9 Planar Graphs

9.1 PLANE AND PLANAR GRAPHS

A graph is said to be embeddable in the plane, or planar, if it can be drawn in
the plane so that its edges intersect only at their ends. Such a drawing of a
planar graph G is called a planar embedding of G. A planar embedding G
of G can itself be regarded as a graph isomorphic to G; the vertex set of G
is the set of points representing vertices of G, the edge set of G is the set of
lines representing edges of G, and a vertex of G is incident with all the
edges of G that contain it. We therefore sometimes refer to a planar
embedding of a planar graph as a plane graph. Figure 9.1b shows a planar
embedding of the planar graph in figure 9.1a.

It is clear from the above definition that the study of planar graphs
necessarily involves the topology of the plane. However, we shall not
attempt here to be strictly rigorous in topological matters, and will be
content to adopt a naive point of view toward them. This is done so as not to
obscure the combinatorial aspect of the theory, which is our main interest.

The results of topology that are especially relevant in the study of planar
graphs are those which deal with Jordan curves. (A Jordan curve is a
continuous non-self-intersecting curve whose origin and terminus coincide.)
The union of the edges in a cycle of a plane graph constitutes a Jordan
- curve; this is the reason why properties of Jordan curves come into play in
planar graph theory. We shall recall a well-known theorem about Jordan
curves and use it to demonstrate the nonplanarity of Ks.

Let J be a Jordan curve in the plane. Then the rest of the plane is
partitioned into two disjoint open sets called the interior .and exterior of J.
We shall denote the interior and exterior of J, respectively, by intJ and
extJ, and their closures by IntJ and ExtJ. Clearly IntJNExtJ=J. The
Jordan curve theorem states that any line joining a point in int J to a point in
extJ must meet J in some point (see figure 9.2). Although this theorem is
intuitively obvious, a formal proof of it is quite difficult.

Theorem 9.1 Ks is nonplanar.

Proof By contradiction. If possible let G be a plane graph corresponding
to Ks. Denote the vertices of G by v, v,, v3, vs and vs. Since G is complete,
any two of its vertices are joined by an edge. Now the cycle C = v,v,v;50; is a
Jordan curve in the plane, and the point v, must lie either in int C or ext C.
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(a) (b)

Figure 9.1. (a) A planar graph G; (b) a planar embedding of G

We shall suppose that v, €int C. (The case where v, € ext C can be dealt with
in a similar manner.) Then the edges v.v:, v4v; and v4v; divide int C into the
three regions int C;, int C, and int Cs, where Ci= 0,040,0;, C;= 0,04050;
and C;= v;v,0,0; (see figure 9.3).

Now vs must lie in one of the four regions ext C int C,, int C; and int Cs.
If vseext C then, since vs€int C, it follows from the Jordan curve theorem
that the edge v,vs must meet C in some point. But this contradicts the
assumption that G is a plane graph. The cases vseint C,, i =1, 2, 3, can be
disposed of in like manner 0

Figure 9.2

A similar argument can be used to establish that K33, too, is nonplanar
(exercise 9.1.1). We shall see in section 9.5 that, on the other hand, every
nonplanar graph contains a subdivision of either Ks or K.

The notion of a planar embedding extends to other surfaces.t A graph G
is said to be embeddable on a surface S if it can be drawn in S so that its

t A surface is a 2-dimensional manifold. Closed surfaces are divided into two classes,
orientable and non-orientable. The sphere and the torus are examples of orientable surfaces;

the projective plane and the Mobius band are non-orientable. For a detailed account of
embeddings of graphs on surfaces the reader is referred to Fréchet and Fan (1967).
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ext C

Figure 9.3

edges intersect only at their ends; such a drawing (if one exists) is called an
embedding of G on S. Figure 9.4a shows an embedding of Ks on the torus,
and figure 9.4b an embedding of K55 on the Mdbius band. The torus is
represented as a rectangle in which opposite sides are identified, and the
Mobius band as a rectangle whose two ends are identified after one
half-twist.

We have seen that not all graphs can be embedded in the plane; this is
also true of other surfaces. It can be shown (see, for example, Fréchet and
Fan, 1967) that, for every surface S, there exist graphs which are not
embeddable on S. Every graph can, however, be ‘embedded’ in 3-
dimensional space R* (exercise 9.1.3).

(@) - ’ (b)
Figure 9.4. (a) An embedding of K; on the torus; (b) an embedding of K, ; on the

Moébius band
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Planar graphs and graphs embeddable on the sphere are one and the
same. To show this we make use of a mapping known as stereographic
projection. Consider a sphere S resting on a plane P, and denote by z the
point of S that is diagonally opposite the point of contact of S and P. The
mapping m :S\{z} — P, defined by w(s) = p if and only if the points z, s and
p are collinear, is called stereographic projection from z; it is illustrated in
figure 9.5.

Figure 9.5. Stereographic projection

Theorem 9.2 A graph G is embeddable in the plane if and only if it is
embeddable on the sphere.

Proof Suppose G has an embeddmg G on the sphere. Choose a point z
of the sphere not in G. Then the i image of G under stereographic projection

from z is an embedding of G in the plane. The converse is proved
similarly [

On many occasions it is advantageous to consider embeddings of planar

graphs on the sphere; one mstance is provided by the proof of theorem 9.3
in the next section.

Exercises

9.1.1 Show that K,; is nonplanar.
9.1.2 (a) Show that Ks;—e is planar for any edge e of Ks.

(b) Show that K;;—e is planar for any edge e of Ks5.
9.1.3 Show that all graphs are ‘embeddable’ in ®>.
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9.1.4  Verify that the following is an embedding of K, on the torus:

9.1.5 Find a planar embedding of the following graph in which each edge
is a straight line.

(Fary, 1948 has proved that every simple planar graph has such an
embedding.)

9.2 DUAL GRAPHS

A plane graph G partitions the rest of the plane into a number of connected
regions; the closures of these regions are called the faces of G. Figure 9.6
shows a plane graph with six faces, fi, fs, fs, fs, fs and fs. The notion of a face
applies also to embeddings of graphs on other surfaces. We shall denote by
F(G) and ¢(G), respectively, the set of faces and the number of faces of a
plane graph G. '

Each plane graph has exactly one unbounded face, called the exterior face;
in the plane graph of figure 9.6, f, is the exterior face.

