
C H A P T E R

8

Multilevel Security
Most high assurance work has been done in the area of kinetic devices

and infernal machines that are controlled by stupid robots. As
information processing technology becomes more important

to society, these concerns spread to areas
previously thought inherently harmless,

like operating systems.

— Earl Boebert

I brief;
you leak;

he/she commits a criminal offence
by divulging classified information.

— British Civil Service Verb

They constantly try to escape
From the darkness outside and within

By dreaming of systems so perfect that no one will need to be good

— TS Eliot

8.1 Introduction

I mentioned in the introduction that military database systems, which can
hold information at a number of different levels of classification (Confidential,
Secret, Top Secret, . . .), have to ensure that data can only be read by a principal
whose level is at least as high as the data’s classification. The policies they
implement are known as multilevel secure or alternatively as mandatory access
control or MAC.

239

240 Chapter 8 ■ Multilevel Security

Multilevel secure systems are important because:

1. a huge amount of research has been done on them, thanks to military
funding for computer science in the USA. So the military model of protec-
tion has been worked out in much more detail than any other, and it gives
us a lot of examples of the second-order and even third-order effects of
implementing a security policy rigorously;

2. although multilevel concepts were originally developed to support con-
fidentiality in military systems, many commercial systems now use mul-
tilevel integrity policies. For example, telecomms operators want their
billing system to be able to see what’s happening in their switching sys-
tem, but not affect it;

3. recently, products such as Microsoft Vista and Red Hat Linux have started
to incorporate mandatory access control mechanisms, and they have also
appeared in disguise in digital rights management systems. For example,
Red Hat uses SELinux mechanisms developed by the NSA to isolate dif-
ferent servers running on a machine — so that even if your web server is
hacked, it doesn’t necessarily follow that your DNS server gets taken over
too. Vista has a multilevel integrity policy under which Internet Explorer
runs by default at ‘Low’ — which means that even if it gets taken over,
the attacker should not be able to change system files, or anything else
with a higher integrity level. These mechanisms are still largely invisible
to the domestic computer user, but their professional use is increasing;

4. multilevel confidentiality ideas are often applied in environments where
they’re ineffective or even harmful, because of the huge vested inter-
ests and momentum behind them. This can be a contributory factor in
the failure of large system projects, especially in the public sector.

Sir Isiah Berlin famously described thinkers as either foxes or hedgehogs:
a fox knows many little things, while a hedgehog knows one big thing. The
multilevel philosophy is the hedgehog approach to security engineering.

8.2 What Is a Security Policy Model?

Where a top-down approach to security engineering is possible, it will typi-
cally take the form of threat model — security policy — security mechanisms. The
critical, and often neglected, part of this process is the security policy.

By a security policy, we mean a document that expresses clearly and
concisely what the protection mechanisms are to achieve. It is driven by our
understanding of threats, and in turn drives our system design. It will often
take the form of statements about which users may access which data. It
plays the same role in specifying the system’s protection requirements, and

8.2 What Is a Security Policy Model? 241

evaluating whether they have been met, that the system specification does
for general functionality. Indeed, a security policy may be part of a system
specification, and like the specification its primary function is to communicate.

Many organizations use the phrase ‘security policy’ to mean a collection of
vapid statements. Figure 8.1 gives a simple example:

Megacorp Inc security policy

1. This policy is approved by Management.

2. All staff shall obey this security policy.

3. Data shall be available only to those with a ‘need-to-know’.

4. All breaches of this policy shall be reported at once to Security.

Figure 8.1: A typical corporate information security policy

This sort of waffle is very common but is useless to the security engineer.
Its first failing is it dodges the central issue, namely ‘Who determines ‘‘need-

to-know’’ and how?’ Second, it mixes statements at a number of different
levels (organizational approval of a policy should logically not be part of the
policy itself). Third, there is a mechanism but it’s implied rather than explicit:
‘staff shall obey’ — but what does this mean they actually have to do? Must the
obedience be enforced by the system, or are users ‘on their honour’? Fourth,
how are breaches to be detected and who has a specific duty to report them?

We must do better than this. In fact, because the term ‘security policy’ is
widely abused to mean a collection of managerialist platitudes, there are three
more precise terms which have come into use to describe the specification of
protection requirements.

A security policy model is a succinct statement of the protection properties
which a system, or generic type of system, must have. Its key points can
typically be written down in a page or less. It is the document in which
the protection goals of the system are agreed with an entire community, or
with the top management of a customer. It may also be the basis of formal
mathematical analysis.

A security target is a more detailed description of the protection mechanisms
that a specific implementation provides, and how they relate to a list of control
objectives (some but not all of which are typically derived from the policy
model). The security target forms the basis for testing and evaluation of a
product.

