11 Networks

11.1 FLows

Transportation networks, the means by which commodities are shipped from
their production centres to their markets, can be most effectively analysed
when they are viewed as digraphs that possess some additional structure.
The resulting theory is the subject of this chapter. It has a wide range of
important applications.

A network N is a digraph D (the underlying digraph of N) with two
distinguished subsets of vertices, X and Y, and a non-negative integer-
valued function ¢ defined on its arc set A ; the sets X and Y are assumed to
be disjoint and nonempty. The vertices in X are the sources of N and those
in Y are the sinks of N. They correspond to production centres and
markets, respectively. Vertices which are neither sources nor sinks are called
intermediate vertices; the set of such vertices will be denoted by I. The
function ‘¢ is the capacity function of N and its value on an arc a the
capacity of a. The capacity of an arc can be thought of as representing the
maximum rate at which a commodity can be transported along it.

We represent a network by drawing its underlying digraph and labelling
each arc with its capacity. Figure 11.1 shows a network with two sources x;
and x», three sinks y;, y. and ys, and four intermediate vertices v,, v2, v3 and
Us.
If ScV, we denote V\S by S. In addition, we shall find the following
notation useful. If f is a real-valued function defined on the arc set A of N,
and if K < A, we denote Z f(a) by f(K). Furthermore, if K is a set of arcs

a€EK .

of the form (S, S), we shall write f*(S) for f(S, S) and f~(S) for f(§, S).
A flow in a network N is an integer-valued function f defined on A such
that

0=f(a)=c(a) forall acA (11.1)
and :

f~(v)=f"(v) forall veI} (11.2)

The value f(a) of f on an arc a can be likened to the rate at which
material is transported along a under the flow f. The upper bound in
~condition (11.1) is called the capacity constraint; it imposes the natural
restriction that the rate of flow along an arc cannot exceed the capacity of
the arc. Condition (11.2), called the conservation condition, requires that, for
any intermediate vertex v, the rate at which material is transported into v is
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Figure 11.1. A network

equal to the rate at which it is transported out of v. Note that every network
has at least one flow, since the function f defined by f(a) =0, for all a € A,
clearly satisfies both (11.1) and (11.2); it is called the zero flow. A less trivial
example of a flow is given in figure 11.2. The flow along each arc is indicated
in bold type.

If S is a subset of vertices in a network N and f is a flow in N, then
fH(S)—f7(S) is called the resultant flow out of S, and f7(S)—f*(S) the
resultant flow into S, relative to f. Since the conservation condition requires
that the resultant flow out of any intermediate vertex is zero, it is intuitively
clear and not difficult to show (exercise 11.1.3) that, relative to any flow f,
the resultant flow out of X is equal to the resultant flow into Y. This
common quantity is called the value of f, and is denoted by val f; thus

val f = f*(X)~f7(X)
The value of the flow indicated in figure 11.2 is 6.
A flow f in N is a maximum flow if there is no flow f" in N such that
val f'>val f. Such flows are of obvious importance in the context of trans-

portation networks. The problem of determining a maximum flow in an
arbitrary network can be reduced to the case of networks that have just one

Figure 11.2. Aflowina netWork
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Figure 11.3

source and one sink by means of a simple device. Given a network N,
construct a new network N’ as follows:

(i) adjoin two new vertices x and y to N;

(i1) join x to each vertex in X by an arc of capacity =;
(ii1) join each vertex in Y to y by an arc of capacity ;
(iv) designate x as the source and y as the sink of N'.

Figure 11.3 illustrates this procedure as applied to the network N of figure
11.1.