Theorem 9.3 Let v be a vertex of a planar graph G. Then G can be
embedded in the plane in such a way that v is on the exterior face of the
embedding.
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Figure 9.6. A plane graph with six faces

Proof Consider an embedding G of G on the sphere; such an embed-
ding exists by virtue of theorem 9.2. Let z be a point in the interior of some
face containing v, and let w(G) be the image of G under stereographic
projection from z. Clearly m(G) is a planar embeddmg of G of the desired
type O

We denote the boundary of a face f of a plane graph G by b(f). If G is
connected, then b(f) can be regarded as a closed walk in which each cut
edge of G in b(f) is traversed twice; when b(f) contains no cut edges, it is a
cycle of G. For example, in the plane graph of figure 9.6,

b(f2) = viesv.esvsesv.€,0;
and , :
b(fs) = 07€1005€11V5€12V5€1Vs€5V6€0V7

A face f is said to be incident with the vertices and edges in its boundary.
If e is a cut edge in a plane graph, just one face is incident with e; otherwise,
there are two faces incident with e. We say that an edge separates the faces
incident with it. The degree, ds(f), of a face f is the number of edges with
which it is incident (that is, the number of edges in b(f)), cut edges being
counted twice. In figure 9.6, f, is incident with the vertices vi, vs, V4, Vs, Vs,
v; and the edges e, e, es, e, €1, €s, €10; €, separates f; from fz and e,
separates fs from fs; d(f.)=4 and d(fs) =6.

Given a plane graph G, one can define another graph G* as follows:
corresponding to each face f of G there is a vertex f* of G* and
corresponding to each edge ¢ of G there is an edge e* of G*; two vertices
f* and g* are joined by the edge e* in G* if and only if their corresponding
faces f and g are separated by the edge e in G. The graph G* is called the
dual of G. A plane graph and its dual are shown in figures 9.7a and 9.7b.

It is easy to see that the dual G* of a plane graph G is planar; in fact,
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(c)

Figure 9.7. A plane graph and its dual

there is a natural way to embed G* in the plane. We place each vertex f* in
the corresponding face f of G, and then draw each edge e* in such a way
that it crosses the corresponding edge e of G exactly once (and crosses no
other edge of G). This procedure is illustrated in figure 9.7c, where the * a.
is indicated by heavy points and lines. It is intuitively clear that we can
always draw the dual as a plane graph in this way, but we shall not prove
this fact. Note that if e is a loop of G, then e* is a cut edge of G*, and vice
versa. A

Although defined abstractly, it is sometimes convenient to regard the dual
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0
(@) (b)

Figure 9.8. Isomorphic plane graphs with nonisomorphic duals

G* of a plane graph G as a plane graph (embedded as described above).
One can then consider the dual G** of G*, and it is not difficult to prove
that, when G is connected, G**= G (exercise 9.2.4); a glance at figure 9.7¢
will indicate why this is so.

It should be noted that isomorphic plane graphs may have nonisomorphic
duals. For example, the plane graphs in figure 9.8 are isomorphic, but their
duals are not—the plane graph of figure 9.8a has a face of degree five,
whereas the plane graph of figure 9.8b has no such face. Thus the notion of
a dual is meaningful only for plane graphs, and cannot be extended to planar
graphs in general.

The following relations are direct consequences of the definition of G*:

v(G*) =4(G)
e(G*) =¢(G) (9.1)
do:(f*)=do(f) forall feF(G)

Theorem 9.4 If G is a plane graph, then
2, d(f)=2e

fEF

Proof Let G* be the dual of G. Then
= *
'E;G) d(f) 05;00) d(f ) by (9' 1)

=2¢(G¥) by theorem 1.1

=2¢(G) - by(9.1) O
Exercises

9.2.1 (a) Show that a graph is planar if and only if each of its blocks is
planar.
(b) Deduce that a minimal nonplanar graph is a simple block.
9.2.2 A plane graph is self-dual if it is isomorphic to its dual.

(a) Show that if G is self-dual, then ¢ =2v-2.
(b) For each n=4, find a self-dual plane graph on n vertices.
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9.2.3 (a) Show that B is a bond of a plane graph G if and only if
{e*€ E(G*)| e B} is a cycle of G*.
(b) Deduce that the dual of an eulerian plane graph is bipartite.
9.2.4 Let G be a plane graph. Show that

(a) G** =G if and only if G is connected;
(b) x(G**)=x(G).

9.2.5 Let T be a spanning tree of a connected plane graph G, and let
E*={e*c E(G*)|eg E(T)}. Show that T*= G*[E*] is a spanning
tree of G*. .

9.2.6 A plane triangulation is a plane graph in which each face has degree
three. Show that every simple plane graph is a spanning subgraph of
some simple plane triangulation (v = 3).

9.2.7 Let G be a simple plane triangulation with v =4. Show that G* is a
simple 2-edge-connected 3-regular planar graph.

9.2.8* Show that any plane triangulation G contains a bipartite subgraph
with 2¢(G)/3 edges. (F. Harary, D. Matula)

9.3 EULER’'S FORMULA

There is a simple formula relating the numbers of vertices, edges and faces
in a connected plane graph. It is known as Euler’s formula because Euler
established it for those plane graphs defined by the vertices and edges of
polyhedra. :

Theorem 9.5 1f G is a connected plane graph, then
v—e+¢p=2

Proof By induction on ¢, the number of faces of G. If ¢ =1, then each
edge of G is a cut edge and so G, being connected, is a tree. In this case
e =v—1, by theorem 2.2, and the theorem clearly holds. Suppose that it is
true for all connected plane graphs with fewer than n faces, and let G be a
connected plane graph with n =2 faces. Choose an edge e of G that is not a
cut edge. Then G —e is a connected plane graph and has n—1 faces, since
the two faces of G separated by e combine to form one face of G —e. By the
induction hypothesis ' |

v(G—e)—e(G—-e)+d(G—e)=2
and, using the relations
WG-e)=v(G) e(G-e)=¢(G)-1 ¢(G—e)=d(G)-1

we obtain
v(G)—e(G)+d(G)=2

The theorem follows by the principle of induction 0O
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Corollary 9.5.1 All planar embeddings of a given connected planar graph
have the same number of faces. ' |

Proof Let G and H be two planar embeddings of a given connected
planar graph. Since G=H, v(G)=v(H) and &(G)=e(H). Applying
theorem 9.5, we have

¢(G)=¢e(G)—v(G)+2=e(H)—v(H)+2=¢(H) O

Corollary 9.5.2 If G is a simple planar graph with v =3, then ¢ =3v—6.

