated by a single bit period. 
This allows us to double the data density over FM encoding using the 
same magnetic surface and head configuration. The hard drive 
controller, however, must be able to handle the increased data rate. 
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Figure 13-4   Sample MFM Magnetic Encoding 

Run Length Limited (RLL) encoding uses polarity changes to 
define sequences of bits rather than single bits. By equating different 
patterns of polarity changes to different sequences of ones and zeros, 
the density of bits stored to a platter can be further increased. There is a 
science behind generating these sequences and their corresponding 
polarity changes. It is based on satisfying the following requirements: 
 
• to ensure enough polarity changes to maintain bit synchronization; 
• to ensure enough bit sequences are defined so that any sequence of 

ones and zeros can be handled; and 
• to allow for the highest number of bits to be represented with the 

fewest number of polarity changes. 
 
Figure 13-5 presents a sample set of RLL encoding polarity changes 

and the bit sequences that correspond to each of them. Any pattern of 
ones and zeros can be represented using this sample set of sequences. 

 
 
 
 
 
 
 
 
 
 
 

Figure 13-5   RLL Relation between Bit Patterns and Polarity Changes 
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Note that the shortest possible period between polarity changes is 
one and a half bit periods. This produces a 50% increased data density 
over MFM encoding. Figure 13-6 presents the sample data used in 
Figures 13-3 and 13-4 encoded with RLL encoding.  

 
 
 
 
 
 
 
 

Figure 13-6   Sample RLL Magnetic Encoding 

Improved encoding methods have been introduced since the 
development of RLL that use digital signal processing and other 
methods to realize better data densities. These methods include Partial 
Response, Maximum Likelihood (PRML) and Extended PRML 
(EPRML) encoding. A discussion of the details of these methods is 
beyond the scope of this text because it depends on a better 
understanding of sampling theory and electrical principles. 

13.2.3 Self-Monitoring, Analysis & Reporting Technology System 
A hard drive crash rarely comes without a warning. The user may be 

unaware of any changes in their hard drive's operation preceding a 
mechanical failure, but there are changes. For example, if a hard drive's 
platters are taking longer to get up to full speed, it may be that the 
bearings are going bad. A hard drive that has been experiencing higher 
than normal operating temperatures may also be about to fail. 

Newer drives now support a feature referred to as Self-Monitoring 
Analysis and Reporting Technology (SMART). SMART enabled 
drives can provide an alert to the computer's BIOS warning of a 
parameter that is functioning outside of its normal range. This usually 
results in a message to the user to replace the drive before it fails. 

SMART attribute values are stored in the hard drive as an integer in 
the range from 1 to 253. The lower the value, the worse the condition 
is. Depending on the parameter and the manufacturer, different failure 
thresholds are set for each of the parameters.  
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The exact parameters measured vary from drive to drive with each 
drive typically monitoring about twenty parameters. The following is a 
sample of some of the available measurements: 

 
• Power On Hours: This indicates the age of the drive. 
• Spin Up Time: A longer spin up time may indicate a problem with 

the assembly that spins the platters. 
• Temperature: Higher temperatures also might indicate a problem 

with the assembly that spins the platters. 
• Head Flying Height: A reduction in the flying height of a 

Winchester head may indicate it is about to crash into the platters. 
 
There are still unpredictable failures such as the failure of an IC or a 

failure caused by a catastrophic event such as a power surge, but now 
the user can be forewarned of most mechanical failures. 

13.3 Organization of Data on a Hard Drive 
The width of a hard drive's read/write head is much smaller than that 

of the platter. This means that there are a number of non-overlapping 
positions for the read/write head along the platter's radius. By allowing 
the movable read/write head to be positioned at intervals along the 
radius of the disk, information can be recorded to any of a number of 
concentric circles on the magnetic material. Each one of these circles is 
called a track. A typical hard drive disk contains thousands of these 
tracks, each being the width of the read/write head. Figure 13-7 shows 
how these tracks correspond to the movement and size of the read/write 
head. 

 
 
 
 
 
 
 
 

Figure 13-7   Relation between Read/Write Head and Tracks 
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Intertrack 
gaps 

Intersector gaps 

Sectors 

A small gap called an intertrack gap is placed between the tracks to 
avoid interference from neighboring data. Reducing this gap allows for 
more data to be stored on a disk, but it also increases the risk of having 
data corrupted when data from an adjacent track bleeds over. 

Each track is divided into sections of around 512 bytes apiece. 
These sections are called sectors. A platter may have sectors that are 
fixed in size for the whole platter or they may have variable amounts of 
data depending on their location on the platter relative to the center of 
rotation. There are typically hundreds of sectors per track. 

In addition to the gaps left between the tracks, gaps are also left 
between the sectors. These gaps allow for a physical separation 
between the blocks of data and are typically used to help the hard drive 
controller when reading from or writing to the disk. These gaps are 
called intersector gaps. Figure 13-8 shows the relationship of these 
gaps to the tracks and sectors. 