Flows in N and N’ correspond to one another in a simple way. If f is a
flow in N such that the resultant flow out of each source and into each sink is
non-negative (it suffices to restrict our attention to such flows) then the function
/' defined by ' '

f(a) if aisanarcof N o
f'(a) = f*(v)—f"(v) if a=(x,v) (11.3)
ff)=f"(v) if a=(r,y)
is a flow in N’ such that val f'=valf (exercise 11.1.4a). Conversely, the
restriction to the arc set of N of a flow in N’ is a flow in N having the same
value (exercise 11.1.4b). Therefore, throughout the next three sections, we
shall confine our attention to networks that have a single source x and a
single sink y.
Exercises

11.1.1 For each of the following networks (see diagram, p. 194), determine

all possible flows and the value of a maximum flow.
11.1.2 Show that, for any flow f in N and any Sc V,

L@ -f)=f(-f(S)

(Note that, in general, T F@#f(S) and T, f(0) #£7(S)).
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Exercise 11.1.1 1

11.1.3 Show that, relative to any flow f in N, the resultant flow out of X is
equal to the resultant flow into Y.
11.1.4 Show that

(a) the function f’ given by (11.3) is a flow in N’ and that
val f'=val f;

(b) the restriction to the arc set of N of a flow in N'is a flow in N
having the same value.

11.2 curts

Let N be a network with a single source x and a single sink y. A cut in N is
a set of arcs of the form (S, S), where x€ S and yeS. In the network of
figure 11.4, a cut is indicated by heavy lines.
The capacity of a cut K is the sum of the capacities of its arcs. We denote
the capacity of K by cap K; thus
capK =), c(a)

a€K

The cut indicated in figure 11.4 has capacity 16.

Figurc 114. A cut in a}network
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Lemma 11.1 For any flow f and any cut (S, S) in N
val f = f*(S)—f(S) (11.4)

Proof Let f be a flow and (S, S) a cut in N. From the definitions of flow
and value of a flow, we have

. valf if v=x
fr)-f(v)= { if veS\{x}

Summing these equations over S and simplifying (exercise 11.1.2), we
obtain

valf= T (" (0)~f @) =f"(S)=1(5) O

It is convenient to call an arc a f-zero if f(a) =0, f-positive if f(a)>0,
f-unsaturated if f(a)<c(a) and f-saturated if f(a)=c(a).

Theorem 11.1 For any flow f and any cut K=(S, S) in N
val f=cap K (11.5)

Furthermore equality holds in (11.5) if and only if each arc in (S, S) is
f-saturated and each arc in (S, S) is f-zero.

Proof By (11.1)
fr(S)=capK (11.6)
and
f(S)=0 (11.7)

We obtain (11.5) by substituting inequalities (11.6) and (11.7) in (11.4).
The second statement follows, on noting that equality holds in (11.6) if and

only if each arc in (S, S) is f-saturated, and equality holds in (11.7) if and
only if each arc in (S, S) is f-zero [

Acut Kin N is a minimum cut if there is no cut K’ in N such that
capK'<capK. If f*is a maximum flow and K is a minimum cut, we have,
as a special case of theorem 11.1, that

val f*=cap K (11.8)
Corollary 11.1 Let f be a flow and K be a cut such that val f = cap K. Then
f is a maximum flow and K is a minimum cut.
Proof Let f* be a maximum flow and K a minimum cut. Then, by (11.8),
val f <val f*=<cap K =cap K

Since, by hypothesis, val f = cap K, it follows that val f=val f* and cap K =
cap K. Thus f is a maximum flow and K is a minimum cut 0O
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In the next section, we shall prove the converse of corollary 11.1, namely
that equality always holds in (11.8).

Exercises
11.2.1 In the following network:

(a) determine all cuts;
(b) find the capacity of a minimum cut;
(c) show that the flow indicated is a maximum flow.

