6 Edge Colourings

6.1 EDGE CHROMATIC NUMBER

A k-edge colouring € of a loopless graph G is an assignment of k colours,
1,2,...,k, to the edges of G. The colouring € is proper if no two adjacent
edges have the same colour.

Alternatively, a k-edge colouring can be thought of as a partition
(Ey, E,, ..., Ey) of E, where E denotes the (possibly empty) subset of E
assigned colour i. A proper k-edge colouring is then a k-edge colouring
(Ey, E,, ..., Ey) in which each subset E; is a matching. The graph of figure
6.1 has the proper 4-edge colouring ({a, g}, {b, e}, {c, f}, {d}). |

G is k-edge colourable if G has a proper k-edge-colouring. Trivially, every
loopless graph G is e-edge-colourable; and if G is k -edge-colourable, then
G is also l-edge-colourable for every I>k. The edge chromatic number
x'(G), of a loopless graph G, is the minimum k for which G is k-edge-
colourable. G is k-edge-chromatic if x'(G)=k. It can be readily verified
that the graph of figure 6.1 has no proper 3-edge colouring. This graph is
therefore 4-edge-chromatic. ‘ ,

Clearly, in any proper edge colouring, the edges incident with any one
vertex must be assigned different colours. It follows that

X'=A (6.1)

Referring to the example of figure 6.1, we see that inequality (6.1) may be
strict. However, we shall show that, in the case when G is bipartite, x' = A.
- The following simple lemma is basic to our proof. We say that colour i is
represented at vertex v if some edge incident with v has colour i.

Lemma 6.1.1 Let G be a connected graph that is not an odd cycle. Then

Figure 6.1
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G has a 2-edge colouring in which both colours are represented at each
vertex of degree at least two. '

Proof We may clearly assume that G is nontrivial. Suppose, first, that G __
is eulerian. If G is an even cycle, the proper 2-edge colouring of G has the
required property. Otherwise, G has a vertex v, of degree at least four. Let
Vo1V: . . . €.Vo be an Euler tour of G, and set

E,={e;|i odd} and E,={e|i even} (6.2)

Then the 2-edge colouring (E,, E;) of G has the required property, since
each vertex of G is an internal vertex of vee,v; ... eo.

If G is not eulerian, construct a new graph G* by adding a new vertex vo
and joining it to each vertex of odd degree in G. Clearly G*™ is eulerian. Let
Dol1D1 . . . €. Vo be an Euler tour of G* and define E; and E; as in (6.2). It is
then easnly verified that the 2-edge colouring (E;NE, E.NE) of G has the
required property [ |

Given a k-edge colouring € of G we shall denote by c(v) the number of
distinct colours represented at v. Clearly, we always have

c()=d) 6.3)

Moreover, € is a proper k-edge colouring if and only if equahty holds in
(6.3) for all vertices v of G. We shall call a k-edge colouring €’ an
improvement on € if

&0 L c)

where ¢'(v) is the number of distinct colours represented at v in the

colouring €’. An optimal k-edge colourmg is one which cannot be im-
proved. '

Lemma 6.1.2 Let € =(E, E,, ..., E,) be an Aoptir’nal k-edge Colouring of
G. If there is a vertex u in G and colours i and j such that i is not

represented at u and j is represented at least twice at u, then the component.
of G[E U E;] that contains u is an odd cycle.

Proof Let u be a vertex that satisfies the hypothesis of the lemma, and
denote by H the component of G[E;U E;] containing u. Suppose that H is
not an odd cycle. Then, by lemma 6.1.1, H has a 2-edge colouring in which
both colours are represented at each vertex of degree at least two in H.
When we recolour the edges of H with colours i and j in this way, we obtain
a new k-edge colouring €'=(Ej{, E3, ..., Ei) of G. Denoting by c'(v) the
number of distinct colours at v in the colouring €', we have

c’(u) =c(u)+1
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since, now, both i and j are represented at u, and also
c'(v)=c(v) for v#u

Thus Z c'(v)> Z c(v), contradicting the choice of €. It follows that H is

vVEV

indeed an odd cycle 0

Theorem 6.1 If G is bipartite, then x' = A. |

Proof Let G be a graph with x'>A, let € =(E,, E,, ..., Es) be an
optimal A-edge colouring of G, and let u be a vertex such that c(u)<d(u).
Clearly, u satisfies the hypothesis of lemma 6.1.2. Therefore G contains an
odd cycle and so is not bipartite. It follows from (6.1) that if G is bipartite,
then y'=4A O

An alternative proof of theorem 6.1, using exercise 5.2.3a, is outlined in
exercise 6.1.3.

