
v2000.05 HDL Compiler for Verilog Reference Manual
10
Design Compiler Interface 10

This chapter discusses the Design Compiler interface to Synopsys
HDL Compiler for Verilog. It covers the following topics:

• Starting Design Compiler

• Reading In Verilog Source Files

• Optimizing With Design Compiler

• Busing

• Correlating HDL Source Code to Synthesized Logic

• Writing Out Verilog files

• Setting Verilog Write Variables

The Design Analyzer tool provides the graphic interface to the
Synopsys synthesis tools. Design Analyzer reads in, synthesizes, and
writes out Verilog source files, among others, calling Design Compiler
/ 10-1HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
for these functions. When you view a synthesized schematic in Design
Analyzer, you can use the RTL Analyzer tool to see how the Verilog
source code corresponds to its synthesized entities and gates. For
more information, see the RTL Analyzer User Guide.

This chapter describes the commands and variables you use to read
Verilog designs. It also explains how to specify synthesis attributes
and constraints for compilation and how to write out designs in Verilog
format.

Note:
To understand this chapter, you must be familiar with Design
Compiler concepts, especially synthesis attributes and
constraints. For more information, see the Design Compiler
documentation.
/ 10-2HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Starting Design Compiler

Design Compiler has two interfaces: a command-based interface
(dc_shell) and a graphical user interface (Design Analyzer).

Starting the dc_shell Command Interface

Start the Design Compiler command interface by entering the
invocation command dc_shell at your UNIX prompt.

% dc_shell
 Design Analyzer (TM)
 Behavioral Compiler (TM)
 DC Professional (TM)
 DC Expert (TM)

 DC Ultra (TM)
 FPGA Compiler (TM)
 VHDL Compiler (TM)
 HDL Compiler (TM)
 Library Compiler (TM)

Power Compiler (TM)
 Test Compiler (TM)
 Test Compiler Plus (TM)
 CTV-Interface

 ECO Compiler (TM)
 DesignWare Developer (TM)
 DesignTime (TM)
 DesignPower (TM)

 Version 2000.05 -- May 18, 2000
 Copyright (c) 1999-2000 by Synopsys, Inc.
 ALL RIGHTS RESERVED

This program is proprietary and confidential information
of Synopsys, Inc., and may be used and disclosed only as
authorized in a license agreement controlling such use and
disclosure.
Initializing...
/ 10-3HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
When Design Compiler has finished initializing, the command-line
prompt appears.

Initializing...
dc_shell>

Starting Design Analyzer

Start Design Analyzer by entering the invocation command
design_analyzer at your UNIX prompt, in an X windows command
window. As in most UNIX programs, you can use the ampersand (&)
to execute Design Analyzer in the background.

% design_analyzer &

The main Design Analyzer window appears. For complete information
on using Design Analyzer, see the Design Analyzer Reference
Manual.

Design Analyzer also provides access to the dc_shell command
interface, through the Setup menu’s Command Window selection.

The rest of this chapter describes the commands and the menu
selections you use when working with Verilog source files and
designs.
/ 10-4HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Reading In Verilog Source Files

Use the Design Compiler read command to read in Verilog design
files.

dc_shell> read -format verilog { file_1, file_2, file_n }

Use the Design Analyzer File/Read dialog box to read in Verilog
design files.

All of the read command options are described in the Design
Compiler documentation and in the read man page. In the next
section, “Reading Structural Descriptions,” however, we include a
description of the -netlist option for reading structural Verilog files.
You might want to use this option to save time.

Reading Structural Descriptions

To read in a Verilog structural description—that is, one that contains
only module instantiations and no always blocks or continuous
assignments—use the -netlist option with the read command in
dc_shell. When the -netlist option is present, HDL Compiler reads
structural descriptions faster and uses less memory. The syntax is

dc_shell> read -f verilog -netlist my_file.v

Note:
To use the -netlist option with the read command, be sure
your description is structural only. Do not use this option with any
other type of description.

Use the -netlist option only with the read command. It is not
an option for any other command, such as elaborate .
/ 10-5HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Design Compiler Flags and dc_shell Variables

Several dc_shell variables affect how Verilog source files are read.
Set these variables before you read in a Verilog file with the
read -format verilog command or the File -> Read dialog box.
You can set variables interactively or in your .synopsys_dc.setup file.

To list the hdlin_ variables that affect reading in Verilog, enter

dc_shell> list -variables hdl

The following are explanations of the Verilog reading variables:

hdlin_auto_save_templates

If this variable is set to true, Design Compiler saves templates
(designs that use generics) in memory. If this flag is false, it saves
templates only as part of the calling (instantiating) design. For
more information about templates, see “Using Templates—
Naming” on page 3-21 and “template Directive” on page 9-21.
Design Compiler automatically generates names for templates
that are based on the values of the template naming variables
(described later in this chapter).

