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Writing Circuit Descriptions 8

You can write many logically equivalent descriptions in Verilog to
describe a circuit design. However, some descriptions are more
efficient than others in terms of the synthesized circuit’s area and
speed. The way you write your Verilog source code can affect
synthesis.

This chapter describes how to write a Verilog description to ensure
an efficient implementation. Topics include

• How Statements Are Mapped to Logic

• Don’t Care Inference

• Propagating Constants

• Synthesis Issues

• Designing for Overall Efficiency
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Here are some general guidelines for writing efficient circuit
descriptions:

• Restructure a design that makes repeated use of several large
components, to minimize the number of instantiations.

• In a design that needs some, but not all, of its variables or signals
stored during operation, minimize the number of latches or flip-
flops required.

• Consider collapsing hierarchy for more-efficient synthesis.

How Statements Are Mapped to Logic

Verilog descriptions are mapped to logic by the creation of blocks of
combinational circuits and storage elements. A statement or an
operator in a Verilog function can represent a block of combinational
logic or, in some cases, a latch or register.

When mapping complex operations, such as adders and subtracters,
Design Compiler inserts arithmetic operators into the design as levels
of hierarchy.

The description fragment shown in Example 8-1 represents four logic
blocks:

• A comparator that compares the value of b with 10

• An adder that has a and b as inputs

• An adder that has a and 10  as inputs

• A multiplexer (implied by the if statement) that controls the final
value of y
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Example 8-1 Four Logic Blocks
if (b < 10)

y = a + b;
else

y = a + 10;

The logic blocks created by HDL Compiler are custom-built for their
environment. That is, if a and b are 4-bit quantities, a 4-bit adder is
built. If a and b are 9-bit quantities, a 9-bit adder is built. Because
HDL Compiler incorporates a large set of these customized logic
blocks, it can translate most Verilog statements and operators.

Note:
If the inputs to an adder or other operator resources are 4 bits or
less, the hierarchy is automatically collapsed during the execution
of the compile  command.

Design Structure

HDL Compiler provides significant control over the preoptimization
structure, or organization of components, in your design. Whether or
not your design structure is preserved after optimization depends on
the Design Compiler options you select. Design Compiler
automatically chooses the best structure for your design. You can
view the preoptimized structure in the Design Analyzer window and
then correlate it back to the original HDL source code.

You control structure by the way you order assignment statements
and the way you use variables. Each Verilog assignment statement
implies a piece of logic. The following examples illustrate two possible
descriptions of an adder’s carry chain. Example 8-2 results in a ripple
carry implementation, as in Figure 8-1. Example 8-3 has more
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structure (gates), because the HDL source includes temporary
registers, and it results in a carry-lookahead implementation, as in
Figure 8-2.

Example 8-2 Ripple Carry Chain
// a is the addend
// b is the augend
// c is the carry
// cin is the carry in
c0 = (a0 & b0) |
     (a0 | b0) & cin;
c1 = (a1 & b1) |
     (a1 | b1) & c0;

Figure 8-1 Ripple Carry Chain Implementation

Example 8-3 Carry-Lookahead Chain
// p’s are propagate
// g’s are generate
p0 = a0 | b0;
g0 = a0 & b0;
p1 = a1 | b1;
g1 = a1 & b1;
c0 = g0 | p0 & cin;
c1 = g1 | p1 & g0 |
         p1 & p0 & cin;

a0cin a1 b1b0

c0 c1
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Figure 8-2 Carry-Lookahead Chain Implementation

You can also use parentheses to control the structure of complex
components in a design. HDL Compiler uses parentheses to define
logic groupings. Example 8-4 and Example 8-5 illustrate two
groupings of adders. The circuit diagrams show how grouping the
logic affects the way the circuit is synthesized. When Example 8-4 is
parsed, (a + b)  is grouped together by default, then c  and d are
added one at a time.

Example 8-4 4-Input Adder
z = a + b + c + d;

a0 b0

c1c0

cin a1 b1

+

+

+

a b c d

z
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Example 8-5 4-Input Adder With Parentheses
z = (a + b) + (c + d);

Design Compiler considers other factors, such as signal arrival times,
to determine which implementation is best for your design.