Proof It clearly suffices to prove this for connected graphs. Let G be a
simple connected graph with v=3. Then d(f)=3 for all fe F, and

2. d(f)=3¢
, fEF
By theorem 9.4
2e =3¢
Thus, from theorem 9.5
v—e+2e/3=2
or
e<3v—-6 0O

Corollary 9.5.3 If G is a simple planar graph, then § <S5.

Proof This is trivial for »=1, 2. If v=3, then, by theorem 1.1 and
corollary 9.5.2,

v=) d(v)=2e=6v—12

vEV

It follows that §<5 [

We have already seen that K5 and K5 are nonplanar (theorem 9.1 and
exercise 9.1.1). Here, we shall derive these two results as corollaries of
theorem 9.5. ‘

- Corollary 9.5.4 Ks is nonplanar.
Proof If Ks were planar then, by corollary 9.5.2, we would have
10=¢e(K5)<3v(Ks)—6=9

Thus Ks must be nonplanar 0

Corollary 9.5.5 K;; is nonplanar.

Proof Suppose that K is planér and let G be a planar embedding of
K. Since K3 has no cycles of length less than four, every face of G must
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have degree at least four. Therefore, by theorem 9.4, we have

4¢=3 d(f)=2¢=18

That is
b=4
Theorem 9.5 now implies that

2=v—e+d=6-9+4=1
which is absurd [

Exercises

9.3.1 (a) Show that if G is a connected planar graph with girth k =3,
then e = k(v —-2)/(k —2).
(b) Using (a), show that the Petersen graph is nonplanar.
9.3.2 Show that every planar graph is 6-vertex-colourable.
9.3.3 (a) Show that if G is a simple planar graph with »=11, then G° is
nonplanar.
(b) Find a simple planar graph G with v =8 such that G° is also
planar. : '
9.3.4 The thickness 6(G) of G is the minimum number of planar graphs
whose union is G. (Thus 6(G) =1 if and only if G is planar.)

(a) Show that 8(G)={e/(3v—6)}.
(b) Deduce that 0(K,)={v(v —1)/6(v—2)} and show, using exercise
- 9.3.3b, that equality holds for all v<8.

9.3.5 Use the result of exercise 9.2.5 to deduce Euler’s formula.

9.3.6 Show that if G is a plane triangulation, then € =3v—6.

9.3.7 Let S={x1,x,,...,xa} be a set of n =3 points in the plane such that
the distance between any two points is at least one. Show that there
are at most 3n—6 pairs of points at distance exactly one.

9.4 BRIDGES

In the study of planar graphs, certain subgraphs, called bridges, play an -
important role. We shall discuss properties of these subgraphs in this
section.

Let H be a given subgraph of a graph G. We define a relation ~ on
E(G)\E(H) by the condition that e, ~ e if there exists a walk W such that

(i) the first and last edges of W are e, and e,, respectively, and
(i) W is internally-disjoint from H (that is, no internal vertex of W is a
vertex of H). :

It is easy to verify that ~ is an equivalence relation on E(G)\E(H). A
subgraph of G — E(H) induced by an equivalence class under the relation ~
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is called a bridge of H in G. It follows immediately from the definition that
if B is a bridge of H, then B is a connected graph and, moreover, that any
two vertices of B are connected by a path that is internally-disjoint from H.
It is also easy to see that two bridges of H have no vertices in com-
mon except, possibly, for vertices of H. For a bridge B of H, we write
V(B)N V(H) = V(B, H), and call the vertices in this set the vertices of attach-
ment of B to H. Figure 9.9 shows a variety of bridges of a cycle in a graph;
edges of different bridges are represented by different kinds of lines.

In this section we are concerned with the study of bridges of a cycle C.
Thus, to avoid repetition, we shall abbreviate ‘bridge of C’ to ‘bridge’ in the
coming discussion; all bridges will be understood to be bridges of a given
cycle C.

In a connected graph every bridge has at least one vertex of attachment,
and in a block every bridge has at least two vertices of attachment. A bridge
with k vertices of attachment is called a k-bridge. Two k-bridges with the
same vertices of attachment are equivalent k-bridges; for example, in figure
9.9, B: and B, are equivalent 3-bridges. ,

The vertices of attachment of a k-bridge B with k =2 effect a partition of
C into edge-disjoint paths, called the segments of B. Two bridges avoid one
another if all the vertices of attachment of one bridge lie in a single segment
of the other bridge; otherwise they overlap. In figure 9.9, B, and B; avoid
one another, whereas B, and B, overlap. Two bridges B and B’ are skew if
there are four distinct vertices u, v, u’ and v’ of C such that u and v are
vertices of attachment of B, u’ and v’ are vertices of attachment of B’, and
the four vertices appear in the cyclic order u, u’, v, v’ on C. In figure 9.9, B,
and B, are skew, but B, and B, are not.

Figure 9.9. Bridges in a graph
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Theorem 9.6 If two bridges overlap, then either they are skew or else they
are equivalent 3-bridges.

Proof Suppose that the bridges B and B’ overlap. Clearly, each must
have at least two vertices of attachment. Now if either B or B’ is a 2-bridge,
it is easily verified that they must be skew. We may therefore assume that
both B and B’ have at least three vertices of attachment. There are two
cases.

Case 1 B and B’ are not equivalent bridges. Then B’ has a vertex of
attachment u’ between two consecutive vertices of attachment u and v of B.
Since B and B’ overlap, some vertex of attachment v’ of B’ does not lie in
the segment of B connecting u and v. It now follows that B and B’ are
skew.

Case 2 B and B’ are equivalent k-bridges, k =3. If k =4, then B and
B’ are clearly skew; if k =3, they are equivalent 3-bridges 0

Theorem 9.7 If a bridge B has three vertices of attachment v;, v, and v,
then there exists a vertex v, in V(B)\V(C) and three paths P;, P, and P; in
B joining v, to v;, v, and v, respectively, such that, for i # j, P, and P; have
only the vertex v, in common (see figure 9.10).

