Appevndix IV
Unsolved Problems

Collected here are a number of unsolved problems of varying difficulty, with
originators, dates and relevant bibliography. Conjectures are displayed in
bold type. Problems marked 1 have now been solved; see page 253.

1.

2.

Two graphs G and H are hypomorphic (written G=H) if there is a
bijection o : V(G) — V(H) such that G—v=H —o(v) for all v € V(G).
A graph G is reconstructible if G=H implies G = H. The reconstruction
conjecture claims that every graph G with v>2 is reconstructible (S. M.
Ulam, 1929). This has been verified for disconnected graphs, trees and a
few other classes of graphs (see Harary, 1974).

There is a corresponding edge reconstruction conjecture: every graph
G with €>3 is edge reconstructible. Lovasz (1972) has shown that

every simple graph G with ¢ >(;) / 2 is edge reconstructible.

P. K. Stockmeyer has found an infinite family of counterexamples to
the analogous reconstruction conjecture for digraphs.

Bondy, J. A. and Hemminger, R. L. (1976). Graph reconstruction—a
survey. J. Graph Theory, to be published

Lovasz, L. (1972). A note on the line reconstruction problem. J.
‘Combinatorial Theory B, 13, 309-10

A graph G is embeddable in a graph H if G is isomorphic to a subgraph
of H. Characterise the graphs embeddable in the k-cube (V. V. Firsov,
1965).

Garey, M. R. and Graham, R. L. (1975). On cubical graphs J. Com-
binatorial Theory (B), 18, 84-95

. Every 4-regular simple graph contains a 3-regular subgraph (N. Sauer,

1973).

. If k>2, there exists no graph with the property that every pair of

vertices is connected by a unique path of length k (A. Kotzig, 1974).
Kotzig has verified his conjecture for k <9.

. Every connected graph G is the union of at most [(w+1)/2] edge-

disjoint paths (T. Gallai, 1962). Lovasz (1968) has shown that every
graph G is the union of at most [v/2] edge-disjoint paths and cycles.
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10.

11.

12.

13.

Lovasz, L. (1968). On coverings of graphs, in Theory of Graphs (eds. P.
Erdos and G. Katona), Academic Press, New York, pp. 231-36

. Every 2-edge-connected simple graph G is the union of v—1 cycles (P.

Erdos, A. W. Goodman and L. Pésa, 1966).

'Erdés, P., Goodman, A. W. and Pésa, L. (1966). The representation of

a graph by set intersections. Canad. J. Math., 18, 106~-12

. If G is a simple block with at least v/2+ k vertices of degree at least k,

then G has a cycle of length at least 2k (D. R. Woodall, 1975).

. Let f(m, n) be the maximum possible number of edges in a simple graph

on n vertices which contains no m-cycle. It is known that

[n*4] if m isodd, m=i(n+3)

f(m,n) = (n._.y;+?)+(m2—1) if m=in+3)

Determine f(m, n) for the remaining cases (P. Erdos, 1963).

Bondy, J. A. and Simonovits, M. (1974). Cycles of even length in
graphs. J. Combinatorial Theory (B), 16, 97-105

Woodall, D. R. (1972). Sufficient conditions for circuits in graphs. Proc.
London Math. Soc., 24, 739-55

Let f(n) be the maximum possible number of edges in a simple graph on
n vertices which contains no 3-regular subgraph. Determine f(n) (P.
Erdos and N. Sauer, 1974). Since there is a constant ¢ such that every
simple graph G with &=cv*® contains the 3-cube (Erdés and
Simonovits, 1970), clearly f(n) <cn®’.

Erdos, P. and Simonovits, M. (1970). Somé extremal problems in graph
theory, in Combinatorial Theory and its Applications I (eds. P. Erdés,
A. Rényi and V. T. S6s), North-Holland, Amsterdam, pp. 378-92

Determine which simple graphs G have exactly one cycle of each length
l,3=l=v (R. C. Entringer, 1973).

Let f(n) be the maximum possible number of edges in a graph on n
vertices in which no two cycles have the same length. Determme f(n)
(P. Erdds, 1975).

If G is simple and € >v(k —1)/2, then G contains every tree with k
edges (P. Erdos and V. T. Sés, 1963). It is known that every such graph
contains a path of length k (Erdds and Gallai, 1959).

