
CS 373 Lecture 9: Disjoint Sets Fall 2002

E pluribus unum (Out of many, one)

— Official motto of the United States of America

John: Who’s your daddy? C’mon, you know who your daddy is! Who’s
your daddy? D’Argo, tell him who his daddy is!”

D’Argo: I’m your daddy.

— Farscape, “Thanks for Sharing” (June 15, 2001)

9 Data Structures for Disjoint Sets (October 10 and 15)

In this lecture, we describe some methods for maintaining a collection of disjoint sets. Each set is
represented as a pointer-based data structure, with one node per element. Each set has a ‘leader’
element, which uniquely identifies the set. (Since the sets are always disjoint, the same object
cannot be the leader of more than one set.) We want to support the following operations.

• MakeSet(x): Create a new set {x} containing the single element x. The element x must
not appear in any other set in our collection. The leader of the new set is obviously x.

• Find(x): Find (the leader of) the set containing x.

• Union(A,B): Replace two sets A and B in our collection with their union A ∪ B. For
example, Union(A,MakeSet(x)) adds a new element x to an existing set A. The sets A
and B are specified by arbitrary elements, so Union(x, y) has exactly the same behavior as
Union(Find(x),Find(y)).

Disjoint set data structures have lots of applications. For instance, Kruskal’s minimum spanning
tree algorithm relies on such a data structure to maintain the components of the intermediate
spanning forest. Another application might be maintaining the connected components of a graph
as new vertices and edges are added. In both these applications, we can use a disjoint-set data
structure, where we keep a set for each connected component, containing that component’s vertices.

9.1 Reversed Trees

One of the easiest ways to store sets is using trees. Each object points to another object, called
its parent, except for the leader of each set, which points to itself and thus is the root of the tree.
MakeSet is trivial. Find traverses the parent pointers up to the leader. Union just redirects the
parent pointer of one leader to the other. Notice that unlike most tree data structures, objects do
not have pointers down to their children.

MakeSet(x):

parent(x)← x

Find(x):

while x 6= parent(x)
x← parent(x)

return x

Union(x, y):

x← Find(x)
y ← Find(y)
parent(y)← x

p

q r

a

b

c

d

p

q ra

b

c

d

Merging two sets stored as trees. Arrows point to parents. The shaded node has a new parent.

1

CS 373 Lecture 9: Disjoint Sets Fall 2002

Make-Set clearly takes Θ(1) time, and Union requires only O(1) time in addition to the two
Finds. The running time of Find(x) is proportional to the depth of x in the tree. It is not hard to
come up with a sequence of operations that results in a tree that is a long chain of nodes, so that

Find takes Θ(n) time in the worst case.

However, there is an easy change we can make to our Union algorithm, called union by depth,
so that the trees always have logarithmic depth. Whenever we need to merge two trees, we always
make the root of the shallower tree a child of the deeper one. This requires us to also maintain the
depth of each tree, but this is quite easy.

MakeSet(x):

parent(x)← x
depth(x)← 0

Find(x):

while x 6= parent(x)
x← parent(x)

return x

Union(x, y)

x← Find(x)
y ← Find(y)
if depth(x) > depth(y)

parent(y)← x
else

parent(x)← y
if depth(x) = depth(y)

depth(y)← depth(y) + 1

With this simple change, Find and Union both run in Θ(log n) time in the worst case.

9.2 Shallow Threaded Trees

Alternately, we could just have every object keep a pointer to the leader of its set. Thus, each
set is represented by a shallow tree, where the leader is the root and all the other elements are its
children. With this representation, MakeSet and Find are completely trivial. Both operations
clearly run in constant time. Union is a little more difficult, but not much. Our algorithm sets all
the leader pointers in one set to point to the leader of the other set. To do this, we need a method
to visit every element in a set; we will ‘thread’ a linked list through each set, starting at the set’s
leader. The two threads are merged in the Union algorithm in constant time.

a

b c d

p

q r

a

p q r b c d

Merging two sets stored as threaded trees.
Bold arrows point to leaders; lighter arrows form the threads. Shaded nodes have a new leader.

