Appendix I »
Hints to Starred Exercises

1.2.9(b)

1.3.3

1.4.5

1.5.7(a)

1.5.8

1.5.9

1.7.3

1.7.6(b)

2.1.10

I[f G# Tn,, then G has parts of size ny, n,, . . ., nm, with n,— n;>
I for some i and j. Show that the complete m-partite graph with
parts of size ny, n,, ..., ni—1,...,n;+1,..., n, has more edges
than G.

In terms of the adjacency matrix A, an automorphism of G is a
permutation matrix P such that PAP'= A or, equivalently, PA =
AP (since P'=P7"). Show that if x is an eigenvector of A
belonging to an eigenvalue A, then, for any .automorphism P of
G, so is Px. Since the eigenvalues of A are distinct and P is
orthogonal, P°x =x for all eigenvectors x.

Suppose that all induced subgraphs of G on n vertices have m
edges. Show that, for any two vertices v; and v;,

e(G)-d(v)=e(G-v)= m(v; 1)/(:::;)

£(G)—d(v)—d(v)+ay= (G —vi— v) = m("_z)/ (V-4)

n n—2
where a;=1 or 0 according as v; and v; are adjacent or not.
Deduce that a;; is independent of i and j.

To prove the necessity, first show that if G is snmple with u,v,,
u.v; € E and u,v;, u,v, € E, then G- —{u1v1, U 02} +{u10z, usv4}
has the same degree sequence as G. Using this, show that if d is
graphic, then there is a simple graph G with V={v,, v,. .., v.}
such that (i) d(v)=d; for 1=i<n, and (ii) v, is joined to
U2, 03, ..., Va,+1- The graph G —v, has degree sequence d'.

Show that a bipartite subgraph with the largest possible number
of edges has this prOperty

Define a graph on S in which x; and x; are adjacent if and only if

~ they are at distance one. Show that in this graph each vertex has

degree at most six.

Consider a longest path and the vertices adjacent to the origin of
this path.

By contradiction. Let G be a smallest counter-example. Show
that (i) the girth of G is at least five, and (ii) § =3. Deduce that
v =8 and show that no such graph exists.

To prove the sufficiency, consider a graph G with degree se-
quence d=(d,, d>, . .., d.) and as few components as possible. If
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2.2.12

2.4.2

3.2.6

3.2.7(a)

Graph Theory with Applications

G is not connected, show that, by a suitable exchange of cdges
(as in the hint to exercise 1.5.7a), there is a graph with degree
sequence d and fewer components than G. '
Define a labelled graph G as follows: the vertices of G are the
subsets Ay, As, ..., A, and A is joined to A; (i# j) by an edge
labelled a if either A;=A;U{a} or A;= A;U{a}. For any sub-
graph H of G, let L(H) be the set of labels on edges of H. Show
that if F is a maximal forest of G, then L(F)=L(G). Any
element x in S\L(F) has the required property.

Several applications of theorem 2.8 yield the recurrence relation

wn—4wn--|+4wn“3_ 1=0

where w, is the number of spanning trees in the wheel with n
spokes. Solve this recurrence relation.

Form a new graph G’ by adding two vertices x and y, and joining
x to all vertices in X and y to all vertices in Y. Show that G’ is
2-connected and apply theorem 3.2. ,

Use induction on ¢. Let e; € E. If G -e, is a critical block, then
G - e, has a vertex of degree two and, hence, so does G. If G - e,
is not critical, there is an e, € E\{e,} such that (G-e,)—e, is a

- block. Using the fact that (G -e,)—e,=(G —e,)-e;, show that e,

(b)
4.1.6

4.2.4

4.2.6

4.2.9

4.2.11(b)

and e, are incident with a vertex of degree two in G.

Use (a) and induction on v. .

Necessity: if G —v contains a cycle C, consider an Euler tour
(with origin v) of the component of G — E(C) that contains v.
Sufficiency: let Q be a (v, w)-trail of G which is not an Euler
tour. Show that G — E(Q) has exactly one nontrivial component.

Form a new graph G’ by adding a new vertex and joining it to
every vertex of G. Show that G has a Hamilton path if and only
if G’ has a Hamilton cycle, and apply theorem 4.5.

