
1The Method of Logical Effort

Designing a circuit to achieve the greatest speed or to meet a delay constraint

presents a bewildering array of choices. Which of several circuits that produce

the same logic function will be fastest? How large should a logic gate’s transistors

be to achieve least delay? And how many stages of logic should be used to obtain

least delay? Sometimes, adding stages to a path reduces its delay!

The method of logical effort is an easy way to estimate delay in a cmos circuit.

We can select the fastest candidate by comparing delay estimates of different

logic structures. The method also specifies the proper number of logic stages

on a path and the best transistor sizes for the logic gates. Because the method

is easy to use, it is ideal for evaluating alternatives in the early stages of a design

and provides a good starting point for more intricate optimizations.

This chapter describes the method of logical effort and applies it to simple

examples. Chapter 2 explores more complex examples. These two chapters

together provide all you need to know to apply the method of logical effort to a

wide class of circuits. We devote the remainder of this book to derivations that

show why the method of logical effort works, to some detailed optimization

2 1 The Method of Logical Effort

techniques, and to the analysis of special circuits such as domino logic and

multiplexers.

1.1 Introduction

To set the context of the problems addressed by logical effort, we begin by

reviewing a simple integrated circuit design flow. We will see that topology

selection and gate sizing are key steps of the flow. Without a systematic approach,

these steps are extremely tedious and time-consuming. Logical effort offers such

an approach to these problems.

Figure 1.1 shows a simplified chip design flow illustrating the logic, circuit,

and physical design stages. The design starts with a specification, typically in

textual form, defining the functionality and performance targets of the chip.

Most chips are partitioned into more manageable blocks so that they may

be divided among multiple designers and analyzed in pieces by CAD tools.

Logic designers write register transfer level (RTL) descriptions of each block

in a language like Verilog or VHDL and simulate these models until they are

convinced the specification is correct. Based on the complexity of the RTL

descriptions, the designers estimate the size of each block and create a floorplan

showing relative placement of the blocks. The floorplan allows wire-length

estimates and provides goals for the physical design.

Given the RTL and floorplan, circuit design may begin. There are two general

styles of circuit design: custom and automatic. Custom design trades additional

human labor for better performance. In a custom methodology, the circuit

designer has flexibility to create cells at a transistor level or choose from a

library of predefined cells. The designer must make many decisions: Should

I use static cmos, transmission gate logic, domino circuits, or other circuit

families? What circuit topology best implements the functions specified in the

RTL? Should I use nand, nor, or complex gates? After selecting a topology and

drawing the schematics, the designer must choose the size of transistors in each

logic gate. A larger gate drives its load more quickly, but presents greater input

capacitance to the previous stage and consumes more area and power. When

the schematics are complete, functional verification checks that the schematics

correctly implement the RTL specification. Finally, timing verification checks

that the circuits meet the performance targets. If performance is inadequate,

the circuit designer may try to resize gates for improved speed, or may have to

1.1 Introduction 3

Chip specification

Partition into blocks

RTL

Floorplan

Select circuit family and topology

Draw schematics

Functional verification

Timing verification

Synthesize circuit

Timing verification

Layout

Tapeout

C
us

to
m

 c
ir

cu
it

fl
ow

A
ut

om
at

ic
 c

ir
cu

it
fl

ow

Fast enough?

Yes
No

R
es

iz
e

or
 c

ha
ng

e
to

po
lo

gy

Fast enough?

Yes
No

A
dd

 s
yn

th
es

is
 c

on
st

ra
in

ts

Figure 1.1 Simplified chip design flow.

change the topology entirely, exploiting parallelism to build faster structures

at the expense of more area or switching from static cmos to faster domino

gates.

Automatic circuit design uses synthesis tools to choose circuit topologies and

gate sizes. Synthesis takes much less time than manually optimizing paths and

drawing schematics, but is generally restricted to a fixed library of static cmos

cells and produces slower circuits than those designed by a skilled engineer.

Advances in synthesis and manufacturing technology continue to expand the set

of problems that synthesis can acceptably solve, but for the foreseeable future,

high-end designs will require at least some custom circuits. Synthesized circuits

are normally logically correct by construction, but timing verification is still

4 1 The Method of Logical Effort

necessary. If performance is inadequate, the circuit designer may set directives

for the synthesis tool to improve critical paths.

When circuit design is complete, layout may begin. Layout may also be

custom or may use automatic place and route tools. Design rule checkers (DRC)

and layout versus schematic (LVS) checks are used to verify the layout. Postlayout

timing verification ensures the design still meets timing goals after including

more accurate capacitance and resistance data extracted from the layout; if the

estimates used in circuit design were inaccurate, the circuits may have to be

modified again. Finally, the chip is “taped out” and sent for manufacturing.

One of the greatest challenges in this design flow is meeting the timing

specifications, a problem known as timing convergence. If speed were not a

concern, circuit design would be much easier, but if speed were not a concern,

the problem could be solved more cost-effectively in software.

Even experienced custom circuit designers often expend a tremendous

amount of frustrating effort to meet timing specifications. Without a systematic

approach, most of us fall into the “simulate and tweak” trap of making changes

in a circuit, throwing it into the simulator, looking at the result, making more

changes, and repeating. Because circuit blocks often take half an hour or more in

simulation, this process is very time-consuming. Moreover, the designer often

tries to speed up a slow gate by increasing its size. This can be counterproduc-

tive if the larger gate now imposes greater load on the previous stage, slowing

the previous stage more than improving its own delay! Another problem is that

without an easy way of estimating delays, the designer who wishes to compare

two topologies must draw, size, and simulate a schematic of each. This process

takes a great deal of time and discourages such comparisons. The designer soon

realizes that a more efficient and systematic approach is needed and over the

years develops a personal set of heuristics and mental models to assist with

topology selection and sizing.