MakeSet(x):

leader(x)← x
next(x)← x

Find(x):

return leader(x)

Union(x, y):

x← Find(x)
y ← Find(y)

y ← y
leader(y)← x
while (next(y) 6= Null)

y ← next(y)
leader(y)← x

next(y)← next(x)
next(x)← y

2

CS 373 Lecture 9: Disjoint Sets Fall 2002

The worst-case running time of Union is a constant times the size of the larger set. Thus, if we
merge a one-element set with another n-element set, the running time can be Θ(n). Generalizing
this idea, it is quite easy to come up with a sequence of n MakeSet and n− 1 Union operations
that requires Θ(n2) time to create the set {1, 2, . . . , n} from scratch.

WorstCaseSequence(n):

MakeSet(1)
for i← 2 to n

MakeSet(i)
Union(1, i)

We are being stupid in two different ways here. One is the order of operations in WorstCase-

Sequence. Obviously, it would be more efficient to merge the sets in the other order, or to use
some sort of divide and conquer approach. Unfortunately, we can’t fix this; we don’t get to decide
how our data structures are used! The other is that we always update the leader pointers in the
larger set. To fix this, we add a comparison inside the Union algorithm to determine which set is
smaller. This requires us to maintain the size of each set, but that’s easy.

MakeWeightedSet(x):

leader(x)← x
next(x)← x
size(x)← 1

WeightedUnion(x, y)

x← Find(x)
y ← Find(y)
if size(x) > size(y)

Union(x, y)
size(x)← size(x) + size(y)

else
Union(y, x)
size(x)← size(x) + size(y)

The new WeightedUnion algorithm still takes Θ(n) time to merge two n-element sets. How-
ever, in an amortized sense, this algorithm is much more efficient. Intuitively, before we can merge
two large sets, we have to perform a large number of MakeWeightedSet operations.

Theorem 1. A sequence of m MakeWeightedSet operations and n WeightedUnion opera-

tions takes O(m + n log n) time in the worst case.

Proof: Whenever the leader of an object x is changed by a WeightedUnion, the size of the set
containing x increases by at least a factor of two. By induction, if the leader of x has changed
k times, the set containing x has at least 2k members. After the sequence ends, the largest set
contains at most n members. (Why?) Thus, the leader of any object x has changed at most blg nc
times.

Since each WeightedUnion reduces the number of sets by one, there are m−n sets at the end
of the sequence, and at most n objects are not in singleton sets. Since each of the non-singleton
objects had O(log n) leader changes, the total amount of work done in updating the leader pointers
is O(n log n). �

The aggregate method now implies that each WeightedUnion has amortized cost O(log n) .

3

CS 373 Lecture 9: Disjoint Sets Fall 2002

9.3 Path Compression

Using unthreaded tress, Find takes logarithmic time and everything else is constant; using threaded
trees, Union takes logarithmic amortized time and everything else is constant. A third method
allows us to get both of these operations to have almost constant running time.

We start with the original unthreaded tree representation, where every object points to a parent.
The key observation is that in any Find operation, once we determine the leader of an object x,
we can speed up future Finds by redirecting x’s parent pointer directly to that leader. In fact, we
can change the parent pointers of all the ancestors of x all the way up to the root; this is easiest
if we use recursion for the initial traversal up the tree. This modification to Find is called path

compression.

p

q rabc

d

p

q ra

b

c

d

Path compression during Find(c). Shaded nodes have a new parent.

Find(x)

if x 6= parent(x)
parent(x)← Find(parent(x))

return parent(x)

If we use path compression, the ‘depth’ field we used earlier to keep the trees shallow is no
longer correct, and correcting it would take way too long. But this information still ensures that
Find runs in Θ(log n) time in the worst case, so we’ll just give it another name: rank.

