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CHAPTER SIXTEEN 

Intel 80x86 Base Architecture 

16.1 Why Study the 80x86? 
Any introduction to processor architecture should be followed by an 

investigation of the architecture of a specific processor. The choice then 
becomes which processor to examine. There are so many. Some 
approaches use a virtual processor, i.e., one that exists only on paper or 
as a simulator. This method simplifies the learning process by 
concealing the complexities and idiosyncrasies of a real processor. 

At the other extreme, we could examine a modern processor such as 
the Intel® Pentium® 4 Processor Extreme Edition with its Hyper-
Threading Technology™, Hyper-Pipelined Technology™, enhanced 
branch prediction, three levels of 8-way cache including a split L1 
cache, and multiple ALUs. Or we could look at the Apple® PowerPC® 
G5 with its 64-bit architecture, two double-precision floating point 
units, and twelve functional units. If you are a student who has just 
been introduced to processor architecture, this can be like trying to 
swallow an elephant. Too many new concepts must be explained before 
even a minimal understanding of the processor can be had. 

A third method is to examine the simplest processor from a family 
of existing processors. This particular processor should provide the 
closest match to the processor architecture discussed in Chapter 15 
while providing a link to the most modern processor of the family. It 
eliminates the need for a discussion of advanced computer architecture 
concepts while giving the student a real processor that they can 
program. 

The processor we present here is the original 16-bit Intel processor, 
the 80186, the root of the Intel processor family that is commonly 
referred to as the 80x86 family. The 'x' in 80x86 represents the 
generation of the processor, 1, 2, 3, and so on. Table 16-1 presents a 
summary of the bus characteristics of some of the 80x86 processors. 

The 80186 has 16 data lines allowing it to perform operations on 
unsigned integers from 0 to 216 – 1 = 65,535 and signed integers from  
–32,768 to 32767. It has 20 address lines providing access to a memory 
space of 220 = 1 Meg. 
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Table 16-1   Summary of Intel 80x86 Bus Characteristics 

Processor 
Data  

bus width
Address 

bus width
Size of  

address space 
80186 16 20 220 = 1 Meg 
80286 16 24 224 = 16 Meg 
80386SX 16 24 224 = 16 Meg 
80386DX 32 32 232 = 4 Gig 
80486 32 32 232 = 4 Gig 
80586 "Pentium" 64 32 232 = 4 Gig 

16.2 Execution Unit 
The 80x86 processor is divided into two main components: the 

execution unit and the bus interface unit. The execution unit (EU) is 
the 80x86's CPU as discussed in Chapter 15. It is controlled by the EU 
control system which serves a dual purpose: it acts as the control unit 
and also as a portion of the instruction decoder. The EU also contains 
the ALU, the processor flags, and the general purpose and address 
registers. Figure 16-1 presents a block diagram of the EU. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16-1   Block Diagram of 80x86 Execution Unit (EU) 
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16.2.1 General Purpose Registers 

The registers of the 80x86 are grouped into two categories: general 
purpose and address. The general purpose registers are for 
manipulating or transferring data; the address registers contain memory 
addresses and are used to point to the locations in memory where data 
will be retrieved or stored. 

Figure 16-1 shows that there are eight general purpose registers: 
AH, AL, BH, BL, CH, CL, DH, and DL. Each of these registers is eight 
bits. Earlier we said that the 80186 is a 16-bit processor. How can this 
be since we only have 8-bit registers? 

The 80186 processor creates a 16-bit register by combining two 8-
bit registers. AH and AL, for example, can function as a pair. This 
larger register is referred to as AX. The 8-bit registers are combined by 
linking them together so that the 8 bits of AH are the 8 most significant 
bits of AX and AL are the 8 least significant bits of AX. For example, 
if AH contains 101100002 = B016 and AL contains 010111112 = 5F16, 
then the virtual register AX contains 10110000010111112 = B05F16. 

Example 
If CX contains the binary value 01101101011010112, what value 

does CH have? 

Solution 
Since the register CH provides the most significant 8 bits of CX, 

then the upper eight bits of CX is CH, i.e., CH contains 011011012. 
 
Each of the general purpose registers is named according to their 

default purpose. For the most part, these purposes are not set in stone. 
The programmer still has some flexibility in how the registers are used. 
The following discussion presents their suggested use. 

AX is called the accumulator register, and it is used mostly for 
arithmetic, logic, and the general transfer of data. Many of the 
assembly language instructions for higher level mathematical 
operations such as multiply and divide don't even let the programmer 
specify a register other than AX to be used. 