Users of synthesis tools experience similar frustrations with timing conver-

gence, especially when the specification is near the upper limit of the tool’s

capability. The synthesis equivalent of “simulate and tweak” is “add constraints

and resynthesize”; as constraints fix one timing violation, they often introduce

a new violation on another path. Unless the designer looks closely at the out-

put of the synthesis and understands the root cause of the slow paths, adding

constraints and resynthesizing may never converge on an acceptable result.

1.2 Delay in a Logic Gate 5

This book is written for those who are concerned about designing fast chips.

It offers a systematic approach to topology selection and gate sizing that cap-

tures many years of experience and offers a simple language for quantitatively

discussing such problems. In order to reason about such questions, we need

a simple delay model that’s fast and easy to use. The models should be accu-

rate enough that if it predicts circuit a is significantly faster than circuit b, then

circuit a really is faster; the absolute delays predicted by the model are not as

important because a better simulator or timing analyzer will be used for tim-

ing verification. This chapter begins by discussing such a simple model of delay

and introduces terms that describe how the complexity of the gate, the load ca-

pacitance, and the parasitic capacitance contribute to delay. From this model,

we introduce a numeric “path effort” that allows the designer to compare two

multistage topologies easily without sizing or simulation. We also describe pro-

cedures for choosing the best number of stages of gates and for selecting each

gate size to minimize delay. Many examples illustrate these key ideas and show

that using fewer stages or larger gates may fail to produce faster circuits.

1.2 Delay in a Logic Gate

The method of logical effort is founded on a simple model of the delay through a

single mos logic gate.1 The model describes delays caused by the capacitive load

that the logic gate drives and by the topology of the logic gate. Clearly, as the load

increases, the delay increases, but delay also depends on the logic function of the

gate. Inverters, the simplest logic gates, drive loads best and are often used as

amplifiers to drive large capacitances. Logic gates that compute other functions

require more transistors, some of which are connected in series, making them

poorer than inverters at driving current. Thus a nand gate has more delay than

an inverter with similar transistor sizes that drives the same load. The method

of logical effort quantifies these effects to simplify delay analysis for individual

logic gates and multistage logic networks.

1. The term “gate” is ambiguous in integrated circuit design, signifying either a circuit that imple-
ments a logic function such as nand or the gate of a mos transistor. We hope to avoid confusion by
referring to “logic gate” or “transistor gate” unless the meaning is clear from context.

6 1 The Method of Logical Effort

The first step in modeling delays is to isolate the effects of a particular

integrated circuit fabrication process by expressing all delays in terms of a basic

delay unit τ particular to that process.2 τ is the delay of an inverter driving

an identical inverter with no parasitics. Thus we express absolute delay as the

product of a unitless delay of the gate d and the delay unit that characterizes a

given process:

dabs = dτ (1.1)

Unless otherwise indicated, we will measure all times in units of τ . In a typical

0.6µ process τ is about 50 ps. This and other typical process parameters are

summarized in Appendix B.

The delay incurred by a logic gate is comprised of two components, a fixed

part called the parasitic delay p and a part that is proportional to the load on the

gate’s output, called the effort delay or stage effort f . (Appendix A lists all of the

notation used in this book.) The total delay, measured in units of τ , is the sum

of the effort and parasitic delays:

d = f + p (1.2)

The effort delay depends on the load and on properties of the logic gate driv-

ing the load. We introduce two related terms for these effects: the logical effort

g captures properties of the logic gate, while the electrical effort h characterizes

the load. The effort delay of the logic gate is the product of these two factors:

f = gh (1.3)

The logical effort g captures the effect of the logic gate’s topology on its ability

to produce output current. It is independent of the size of the transistors in

the circuit. The electrical effort h describes how the electrical environment of

the logic gate affects performance and how the size of the transistors in the gate

determines its load-driving capability. The electrical effort is defined by:

h= Cout

Cin
(1.4)

2. This definition of τ differs from that used by Mead and Conway [7].

1.2 Delay in a Logic Gate 7

Table 1.1 Logical effort for inputs of static cmos gates, assuming γ = 2. γ is
the ratio of an inverter’s pullup transistor width to pulldown transistor width.
Chapter 4 explains how to calculate the logical effort of these and other logic
gates.

Number of inputs

Gate type 1 2 3 4 5 n

Inverter 1
nand 4/3 5/3 6/3 7/3 (n+ 2)/3

nor 5/3 7/3 9/3 11/3 (2n+ 1)/3

Multiplexer 2 2 2 2 2
xor (parity) 4 12 32

where Cout is the capacitance that loads the output of the logic gate and Cin is the

capacitance presented by the input terminal of the logic gate. Electrical effort is

also called fanout by many cmos designers. Note that fanout, in this context,

depends on the load capacitance, not just the number of gates being driven.