Erdds, P. and Gallai, T. (1959). On maximal paths and circuits of
graphs. Acta Math. Acad. Sci. Hungar., 10, 337-56

Find a (6, 5)-cage (see appendix III).
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14. The bandwidth of G is defined to be

minmax|l(u)—1(v)|
| uve€E

where the minimum is taken over all labellings / of V in distinct
integers. Find bounds for thc bandwidth of a graph (L. H. Harper,

1964). The bandwidth of the k-cube has been determined by Harper
(1966). L ' |

Chvatalova, J. (1975). Optimal labelling of a product of two paths.
Discrete Math., 11, 249-53 , '

Harper, L. H. (1966). Optimal numberings and isoperimetric problems
on graphs. J. Combinatorial Theory, 1, 385-93 '

15. A simple graph G is graceful if there is a labelling ! of its vertices with
distinct integers from the set {0, 1,..., €}, so that the induced edge
labelling I’ defined by

- U(uv)=|l(u) = 1(v))

assigns each edge a different label. Charactérise the graceful graphs (S.

~Golomb, 1972). It has been conjectured that, in particular, every tree is
graceful (A. Rosa, 1966).

Golomb, S. (1972). How to number a graph, in Graph Theory and |
-~ Computing (ed. R. C. Read), Academic Press, New York, pp. 23-37

716. The 3-connected planar graph on 2m edges with the least possible number of
spanning trees is the wheel with m spokes (W. T. Tutte, 1940).

| Kelmans, A. K. and Chelnokov, V. M. (1974). A certain 'polynomial of

a graph and graphs with an extremal number. of trees. J. Combinatorial
Theory (B), 16, 197-214 )

17. Let u and v be two vertices in a graph G. Denote the minimum number
of vertices whose deletion destroys all (u, v)-paths of length at most n by
a,, and the maximum number of internally disjoint (u, v)-paths of
length at most n by b,. Let f(n) denote the maximum possible value of

@a/bs. Determine f(n) (V. Neumann, 1974). L. Lov4sz has conjectured
that f(n) <+vn. It is known that | .

[Vn/2l= f(n) <[n/2]

18. Every 3-regular 3-connected bipartite planar graph is hamiltonian (D.
Barnette, 1970). P. Goodey has verified this conjecture for plane graphs
whose faces are all of degree four or six. Note that if the planarity
condition is dropped, the conjecture is no longer valid (see appendix
I1I). ‘

19. A graphic sequence d is forcibly hamiltonian if every simple graph with

’ degree sequence d is hamiltonian. Characterise the forcibly hamiltonian




20.

21

22.

23

24.

25.
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sequences ‘(C. St. J. A. Nash-Williams, 1970). (Theorem 4.5 gives a
partial solution.) | |

Nash-Williams, C. St. J. A. (1970). Valency sequences which force
graphs to have Hamiltonian circuits: interim report, University of
Waterloo preprint ’

Every connected vertex-transitive graph has a Hamilton path (L.
Lovasz, 1968). L. Babai has verified this conject»u.re for graphs with a
prime number of vertices.

- A graph G is t-tough if, for every vertex cut S, w(G - S)=|S|/t. (Thus

theorem 4.2 says that every hamiltonian graph is 1-tough.)

(a) If G is 2-tough, then G is hamiltonian (V. Chvétal, 1971). C.
Thomassen has obtained an example of a nonhamiltonian t-tough graph
with t>3/2 : '

(b) If G is 3/2-tough, then G has a 2-factor (V. Chvatal, 1971).
Chvatal, V. (1973). Tough graphs and hamiltonian circuits. Discrete

Math., §, 215-28 |
The binding number of G is defined by

bind G = min |[N(S)|/|S|
R 1 o

(a) If bind G =3/2, then G cohtains a triangle (D. R. Woodall,
1973). _

(b) If bind G =3/2, then G is pancyclic (contains cycles of all lengths
l,3=1=v) (D. R. Woodall, 1973). |

Woodall (1973) has shown that G is hamiltonian if bind G =3/2, and

~that G contains a triangle if bind G =(1+5).

Woodall. D. R. (1973). The binding number of a graph and its Ander-
son number. J. Combinatorial Theory (B), 15, 225-55

. Every nonempty regular simple graph contains two disjoint maximai

independent sets (C. Payan, 1973)
Find the Ramsey number r(3, 3, 3, 3). It is known that

51=r(3,3,3,3)=<65

Chung. F. R. K. (1973). On the Ramsey numbers N(3,3,...,3;2),
Discrete Math., §, 317-21 : '

.Folkman, J. (1974). Notes on the Ramsey number N(3, 3, 3,3). J.