 
 
  
 
 
 
 
 
 
 
 
 
 

Figure 13-8   Organization of Hard Disk Platter 

One way to increase the capacity of a hard drive is to increase the 
number of surfaces upon which the magnetic material is placed. The 
first way to do this is to place magnetic material on both sides of the 
platter. When this is done, a second read-write head must be placed on 
the opposite side of the platter to read the second magnetic surface. By 
using the same organization of sectors and tracks, this doubles the 
capacity of the hard drive. 
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A second method for increasing capacity is to mount multiple 
platters on a single spindle, the axis around which all of the platters 
rotate. Each additional magnetic surface adds to the capacity of the 
drive, and as with putting magnetic material on both sides of a single 
platter, all magnetic surfaces have the same organization of sectors and 
tracks, each sector lining up with the ones above it and below it. Every 
additional magnetic surface requires an additional read-write head. 

All of the heads of a hard drive are locked together so that they are 
reading from the exact same location on each of their respective 
surfaces. Therefore, each track on each surface that is the same distance 
from the spindle can be treated as a unit because the hard drive 
controller is accessing them simultaneously. The set of all tracks, one 
from each surface, that are equidistant from the spindle are referred to 
as a cylinder. This virtual entity is depicted in Figure 13-9. 

 
 
 
 
 
 
 
 
 
 

Figure 13-9   Illustration of a Hard Drive Cylinder 

Using this information, we can develop a method for calculating the 
capacity of a hard drive. In general, the capacity of a hard drive equals 
the number of bytes per sector multiplied by the number of sectors per 
track multiplied by the number of cylinders (which is equal to the 
number of tracks per side of a platter) multiplied by 2 if the platters 
have magnetic material on both sides and finally multiplied by the 
number of platters. 

Figure 13-8 shows a platter that has the same number of sectors per 
track regardless of the radius of the track. From this figure, it can be 
seen that the physical size of a sector becomes smaller as its distance 
from the spindle is reduced. Figure 13-10a shows that if the number of 
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bits in a sector is held fixed, then as the radius is reduced, the size of a 
bit is reduced.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13-10   Equal Number of Bits per Track versus Equal Sized Bits 

Because the smallest allowable size for a bit is dictated by the size 
of the read-write head, the number of bits per sector is limited by the 
number of bits that can fit on the smallest track, i.e., the one closest to 
the spindle. Because of this limitation, the outside tracks waste space 
when the bits become wider than necessary. 

A better use of the space on the platter can be realized by letting the 
width of all of the bits be defined by the width of the read-write head. 
This allows for more bits to be stored on the outer tracks. This tighter 
arrangement of bits can be seen in Figure 13-10b. 

The problem with doing this is that as the read-write head moves to 
the outer tracks, the rate at which the bits pass under the head increases 
dramatically over that for the smallest track. This contrasts with the 
fixed number of bits per track which has the same data rate regardless 
of the position of the read-write head. This means that the hard drive 
controller for the fixed number of bits per track is far simpler than that 
for the fixed bit size. 

Regardless of how the bits are arranged on the platters, the number 
of bits per sector remains constant for all of the tracks. For the method 
where increased drive capacity is realized by packing more data on the 
outer tracks, this means that instead of increasing the number of bits on 

a.) Equal number of bits per sector b.) Equal sized bits 
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subsequently larger tracks, the number of bits per track stays constant 
until there is enough room to add another sector. This creates "zones" 
where groups of neighboring tracks have the same number of sectors, 
and therefore, the same number of bits. 

The first method of data storage where the number of sectors per 
track is kept constant is called constant angular velocity. The second 
method where the outer tracks have more sectors is called multiple 
zoned recording. Figure 13-11 compares the sector arrangement of 
these two methods. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13-11   Comparison of Sector Organizations 

This brings us to the next layer of data organization on a hard drive: 
formatting. Formatting is the process of setting or clearing bits on the 
platters in an effort to organize and locate the files that will be stored 
on the hard drive. The methods used by hard drives to organize data 
can also be found on other rotational storage media such as floppy 
disks and Zip® disks. 

Every hard drive utilizes two types of formatting: low-level and 
O/S-level. Low-level formatting (LLF) depends on the mechanics of 
the hard drive and its controller. It divides the platters into usable 
subsections by defining the tracks and sectors. In addition to defining  
the divisions, it also stores digital information allowing the controller to 
properly access the data. This additional information includes: 

 

a.) Constant Angular Velocity b.) Multiple Zoned Recording 
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• Synchronization fields that provide timing and positional 
information to the controller; 

• ID information to allow the controller to identify which track and 
sector its heads are currently positioned over; and 

• Error correcting codes to detect and correct errors in the data. 
 
LLF is driven by the mechanical operation of the hard drive and is 

independent of the operating system that uses it. At one time, an LLF 
could be performed with a computer's BIOS, but because of the 
complexity of modern hard drives, LLF is now performed at the factory 
only. The closest function currently available is a utility called a zero 
fill. This function erases all data on a hard drive by filling the sectors 
with zeroes. 

O/S-level formatting is used to create a file system so that the 
operating system can find and load data from the hard drive. This 
includes information such as the folder structure, file attributes, and on 
which sectors the files are stored.  

There is a level of logical hard drive organization between low-level 
formatting and O/S level formatting called partitioning. Partitioning 
uses a table contained on the hard drive that defines individual, non-
overlapping "logical drives," i.e., drives that look like separate drives 
themselves, but in actuality are all contained on a single set of platters.  