Combining Equations 1.2 and 1.3, we obtain the basic equation that models

the delay through a single logic gate, in units of τ :

d = gh+ p (1.5)

This equation shows that logical effort g and electrical effort h both contribute

to delay in the same way. This formulation separates τ , g , h, and p, the four

contributions to delay. The process parameter τ represents the speed of the

basic transistors. The parasitic delay p expresses the intrinsic delay of the gate

due to its own internal capacitance, which is largely independent of the size of

the transistors in the logic gate. The electrical effort, h, combines the effects

of external load, which establishes Cout , with the sizes of the transistors in

the logic gate, which establish Cin. The logical effort g expresses the effects of

circuit topology on the delay free of considerations of loading or transistor size.

Logical effort is useful because it depends only on circuit topology.

Logical effort values for a few cmos logic gates are shown in Table 1.1.

Logical effort is defined so that an inverter has a logical effort of 1. An inverter

driving an exact copy of itself experiences an electrical effort of 1. Therefore, an

8 1 The Method of Logical Effort

2

1a

x

2

2

2

2

x

a

b

4

4

1

1

a

b

x

(a) (b) (c)

Figure 1.2 Simple gates: inverter (a), two-input nand gate (b), and two-input
nor gate (c). The numbers indicate relative transistor widths.

inverter driving an exact copy of itself will have an effort delay of 1, according

to Equation 1.3.

The logical effort of a logic gate tells how much worse it is at producing

output current than is an inverter, given that each of its inputs may present

only the same input capacitance as the inverter. Reduced output current means

slower operation, and thus the logical effort number for a logic gate tells how

much more slowly it will drive a load than would an inverter. Equivalently,

logical effort is how much more input capacitance a gate must present in order to

deliver the same output current as an inverter. Figure 1.2 illustrates simple gates

with relative transistor widths chosen for roughly equal output currents. The

inverter has three units of input capacitance while the nand has four. Therefore,

the nand gate has a logical effort g = 4/3. Similarly, the nor gate has g = 5/3.

Chapter 4 estimates the logical effort of other gates, while Chapter 5 shows how

to extract logical effort from circuit simulations.

It is interesting but not surprising to note from Table 1.1 that more complex

logic functions have larger logical effort. Moreover, the logical effort of most

logic gates grows with the number of inputs to the gate. Larger or more complex

logic gates will thus exhibit greater delay. As we shall see later, these properties

make it worthwhile to contrast different choices of logical structure. Designs

that minimize the number of stages of logic will require more inputs for each

logic gate and thus have larger logical effort. Designs with fewer inputs and thus

1.2 Delay in a Logic Gate 9

less logical effort per stage may require more stages of logic. In Section 1.4, we

will see how the method of logical effort expresses these trade-offs.

The electrical effort h is just a ratio of two capacitances. The load driven by a

logic gate is the capacitance of whatever is connected to its output; any such load

will slow down the circuit. The input capacitance of the circuit is a measure of the

size of its transistors. The input capacitance term appears in the denominator

of Equation 1.4 because bigger transistors in a logic gate will drive a given load

faster. Usually most of the load on a stage of logic is the capacitance of the input

or inputs of the next stage or stages of logic that it drives. Of course, the load

also includes the stray capacitance of wires, drain regions of transistors, and so

on. We shall see later how to include stray load capacitances in our calculations.

Electrical effort is usually expressed as a ratio of transistor widths rather than

actual capacitances. We know that the capacitance of a transistor gate is pro-

portional to its area; if we assume that all transistors have the same minimum

length, then the capacitance of a transistor gate is proportional to its width. Be-

cause most logic gates drive other logic gates, we can express both Cin and Cout

in terms of transistor widths. If the load capacitance includes stray capacitance

due to wiring or external loads, we shall convert this capacitance into an equiv-

alent transistor width. If you prefer, you can think of the unit of capacitance as

the capacitance of a transistor gate of minimum length and unit width.

The parasitic delay of a logic gate is fixed, independent of the size of the logic

gate and of the load capacitance it drives, because wider transistors providing

greater output current have correspondingly greater diffusion capacitance. This

delay is a form of overhead that accompanies any gate. The principal contribu-

tion to parasitic delay is the capacitance of the source or drain regions of the

transistors that drive the gate’s output. Table 1.2 presents crude estimates of

parasitic delay for a few logic gate types; note that parasitic delays are given as

multiples of the parasitic delay of an inverter, denoted as pinv. A typical value

for pinv is 1.0 delay units, which is used in most of the examples in this book.

pinv is a strong function of process-dependent diffusion capacitances, but 1.0 is

representative and is convenient for hand analysis. These estimates omit stray

capacitance between series transistors, as will be discussed in more detail in

Chapters 3 and 5.

The delay model of a single logic gate, as represented in Equation 1.5, is a

simple linear relationship. Figure 1.3 shows this relationship graphically: delay

appears as a function of electrical effort for an inverter and for a two-input nand

1 0 1 The Method of Logical Effort

Table 1.2 Estimates of parasitic delay of various logic gate types, assuming
simple layout styles. A typical value of pinv, the parasitic delay of an inverter, is
1.0.

Gate type Parasitic delay

Inverter pinv

n-input nand npinv

n-input nor npinv

n-way multiplexer 2npinv

xor, xnor 4pinv

543210

5

4

3

2

6

1

0

Parasitic delay

Effort delay

Electrical effort: h

N
or

m
al

iz
ed

 d
el

ay
: d

In
ve

rte
r:

g =
 1,

 p
= 1

Tw
o-

in
pu

t N
A

N
D
: g

 =

, p
 =

 2

4
3

Figure 1.3 Plots of the delay equation for an inverter and a two-input nand
gate.