MakeSet(x):

parent(x)← x
rank(x)← 0

Union(x, y)

x← Find(x)
y ← Find(y)
if rank(x) > rank(y)

parent(y)← x
else

parent(x)← y
if rank(x) = rank(y)

rank(y)← rank(y) + 1

Ranks have several useful properties that can be verified easily by examining the Union and
Find algorithms. For example:

• If an object x is not a set leader, then the rank of x is strictly less than the rank of its parent.

• Whenever parent(x) changes, the new parent has larger rank than the old parent.

• The size of any set is exponential in the rank of its leader: size(x) ≥ 2rank(x). (This is easy to
prve by induction hint hint.)

• In particular, since there are only n objects, the highest possible rank is blg nc.

4

CS 373 Lecture 9: Disjoint Sets Fall 2002

We can also derive a bound on the number of nodes with a given rank r. Only set leaders can
change their rank. When the rank of a set leader x changes from r − 1 to r, mark all the nodes in
that set. At least 2r nodes are marked. The next time these nodes get a new leader y, the rank
of y will be at least r + 1. Thus, any node is marked at most once. There are n nodes altogether,

and any object with rank r marks 2r of them. Thus, there can be at most n/2r objects of rank r .

Purely as an accounting tool, we will also partition the objects into several numbered blocks.
Specifically, each object x is assigned to block number lg∗(rank(x)). In other words, x is in block b
if and only if

2 ↑↑ (b− 1) < rank(x) ≤ 2 ↑↑ b,

where 2 ↑↑ b is the tower function1

2 ↑↑ b = 222
.
.
.
2
}

b

=

{

1 if b = 0

22↑↑(b−1) if b > 0

Since there are at most n/2r objects with any rank r, the total number of objects in block b is at
most

2↑↑b
∑

r=2↑↑(b−1)+1

n

2r
<

∞∑

r=2↑↑(b−1)+1

n

2r
=

n

22↑↑(b−1)
=

n

2 ↑↑ b
.

Every object has a rank between 0 and blg nc, so there are lg∗ n blocks , numbered from 0 to

lg∗blg nc = lg∗ n− 1.

Theorem 2. If we use both union-by-rank and path compression, the worst-case running time of

a sequence of m operations, n of which are MakeSet operations, is O(m log∗ n).

Proof: Since each MakeSet and Union operation takes constant time, it suffices to show that
any sequence of m Find operations requires O(m log∗ n) time in the worst case.

The cost of Find(x0) is proportional to the number of nodes on the find path from x0 up to its
leader (before path compression). To count up the total cost of all Finds, we use an accounting
method—each object x0, x1, x2, . . . , xl on the find path pays a $1 tax into one of several different
bank accounts. After all the Find operations are done, the total amount of money in these accounts
will tell us the total running time.

• The leader xl pays into the leader account.

• The child of the leader xl−1 pays into the child account.

• Any other object xi in a different block from its parent xi+1 pays into the block account.

• Any other object xi in the same block as its parent xi+1 pays into the path account.

During any Find operation, one dollar is paid into the leader account, at most one dollar is
paid into the child account, and at most one dollar is paid into the block account for each of the
lg∗ n blocks. Thus, when the sequence of m operations ends, those three accounts share a total of
at most 2m + m lg∗ n dollars. The only remaining difficulty is the path account.

1The arrow notation a ↑↑ b was introduced by Don Knuth in 1976.

5

CS 373 Lecture 9: Disjoint Sets Fall 2002

L

B

B

P

B

P

B

P

P

B

P

P

C

block 1

block 2

block 3

block 5

block 6

block 7

block 4 (empty)

Different nodes on the find path pay into different accounts: B=block, P=path, C=child, L=leader.
Horizontal lines are boundaries between blocks. Only the nodes on the find path are shown.