Exercises

6.1.1 Show, by finding an appropriate edge colouring, that x'(Km.) =
A(Kin.n).
6.1.2 Show that the Petersen graph is 4-edge-chromatlc.
6.1.3 (a) Show that if G is bipartite, then G has a A-regular bipartite
supergraph.
(b) Using (a) and exercise 5.2.3a, give an alternative proof of
theorem 6.1.
6.1.4 Describe a good algorithm for ﬁndlng a proper A-edge colouring of a
bipartite graph G.
6.1.5 Using exercise 1.5.8 and theorem 6.1, show that if G is loopless with
A =3, then x'=4.
6.1.6 Show that if G is bipartite with 8 >0, then G has a §-edge colouring
such that all § colours are represented at each vertex.
(R. P. Gupta)

6.2 VIZING’S THEOREM

As has already been noted, if G is not bipartite then we cannot necessarily
conclude that x'=A. An important theorem due to Vizing (1964) and,
independently, Gupta (1966), asserts that, for any simple graph G, either
x'=A or x'=A+1. The proof given here is by Fournier (1973).

Theorem 6.2 If G is simple, then either x'=A or y'=A+1. |

Proof Let G be a simple graph. By virtue of (6.1) we need only show
that x'=A+1. Suppose, then, that x'>A+1. Let € =(E,, E., .. ., Ea+1) be
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(b) | . (¢)
Figure 6.2

an optimal (A+ 1)-edge colouring of G and let u be a vertex such that
¢(u)<d(u). Then there exist colours i, and i, such that i, is not represented
at u, and i, is represented at least twice at u. Let uv, have colour iy, as in
figure 6.2a. . ' | |

Since d(v,) <A+ 1, some colour i, is not represented at v;. Now i, must be
represented at u since otherwise, by recolouring uv, with i, we would
obtain an improvement on 6. Thus some edge uv, has colour i,. Again,
since d(v,) <<A+1, some colour i; is not represented at v.; and i; must be
represented at u since otherwise, by recolouring uv, with i; and uv, with i,
~we would obtain an improved (A +1)-edge colouring. Thus some edge uvs
has colour is. Continuing this procedure we construct a sequence vy, vs, . . .
of vertices and a sequence i, iz, ... of colours, such that

(i) uv; has colour i;, and
(ii) i1 is not represented at v;.

Since the degree' of u is finite, there exists a smallest integer | such that, for
some k <1, : ~

(ill) i1+1 = ik.
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The situation is depicted in figure 6.2a.

We now recolour G as follows. For 1=<j=<k —1, recolour uv; with colour
ij1, yielding a new (A+1)-edge colounng %'=(Ei,E3,...,Ein) (figure
6.2b). Clearly |

c'(v)=c(v) forall veV

and therefore €’ is also an optimal (A+ 1)-edge colouring of G. By lemma
6.1.2, the component H' of G[Ei{,UE;] that contains u is an odd cycle.

Now, in addition, recolour uv; with colour i.;, k <j=<1-1, and uv, with
colour iy, to obtain a (A+ 1)-edge colouring €"=(E%, E3, ..., E4.1) (figure
6.2¢). As above

c"(v)=c(v) forall veV

and the component H" of G[E’,U Ef,] that contains u is an odd cycle. But,
since vx has degree two in H’', v, clearly has degree one in H". This
contradiction establishes the theorem U

Actually, Vizing proved a more general theorem than that given above,
one that is valid for all loopless graphs. The maximum number of edges
joining two vertices in G is called the multzphaty of G, and denoted by
p(G). We can now state Vizing’s theorem in its full generahty if G is
loopless, then A< y'=A+p.

This theorem is best possible in the sense that, for any u, there exists a
graph G such that x'= A+ u. For example, in the graph G of figure 6. 3,
A=2p and, since any two edges are adjacent, x'=¢ =3pu.

Strong as theorem 6.2 is, it leaves open one interesting question: which
simple graphs satisfy x'= A? The significance of this question will become
apparent in chapter 9, when we study edge colourings of planar graphs.