Form a new graph G’ by adding edges so that G'[X] is complete.
Show that G is hamiltonian if and only if G’ is hamiltonian, and
apply theorem 4.5. |

Let P be a longest path in G. If P has length [ <28, show, using
the proof technique of theorem 4.3, that G has a cycle of length
I+ 1. Now use the fact that G is connected to obtain a contradiction.

v even
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4.2.13

4.4.1

5.1.5(a)

5.1.6

5.2.3(b)

5.2.8

5.3.1

534

6.2.1
6.2.8
7.1.3(b)

7.2.6(b)

Use the fact that the Petersen graph is hypohamiltonian (exercise
4.2.12).

Consider an Euler tour Q in the weighted graph formed from T
by duplicating each of its edges. Now make use of triangle
inequalities to obtain from Q a Hamilton cycle in G of weight at
most w(Q).

To show that K, is 1-factorable, arrange the vertices in the form
of a regular (2n—1)-gon with one vertex in the centre. A radial
edge together with the edges perpendicular to it is a perfect
matching.

Label the vertices 0,1,2,...,2n and arrange the vertices 1,
2,...,2n in a circle with 0 at the centre. Let C = O, 1, 2, 2n, 3,
2n—1,4,2n-2,...,n+2,n+1,0)and consider the rotations of C.

Let G be a 2k-regular graph with V ={v,, v,,..., v, }; without
loss of generality, assume that G is connected. Let C be an Euler
tour in G. Form a bipartite graph G’ with bipartition (X, Y),
where X ={x,, x2,..., x,} and Y ={y,, Y2, . .., y»} by joining x; to
yi whenever v; immediately precedes v; on C. Show that G’ is
I-factorable and hence that G is 2-factorable.

Construct a bipartite graph G with bipartition (X, Y) in which X

is the set of rows of Q, Y is the set of columns of Q,androwi is
joined to column j if and only if the entry g;; is positive. Show that

G has a perfect matching, and then use induction on the

‘number of nonzero entries of Q.

Let G be a bipartite graph with bipartition (X, Y). Assume that
v is even (the case when v is odd requires a little modification).
Obtain a graph H from G by joining all pairs of vertices in Y. G
has a matching that saturates every vertex in X if and only if H
has a perfect matching.

Let G* be a maximal spanning supergraph of G such that the
number of edges in a maximum matching of G* is the same as
for G. Show, using the proof technique ot theorem 5.4, that if U
is the set of vertices of degree v—1 in G* then G*— U is a
disjoint union of complete graphs.

See the hint to exercise 5.1.5a.

Use the proof technique of theorem 6.2. ,

Let viv,...v, be a longest path in G. Show that G — v, has at
most one nontrivial component, and use induction on e.

Let p(m—1)=n-1. The complete (p+1)-partite graph with
m — 1 vertices in each part shows that r(T, K, ,) > (p+t1)(im—-1)=
m+n-—2. To prove that r(T,K;,)<m+n—1, show that any
simple graph G with § = m — 1 contains every tree T on m vertices.
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(c)

7.3.3(c)

7.3.4(a)

7.5.1

8.1.0

8.1.13(a)

8.3.2(a)

Graph Theory with Applications

The complete (n— 1)-partite graph with m —1 vertices in each
part shows that r(T,K,)>(m—-1)(n—1). To prove that
r(T, K.) =(m—1)(n—1)+1, use induction on n and the fact that
any simple graph with §=m —1 contains every tree T on m
vertices. :

Assume G contains no triangle. Choose a shortest odd cycle C
in G. Show that each vertex in V(G)\V(C) can be joined to at
most two vertices of C. Apply exercise 7.3.3a to G — V(C), and
obtain a contradiction.

G contains K. if and only if there are m vertices with a pair of

common neighbours. Any vertex v has (d(zv)) pairs of neigh-

bours. Therefore if Z (d(zv)) >(m-— 1)(;), G contains K.

vEV
Define a graph G by V(G)={xi,...,x.}, and E(G)=
{xix; | d(x, x;) = 1}, and show that if all edges of G are drawn as
straight line segments, then (i) any two edges of G are either
adjacent or cross, and (ii) if some vertex of G has degree greater
than two, it is adjacent to a vertex of degree one. Then prove (a)
by induction on n.