11.2.2 Show that, if there exists no directed (x, y)-path in N, then the
value of a maximum flow and the capacity of a minimum cut are
both zero. N ,

11.2.3 If (S, S) and (T, T) are minimum cuts in N, show that (SUT, SUT)
and (SNT,SNT) are also minimum cuts in N.

11.3 THE MAX-FLOW MIN-CUT THEOREM

In this section we shall present an algorithm for determining a maximum
flow in a network. Since a basic requirement of any such algorithm is that it
be able to decide when a given flow is, in fact, a maximum flow, we first look
at this question. |

Let f be a flow in a network N. With each path P in N we associate a
non-negative integer «(P) defined by

t(P)= min ¢(a)

where

L(d) _ {C(a)-—f(a) if a is a forward arc of P
f(a) if a is a reverse arc of P

As may easily be seen, «(P) is the largest amount by which the flow along P
can be increased (relative to f) without violating condition (11.1). The path
P is said to be f-saturated if +(P)=0 and f-unsaturated if .(P)>0 (or,
equivalently, if each forward arc of P is f-unsaturated and each reverse arc
of P is f-positive). Put simply, an f-unsaturated path is one that is not being
used to its full capacity. An f-incrementing path is an f-unsaturated path
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from the source x to the sink y. For example, if f is the flow indicated in the
network of figure 11.5a, then one f-incrementing path is the path P=
Xv;0205y. The forward arcs of P are (x, v:) and (vs, y) and «(P)=2.

The existence of an f-incrementing path P in a network is significant since
it implies that f is not a maximum flow; in fact, by sending an additional flow
of 1(P) along P, one obtains a new flow f defined by

f(a)+ «(P) if a is a forward arc of P
f(a) =< f(a)—(P) if a is a reverse arc of P (11.9)

f(a) otherwise

for which valf=valf+ «(P) (exercise 11.3.1). We shall refer to f as the
revised flow based on P. Figure 11.5b shows the revised flow in the network
of figure 11.5a, based on the f-incrementing path xv,v,vsy.

The role played by incrementing paths in flow theory is analogous to that
of augmenting paths in matching theory, as the following theorem shows
(compare theorem 5.1).

Theorem 11.2 A flow f in N is a maximum flow if and only if N contains
no f-incr-eme’nting path.

Proof 1If N contains an f-incrementing path P, then f cannot be a
maximum flow since f, the revised flow based on P, has a larger value.

Conversely, suppose that N contains no f-incrementing path. Our aim is
to show that f is a maximum flow. Let S denote the set of all vertices to
which x is connected by f-unsaturated paths in N. Clearly x € S. Also, since
N has no f-incrementing path, y € S. Thus K = (S, S) is a cut in N. We shall
show that each arc in (S, S) is f-saturated and each arc in (S, S) is f-zero.

Consider an arc a with tail u€ S and head veS. Since u € S, there exists
an f-unsaturated (x, u)-path Q. If a were f-unsaturated, then Q could be
extended by the arc a to yield an f-unsaturated (x, v)-path. But ve S, and so
there is no such path. Therefore a must be f-saturated. Similar reasoning
shows that if a € (S, S), then a must be f-zero.

O O

V1 23 V4 22 . V5 . V1 - 23 V4 22 V5
(a) | (b)

Figure 11.5. (a) An f-incrementing path P; (b) revised flow based on P |
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On applying theorem 11.1, we obtain |
val f=cap K

It now follows from corollary 11.1 that f is a maximum flow (and that K is a
minimum cut) g

In the course of the above proof, we established the existence of a
maximum flow f and a minimum cut K such that val f = cap K. We thus have
the following theorem, due to Ford and Fulkerson (1956).

Theorem 11.3 In any network, the value of a maximum flow is equal to the
capacity of a minimum cut.

Theorem 11.3 is known as the max-flow min-cut theorem. It is of central
importance in graph theory. Many results on graphs turn out to be easy
consequences of this theorem as applied to suitably chosen networks. In
sections 11.4 and 11.5 we shall demonstrate two such applications. ’

The proof of theorem 11.2 is constructive in nature. We extract from it an
algorithm for finding a maximum flow in a network. This algorithm, also due
to Ford and Fulkerson (1957), is known as the labelling method. Starting
with a known flow, for instance the zero flow, it recursively constructs a
sequence of flows of increasing value, and terminates with a maximum flow.
After the construction of each new flow f, a subroutine called the labelling
procedure is used to find an f-incrementing path, if one exists. If such a path
P is found, then f, the revised flow based on P, is constructed and taken as
the next flow in the sequence. If there is no such path, the algorithm.
terminates; by theorem 11.2, f is a maximum flow.