1.2 Delay in a Logic Gate 1 1

Figure 1.4 A ring oscillator of N identical inverters.

gate. The slope of each line is the logical effort of the gate; its intercept is the

parasitic delay. The graph shows that we can adjust the total delay by adjusting

the electrical effort or by choosing a logic gate with a different logical effort.

Once we have chosen a gate type, however, the parasitic delay is fixed, and our

optimization procedure can do nothing to reduce it.

Example 1.1 Estimate the delay of an inverter driving an identical inverter, as in the ring

oscillator shown in Figure 1.4.

Solution Because the inverter’s output is connected to the input of an identical in-

verter, the load capacitance, Cout , is the same as the input capacitance. There-

fore the electrical effort is h= Cout/Cin = 1. Because the logical effort of an

inverter is 1, we have, from Equation 1.5, d = gh+ p= 1× 1+ pinv = 2.0.

This result expresses the delay in delay units; it can be scaled by τ to obtain the

absolute delay, dabs = 2.0τ . In a 0.6µ process with τ = 50 ps, dabs = 100 ps.

The ring oscillator shown in Figure 1.4 can be used to measure the value

of τ . Because N , the number of stages in the ring, is odd, the circuit is

unstable and will oscillate. The delay of each stage of the ring oscillator is

expressed by:

1

2NF
= dτ = (1+ pinv)τ (1.6)

where N is the number of inverters, F is the oscillation frequency, and the

2 appears because a transition must pass twice around the ring to complete

a single cycle of the oscillation. If a value for pinv is known, this equation

can be used to determine τ from measurements of the frequency of the ring

oscillator. Chapter 5 shows a method for measuring both τ and pinv.

1 2 1 The Method of Logical Effort

d

Figure 1.5 An inverter driving four identical inverters.

x

x

x

x
x
x

x
x

x
x

x
d

Figure 1.6 A four-input nor gate driving 10 identical gates.

Example 1.2 Estimate the delay of a fanout-of-4 (FO4) inverter, as shown in Figure 1.5.

Solution Because each inverter is identical, Cout = 4Cin, so h = 4. The logical effort

g = 1 for an inverter. Thus the FO4 delay, according to Equation 1.5, is

d= gh+ p= 1× 4+ pinv = 4+ 1= 5. It is sometimes convenient to express

times in terms of FO4 inverter delays because most designers know the FO4

delay in their process and can use it to estimate the absolute performance of

your circuit in their process.

Example 1.3 A four-input nor gate drives 10 identical gates, as shown in Figure 1.6. What

is the delay in the driving nor gate?

Solution If the capacitance of one input of each nor gate is x, then the driving nor

has Cin = x and Cout = 10x, and thus the electrical effort is h = 10. The

logical effort of the four-input nor gate is 9/3= 3, obtained from Table 1.1.

Thus the delay is d = gh+ p= 3× 10+ 4× 1, or 34 delay units. Note that

1.3 Multistage Logic Networks 1 3

when the load is large, as in this example, the parasitic delay is insignificant

compared to the effort delay.

1.3 Multistage Logic Networks

The method of logical effort reveals the best number of stages in a multistage

network and how to obtain the least overall delay by balancing the delay among

the stages. The notions of logical and electrical effort generalize easily from

individual gates to multistage paths.

The logical effort along a path compounds by multiplying the logical efforts

of all the logic gates along the path. We use the uppercase symbol G to denote

the path logical effort , so that it is distinguished from g , the logical effort of a

single gate in the path. The subscript i indexes the logic stages along the path.

G =
∏

gi (1.7)

The electrical effort along a path through a network is simply the ratio of the

capacitance that loads the last logic gate in the path to the input capacitance of

the first gate in the path. We use an uppercase symbol H to indicate the electrical

effort along a path.

H = Cout

Cin
(1.8)

In this case, Cin and Cout refer to the input and output capacitances of the path

as a whole, as may be inferred from context.

We need to introduce a new kind of effort, named branching effort, to account

for fanout within a network. So far we have treated fanout as a form of electrical

effort: when a logic gate drives several loads, we sum their capacitances, as in

Example 1.3, to obtain an electrical effort. Treating fanout as a form of electrical

effort is easy when the fanout occurs at the final output of a network. This

method is less suitable when the fanout occurs within a logic network because

we know that the electrical effort for the network depends only on the ratio of

its output capacitance to its input capacitance.

When fanout occurs within a logic network, some of the available drive

current is directed along the path we are analyzing, and some is directed off

that path. We define the branching effort b at the output of a logic gate to be

1 4 1 The Method of Logical Effort

b= Con−path + Coff−path

Con−path
= Ctotal

Cuseful
(1.9)

where Con−path is the load capacitance along the path we are analyzing and

Coff−path is the capacitance of connections that lead off the path. Note that if the

path does not branch, the branching effort is one. The branching effort along

an entire path B is the product of the branching effort at each of the stages along

the path.

B=
∏

bi (1.10)

Armed with definitions of logical, electrical, and branching effort along a

path, we can define the path effort F. Again, we use an uppercase symbol to

distinguish the path effort from the stage effort f associated with a single logic

stage. The equation that defines path effort is reminiscent of Equation 1.3, which

defines the effort for a single logic gate:

F = GBH (1.11)

Note that the path branching and electrical efforts are related to the electrical

effort of each stage:

BH = Cout

Cin

∏
bi =

∏
hi (1.12)

The designer knows Cin, Cout , and branching efforts bi from the path specifi-

cation. Sizing the path consists of choosing appropriate electrical efforts hi for

each stage to match the total BH product.