Proof Let P be a (v, v2)-path in B, internally-disjoint from C. P must
have an internal vertex v, since otherwise the bridge B would be just P, and
would not contain a third vertex v;. Let Q be a (vs, v)-path in B, internally-
disjoint from C, and let v, be the first vertex of Q on P. Denote by P; the
(vo, v1)-section of P~', by P, the (v, v;)-section of P, and by P; the
(vo, v3)-section of Q7'. Clearly P,, P, and P, satisfy the required
conditions [

V2

Figure 9.10
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We shall now consider bridges in plane graphs. Suppose that G is a plane
graph and that C is a cycle in G. Then C is a Jordan curve in the plane, and
each edge of E(G)\E(C) is contained in one of the two regions Int C and
Ext C. It follows that a bridge of C is contained entirely in Int C or Ext C. A
bridge contained in Int C is called an inner bridge, and a bridge contained in
Ext C, an outer bridge. In figure 9.11 B, and B, are inner bridges, and B;
and B, are outer bridges.

Theorem 9.8 Inner (outer) bridgés avoid .one another.

Proof By contradiction. Let B and B’ be two inner bridges that overlap.
Then, by theorem 9.6, they must be either skew or equivalent 3-bridges.

Case 1 B and B’ are skew. By definition, there exist distinct vertices u
and v in B and u’ and v’ in B’, appearing in the cyclic order u, u’, v, v’ on
C. Let P be a (u, v)-path in B and P’ a (u’, v')-path in B’, both internally-
disjoint from C. The two paths P and P’ cannot have an internal vertex in
common because they belong to different bridges. At the same time, both P
and P’ must be contained in Int C because B and B’ are inner bridges. By
the Jordan curve theorem, G cannot be a plane graph, contrary to
hypothesis (see figure 9.12). {

Case 2 B and B’ are equivalent 3-bridges. Let the common set of
vertices of attachment be {v,, vz, vs}. By theorem 9.7, there exist in B a
vertex v, and three paths P, P, and P; joining v, to v;, v; and v,
respectively, such that, for i # j, P; and P; have only the vertex v, in common.
Similarly, B’ has a vertex vt and three paths P}, P; and P} joining v} to v,
v, and vs, respectively, such that, for i# j, P{ and P} have only the vertex v}
in common (see figure 9.13). '

Figure 9.11. Bridges in a plane graph
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v

Figure 9.12

Now the paths P,, P, and P; divide Int C into three regions, and vy must
be in the interior of one of these regions. Since only two of the vertices v,
v, and v; can lie on the boundary of the region containing vj, we may
assume, by symmetry, that v; is not on the boundary of this region. By the
Jordan curve theorem, the path P} must cross either P,, P, or C. But since B
and B’ are distinct inner bridges, this is clearly impossible.

We conclude that inner bridges avoid one another. Similarly, outer
bridges avoid one another [0

Let G be a plane graph. An inner bridge B of a cycle C in G is
transferable if there exists a planar embedding G of G which is identical to
G itself, except that B is an outer bridge of C in G. The plane graph G is
said to be obtained from G by transferring B. Figure 9.14 illustrates the
transfer of a bridge.

Theorem 9.9 An inner bridge that avoids every outer bridge is
transferable.

Figure 9.13




150 Graph Theory with Applications

Figure 9.14. The transfer of a bridge

Proof Let B be an inner bridge that avoids every outer bridge. Then
the vertices of attachment of B to C all lie on the boundary of some face of

G contained in Ext C. B can now be drawn in this face, as shown in figure
9.150

Figure 9.15

Theorem 9.9 is crucial to the proof of Kuratowski’s theorem, which will
be proved in the next section.

Exercises .
9.4.1 Show that if B and B’ are two distinct bridges, then V(B)N V(B') <
V(O).

9.4.2 Let u, x, v and y (in that cyclic order) be four distinct vertices of
attachment of a bridge B to a cycle C in a plane graph. Show that
there is a (u, v)-path P and an (x, y)-path Q in B such that (i) P and
Q are internally-disjoint from C, and (ii) |V(P)N V(Q)|=1.
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9.43 (a) Let C=v,0;...0.0; be a longest cycle in a nonhamiltonian
connected graph G. Show that

(i) there exists a bridge B such that V(B)\V(C) # @,
(ii) if v; and v; are vertices of attachment of B, then vi.10;+1€ E.

(b) Deduce that if « < «, then G is hamiltonian.
(V. Chvatal and P. Erdos)

9.5 KURATOWSKI'S THEOREM

Since planarity is such a fundamental property, it is clearly of importance to
know which graphs are planar and which are not. We have already noted
that, in particular, Ks and K;; are nonplanar and that any proper subgraph
of either of these graphs is planar (exercise 9.1.2). A remarkably simple
characterisation of planar graphs was given by Kuratowski (1930). This
section is devoted to a proof of Kuratowski’s theorem.

The following lemmas are simple observations, and we leave their proofs
as an exercise (9.5.1).

Lemma 9.10.1 If G is nonplanar, then every subdivision of G is
nonplanar. '

Lemma 9.10.2 If G is planar, then every subgraph of G is planar.

Since Ks and K, are nonplanar, we see from these two lemmas that if G
is planar, then G cannot contain a subdivision of Ks or of Ks. (figure 9.16).
Kuratowski showed that this necessary condition is also sufficient.

Before proving Kuratowski’s theorem, we need to establish two more
simple lemmas. |

Let G be a graph with a 2-vertex cut {u, v}. Then there exist edge-disjoint
subgraphs G, and G; such that V(Gy) N V(G2)={y, v} and G1UG.=0G.
Consider such a separation of G into subgraphs. In both G, and G: join u

(a) ' (b)
Figure 9.16. (a) A subdivision of Ks; (b) a subdivision of K.
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G:
u u u u
Ve Ve
e e
vV v _ v -
G, | G, H, H,

Figure 9.17

and v by a new edge e to obtain graphs H, and H,, as in figure 9.17. Clearly
G =(H,;UH,;)—e. It is also easily seen that e(H;)<e(G) for i=1, 2.