Note:
Manual or automatic resource sharing can also affect the structure
of a design.

Using Design Knowledge

In many circumstances, you can improve the quality of synthesized
circuits by better describing your high-level knowledge of a circuit.
HDL Compiler cannot always derive details of a circuit architecture.
Any additional architectural information you can provide to HDL
Compiler can result in a more efficient circuit.

+

+

z

+

a b c d
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Optimizing Arithmetic Expressions

Design Compiler uses the properties of arithmetic operators (such
as the associative and commutative properties of addition) to
rearrange an expression so that it results in an optimized
implementation. You can also use arithmetic properties to control the
choice of implementation for an expression. Three forms of arithmetic
optimization are discussed in this section:

• Merging cascaded adders with a carry

• Arranging expression trees for minimum delay

• Sharing common subexpressions

Merging Cascaded Adders With a Carry

If your design has two cascaded adders and one has a bit input, HDL
Compiler replaces the two adders with a simple adder that has a carry
input. Example 8-6 shows two expressions in which cin  is a bit
variable connected to a carry input. Each expression results in the
same implementation.

To infer cascaded adders with a carry input, set the variable to true
(the default is false):

hdlin_use_cin = true
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Example 8-6 Cascaded Adders With Carry Input
z <= a + b + cin;

t <= a + b;
z <= t + cin;

Arranging Expression Trees for Minimum Delay

If your goal is to speed up your design, arithmetic optimization can
minimize the delay through an expression tree by rearranging the
sequence of the operations. Consider the statement in Example 8-7.

Example 8-7 Simple Arithmetic Expression
Z <= A + B + C + D;

The parser performs each addition in order, as though parentheses
were placed as shown, and constructs the expression tree shown in
Figure 8-3:

Z <= ((A + B) + C) + D;

a b

cin cin

a
b

z z
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Figure 8-3 Default Expression Tree

Considering Signal Arrival Times

To determine the minimum delay through an expression tree, Design
Compiler considers the arrival times of each signal in the expression.
If the arrival times of each signal are the same, the length of the critical
path of the expression in Example 8-7 equals three adder delays. The
critical path delay can be reduced to two adder delays if you add
parentheses to the first statement as shown.

Z <= (A + B) + (C + D);

The parser evaluates the expressions in parentheses first and
constructs a balanced adder tree, as shown in Figure 8-4.

A B

C

D

Z
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Figure 8-4 Balanced Adder Tree (Same Arrival Times for All Signals)

Suppose signals B, C, and D arrive at the same time and signal A
arrives last. The expression tree that produces the minimum delay is
shown in Figure 8-5.

Figure 8-5 Expression Tree With Minimum Delay (Signal A Arrives Last)

Using Parentheses

You can use parentheses in expressions to exercise more control over
the way expression trees are constructed. Parentheses are regarded
as user directives that force an expression tree to use the groupings
inside the parentheses. The expression tree cannot be rearranged to
violate these groupings. If you are not sure about the best expression
tree for an arithmetic expression, leave the expression ungrouped.
Design Compiler can reconstruct the expression for minimum delay.

A B C D

Z

A

B C

D

Z
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To illustrate the effect of parentheses on the construction of an
expression tree, consider Example 8-8.

Example 8-8 Parentheses in an Arithmetic Expression
Q <= ((A + (B + C)) + D + E) + F;

The parentheses in the expression in Example 8-8 define the following
subexpressions, whose numbers correspond to those in Figure 8-6:

1 (B + C)
2 (A + (B + C))
3 ((A + (B + C)) + D + E)

These subexpressions must be preserved in the expression tree. The
default expression tree for Example 8-8 is shown in Figure 8-6.
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Figure 8-6 Expression Tree With Subexpressions Dictated by Parentheses

Design Compiler restructures the expression tree in Figure 8-6 to
minimize the delay and still preserve the subexpressions dictated by
the parentheses. If all signals arrive at the same time, the result is
the expression tree shown in Figure 8-7.