Figure 6.3. A graph G with x'=A+p
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Exercises |

6.2.1* Show, by finding appropriate edge colourmgs, that x'(Kzu-1) =
X(Kz)=2n-1.

6.2.2 Show that if G is a nonempty regular snmple graph with v odd, then
X' =A+1.

6.2.3 (a) Let G be a simple graph. Show that if v = 2n + 1 and & > nA,

then x'=A+1. . (V. G. Vizing)
(b) Using (a), show that

(i) if G is obtained from a simple regular graph with an even

number of vertices by subdividing one edge, then x'=A+1;

(ii) if G is obtained from a simple k-regular graph with an odd

number of vertices by deleting fewer than k/2 edges, then x'=

A+1. (L. W. Beineke and R. J. Wilson)
6.2.4 (a) Show that if G is loopless, then G has a A-regular loopless
supergraph.

(b) Using (a) and exercise 5.2.3b, show that if G is loopless and A is
even, then x'<3A/2.
(Shannon, 1949 has shown that this inequality also holds when
A is odd.)

6.2.5 G is called uniquely k-edge-colourable if any two proper k-edge
colourings of G induce the same partition of E. Show that every
uniquely 3-edge-colourable 3-regular graph is hamiltonian.

A ~ (D. L. Greenwell and H. V. Kronk)

© 6.2.6 The product of simple graphs G and H is the simple graph GXH

- with vertex set V(G) X V(H), in which (u, v) is ad]acent to (u', v") if

and only if either u = u’ and vv’'€ E(H) or v=1v' and uu’' € E(G).

(a) Using Vizing’s theorem (6.2), show that x'(G X K;) = A(G X Kb).
(b) Deduce that if H is nontrivial with x'(H)=A(H), then
x'(G xH)=A(G x H).
6.2.7 Describe a good algorithm for finding a proper (A+1)-edge colour-
ing of a simple graph G.
6.2.8* Show that if G is simple with §>1, then G has a (6—1)- edge
colouring such that all § — 1 colours are represented at each vertex.

(R. P. Gupta)
APPLICATIONS
.6.3 THE TIMETABLING PROBLEM e
In a school, there are m teachers X, X3,...,Xm, and n classes
Yy, Y2, ..., Y. Given that teacher X is required to teach class Y; for p;

periods, schedule a complete timetable in the minimum possible number of
periods.
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The above problem is known as the timetabling problem, and can be solved
completely using the theory of edge colourings developed in this chapter.
We represent the teaching requirements by a bipartite graph G with
bipartition (X, Y), where X ={x, X2,..., Xm}, Y={y1, y2,..., Yo} and ver-
tices x; and y; are joined by p; edges. Now, in any one period, each teacher
can teach at most one class, and each class can be taught by at most one
teacher—this, at least, is our assumption. Thus a teaching schedule for one
period corresponds to a matching in the graph and, conversely, each
matching corresponds to a possible assignment of teachers to classes for one
period. Our problem, therefore, is to partition the edges of G into as few
matchings as possible or, equivalently, to properly colour the edges of G
with as few colours as possible. Since G is bipartite, we know, by theorem
6.1, that x'=A. Hence, if no teacher teaches for more than p periods, and if
no class is taught for more than p periods, the teaching requirements can be
scheduled in a p-period timetable. Furthermore, there is a good algorithm
for constructing such a timetable, as is indicated in exercise 6.1.4. We thus
have a complete solution to the timetabling problem.

However, the situation might not be so straightforward. Let us assume
that only a limited number of classrooms are available. With this additional
constraint, how many periods are now needed to schedule a complete
timetable?

Suppose that altogether there are [ lessons to be given, and that they have
been scheduled in a p-period timetable. Since this timetable requires an

~average of Il/p lessons to be given per period, it is clear that at least {l/p}
rooms will be needed in some one period. It turns out that one can always
arrange | lessons in a p-period timetable so that at most {l/p} rooms are
occupied in any one period. This follows from theorem 6.3 below. We first
have a lemma.

Lemma 6.3 Let M and N be disjoint matchings of G with [M|>|N|. Then
there are disjoint matchings M’ and N’ of G such that |M'|=|M|-
IN'|=|N|+1 and M'UN'=MUN.