A protection profile is like a security target but expressed in an implementa-
tion-independent way to enable comparable evaluations across products and
versions. This can involve the use of a semi-formal language, or at least of
suitable security jargon. A protection profile is a requirement for products that
are to be evaluated under the Common Criteria [935]. (I discuss the Common

242 Chapter 8 ■ Multilevel Security

Criteria in Part III; they are associated with a scheme used by many govern-
ments for mutual recognition of security evaluations of defense information
systems.)

When I don’t have to be so precise, I may use the phrase ‘security policy’ to
refer to either a security policy model or a security target. I will never use it
to refer to a collection of platitudes.

Sometimes, we are confronted with a completely new application and have
to design a security policy model from scratch. More commonly, there already
exists a model; we just have to choose the right one, and develop it into a
security target. Neither of these steps is easy. Indeed one of the purposes of this
section of the book is to provide a number of security policy models, describe
them in the context of real systems, and examine the engineering mechanisms
(and associated constraints) which a security target can use to meet them.

Finally, you may come across a third usage of the phrase ‘security pol-
icy’ — as a list of specific configuration settings for some protection product.
We will refer to this as configuration management, or occasionally as trusted
configuration management, in what follows.

8.3 The Bell-LaPadula Security Policy Model

The classic example of a security policy model was proposed by Bell and
LaPadula in 1973, in response to US Air Force concerns over the security of
time-sharing mainframe systems1. By the early 1970’s, people had realised that
the protection offered by many commercial operating systems was poor, and
was not getting any better. As soon as one operating system bug was fixed,
some other vulnerability would be discovered. (Modern reliability growth
models can quantify this and confirm that the pessimism was justified; I
discuss them further in section 26.2.4.) There was the constant worry that even
unskilled users would discover loopholes and use them opportunistically;
there was also a keen and growing awareness of the threat from malicious
code. (Viruses were not invented until the following decade; the 70’s concern
was about Trojans.) There was a serious scare when it was discovered that
the Pentagon’s World Wide Military Command and Control System was
vulnerable to Trojan Horse attacks; this had the effect of restricting its use
to people with a ‘Top Secret’ clearance, which was inconvenient. Finally,
academic and industrial researchers were coming up with some interesting
new ideas on protection, which I discuss below.

A study by James Anderson led the US government to conclude that a
secure system should do one or two things well; and that these protection

1This built on the work of a number of other researchers: see section 9.2.1 below for a sketch of
the technical history.

8.3 The Bell-LaPadula Security Policy Model 243

properties should be enforced by mechanisms which were simple enough to
verify and that would change only rarely [29]. It introduced the concept of a
reference monitor — a component of the operating system which would mediate
access control decisions and be small enough to be subject to analysis and
tests, the completeness of which could be assured. In modern parlance, such
components — together with their associated operating procedures — make
up the Trusted Computing Base (TCB). More formally, the TCB is defined as the
set of components (hardware, software, human, . . .) whose correct functioning
is sufficient to ensure that the security policy is enforced, or, more vividly,
whose failure could cause a breach of the security policy. The Anderson
report’s goal was to make the security policy simple enough for the TCB to be
amenable to careful verification.

But what are these core security properties that should be enforced above
all others?

8.3.1 Classifications and Clearances
The Second World War, and the Cold War which followed, led NATO
governments to move to a common protective marking scheme for labelling
the sensitivity of documents. Classifications are labels, which run upwards from
Unclassified through Confidential, Secret and Top Secret (see Figure 8.2.). The
details change from time to time. The original idea was that information
whose compromise could cost lives was marked ‘Secret’ while information
whose compromise could cost many lives was ‘Top Secret’. Government
employees have clearances depending on the care with which they’ve been
vetted; in the USA, for example, a ‘Secret’ clearance involves checking FBI
fingerprint files, while ‘Top Secret’ also involves background checks for the
previous five to fifteen years’ employment [379].

The access control policy was simple: an official could read a document
only if his clearance was at least as high as the document’s classification. So
an official cleared to ‘Top Secret’ could read a ‘Secret’ document, but not vice
versa. The effect is that information may only flow upwards, from confidential
to secret to top secret, but it may never flow downwards unless an authorized
person takes a deliberate decision to declassify it.

There are also document handling rules; thus a ‘Confidential’ document
might be kept in a locked filing cabinet in an ordinary government office,

TOP SECRET

SECRET
CONFIDENTIAL

UNCLASSIFIED

Figure 8.2: Multilevel security

244 Chapter 8 ■ Multilevel Security

while higher levels may require safes of an approved type, guarded rooms
with control over photocopiers, and so on. (The NSA security manual [952]
gives a summary of the procedures used with ‘top secret’ intelligence data.)

