Points missed:	Student's Name:	
Total score: /10	00 points	

East Tennessee State University
Department of Computer and Information Sciences
CSCI 2150 (Tarnoff) – Computer Organization
TEST 3 for Fall Semester, 2004

Read this before starting!

- The total possible score for this test is 100 points.
- This test is closed book and closed notes.
- All answers must be placed in space provided. Failure to do so may result in loss of points.
- 1 point will be deducted per answer for missing or incorrect units when required. No assumptions will be made for hexadecimal versus decimal, so you should always include the base in your answer.
- If you perform work on the back of a page in this test, indicate that you have done so in case the need arises for partial credit to be determined.
- *Calculators are not allowed.* Use the tables below for any conversions you may need. Leaving numeric equations is fine too.
- The table of assembly language commands is on the last page of this test. Remove it if you wish to have better access to it. Use the backside of it as your scrap paper. Turn it in with your test.

Binary	Hex	
0000	0	
0001	1	
0010	2	
0011	3	
0100	4	
0101	5	
0110	6	
0111	7	

Binary	Hex
1000	8
1001	9
1010	A
1011	В
1100	C
1101	D
1110	Е
1111	F

Power of 2	Equals
2^{3}	8
2^{4}	16
2^{5}	32
2^{6}	64
27	128
28	256
29	512
2^{10}	1K
$\frac{2}{2^{20}}$	1M
2^{30}	1G

"Fine print"

Academic Misconduct:

Section 5.7 "Academic Misconduct" of the East Tennessee State University Faculty Handbook, June 1, 2001:

"Academic misconduct will be subject to disciplinary action. Any act of dishonesty in academic work constitutes academic misconduct. This includes plagiarism, the changing of falsifying of any academic documents or materials, cheating, and the giving or receiving of unauthorized aid in tests, examinations, or other assigned school work. Penalties for academic misconduct will vary with the seriousness of the offense and may include, but are not limited to: a grade of 'F' on the work in question, a grade of 'F' of the course, reprimand, probation, suspension, and expulsion. For a second academic offense the penalty is permanent expulsion."

1.	•			a 256 Meg SRAM with 8 dat equation with numeric value	-	location require? Leave your nts)
2.	Circle <i>all</i> that	apply	. A si	storage cell in a DRAM: (4 p	oints)	
	a.) is volatiled.) is a latchg.) is typical		b.) e.) ed for o	must be refreshed regularl	y f.)	is cheaper than a cell in an SRAM is smaller than a cell in an SRAM is faster than a cell in an SRAM
3.	Match each of the right. (4 pc		etting	gs of the bus control signals l	\overline{R} and \overline{W}	on the left with the bus operation on
	\overline{R}	$\overline{\mathbf{W}}$			Operation	on of the bus
	0	0			Processo	or reads from memory
	0	1			Illegal se	etting
	1	0			The bus	is idle
	1	1			Processo	or writes to memory
	of the memory shown to the r	_		ined with the chip select ints)		$ \begin{array}{c c} A_{17} \\ A_{16} \\ A_{15} \\ A_{14} \end{array} $
	Low address	:		High addı	ress:	
5.	For the chip so (3 points)	elect i	n the	previous problem, how big	is the mer	mory chip that uses this chip select?
6.	0 0 0	dress	of 600	-		placed in a 1 Meg memory space Label all address lines used for
7.	What is the lan	rgest	memo	ory that can have a starting (l	lowest) ac	ddress of AC8000 ₁₆ ? (3 points)

- 8. True or false: The address range $C000_{16}$ to DFFF₁₆ is a valid range for a single memory. (2 points)
- 9. True or false: There are more sectors per track in the outer tracks of a *multiple zone recording* hard drive configuration than there are in the inner tracks. (2 points)
- 10. True or false: The Winchester-type head of a hard drive does not move from the landing zone until the hard drive platters are up to speed. (2 points)
- 11. True or false: A small gap is left between the tracks of a hard drive disk in order to avoid data bleeding over into (interfering with) the data from other tracks. (2 points)

The table below represents a small section of a cache that uses direct mapping.