To describe the labelling procedure we need the following definition. A
tree T in N is an f-unsaturated tree if (i) x € V(T), and (ii) for every Vertex v
of T, the unique (x, v)-path in T is an f-unsaturated path. Such a tree is
shown in the network of figure 11.6.

The search for an f-incrementing path involves growing an f-unsaturated
tree T in N. Initially, T consists of just the source x. At any stage, there are
two ways in which the tree may grow:

1. If there exists an f-unsaturated arc a in (S, S), where S = V(T), then both

a and its head are adjoined to T.

i 23 Y4 22 %
Figure 11.6. An f-unsaturated tree
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2. If there exists an f-positive arc a in (S, S), then both a and its tail are ,
adjoined to T.

Clearly, each of the above procedures results in an enlarged f-unsaturated
tree.

Now either T eventually reaches the sink y or it stops growing before
reaching y. The former case is referred to as breakthrough; in the event of
breakthrough, the (x, y)-path in T is our desired f-incrementing path. If,
however, T stops growing before reaching y, we deduce from theorem 11.1
and corollary 11.1 that f is a maximum flow. In figure 11.7, two iterations of
this tree-growing procedure are illustrated. The first leads to breakthrough;
the second shows that the resulting revised flow is a maximum flow.

The labelling procedure is a systematic way of growing an f-unsaturated
tree T. In the process of growing T, it assigns to each vertex v of T the label
l(v)=1(P.), where P, is the unique (x, v)-path in T. The advantage of this
labelling is that, in the event of breakthrough, we not only have the
f-incrementing path P,, but also the quantity «(P,) with which to calculate
the revised flow based on P,. The labelling procedure begins by assigning to
the source x the label I(x) =0, It continues according to the following rules:

1. If a is an f-unsaturated arc whose tail u is already labelled but whose
head v is not, then v is labelled I(v)=min {I(u), c(a)—f(a)}.

2. If a is an f-positive arc whose head u is already labelled but whose tail v
is not, then v is labelled I(v)=min {I(u), f(a)}.

In each of the above cases, v is said to be labelled based on u. To scan a
labelled vertex u is to label all unlabelled vertices that can be labelled based
on u. The labelling procedure is continued until either the sink y is labelled
(breakthrough) or all labelled vertices have been scanned and no more
vertices can be labelled (implying that f is a maximum flow).

A flow diagram summarising the labelling method is given in figure 11.8.

It is worth pointing out that the labelling method, as described above, is
not a good algorithm. Consider, for example, the network N in figure 11.9.
Clearly, the value of a maximum flow in N is 2m. The labelling method will
use the labelling procedure 2m +1 times if it starts with the zero flow and
alternates between selecting xpuvsy and xrvuqy as an incrementing path;
for, in each case, the flow value increases by exactly one. Since m is
arbitrary, the number of computational steps required to implement the
labelling method in this instance can be bounded by no function of » and e.
In other words, it is not a good algorithm. ' ’

However, Edmonds and Karp ( 1970) have shown that a slight refinement
of the labelling procedure turns it into a good algorithm. The refinement
suggested by them is the following: in the labelling procedure, scan on a
“first-labelled first-scanned’ basis; that is, before scanning a labelled vertex
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Figure 11.7.
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Figure 11.9

u, scan the vertices that were labelled before u. It can be seen that this
amounts to selecting a shortest incrementing path. With this refinement,
clearly, the maximum flow in the network of figure 11.9 would be found in
just two iterations of the labelling procedure.

Exercises
11.3.1 Show that the function f given by (11.9) is a flow with val f=
val f+ (P).

11.3.2 A certain commodity is produced at two factories x; and x,. The
commodity is to be shipped to markets y;, y; and y; through the
network shown below. Use the labelling method to determine the
maximum amount that can be shipped from the factories to the
markets.