Figure 8-7 Restructured Expression Tree With Subexpressions Preserved
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Design Compiler automatically optimizes expression trees to produce
minimum delay. If you do not want HDL Compiler to optimize the
expression trees in your design, enter the following command:

dc_shell> set_minimize_tree_delay false

The set_minimize_tree_delay command applies to the current
design. The default for the command is true.

Considering Overflow Characteristics

When Design Compiler performs arithmetic optimization, it considers
how to handle the overflow from carry bits during addition. The
optimized structure of an expression tree is affected by the bit-widths
you declare for storing intermediate results. For example, suppose
you write an expression that adds two 4-bit numbers and stores the
result in a 4-bit register. If the result of the addition overflows the 4-
bit output, the most significant bits are truncated. Example 8-9 shows
how HDL Compiler handles overflow characteristics.

Example 8-9 Adding Numbers of Different Bit-Widths
t <= a + b;  // a and b are 4-bit numbers
z <= t + c;  // c is a 6-bit number

In Example 8-9, three variables are added (a + b + c ). A temporary
variable, t , holds the intermediate result of a + b . Suppose t  is
declared as a 4-bit variable so the overflow bits from the addition of
a + b are truncated. The parser determines the default structure of
the expression tree, which is shown in Figure 8-8.
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Figure 8-8 Default Expression Tree With 4-Bit Temporary Variable

Now suppose the addition is performed without a temporary variable
(z = a + b + c ). HDL Compiler determines that five bits are needed
to store the intermediate result of the addition, so no overflow
condition exists. The results of the final addition might be different
from the first case, where a 4-bit temporary variable is declared that
truncates the result of the intermediate addition. Therefore, these two
expression trees do not always yield the same result. The expression
tree for the second case is shown in Figure 8-9.

Figure 8-9 Expression Tree With 5-Bit Intermediate Result

Now suppose the expression tree is optimized for delay and that signal
a arrives late. The tree is restructured so that b and c are added first.
Because c  is declared as a 6-bit number, Design Compiler

a[4] b[4]

c[6]

z[6]

t[4]

a[4] b[4]

c[6]

z[6]

[5]
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determines that the intermediate result must be stored in a 6-bit
variable. The expression tree for this case, where signal a arrives
late, is shown in Figure 8-10. Note how this tree differs from the
expression tree in Figure 8-8.

Figure 8-10 Expression Tree for Late-Arriving Signal

Sharing Common Subexpressions

Subexpressions consist of two or more variables in an expression. If
the same subexpression appears in more than one equation, you
might want to share these operations to reduce the area of your circuit.
You can force common subexpressions to be shared by declaring a
temporary variable to store the subexpression, then use the
temporary variable wherever you want to repeat the subexpression.
Example 8-10 shows a group of simple additions that use the common
subexpression (a + b ).

Example 8-10 Simple Additions With a Common Subexpression
temp <= a + b;
x <= temp;
y <= temp + c;

a[4]

b[4] c[6]

z[6]

[6]
/ 8-15HOME CONTENTS INDEX



v2000.05 HDL Compiler for Verilog Reference Manual
Instead of manually forcing common subexpressions to be shared,
you can let Design Compiler automatically determine whether sharing
common subexpressions improves your circuit. You do not need to
declare a temporary variable to hold the common subexpression in
this case.

In some cases, sharing common subexpressions results in more
adders being built. Consider Example 8-11, where A + Bis a common
subexpression.

Example 8-11 Sharing Common Subexpressions
if cond1

Y <= A + B;
else

Y <= C + D;
end;
if cond2

Z <= E + F;
else

Z <= A + B;
end;

If the common subexpression A + B  is shared, three adders are
needed to implement this section of code:

(A + B)
(C + D)
(E + F)

If the common subexpression is not shared, only two adders are
needed: one to implement the additions A + B and C + Dand one
to implement the additions E + F  and A + B .
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Design Compiler analyzes common subexpressions during the
resource sharing phase of the compile  command and considers
area costs and timing characteristics. To turn off the sharing of
common subexpressions for the current design, enter the following
command:

dc_shell> set_share_cse false

The default is true.

The HDL Compiler parser does not identify common subexpressions
unless you use parentheses or write them in the same order. For
example, the two equations in Example 8-12 use the common
subexpression A + B .