One of the original uses of partitioning was to divide a hard drive 
into smaller logical units when the hard drives that manufacturers 
produced became too large for a BIOS or operating system to handle. 
For example, to install a 2 Gigabyte hard drive on a system where the 
BIOS was only capable of seeing 512 Megabyte drives, the hard drive 
has to be logically divided into at least four drives. 

Another application of partitioning is if different O/S-level 
formatting is needed on a single hard drive. If, for example, a user 
wishes to load both Windows and Linux on the same hard drive, three 
logical drives would be needed, one with a Windows format, one with a 
Linux native format, and one with a Linux swap format. 

At one time, performance benefits could be realized with effective 
partitioning, but with advances in hard drive technologies, this is no 
longer true. 
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13.4 Cache RAM 
Regardless of advances in hard drive technology, it will never be 

practical to execute programs or access data directly from these 
mechanical devices. They are far too slow. Therefore, when the 
processor needs to access information, it is first loaded from the hard 
drive into main memory where the higher performance RAM allows 
fast access to the data and applications. When the processor is finished 
with the data, the information can either be discarded or used to update 
the hard drive. 

Because of its expense, the capacity of a computer's main memory 
falls short of that of its hard drive. This should not matter though. Not 
all of the data on a hard drive needs to be accessed all of the time by the 
processor. Only the currently active data or applications need to be in 
RAM. Additional performance improvements can be realized by taking 
this concept to another level.  

Remember from our discussion in Chapter 12 that there are two 
main classifications of RAM: static RAM (SRAM) and dynamic RAM 
(DRAM). SRAM is faster, but that speed comes at a price: it has a 
lower density and it is more expensive. Since main memory needs to be 
quite large and inexpensive, it is implemented with DRAM. 

Could, however, the same relation that exists between main memory 
and a hard drive be realized between a small block of SRAM and a 
large main memory implemented in DRAM?  Main memory improves 
the performance of the system by loading only the information that is 
currently in use from the hard drive. If a method could be developed 
where the code that is in immediate use could be stored in a small, fast 
SRAM while code that is not quite as active is left in the main memory, 
the system's performance could be improved again.  

Due to the nature of programming, instructions that are executed 
within a short period of time tend to be clustered together. This is due 
primarily to the basic constructs of programming such as loops and 
subroutines that make it so that when one instruction is executed, the 
chances of it or its surrounding instructions being executed again in the 
near future are very good. Over a short period of time, a cluster of 
instructions may execute over and over again. This is referred to as the 
principle of locality. Data also behaves according to this principle due 
to the fact that related data is often defined in consecutive locations. 

To take advantage of this principle, a small, fast SRAM is placed 
between the processor and main memory to hold the most recently used 
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code and data under the assumption that they will most likely be used 
again soon. This small, fast SRAM is called a RAM cache. 

 
  
 
 
 

Figure 13-12   Cache Placement between Main Memory and Processor 

The reason the SRAM of the cache needs to be small is that larger 
address decoder circuits are slower than small address decoder circuits. 
The larger the memory is, the more complex the address decoder 
circuit. The more complex the address decoder circuit is, the longer it 
takes to select a memory location based on the address it received. 
Therefore, making a memory smaller makes it faster. 

It is possible to take this concept a step further by placing an even 
smaller SRAM between the cache and the processor thereby creating 
two levels of cache. This new cache is typically contained inside of the 
processor. By placing the new cache inside the processor, the wires that 
connect the two become very short, and the interface circuitry becomes 
more closely integrated with that of the processor. Both of these 
conditions along with the smaller decoder circuit result in even faster 
data access. When two caches are present, the one inside the processor 
is referred to as a level 1 or L1 cache while the one between the L1 
cache and memory is referred to as a level 2 or L2 cache. 

  
 
 
 

Figure 13-13   L1 and L2 Cache Placement 

The split cache is another cache system that requires two caches. In 
this case, a processor will use one cache to store code and a second 
cache to store data. Typically, this is to support an advanced type of 
processor architecture such as pipelining where the mechanisms that 
the processor uses to handle code are so distinct from those used for 
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data that it does not make sense to put both types of information into 
the same cache. 

 
  
 
 
 
 

Figure 13-14   Split Cache Organization 

13.4.1 Cache Organization 
The success of caches is due primarily to the principle of locality. 

This suggests that when one data item is loaded into a cache, the items 
close to it in memory should be loaded too. For example, if a program 
enters a loop, most of the instructions that make up that loop will be 
executed multiple times. Therefore, when the first instruction of a loop 
is loaded into the cache, time will be saved if its neighboring 
instructions are loaded at the same time. That way the processor will 
not have to go back to main memory for subsequent instructions. 

Because of this, caches are typically organized so that when one 
piece of data or code is loaded, the block of neighboring items is loaded 
too. Each block loaded into the cache is identified with a number called 
a tag that can be used to determine the original addresses of the data in 
main memory. This way, when the processor is looking for a piece of 
data or code (hereafter referred to as a word), it only needs to look at 
the tags to see if the word is contained in the cache. 

The each block of words and its corresponding tag are combined in 
the cache to form a line. The lines are organized into a table much like 
that shown in Figure 13-15. It is important to note that when a word 
from within a block of words is needed from main memory, the whole 
block is moved into one of the lines of the cache along with the tag 
used to identify from where it came. 