BX is called the base register, and it is used as a base address or 
pointer to things like data arrays. We will find out later that there are a 
number of other registers that are used as pointers, but those are special 
purpose pointers. BX tends to be more of a general purpose pointer. 
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CX is called the counter register. When a programmer uses a for-
loop, the index for that loop is usually stored in CX. Intel designed a 
number of special purpose instructions that use CX in order to get 
better performance out of loops. 

DX is called the data register. This register is used with AX for 
special arithmetic functions allowing for things such as storing the 
upper half of a 32-bit result of a 16-bit multiply or holding the 
remainder after an integer division. 

16.2.2 Address Registers 
Below the general purpose registers in Figure 16-1 are the address 

registers: SP, BP, DI, SI, and IP. These are 16-bit registers meant to 
contain addresses with which to point to locations in memory. At this 
point, do not worry about how a 16-bit register can reference something 
in a memory space that uses a 20-bit address bus. The process involves 
using the segment registers of the BIU. We will address the mechanics 
behind the use of the segment registers later in this chapter. 

These address registers are classified into two groups: the pointer 
registers, SP, BP, and IP, and the index registers, DI and SI. Although 
they all operate in the same manner, i.e., pointing to addresses in 
memory, each address register has a specific purpose.  

SP is the stack pointer and it points to the address of the last piece 
of data stored to the stack. To store something to the stack, the stack 
pointer is decremented by the size of the value to be stored, i.e., SP is 
decremented by 2 for a word or 4 for a double word. The value is then 
stored at the new address pointed to by the stack pointer. To retrieve a 
value from the stack, the value is read from the address pointed to by 
the stack pointer, then the stack pointer is incremented accordingly. 

BP is the base pointer and its primary use is to point to the 
parameters that are passed to a function during a function call. For 
example, if the function myfunc(var1, var2) is called, the values for 
var1 and var2 are placed in the temporary memory of the stack. BP 
contains the address in the stack where the list of variables begins. 

IP is the instruction pointer. As we discussed in Chapter 15, the 
CPU goes step-by-step through memory loading, interpreting, and then 
executing machine code. It uses the memory address contained in IP as 
a marker pointing to where to retrieve the next instruction. Each time it 
retrieves an instruction, it increments IP so that it points to the next 
instruction to retrieve. In some cases, the instruction decoder needs to 
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increment IP multiple times to account for data or operands that might 
follow an element of machine code. 

SI, the source index, and DI, the destination index, also contain 
addresses that point to memory. They are used for string operations 
where strings may be copied, searched, or otherwise manipulated. SI 
points to memory locations from which characters are to be retrieved 
while DI points to memory locations where characters will be stored. 

16.2.3 Flags 
The flags of the 80x86 processor are contained in a 16-bit register. 

Not all 16 bits are used, and it isn't important to remember the exact bit 
positions of each of the flags inside the register. The important thing is 
to understand the purpose of each of the flags. 

Remember from Chapter 15 that the flags indicate the current status 
of the processor. Of these, the majority report the results of the last 
executed instruction to affect the flags. (Not all instructions affect all 
the flags.) These flags are then used by a set of instructions that test 
their state and alter the flow of the software based on the result.  

The flags of the 80x86 processor are divided into two categories: 
control flags and status flags. The control flags are modified by the 
software to change how the processor operates. There are three of 
them: trap, direction, and interrupt. 

The trap flag (TF) is used for debugging purposes and allows code 
to be executed one instruction at a time. This allows the programmer to 
step through code address-by-address so that the results of each 
instruction can be inspected for proper operation. 

The direction flag (DF) is associated with string operations. In 
particular, DF dictates whether a string is to be examined by 
incrementing through the characters or decrementing. This flag is used 
by the 80x86 instructions that automate string operations. 

Chapter 15 introduced us to the concept of interrupts by showing 
how devices that need the processor's attention can send a signal 
interrupting the processor's operation in order to avoid missing critical 
data. The interrupt flag (IF) is used to enable or disable this function. 
When this flag contains a one, any interrupt that occurs is serviced by 
the processor. When this flag contains a zero, the maskable interrupts 
are ignored by the processor, their requests for service remaining in a 
queue waiting for the flag to return to a one.  
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The IF flag is cleared and set by software using two different 
assembly language commands: STI for setting and CLI for clearing. 
Some interrupts known as non-maskable interrupts cannot be disabled. 
Either their purpose is considered to be a priority over all other 
processor functions or the software itself calls the interrupt.  

The remaining flags are the status flags. These are set or cleared 
based on the result of the last executed instruction. There are six of 
them: overflow, sign, zero, auxiliary carry, parity, and carry. The 
following describes the operation of each of these bits. 