Combinatorial Theory (A), 16, 371-79

For m <n, let f(m, n) denote the least possible number of vertices in a
graph which contains no K, but has the property that in every 2-edge
colouring there is a monochromatic K. (Folkman, 1970 has estab-
lished the existence of such graphs.) Determine bounds for f(m, n). It is
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26.

27.

28.

29.

30.

31.

32.
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known that

f3,n)=6 for n=7
f(3,6)=8 (see exercise 7.2.5)
10=f(3.5)=18

Folkman, J. (1970). Graphs with monochromatic complete subgraphs in
every edge coloring. SIAM J. Appl. Math., 18, 19-24

Irving, R. W. (1973). On a bound of Graham and Spencer for a
graph-colouring constant. J. Combinatorial Theory (B), 18, 200-203

Lin, S. On Ramsey numbers and K,-coloring of graphs. J. Combinatorial
Theory (B), 12, 82-92

If G is n-chromatic, then r(G, G) =r(n, n) (P. Erdos, 1973). (r(G, G) is
defined in exercise 7.2.6.) |
What is the maximum possible chromatic number of a graph which can

be drawn in the plane so that each edge is a straight line segment of unit
length? (L. Moser, 1958).

Erdos. P., Harary, F. and Tutte, W. T. (1965). On the dimension of a
graph. Mathematika, 12, 118-22

The absolute values of the coefficients of any chromatic polynomial form
a unimodal sequence (that is, no term is flanked by terms of greater
value) (R. C. Read, 1968).

Chvatal, V. (1970). A note on coefficients of chromatlc polynomials. J.
Combinatorial Theory, 9, 95-96

If G is not complete and x=m+n-1, where m =2 and n =2, then
there exist disjoint subgraphs G, and G of G such that x(G;) =m and

x(G2)=n (L. Lovasz, 1968).

A simple graph G is perfect if, for every induced subgraph H of G, the
number of vertices in a maximum clique is x(H). G is perfect if and
only if no induced subgraph of G or G* is an odd cycle of length greater
than three (C. Berge, 1961). This is the strong perfect graph conjecture.
Lovész (1972) has shown that the complement of any perfect graph is

perfect.

Lovész, L. (1972). Normal hypergraphs and the perfect graph conjec-
ture. Discrete Math., 2, 253-67

Parthasarathy, K. R. and Ravindra, G. (to be pubhshed) The strong
perfect-graph conjecture is true for Ki,-free graphs. J. Combina-
torial Theory

If G is a 3-regular simple block and H is obtained from G by
duplicating each edge, then x'(H) =6 (D. R. Fulkerson, 1971).
If G is simple, with v even and x'(G) = A(G)+ 1, then X'(G—v) =X'(G)
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33.
- colours so that no two adjacent or incident elements receive the same

34.

35.

t36.

737.

38.

39.

forsome ve V (I. T. Jakobsen, L. W. Beineke and R. J. Wilson, 1973).
This has been verified for all graphs G with »=<10 and all 3-regular
graphs G with v=12,

Beineke, L. W. and Wilson, R. J. (1973). On the edge-chromatic
number of a graph. Discrete Math., 5, 15-20

For any simple graph G, the elements of V U E can be coloured in A+2

colour (M. Behzad, 1965). This is known as the total colouring conjecture.

M. Rosenfeld and N. Vijayaditya have verified it for all graphs G with
A=3,

Vijayaditya, N. (1971). On total chromatic number of a graph. J.
London Math. Soc., 3, 405-408

If G is simple and € >3v—6, then G contains a subdivision of Ks (G. A.

Dirac, 1964). Thomassen (1975) has shown that G contains a subdivi-

sion of Ks if e =4v—10.

Dirac, G. A. (1964). Homomorphism theorems for graphs. Math. Ann.,
153, 69-80 |

Thomassen, C. (1974). Some .hovmeomorp'hism properties of graphs,
Math. Nachr., 64, 119-33

A sequence d of non-negative integers is potentially planar if there is a

simple planar graph with degree sequence d. Characterise the poten-
tially planar sequences (S. L. Hakimi, 1963).

Owens, A. B. (1971). On the planarity of regular incidence sequences.
J. Combinatorial Theory (B), 11, 201-12

If G is a loopless planar graph, then a=v/4 (P. Erdds, 1968). Albertson

(1974) has shown that every such graph satisfies o >2v/9.