13.4.2 Dividing Memory into Blocks 
Main memory stores all of its words in sequential addresses. The 

cache, however, has no sequential order. Therefore, it is the addressing 
scheme of main memory that is used to define the blocks of words and 
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the method for locating them. The definition of blocks in main memory 
is logical only; it has no effect on how the words are stored. 

 
 
 
 
 
 
 
 
 
 

Figure 13-15   Organization of Cache into Lines 

The full main memory address defines a specific memory location 
within memory. For example, a unique twenty-bit address such as 
3E9D116=0011 1110 1001 1101 00012 points to exactly one memory 
location within a 1 Meg memory space. 

If we "hide" the last bit of the address, i.e., that bit could be a one or 
a zero, than the resulting address could refer to one of two possible 
locations, 3E9D116 (0011 1110 1001 1101 00012) or 3E9D016 (0011 
1110 1001 1101 00002). If we hide the last two bits, then the last two 
bits could be 002, 012, 102, or 112. Therefore, the address could be 
referring to one of the following four possible sequential locations: 

 
3E9D016 = 0011 1110 1001 1101 00002 
3E9D116 = 0011 1110 1001 1101 00012 
3E9D216 = 0011 1110 1001 1101 00102 
3E9D316 = 0011 1110 1001 1101 00112 

 
This is how a block is defined. By removing a small group of bits at 

the end of an address, the resulting identifier points to a group of 
memory locations rather than a specific address. Every additional bit 
that is removed doubles the size of the group. This group of memory 
locations is what is referred to as a block. 

The number of words in a block is defined by the number of bits 
removed from the end of the address to create the block identifier. For 
example, when one bit is removed, a block contains two memory 
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locations. When two bits are removed, a block contains four memory 
locations. In the end, the size of a block, k, is defined by: 

 

 k = 2w (13.1) 
 

where w represents the number of bits "removed". Figure 13-16 shows 
an example of a 1 Meg memory space divided into four word blocks. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13-16   Division of Memory into Blocks 

To organize memory into blocks, a memory address is divided into 
two logical sets of bits, one to represent the block number and one to 
identify the word's position or offset within the block. The memory 
address for the example in Figure 13-16 uses the most significant 18 
bits to identify the block and the last two bits to identify a word's 
position within the block. Figure 13-17 presents this division using the 
address 101001010110100101102 (A569616). 

 
 
 
 

Figure 13-17   Organization of Address Identifying Block and Offset 

Memory address Data   Block identification 

0000 0000 0000 0000 00 00  
0000 0000 0000 0000 00 01  
0000 0000 0000 0000 00 10  
0000 0000 0000 0000 00 11  

Block 0 

0000 0000 0000 0000 01 00  
0000 0000 0000 0000 01 01  
0000 0000 0000 0000 01 10  
0000 0000 0000 0000 01 11  

Block 1 

0000 0000 0000 0000 10 00  
0000 0000 0000 0000 10 01  
0000 0000 0000 0000 10 10  
0000 0000 0000 0000 10 11  

Block 2 

 
 
 
 

  

1111 1111 1111 1111 11 00  
1111 1111 1111 1111 11 01  
1111 1111 1111 1111 11 10  
1111 1111 1111 1111 11 11  

Block 2(20-2) – 1 = 262,143 

 

Each gray block 
represents an addressable 
memory location 
containing a word 

101001010110100101

Block ID = 169,38110 

10

Offset of 2 into block 
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Example 
How many blocks of 8 words are there in a 1 Gig memory space? 

Solution 
Eight words require three bits to uniquely identify their position 

within a block. Therefore, the last three bits of the address represent the 
word's offset into the block. Since a 1 Gig (230) address space uses 30 
address lines, there are 30 – 3 = 27 remaining bits in the address. These 
bits are used to identify the block. Below is a diagram of the logical 
organization of the address. 

 
 
 
 
 
 

13.4.3 Cache Operation 
When the processor needs a word from memory, it first checks the 

cache. The circuits used to access the same word from main memory 
may be activated simultaneously so no time is lost in case the data is 
not available in the cache, a condition known as a miss. If the search of 
the cache is successful, then the processor will use the cache's word and 
disregard the results from main memory. This is referred to as a hit. 

In the case of a miss, the entire block containing the requested word 
is loaded into a line of the cache, and the word is sent to the processor. 
Depending on the design of the cache/processor interface, the word is 
either loaded into the cache first and then delivered to the processor or 
it is loaded into the cache and sent to the processor at the same time. In 
the first case, the cache is in control of the memory interface and lies 
between memory and the processor. In the second case, the cache acts 
like an additional memory on the same bus with the main memory. 

13.4.4 Cache Characteristics 
The cache system used by a processor is defined by six traits: 
 

• the size of the cache; 
• the size of a block, which when combined with the size of the cache 

defines the number of lines; 

Memory address  a29 a28 a27 … a4 a3 a2 a1 a0 

 
Bits identifying block Bits identifying 

offset 
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• the number of caches (i.e., multiple levels or a split cache); 
• the mapping function (the link between a block's address in 

memory and its location in the cache); 
• the replacement algorithm (the method used to figure out which 

block to remove from the cache in order to free up a line); and 
• the write policy (how the processor writes data to the cache so that 

main memory eventually gets updated). 
 