Although it is not a direct measure of delay along the path, the path effort

holds the key to minimizing the delay. Observe that the path effort depends only

on the circuit topology and loading and not upon the sizes of the transistors used

in logic gates embedded within the network. Moreover, the effort is unchanged

if inverters are added to or removed from the path, because the logical effort of

an inverter is one. The path effort is related to the minimum achievable delay

along the path, and permits us to calculate that delay easily. Only a little more

work yields the best number of stages and the proper transistor sizes to realize

the minimum delay.

The path delay D is the sum of the delays of each of the stages of logic in

the path. As in the expression for delay in a single stage (Equation 1.5), we shall

distinguish the path effort delay DF and the path parasitic delay P:

1.3 Multistage Logic Networks 1 5

D =
∑

di = DF + P (1.13)

The path effort delay is simply

DF =
∑

gihi (1.14)

and the path parasitic delay is

P =
∑

pi (1.15)

Optimizing the design of an N-stage logic network proceeds from a very

simple principle that we will prove in Chapter 3: The path delay is least when

each stage in the path bears the same stage effort. This minimum delay is achieved

when the stage effort is

f̂ = gihi = F1/N (1.16)

We use a hat over a symbol to indicate an expression that achieves minimum

delay.

Combining these equations, we obtain the principal result of the method of

logical effort, which is an expression for the minimum delay achievable along a

path:

D̂ = NF1/N+P (1.17)

From a simple computation of its logical, branching, and electrical efforts we

can obtain an estimate of the minimum delay of a logic network. Observe that

when N = 1, this equation reduces to Equation 1.5.

To equalize the effort borne by each stage on a path, and therefore achieve

the minimum delay along the path, we must choose appropriate transistor sizes

for each stage of logic along the path. Equation 1.16 shows that each logic stage

should be designed with electrical effort

ĥi = F1/N

gi
(1.18)

From this relationship, we can determine the transistor sizes of gates along a

path. Start at the end of the path and work backward, applying the capacitance

transformation:

Cini =
giCouti

f̂
(1.19)

1 6 1 The Method of Logical Effort

A

B

C

z
y

C

Figure 1.7 A logic network consisting of three two-input nand gates.

This determines the input capacitance of each gate, which can then be dis-

tributed appropriately among the transistors connected to the input. The me-

chanics of this process will become clear in the following examples.

Example 1.4 Consider the path from A to B involving three two-input nand gates shown

in Figure 1.7. The input capacitance of the first gate is C, and the load

capacitance is also C. What is the least delay of this path, and how should

the transistors be sized to achieve least delay? (The next example will use the

same circuit with a different electrical effort.)

Solution To compute the path effort, we must compute the logical, branching, and

electrical efforts along the path. The path logical effort is the product of

the logical efforts of the three nand gates, G = g0g1g2 = 4/3× 4/3× 4/3=
(4/3)3= 2.37. The branching effort is B= 1, because all of the fanouts along

the path are one, that is, there is no branching. The electrical effort is H =
C/C = 1. Hence, the path effort is F = GBH = 2.37. Using Equation 1.17,

we find the least delay achievable along the path to be D̂ = 3(2.37)1/3 +
3(2pinv)= 10.0 delay units.

This minimum delay can be realized if the transistor sizes in each logic

gate are chosen properly. First compute the stage effort f̂ = 2.371/3 = 4/3.

Starting with the output load C, apply the capacitance transformation of

Equation 1.19 to compute input capacitance z =C × (4/3)/(4/3)=C. Sim-

ilarly, y = z × (4/3)/(4/3)= z = C. Hence we find that all three nand gates

should have the same input capacitance, C. In other words, the transistor

sizes in the three gates will be the same. This is not a surprising result: all

stages have the same load and the same logical effort, and hence bear equal

effort, which is the condition for minimizing path delay.

1.3 Multistage Logic Networks 1 7

C
2

C

2

C
2

C
2

Figure 1.8 A schematic of a nand gate from Example 1.4.

A schematic of the nand gate is shown in Figure 1.8, assuming pmos

transistors have half the mobility of nmos transistors. Selecting transistor

sizes will be discussed further in Chapter 4. Since each input drives both a

pmos and nmos transistor with capacitance C/2, the capacitance of each

input is C, as desired.

Example 1.5 Using the same network as in the previous example, Figure 1.7, find the least

delay achievable along the path from A to B when the output capacitance is

8C.

Solution Using the result from Example 1.4 that G = (4/3)3 and the new electrical

effort H = 8C/C = 8, we compute F = GBH = (4/3)3 × 8= 18.96, so the

least path delay is D̂ = 3(18.96)1/3 + 3(2pinv) = 14.0 delay units. Observe

that although the electrical effort in this example is eight times the electrical

effort in the earlier example, the delay is increased by only 40%.

Now let us compute the transistor sizes that achieve minimum delay. The

stage effort f̂ = 18.961/3 = 8/3. Starting with the output load 8C, apply the

capacitance transformation of Equation 1.19 to compute input capacitance

z = 8C × (4/3)/(8/3) = 4C. Similarly, y = z × (4/3)/(8/3) = z/2 = 2C.