The system rapidly became more complicated. The damage criteria for
classifying documents were expanded from possible military consequences
to economic harm and even political embarrassment. The UK has an extra
level, ‘Restricted’, between ‘Unclassified’ and ‘Confidential’; the USA used
to have this too but abolished it after the Freedom of Information Act was
introduced. America now has two more specific markings: ‘For Official Use
only’ (FOUO) refers to unclassified data that can’t be released under FOIA,
while ‘Unclassified but Sensitive’ includes FOUO plus material which might be
released in response to a FOIA request. In the UK, ‘Restricted’ information is in
practice shared freely, but marking everything ‘Restricted’ allows journalists
and others involved in leaks to be prosecuted under Official Secrets law.
(Its other main practical effect is that an unclassified US document which
is sent across the Atlantic automatically becomes ‘Restricted’ in the UK and
then ‘Confidential’ when shipped back to the USA. American military system
builders complain that the UK policy breaks the US classification scheme!)

There is also a system of codewords whereby information, especially at
Secret and above, can be further restricted. For example, information which
might reveal intelligence sources or methods — such as the identities of agents
or decrypts of foreign government traffic — is typically classified ‘Top Secret
Special Compartmented Intelligence’ or TS/SCI, which means that so-called
need to know restrictions are imposed as well, with one or more codewords
attached to a file. Some of the codewords relate to a particular military
operation or intelligence source and are available only to a group of named
users. To read a document, a user must have all the codewords that are
attached to it. A classification label, plus a set of codewords, makes up a
security category or (if there’s at least one codeword) a compartment, which is
a set of records with the same access control policy. I discuss compartmentation
in more detail in the chapter on multilateral security.

There are also descriptors, caveats and IDO markings. Descriptors are words
such as ‘Management’, ‘Budget’, and ‘Appointments’: they do not invoke any
special handling requirements, so we can deal with a file marked ‘Confiden-
tial — Management’ as if it were simply marked ‘Confidential’. Caveats are
warnings such as ‘UK Eyes Only’, or the US equivalent, ‘NOFORN’; there are
also International Defence Organisation markings such as NATO. The lack of
obvious differences between codewords, descriptors, caveats and IDO mark-
ing is one of the things that can make the system confusing. A more detailed
explanation can be found in [1051].

The final generic comment about access control doctrine is that allowing
upward-only flow of information also models what happens in wiretapping.
In the old days, tapping someone’s telephone meant adding a physical wire

8.3 The Bell-LaPadula Security Policy Model 245

at the exchange; nowadays, it’s all done in the telephone exchange software
and the effect is somewhat like making the target calls into conference calls
with an extra participant. The usual security requirement is that the target
of investigation should not know he is being wiretapped, so the third party
should be silent — and its very presence must remain unknown to the target.
For example, now that wiretaps are implemented as silent conference calls,
care has to be taken to ensure that the charge for the conference call facility goes
to the wiretapper, not to the target. Wiretapping requires an information flow
policy in which the ‘High’ principal can see ‘Low’ data, but a ‘Low’ principal
can’t tell whether ‘High’ is reading any data at all, let alone what data.

8.3.2 Information Flow Control
It was in this context of the classification of government data that the Bell-
LaPadula or BLP model of computer security was formulated in 1973 [146]. It
is also known as multilevel security and systems which implement it are often
called multilevel secure or MLS systems. Their basic property is that information
cannot flow downwards.

More formally, the Bell-LaPadula model enforces two properties:

The simple security property: no process may read data at a higher level.
This is also known as no read up (NRU);

The *-property: no process may write data to a lower level. This is also
known as no write down (NWD).

The *-property was Bell and LaPadula’s critical innovation. It was driven
by the fear of attacks using malicious code. An uncleared user might write a
Trojan and leave it around where a system administrator cleared to ‘Secret’
might execute it; it could then copy itself into the ‘Secret’ part of the system,
read the data there and try to signal it down somehow. It’s also quite possible
that an enemy agent could get a job at a commercial software house and embed
some code in a product which would look for secret documents to copy. If it
could then write them down to where its creator could read it, the security
policy would have been violated. Information might also be leaked as a result
of a bug, if applications could write down.

Vulnerabilities such as malicious and buggy code are assumed to be given. It
is also assumed that most staff are careless, and some are dishonest; extensive
operational security measures have long been used, especially in defence
environments, to prevent people leaking paper documents. (When I worked
in defense avionics as a youngster, all copies of circuit diagrams, blueprints
etc were numbered and had to be accounted for.) So there was a pre-existing
culture that security policy was enforced independently of user actions; the
move to computers didn’t change this. It had to be clarified, which is what Bell-
LaPadula does: the security policy must be enforced not just independently of

246 Chapter 8 ■ Multilevel Security

users’ direct actions, but of their indirect actions (such as the actions taken by
programs they run).

So we must prevent programs running at ‘Secret’ from writing to files at
‘Unclassified’, or more generally prevent any process at High from signalling
to any object (or subject) at Low. In general, when systems enforce a security
policy independently of user actions, they are described as having mandatory
access control, as opposed to the discretionary access control in systems like Unix
where users can take their own access decisions about their files.

