Appendix III
Some Interesting Graphs

There are a number of graphs which are interesting because of their special
structure. We have already met some of these (for example, the Grinberg
graph, the Grotzsch graph, the Herschel graph and the Ramsey graphs).
Here we present a selection of other interesting graphs and families of
graphs.

THE PLATONIC GRAPHS

These are the graphs whose vertices and edges are the vertices and edges of
the platonic solids (see Fréchet and Fan, 1967).

i
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(a) The tetrahedron; (b) the octahedron; (c) the cube; (d) the icosahedron; (e) the
v dodecahedron
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AUTOMORPHISM GROUPS

(i) As has already been noted (exercise 1.2.12), every group is isomorphic to
the automorphism group of some graph. Frucht (1949) showed, in fact, that
for any group there is a 3-regular graph with that group. The smallest
3-regular graph whose group is the identity is the following:

(i) Folkman (1967) proved that every edge- but not vertex-transitive
regular graph has at least 20 vertices. This result is best possible:

The Folkman graph

The Gray graph (see Bouwer, 1972) is a 3-regular edge- but not vertex-
transitive graph on 54 vertices. It has the following description: take three
copies of K,,. For a particular edge e, subdivide e in each of the three
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copies and join the resulting three vertices to a new vertex. Repeat this with
each edge.

CAGES

An m-regular graph of girth n with the least possible number of vertices is
called an (m, n)-cage. If we denote by f(m, n) the number of vertices in an
(m, n)-cage, it is easy to see that f(2,n)=n and for m =3,

mim-—1)"-2

» - m—> if n=2r+1 )
m,n)= ;
2m-1)y-2 . _ ~
m_—7 if n=2r

The (2, n)-cage is the n-cycle, the (m, 3)-cage is Kn.1, and the (m, 4)-cage
is Kmm. In each of these cases, equality holds in (III.1). It has been shown by
Hoffman and Singleton (1960) that, for m =3 and n =35, equality can hold
in (II.1) onlyif n=5and m=3, 7 or 57,orn=6, 8 or 12. When m—1is a
prime power, the (m,6)-cage is the point-line incidence graph of the
projective plane of order m—1; the (m,8)- and (m, 12)-cages are also
obtained from projective geometries (see Biggs, 1974 for further details).
Some of the smaller (m, n)-cages are depicted below:

(3,5) - cage ; , (3,6) - cage
The Petersen graph o ‘ The Heawood graph
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The (7, 5)-cage (the Hoffman-Singleton graph) can be described as fol-
lows: it has ten S-cycles Py, Pi, P2, Ps, Ps, Qo, Qi, Q2, Qs, Q., labelled as
shown below; vertex i of P; is joined to vertex i+jk (mod5) of Q. (For,
example, vertex 2 of P, is connected as mdlcated)

(7,5)—cage
The Hoffman-Singleton graph

NONHAMILTONIAN GRAPHS

(i) Conditions for a graph to be hamiltonian have been sought ever since Tait
made his conjecture on planar graphs. Listed here are counter-examples to
several conjectured results.
(a) Every 4-regular 4-connected graph is hamiltonian (C St. J. A. Nash-
Williams).

 The Meredith graph

(b) There is no hypotraceable graph (T. Gallai).
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- The Thomassen graph

(The first hypotraceable graph was discovered by J. D. Horton.)

(c) Every 3-regular 3-connected bipartite graph is hamiltonian (W. T.
Tutte).
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(i) An example of a nonhamiltonian graph with a high degree of
symmetry—there is an automorphism taking any path of length three into
any other. (The Petersen graph also has this property.) See Tutte (1960).

The Coxeter graph

CHROMATIC NUMBER

(i) Griinbaum (1970) has conjectured that, for every m >1 and n >2, there
exists an m-regular, m-chromatic graph of girth at least n. For n = 3, this is
trivial, and for m =2 and 3, the validity of the conjecture follows from the
existence of the cagest. Apart from this, only two such graphs are known:

The Chvital graph )

-t This conjecture has now been disproved: (Borodin, O. V. and Kostochka, A. V. (197.6).
On an upper bound of the graph’s chromatic number depending on graph’s degree and density.
Inst. Maths., Novosibirsk, preprint GT-7).
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~ The Griinbaum graph

(ii) Since r(3, 3, 3) = 17 (see exercise 7.2.3), there is a 3-edge colouring of
K¢ without monochromatic triangles. Kalbfleisch and Stanton (1968)
showed that, in such a colouring, the subgraph induced by the edges of any
one colour is isomorphic to the following graph: ' '

" The Greenwood-Gleason graph
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EMBEDDINGS -

(i) Simple examples of self-dual plane graphs are the wheels. Some more

interesting plane graphs with this property are deplcted below (see, for
example, Smith and Tutte, 1950).

(ii) The chromatic number x(S) of a surface S is the maximum number of
colours required to properly colour the faces of any map on S. (The
four-colour conjecture claims that the sphere is 4-chromatic.) Heawood
(1890) proved that if S has characteristic n <2, then

x(S)=[(7+ V49-24 n)] (I11.2)

For the projective plane and Mdbius band (characteristic 1) and for the
torus (characteristic 0), the bound given in (II1.2) is attained, as is shown by
the following graphs and their embeddings:

(a) (b)
(a) The Tietze graph; (b) an embedding on the M&bius band

@ (b)
(a) The Petersen graph; (b) an embedding on the projective plane
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(a) , (b)
(a) The Heéwood graph; (b) an embedding on the torus
Although the Klein bottle has characteristic 0, Franklin (1934) proved

that it is only 6-chromatic, and found the following 6-chromatic map on the
Klein bottle: |

-—
- o

—0 O 0
. ‘

[ ]
e e e

(a) , (b)
(a) The Franklin graph; (b) an embedding on the Kleih bottle

It has been shown that, with the sole exception of the Klein bottle,
equality holds in (II1.2) for every surface S of characteristic n<2. This
result is known as the map colour theorem (see Ringel, 1974).
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