Let € =(V., Va,..., Vi) be a k-colouring of G, and let €’ be a
colouring of G in which each colour class contains at least two
vertices. If |Vi|=2 for all i, there is nothing to prove, so assume
that V,={v,}. Let u, € V, be a vertex of the same colour as v; in
@'. Clearly |V,|=2. If |V,|>2, transfer u, to V,. Otherwise, let
v, be the other vertex in V,. In €', v, and v, must be assigned
different colours. Let u; € V; be a vertex of the same colour as v,
in €'. As before, |Vs|=2. Proceeding in this way, one must
eventually find a set V; with |V|>2. G can now be recoloured so
that fewer colour classes contain only one vertex.

Let (Xi, X2,..., X,) and (Y., Y2,..., Y.) be n-colourings of
G[X] and G[Y], respectively. Construct a bipartite graph H
with bipartition ({x:, x2,..., Xa}, {y1, y2,..., ya}) by joining x;
and y; if and only if the edge cut [X, Y;] is empty in G. Using
exercise 5.2.6b, show that H has a perfect matching. If x: is
matched with yg;, under this matching, let Vi=XiU Y. Show
that (V,, V,,..., V,) is an n-colouring of G.

Show that it suffices to consider 2-connected graphs. Choose a
longest cycle C in G and show that there are two paths across C
as in theorem 8.5.

If =3, use exercise 8.3.1. If there is a vertex of degree less

“than three, delete it and use induction.
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8.4.8

8.5.2(a)

- 9.2.8

10.2.2

10.2.5

10.3.4

11.3.5

11.4.4
11.5.4
11.5.5(a)

12.2.1(a)

12.3.3

Consider the expansion of m(G) in terms of chromatic polyno-
mials of complete graphs.

It is easily verified that H has girth at least six. If H is
k-colourable, there is a v-element subset of S all of whose
members receive the same colour. Consider the corresponding
copy of G and obtain a contradiction. '

The dual G* is 2-edge-connected and 3-regular and, hence
(corollary 5.4), has a perfect matching M. (G* - M)* is a bipar-
tite subgraph of G. .

Form a new digraph on the same vertex set joining u to v if v is
reachable from u, and apply corollary 10.1.

Let D, and D, be the spanning subdigraphs of D such that the
arcs of D, are the arcs (u, v) of D for which f(u)=<f(v), and the
arcs of D, are the arcs (u, v) for which f(u)>f(v). Show that
either x(D,)>m or x(D;)>n, and apply theorem 10.1.

Let viv2... 00 be an odd cycle. If (v, vis)) € A, set Pi=
(vi, vir1); if (v, vis1) € A, let P; be a directed (v, vis1)-path. If
some P; is of even length, P;+(vi.;, v;) is a directed odd cycle;
otherwise, P\P;. .. Ps,.. is a closed directed trail of odd length,
and therefore contains a directed odd cycle. .

Use the construction given in the proof of theorem 11.6, and
assign capacity m(v) to arc (v’, v").

Use induction on k and exercise 11.4.3.

Use an argument similar to that in exercise 1.5.7.

Necessity follows on taking V, as the set of vertices with indegree
m and V. as the set of vertices with indegree n. To prove
sufficiency, construct a network N by forming the associated
digraph of G, assigning unit capacity to each arc, and regarding
the elements of V, as sources and the elements of V., as sinks. By
theorem 11.8, there is a flow f in N (which can be assumed
integral) in which the supply at each source and demand at each
sink is |m —n|. The f-saturated arcs induce an (m,n)-orientation
on a subgraph H of G. An (m,n)-orientation of G can now be
obtained by giving the remaining edges an eulerian orientation.
Use induction on the order of the submatrix. Let P be a square
submatrix. If each column of P contains two nonzero entries,
then det P=0. Otherwise, expand det P about a column with

~exactly one nonzero entry, and apply the induction hypothesis.

Show, first, that in any perfect rectangle the smallest constituent
square is not on the boundary of the rectangle. Now suppose that
there is a perfect cube and consider the perfect square induced
on the base of this cube by the constituent cubes. '




