3 Connectivity
3.1 CONNECTIVITY

In section 1.6 we introduced the concept of connection in graphs. Consider,
now, the four connected graphs of figure 3.1.

G, is a tree, a minimal connected graph; deleting any edge disconnects it.
G cannot be disconnected by the deletion of a single edge, but can be
disconnected by the deletion of one vertex, its cut vertex. There are no cut
edges or cut vertices in Gs, but even so Gs is clearly not as well connected as
G., the complete graph on five vertices. Thus, intuitively, each successive
graph is more strongly connected than the previous one. We shall now
define two parameters of a graph, its connectivity and edge connectivity,
which measure the extent to which it is connected. 1

A vertex cut of G is a subset V' of V such that G — V' is disconnected. A
k-vertex cut is a vertex cut of k elements. A complete graph has no vertex
cut; in fact, the only graphs which do not have vertex cuts are those that
contain complete graphs as spanning subgraphs. If G has at least one pair of
distinct nonadjacent vertices, the connectivity k(G) of G is the minimum k
for which G has a k-vertex cut; otherwise, we define «(G) to be v—1. Thus
k(G) =0 if G is either trivial or disconnected. G is said to be k-connected if
k(G)=k. All nontrivial connected graphs are 1-connected.

Recall that an edge cut of G is a subset of E of the form [S, S], where S is
a nonempty proper subset of V. A k-edge cut is an edge cut of k elements.
If G is nontrivial and E' is an edge cut of G, then G —E' is disconnected; we
then define the edge connectivity k'(G) of G to be the minimum k for which
G has a k-edge cut. If G is trivial, k'(G) is defined to be zero. Thus k'(G) =0
if G is either trivial or disconnected, and x'(G) =1 if G is a connected graph
with a cut edge. G is said to be k-edge-connected if k'(G) = k. All nontrivial
connected graphs are 1-edge-connected.
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Figure 3.1
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Figure 3.2

Theorem 3.1 k<k'<3$.

Proof 1If G is trivial, then k'= 0=4. Otherwise, the set of links incident
with a vertex of degree § constitute a 6-edge cut of G. It follows that k' < §.

We prove that k <k’ by induction on «’. The result is true if x'= 0, since
then G must be either trivial or disconnected. Suppose that it holds for all
graphs with edge connectivity less than k, let G be a graph with k'(G) = k >
0, and let e be an edge in a k-edge cut of G. Setting H = G —e, we have
k'(H)=k -1 and so, by the induction hypothesis, k(Hy<k-1. N

If H contains a complete graph as a spanning subgraph, then so does G
and

k(G)=x(H)<k-1
Otherwise, let S be a vertex cut of H with k(H) elements. Since H-S is
disconnected, either G —§ is disconnected, and then

k(G)=k(H)=sk-1

or else G- is connected and e is a cut edge of G—S. In this latter case,
either v(G—-8)=2 and

k(G)=w(G)-1=k(H)+1=k
or (exercise 2.3.1a) G—S has a 1-vertex cut {v}, implying that S U{v}is a
vertex cut of G and
k(G)=k(H)+1<k
Thus in each case we have k(G)=k =«'(G). The result follows by . the
principle of induction [

The inequalities in theorem 3.1 are often strict. For example, the graph G
of figure 3.2 has k =2, k'=3 and § =4,
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Exercises

3.1.1 (a) Show that if G is k-edge-connected, with k >0, and if E' is a set
of k edges of G, then w(G—-E')=<2.
(b) For k>0, find a k-connected graph G and a set V' of k vertices
of G such that w(G— V')>2. |
Show that if G is k-edge-connected, then & =kv/2.
(a) Show that if G is simple and 8§ =v—2, then k =34.
(b) Find a simple graph G with 8=v—3 and « <8
3.1.4 (a) Show that if G is simple and 8 =v/2, then k' =3.
(b) Find a simple graph G with § =[(v/2)—1] and «'<8.
3.1.5 Show that if G is simple and & >(v+k 2)/2, then G is k-
connected.
3.1.6 Show that if G is simple and 3-regular, then k =«’.
3.1.7 Show that if [, m and n are integers such that 0 <l=m =n, then
there exists a simple graph G with k =1, k'=m, and 8 =n.
(G. Chartrand and F. Harary)
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3.2 BLOCKS

A connected graph that has no cut vertices is called a block. Every block
with at least three vertices is 2-connected. A block of a graph is a subgraph
that is a block and is maximal with respect to this property. Every graph is
the union of its blocks; this is illustrated in figure 3.3.

i £

(b)
Figure 3.3. (a) G; (b) the blocks of G "

A family of paths in G is said to be internally-disjoint if no vertex of G is
an internal vertex of more than one path of the famlly The following
theorem is due to Whitney (1932).