To verify the calculation, calculate the capacitance of the first gate y ×
(4/3)/(8/3)= y/2= C, matching the design specification. Each successive

logic gate has twice the input capacitance of its predecessor. This is achieved

by making the transistors in a gate twice as wide as the corresponding

1 8 1 The Method of Logical Effort

z

z

zy

y

A C

4.5C

4.5C

4.5C

B

Figure 1.9 A multistage logic network with internal fanout.

transistors in its predecessor. The wider transistors in successive stages are

better able to drive current into the larger loads.

Example 1.6 Optimize the circuit in Figure 1.9 to obtain the least delay along the path

from A to B when the electrical effort of the path is 4.5.

Solution The path logical effort is G = (4/3)3. The branching effort at the output

of the first stage is (y + y)/y = 2, and at the output of the second stage it is

(z + z + z)/z = 3. The path branching effort is therefore B= 2× 3= 6. The

electrical effort along the path is specified to be H = 4.5. Thus F = GBH =
64, and D̂ = 3(64)1/3 + 3(2pinv)= 18.0 delay units.

To achieve this minimum delay, we must equalize the effort in each stage.

Since the path effort is 64, the stage effort should be (64)1/3 = 4. Starting

from the output, z = 4.5C × (4/3)/4= 1.5C. The second stage drives three

copies of the third stage, so y = 3z × (4/3)/4= z = 1.5C. We can check the

math by finding the size of the first stage 2y × (4/3)/4 = (2/3)y = C, as

given in the design spec.

Example 1.7 Size the circuit in Figure 1.10 for minimum delay. Suppose the load is 20

microns of gate capacitance and that the inverter has 10 microns of gate

capacitance.

Solution Assuming minimum-length transistors, gate capacitance is proportional to

gate width. Hence, it is convenient to express capacitance in terms of microns

of gate width, as given in this problem.

1.3 Multistage Logic Networks 1 9

10 m gate cap

20 m gate cap

x
y

z

µ

µ

Figure 1.10 A multistage logic network with a variety of gates.

The path has logical effort G = 1× (5/3)× (4/3)× 1= 20/9. The elec-

trical effort is H = 20/10 = 2, and the branching effort is 1. Thus, F =
GBH = 40/9, and f̂ = (40/9)1/4 = 1.45.

Start from the output and work backward to compute sizes: z = 20 ×
1/1.45= 14, y = 14 × (4/3)/1.45= 13, and x = 13 × (5/3)/1.45= 15.

These input gate widths are divided among the transistors in each gate.

Notice that the inverters are assigned larger electrical efforts than the more

complex gates because they are better at driving loads. Also note that these

calculations do not have to be very precise. We will see in Section 3.6 that

sizing a gate too large or too small by a factor of 1.5 still results in circuits

within 5% of minimum delay. Therefore, it is easy to use “back-of-the-

envelope” hand calculations to find gate sizes to one or two significant

figures.

Note that the parasitic delay does not enter into the procedure for calcu-

lating transistor sizes to obtain minimum delay. Because the parasitic delay

is fixed, independent of the size of the logic gate, adjustments to the size of

logic gates cannot alter parasitic delay. In fact, we can ignore parasitic delay

entirely unless we want to obtain an accurate estimate of the time required

for a signal to propagate through a logic network, or if we are comparing

two logic networks that contain different types of logic gates or different

numbers of stages and therefore exhibit different parasitic delays.

Example 1.8 Consider three alternative circuits for driving a load 25 times the input

capacitance of the circuit. The first design uses one inverter, the second uses

three inverters in series, and the third uses five in series. All three designs

compute the same logic function. Which is best, and what is the minimum

delay?

2 0 1 The Method of Logical Effort

Solution In all three cases, the path logical effort is 1, the branching effort is 1, and

the electrical effort is 25. Equation 1.17 gives the path delay D=N(25)1/N +
Npinv where N = 1, 3, or 5. For N = 1, we have D̂= 26 delay units; for N = 3,

D̂= 11.8; and for N = 5, D̂= 14.5. The best choice is N = 3. In this design,

each stage will bear an effort of (25)1/3 = 2.9, so each inverter will be 2.9

times larger than its predecessor. This is the familiar geometric progression

of sizes that is found in many textbooks.

This example shows that the fastest speed obtainable depends on the number

of stages in the circuit. Since the path delay varies markedly for different values

of N , it is clear we need a method for choosing N to yield the least delay; this is

the topic of the next section.

1.4 Choosing the Best Number of Stages

The delay equations of logical effort, such as Equation 1.17, can be solved to

determine the number of stages, N̂ , that achieves the minimum delay. Although

we will defer the solution technique until Chapter 3, Table 1.3 presents some

results. The table shows, for example, that a single stage is fastest only if the

path effort F is 5.83 or less. If the path effort lies between 5.83 and 22.3, a two-

stage design is best. If it lies between 22.3 and 82.2, three stages are best. The

table confirms that the right number of stages to use in Example 1.8, which has

F = 25, is three. As the effort gets very large, the stage effort approaches 3.59.

If we use Table 1.3 to select the number of stages that gives the least delay,

we may find that we must add stages to a network. We can always add an even

number of stages by attaching pairs of inverters to the end of the path. Because

we can’t add an odd number of inverters without changing the logic function

of the network, we may have to settle for a somewhat slower design or alter the

logic network to accommodate an inverted signal. If a path uses a number of

stages that is not quite optimal, the overall delay is usually not increased very

much; what is disastrous is a design with half or twice the best number of stages.