Lemma 9.10.3 If G is nonplanar, then at least one of H; and H; is also
nonplanar. '

Proof By contradiction. Suppose that both H; and H, are planar. Let H,
be a planar embedding of H,, and let f be a face of H, incident with e. If H,
is an embedding of H. in f such that H, and H, have only the vertices u and
v and the edge e in common, then (H; U H,)— e is a planar embedding of G.
This contradicts the hypothesis that G is nonplanar [

Lemma 9.10.4 Let G be a nonplanar connected graph that contains no
subdivision of Ks or K33 and has as few edges as possible. Then G is simple
and 3-connected. -

Proof By contradiction. Let G satisfy the hypotheses of the lemma.
Then G is clearly a minimal nonplanar graph, and therefore (exercise
9.2.1b) must be a simple block. If G is not 3-connected, let {u, v} be a
2-vertex cut of G and let H; and H, be the graphs obtained from this cut as
described above. By lemma 9.10.3, at least one of H; and H,, say H,, is
nonplanar. Since €(H,)<e(G), H, must contain a subgraph K which is a
subdivision of Ks or Ks;; moreover K& G, and so the edge e is in K. Let P
be a (u, v)-path in H,—e. Then G contains the subgraph (K U P)— e, which
is a subdivision of K and hence a subdivision of Ks or K;3. This contradic-
tion establishes the lemma 0O

We shall find it convenient to adopt the following notation in the proof of
Kuratowski’s theorem. Suppose that C is a cycle in a plane graph. Then we
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can regard the two possible orientations of C as ‘clockwise’ and ‘anticlock-
wise’. For any two vertices, u and v of C, we shall denote by Clu, v] the
(u, v)-path which follows the clockwise orientation of C; similarly we shall
use the symbols C(u, v], C[u, v) and C(u, v) to denote the paths Clu, v]—u,
C[u,v]—v and Clu, v]—{u, v}. We are now ready to prove Kuratowski’s
theorem. Our proof is based on that of Dirac and Schuster (1954).

Theorem 9.10 A graph is planar if and only if it contains no subdivision of
Ks or K3,3.

Proof We have already noted that the necessity follows from lemmas
9.10.1 and 9.10.2. We shall prove the sufficiency by contradiction.

If possible, choose a nonplanar graph G that contains no subdivision of
Ks or K;; and has as few edges as possible. From lemma 9.10.4 it follows
that G is simple and 3-connected. Clearly G must also be a minimal
nonplanar graph. ‘

Let uv be an edge of G, and let H be a planar embedding of the planar
graph G —uv. Since G is 3-connected, H is 2-connected and, by corollary
3.2.1, u and v are contained together in a cycle of H. Choose a cycle C of H
that contains u and v and is such that the number of edges in Int C is as
large as possible. ‘

Since H is simple and 2-connected, each bridge of C in H must have at
least two vertices of attachment. Now all outer bridges of C must be
2-bridges that overlap uv because, if some outer bridge were a k -bridge for
k=3 or a 2-bridge that avoided uv, then there would be a cycle C’
containing u and v with more edges in its interior than C, contradicting the
choice of C. These two cases are illustrated in figure 9.18 (with C’ indicated
by heavy lines).

In fact, all outer bridges of C in H must be single edges. For if a 2-bridge
with vertices of attachment x and y had a third vertex, the set {x, y} would
be a 2-vertex cut of G, contradicting the fact that G is 3-connected.

(a) (b)
Figure 9.18
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By theorem 9.8, no two inner bridges overlap. Therefore some inner
bridge skew to uv must overlap some outer bridge. For otherwise, by
theorem 9.9, all such bridges could be transferred (one by one), and then the
edge uv could be drawn in Int C to obtain a planar embedding of G; since
G is nonplanar, this is not possible. Therefore, there is an inner bridge B
that is both skew to uv and skew to some outer bridge xy.

Two cases now arise, depending on whether B has a vertex of attachment
different from u, v, x and y or not.

Case 1 B has a vertex of attachment different from u, v, x and y. We
can choose the notation so that B has a vertex of attachment v, in C(x, u)
(see figure 9.19). We consider two subcases, depending on whether B has a
vertex of attachment in C(y, v) or not.

Case la B has a vertex of attachment v, in C(y, v). In this case there is
a (v1, v;)-path P in B that is internally-disjoint from C. But then (CUP) +
{uv, xy} is a subdivision of K, in G, a contradiction (see figure 9.19).

Case 1b B has no vertex of attachment in C(y, v). Since B is skew to uv
and to xy, B must have vertices of attachment v, in C(u, y] and v in
C[v, x). Thus B has three vertices of attachment v;, v, and 0. By theorem
9.7, there exists a vertex v, in V(B)\V(C) and three paths P,, P, and P; in B
joining v, to v,, v, and vs, respectively, such that, for i#j, P; and P; have
only the vertex v, in common. But now (C U P, U P,U P3) +{uv, Xy} contains
a subdivision of K3, a contradiction. This case is illustrated in figure 9.20.
The subdivision of Ks; is indicated by heavy lines.

Figure 9.19
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Figure 9.20

Case 2 B has no vertex of attachment other than u, v, x and y. Since B
is skew to both uv and xy, it follows that u, v, x and y must all be vertices of
attachment of B. Therefore (exercise 9.4.2) there exists a (u, v)-path P and
an (x, y)-path Q in B such that (i) P and Q are internally-disjoint from C,
and (ii) |V(P) N V(Q)|=1. We consider two subcases, depending on whether
P and Q have one or more vertices in common.

Case 2a |V(P)N V(Q)|=1. In this case (CUP U Q)+{uv, xy} is a sub-
division of Ks in G, again a contradiction (see figure 9.21).

Figure 9.21
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Case 2b |V(P)NV(Q)|=2. Let u’' and v’ be the first and last vertices of
P on Q, and let P, and P, denote the (u, u’)- and (v’, v)-sections of P. Then
(CUP,UP,U Q) +{uv, xy} contains a subdivision of K3 in G, once more a
contradiction (see figure 9.22).

Figure 9.22

Thus all the possible cases lead to contradictions, and the proof is
complete 0 |

There are several other characterisations of planar graphs. For example,
Wagner (1937) has shown that a graph is planar if and only if it contains no
subgraph contractible to K or Kj .

Exercises

9.5.1 Prove lemmas 9.10.1 and 9.10.2.

9.5.2 Show, using Kuratowski’s theorem, that the Petersen graph is non-
planar.

9.6 THE FIVE-COLOUR THEOREM AND THE FOUR-COLOUR CONJECTURE

As has already been noted (exercise 9.3.2), every planar graph is 6-vertex-
colourable. Heawood (1890) improved upon this result by showing that one
can always properly colour the vertices of a planar graph with at most five
colours. This is known as the five-colour theorem.

Theorem 9.11 Every planar graph is 5-vertex-colourable.