Refer to it to answer questions 12, 13, and 14.

Line number	Tag			Wor	d with	in the b	lock			
(decimal &	(binary	000	001	010	011	100	101	110	111	
binary)	only)									
$99_{10} = 01100011_2$	011011010	00_{16}	61 ₁₆	$C2_{16}$	23 ₁₆	84 ₁₆	E5 ₁₆	4616	A7 ₁₆	row a
$100_{10} = 01100100_2$	110011010	10 ₁₆	71 ₁₆	D2 ₁₆	33 ₁₆	94 ₁₆	F5 ₁₆	56 ₁₆	B7 ₁₆	row b
$101_{10} = 01100101_2$	100110101	20 ₁₆	81 ₁₆	$E2_{16}$	43 ₁₆	A4 ₁₆	05 ₁₆	6616	C7 ₁₆	row c
$102_{10} = 01100110_2$	101100111	30 ₁₆	91 ₁₆	F2 ₁₆	53 ₁₆	B4 ₁₆	15 ₁₆	7616	D7 ₁₆	row d
$103_{10} = 01100111_2$	000011101	40 ₁₆	A1 ₁₆	02 ₁₆	63 ₁₆	C4 ₁₆	25 ₁₆	8616	E7 ₁₆	row e
		col 0	col 1	col 2	col 3	col 4	col 5	col 6	col 7	

- 12. Assuming no leading zeros have been removed from any of the values shown in the table above, how many total lines does this cache have? (2 points)
- 13. From what address in main memory did the value 56_{16} (the value in bold) come from? Leave your answer in binary. (3 points)
- 14. A block containing the address 6533B₁₆ is not contained in this cache. When loaded, which row (a through f) and column (0 through 7) will its value be stored in? (4 points)
- 15. True or false: A split cache system uses two caches, one for data and one for code. (2 points)
- 16. What is the purpose of pipelining? (3 points)

17. Assume a processor takes 3 cycles to execute any instruction (fetch, decode, execute) a. How many cycles would a <i>non-pipelined</i> processor take to execute 6 instructions? (2 points)						
b. How many cycles would a <i>pipel</i>	lined processor to	ake to execute 6 instructions? (2 points)				
AX = 0180h $BX = AA55h$	IP = 2122 SP = 4344	lowing settings of the 8086 registers. 2h CS = 6000h 4h SS = 7000h				
CX = 03C0h DX = FFEEh	DI = 6566 BP = 1234	6h DS = 8000h 4h ES = 9000h				
18. What is the value contained in the re19. What is the physical address pointed						
20. True or false: The physical address of calculated from the above data? (2 po		action to be executed by the processor can	ı be			
21. What is the value of SP after the exe	cution of the inst	truction PUSH AX? (2 points)				
"N/A" if the flag was not affected. ((3 points)	ow would the following flags be set? Wri	te			
ZF =	CF =	SF =				
23. Assume that the instruction SAR BE (3 points)	I, 3 is executed.	What would the new value of BH be?				
24. Assume AX=1000h, BX=2000h, an would AX, BX, and CX contain?		After the following code is executed, what				
•	• /	Place your answers in space below:				
PUSH CX PUSH BX PUSH AX		AX =				
POP CX		BX =				

CX =

POP BX

POP AX

- 25. Which of the following best describes the operation of the instruction MOV AX, [1000h]? (2 pts)
 - a.) Load the 16-bit register AX with the number 1000₁₆.
 - b.) Store the value currently held in the 16-bit register AX to the address 1000_{16} .
 - c.) Load AX with the value stored at address 1000₁₆.
 - d.) Load AX with the value stored at address pointed to by the value stored at the address 1000₁₆.
 - e.) None of the above, this is an illegal instruction.
- 26. Of the following jump instructions, indicate which ones will jump to the address LOOP, which ones will simply execute the next address (i.e., not jump), and which ones you don't have enough information to tell.