X

11.3.3 Show that, in any network N (with integer capacities), there is a
maximum flow f such that f(a) is an integer for all a € A.
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11.3.4 Consider a network N such that with each arc a is associated an
integer b(a) = c(a). Modify the labelling method to find a maximum
flow f in N subject to the constraint f(a)=b(a) for all ac A
(assuming that there is an initial flow satisfying this condition).

11.3.5* Consider a network N such that with each intermediate vertex v is
associated a non-negative integer m(v). Show how a maximum flow
f satisfying the constraint f"(v)=m(v) for all ve V\{x, y} can be
found by applying the labelling method to a modified network.

APPLICATIONS

11.4 MENGER’'S THEOREMS

In this section, we shall use the max-flow min-cut theorem to obtain a
number of theorems due to Menger (1927); two of these have already been
mentioned in section 3.2. The following lemma provides a basic link.

Lemma 11.4 Let N be a network with source x and sink y in which each
arc has unit capacity. Then

(a) the value of a maximum flow in N is equal to the maximum number m
of arc-disjoint directed (x, y)-paths in N; and

(b) the capacity of a minimum cut in N is equal to the minimum number n
of arcs whose deletion destroys all directed (x, y)-paths in N.

Proof Let f* be a maximum flow in N and let D* denote the digraph
‘obtained from D by deleting all f*-zero arcs. Since each arc of N has unit
capacity, f*(a) =1 for all ae A(D¥*). It follows that

(l) dD"(X) dD*(X) val f* dD‘(y) dD'(y)
(i) dp«(v)=dp+(v) forall ve V\{x,y}.

Therefore (exercise 10.3.3) there exist val f* arc- dlS]Olnt directed (x, y)-
paths in D*, and hence also in D. Thus

valf*sm - (11.10)

Now let P, P, ..., P. be any system‘ of m arc-disjoint directed (x, y)-
~ paths in N, and define a function f on A by

’ 1 if a isan arcof L"J P;
f(a)= { i=1

| 0 otherwise |
~ Clearly f is a flow in N with value m. Since f* is a maximum flow, we have

val f¥*=m | (11.11)




204 Graph Theory Wzth Applications
It now follows from (11.10) and (11.11) that
val f*=m

Let K =(S, S) be a minimum cut in N. Then, in N—K, no vertex of S is
reachable from any vertex in S; in particular, y is not reachable from x.
Thus K is a set of arcs whose deletion destroys all directed (x, y)-paths, and
we have :

capK=|K|=n (11.12)

Now let Z be a set of n arcs whose deletion destroys all directed
(x, y)-paths, and denote by S the set of all vertices reachable from x in
N-Z. Since xe 8§ and ye S, K=(S,S) is a cut in N. Moreover, by the
definition of S, N —Z can contain no arc of (S, S), and so K < Z. Since K is
a minimum cut, we conclude that

capK =capK = |K|=<|Z|=n (11.13)
Together, (11. 12) and (11 13) now yield N
capK=n 0O
Theorem 11.4 Let x and y be two vertices of a digraph D. Then the

maximum number of arc-disjoint directed (x, y)-paths in D is equal to the

minimum number of arcs whose deletion destroys all directed (x, y)-paths in
D. :

Proof We obtain a network N with source x and sink y by assigning unit
capacity to each arc of D. The theorem now follows from lemma 11.4 and
the max-flow min-cut theorem (11.3) U

A simple trick immediately yields the undirected version of theorem 11.4.
Theorem 11.5 Let x and y be two vertices of a graph G. Then the

maximum number of edge-disjoint (x, y)-paths in G is equal to the
minimum number of edges whose deletion destroys all (x, y)-paths in G.

Proof Apply theorem 11.4 to D(G) the assocnated digraph of G (exer-
cise 10.3.6) O

Corollary 11.5 A graph G is k-edge-connected if and only if any two
distinct vertices of G are connected by at least k edge-disjoint paths.

