
CS 373 Non-Lecture H: Lower Bounds Fall 2002

Number Six: What do you want?

Number Two: Information!

Number Six: Whose side are you on?

Number Two: That would be telling. We want information!

Number Six: You won’t get it!

Number Two: By hook or by crook, we will!

— Opening sequence of ‘The Prisoner’ (1967–68)

H Lower Bounds

H.1 What Are Lower Bounds?

So far in this class we’ve been developing algorithms and data structures for solving certain problems
and analyzing their time and space complexity.

Let TA(X) denote the running of algorithm A given input X. Then the worst-case running time
of A for inputs of size n is defined as follows:

TA(n) = max
|X|=n

(

TA(X)
)

.

The worst-case complexity of a problem Π is the worst-case running time of the fastest algorithm
for solving it:

TΠ(n) = min
A solves Π

(

TA(n)
)

= min
A solves Π

(

max
|X|=n

(

TA(X)
)

)

.

Now suppose we’ve shown that the worst-case running time of an algorithm A is O(f(n)). Then
we immediately have an upper bound for the complexity of Π:

TΠ(n) ≤ TA(n) = O(f(n)).

The faster our algorithm, the better our upper bound. In other words, when we give a running
time for an algorithm, what we’re really doing — and what most theoretical computer scientists
devote their entire careers doing1 — is bragging about how easy some problem is.

Starting with this lecture, we’ve turned the tables. Instead of bragging about how easy problems
are, now we’re arguing that certain problems are hard by proving lower bounds on their complexity.
This is a little harder, because it’s no longer enough to examine a single algorithm. To show that
TΠ(n) = Ω(f(n)), we have to prove that every algorithm that solves Π has a worst-case running
time Ω(f(n)), or equivalently, that no algorithm runs in o(f(n)) time.

1This sometimes leads to long sequences of results that sound like an obscure version of “Name that Tune”:

Lennes: “I can triangulate that polygon in O(n2) time.”
Shamos: “I can triangulate that polygon in O(n log n) time.”
Tarjan: “I can triangulate that polygon in O(n log log n) time.”
Seidel: “I can triangulate that polygon in O(n log∗ n) time.”
[Audience gasps.]
Chazelle: “I can triangulate that polygon in O(n) time.”
[Audience gasps and applauds.]
“Triangulate that polygon!”

1

CS 373 Non-Lecture H: Lower Bounds Fall 2002

H.2 Decision Trees

Unfortunately, there is no formal definition of the phrase ‘all algorithms’ !2 So when we derive lower
bounds, we first have to specify, formally, what an algorithm is and how to measure its running
time. This specification is called a model of computation.

One rather powerful model of computation is decision trees. A decision tree is (as the name
suggests) a tree. Each internal node in the tree is labeled by a query, which is just a question about
the input. The edges out of a node correspond to the various answers to the query. Each leaf of
the tree is labeled with an output. To compute with a decision tree, start at the root and follow a
path down to a leaf. At each internal node, the answer to the query tells you which node to visit
next. When you reach a leaf, output its label.

For example, the guessing game where one person thinks of an animal and the other person tries
to figure it out with a series of yes/no questions can be modeled as a decision tree. Each internal
node is labeled with a question and has two edges labeled ‘yes’ and ‘no’. Each leaf is labeled with
an animal.

Does it live in the water?

Does it have scales? Does it have more than four legs?

Fish Frog

Mosquito Centipede

Does it have wings?

EagleGnu

Does it have wings?

YES

YES YES

YES YES

NO

NO NO

NO NO

A decision tree to choose one of six animals.

Here’s another simple example, called the dictionary problem. Let A be a fixed array with
n numbers. Suppose want to determine, given a number x, the position of x in the array A, if
any. One solution to the dictionary problem is to sort A (remembering every element’s original
position) and then use binary search. The (implicit) binary search tree can be used almost directly
as a decision tree. Each internal node the the search tree stores a key k; the corresponding node
in the decision tree stores the question ‘Is x < k?’. Each leaf in the search tree stores some value
A[i]; the corresponding node in the decision tree asks ‘Is x = A[i]?’ and has two leaf children, one
labeled ‘i’ and the other ‘none’.