Theorem 3.2 A graph G with v =3 is 2-connected if and only if any two
vertices of G are connected by at least two internally-disjoint paths.
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Figure 3.4

Proof If any two vertices of G are connected by at least two internally-
disjoint paths then, clearly, G is connected and has no 1-vertex cut. Hence
G is 2-connected.

Conversely, let G be a 2-connected graph. We shall prove, by induction
on the distance d(u, v) between u and v, that any two vertices u and v are
connected by at least two internally-disjoint paths.

Suppose, first, that d(u, v) = 1. Then, since G is 2-connected, the edge uv
is not a cut edge and therefore, by theorem 2.3, it is contained in a cycle. It
follows that u and v are connected by two internally-disjoint paths in G.

Now assume that the theorem holds for any two vertices at distance less
than k, and let d(u, v) =k =2. Consider a (u, v)-path of length k, and let w
be the vertex that precedes v on this path. Since d(u, w) =k —1, it follows
from the induction hypothesis that there are two internally-disjoint (u, w)-
paths P and Q in G. Also, since G is 2-connected, G —w is connected and
so contains a (u, v)-path P'. Let x be the last vertex of P’ that is also in
PU Q (see figure 3.4). Since u is in PUQ there is such an x; we do not
exclude the possibility that x =v

We may assume, without loss of generality, that x is in P. Then G has two
internally-disjoint (u, v)-paths, one composed of the section of P from u to
x together with the section of P’ from x to v, and the other composed of Q
together with the path wo 0

Corollary 3.2.1 1If G is 2-connected, then any two vertices of G lie on a
common cycle.

Proof This follows immediately from theorem 3.2 since two vertices lie
on a common cycle if and only if they are connected by two interna'y-
disjoint paths 0O

It is convenient, now, to introduce the operation of subdivision of an
edge. An edge e is said to be subdivided when it is deleted and replaced by a
path of length two connecting its ends, the internal vertex of this path being
a new vertex. This is illustrated in figure 3.5.
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Figure 3.5. Subdivision of an edge

It can be seen that the class of blocks with at least three vertices is closed
under the operation of subdivision. The proof of the next corollary uses this
fact. :

Corollary 3.2.2 If G is a block with v =3, then any two edges of G lie on a
common cycle.

Proof Let G be a block with »=3, and let e, and e, be two edges of G.
Form a new graph G’ by subdividing e: and e, and denote the new vertices
by v: and v,. Clearly, G’ is a block with at least five vertices, and hence is
2-connected. It follows from corollary 3.2.1 that v, and v, lic on a common
cycle of G'. Thus e, and e, lie on a common cycle of G (see figure 3.6) O

Theorem 3.2 has a generalisation to k-connected. graphs, known as
Menger’s theorem: a graph G with v =k +1 is k-connected if and only if any
two distinct vertices of G are connected by at least k internally-disjoint
paths. There is also an edge analogue of this theorem: a graph G is
k-edge-connected if and only if any two distinct vertices of G are connected

Figure 3.6. (a) G'; (b) G
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by at least k edge-disjoint paths. Proofs of these theorems will be given in
chapter 11.

Exercises

3.2.1 Show that a graph is 2-edge-connected if and only if any two vertices
are connected by at least two edge-disjoint paths. :

3.2.2 Give an example to show that if P is a (u, v)-path in a 2-connected
graph G, then G does not necessarily contain a (u, v)-path Q
internally-disjoint from P.

3.2.3 Show that if G has no even cycles, then each block of G is either K, or
K,, or an odd cycle.

3.2.4 Show that a connected graph which is not a block has at least two
blocks that each contain exactly one cut vertex.

3.2.5 Show that the number of blocks in G is equal to w+ Zv(b(v)— 1),

where b(v) denotes the number of blocks of G containing v.

3.2.6* Let G be a 2-connected graph and let X and Y be disjoint subsets of
V, each containing at least two vertices. Show that G contains
disjoint paths R and Q such that

(i) the origins of P and Q belong to X,

(ii) the termini of P and Q belong to Y, and

(iii) no internal vertex of P or Q belongs to XU Y.

3.2.7* A nonempty graph G is k-critical if, for every edge e, k(G —e)<

k(G).

(a) Show that every k-critical 2-connected graph has a vertex of
degree two.
(Halin, 1969 has shown that, in general, every k-critical k-
connected graph has a vertex of degree k.)