The Bell-LaPadula model makes it relatively straightforward to verify claims
about the protection provided by a design. Given both the simple security
property (no read up), and the star property (no write down), various results
can be proved about the machine states which can be reached from a given
starting state, and this simplifies formal analysis. There are some elaborations,
such as a trusted subject — a principal who is allowed to declassify files. To keep
things simple, we’ll ignore this; we’ll also ignore the possibility of incompatible
security levels for the time being, and return to them in the next chapter; and
finally, in order to simplify matters still further, we will assume from now
on that the system has only two levels, High and Low (unless there is some
particular reason to name individual compartments).

Multilevel security can be implemented in a number of ways. The original
idea was to implement a reference monitor by beefing up the part of an
operating system which supervises all operating system calls and checks
access permissions to decide whether the call can be serviced or not. However
in practice things get much more complex as it’s often hard to build systems
whose trusted computing base is substantially less than the whole operating
system kernel (plus quite a number of its utilities).

Another approach that has been gaining ground as hardware has got cheaper
and faster is to replicate systems. This replication was often physical in the
1990s, and since about 2005 it may use virtual machines; some promising
recent work builds on virtualization products such as VMware and Xen to
provide multiple systems at different security levels on the same PC. One
might, for example, have one database running at Low and another at High,
on separate instances of Windows XP, with a pump that constantly copies
information from Low up to High, all running on VMware on top of SELinux.
I’ll discuss pumps in more detail later.

8.3.3 The Standard Criticisms of Bell-LaPadula
The introduction of BLP caused a lot of excitement: here was a straightforward
security policy which was clear to the intuitive understanding yet still allowed
people to prove theorems. But John McLean showed that the BLP rules
were not in themselves enough. He introduced System Z, defined as a BLP
system with the added feature that a user can ask the system administrator to

8.3 The Bell-LaPadula Security Policy Model 247

temporarily declassify any file from High to Low. In this way, Low users can
read any High file without breaking the BLP assumptions.

Bell’s argument was that System Z cheats by doing something the model
doesn’t allow (changing labels isn’t a valid operation on the state), and
McLean’s argument was that it didn’t explicitly tell him so. The issue is dealt
with by introducing a tranquility property. The strong tranquility property says
that security labels never change during system operation, while the weak
tranquility property says that labels never change in such a way as to violate
a defined security policy.

The motivation for the weak property is that in a real system we often
want to observe the principle of least privilege and start off a process at the
uncleared level, even if the owner of the process were cleared to ‘Top Secret’.
If she then accesses a confidential email, her session is automatically upgraded
to ‘Confidential’; and in general, her process is upgraded each time it accesses
data at a higher level (this is known as the high water mark principle). As
subjects are usually an abstraction of the memory management sub-system
and file handles, rather than processes, this means that state changes when
access rights change, rather than when data actually moves.

The practical implication is that a process acquires the security labels of all
the files it reads, and these become the default label set of every file that it writes.
So a process which has read files at ‘Secret’ and ‘Crypto’ will thereafter create
files marked (at least) ‘Secret Crypto’. This will include temporary copies made
of other files. If it then reads a file at ‘Top Secret Daffodil’ then all files it creates
after that will be labelled ‘Top Secret Crypto Daffodil’, and it will not be able to
write to any temporary files at ‘Secret Crypto’. The effect this has on applica-
tions is one of the serious complexities of multilevel security; most application
software needs to be rewritten (or at least modified) to run on MLS platforms.
Read-time changes in security level introduce the problem that access to
resources can be revoked at any time, including in the middle of a transaction.
Now the revocation problem is generally unsolvable in modern operating
systems, at least in any complete form, which means that the applications
have to cope somehow. Unless you invest some care and effort, you can easily
find that everything ends up in the highest compartment — or that the system
fragments into thousands of tiny compartments that don’t communicate at all
with each other. I’ll discuss this in more detail in the next chapter.

Another problem with BLP, and indeed with all mandatory access control
systems, is that separating users and processes is relatively straightforward; the
hard part is when some controlled interaction is needed. Most real applications
need some kind of ‘trusted subject’ that can break the security policy; an
example is a trusted word processor that helps an intelligence analyst scrub a
Top Secret document when she’s editing it down to Secret [861]. BLP is silent
on how the system should protect such an application. Does it become part of
the Trusted Computing Base? I’ll discuss this in more detail below.

248 Chapter 8 ■ Multilevel Security

Finally it’s worth noting that even with the high-water-mark refinement,
BLP still doesn’t deal with the creation or destruction of subjects or objects
(which is one of the hard problems of building a real MLS system).