2 3 5 7 11 13 17 19

11

17

1913

5

73

2 3 5 7 11 13 17 19

x<17?

NOYES

YES NO

NOYESNOYES

YES NO

NOYESNOYES

YES NO

NOYES

x<11?

x<5?

x<7?x<3? x<13? x<19?

NOYES

YES

YES

x=3?x=2? x=5? x=7? x=11? x=13? x=17? x=19?

NO

NOYES

YES

YES

NO NO

NO

1 2 3 4 5 6 7 8− − − − − − − −

Left: A binary search tree for the first eight primes.
Right: The corresponding binary decision tree for the dictionary problem (− = ‘none’).

2Complexity-theory purists might argue that ‘all algorithms’ is just a synonym for ‘all Turing machines’. (If you
want to know what a Turing machine is, take 375.) In my opinion, this is nonsense. Or it might not be nonsense,
but it isn’t a particularly useful definition. Turing machines are just another model of computation.

2

CS 373 Non-Lecture H: Lower Bounds Fall 2002

We define the running time of a decision tree algorithm for a given input to be the number of
queries in the path from the root to the leaf. For example, in the ‘Guess the animal’ tree above,
T (frog) = 2. Thus, the worst-case running time of the algorithm is just the depth of the tree. This
definition ignores other kinds of operations that the algorithm might perform that have nothing to
do with the queries. (Even the most efficient binary search problem requires more than one machine
instruction per comparison!) But the number of decisions is certainly a lower bound on the actual
running time, which is good enough to prove a lower bound on the complexity of a problem.

Both of the examples describe binary decision trees, where every query has only two answers.
We may sometimes want to consider decision trees with higher degree. For example, we might use
queries like ‘Is x greater than, equal to, or less than y?’ or ‘Are these three points in clockwise
order, colinear, or in counterclockwise order?’ A k-ary decision tree is one where every query has
(at most) k different answers. From now on, I will only consider k-ary decision trees where

k is a constant.

H.3 Information Theory

Most lower bounds for decision trees are based on the following simple observation: the answers to

the queries must give you enough information to specify any possible output. If a problem has N

different outputs, then obviously any decision tree must have at least N leaves. (It’s possible for
several leaves to specify the same output.) Thus, if every query has at most k possible answers,
then the depth of the decision tree must be at least dlogk Ne = Ω(log N).

Let’s apply this to the dictionary problem for a set S of n numbers. Since there are n + 1
possible outputs, any decision tree must have at least n+1 leaves, and thus any decision tree must
have depth at least dlogk(n + 1)e = Ω(log n). So the complexity of the dictionary problem, in
the decision-tree model of computation, is Ω(log n). This matches the upper bound O(log n) that
comes from a perfectly-balanced binary search tree. That means that the standard binary search
algorithm, which runs in O(log n) time, is optimal—there is no faster algorithm in this model of
computation.

H.4 But wait a second. . .

We can solve the membership problem in O(1) expected time using hashing. Isn’t this inconsistent
with the Ω(log n) lower bound?

No, it isn’t. The reason is that hashing involves a query with more than a constant number
of outcomes, specifically ‘What is the hash value of x?’ In fact, if we don’t restrict the degree of
the decision tree, we can get constant running time even without hashing, by using the obviously
unreasonable query ‘For which index i (if any) is A[i] = x?’. No, I am not cheating — remember
that the decision tree model allows us to ask any question about the input!

This example illustrates a common theme in proving lower bounds: choosing the right model

of computation is absolutely crucial. If you choose a model that is too powerful, the problem
you’re studying may have a completely trivial algorithm. On the other hand, if you consider more
restrictive models, the problem may not be solvable at all, in which case any lower bound will be
meaningless! (In this class, we’ll just tell you the right model of computation to use.)

H.5 Sorting

Now let’s consider the sorting problem — Given an array of n numbers, arrange them in increasing
order. Unfortunately, decision trees don’t have any way of describing moving data around, so we
have to rephrase the question slightly:

3

CS 373 Non-Lecture H: Lower Bounds Fall 2002

Given a sequence 〈x1, x2, . . . , xn〉 of n distinct numbers, find the permutation π such
that xπ(1) < xπ(2) < · · · < xπ(n).