Example 8-12 Unidentified Common Subexpressions
Y = A + B + C;
Z = D + A + B;

The parser does not recognize A + Bas a common subexpression,
because it parses the second equation as (D + A) + B . You can
force the parser to recognize the common subexpression by rewriting
the second assignment  statement as

Z <= A + B + D;

or

Z <= D + (A + B);

Note:
You do not have to rewrite the assignment statement, because
Design Compiler recognizes common subexpressions
automatically.
/ 8-17HOME CONTENTS INDEX



v2000.05 HDL Compiler for Verilog Reference Manual
Using Operator Bit-Width Efficiently

You can improve circuits by using operators more carefully. In
Example 8-13, the adder sums the 8-bit value of a with the lower 4
bits of temp . Although temp is declared as an 8-bit value, the upper
4 bits of temp  are always 0, so only the lower 4 bits of temp  are
needed for the addition.

You can simplify the addition by changing temp to temp [3:0] , as
shown in Example 8-13. Now, instead of using eight full adders to
perform the addition, four full adders are used for the lower 4 bits and
four half adders are used for the upper 4 bits. This yields a significant
savings in circuit area.

Example 8-13 More Efficient Use of Operators
module all (a,b,y);
input  [7:0] a,b;
output  [8:0] y;
function  [8:0] add_lt_10;
input  [7:0] a,b;
reg  [7:0] temp;

begin
if  (b < 10)

temp = b;
else

temp = 10;
add_lt_10 = a + temp [3:0]; // use [3:0] for temp

end
endfunction
assign y = add_lt_10(a,b);
endmodule
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Using State Information

When you build finite state machines, you can often specify a constant
value of a signal in a particular state. You can write your Verilog
description so that Design Compiler produces a more efficient circuit.

Example 8-14 shows the Verilog description of a simple finite state
machine.

Example 8-14 A Simple Finite State Machine
module machine (x, clock, current_state, z);

input   x, clock;
output [1:0] current_state;
output  z;

reg [1:0]  current_state;
reg     z;
/* Redeclared as reg so they can be assigned to in always
statements. By default, ports are wires and cannot be
assigned to in ’always’
*/
reg [1:0] next_state;
reg previous_z;

parameter [1:0] set0  = 0,
hold0 = 1,
set1  = 2;

always @ (x or current_state) begin
    case (current_state)       //synopsys full_case

/* declared full_case to avoid extraneous latches */
set0:
    begin
    z = 0 ;       //set z to 0
    next_state = hold0;
    end
hold0:
    begin
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    z = previous_z;          //hold value of z
    if (x == 0)

next_state = hold0;
    else

next_state = set1;
    end
set1:
    begin
    z = 1;                   //set z to 1
    next_state = set0;
    end

    endcase
end
always @ (posedge clock) begin
    current_state = next_state;
    previous_z    = z;
end
endmodule

In the state hold0 , the output z  retains its value from the previous
state. To synthesize this circuit, a flip-flop is inserted to hold the state
previous_z . However, you can make some assertions about the
value of z . In the state hold0 , the value of z  is always 0. This can
be deduced from the fact that the state hold0  is entered only from
the state set0 , where z  is always assigned the value 0.

Example 8-15 shows how the Verilog description can be changed to
use this assertion, resulting in a simpler circuit (because the flip-flop
for previous_z is not required). The changed line is shown in bold.
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Example 8-15 Better Implementation of a Finite State Machine
module machine (x, clock, current_state, z);

input   x, clock;
output [1:0]current_state;
output  z;

reg [1:0] current_state;
reg     z;
/* Redeclared as reg so they can be assigned to in always
statements. By default, ports are wires and cannot be
assigned to in ’always’
*/
reg [1:0] next_state;

parameter [1:0] set0  = 0,
hold0 = 1,
set1  = 2;

always @ (x or current_state) begin
    case (current_state) //synopsys full_case