As far as the size of a cache is concerned, designers need to perform 

a balancing act to determine the best size cache for a system. The larger 
a cache is, the more likely it is that the processor will find the word it 
needs in the cache. The problem is that as a cache gets larger, the 
address decoding circuits also get larger and therefore slower. In 
addition, more complicated logic is required to search a cache because 
of the seemingly random way that the blocks are stored in it. Larger 
caches are also more expensive. 

There is also a relationship between size of a block and the 
performance of the cache. As the block size goes up, the possibility of 
getting a hit when looking for data could go up due to more words 
being available within a region of active code. For a fixed cache size, 
however, as the block size increases, the number of blocks that can be 
stored in a cache goes down thereby potentially reducing the number of 
hits. A typical size of a block is fairly low, between 4 and 8 words. 

13.4.5 Cache Mapping Functions 
There are three main methods used to map a line in the cache to an 

address in memory so that the processor can quickly find a word: direct 
mapping, full associative mapping, and set associative mapping. Let's 
begin with direct mapping. 

Assume main memory is divided up into n blocks and the cache has 
room to contain exactly m blocks. Because of the nature of the cache, m 
is much smaller than n. If we divide m into n, we should get an integer 
which represents the number of times that the main memory could fill 
the cache with different blocks from its contents.  

For example, if main memory is 128 Meg (227) and a block size is 
four words (22), then main memory contains n = 227–2 = 225 blocks. If 
the cache for this system can hold 256 K (218) words, then m = 218–2 = 
216 blocks. Therefore, the main memory could fill the cache n/m = 
225/216 = 225–16 = 29 = 512 times. 
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Another way of putting it is this: the memory is much larger than a 
cache, so each line in the cache is responsible for storing one of many 
blocks from main memory. In the case of our example above, each line 
of the cache is responsible for storing one of 512 different blocks from 
main memory at any one time. 

Direct mapping is a method used to assign each memory block in 
main memory to a specific line in the cache. If a line is already filled 
with a memory block when a new block needs to be loaded, the old 
block is discarded from the cache. Figure 13-18 shows how multiple 
blocks from our example are mapped to each line in the cache. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 13-18   Direct Mapping of Main Memory to Cache 

As with locating a word within a block, bits are taken from the main 
memory address to uniquely define the line in the cache where a block 
should be stored. For example, if a cache has 29 = 512 lines, then a line 
would need 9 bits to be uniquely identified. Therefore, the nine bits of 
the address immediately to the left of the word identification bits would 
identify the line in the cache where the block is to be stored. The bits of 
the address not used for the word offset or the cache line would be used 
for the tag. Figure 13-19 presents this partitioning of the bits. 

Once the block is stored in the line of the cache, the tag is copied to 
the tag location of the line. From the cache line number, the tag, and the 
word position within the block, the original address of the word can be 
reconstructed. 

 
 

Memory 
Block 0 
Block 1 

Block 512 
Block 513 

Block 1024 
Block 1025 

Block 1536 
Block 1537 

Line 0 Tag0 Block for Tag0 
Line 1 Tag1 Block for Tag1 
Line 2 Tag2 Block for Tag2 
Line 3 Tag3 Block for Tag3 

Line 511 Tag511 Block for Tag511 

Cache 
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Figure 13-19   Direct Mapping Partitioning of Memory Address 

In a nutshell, direct mapping breaks an address into three parts: t tag 
bits, l line bits, and w word bits. The word bits are the least significant 
bits identifying the specific word within a block of memory. The line 
bits are the next least significant identifying in which line of the cache 
the block will be stored. The remaining bits are stored with the block as 
the tag identifying where the block is located in main memory. 

Example 
Assume a cache system has been designed such that each block 

contains 4 words and the cache has 1024 lines, i.e., the cache can store 
up to 1024 blocks. What line of the cache is supposed to hold the block 
that contains the word from the twenty-bit address 3A45616? In 
addition, what is the tag number that will be stored with the block? 

Solution 
Start by dividing the address into its word id, line id, and tag bits. 

Since 4=22, then the two least significant bits identify the word, i.e.,  
w = 2. Since the cache has 1024=210 lines, then the next 10 bits identify 
the line number where the data is supposed to be stored in the cache, 
i.e., l = 10. The remaining t = 20 – w – l = 8 bits are the tag bits. This 
partitions the address 3A45616 = 001110100100010101102 as follows: 

 
00111010 0100010101 10 

tag bits line id bits word 
id bits

 
Therefore, the block from address 3A45416 to 3A45716 will be stored 

in line 01000101012 = 27710 of the cache with the tag 001110102. 

t bits l bits w bits 

Tag Bits identifying
row in cache 

Bits identifying word 
offset into block 
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Example 
The first 10 lines of a 256 line cache are shown in the table below. 

Identify the address of the data that is shaded (D816). For this cache, a 
block contains 4 words. The tags are given in binary in the table. 

 
Line # Tag word 00 word 01 word 10 word 11 

0 110101 12 34 56 78 
1 010101 54 32 6A D3 
2 000111 29 8C ED F3 
3 001100 33 A2 2C C8 
4 110011 9A BC D8 F0 
5 001101 33 44 55 66 
6 010100 92 84 76 68 
7 000100 FE ED 00 ED 
8 100000 00 11 22 33 
9 101000 99 88 77 66 

Solution 
Start by finding the number of bits that represent each part of the 

address, i.e., the word id, the line id, and the tag. From the table, we can 
see that 2 bits represent the positions of each of the four words in a 
block and that 6 bits are used to represent the tag. 