 
• Overflow flag (OF) – indicates when an overflow has occurred in a 

mathematical operation. 
• Sign flag (SF) – follows the sign bit of a mathematical or logical 

result, i.e., it is cleared to 0 when the result is positive and set to 1 
when the result is negative. 

• Zero flag (ZF) – is set to 1 when the result of a mathematical or 
logical function is zero. The flag is cleared to 0 otherwise. 

• Auxiliary carry flag (AF) – equals the carry from the bit 3 column 
of an addition into the bit 4 column. If you recall the section on 
BCD addition from Chapter 3, a carry out of a nibble is one 
indication that error correction must be taken. This flag represents 
the carry out of the least significant nibble.  

• Parity flag (PF) – is set to 1 if the result contains an even number 
of ones and cleared to 0 otherwise. 

• Carry flag (CF) – represents the carry out of the most significant 
bit position. Some shift operations also use the carry to hold the bit 
that was last shifted out of a register. 

Example 
How would the status flags be set after the processor performed the 

8-bit addition of 101101012 and 100101102? 

Solution 
This problem assumes that the addition affects all of the flags. This 

is not true for all assembly language instructions, i.e., a logical OR does 
not affect AF. 

Let's begin by adding the two numbers to see what the result is. 
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1   1 1   1      
  1 0 1 1 0 1 0 1 
+ 1 0 0 1 0 1 1 0 
  0 1 0 0 1 0 1 1 

 
Now go through each of the flags to see how it is affected. 
 

 OF=1 – There was an overflow, i.e., adding two negative numbers 
   resulted in a positive number.  
 SF=0 – The result is positive.  
 ZF=0 – The result does not equal zero.  
 AF=0 – No carry occurred from the fourth column (bit 3) to the fifth 
   column (bit 4).  
 PF=1 – The result contains four ones which is an even number.  
 CF=1 – There was a carry. 

16.2.4 Internal Buses 
There are two internal buses in the EU that are used to pass 

information between the components. The first is used to exchange data 
and addressing information between the registers and the ALU. This 
same bus is also used to transfer data to and from memory by way of 
the bus interface unit. Each assembly language instruction that uses 
operands must move those operands from their source to a destination. 
These transfers occur along the data bus. 

The second bus has one purpose: to transfer instructions that have 
been obtained by the bus interface unit to the instruction decoder 
contained in the EU control system.  

The next section discusses how the bus interface unit performs data 
transactions with the memory space.  

16.3 Bus Interface Unit 
The bus interface unit (BIU) controls the transfer of information 

between the processor and the external devices such as memory, I/O 
ports, and storage devices. Basically, it acts as the bridge between the 
EU and the external bus. A portion of the instruction decoder as defined 
in Chapter 15 is located in the BIU. The instruction queue acts as a 
buffer allowing instructions to be queued up as they wait for their turn 
in the EU. Figure 16-2 presents the block diagram of the BIU.  

 

carry out 
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Figure 16-2   Block Diagram of 80x86 Bus Interface Unit (BIU) 

The main purpose of the BIU is to take the 16-bit pointers of the EU 
and modify them so that they can point to data in the 20-bit address 
space. This is done using the four registers CS, DS, SS, and ES. These 
are the segment registers. 
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Next time your Intel-based operating system throws up an execution 
error, look to see if it gives you the address where the error occurred. If 
it does, you should see some hexadecimal numbers in a format similar 
to the one shown below: 

3241:A34E 
 

This number is a special representation of the segment register (the 
number to the left of the colon) and the pointer or index register (the 
number to the right of the colon). Remember that a 4-digit hexadecimal 
number represents a 16-bit binary number. It is the combination of 
these two 16-bit registers that creates the 20-bit address. 

The process works like this. First take the value in the segment 
register and shift if left four places. This has the effect of adding a zero 
to the right side of the hexadecimal number or four zeros to the right 
side of the binary number. In our example above, the segment is 324116 
= 0011 0010 0100 00012. Adding a zero nibble to the right side of the 
segment gives us 3241016 = 0011 0010 0100 0001 00002.  

The pointer or index register is then added to this 20-bit segment 
address. Continuing our example gives us: 

 
 0011 0010 0100 0001 0000      3241016 
 +     1010 0011 0100 1110 or  + A34E16 
 0011 1100 0111 0101 1110      3C75E16 

 
For the rest of this book, we will use the following terminology to 

represent these three values. 
 

• The 20-bit value created by shifting the value in a segment register 
four places to the left will be referred to as the segment address. It 
points to the lowest address to which a segment:pointer 
combination can point. This address may also be referred to as the 
base address of the segment.  