Proof This follows directly from theorem 11. 5 and the definition of k-
edge-connectedness D '

We now turn to the vertex versions of the above theorems.
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Theorem 11.6 Let x and y be two vertices of a digraph D, such that x is
not joined to y. Then the maximum number of internally-disjoint directed
(x, y)-paths in D is equal to the minimum number of vertices whose deletion
destroys all directed (x, y)-paths in D.

Proof Construct a new digraph D' from D as follows:

(i) split each vertex ve V\{x, y} into two new vertices v’ and v", and join
them by an arc (v’, v");

(ii) replace each arc of D with head v e V\{x, y} by a new arc with head v’,
and each arc of D with tail ve V\{x, y} by a new arc with tail v". This
construction is illustrated in figure 11.10.

Now to each directed (x, y)-path in D’ there corresponds a directed
(x, y)-path in D obtained by contracting all arcs of type (v’,v"); and,
conversely, to each directed (x, y)-path in D, there corresponds a directed
(x, y)-path in D’ obtained by splitting each internal vertex of the path.
Furthermore, two directed (x, y)-paths in D’ are arc-disjoint if and only if
the corresponding paths in D are internally-disjoint. It follows that the
maximum number of arc-disjoint directed (x, y)-paths in D’ is equal to the
maximum number of internally-disjoint directed (x, y)-paths in D. Similarly,
the minimum number of arcs in D' whose deletion destroys all directed
(x, y)-paths is equal to the minimum number of vertices in D whose deletion
destroys all directed (x, y)-paths (exercise 11.4.1). The theorem now follows
from theorem 11.4 0

Theorem 11.7 Let x and y be two nonadjacent vertices of a graph G. Then
the maximum number of internally-disjoint (x, y)-paths in G is equal to the
minimum number of vertices whose deletion destroys all (x, y)-paths.

Proof Apply theorem 11.6 to D(G), the associated digraph of G [

The following corollary is immediate.

Corollary 11.7 A graph G with v=k+1 is k-connected if and only if any
two distinct vertices of G are connected by at least k internally-disioint
paths. '

ull VI V"

Figure 11.10
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Exercises |

11.4.1 Show that, in the proof of theorem 11.6, the minimum number of
arcs in D’ whose deletion destroys all directed (x, y)-paths is equal
to the minimum number of vertices in D whose deletion destroys
all directed (x, y)-paths.

11.4.2 Derive Konig’s theorem (5.3) from theorem 11.7.

11.43 Let G be a graph and let S and T be two dlS]Olnt subsets of V.
Show that the maximum number of vertex-disjoint paths with one
end in S and one end in T is equal to the minimum number of
vertices whose deletion separates S from T (that is, after deletion
no component contains a vertex of S and a vertex of T).

11.4.4* Show that if G is k-connected with k =2, then any k vertices of G
are contained together in some cycle. (G. A. Dirac)

11.5 FEASIBLE FLOWS

Let N be a network. Suppose that to each source x; of N is assigned a
non-negative integer o (x;), called the supply at xi, and to each sink y; of N is
assigned a non-negative integer a(y,) called the demand at y;. A flow fin N
is said to be feasible if :

| ffx)—f (x)=o(x:)) forall xeX
and , ' ’
f-(y)—f*(y)=a(y) forall yeY
In other words, a flow f is feasible if the resultant flow out of each source x;
relative to f does not exceed the supply at x;, and the resultant flow into
each sink y; relative to f is at least as large as the demand at y;. A natural
question, then, is to ask for necessary and sufficient conditions for the
existence of a feasible flow in N. Theorem 11.8, due to Gale (1957),
provides an answer to this question. It says that a feasible flow exists if and

only if, for every subset S of V, the total capacity of arcs from S to S is at
~ least as large as the net demand of S.

For any subset S of V, we shall denote ) o(v) by o(S) and ) d(v) by
vES vES
a(S). ‘

Theorem 11.8 There exists a feasible flow in N if and only if, for all Sc V
c(S,8)=a(Y N8 -o(XNS) (11.14)
Proof Construct a new network N’ from N as follows:

(i) adjoin two new vertices x and y to N;
(i) join x to each x;e X by an arc of capacity o(x:);
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(i) join each y;e Y to y by an arc of capacity a(y;);
(iv) designate x as the source and y as the sink of N'.