So consider an object xi in block b that pays into the path account. This object is not a set leader,
so its rank can never change. The parent of xi is also not a set leader, so after path compression,
xi acquires a new parent—namely xl—whose rank is strictly larger than its old parent xi+1. Since
rank(parent(x)) is always increasing, the parent of xi must eventually lie in a different block than xi,
after which xi will never pay into the path account. Thus, xi can pay into the path account at
most once for every rank in block b, or less than 2 ↑↑ b times overall.

Since block b contains less than n/(2 ↑↑ b) objects, these objects contribute less than n dollars
to the path account. There are lg∗ n blocks, so the path account receives less than n lg∗ n dollars
altogether.

Thus, the total amount of money in all four accounts is less than 2m + m lg∗ n + n lg∗ n =
O(m lg∗ n), and this bounds the total running time of the m Find operations. �

The aggregate method now implies that each Find has amortized cost O(log∗ n) , which is

significantly better than its worst-case cost Θ(log n) .

9.4 Ackermann’s Function and Its Inverse

But this amortized time bound can be improved even more! Just to state the correct time bound,
I need to introduce a certain function defined by Wilhelm Ackermann in 1928. The function can
be2 defined by the following two-parameter recurrence.

Ai(n) =







2 if n = 1

2j if i = 1 and n > 1

Ai−1(Ai(n− 1)) otherwise

Clearly, each Ai(n) is a monotonically increasing function of n, and these functions grow faster and
faster as the index i increases—A2(n) is the power function 2n, A3(n) is the tower function 2 ↑↑ n,
A4(n) is the wower function 2 ↑↑↑ n = 2 ↑↑ 2 ↑↑ · · · ↑↑ 2

︸ ︷︷ ︸

n

(so named by John Conway), et cetera ad

infinitum.

2Ackermann didn’t define his function this way—I’m actually describing a different function defined 35 years later
by R. Creighton Buck—but the exact details of the definition are surprisingly irrelevant!

6

CS 373 Lecture 9: Disjoint Sets Fall 2002

i Ai(n) n = 1 n = 2 n = 3 n = 4 n = 5

i = 1 2n 2 4 6 8 10

i = 2 2↑n 2 4 8 16 32

i = 3 2 ↑↑ n 2 4 16 65536 265536

i = 4 2 ↑↑↑ n 2 4 65536 22
2

.

.

.

2

ff

65536

22
2

.

.

.

2

ff

2
2
2

.

.

.

2

ff

65536

i = 5 2 ↑↑↑↑ n 2 4 22
2

.

.

.

2

ff

65536

22
...2

¯

2
...2

¯

.

.

.

2
...2

¯

65536

))

2
2
2

.

.

.

2

ff

65536

〈〈Yeah, right.〉〉

Small(!!) values of Ackermann’s function.

The functional inverse of Ackermann’s function is defined as follows:

α(m,n) = min {i | Ai(bm/nc) > lg n}

For all practical values of n and m, we have α(m,n) ≤ 4; nevertheless, if we increase m and keep
n fixed, α(m,n) is eventually bigger than any fixed constant.

Bob Tarjan proved the following surprising theorem. The proof of the upper bound3 is very
similar to the proof of Theorem 2, except that it uses a more complicated ‘block’ structure. The
proof of the matching lower bound4 is, unfortunately, way beyond the scope of this class.5

Theorem 3. Using both union by rank and path compression, the worst-case running time of a

sequence of m operations, n of which are MakeSets, is Θ(mα(m,n)). Thus, each operation has

amortized cost Θ(α(m,n)). This time bound is optimal: any pointer-based data structure needs

Ω(mα(m,n)) time to perform these operations.

3R. E. Tarjan. Efficiency of agood but not linear set union algorithm. J. Assoc. Comput. Mach. 22:215–225, 1975.
4R. E. Tarjan. A class of algorithms which require non-linear time to maintain disjoint sets. J. Comput. Syst.

Sci. 19:110–127, 1979.
5But if you like this sort of thing, google for “Davenport-Schinzel sequences”.

7