• The 16-bit value stored in a pointer or index register will be 
referred to as the offset address. It represents an offset from the 
segment address to the address in memory that the processor needs 
to communicate with. 

• The resulting 20-bit value that comes out of the address summing 
block points to a specific address in the processor's memory space. 
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This address will be referred to as the physical address, and it is the 
address that is placed on the address lines of the memory bus. 

 
If we look at the function of the segment and pointer registers from 

the perspective of the memory space, the segment register adjusted with 
four binary zeros filled in from the right points to an address 
somewhere in the full memory space. Because the least significant four 
bits are always zero, this value can only point to memory in 16-byte 
increments. The 16-bit offset address from the pointer register is then 
added to the segment address pointing to an address within the 216 = 
65,535 (64K) locations above where the segment register is pointing. 
This is the physical address. Figure 16-3 shows how the segment and 
pointer addresses relate to each other when pointing to a specific 
address within the memory space. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16-3   Segment/Pointer Relation in the 80x86 Memory Map 
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By assigning the responsibility of maintaining the segment registers 
to the operating system while allowing the application to control the 
address and pointer registers, applications can be placed anywhere in 
memory without affecting their operation. When the operating system 
loads an application to be executed, it selects a 64 K block of memory 
called a segment and uses the lowest address of that block as the base 
address for that particular application. During execution, the 
application modifies only the pointer registers keeping its scope within 
the 64K block of its segment. 

As long as the application modifies only the address registers, then 
the program remains in the 64 K segment it was assigned to. By using 
this process, the operating system is free to place an application 
wherever it wants to in memory. It also allows the operating system to 
maintain several concurrent applications in memory by keeping track of 
which application is assigned to which segment. 

Although the programmer may force a segment register to be used 
for a different purpose, each segment register has an assigned purpose. 
The following describes the uses of the four segment registers, CS, DS, 
SS, and ES.  

 
• Code Segment (CS) – This register contains the base address of the 

segment assigned to contain the code of an application. It is paired 
with the Instruction Pointer (IP) to point to the next instruction to 
load into the instruction decoder for execution. 

• Data Segment (DS) – This register contains the base address of the 
segment assigned to contain the data used by an application. It is 
typically associated with the SI register. 

• Stack Segment (SS) – This register contains the base address of the 
stack segment. Remember that there are two pointer registers that 
use the stack. The first is the stack pointer, and the combination of 
SS and SP points to the last value stored in this temporary memory. 
The other register is the base pointer which is used to point to the 
block of data elements passed to a function. 

• Extra Segment (ES) – Like DS, this register points to the data 
segment assigned to an application. Where DS is associated with 
the SI register, ES is associated with the DI register. 
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Example 

If CS contains A48716 and IP contains 143616, then what is the 
physical address of the next instruction in memory to be executed? 

Solution 
The physical address is found by shifting A48716 left four bits and 

adding 143616 to the result. 
 

A487016  1010 0100 1000 0111 0000 
+ 143616 or  +    0001 0100 0011 0110 
A5CA616  1010 0101 1100 1010 0110 

 
Therefore, the physical address pointed to by A487:1436 is A5CA616. 

16.3.2 Instruction Queue 
As discussed in Chapter 15, there are times during the execution of 

an instruction when different portions of the processor are idle. In the 
case of the 80x86 processor for example, while the BIU is retrieving 
the next instruction to be executed from memory, the EU control 
system and the ALU are standing by waiting for the instruction. 

The 80186 divides the process of executing an instruction into three 
cycles: fetch, decode, and execute. These cycles are described below: 

 
• Fetch – Retrieve the next instruction to execute from its location in 

memory. This is taken care of by the BIU. 
• Decode – Determine which circuits to energize in order to execute 

the fetched instruction. This function is performed by the 
instruction decoding circuitry in the EU control system. 

• Execute – Perform the operation dictated by the instruction using 
the ALU, registers, and data transfer mechanisms. 

  
The purpose of the instruction queue of the BIU is to maintain a 

sequence of fetched instructions for the EU to execute. In some cases, 
branches or returns from functions can disrupt the sequence of 
instructions and require a change in the anticipated order of execution.  
An advanced instruction queue can handle this by loading both paths of 
execution allowing the EU to determine which one it will need after 
executing the previous instructions. 
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16.4 Memory versus I/O Ports 

In order to communicate with external hardware devices without 
taking up space in the 1 Meg memory space of the 80x86 processor, 
two additional control lines are added to the bus that effectively turn it 
into two buses, one for data and one for I/O. This second bus uses the 
same address and data lines that are used by the memory bus. The 
difference is that the I/O devices use different read and write control 
lines. 