Since the cache has 256=28 lines, then the line number in the cache 
is represented with 8 bits, and the address is partitioned as follows: 

 
 
 
 
 
 
The shaded cell in the table has a tag number of 1100112. The line 

number is 4, which in 8 bit binary is 000001002. Last of all, the word is 
in the third column which means that it is the 102 word within the 
block. (Remember to start counting from 002.) Putting the tag, line id, 
and word id bits together gives us: 

 
110011 00000100 10 
tag bits line id bits word 

id bits
 

6 bits 8 bits 2 bits 

Tag Bits identifying
row in cache 

Bits identifying word
offset into block 



296   Computer Organization and Design Fundamentals 
 

Therefore, the address that the shaded cell containing D816 came from 
is 1100 1100 0001 00102 = CC1216. 

Example 
Using the table from the previous example, determine if the data 

stored in main memory at address 101C16 is contained in this cache, 
and if it is, retrieve the data. 

Solution 
Converting 101C16 to binary gives us 0001 0000 0001 11002. By 

using the breakdown of bits for the tag, line id, and word id, the binary 
value can be divided into its components. 

 
000100 00000111 00 
tag bits line id bits word 

id bits 
 
From this we see that the line in the cache where this data should be 

stored is 000001112 = 710. The tag currently stored in this line is 
0001002 which equals the tag from the above partitioned address. 
Therefore, the data from main memory address 101C16 is stored in this 
cache. If the stored tag did not match the tag pulled from the address, 
we would have known that the cache did not contain our address. 

Lastly, we can find the data by looking at the offset 002 into the 
block at line 7. This gives us the value FE16. 

Example 
Using the same table from the previous two examples, determine if 

the data from address 982716 is in the cache. 

Solution 
Converting the hexadecimal address 982716 to binary gives us 

982716 = 1001 1000 0010 01112. By using the breakdown of bits for the 
tag, line id, and word id, we can divide this binary value into its 
components. 

 
100110 00001001 11 
tag bits line id bits word 

id bits 
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From this we see that the tag is 1001102, the line number is 
000010012 = 910, and the word offset into the block is 112. Looking at 
line number 9 we see that the tag stored there equals 1010002. Since 
this does not equal 1001102, the data from that address is not contained 
in this cache, and we will have to get it from the main memory. 

 
Fully associative mapping does not use line numbers at all. It 

divides the main memory address into two parts: the word id and a tag. 
In order to see if a block is stored in memory, the tag is pulled from the 
memory address and a search is performed through all of the lines of 
the cache to see if the block is present. 

 
 
 
 
 

Figure 13-20   Fully Associative Partitioning of Memory Address 

This method of searching for a block within a cache sounds like it 
might be a slow process, but it is not. Each line of the cache contains its 
own compare circuitry that is able to discern in an instant whether or 
not the block is contained at that line. With all of the lines performing 
this compare in parallel, the correct line is identified quickly. 

This mapping algorithm is meant to solve a problem that occurs with 
direct mapping where two active blocks of memory map to the same 
line of the cache. When this happens, neither block of memory is 
allowed to stay in the cache long before it is replaced by the competing 
block. This results in a condition referred to as thrashing where a line in 
the cache goes back and forth between two or more blocks, usually 
replacing a block before the processor was through with it. Thrashing is 
avoided by allowing a block of memory to map to any line of the cache. 

This benefit has a price, however. When a fully associative cache is 
full and the processor needs to load a new block from memory, a 
decision has to be made regarding which of the existing blocks is to be 
discarded. The selection method, known as a replacement algorithm, 
should have a goal of replacing the block least likely to be needed by 
the processor in the near future. 

t bits w bits 

Tag Bits identifying word 
offset into block 
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There are numerous replacement algorithms, no one of which is 
significantly better then the others. In an effort to realize the fastest 
operation, each of these algorithms is implemented in hardware. 

 
• Least Recently Used (LRU) – This method replaces the block that 

hasn't been read by the processor in the longest period of time. 
• First In First Out (FIFO) – This method replaces the block that 

has been in cache the longest. 
• Least Frequently Used (LFU) – This method replaces the block 

which has had fewest hits since being loaded into the cache. 
• Random – This method randomly selects a block to be replaced. It 

has only slightly lower performance than LRU, FIFO, or LFU. 

Example 
The table below represents five lines from a cache that uses fully 

associative mapping with a block size of eight. Identify the address of 
the shaded data (C916). 

 
 Word id bits (in binary) 

Tag 000 001 010 011 100 101 110 111 
01101101100102 16 36 66 28 A1 3B D6 78 
01000110101012 54 C9 6A 63 54 32 00 D3 
00010001110112 29 8C ED FD 29 54 12 F3 
00011110011002 39 FA B5 C1 33 9E 33 C8 
10011001011012 23 4C D2 40 6A 76 A3 F0 

Solution 
The tag for C916 is 01000110101012. When combining this with the 

word id of 0012, the address in main memory from which C916 was 
retrieved is 01000110101010012 = 46A916. 

Example 
Is the data from memory address 1E6516 contained in the table from 

the previous example? 