(b) Show that if G is a k-critical 2-connected graph with v =4, then
eE<2v—4. . (G. A. Dirac)

3.2.8 Describe a good algorithm for finding the blocks of a graph.

APPLICATIONS

3.3 CONSTRUCTION OF RELIABLE COMMUNICATION NETWORKS

If we think of a graph as representing a communication network, the
connectivity (or edge connectivity) becomes the smallest number of com-
munication stations (or communication links) whose breakdown would
jeopardise communication in the system. The higher the connectivity and
edge connectivity, the more reliable the network. From this point of view, a




48 Graph Theory with Applications

tree network, such as the one obtained by Kruskal’s algorithm, is not very
reliable, and one is led to consider the following generalisation of the
connector problem.

Let k be a given positive integer and let G be a weighted graph.
Determine a minimum-weight k-connected spanning subgraph of G.

For k =1, this problem reduces to the connector problem, which can be
solved by Kruskal’s algorithm. For values of k greater than one, the
problem is unsolved and is known to be difficult. However, if G is a
complete graph in which each edge is assigned unit weight, then the problem
has a simple solution which we now present.

Observe that, for a weighted complete graph on n vertices in which each
edge is assigned unit weight, a minimum-weight m-connected spanning
subgraph is simply an m-connected graph on n vertices with as few edges as
possible. We shall denote by f(m,n) the least number of edges that an
m-connected graph on n vertices can have. (It is, of course, assumed that
m <n.) By theorems 3.1 and 1.1 -

f(m, n)={mn/2} | (3.1)

We shall show that equality holds in (3.1) by constructing an m-connected
graph H... on n vertices that has exactly {mn/2} edges. The structure of Hma
depends on the parities of m and n; there are three cases.

Case 1 m even. Let m =2r. Then H,.. is constructed as follows. It has
vertices 0,1,...,n—1 and two vertices i and j are joined if i—r=j<i+r
(where addition is taken modulo n). H,s is shown in figure 3.7a.

Case 2 m odd, n even. Let m =2r+1. Then H,.1,. is constructed by
first drawing H.. and then adding edges joining vertex i to vertex i+(n/2)
for 1=i=n/2. Hss is shown in figure 3.7b. |

Figure 3.7. (a) H.s; (b) Hsj; (¢) Hss
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Case 3 m odd, n odd. Let m =2r+1. Then Hy,..,, is constructed by first
drawing H,.. and then adding edges joining vertex 0 to vertices (n—1)/?
and (n+1)/2 and vertex i to vertex i+(n+1)/2 for 1=i<(n—1)/2. Hsg is
shown in figure 3.7c.

Theorem 3.3 (Harary, 1962) The graph H,, is m-connected.

Proof Consider the case m =2r. We shall show that Ha.. has no vertex
cut of fewer than 2r vertices. If possible, let V' be a vertex cut with |V’|<2r.
Let i and j be vertices belonging to different components of Hyn— V',
Consider the two sets of vertices

S={i,i+1,...,j—1,j}
and
T={,j+1,...,i—1,i}

where addition is taken modulo n. Since |V’| <2r, we may assume, without
loss of generality, that |V/NS|<r. Then there is clearly a sequence of
distinct vertices in S\'V' which starts with i, ends with j, and is such that the
difference between any two consecutive terms is at most r. But such a
sequence is an (i, j)-path in H,..— V', a contradiction. Hence H,, is
2r-connected.

The case m =2r+1 is left as an exercise (exercise 3.3.1) 0O

It is easy to see that & (Hnm.) ={mn/2}. Thus, by theorem 3.3,

f(m, n)={mn/2} (3.2)
It now follows from (3.1) and (3.2) that

f(m n) ={mn/2}

and that H..... is an m-connected graph on n vertices w1th as few edges as
possible.

We note that since, for any graph G, k =k’ (theorem 3.1), H,, . is also m-
edge-connected. Thus, denoting by g(m, n) the least possible number of
edges in an m-edge-connected graph on n vertices, we have, for l<m<n

g(m, n) ={mn/2} (3.3)

Exercises

3.3.1 Show that H,..,, is (2r+ 1)-connected.

3.3.2 Show that k(Hm,) = k' (Hn,) = m.

3.3.3 Find a graph with nine vertices and 23 edges that is 5-connected but
not isomorphic to the graph H;s, of figure 3.7c.

3.3.4 Show that (3.3) holds for all values of m and n withm>1and n>1.
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3.3.5 Find, for all =5, a 2-connected graph G of diameter two with
e=2v-35.
(Murty, 1969 has shown that every such graph has at least this
number of edges.)
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