Albertson, M. O. (1974). Finding an independent set in a planar graph,
in Graphs and Combinatorics (eds. R. A. Bari and F. Harary),
Springer-Verlag, New York, pp. 173-79 ’

Every planar graph is 4-colourable (F. Guthrie, 1852).
Ore, O. (1969). The Four-Color Problem, Academic Press, New York
Every k-chromatic graph contains a subgraph contractible to K, (H.

Hadwiger, 1943). Dirac (1964) has proved that every 6-chromatic graph
contains a subgraph contractible to K less one edge.

Dirac, G. A. (1964). Generalizations of the five colour theorem, in
Theory of Graphs and its Applications (ed. M. Fiedler), Academic
Press, New York, pp- 21-27 :

Every k-chromatic graph contains a subdivision of K, (G. Hajo6s, 1961).

Pelikan (1969) has shown that every S5-chromatic graph contains a

subdivision of Ks less one edge.
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Pelikdn, J. (1969). Valency conditions for the existence of certain
subgraphs, in Theory of Graphs (eds. P. Erdés and G. Katona),
Academic Press, New York, pp. 251-58

40. Every 2-edge-connected 3-regular simple graph which has no Tait
colouring contains a subgraph contractible to the Petersen graph (W. T.
Tutte, 1966).

Isaacs, R. (1975). Infinite families of nontrivial trivalent graphs which
are not Tait colourable. Amer. Math. Monthly, 82, 221-39 |

Tutte, W. T. (1966). On the algebraic theory of graph colorings. J.
Combinatorial Theory, 1, 15-50

41. For every surface S, there exists a finite number of graphs which have

minimum degree at least three and are minimally nonembeddable on S.
t42. If D is diconnected, then D has a directed cycle of length at least x (M.
Las Vergnas, 1974).

43. If D is a tournament with v odd and every indegree and outdegree
equal to (v—1)/2, then D is the union of (v—1)/2 arc-disjoint directed
Hamilton cycles (P. Kelly, 1966).

44. If D is a tournament with v even, then D is the union of

Y. max{0, d*(v)—d (v)} arc-disjoint directed paths (R. O’Brien, 1974).

vev
This would imply the truth of conjecture 43.
45. Characterise the tournaments D with the property that all subtourna-
" ments D—v are isomorphic (A. Kotzig, 1973). |

46. If D is a digraph which contains a directed cycle, then there is some arc
whose reversal decreases the number of directed cycles in D (A. Addm,
1963).

47. Given a positive integer n, there exists a least integer f(n) such that in
any digraph with at most n arc-disjoint directed cycles there are f(n)
arcs whose deletion destroys all directed cycles (T. Gallai, 1964; D.
H. Younger, 1968).

Erdos. P. and Pésa, L. (1962). On the maximal number of disjoint
circuits of a graph. Publ. Math. Debrecen, 9, 3-12

Younger, D. H. (1973). Graphs with interlinked directed circuits, in
Proceedings of Midwest Symposium on Circuit Theory

48. An (m + n)-regular graph is (m, n)-orientable if it can be oriented so-
that each indegree is either m or n. Every 5-regular simple graph with
no 1-edge cut or 3-edge cut is (4, 1)-orientable (W. T. Tutte, 1972).
Tutte has shown that this would imply Grotzsch’s theorem

49. Obtain an algorithm to find a maximum flow in a network with two
sources x; and x., two sinks y, and y,, and two commodities, the
requirement being to ship commodity 1 from x, to y: and commodity 2
from x, to y. (L. R. Ford and D. R. Fulkerson, 1962).
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Rothschild, B. and Whinston, A. (1966). On two commodity network
flows. Operations Res., 14, 377-87

50. Every 2-edge-connected digraph D has a circulation f over the field of
integers modulo 5 in which f(a) # 0 for all arcs a (W. T. Tutte, 1949).
Tutte has shown that this would imply the five-colour theorem.

References for problems solved since first printing:

16. Gobel, F. and Jagers, A. A. (1976). On a conjecture of Tutte concerning
minimal tree numbers. J. Combinatorial Theory (B), to be published .

36 and 37. Appel, K. and Haken, W. (1976). Every planar map is four
colorable. Bull. Amer. Math. Soc., 82, 711-2

42. Bondy, J. A. (1976). Diconnected orientations and a conjecture of Las
Vergnas. J. London Math. Soc., to be published




