CS/EE 5710/6710

Layout
Basic Transistor Sizing
Intro to Verilog

First Layout: Follow Schematic

» Note that layout of
transistors follows
the schematic

» Two P-types in
series pulling up

» Two N-types in
parallel pulling
down

Use Shared Source/Drain

An Example: NOR

NOR schematic in Composer

Another Layout: Better?

» Same four
transistors
» But, organized
a little differently

» And sized a
little differently

Another SHared S/D

Two NOR Gates

Rule of Thumb

» Also, P-type is about twice as bad as
N-type
» Has to do with hole mobility vs. electron
mobility
» So, make P-types twice as wide as
N-types to start with
» Unit size for transistors this semester
» N-type 1.2u (contact pitch)
» P-type 2.4u

For example:

» Notice the
difference in
width...

» This roughly
equalizes the
current sourcing
capability of

pull-up and

pull-down stacks
in this gate

Transistor Sizing

» We'll get into the details later...
» Consider a transistor’'s Width and Length
» Current capability is proportional to W/L

» Length is almost always minimum allowed
» Change width to change current capability

Rule of Thumb

» Now multiply each width by n for a series
stack of n transistors.
» Stack of 2, each transistor should be 2x unit
size
» Stack of 3, each transistor should be 3x unit
size

» This is because series connections are
like increasing the L of the device...
» Current is proportional to W/L

And now for %omething completely different...

» A little Verilog...

» Big picture: Two main Hardware
Description Languages (HDL) out there
» VHDL

» Designed by committee on request of the
Department of Defense

» Based on Ada
» Verilog
» Designed by a company for their own use
» Based on C
» Both now have IEEE standards

» Both are in wide use

Data Types

» Possible Values:
» 0: logic 0, false
» 1: logic 1, true
» X: unknown logic value
» Z: High impedance state
» Registers and Nets are the main data
types
» Integer, time, and real are used in
behavioral modeling, and in simulation

» Nets (wires) model physical connections
» They don't hold their value

» They must be driven by a “driver” (l.e. a gate
output or a continuous assignment)

» Their value is Z if not driven
» Wire declarations

» wire d; \\ a scalar wire

» wire [3:0] e; \\ a 4-bit vector wire
» There are lots of types of regs and wires,
but these are the basics...

» Integers:
» integer i, j; \\ declare two scalar ints
» integer K[7:0]; \\ an array of 8 ints

» $time - returns simulation time

» Useful inside $display and $monitor
commands...

» Abstract model of a data storage element
» A reg holds its value from one
assignment to the next
» The value “sticks”
» Register type declarations
»reg a;/l ascalar register
» reg [3:0] b; // a 4-bit vector register

» Verilog memory models are arrays of
regs

» Each element in the memory is

addressed by a single array index

» Memory declarations:
» reg [7:0] imem([0:255]; \\ a 256 word 8-bit
memory
» reg [31:0] dmem[0:1023]; \\ a 1k word
memory with 32-bit words

Number Representations

» Constant numbers can be decimal, hex,
octal, or binary

» Two forms are available:

» Simple decimal numbers: 45, 123, 49039...

» <size>'<base><number>

» baseisd, h,o0,orb

» 4'b1001 // a 4-bit binary number

» 8'h2fe4 // an 8-bit hex number

Relational Operators

» A<B, A>B, A<=B, A>=B, A==B, Al=B
» The result is 0 if the relation is false, 1 if the

relation is true, X if either of the operands
has any X'’s in the number

» A===B, Al==B
» These require an exact match of numbers,
X’s and Z's included

P &&, ||
» Logical not, and, or of expressions
» {a, b[3:0]} - example of concatenation

» Reg [1:0] a,b;
initial begin // only executed once
a=2'h01; //initialize a
b =2'b10; //initialize b
end
always begin // repeated until simulation done
#50 a = ~a; // a inverts every 50 time units
end
always begin // repeated until simulation done
#100 b = ~b; // b inverts every 100 time units
end
» Note timing control: #50 = delay for 50 time
units

Basic Testbench

initial
begin

a[1:0] = 2'b00;

b[1:0] = 2'b00;

cin = 1'b0;
S$display("Starting...");
#20

$display("A = %b, B = %b, ¢ = %b, Sum = %b, Cout = %b", a, b, cin, sum, cout);
if (sum 1= 00) $display("ERROR: Sum should be 00, is %b", sum);

if (cout != 0) $display("ERROR: cout should be 0, is %b", cout);

a=2'b01;

#20

$display("A = %b, B = %b, ¢ = %b, Sum = %b, Cout = %b", a, b, cin, sum, cout);
if (sum 1= 00) $display("ERROR: Sum should be 01, is %b", sum);

if (cout != 0) $display("ERROR: cout should be 0, is %b", cout);

b=2'b01;

#20

$display("A = %b, B = %b, ¢ = %b, Sum = %b, Cout = %b", a, b, cin, sum, cout);
if (sum 1= 00) $display("ERROR: Sum should be 10, is %b", sum);

if (cout != 0) $display("ERROR: cout should be 0, is %b", cout);
$display("...Done");

$finish;

end

Blocki Structures

» Two types:
» always // repeats until simulation is done
begin
end
» initial // executed once at beginning of sim
begin

end

Conditional, For

» If (<expr>) <statement> else <statement>
» else is optional and binds with closest
previous if that lacks an else
» if (index > 0)
if (rega > regh)
result = rega;
else
result = regb;
» For is like C
» for (initial; condition; step)
» for (k=0; k<10; k=k+1)
statement;

Nifty Testbench

reg [1:0] ainarray [0:4]; // define memory arrays to hold input and result
reg [1:0] binarray [0:4];
reg [2:0] resultsarray [0:4];
integer i;
initial begin
$readmemb("ain.txt", ainarray); // read values into arrays from files
$readmemb("bin.txt", binarray);
$readmemb(“results.txt", resultsarray);
a[1:0] = 2'b00; // initialize inputs
b[1:0] = 2'00;
cin=1'0;
$display("Starting...");
#10 Sdisplay("A = %b, B = %b, ¢ = %b, Sum = %b, Cout = %b", a, b, cin, sum, cout);
for (i=0; i<=4; i=i+1) // loop through all values in the memories
begin
. a = ainarray([i; // set the inputs from the memory arrays
b = binarray[i];
#10 $display("A = %b, B = %b, ¢ = %b, Sum = %b, Cout = %b", &, b, cin, sum, cout);
if ({cout,sum} != resultsarray(i])
$display("Error: Sum should be %b, is %b instead", resultsarray[i],sum); // check results array
end
$display("...Done");
$finish;
end