/* declared full_case to avoid extraneous latches */
set0:
    begin
    z = 0 ; //set z to 0
    next_state = hold0;
    end
hold0:
    begin

z = 0; //hold z at 0
    if (x == 0)

next_state = hold0;
    else

next_state = set1;
    end
set1:
    begin
    z = 1;         //set z to 1
    next_state = set0;
    end

    endcase
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end
always @ (posedge clock) begin
    current_state = next_state;
end
endmodule

Describing State Machines

You can use an implicit state style or an explicit state style to describe
a state machine. In the implicit state style, a clock edge (negedge or
posedge) signals a transition in the circuit from one state to another.
In the explicit state style, you use a constant declaration to assign a
value to all states. Each state and its transition to the next state are
defined under the case  statement. Use the implicit state style to
describe a single flow of control through a circuit (where each state
in the state machine can be reached only from one other state). Use
the explicit state style to describe operations such as synchronous
resets.

Example 8-16 shows a description of a circuit that sums data over
three clock cycles. The circuit has a single flow of control, so the
implicit style is preferable.
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Example 8-16 Summing Three Cycles of Data in the Implicit State Style
(Preferred)

module sum3 ( data, clk, total );
input [7:0] data;
input clk;
output [7:0] total;

reg total;

always
begin
 @ (posedge clk)
          total = data;
 @ (posedge clk)
          total = total + data;
 @ (posedge clk)
          total = total + data;
end
endmodule

Note:
With the implicit state style, you must use the same clock phase
(either posedge or negedge) for each event expression. Implicit
states can be updated only if they are controlled by a single clock
phase.

Example 8-17 shows a description of the same circuit in the explicit
state style. This circuit description requires more lines of code than
Example 8-16 does, although HDL Compiler synthesizes the same
circuit for both descriptions.
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Example 8-17 Summing Three Cycles of Data in the Explicit State Style (Not
Advisable)

module sum3 ( data, clk, total );
input [7:0] data;
input clk;
output [7:0] total;

reg total;
reg [1:0] state;

parameter S0 = 0, S1 = 1, S2 = 2;

always @ (posedge clk)
begin
   case (state)
   S0: begin
          total = data;
          state = S1;
       end
   S1: begin
          total = total + data;
          state = S2;
       end
   default : begin
          total = total + data;
          state = S0;
       end
   endcase
end
endmodule

Example 8-18 shows a description of the same circuit with a
synchronous reset added. This example is coded in the explicit state
style. Notice that the reset operation is addressed once before the
case  statement.
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Example 8-18 Synchronous Reset—Explicit State Style (Preferred)
module SUM3 ( data, clk, total, reset );
input [7:0] data;
input clk, reset;
output [7:0] total;

reg total;
reg [1:0] state;

parameter S0 = 0, S1 = 1, S2 = 2;

always @ (posedge clk)
begin
   if (reset)
      state = S0;
   else
      case (state)
      S0: begin
             total = data;
             state = S1;
          end
      S1: begin
             total = total + data;
             state = S2;
          end
      default : begin
             total = total + data;
             state = S0;
          end
      endcase;
end
endmodule

Example 8-19 shows how to describe the same function in the implicit
state style. This style is not as efficient for describing synchronous
resets. In this case, the reset operation has to be addressed for every
always @  statement.
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Example 8-19 Synchronous Reset—Implicit State Style (Not Advisable)
module SUM3 ( data, clk, total, reset );
input [7:0] data;
input clk, reset;
output [7:0] total;

reg total;

always
begin: reset_label

@ (posedge clk)
if (reset)

begin
total = 8’b0;
disable reset_label;

end
else

total = data;

@ (posedge clk)
if (reset)

begin
total = 8’b0;
disable reset_label;

end
else

total = total + data;

@ (posedge clk)
if (reset)

begin
total = 8’b0;
disable reset_label;

end
else

total = total + data;
end

endmodule
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Minimizing Registers

In an always block that is triggered by a clock edge, every variable
that has a value assigned has its value held in a flip-flop.

Organize your Verilog description so you build only as many registers
as you need. Example 8-20 shows a description where extra registers
are implied.