The default is false.

hdlin_hide_resource_line_numbers

When HDL Compiler infers a synthetic library or a DesignWare
part, the line number in the HDL source is not appended to the
inferred cell’s name if this variable is set to true. (The default
setting of hdlin_hide_resource_line_numbers is false.)
This value makes the results of the Design Compiler compile
command independent of the location of the inferred synthetic
library or DesignWare parts in the HDL source.
/ 10-6HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
To determine the current value of
hdlin_hide_resource_line_numbers , type

dc_shell> list hdlin_hide_resource_line_numbers

hdlin_report_inferred_modules

If this variable is set to true, Design Compiler generates a report
about inferred latches, flip-flops, and three-state and multiplexer
devices. Redirect the report file by entering

dc_shell> read -f verilog my_file.v > my_file.report

suppress_errors

Indicates whether to suppress warning messages when reading
Verilog source files. Warnings are nonfatal error messages. If this
variable is set to true, warnings are not issued; if false, warnings
are issued. This variable has no effect on fatal error messages,
such as syntax errors, that stop the reading process.

The default is false.

You can also use this variable to disable specific warnings: set
suppress_errors to a space-separated string of the error ID
codes you want suppressed. Error ID codes are printed
immediately after warning and error messages. For example, to
suppress the following warning

Warning: Assertion statements are not supported. They are
ignored near symbol "assert" on line 24 (HDL-193).

set the variable to

suppress_errors = "HDL-193"
/ 10-7HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
hlo_resource_allocation

When set to constraint_driven , this variable enables
automatic resource sharing (see “Resource Sharing Methods” on
page 7-11). When it is set to none, each operation in Verilog is
implemented with separate circuitry.

Array Naming Variable

The bus_naming_style variable affects the way Design Compiler
names elements of Verilog arrays.

This variable determines how to name the bits in port, cell, and net
arrays. When a multiple-bit array is read in, Design Compiler converts
the array to a set of individual single-bit names. The value is a string
containing the characters %sand %d, which are replaced by the array
name and bit (element) index, respectively. If the value is

bus_naming_style = "%s.%d"

the third element of an array called X_ARRAY, indexed from 0 to 7, is
represented as X_ARRAY.2.

The default is "%s[%d]" .

To override the default value, set this variable before you issue the
read command.

This variable is part of the io variable group; to list its current value,
enter

dc_shell> list -variables io
/ 10-8HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Template Naming Variables

Templates instantiated with different parameters are different designs
and require unique names. Three variables control the naming
convention for the templates:

template_naming_style = "%s_%p"

This is the master variable for naming a design built from a
template. The %s field is replaced by the name of the original
design, and the %p field is replaced by the names of all the
parameters.

template_parameter_style = "%s%d"

This variable determines how each parameter is named. The %s
field is replaced by the parameter name, and the %d field is
replaced by the value of the parameter.

template_separator_style = "_"

This variable contains a string that separates parameter names.
This variable is used only for templates that have more than one
parameter.

When a design is built from a template, only the parameters you
indicate when you instantiate the parameterized design are used in
the template name. For example, suppose the template ADD has
parameters N, M, and Z. You can build a design where N = 8, M = 6,
and Z is left at its default value. The name assigned to this design is
ADD_N8_M6. If no parameters are listed, the template is built with
default values and the name of the created design is the same as the
name of the template.
/ 10-9HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Building Parameterized Designs

If your design has parameters, you can change the value of the
parameters in a module each time that module is instantiated. When
you change the value, you build a different version of your design.
This type of design is called a parameterized design.

Parameterized designs are read into dc_shell as templates with the
read command, just as other Verilog files are read. These designs
are archived in a design library so they can be built with different
(nondefault) values substituted for the parameters. You can also store
a template in a design library with the analyze command.

If your design contains parameters, you can indicate that the design
should be read in as a template in one of three ways:

• Add the pseudocomment // synopsys template to your code.

• Use the analyze command.

• Set the dc_shell variable hdlin_auto_save_templates =
true .

If you use parameters as constants that never change, do not read
in your design as a template.

One way to build a template into your design is by instantiating it in
your Verilog code. Example 10-1 shows how to do this.
/ 10-10HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 10-1 Instantiating a Parameterized Design in Verilog Code
module param (a,b,c);

input [3:0] a,b;
output [3:0] c;

foo #(4,5,4+6) U1(a,b,c); // instantiate foo

endmodule

In Example 10-1, the Verilog code instantiates the parameterized
design foo, which has three parameters. The first parameter is
assigned the value 4, the second parameter is assigned the value 5,
and the third parameter takes the value 10.