Proof By contradiction. Suppose that the theorem is false. Then there
exists a 6-critical plane graph G. Since a critical graph is simple, we see from
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Figure 9.23

corollary 9.5.3 that § =5. On the other hand we have, by theorem 8.1, that
6 = 5. Therefore 6 =5. Let v be a vertex of degree five in G, and let (V,, V,,
Vi, Vi, Vs) be a proper 5-vertex colouring of G —v; such a colouring exists
because G is 6-critical. Since G itself is not 5-vertex-colourable, v must be
adjacent to a vertex of each of the five colours. Therefore we can assume
that the neighbours of v in clockwise order about v are v,, v,, v3, vs and vs,
where vie V; for 1=i=<5.

Denote by G;; the subgraph G[V,U V;] induced by VU V,. Now v; and v;
must belong to the same component of G;;. For, otherwise, consider the
component of G;; that contains vi. By interchanging the colours i and j in
this component, we obtain a new proper 5-vertex colouring of G—v in
which only four colours (all but i) are assigned to the neighbours of v. We
have already shown that this situation cannot arise. Therefore v; and v; must
belong to the same component of G;. Let P;; be a (v;, v;)-path in Gy, and let
C denote the cycle vv,Pi;v;v (see figure 9.23).

Since C separates v, and v, (in figure 9.23, v,€int C and vseext C), it
follows from the Jordan curve theorem that the path P,, must meet C in
some point. Because G is a plane graph, this point must be a vertex. But this
is impossible, since the vertices of P,,.-have colours 2 and 4, whereas no
vertex of C has either of these colours 0

The question now arises as to whether the five-colour theorem is best
possible. It has been conjectured that every planar graph is 4-vertex-
colourable; this is known as the four-colour conjecture. The four-colour
conjecture has remained unsettled for more than a century, despite many
attempts by major mathematicians td solve it. If it were true, then it would,
of course, be best possible because there do exist planar graphs which
~are not 3-vertex-colourable (K, is the simplest such graph). For a history of
the four-colour conjecture, see Ore (1967)t.

t+ The four-colour conjecture has now been settled in the affirmative by K. Appel and
W. Haken; see page 253.
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The problem of deciding whether the four-colour conjecture is true or
false is called the four-colour problem.t There are several problems in graph
theory that are equivalent to the four-colour problem; one of these is the
case n =5 of Hadwiger’s conjecture (see section 8.3). We now establish the
equivalence of certain problems concerning edge and face colourings with
the four-colour problem. A k-face colouring of a plane graph G is an
assignment of k colours 1, 2, ..., k to the faces of G; the colouring is proper
if no two faces that are separated by an edge have the same colour. G 1is k-
face-colourable if it has a proper k-face colouring, and the minimum k for
which G is k-fate-colourable is the face chromatic number of G, denoted by
x*(G). It follows immediately from these definitions that, for any plane
graph G with dual G*,

x*(G) = x(G¥ (9.2)

Theorem 9.12 The following three statements are equivalent:

(i) every planar graph is 4-vertex-colourable;

(ii) every plane graph is 4-face-colourable;
(iii) every simple 2-edge-connected 3-regular planar graph is 3-edge-
colourable.

Proof We shall show that (i) = (ii) = (iii) = (i).

(a) (i)=(ii). This is a direct consequence of (9.2) and the fact that the dual
of a plane graph is planar. |
(b) (ii)=>(iii). Suppose that (ii) holds, let G be a simple 2-edge-connected
3-regular planar graph, and let G be a planar embedding of G. By (ii), G
has a proper 4-face-colouring. It is, of course, immaterial which symbols
are used as the ‘colours’, and in this case we shall denote the four
colours by the vectors co=(0,0), ¢,=(1,0), c;=(0,1) and c;=(1, 1),
over the field of integers modulo 2. We now obtain a 3-edge-colouring
of G by assigning to each edge the sum of the colours of the faces it
separates (see figure 9.24). If ¢;, ¢j and c\ are the three colours assigned
to the three faces incident with a vertex v, then ci+cj, ¢;+cx and ck+ci
are the colours assigned to the three edges incident with v. Since G is 2-
“edge-connected, each edge separates two distinct faces, and it follows
that no edge is assigned the colour ¢, under this scheme. It is also clear
that the three edges incident with a given vertex are assigned different
colours. Thus we have a proper 3-edge-colouring of G, and hence of G.

T The four-colour problem is often posed in the following terms: can the countries of any
map be coloured in four colours so that no two countries which have a common boundary are
assigned the same colour? The equivalence of this problem with the four-colour problem
follows from theorem 9.12 on observiug that a map can be regarded as a plane graph with its
countries as the faces.




Planar Graphs 159

Cyx + G

Figure 9.24

(¢) (iii)=> (i). Suppose that (iii) holds, but that (i) does not. Then there is a
5-critical planar graph G. Let G be a planar embedding of G. Then
(exercise 9.2.6) G is a spanning subgraph of a simple plane triangulation
H. The dual H* of H is a simple 2-edge-connected 3-regular planar
graph (exercise 9.2.7). By (iiij), H* has a proper 3-edge colouring
(E1, E», Es). For i#j, let Hif denote the subgraph of H* induced by
E,UE,;. Since each vertex of H* is incident with one edge of E; and one
edge of E;, Hi is a union of disjoint cycles and is therefore (exercise
9.6.1) 2-face-colourable. Now each face of H* is the intersection of a
face of HY; and a face of H%. Given proper 2-face colourmgs of HY; and
H3; we can obtain a 4-face colouring of H* by assigning to each face f
the palr of colours assigned to the faces whose intersection is f. Since
H*= HY,UH% it is easily verified that this 4-face colouring of H* is
proper. Since H -is a supergraph of G we have

5=x(G)=x(H)=x*(H*) =4
This contradiction shows that (i) does, in fact, hold [

That statement (iii) of theorem 9.12 is equivalent to the four-colour
problem was first observed by Tait (1880). A proper 3-edge colouring of a
3-regular graph is often called a Tait colouring. In the next section we shall
disciss Tait’s ill-fated approach to the four-colour conjecture. Grotzsch
(1958) has verified the four-colour conjecture for planar graphs without
triangles. In fact, he has shown that every such graph is 3-vertex-colourable.

Exercises

9.6.1 Show that a plane graph G is 2- face-colourable if and only if G is
eulerian.

9.6.2 Show that a plane triangulation G is 3-vertex colourable if and only
if G is eulerian.

9.6.3 Show that every hamiltonian plane graph is 4-face-colourable.

9.6.4 Show that every hamiltonian 3-regular graph has a Tait colouring.
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9.6.5 Prove theorem 9.12 by showing that (iii) = (ii) = (i) = (iii).
9.6.6 Let G be a 3-regular graph with «'=2.