Example 8-20 Inefficient Circuit Description With Six Implied Registers
module count (clock, reset, and_bits, or_bits, xor_bits);
input clock, reset;
output and_bits, or_bits, xor_bits;
reg and_bits, or_bits, xor_bits;

reg [2:0] count;

always @(posedge clock) begin
if (reset)
    count = 0;
else
    count = count + 1;

and_bits = & count;
or_bits  = | count;
xor_bits = ^ count;

end
endmodule

This description implies the use of six flip-flops: three to hold the
values of count  and one each to hold and_bits , or_bits , and
xor_bits . However, the values of the outputs and_bits , or_bits ,
and xor_bits depend solely on the value of count . Because count
is registered, there is no reason to register the three outputs. The
synthesized circuit is shown in Figure 8-11.
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Figure 8-11 Synthesized Circuit With Six Implied Registers

To avoid implying extra registers, you can assign the outputs from
within an asynchronous always  block. Example 8-21 shows the
same logic described with two always blocks, one synchronous and
one asynchronous, which separate registered or sequential logic from
combinational logic. This technique is useful for describing finite state
machines. Signal assignments in the synchronous always block are
registered. Signal assignments in the asynchronous always  block
are not. Therefore, this version of the design uses three fewer flip-
flops than the version in Example 8-20.
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Example 8-21 Circuit With Three Implied Registers
module count (clock, reset, and_bits, or_bits, xor_bits);
input clock, reset;
output and_bits, or_bits, xor_bits;
reg and_bits, or_bits, xor_bits;

reg [2:0] count;

always @(posedge clock) begin//synchronous
if (reset)

count = 0;
else

count = count + 1;
end
always @(count) begin//asynchronous

and_bits = & count;
or_bits  = | count;
xor_bits = ^ count;

end
endmodule

The more efficient version of the circuit is shown in Figure 8-12.

Figure 8-12 Synthesized Circuit With Three Implied Registers
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Separating Sequential and Combinational Assignments

To compute values synchronously and store them in flip-flops, set up
an always block with a signal edge trigger. To let other values change
asynchronously, make a separate always block with no signal edge
trigger. Put the assignments you want clocked in the always  block
with the signal edge trigger and the other assignments in the other
always block. This technique is used for creating Mealy machines,
such as the one in Example 8-22. Note that out  changes
asynchronously with in1  or in2 .
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Example 8-22 Mealy Machine
module mealy (in1, in2, clk, reset, out);

input in1, in2, clk, reset;
output out;
reg current_state, next_state, out;

always @(posedge clk or negedge reset)
// state vector flip-flops (sequential)

if (!reset)
current_state = 0;

else
current_state = next_state;

always @(in1 or in2 or current_state)
// output and state vector decode (combinational)

case (current_state)
0: begin

next_state = 1;
out = 1’b0;

   end
1: if (in1) begin

next_state = 1’b0;
out = in2;

end
else begin

next_state = 1’b1;
out = !in2;

end
endcase

endmodule

The schematic for this circuit is shown in Figure 8-13.
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Figure 8-13 Mealy Machine Schematic
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Design Compiler Optimization

After HDL Compiler translates your design description, you then use
Design Compiler to optimize the HDL description and synthesize the
design.

Chapter 10, “Design Compiler Interface,” describes how to use Design
Compiler to read HDL descriptions through HDL Compiler. For a
complete description of the Design Compiler compile  command,
see the Design Compiler documentation. For the syntax of Design
Compiler commands, see the Synopsys man pages.

The Design Compiler commands set_flatten  and
set_structure set flatten and structure attributes for the compiler.
Flattening reduces a design’s logical structure to a set of two-level
(and/or) logic equations. Structuring attempts to find common factors
in the translated design’s set of logic equations.

Don’t Care Inference

You can greatly reduce circuit area by using don’t care values. To use
a don’t care value in your design, create an enumerated type for the
don’t care value.

Don’t care values are best used as default assignments to variables.
You can assign a don’t care value to a variable at the beginning of a
module, in the default section of a case  statement, or in the else
section of an if  statement.

To take advantage of don’t care values during synthesis, use the
Design Compiler command set_flatten . For information on
embedding this command in your description, see “Embedding
Constraints and Attributes” on page 9-22.
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Limitations of Using Don’t Care Values

In some cases, using don’t care values as default assignments can
cause these problems:

• Don’t care values create a greater potential for mismatches
between simulation and synthesis.