8.3.4 Alternative Formulations
Multilevel security properties have been expressed in several other ways.

The first multilevel security policy was a version of high water mark
written in 1967–8 for the ADEPT-50, a mandatory access control system
developed for the IBM S/360 mainframe [1334]. This used triples of level,
compartment and group, with the groups being files, users, terminals and jobs.
As programs (rather than processes) were subjects, it was vulnerable to Trojan
horse compromises, and it was more complex than need be. Nonetheless, it
laid the foundation for BLP, and also led to the current IBM S/390 mainframe
hardware security architecture [632].

Shortly after that, a number of teams produced primitive versions of the
lattice model, which I’ll discuss in more detail in the next chapter. These also
made a significant contribution to the Bell-LaPadula work, as did engineers
working on Multics. Multics had started as an MIT project in 1965 and
developed into a Honeywell product; it became the template for the ‘trusted
systems’ specified in the Orange Book, being the inspirational example of the
B2 level operating system. The evaluation that was carried out on it by Paul
Karger and Roger Schell was hugely influential and was the first appearance of
the idea that malware could be hidden in the compiler [693] — which led to Ken
Thompson’s famous paper ‘On Trusting Trust’ ten years later. Multics itself
developed into a system called SCOMP that I’ll discuss in section 8.4.1 below.

Noninterference was introduced by Joseph Goguen and Jose Meseguer in
1982 [532]. In a system with this property, High’s actions have no effect on
what Low can see. Nondeducibility is less restrictive and was introduced by
David Sutherland in 1986 [1233]. Here the idea is to try and prove that Low
cannot deduce anything with 100 percent certainty about High’s input.
Low users can see High actions, just not understand them; a more formal
definition is that any legal string of high level inputs is compatible with every
string of low level events. So for every trace Low can see, there’s a similar
trace that didn’t involve High input. But different low-level event streams may
require changes to high-level outputs or reordering of high-level/low-level
event sequences.

The motive for nondeducibility is to find a model that can deal with
applications such as a LAN on which there are machines at both Low and
High, with the High machines encrypting their LAN traffic. (Quite a lot else is
needed to do this right, from padding the High traffic with nulls so that Low
users can’t do traffic analysis, and even ensuring that the packets are the same
size — see [1096] for an early example of such a system.)

8.3 The Bell-LaPadula Security Policy Model 249

Nondeducibility has historical importance since it was the first nondeter-
ministic version of Goguen and Messeguer’s ideas. But it is hopelessly weak.
There’s nothing to stop Low making deductions about High input with 99%
certainty. There’s also a whole lot of problems when we are trying to prove
results about databases, and have to take into account any information which
can be inferred from data structures (such as from partial views of data with
redundancy) as well as considering the traces of executing programs. I’ll
discuss these problems further in the next chapter.

Improved models include Generalized Noninterference and restrictiveness. The
former is the requirement that if one alters a high level input event in a legal
sequence of system events, the resulting sequence can be made legal by, at
most, altering one or more subsequent high-level output events. The latter
adds a further restriction on the part of the trace where the alteration of the
high-level outputs can take place. This is needed for technical reasons to ensure
that two systems satisfying the restrictiveness property can be composed into
a third which also does. See [864] which explains these issues.

The Harrison-Ruzzo-Ullman model tackles the problem of how to deal with
the creation and deletion of files, an issue on which BLP is silent. It operates on
access matrices and verifies whether there is a sequence of instructions which
causes an access right to leak to somewhere it was initially not present [584].
This is more expressive than BLP, but is more complex and thus less tractable
as an aid to verification.

John Woodward proposed a Compartmented Mode Workstation (CMW) policy,
which attempted to model the classification of information using floating
labels, as opposed to the fixed labels associated with BLP [1357, 552]. It was
ultimately unsuccessful, because labels tend to either float up too far too
fast (if done correctly), or they float up more slowly (but don’t block all the
opportunities for malicious information flow). However, CMW ideas have
led to real products — albeit products that provide separation more than
information sharing.

The type enforcement model, due to Earl Boebert and Dick Kain [198], assigns
subjects to domains and objects to types, with matrices defining permitted
domain-domain and domain-type interactions. This is used in a popular and
important mandatory access control system, SELinux, which simplifies it by
putting both subjects and objects in types and having a matrix of allowed
type pairs [813]. In effect this is a second access-control matrix; in addition
to having a user ID and group ID, each process has a security ID. The Linux
Security Modules framework provides pluggable security modules with rules
operating on SIDs.

Type enforcement was later extended by Badger and others to Domain and
Type Enforcement [106]. They introduced their own language for configuration
(DTEL), and implicit typing of files based on pathname; for example, all
objects in a given subdirectory may be declared to be in a given domain. TE

250 Chapter 8 ■ Multilevel Security

and DTE are more general than simple MLS policies such as BLP, as they
start to deal with integrity as well as confidentiality concerns. One of their
early uses, starting in the LOCK system, was to enforce trusted pipelines: the
idea is to confine a set of trusted processes in a pipeline so that each can
only talk to previous stage and the next stage. This can be used to assemble
guards and firewalls which cannot be bypassed unless at least two stages are
compromised [963]. Type-enforcement mechanisms are used, for example, in
the Sidewinder firewall. A further advantage of type enforcement mechanisms
is that they can be aware of code versus data, and privileges can be bound to
code; in consequence the tranquility problem can be dealt with at execute time
rather than as data are read. This can make things much more tractable.