(a) Show that there exist subgraphs G, and G, of G and non-
adjacent pairs of vertices ui, v;€ V(G1) and u,, v2€ V(G2) such
that G consists of the graphs G, and G; joined by a ‘ladder’ at
the vertices u;, v1, U, and v,.

i

(b) Show that if G;+ u,v, and G.+ u,v, both have Tait colourings,
then so does G.

(c) Deduce, using theorem 9.12, that the four-colour conjecture is
equivalent to Tait’s conjecture: every simple 3-regular 3-
connected planar graph has a Tait colouring.

9.6.7 Give an example of

(a) a 3-regular planar graph‘ with no Tait coloixring; |
(b) a 3-regular 2-connected graph with no Tait colouring.

0.7 NONHAMILTONIAN PLANAR GRAPHS

In his attempt to prove the four-colour conjecture, Tait (1880) observed
that it would be enough to show that every 3-regular 3-connected planar
graph has a Tait colouring (exercise 9.6.6). By mistakenly assuming that
every such graph is hamiltonian, he gave a ‘proof’ of the four-colour
conjecture (see exercise 9.6.4). Over half a century later, Tutte (1946)
showed Tait’s proof to be invalid by constructing a nonhamiltonian 3-
regular 3-connected planar graph; it is depicted in figure 9.25.

Tutte proved that his graph is nonhamiltonian by using ingenious ad hoc
arguments (exercise 9.7.1), and for many years the Tutte graph was the only
known example of a nonhamiltonian 3-regular 3-connected planar graph.
However, Grinberg (1968) then discovered a necessary condition for a plane
graph to be hamiltonian. His discovery has led to the construction of many
nonhamiltonian planar graphs.
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Figure 9.25. The Tutte graph

Theorem 9.13 Let G be a loopless plane graph with a Hamilton cycle C.
Then

3 (i-2)(6t-¢D=0 9.3)

where ¢! and ¢ are the numbers of faces of degree i contained in Int C and
Ext C, respectively.

Proof Denote by E’ the subset of E(G)\E(C) contained in Int C, and let
¢'=|E'|. Then Int C contains exactly &'+ 1 faces (see figure 9.26), and so

}‘: di=¢'+1 (9.4)

i=1

Now each edge in E’ is on the boundary of two faces in Int C, and each edge

Figure 9.26
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of C is on the boundary of exactly one face in Int C. Therefore

Y idl=2¢"+v 9.5)

i=1

Using (9.4), we can eliminate ¢’ from (9.5) to obtain

i (i-2)pi=v-2 (9.6)

i=1

Similarly

\d

Y (i-2)¢i=v-2 (9.7)

i=1
Equations (9.6) and (9.7) now yield (9.3) U

With the aid of theorem 9.13, it is a simple matter to show, for example,
that the Grinberg graph (figure 9.27) is nonhamiltonian.
Suppose that this graph is hamiltonian. Then, noting that it only has faces
of degrees five, eight and nine, condition (9.3) yields
3(d5—¢5) +6(ds—ds) +7(d5—d5) =0
We deduce that |
7(ds5—ds)=0 (modulo 3)

But this is clearly impossible, since the valde'of the left-hand side is 7 or —7,
depending on whether the face of degree nine is in IntC or ExtC.
Therefore the graph cannot be hamiltonian. '

Figure 9.27. The Grinberg graph
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Although there exist nonhamiltonian 3-connected planar graphs, Tutte
(1956) has shown that every 4-connected planar graph is hamiltonian.

Exercises

9.7.1 (a) Show that no Hamilton cycle in the graph G, below can contain
both the edges e and e’
(b) Using (a), show that no Hamilton cycle in the graph G, can
contain both the edges e and e'.
(c) Using (b), show that every Hamilton cycle in the graph G, must
contain the edge e.

e

G

(d) Deduce that the Tutte graph (figure 9.25) is nonhamiltonian.
9.7.2 Show, by applying theorem 9.13, that the Herschel graph (figure
4.2b) is nonhamiltonian. (It is, in fact, the smallest nonhamiltonian
3-connected planar graph.) -
9.7.3 Give an example of a simple nonhamiltonian 3-regular planar graph
with connectivity two. | '

APPLICATIONS

9.8 A PLANARITY ALGORITHM

There are many practical situations in which it is important to decide
whether a given graph is planar, and, if so, to then find a planar embedding
of the graph. For example, in the layout of printed circuits one is interested
in knowing if a particular electrical network is planar. In this section, we
shall present an algorithm for solving this problem, due to Demoucron,
~ Malgrange and Pertuiset (1964). |

Let H be a planar subgraph of a graph G and let H be an embedding of
H in the plane. We say that H is G-admissible if G is planar and there is a
planar embedding G of G such that H< G. In figure 9.28, for example, two
embeddings of a planar subgraph of G are shown; one is G-admissible and
the other is not. |
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(a) v (b) » (c)
Figure 9.28. (a) G; (b) G-admissible; (c) G-inadmissible

If B is any bridge of H (in G), then B is said to be drawable in a face f of
H if the vertices of attachment of B to H are contained in the boundary of
f. We write F(B, H) for the set of faces of H in which B is drawable. The
following theorem provides a necessary condition for G to be planar.

Theorem 9.14 If H is G-admissible then, for every bridge B of H,
F(B,H)# 0.

Proof If H is G-admissible then, by definition, there exists a planar
embedding G of G such that H< G. Clearly, the subgraph of G which

corresponds to a bridge B of H must be confined to one face of H. Hence
F(B,H)##9 0O

Since a graph is planar if and only if each block of its underlying simple
graph is planar, it suffices to consider simple blocks. Given such a graph G,
the algorithm determines an increasing sequence Gi, Gz, ... of planar
subgraphs of G, and corresponding planar embeddings Gl, G.,.... When G
is planar, each G, is G-admissible and the sequence Gy, G., . . . terminates in
a planar embedding of G. At each stage, the necessary condxtiOn in theorem
9.14 is used to test G for nonplanarity.