The table is accurate only when we are considering increasing or decreasing

the number of stages in a path by adding or removing inverters, because the table

assumes that stages being added or removed have a parasitic delay equal to that of

an inverter. Chapter 3 explains how other similar tables can be produced. When

we are comparing logic networks that use different logic gate types or different

1.4 Choosing the Best Number of Stages 2 1

Table 1.3 Best number of stages to use for various path efforts. For example,
for path efforts between 3920 and 14200, seven stages should be used; the stage
effort will lie in the range 3.3–3.9 delay units. The table assumes pinv = 1.0.

Best number
Path effort F of stages, N̂ Minimum delay D̂ Stage effort, f , range

0 1.0
1 0–5.8

5.83 6.8
2 2.4–4.7

22.3 11.4
3 2.8–4.4

82.2 16.0
4 3.0–4.2

300 20.7
5 3.1–4.1

1090 25.3
6 3.2–4.0

3920 29.8
7 3.3–3.9

14200 34.4
8 3.3–3.9

51000 39.0
9 3.3–3.9

184000 43.6
10 3.4–3.8

661000 48.2
11 3.4–3.8

2380000 52.8
12 3.4–3.8

8560000 57.4

numbers of stages of logic, it is necessary to evaluate the delay equations to

determine which design is best.

Example 1.9 A string of inverters in a 0.6µ process drives a signal that goes off-chip

through a pad. The capacitance of the pad and its load is 40 pF, which

is equivalent to about 20,000 microns of gate capacitance. Assuming the

load on the input should be that of an inverter with 7.2 microns of input

capacitance, what is the fastest inverter string?

Solution As in Example 1.8, the logical and branching efforts are both 1, but the

electrical effort is 20,000/7.2= 2777. Table 1.3 specifies a six-stage design.

2 2 1 The Method of Logical Effort

The stage effort will be f̂ = (2777)1/6 = 3.75. Thus the input capacitance of

each inverter in the string will be 3.75 times that of its predecessor. The path

delay will be D̂ = 6× 3.75+ 6× pinv = 28.5 delay units. This corresponds

to an absolute delay of 28.5τ = 1.43 ns, assuming τ = 50 ps.

This example finds the best ratio of the sizes of succeeding stages to be 3.75.

Many texts teach us to use a ratio of e = 2.718, but the reasoning behind the

smaller value fails to account for parasitic delay. As the parasitic delay increases,

the size ratio that achieves least delay rises above e, and the best number of stages

to use decreases. Chapter 3 explores these issues further and presents a formula

for the best stage effort.

In general, the best stage effort f̂ is between 3 and 4. Targeting a stage effort of

4 is convenient during design and gives delays within 1% of minimum delay for

typical parasitics. Thus, the number of stages N̂ is about log4 F. We will find that

stage efforts between 2 and 8 give delays within 35% of minimum and efforts

between 2.4 and 6 give delays within 15% of minimum. Therefore, choosing the

right stage effort is not critical.

We will also see in Chapter 3 that an easy way to estimate the delay of a path

is to approximate the delay of a stage with effort of 4 as that of an FO4 inverter.

We found in Example 1.2 that an FO4 inverter has a delay of 5 units. Therefore,

the delay of a circuit with path effort F is about 5 log4 F, or about log4 F FO4

delays. This is somewhat optimistic because it neglects the larger parasitic delay

of complex gates.

1.5 Summary of the Method

The method of logical effort is a design procedure for achieving the least

delay along a path of a logic network. It combines into one calculation the

effort required to drive large electrical loads and to perform logic functions.

The principle expressions of logical effort are summarized in Table 1.4. The

procedure is:

1. Compute the path effort F = GBH along the path of the network you are

analyzing. The path logical effort G is the product of the logical efforts of the

logic gates along the path; use Table 1.1 to obtain the logical effort of each

individual logic gate. The branching effort B is the product of the branching

effort at each stage along the path. The electrical effort H is the ratio of the

1.5 Summary of the Method 2 3

Table 1.4 Summary of terms and equations for concepts in the method of
logical effort.

Term Stage expression Path expression

Logical effort g (Table 1.1) G =∏
gi

Electrical effort h= Cout/Cin H = Cout−path/Cin−path

Branching effort — B=∏
bi

Effort f = gh F = GBH =∏
fi

Effort delay f DF =∑
fi minimized when fi = F1/N̂

Number of stages 1 N (Table 1.3)

Parasitic delay p (Table 1.2) P =∑
pi

Delay d = f + p D = DF + P

capacitance loading the last stage of the network to the input capacitance of

the first stage of the network.

2. Use Table 1.3 or estimate N̂ ≈ log4 F to find out how many stages N̂ will

yield the least delay.

3. Estimate the minimum delay, D̂ = N̂F1/N̂ +∑
pi, using values of parasitic

delay obtained from Table 1.2. If you are comparing different architectural

approaches to a design problem, you may choose to stop the analysis here.

4. Add or remove stages if necessary until N , the number of stages in your

circuit, is approximately N̂ .

5. Compute the effort to be borne by each stage: f̂ = F1/N .

6. Starting at the last logic stage in the path, work backward to compute transis-

tor sizes for each of the logic gates by applying the equation Cin= (gi/f̂)Cout

for each stage. The value of Cin for a stage becomes Cout for the previous stage,

perhaps modified to account for branching effort.