This construction is illustrated in figure 11.11.

It is not difficult to see that N has a feasible flow if and only if N’ has a
flow that saturates each arc of the cut (Y, {y} (exercise 11.5.1). Now a flow
in N' that saturates each arc of (Y, {y} clearly has value a(Y) = cap (Y, {y}h,
and is therefore, by corollary 11.1, a maximum flow. It follows that N has a
feasible flow if and only if, for each cut (S U{x}, SU{y}) of N’

cap (S U{x},§U{y})za(Y) (11.15)

But conditions (11.14) and (11.15) are precisely the same; for, denoting the
capacity function in N’ by ¢’, we have
cap (SU{x}, SU{y}) =c'(S, S)+¢'(S, {y}) +c'({x}, S)
=c(S,8)+a(YNS)+o(XNS) O

There are many applications of theorem 11.8 to problems in graph theory.
We shall discuss one such application.

Let p=(py, pz2...,pn) and q=(q,, qa, . . ., q.) be two sequences of non-
negative integers. We say that the pair (p, q) is realisable by a simple bipartite
graph if there exists a simple bipartite graph G with bipartition
({x1, %2, .. ., Xm}, {y1, Y2, ..., ya}), such that

d(x)=p: for 1<is=m
and
d(y;)=q; for 1=sj=<n

For example, the pair (p, q), where
P=@,2,2,2,1) and q=(3,3,2,1,1)
is realisable by the bipartite graph of figure 11.12.

Xy ‘ . %

Figure 11.11
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3 2 2 2 1
(o}

3 3 2 1 1

Figure 11.12

An obvious necéssary condition for realisability is that

Z =¥ q | (11.16)

j=1

However, (11.16) is not in itself sufficient. For instance, the pair (p, q),
where

p=(5,4,4,2,1) and q=(5,4,4,2,1)

is not realisable by any simple bipartite graph (exercise 11.5.2). In the
following theorem we present necessary. and sufficient conditions for the
realisability of a pair of sequences by a simple bipartite graph. The order of
the terms in the sequences clearly has no bearing on the question of
realisability, and we shall find it convenient to assume that the terms of q are
arranged in nonincreasing order

$=q=...=q, . (11.17)

Theorem 11.9 Let p=(p1,pz ..., Pm) and q=(q1,qz - .., qs) be two se-
quences of non-negative integers that satisfy (11.16) and (11.17). Then (p, q)
is realisable by a simple bipartite graph if and only if

m |3
2 min{p, k}=2 q; for 1=k=n (11.18)
1= 1=

Proof Let X ={xi,xs,...,%Xm} and Y ={yi, y2,..., ya} be two disjoint
sets, and let D be the digraph obtained from the complete bipartite graph
with bipartition (X, Y) by orienting each edge from X to Y. We obtain a
network N by assigning unit capacity to each arc of D and designating the
vertices in X and Y as its sources and sinks, respectively. We shall assume,
further, that the supply at source x; is pi, 1 =i <m, and that the demand at
sink y; is q;, 1 <j=n.

Now, to each spanning subgraph of D, there corresponds a flow in N
which saturates precisely the arcs of the subgraph, and this correspondence
is clearly one-one. In view of (11.16), it follows that (p, q) is realisable by a
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simple bipartite graph if and only if the network N has a feasible flow. We
now use theorem 11.8.
For any set S of vertices in N, write

I(S)={i|x;ie S} and J(S)={j|y;eS}
Then, by definition,

(S, 8) =) |IS)| }
(11.19)
i€t

o(XN§)= Zs)pi and (YNS)= Y gq

i€I(

Suppose that N has a feasible flow. By theorem 11.8 and (11.19)
IISIIS)I= 2 g4~ Y p
JEXS) )

€IS

for any Sc X UY. Setting $={x;| p;>k}U{y,;|j>k}, we have

k
2, min{p;, k}=Y q;— ) min{p, k}
i€I(S) j=1 iIEIS)

Since this holds for all values of k, (11.18) follows.