The downside of the greater flexibility and expressiveness of TE/DTE is
that it is not always straightforward to implement BLP, because of the state
explosion; when writing a security policy you have to consider all the possible
interactions between different types. (For this reason, SELinux also implements
a simple MLS policy. I’ll discuss SELinux in more detail below.)

Finally, a policy model getting much attention from researchers in recent
years is role-based access control (RBAC), introduced by David Ferraiolo and
Richard Kuhn [466, 467]. This provides a more general framework for manda-
tory access control than BLP in which access decisions don’t depend on users’
names but on the functions which they are currently performing within the
organization. Transactions which may be performed by holders of a given role
are specified, then mechanisms for granting membership of a role (including
delegation). Roles, or groups, had for years been the mechanism used in
practice in organizations such as banks to manage access control; the RBAC
model starts to formalize this. It can be used to give finer-grained control,
for example by granting different access rights to ‘Ross as Professor’, ‘Ross as
member of the Planning and Resources Committee’ and ‘Ross reading private
email’. Implementations vary; the banking systems of twenty years ago kept
the controls in middleware, and some modern RBAC products do control
at the application layer where it’s easy to bypass. SELinux builds it on top of
TE, so that users are mapped to roles at login time, roles are authorized for
domains and domains are given permissions to types. On such a platform,
RBAC can usefully deal with integrity issues as well as confidentiality, by
allowing role membership to be revised when certain programs are invoked.
Thus, for example, a process calling untrusted software that had been down-
loaded from the net might lose the role membership required to write to
sensitive system files.

8.3.5 The Biba Model and Vista
The incorporation into Windows Vista of a multilevel integrity model has
revived interest in a security model devised in 1975 by Ken Biba [168], which

8.3 The Bell-LaPadula Security Policy Model 251

textbooks often refer to as ‘Bell-LaPadula upside down’. The Biba model deals
with integrity alone and ignores confidentiality. The key observation is that
confidentiality and integrity are in some sense dual concepts — confidentiality
is a constraint on who can read a message, while integrity is a constraint on
who can write or alter it.

As a concrete application, an electronic medical device such as an ECG
may have two separate modes: calibration and use. Calibration data must be
protected from corruption by normal users, who will therefore be able to read
it but not write to it; when a normal user resets the device, it will lose its
current user state (i.e., any patient data in memory) but the calibration will
remain unchanged.

To model such a system, we can use a multilevel integrity policy with the
rules that we can read data at higher levels (i.e., a user process can read
the calibration data) and write to lower levels (i.e., a calibration process can
write to a buffer in a user process); but we must never read down or write
up, as either could allow High integrity objects to become contaminated
with Low — that is potentially unreliable — data. The Biba model is often
formulated in terms of the low water mark principle, which is the dual of the high
water mark principle discussed above: the integrity of an object is the lowest
level of all the objects that contributed to its creation.

This was the first formal model of integrity. A surprisingly large number of
real systems work along Biba lines. For example, the passenger information
system in a railroad may get information from the signalling system, but
certainly shouldn’t be able to affect it (other than through a trusted interface,
such as one of the control staff). However, few of the people who build such
systems are aware of the Biba model or what it might teach them.

Vista marks file objects with an integrity level, which can be Low, Medium,
High or System, and implements a default policy of NoWriteUp. Critical Vista
files are at System and other objects are at Medium by default — except for
Internet Explorer which is at Low. The effect is that things downloaded using
IE can read most files in a Vista system, but cannot write them. The idea is to
limit the damage that can be done by viruses and other malware. I’ll describe
Vista’s mechanisms in more detail below.

An interesting precursor to Vista was LOMAC, a Linux extension that
implemented a low water mark policy [494]. It provided two levels — high
and low integrity — with system files at High and the network at Low. As
soon as a program (such as a daemon) received traffic from the network, it
was automatically downgraded to Low. Thus even if the traffic contains an
attack that forks a root shell, this shell could not write to the password file as a
normal root shell would. As one might expect, a number of system tasks (such
as logging) became tricky and required trusted code.

As you might expect, Biba has the same fundamental problems as Bell-
LaPadula. It cannot accommodate real-world operation very well without

252 Chapter 8 ■ Multilevel Security

numerous exceptions. For example, a real system will usually require ‘trusted’
subjects that can override the security model, but Biba on its own fails to
provide effective mechanisms to protect and confine them; and in general it
doesn’t work so well with modern software environments. In the end, Vista
dropped the NoReadDown restriction and did not end up using its integrity
model to protect the base system from users.