Planarity Algorithm

1. Let G, be a cycle in G. Find a planar embedding G; of G,. Set i=1

2. If E(G)\E(G) = 9, stop. Otherwise, determine all bridges of G in G; for
each such bridge B find the set F(B, G).

3. If there exists a bridge B such that F(B, G;) = 9, stop; by theorem 9.14,
G is nonplanar. If there exists a bridge B such that |F(B, G)|=1, let
{f}=F(B, G)). Otherwise, let B be any bridge and f any face such that
f € F(B, G).

4. Choose a path Pic B connecting two vertices of attachment of B to G..
Set Gi.; = G;UP; and obtain a planar embedding Gi.1 of Gi.1 by drawing
P; in the face f of G.. Replace i by i+1 and go to step 2.

To illustrate this algorithm, we shall consider the graph G of figure 9.29.
We start with the cycle G, =2345672 and a list of its bridges (denoted, for




7 2
6 3
5 4
G
6 7 6 7
2 5 2
4 3 4 3
61 GZ
{12,13,14,15},{26} {12,13,14,15}
{48,58,68,78},{37} {48,58,68,78){37} G Ce
6 7

4 3
Gs [A

{12134 15} {14},{15},{48,58,68,78} ~

{48,58,68,78} : Go

Figure 9.29
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brevity, by their edge sets); at each stage, the bridges B for which
|F(B, Gi)|=1 are indicated in bold face. In this example, the algorithm
terminates with a planar embedding Gs of G. Thus G is planar.

Now let us apply the algorithm to the graph H obtained from G by
deleting edge 45 and adding edge 36 (figure 9.30). Starting with the cycle
23672, we proceed as shown in figure 9.30. It can be seen that, having
constructed Hs, we find a bridge B ={12, 13, 14, 15, 34, 48, 56, 58, 68, 78}

8 1
6 3
5 q
H
7 2 7 2
6 ﬁa 3 6 ;_72 3
{26},{37} {37}

{12,13,14,15,34,48,56,58,68,78} {1213,14,15,34,48,56,58,68,78}

6 ;_73 3

{12,13,14,15,34,48,56,58,68,78}

Figure 9.30
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such that F(B, H;) = 8. At this point the algorithm stops (step 3), and we
conclude that H is nonplanar.

In order to establish the validity of the algorithm, one needs to show that
if G is planar, then each term of the sequence G, G, ..., G._,. is
G-admissible. Demoucron, Malgrange and Pertuiset prove this by induction.
We shall give a general outline of their proof. ' '

Suppose that G is planar. Clearly G, is G-admissible. Assume that G, is
G-admissible for 1=i<k<g—v+1. By definition, there is a planar em-
bedding G of G such that Gi= G. We wish to show that G.., is G-
admissible. Let B and f be as defined in step 3 of the algorithm. If, in G, B
is drawn in f, Gy., is clearly G-admissible. So assume that no bridge of G is
drawable in only one face of G., and that, in G, B is drawn in some other
face f'. Since no bridge is drawable in Just one face, no bridge whose
vertices of attachment are restricted to the common boundary of f and f’
can be skew to a bridge not having this property. Hence we can interchange
bridges across the common boundary of f and f’ and thereby obtain a planar
embedding of G in which B is drawn in f (see figure 9.31). Thus, again, G,.,
is G-admissible.

Figure 9.31

The algorithm that we have described is good. From the flow diagram
(figure 9.32), one sees that the main operations involved are

(i) finding a cycle G, in the block G;

(ii) determining the bridges of G, in G and their vertices of attachment to
G;; |




Find a cycle Gyand @
planar embedding G, of G,

STOP:
1= > E(GN\E(G) =07 G, a planar
embedding
of G
? For each bridge 8 of G;,
find F(8,5;)

Find 0 path P in 8
connecting two vertices
of attachment.

Set Gi'ﬂ = Glupl.
Draw P, in f 10 get G 44

STOP:
G, U8 a non-planar
subgraph of G

Is there
a B such that

|F(B,G)1=17

YES:

-
3 Band f such that
A F(B,gﬁ: (f)

Choose any
\ Band f
such that
feF (8.5,)

Figure 9.32. Planarity algorithm
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(iii) determining b(f) for each face f of G:;

(iv) determining F(B, G;) for each bridge B of G;;

(v) finding a path P; in some bridge B of G, between two vertices of
V(B, G). :

There exists a good algorithm for each of these operations; we leave the
details as an exercise.

More sophisticated algorithms for testing planarity than the above have
since been obtained. See, for example, Hopcroft and Tarjan (1974).

Exercise

9.8.1 Show that the Petersen graph is nonplanar by applying the above
algorithm.

REFERENCES

Demoucron, G., Malgrange, Y. and Pertuiset, R. (1964). Graphes planaires:
reconnaissance et construction de représentations planaires topologiques.
Rev. Frangaise Recherche Opérationnelle, 8, 33-47

Dirac, G. A. and Schuster, S. (1954). A theorem of Kuratowski. Nederl.
Akad. Wetensch. Proc. Ser. A., 57, 343-48

‘Féry, 1. (1948). On straight line representation of planar graphs. Acta Sci.
Math. Szeged, 11, 229-33

Fréchet, M. and Ky Fan (1967). Initiation to Combinatorial Topology,
Prindle, Weber and Schmidt, Boston .

Grinberg, E. Ja (1968). Plane homogeneous graphs of degree three without
Hamiltonian circuits (Russian). Latvian Math. Yearbook, 4, 51-58

Grotzsch, H. (1958). Ein Dreifarbensatz fiir dreikreisfreie Netze auf der
Kugel. Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg. Math.-Nat.
Reihe, 9, 109-19 : o

Heawood, P. J. (1890). Map colour theorems. Quart. J. Math., 24, 332-38

Hopcroft, J. E. and Tarjan, R. E. (1974). Efficient planarity testing. J.
Assoc. Comput. Mach., 21, 549-568

Kuratowski, C. (1930). Sur le probléme des courbes gauches en topologie.
Fund. Math., 15, 271-83

Ore, O. (1967). The Four-Color Problem, Academic Press, New York

Tait, P. G. (1880). Remarks on colouring of maps. Proc. Royal Soc.
Edinburgh Ser. A., 10, 729




170 Graph Theory with Applications

Tutte, W. T. (1946). On Hamiltonian circuits, J. London Math. Soc., 21,
98-101

Tutte, W. T. (1956). A theorem on planar graphs. Trans. Amer. Math. Soc.,
82, 99-116 ) |

Wagner, K. (1937). Uber eine Eigenschaft der ebenen Komplexe. Math.
Ann., 114, 570-90