Proof Consider the graph H=G[MUN]. As in the proof of theorem
5.1, each component of H is either an even cycle, with edges alternately in
M and N, or else a path with edges alternately in M and N. Since |M|>|N]|,
some path cornponent P of H must start and end with edges of M. Let
P = voe1v; . . . €20+1V20+1, and set

v M = (M\{ex,' €3 ..., ezu+1}) U{ez, €4y o0 oy ez,.}’
N'=(N\{ez, €4, ..., e})U{e1, €3,. .., €2ns1}

Then M’ and N’ are matchings of G that satisfy the conditions of the
lemma O
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- Period

Y, Y, Ys Y4 Ve 12 3 4
x[2 0 1 1 0] xnnlnlv
X0 1 0 1 0| Xle|-|v|-
P"x30111o Xs|Ys|Yal = |72
X|0 0 0 1 1] X|¥a|vs|-|-

Figure 6.4

Theorem 6.3 If G is bipartite, and if p=A, then there exist p disjoint
matchings M,, M,, ..., M, of G such that

E=‘M1UM2U...UMP (64)
and, for 1=i=p '

[e/p]=|Mi|={e/p} (6.5)

(Note: condition (6.5) says that any two matchmgs M; and M; differ in size
by at most one.)

Proof Let G bea bipartite graph. By theorem 6.1, the edges of G can be
partitioned into A matchings Mi, M;, ..., Mi. Therefore, for any p=A,
there exist p disjoint matchings M3, Mz, ..., M, (with M!=@ for i >A) such
that

E=M{UM}U...UM,

By repeatedly applying lemma 6.3 to pairs of these matchings that differ in
size by more than one, we eventually obtain p disjoint matchings
My, M, ..., M, of G satlsfymg (6.4) and (6 5), as required 0

Figure 6.5
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(b)

Figure 6.6

As an example, suppose that there are four teachers and five classes, and
that the teaching requirement matrix P =[p,] is as given in figure 6.4a. One
possible 4-period timetable is shown in figure 6.4b.

We can represent the above timetable by a decomposition into matchings
of the edge set of the bipartite graph G corresponding to P, as shown in
figure 6.5a. (Normal edges correspond to period 1, broken edges to period
2, wavy edges to period 3, and heavy edges to period 4.)

From the timetable we see that four classes are taught in period 1, and so
four rooms are needed. However ¢ = 11 and so, by theorem 6.4, a 4-period
timetable can be arranged so that in each period either 2(=[11/4]) or
3(={11/4}) classes are taught. Let M, denote the normal matching and M,
the heavy matching; notice that [M,|=4 and |M,]=2. We can now find a
4-period 3-room timetable by considering G[M,UM.,] (figure 6.5b).
G[M, UM,] has two components, each consisting of a path of length three.
Both paths start-and end with normal edges and so, by interchanging the
matchings on one of the two paths, we shall reduce the normal matching to
one of three edges, and-at the same time increase the heavy matching to one
of three edges. If we choose the path y.x,y.x., making the edges y;x; and
yaxs heavy and the edge x,y. normal, we obtain the decomposition of E
shown in figure 6.6a. This then gives the revised timetable shown in figure
6.6b; here, only three rooms are needed at any one time.

Period
1 2 3 4 5 6

Figure 6.7
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However, suppose that there are just two rooms available. Theorem 6.4
tells us that there must be a 6-period timetable that satisfies our require-
ments (since {11/6}=2). Such a timetable is given in figure 6.7.

In practice, most problems on timetabling are complicated by preassign-
ments (that is, conditions specifying the periods during which certain
teachers and classes must meet). This generalisation of the timetabling
problem has been studied by Dempster (1971) and de Werra (1970).

Exercise

6.3.1 In a school there are seven teachers and twelve classes. The teaching
requirements for a five-day week are given by the matrix

Y1 Yz Y3 Y4 Ys Ys Y7 Ys Y9 Ylo Yll Y12

-

il

e
S WUN WM L =W
WSO WN
WONRARLNUOW
ALAONO AW

HPOBNDNMNDUVAW
PO Rr NNV W
WWndphOomW
_hOANM.uu
UJUIDJAO.U)M
WU WnO W
CSCOoOUNMWUKL AW

where p;; is the number of periods that teacher X; must teach class

Y;.

(a) Into how many periods must a day be divided so that the
requirements can be satisfied?

(b) If an eight-period/day timetable is drawn up, how many class-
rooms will be needed?
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