Biba also cannot express many real integrity goals, like assured pipelines.
In fact, the Type Enforcement model was introduced by Boebert and Kain as
an alternative to Biba. It is unfortunate that Vista didn’t incorporate TE.

I will consider more complex models when I discuss banking and book-
keeping systems in Chapter 10; these are more complex in that they retain
security state in the form of dual control mechanisms, audit trails and so on.

8.4 Historical Examples of MLS Systems

Following some research products in the late 1970’s (such as KSOS [166],
a kernelised secure version of Unix), products that implemented multilevel
security policies started arriving in dribs and drabs in the early 1980’s. By
about 1988, a number of companies started implementing MLS versions of
their operating systems. MLS concepts were extended to all sorts of products.

8.4.1 SCOMP
One of the most important products was the secure communications proces-
sor (SCOMP), a derivative of Multics launched in 1983 [491]. This was a
no-expense-spared implementation of what the US Department of Defense
believed it wanted for handling messaging at multiple levels of classification.
It had formally verified hardware and software, with a minimal kernel and
four rings of protection (rather than Multics’ seven) to keep things simple. Its
operating system, STOP, used these rings to maintain up to 32 separate com-
partments, and to allow appropriate one-way information flows between them.

SCOMP was used in applications such as military mail guards. These are
specialised firewalls which typically allow mail to pass from Low to High
but not vice versa [369]. (In general, a device which does this is known as
a data diode.) SCOMP’s successor, XTS-300, supported C2G, the Command
and Control Guard. This was used in the time phased force deployment
data (TPFDD) system whose function was to plan US troop movements
and associated logistics. Military plans are developed as TPFDDs at a high
classification level, and then distributed at the appropriate times as commands
to lower levels for implementation. (The issue of how high information is
deliberately downgraded raises a number of issues, some of which I’ll deal

8.4 Historical Examples of MLS Systems 253

with below. In the case of TPFDD, the guard examines the content of each
record before deciding whether to release it.)

SCOMP’s most significant contribution was to serve as a model for the
Orange Book [375] — the US Trusted Computer Systems Evaluation Criteria.
This was the first systematic set of standards for secure computer systems,
being introduced in 1985 and finally retired in December 2000. The Orange
Book was enormously influential not just in the USA but among allied powers;
countries such as the UK, Germany, and Canada based their own national
standards on it, until these national standards were finally subsumed into the
Common Criteria [935].

The Orange Book allowed systems to be evaluated at a number of levels
with A1 being the highest, and moving downwards through B3, B2, B1 and
C2 to C1. SCOMP was the first system to be rated A1. It was also extensively
documented in the open literature. Being first, and being fairly public, it set
the standard for the next generation of military systems. This standard has
rarely been met since; in fact, the XTS-300 was only evaluated to B3 (the formal
proofs of correctness required for an A1 evaluation were dropped).

8.4.2 Blacker
Blacker was a series of encryption devices designed to incorporate MLS
technology. Previously, encryption devices were built with separate processors
for the ciphertext, or Black, end and the cleartext, or Red, end. Various possible
failures can be prevented if one can coordinate the Red and Black processing.
One can also make the device simpler, and provide greater operational
flexibility: the device isn’t limited to separating two logical networks, but can
provide encryption and integrity assurance selectively, and interact in useful
ways with routers. But then a high level of assurance is required that the ‘Red’
data won’t leak out via the ‘Black’.

Blacker entered service in 1989, and the main lesson learned from it was
the extreme difficulty of accommodating administrative traffic within a model
of classification levels [1335]. As late as 1994, it was the only communications
security device with an A1 evaluation [161]. So it too had an effect on later
systems. It was not widely used though, and its successor (the Motorola
Network Encryption System), had only a B2 evaluation.

8.4.3 MLS Unix and Compartmented Mode Workstations
MLS versions of Unix started to appear in the late 1980’s, such as AT&T’s
System V/MLS [27]. This added security levels and labels, initially by using
some of the bits in the group id record and later by using this to point to a
more elaborate structure. This enabled MLS properties to be introduced with
minimal changes to the system kernel. Other products of this kind included

254 Chapter 8 ■ Multilevel Security

SecureWare (and its derivatives, such as SCO and HP VirtualVault), and
Addamax. By the time of writing (2007), Sun’s Solaris has emerged as the clear
market leader, being the platform of choice for high-assurance server systems
and for many clients as well. Trusted Solaris 8 gave way to Solaris trusted
Extensions 10, which now been folded into Solaris, so that every copy of Solaris
contains MLS mechanisms, for those knowledgeable enough to use them.