• Defaults for variables can hide mistakes in the Verilog code.

For example, you might assign a default don’t care value to VAR.
If you later assign a value to VAR, expecting VARto be a don’t care
value, you might have overlooked an intervening condition under
which VAR is assigned.

Therefore, when you assign a value to a variable (or signal) that
contains a don’t care value, make sure that the variable (or signal) is
really a don’t care value under those conditions. Note that assignment
to an x  is interpreted as a don’t care value.

Differences Between Simulation and Synthesis

Don’t care values are treated differently in simulation and in synthesis,
and there can be a mismatch between the two. To a simulator, a don’t
care is a distinct value, different from a 1 or a 0. In synthesis, however,
a don’t care becomes a 0 or a 1 (and hardware is built that treats the
don’t care value as either a 0 or a 1).

Whenever a comparison is made with a variable whose value is don’t
care, simulation and synthesis can differ. Therefore, the safest way
to use don’t care values is to

• Assign don’t care values only to output ports

• Make sure that the design never reads output ports
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These guidelines guarantee that when you simulate within the scope
of the design, the only difference between simulation and synthesis
occurs when the simulator indicates that an output is a don’t care
value.

If you use don’t care values internally to a design, expressions Design
Compiler compares with don’t care values (X) are synthesized as
though values are not equal to X.

For example,

if A == ’X’ then
...

is synthesized as

if FALSE then
...

If you use expressions comparing values with X, pre-synthesis and
post-synthesis simulation results might not agree. For this reason,
HDL Compiler issues the following warning:

Warning: A partial don’t-care value was read in routine test
line 24 in file ’test.v’  This may cause simulation to
disagree with synthesis. (HDL-171)

Propagating Constants

Constant propagation is the compile-time evaluation of expressions
that contain constants. HDL Compiler uses constant propagation to
reduce the amount of hardware required to implement complex
operators. Therefore, when you know that a variable is a constant,
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specify it as a constant. For example, a + operator with a constant of
1 as one of its arguments causes an incrementer, rather than a
general adder, to be built. If both arguments of an operator are
constants, no hardware is constructed, because HDL Compiler can
calculate the expression’s value and insert it directly into the circuit.

Comparators and shifters also benefit from constant propagation.
When you shift a vector by a constant, the implementation requires
only a reordering (rewiring) of bits, so no logic is needed.

Synthesis Issues

The next two sections describe feedback paths and latches that result
from ambiguities insignal or variable assignments, and asynchronous
behavior.

Feedback Paths and Latches

Sometimes your Verilog source can imply combinational feedback
paths or latches in synthesized logic. This happens when a signal or
a variable in a combinational logic block (an always block without a
posedge  or negedge clock  statement) is not fully specified. A
variable or signal is fully specified when it is assigned under all
possible conditions.

Synthesizing Asynchronous Designs

In a synchronous design, all registers use the same clock signal. That
clock signal must be a primary input to the design. A synchronous
design has no combinational feedback paths, one-shots, or delay
lines. Synchronous designs perform the same function regardless of
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the clock rate, as long as the rate is slow enough to allow signals to
propagate all the way through the combinational logic between
registers.

Synopsys synthesis tools offer limited support for asynchronous
designs. The most common way to produce asynchronous logic in
Verilog is to use gated clocks on registers. If you use asynchronous
design techniques, synthesis and simulation results might not agree.
Because Design Compiler does not issue warning messages for
asynchronous designs, you are responsible for verifying the
correctness of your circuit.

The following examples show two approaches to the same counter
design: Example 8-23 is synchronous, and Example 8-24 is
asynchronous.