Because module foo is defined outside the scope of module param ,
errors, such as port mismatches and invalid parameter assignments,
are not detected until link time. When Design Compiler links module
param , it searches for template foo in the design library work . If foo
is found, it is automatically built with the specified parameters. Design
Compiler checks that foo has at least three parameters and that the
bit-widths of the ports in foo match the bit-widths of ports a, b, and
c . If template foo is not found, the link fails.

Another way to instantiate a parameterized design is with the
elaborate command in dc_shell. The syntax of the command is

elaborate template_name -parameters parameter_list

You can archive parameterized designs (templates) in design
libraries. To verify that a template is stored in memory, use the
report_design_libwork command.The report_design_lib
command lists templates that reside in the indicated design library.
/ 10-11HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Synthetic Libraries

This section gives only basic information on synthetic libraries. For a
complete explanation of how to use synthetic libraries, see the
DesignWare Components Databook.

A synthetic library contains synthetic cells called operators. Operators
resemble generic logic, as they have no netlist implementation and
are not linked. Operators are visible from report_synlib
standard.sldb . Table 10-1 shows all standard operators and a
description of each.

Table 10-1 Synopsys Standard Operators

Operator Description

ADD_TC_OP Signed adder

ADD_UNS_OP Unsigned adder

EQ_TC_OP Signed equality

EQ_UNS_OP Unsigned equality

GEQ_TC_OP Signed greater than or equal to

GEQ_UNS_OP Unsigned greater than or equal to

GT_TC_OP Signed greater than

GT_UNS_OP Unsigned greater than

LEQ_TC_OP Signed less than or equal to

LEQ_UNS_OP Unsigned less than or equal to

LT_UNS_OP Unsigned less than

LT_TC_OP Signed less than

MULT_TC_OP Signed multiplier
/ 10-12HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
The selector operator, SELECT_OP, functions as a multiplexer but has
a control input for each data input. When the control input for a
corresponding data input is high, that input is passed to the output.

When you issue the compile command, Design Compiler
determines an appropriate implementation for the operators in your
design. Design Compiler implements an operator in three steps:

1. It chooses a module, such as add , and its corresponding
implementation, such as rpl_add . The function of an
implementation is determined by the operator type, such as
ADD_UNS_OP, and the width of the connections to it (the bit-width).

2. It creates a netlist for the implementation and inserts the netlist in
the design.

3. It optimizes the netlist.

For example, HDL Compiler generates an operator called
ADD_UNS_OP_3_4_5 when you read in the following code

z[4:0] = a[2:0] + b[3:0];

One way to implement the ADD_UNS_OPoperator is with a 5-bit ripple
carry adder. This implementation is called rpl_add_n5 .

NE_TC_OP Signed inequality

NE_UNS_OP Unsigned inequality

SELECT_OP Selector

SUB_TC_OP Signed subtracter

SUB_UNS_OP Unsigned subtracter

Table 10-1 Synopsys Standard Operators (continued)

Operator Description
/ 10-13HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
To see a list of modules and their implementations, enter

dc_shell> report_synlib standard.sldb

Optimizing With Design Compiler

After HDL Compiler translates a Verilog description, it passes the
description to Design Compiler for optimization and synthesis. When
you read a Verilog design into Design Compiler, the design is
converted to the Design Compiler internal database format. When
Design Compiler performs logic optimization on a design, it can
restructure all or part of the design. You have control over the degree
of restructuring. You can keep your design’s hierarchy intact, move
modules up or down the design hierarchy, combine modules, or
compress the entire design into one module.

After you read your design into Design Compiler, you can write it out
in a variety of formats, including Verilog. You can convert existing
gate-level netlists, sets of logic equations, or technology-specific
circuits to a Verilog description. You can use the new Verilog
description as documentation for the original design and as a starting
point for reimplementing the design in a new technology. In addition,
you can give the Verilog description to a Verilog simulator to extract
circuit timing information.

This section describes some uses of the compile command in
Design Compiler. For a complete description, refer to the compile
man page.
/ 10-14HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Flattening and Structuring

Design Compiler uses two optimization strategies: flattening and
structuring. Flattening tries to reduce a design’s logical structure to a
set of two-level logic equations. Structuring tries to find the common
factors in the translated design’s set of logic equations.

When a design is flattened, the original structure of its Verilog
description is lost. Flattening is useful when a description is written
at a high level without regard to the use of constructs or resource
allocation. Random control logic often falls into this category. In
general, flattening consolidates logic; it also often speeds up the final
implementation. Not all logic can be flattened: For example, large
adders, XOR networks, and comparators of two variables cannot be
flattened. If you use these elements in a design, place them in
separate modules that will not be flattened.