To read data from memory, the 80x86 processor uses the active-low 
signal MRDC. When MRDC is low, the addressed memory device on 
the bus knows to pass the appropriate data back to the processor. 

To write data to memory, the 80x86 processor uses the active-low 
signal MWTC. When MWTC is low, the addressed memory device on 
the bus knows that the processor will be sending data to it. Once the 
memory device receives this data, it knows to store it in the appropriate 
memory location. 

If both MRDC and MWTC are high, then the memory devices 
remain inactive. By adding a second pair of read and write control 
lines, the processor can communicate with a new set of devices on the 
same set of address and data lines. These new devices are called I/O 
ports, and they connect the processor to the external environment. By 
placing an address on the address lines, an I/O port is selected in the 
same way that a memory chip is selected using chip select circuitry. 

The read control for the I/O ports is called IORC, and it too is an 
active low signal. When IORC equals zero, the selected I/O port places 
data on the data lines for the processor to read. This data might be the 
value of a key press, the digital value of an analog input, the status of a 
printer, or anything else that the processor needs to input from the 
external devices.  

The write control for the I/O ports is called IOWC. This active low 
signal goes low when the processor wants to send data to an external 
device. This data might be the characters of a document to be printed, a 
command to the video system, or any other value that the processor 
needs to send to the external devices. 

Table 16-2 summarizes the settings of these four read and write 
control signals based on their functions. 
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Table 16-2   Summary of the 80x86 Read and Write Control Signals 

Function MRDC MWTC IORC IOWC 
Reading from memory 0 1 1 1 
Writing to memory 1 0 1 1 
Reading from an I/O device 1 1 0 1 
Writing to an I/O device 1 1 1 0 
 
Even though they use the same address and data lines, there are 

slight differences between the use of memory and the use of I/O ports. 
First, regardless of the generation of the 80x86 processor, only the 
lowest 16 address lines are used for I/O ports. This means that even if 
the memory space of an 80x86 processor goes to 4 Gig, the I/O port 
address space will always be 216 = 65,536 = 64K. This is not a problem 
as the demand on the number of external devices that a processor needs 
to communicate with has not grown nearly at the rate of demand on 
memory space. 

The second difference between the memory space and the I/O port 
address space is the requirement placed on the programmer. Although 
we have not yet discussed the 80x86 assembly language instruction set, 
the assembly language commands for transferring data between the 
registers and memory are of the form MOV. This command cannot be 
used for input or output to the I/O ports because it uses MRDC and 
MWTC for bus commands. To send data to the I/O ports, the assembly 
language commands OUT and OUTS are used while the commands for 
reading data from the I/O ports are IN and INS. 

16.5 What's Next? 
Now that you have a general idea of the architecture of the 80x86, 

we can begin programming with it. In Chapter 17, we will present some 
of the instructions from the 80x86 assembly language along with the 
format of the typical assembly language program. In addition, the 
syntax used to differentiate between registers, memory, and constants 
in 80x86 assembly language code will be presented. This information 
will then be used to take you though some sample programs. 
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Problems 

Answer problems 1 though 7 using the following settings of the 
80x86 processor registers. 

 
AX = 123416 BP = 121216 CS = A10116 
BX = 872116 SP = 343416 DS = B10116 
CX = 567816 DI = 565616 SS = C10116 
DX = 876516 IP = 787816 ES = D10116 

 
1. What is the value in the register AL? 

2. What is the value in the register CH? 

3. What is the physical address pointed to by ES:DI? 

4. What is the physical address of the next instruction to be executed 
in memory? 

5. What is the physical address of the last data item to be stored in the 
stack? 

6. Assuming a function has been called and the appropriate address 
and segment registers have been set, what is the physical address 
of the location of the function parameters in the stack? 

7. What would the settings of the flags OF, SF, ZF, AF, PF, and CF 
be after the addition of BH to AL? 

8. True or false: Every 80x86 assembly language instruction modifies 
the flags. 

9. What is the purpose of the internal bus that connects the instruction 
queue in the BIU with the EU control system? 

10. List the two benefits of segmented addressing. 

11. What are the values of MRDC, MWTC, IORC, and IOWC when 
the processor is storing data to memory? 

12. What are the values of MRDC, MWTC, IORC, and IOWC when 
the processor is reading data from a device on the I/O port bus? 

13. What 80x86 assembly language commands are used to write data 
to a memory device on the I/O port bus? 
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14. On an 80486 processor with its 32 address lines, what is the 

maximum number of I/O ports it can address? 

 

 

 

 

 

 

 

 

 

 

 

 