Example 8-23 Fully Synchronous Counter Design
module COUNT (RESET, ENABLE, CLK, Z);

input RESET, ENABLE, CLK;
output [2:0] Z;
reg [2:0] Z;

always @ (posedge CLK) begin
if (RESET) begin

Z = 1’b0;
end else if (ENABLE == 1’b1) begin

if (Z == 3’d7) begin
Z = 1’b0;

end else begin
Z = Z + 1’b1;

end
end

end

endmodule
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Example 8-24 Asynchronous Counter Design
module COUNT (RESET, ENABLE, CLK, Z);

input RESET, ENABLE, CLK;
output [2:0] Z;
reg [2:0] Z;
wire GATED_CLK = CLK & ENABLE;

always @ (posedge GATED_CLK or posedge RESET) begin
if (RESET) begin

Z = 1’b0;
end else begin

if (Z == 3’d7) begin
Z = 1’b0;

end else begin
Z = Z + 1’b1;

end
end

end
endmodule

The asynchronous version of the design uses two asynchronous
design techniques. The first technique is to enable the counter by
ANDing the clock with the enable line. The second technique is to
use an asynchronous reset. These techniques work if the proper
timing relationships exist between the asynchronous control lines
(ENABLEand RESET) and the clock (CLK) and if the control lines are
glitch-free.

Some forms of asynchronous behavior are not supported. For
example, you might expect the following circuit description of a
one-shot signal generator to generate three inverters (an inverting
delay line) and a NAND gate.

X = A ~& (~(~(~ A)));
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However, this circuit description is optimized to

X = A ~& (~ A);
then

X = 1;

Designing for Overall Efficiency

The efficiency of a synthesized design depends primarily on how you
describe its component structure. The next two sections explain how
to describe random logic and how to share complex operators.

Describing Random Logic

You can describe random logic with many different shorthand Verilog
expressions. HDL Compiler often generates the same optimized logic
for equivalent expressions, so your description style for random logic
does not affect the efficiency of the circuit. Example 8-25 shows four
groups of statements that are equivalent. (Assume that a, b, and c
are 4-bit variables.) HDL Compiler creates the same optimized logic
in all four cases.

Example 8-25 Equivalent Statements
c = a & b;

c[3:0] = a[3:0] & b[3:0];

c[3] = a[3] & b[3];
c[2] = a[2] & b[2];
c[1] = a[1] & b[1];
c[0] = a[0] & b[0];

for (i = 0; i <= 3; i = i + 1)
    c[i] = a[i] & b[i];
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Sharing Complex Operators

You can use automatic resource sharing to share most operators.
However, some complex operators can be shared only if you rewrite
your source description more efficiently. These operators are

• Noncomputable array index

• Function call

• Shifter

Example 8-26 shows a circuit description that creates more functional
units than necessary when automatic resource sharing is turned off.
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Example 8-26 Inefficient Circuit Description With Two Array Indexes
module rs(a, i, j, c, y, z);

 input [7:0] a;
 input [2:0] i,j;
 input c;

 output y, z;
 reg y, z;

 always @(a or i or j or c)
begin
z=0;
y=0;
if(c)

begin
z = a[i];
end

else
begin
y = a[j];
end

end
endmodule

The schematic for this code description is shown in Figure 8-14.
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Figure 8-14 Circuit Schematic With Two Array Indexes

You can rewrite the circuit description in Example 8-26 so that it
contains only one array index, as shown in Example 8-27.
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Example 8-27 Efficient Circuit Description With One Array Index
module rs1(a, i, j, c, y, z);

input [7:0] a;
input [2:0] i,j;
input c;

output y, z;
reg y, z;

reg [3:0] index;
reg temp;

always @(a or i or j or c) begin
if(c)

begin
index = i;
end

else
begin
index = j;
end

temp = a[index];

z=0;
y=0;
if(c)

begin
z = temp;
end

else
begin
y = temp;
end

end

endmodule
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The circuit description in Example 8-27 is more efficient than the one
in Example 8-26 because it uses a temporary register, temp , to store
the value evaluated in the if statement. The resulting schematic is
shown in Figure 8-15.

Figure 8-15 Circuit Schematic With One Array Index
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Consider resource sharing whenever you use a complex operation
more than once. Complex operations include adders, multipliers,
shifters (only when shifting by a variable amount), comparators, and
most user-defined functions. If you use automatic resource allocation,
adders, subtracters, and comparators can be shared. Chapter 7,
“Resource Sharing,” covers these topics in detail.
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