Inst	ruction	Current Flags	Jump to LOOP	Not jump to LOOP	Cannot be determined	
JNE	LOOP	SF=0, OF=1, CF=1				(2 points)
JA	LOOP	CF=0, ZF=1, OF=0				(2 points)
JNB	LOOP	SF=0, ZF=0, CF=0				(2 points)
JNG	LOOP	ZF=1, SF=0, OF=0				(2 points)

27. Name the two benefits of the segment/pointer addressing system of the 80x86. (3 points)

28. Using an original value of 10101010₂ and a mask of 00111100₂, calculate the results of a bitwise AND, a bitwise OR, and a bitwise XOR for these values. (2 points each)

Original value	Bitwise operation	Mask	Result
10101010_2	AND	00111100_2	
101010102	OR	001111002	
101010102	XOR	001111002	

29. For each of the following binary bit patterns, set the parity bit for odd parity.

	<u>Parity</u>		Binary value						
(1 point)		1	0	1	1	0	1	0	0
(1 point)		0	0	1	0	1	1	1	1
(1 point)		0	1	0	1	0	1	0	1

30. Keeping your answer in decimal, calculate the basic checksum for the following sequence of bytes. (3 points)

$$10_{10}$$
 20_{10} 5_{10} 1_{10} 2_{10}

31. When using the 2's complement checksum, the sum of the datasum and the checksum should result in a binary value of what? (2 points)

Name:			

DEC - Decrement

Usage: DEC dest

Modifies flags: AF OF PF SF ZF

Description: Unsigned binary subtraction of one from the destination.

INC - Increment

Usage: INC dest

Modifies flags: CF AF OF PF SF ZF

Description: Adds one to destination unsigned binary operand.

Jxx - Jump Instructions Table

Mnemonic	Meaning	Jump Condition
JA	Jump if Above	CF=0 and ZF=0
JE	Jump if Equal	ZF=1
JG	Jump if Greater (signed)	ZF=0 and SF=OF
JGE	Jump if Greater or Equal (signed)	SF=OF
JL	Jump if Less (signed)	SF != OF
JMP	Unconditional Jump	unconditional
JNB	Jump if Not Below	CF=0
JNE	Jump if Not Equal	ZF=0
JNG	Jump if Not Greater (signed)	ZF=1 or SF != OF
JNL	Jump if Not Less (signed)	SF=OF
JZ	Jump if Zero	ZF=1

MOV - Move Byte or Word

Usage: MOV dest,src Modifies flags: None

Description: Copies byte or word from the "src" operand to the "dest"

operand.

NOT - One's Compliment Negation (Logical NOT)

Usage: NOT dest Modifies flags: None

Description: Inverts the bits of the dest operand forming the 1s complement.

POP - Pop Word off Stack

Usage: POP dest Modifies flags: None

Description: Transfers word at the current stack top (SS:SP) to the

destination then increments SP by two to point to the new stack top. CS is

not a valid destination.

PUSH - Push Word onto Stack

Usage: PUSH src Modifies flags: None

Description: Decrements SP by the size of the operand (two for 8 or 16 bit and four for 32 bit, byte values are sign extended) and transfers one word from source to the stack top (SS:SP).

SAL/SHL - Shift Arithmetic Left / Shift Logical Left

Usage: SAL dest, count SHL dest, count

Modifies flags: CF OF PF SF ZF (AF undefined)

Shifts the destination left by "count" bits with zeroes shifted in on right. The Carry Flag contains the last bit shifted out.

SAR - Shift Arithmetic Right

Usage: SAR dest, count

Modifies flags: CF OF PF SF ZF (AF undefined)

Shifts the destination right by "count" bits with the current sign bit replicated in the leftmost bit. The Carry Flag contains the last bit shifted out.