This design procedure finds the circuit with the least delay along a partic-

ular path, without regard to area, power, or other limitations that may be as

important as delay. In some cases, compromises will be necessary to obtain

practical designs. For example, if this procedure is used to design drivers for a

high-capacitance bus, the drivers may be too big to be practical. You may com-

promise by using a larger stage delay than the design procedure calls for, or even

2 4 1 The Method of Logical Effort

by making the delay in the last stage much greater than in the other stages; both

of these approaches reduce the size of the final driver at the expense of delay.

The method of logical effort achieves an approximate optimum. Because it

ignores a number of second-order effects, such as stray capacitances between

series transistors within logic gates, a circuit designed with the procedure given

above can sometimes be improved by careful simulation with a circuit simula-

tor and subsequent adjustment of transistor sizes. However, in our experience

the method of logical effort alone obtains designs that are within 10% of the

minimum.

Another limitation of logical effort is the fact that circuits with complex

branches or interconnect have no closed-form best design. Chapters 9 and 10

address these issues and provide approximations useful when gate or wire loads

dominate, but in some cases, iteration is still necessary.

One of the strengths of the method of logical effort is that it combines into

one framework the effects on performance of capacitive load, of complexity of

the logic function being computed, and of the number of stages in the network.

For example, if you redesign a logic network to use high fan-in logic gates in

order to reduce the number of stages, the logical effort increases, thus blunt-

ing the improvement. Although many designers recognize that large capacitive

loads must be driven with strings of drivers that increase in size geometrically,

they are not sure what happens when logic is mixed in, as occurs often in tristate

drivers. The method of logical effort addresses all of these design problems.

1.6 A Look Ahead

The information presented in this chapter is sufficient to attack almost any de-

sign. The next chapter applies the method to a variety of circuits of practical

importance. Chapter 3 exposes the model behind the method and derives the

equations presented in this chapter. Chapter 4 shows how to compute the log-

ical effort of a logic gate and exhibits a catalog of logic gate types. Chapter 5

describes how to measure various parameters required by the method, such

as pinv and τ . The remaining chapters explore refinements to the method and

more intricate design problems. Chapters 6 and 7 describe how to unbalance or

skew a gate to favor a particular input or transition at the expense of the others.

Chapter 8 applies logical effort to other circuit families, including pseudo-nmos,

domino, and transmission gates. Chapters 9 and 10 tackle the problems of cir-

1.7 Exercises 2 5

cuits that fork and branch in irregular fashions. Chapter 11 uses logical effort

to gain insights on wide structures including many-input gates, decoders, and

multiplexers. The conclusion in Chapter 12 summarizes the method of logical

effort and many insights provided by the method. It gives a design procedure to

apply logical effort and compares the procedure with other approaches to path

design. Finally, it reviews some of the limitations of logical effort that are im-

portant to the designer. Even if you skip the middle chapters on a first reading,

we still recommend you glance at the conclusion.

You may also wish to refer to the appendices from time to time. We recognize

that the notation of logical effort can be confusing at first, so Appendix A con-

tains a complete list of all the symbols with definitions. Appendix B summarizes

nominal process parameters for the 0.6µ process used in examples throughout

the book and Appendix C contains solutions to the odd-numbered exercises.

1.7 Exercises

The bracketed numbers to the left of each exercise indicate the degree of diffi-

culty for each. Please see About the Exercises in the Preface for a ratings guide.

[20] 1-1 Consider the circuits shown in Figure 1.11. Both have a fanout of 6, that

is, they must drive a load six times the capacitance of each of the inputs. What

is the path effort of each design? Which will be fastest? Compute the sizes x and

y of the logic gates required to achieve least delay.

[20] 1-2 Design the fastest circuit that computes the nand of four inputs with a

fanout of 6. Consider a four-input nand gate by itself, a four-input nand gate

followed by two additional inverters, and a tree formed by 2 two-input nand

gates whose outputs are connected to a two-input nor gate followed by an

C C

C6C 6C
x

y

(a) (b)

Figure 1.11 Two circuits for computing the and function of two inputs.

2 6 1 The Method of Logical Effort

inverter. Estimate the shortest delay achievable for each circuit. If the fanout

were larger, would other circuits be better?

[10] 1-3 A three-stage logic path is designed so that the effort borne by each stage is

10, 9, and 7 delay units, respectively. Can this design be improved? Why? What

is the best number of stages for this path? What changes do you recommend to

the existing design?

[10] 1-4 A clock driver must drive 500 minimum-size inverters. If its input must

be a single minimum-size inverter, how many stages of amplification should be

used? If the input to the clock driver comes from outside the integrated circuit

via an input pad, could fewer stages be used? Why?

[15] 1-5 A particular system design of interest will have eight levels of logic between

latches. Assuming that the most complex circuits involve four-input nand gates

with fanouts of three in all eight levels of logic and that latching overhead is

negligible, estimate the minimum clock period.

[20] 1-6 A long metal wire carries a signal from one part of a chip to another. Only

a single unit load may be imposed on the signal source. At its destination the

signal must drive 20 unit loads. The distributed wire capacitance is equivalent

to 100 unit loads; assume the wire has no resistance. Design a suitable amplifier.

You may invert the signal if necessary. Should the amplifier be placed at the

beginning, middle, or end of the wire?