If you build structure into the Verilog description through user-defined
operators (such as carry-lookahead adders) or resource sharing, do
not flatten the design. You can still use structuring, which attempts to
improve the design’s logical structure without destroying the existing
structure. The Design Compiler defaults of -no_flatten and -
structure are appropriate for almost all Verilog descriptions. For
more information about flattening and structuring a design, see the
Design Compiler User Guide.

Grouping Logic

Design Compiler performs optimization on designs. All constraints
and compile directives are applied at the design level. If you intend
to optimize two pieces of logic differently, they must be in separate
designs.
/ 10-15HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Designs in Design Compiler have a one-to-one correspondence with
modules in the input Verilog description. Functions and operators in
a Verilog module are grouped with that module for optimization. At
times, you might regroup logic in a Verilog description to achieve the
optimization you want. For example, you might want to optimize part
of your design for speed and part for area. You can group the speed-
critical logic and optimize it independently. You can regroup logic with
the group command. For more information on the group command,
see the Design Compiler documentation or the group man page.

Busing

Design Compiler maintains types throughout a design, including
types for buses (vectors). Example 10-2 shows a Verilog design read
into HDL Compiler containing a bit vector that is NOTed into another
bit vector.

Example 10-2 Bit Vector in Verilog
module test_busing_1 (a, b);
 input [3:0] a;
 output [3:0] b;

 assign b = ~a;

endmodule

Example 10-3 shows the same description written out by HDL
Compiler. The description contains the original Verilog types of ports.
Internal nets do not maintain their original bus types. Also, the NOT
operation is instantiated as single bits.

Example 10-3 Bit Blasting
module test_busing_2 (a, b);
input [3:0] a;
/ 10-16HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
output [3:0] b;
 assign b[0] = ~a[0];
 assign b[1] = ~a[1];
 assign b[2] = ~a[2];
 assign b[3] = ~a[3];
endmodule

Correlating HDL Source Code to Synthesized Logic

By using RTL Analyzer, you can display the text in your source HDL
code that corresponds to gates in the synthesized design. For more
information, see the RTL Analyzer User Guide.

Writing Out Verilog Files

To write out Verilog design files, use the File/Write dialog box or the
write command.

dc_shell> write -format verilog -output my_file.verilog

The write -format verilog command is valid whether or not
the current design originated as a Verilog source file. Any design,
regardless of initial format (equation, netlist, and so on), can be written
out as a Verilog design.

For more information about the write command, see the Design
Compiler documentation.
/ 10-17HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Setting Verilog Write Variables

Several dc_shell variables affect how designs are written out as
Verilog files. To override the default settings, set these variables
before you write out the design with the write -format verilog
command or the File/Write dialog box. You can set the variables
interactively or set them in your .synopsys_dc.setup file.

To list the current values of the variables that affect writing out Verilog
(verilogout_ variables), enter

dc_shell> list -variables hdl

The verilogout_ variables are

verilogout_equation

When this is set to true, Verilog assign statements (Boolean
equations) are written out for combinational gates, instead of for
gate instantiations. Flip-flops and three-state cells are left
instantiated. The default is false.

verilogout_higher_designs_first

When this is set to true, Verilog modules are ordered so that
higher-level designs come before lower-level designs, as defined
by the design hierarchy. The default is false.
/ 10-18HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
verilogout_no_tri

When this is set to true, three-state nets are declared as Verilog
wire instead of tri . This variable eliminates assign primitives
and tran gates in your Verilog output, by connecting an output
port directly to a component instantiation. The default is false.

verilogout_single_bit

When this variable is set to true, vectored ports (or ports that use
record types) are bit-blasted; if a port’s bit vector is Nbits wide, it
is written out to the Verilog file as Nseparate single-bit ports. When
it is set to false, all ports are written out with their original data
types. The default is true.

verilogout_time_scale

This variable determines the ratio of library time to simulator time
and is used only by the write_timing command. The default
is 1.0.
/ 10-19HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
/ 10-20HOME CONTENTS INDEX

	Design Compiler Interface
	Starting Design Compiler
	Starting the dc_shell Command Interface
	Starting Design Analyzer

	Reading In Verilog Source Files
	Reading Structural Descriptions
	Design Compiler Flags and dc_shell Variables
	Array Naming Variable
	Template Naming Variables
	Building Parameterized Designs
	Synthetic Libraries

	Optimizing With Design Compiler
	Flattening and Structuring
	Grouping Logic

	Busing
	Correlating HDL Source Code to Synthesized Logic
	Writing Out Verilog Files
	Setting Verilog Write Variables