Solution 
For this cache, the last three bits identify the word and the rest of the 

bits act as the tag. Since 1E6516 = 00011110011001012, then 1012 is the 
word id and 00011110011002 is the tag. Scanning the rows shows that 
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the fourth row contains this tag, and therefore the table contains the 
data in which we are interested. The word identified by 1012 is 9E16. 

 
The last mapping algorithm presented here is set associative 

mapping. Set associative mapping combines direct mapping with fully 
associative mapping by grouping together lines of a cache into sets. 
The sets are identified using a direct mapping scheme while the lines 
within each set are treated like a miniature fully associative cache 
where any block that is to be stored in the set can be stored to any line 
within the set. Figure 13-21 represents this arrangement with a sample 
cache that uses four lines to a set. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 13-21   Set Associative Mapping of Main Memory to Cache 

A set associative cache that has k lines per set is referred to as a k-
way set associative cache. Since the mapping scheme uses the memory 
address just as direct mapping does, the number of lines contained in a 
set must be equal to an integer power of two, e.g., two, four, eight, 
sixteen, and so on. 

Let's use an example to further explain set associative mapping. 
Assume that a system uses a cache with 29 = 512 lines, a block of 
memory contains 23 = 8 words, and the full memory space contains 230 
= 1 Gig words. In a direct mapping scheme, this would leave 30 – 9 – 3 
= 18 bits for the tag. Note that the direct mapping method is equivalent 
to the set associative method where the set size is equal to one line.  

By going from direct mapping to set associative with a set size of 
two lines per set, the number of sets is equal to half the number of lines. 

Memory 
Block 0 
Block 1 

Block 128 
Block 129 

Block 256 
Block 257 

Block 384 
Block 385 

Tag0 Block for Tag0 
Tag1 Block for Tag1 
Tag2 Block for Tag2 
Tag3 Block for Tag3 

Tag511 Block for Tag511 

Cache 

Tag4 Block for Tag4 
Tag5 Block for Tag5 
Tag6 Block for Tag6 
Tag7 Block for Tag7 
Tag8 Block for Tag8 

Set 0

Set 1
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In the case of the cache with 512 lines, that would give us 256 sets of 
two lines each which would require eight bits from the memory address 
to identify the set. This would leave 30 – 8 – 3 = 19 bits for the tag. By 
going to four lines per set, the number of sets is reduced to 128 sets 
requiring seven bits to identify the set and twenty bits for the tag. 

Figure13-22 shows how each time the number of lines per set in the 
example is doubled, the number of bits used to identify the set is 
reduced by one thereby increasing the number of tag bits by one. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 13-22   Effect of Cache Set Size on Address Partitioning 

When a block from memory needs to be stored to a set in which all 
of the lines are already filled with other blocks, one of the replacement 
algorithms described for fully associative mapping is used. For a 2-way 
set associative cache, one of the easiest replacement algorithms to 
implement is the least recently used method. A single bit can be added 
to each set to identify which of the two lines was used last. If the bit 
contains a zero, then the first line was used last and the second line is 
the one that should be replaced with the new block from memory. If the 
bit contains a one, the first line should be replaced. 

Example 
Identify the set number where the block containing the address 

29ABCDE816 will be stored. In addition, identify the tag and the lower 
and upper addresses of the block. Assume the cache is a 4-way set 
associative cache with 4K lines, each block containing 16 words, with 
the main memory of size 1 Gig memory space. 

Tag bits Set ID bits 
Word 

ID  bits

18 bits 9 bits 3 bits Direct mapping (1 line/set) 
19 bits 8 bits 3 bits 2-way set associative (21 lines/set) 
20 bits 7 bits 3 bits 4-way set associative (22 lines/set) 
21 bits 6 bits 3 bits 8-way set associative (23 lines/set) 

25 bits 2 bits 3 bits 128-way set associative (27 lines/set)
26 bits 1 bit 3 bits 256-way set associative (28 lines/set)

27 bits 3 bits Fully associative (1 big set) 
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Solution 
First, we need to identify the partitioning of the bits in the memory 

address. A 1 Gig memory space requires 30 address lines. Four of those 
address lines will be used to identify one out of the 16 words within the 
block. Since the cache is a 4-way set associative cache, the number of 
sets equals 4K lines divided by four lines per set, i.e., 1K = 210. 
Therefore, ten address lines will be needed to identify the set. The 
figure below represents the partitioning of the 30 bit address. 

 
 
 
 
 
 
Converting 29ABCDE816 to a 30-bit binary value gives us 

001010011010101111001101111010002. The first sixteen bits, 
0010100110101011112, represent the tag. The next ten bits, 
00110111102 =  22210, represent the set in which the block will be 
stored. The last four bits, 10002 = 810, represent the word position 
within the block. The lowest address will be the one where word 00002 
is stored and the highest address will be the one where the word 11112 
is stored. Replacing the last four bits of 29ABCDE816 with 00002 gives 
us a low address of 29ABCDE016 while replacing them with 11112 
gives us a high address of 29ABCDEF16 

13.4.6 Cache Write Policy 
The last characteristic of caches discussed here is the cache write 

policy, i.e., the method used to determine how memory is updated when 
the cache is written to by the processor. There are a number of issues 
surrounding this topic, most of which apply to multi-processor systems 
which are beyond the scope of this text. Basically, when the cache is 
written to, the corresponding location in memory becomes obsolete. 