Now a k-ary decision-tree lower bound is immediate. Since there are n! possible permutations π,
any decision tree for sorting must have at least n! leaves, and so must have depth Ω(log(n!)). To
simplify the lower bound, we apply Stirling’s approximation

n! =
(n

e

)n √
2πn

(

1 + Θ

(

1

n

))

>
(n

e

)n

.

This gives us the lower bound

dlogk(n!)e >
⌈

logk

(n

e

)n⌉

= dn logk n− n logk ee = Ω(n log n).

This matches the O(n log n) upper bound that we get from mergesort, heapsort, or quicksort, so
those algorithms are optimal. The decision-tree complexity of sorting is Θ(n log n).

Well. . . we’re not quite done. In order to say that those algorithms are optimal, we have to
demonstrate that they fit into our model of computation. A few minutes thought will convince
you that they can be described as a special type of decision tree called a comparison tree, where
every query is of the form ‘Is xi bigger or smaller than xj?’ These algorithms treat any two input
sequences exactly the same way as long as the same comparisons produce exactly the same results.
This is a feature of any comparison tree. In other words, the actual input values don’t matter,

only their order. Comparison trees describe almost all sorting algorithms: bubble sort, selection
sort, insertion sort, shell sort, quicksort, heapsort, mergesort, and so forth — but not radix sort or
bucket sort.

H.6 Finding the Maximum and Adversaries

Finally let’s consider the maximum problem: Given an array X of n numbers, find its largest entry.
Unfortunately, there’s no hope of proving a lower bound in this formulation, since there are an
infinite number of possible answers, so let’s rephrase it slightly.

Given a sequence 〈x1, x2, . . . , xn〉 of n distinct numbers, find the index m such that xm

is the largest element in the sequence.

We can get an upper bound of n − 1 comparisons in several different ways. The easiest is
probably to start at one end of the sequence and do a linear scan, maintaining a current maximum.
Intuitively, this seems like the best we can do, but the information-theoretic lower bound is only
dlog2 ne.

To prove that n − 1 comparisons are actually necessary, we use something called an adversary

argument. The idea is that an all-powerful malicious adversary pretends to choose an input for
the algorithm. When the algorithm asks a question about the input, the adversary answers in
whatever way will make the algorithm do the most work. If the algorithm does not ask enough
queries before terminating, then there will be several different inputs, each consistent with the
adversary’s answers, the should result in different outputs. In this case, whatever the algorithm
outputs, the adversary can ‘reveal’ an input that is consistent with its answers, but contradicts the
algorithm’s output, and then claim that that was the input that he was using all along.

For the maximum problem, the adversary originally pretends that xi = i for all i, and answers
all comparison queries appropriately. Whenever the adversary reveals that xi < xj, he marks xi

as an item that the algorithm knows (or should know) is not the maximum element. At most

4

CS 373 Non-Lecture H: Lower Bounds Fall 2002

one element xi is marked after each comparison. Note that xn is never marked. If the algorithm
does less than n − 1 comparisons before it terminates, the adversary must have at least one other
unmarked element xk 6= xn. In this case, the adversary can change the value of xk from k to n+1,
making xk the largest element, without being inconsistent with any of the comparisons that the
algorithm has performed. In other words, the algorithm cannot tell that the adversary has cheated.
However, xn is the maximum element in the original input, and xk is the largest element in the
modified input, so the algorithm cannot possibly give the correct answer for both cases. Thus, in
order to be correct, any algorithm must perform at least n− 1 comparisons.

It is very important to notice that the adversary makes no assumptions about the order in
which the algorithm does its comparisons. The adversary forces any algorithm (in this model of
computation3) to either perform n − 1 comparisons, or to give the wrong answer for at least one
input sequence. Notice also that no algorithm can distinguish between a malicious adversary and
an honest user who actually chooses an input in advance and answers all queries truthfully.

In the next lecture, we’ll see several more complicated adversary arguments.

3Actually, the n−1 lower bound for finding the maximum holds in a much powerful model called algebraic decision
trees, which are binary trees where every query is a comparison between two polynomial functions of the input values,
such as ‘Is x

2

1 − 3x2x3 + x
17

4 bigger or smaller than 5 + x1x
5

3x
2

5 − 2x
42

7 ?’

5