Conversely, suppose that (11,18) is satisfied. Let S be any set of vertices
in N. By (11.18) and (11.19)

c(S, S)= Y min{p;, k}Zi qi— z) min{p;, k} =a(Y N S)—a(XNS)

i€l(s) j=1 €IS
where k =|J(S)|. It follows from theorem 11.8 that N has a feasible flow [

We conclude by looking at theorem 11.9 from the viewpoint of matrices.
With each simple bipartite graph G having bipartition ({xi, x2, ..., Xm},
{y1, y25 ..., Ya}), We can associate an m X n matrix B in whieh b;=1 or 0,
depending on whether x;y; is an edge of G or not. Conversely, every m X n
(0, 1)-matrix corresponds in this way to a simple -bipartite graph. Thus
theorem 11.9 provides necessary and sufficient conditions for the existence
of an m xXn (0, 1)-matrix B with row sums Pi, P2, . . ., Pm and column sums
q1, 92 . - ., qn.

There is a simple way of visualising condition ( 11.18) in terms of matrices.
Let B* denote the (0, 1)-matrix in which the p: leading terms in each row i
are ones, and the remaining entries are zeros, and let pt, p¥, ..., p¥ be the
column sums of B*. The sequence p* = (p¥, p%, ..., p¥ is called the conju-
gate of p. The conjugate of (5, 4, 4, 2, 1) is (5,4,3,3, 1), for example (see
figure 11.13). |

k
Now consider the sum ) pf. Row i of B* contributes min{p;, k} to this
=1

k
sum. Therefore the left-hand side of (11.18) is equal to Y p¥, and (11.18) is
, i=1
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P*
5 4 3 3 1
511 1 1 1 1
411 1 1 1 0
p 411 1 1 1 0
211 1 0 0 O
11 0 0 0 0
Figure 11.13
equivalent to the condition '
k k
j_l ZZ =k=n

This formulatiori of theorem 11.9 in terms of (0, 1)-matrices is due to Ryser

(1957).

For other applications of the theory of ﬂows in networks, we refer

the reader to Ford and Fulkerson (1962).

Exercises

11.5.1

11.5.2
11.5.3

11.5.4*

11.5.5

Show that the network N in the proof of theorem 11.8 has a
feasible flow if and only if N’ has a flow that saturates each arc of

~the cut (Y, {y}).

Show that the pair (p, q), where

p=(,4,4,2,1) and q= (54421)

is not reahsable by any simple bipartite graph.
Given two sequences, p=(pi, Pz, ...,pPa) and q=(qs, gz, - - - » qn),
find necessary and sufficient conditions for the existence of a
digraph D on the vertex set {v1, vz, .. ., va}, such that (i) d™(v:) = p;
and d*(v)=gqi, 1=<i=n, and (ii) D has a (0, 1) adjacency matrix.
Let p=(ps, p2, ..., pm) and q=(q1, q2, - . . , g) b€ two nonincreasing
sequences of non-negative integers, and denote the sequences
(P2 p3 ... pw) and (q1—1,92—1,...,qp — 1,»qp1;1? ey qn) by p’ and
q', respectively.
(a) Show that (p, q) is realisable by a simple bipartite graph if and
only if the same is true of (p’, q').
(b) Using (a), describe an algorithm for constructing a simple
bipartite graph which realises (p, q), if such a realisation exists.
An (m +n)-regular graph G is (m,n)-orientable if it can be orlented
so that each indegree is either m or n.
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(a)* Show that G is (m,n)-orientable if and only if there is a
partition (Vy, V) of V such that, for every Sc 'V,

((m=n)([V:n S|-[V.nS]| =[S, §]]

(b) Deduce that if G is (m,n)-orientable and m > n, then G is also
(m—1, n+1)-orientable.
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