One method for resolving this is to have the cache update memory 
every time the processor writes to the cache. This is called a write 
through policy. The problem with this is that it creates a great deal of 
memory bus traffic, some of which might be unnecessary if the same 
memory location is being updated often. This policy also slows the 
write process since both memories are being updated at the same time. 

16 bits 10 bits 4 bits 

Tag Bits identifying
the set in cache

Bits identifying word
offset into block 
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A second method is to update main memory only when a line of the 
cache that has been modified to is about to be replaced with a new 
block from memory. This is called a write back policy. This method 
encounters problems when more than one processor such as an I/O 
processor is sharing memory. Solutions to this problem include making 
shared memory non-cacheable, adding an additional processor to watch 
all of the caches and update them when a write occurs to any one of 
them, or giving all of the processors the ability to check other caches 
for updates. 

13.5 Registers 
At the top of the memory hierarchy is a set of memory cells called 

registers. A register is a group of latches that have been combined in 
order to perform a special purpose. This group of latches may be used 
to store an integer, store an address pointing to memory, configure an 
I/O device, or indicate the status of a process. Whatever the purpose of 
the register is, all of the bits are treated as a unit. 

Registers are contained inside the processor and are integrated with 
the circuitry used to perform the processor's internal operations. This 
integration places registers within millionths of a meter of the action 
resulting in very quick access times. In addition, the typical processor 
contains fewer than a hundred registers making decoding very simple 
and very fast. These two features combine to make registers by far the 
fastest memory unit in the memory hierarchy. 

Because of the integral part they play in computer architecture, the 
details and applications of registers are presented in Chapter 15. 

13.6 What's Next? 
This chapter presented the system of memory components that serve 

the processor. This system will be revisited in Chapter 15 where a 
detailed examination of the organization of the components inside of 
the processor will be introduced.  

Chapter 14 presents another important component supporting the 
processor: serial communications. Up to this point, our discussion of 
the processor has used the parallel bus to transfer data. The parallel bus 
has some drawbacks though. These include higher expense, lack of 
adaptability, and lower reliability. Chapter 14 presents the basic 
structure of a serial communications system followed by a presentation 
of two serial protocols. 
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Problems 
1. Why is it important for hard drive substrates to be rigid? 

2. Why is it important for hard drive substrates to be lightweight? 

3. What is the advantage of a Winchester head, and how does it 
achieve this advantage? 

4. Sketch the pattern of magnetic polarity found using the RLL 
encoding of Figure 13-5 for the bit pattern 0110100110100110101. 

5. How many blocks of 16 words are there in a 256 Gig memory 
space?  Draw the logical organization of the full address 
identifying the block ID portion and the word offset portion. 

6. Identify the line number, tag, and word position for each of the 30-
bit addresses shown below if they are stored in a cache using the 
direct mapping method. 

a.) Address: 23D94EA616 Lines in cache: 4K Block size: 2 
b.) Address: 1A54387F6 Lines in cache: 8K Block size: 4 
c.) Address: 3FE9704A16 Lines in cache: 16K Block size: 16 
d.) Address: 54381A516 Lines in cache: 1K Block size: 8 

 
7. True or False: A block from main memory could possibly be 

stored in any line of a cache using fully associative mapping. 

8. What problem is the fully or set-associative mapping methods for 
caches supposed to solve over the direct mapping method? 

9. What is the easiest replacement algorithm to use with a 2-way set 
associative cache? 

10. The table below represents five lines from a cache that uses fully 
associative mapping with a block size of eight. Identify the address 
of the shaded data (3B16). 

 Word id bits (in binary) 
Tag 000 001 010 011 100 101 110 111

100110110110001012 10 65 BA 0F C4 19 6E C3 
001110000110101012 21 76 CB 80 D5 2A 7F B5 
101111000101110012 32 87 DC 91 E6 3B F0 A6 
011101100011010112 43 98 ED A2 F7 4C E1 97 
001111001001110002 54 9A FE B3 08 5D D2 88 
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11. Using the table from the previous problem, identify the data value 
represented by each of the following addresses. 

a.) 7635916 b.) 386AF16 c.) BC5CC16 
 

12. Identify the set number, tag, and word position for each of the 30-
bit addresses stored in an 8K line set associative cache. 

a.) Address: 23D94EA616 2-way cache Block size: 2 
b.) Address: 1A54387F6 2-way cache Block size: 4 
c.) Address: 3FE9704A16 8-way cache Block size: 16 
d.) Address: 54381A516 4-way cache Block size: 8 

 
13. Using the C declarations below of a simulated 256 line cache and a 

64K memory, create two functions. The first function, bool 
requestMemoryAddress(unsigned int address), takes as its 
parameter a 16-bit value and checks to see if it exists in the cache. 
If it does, simply return a value of TRUE. If it doesn't, load the 
appropriate line of the cache with the requested block from 
memory[] and return a FALSE. The second function, unsigned int 
getPercentageOfHits(void), should return an integer from 0 to 100 
representing the percentage of successful hits in the cache. 
typedef struct { 
 int tag; 
 char block[4]; 
}cache_line; 

cache_line cache[256]; 

char memory[65536]; 