Comparted Mode Workstations (CMWs) are an example of MLS clients. They
allow data at different levels to be viewed and modified at the same time
by a human operator, and ensure that labels attached to the information
are updated appropriately. The initial demand came from the intelligence
community, whose analysts may have access to ‘Top Secret’ data, such as
decrypts and agent reports, and produce reports at the ‘Secret’ level for users
such as political leaders and officers in the field. As these reports are vulnerable
to capture, they must not contain any information which would compromise
intelligence sources and methods.

CMWs allow an analyst to view the ‘Top Secret’ data in one window,
compose a report in another, and have mechanisms to prevent the accidental
copying of the former into the latter (i.e., cut-and-paste works from ‘Secret’ to
‘Top Secret’ but not vice versa). CMWs have proved useful in operations, logis-
tics and drug enforcement as well [631]. For the engineering issues involved in
doing mandatory access control in windowing systems, see [437, 438] which
describe a prototype for Trusted X, a system implementing MLS but not infor-
mation labelling. It runs one instance of X Windows per sensitivity level, and
has a small amount of trusted code which allows users to cut and paste from
a lower level to a higher one. For the specific architectural issues with Sun’s
CMW product, see [451].

8.4.4 The NRL Pump
It was soon realised that simple mail guards and crypto boxes were too
restrictive, as many more networked services were developed besides mail.
Traditional MLS mechanisms (such as blind write-ups and periodic read-
downs) are inefficient for real-time services.

The US Naval Research Laboratory (NRL) therefore developed the Pump — a
one-way data transfer device (a data diode) to allow secure one-way infor-
mation flow (Figure 8.3). The main problem is that while sending data from
Low to High is easy, the need for assured transmission reliability means
that acknowledgement messages must be sent back from High to Low. The
Pump limits the bandwidth of possible backward leakage using a number of
mechanisms such as using buffering and randomizing the timing of acknowl-
edgements [685, 687, 688]. The attraction of this approach is that one can build
MLS systems by using pumps to connect separate systems at different security
levels. As these systems don’t process data at more than one level, they can be

8.4 Historical Examples of MLS Systems 255

HIGH

PUMP

LOW

Figure 8.3: The NRL pump

built from cheap commercial-off-the-shelf (COTS) components [689]. As the
cost of hardware falls, this is often the preferred option where it’s possible.
The pump’s story is told in [691].

The Australian government developed a product called Starlight that uses
pump-type technology married with a keyboard switch to provide a nice
MLS-type windowing system (albeit without any visible labels) using a bit
of trusted hardware which connects the keyboard and mouse with High and
Low systems [30]. There is no trusted software. It’s been integrated with the
NRL Pump [689]. A number of semi-commercial data diode products have
also been introduced.

8.4.5 Logistics Systems
Military stores, like government documents, can have different classification
levels. Some signals intelligence equipment is ‘Top Secret’, while things
like jet fuel and bootlaces are not; but even such simple commodities may
become ‘Secret’ when their quantities or movements might leak information
about tactical intentions. There are also some peculiarities: for example, an
inertial navigation system classified ‘Confidential’ in the peacetime inventory
might contain a laser gyro platform classified ‘Secret’ (thus security levels are
nonmonotonic).

The systems needed to manage all this seem to be hard to build, as MLS
logistics projects in both the USA and UK have ended up as expensive
disasters. In the UK, the Royal Air Force’s Logistics Information Technology
System (LITS) was a 10 year (1989–99), £500m project to provide a single
stores management system for the RAF’s 80 bases [932]. It was designed to
operate on two levels: ‘Restricted’ for the jet fuel and boot polish, and ‘Secret’
for special stores such as nuclear bombs. It was initially implemented as two

256 Chapter 8 ■ Multilevel Security

separate database systems connected by a pump to enforce the MLS property.
The project became a classic tale of escalating costs driven by creeping
requirements changes. One of these changes was the easing of classification
rules with the end of the Cold War. As a result, it was found that almost
all the ‘Secret’ information was now static (e.g., operating manuals for air-
drop nuclear bombs which are now kept in strategic stockpiles rather than at
airbases). In order to save money, the ‘Secret’ information is now kept on a CD
and locked up in a safe.

Logistics systems often have application security features too. The clas-
sic example is that ordnance control systems alert users who are about to
breach safety rules by putting explosives and detonators in the same truck or
magazine [910].

8.4.6 Sybard Suite
Most governments’ information security agencies have been unable to resist
user demands to run standard applications (such as MS Office) which are
not available for multilevel secure platforms. One response was the ‘Purple
Penelope’ software, from Qinetiq in the UK, now sold as Sybard Suite. This
puts an MLS wrapper round a Windows workstation, implementing the high
water mark version of BLP. It displays in the background the current security
level of the device and upgrades it when necessary as more sensitive resources
are read. It ensures that the resulting work product is labelled correctly.

Rather than preventing users from downgrading, as a classical BLP system
might do, it allows them to assign any security label they like to their output.
However, if this involves a downgrade, the user must confirm the release of
the data using a trusted path interface, thus ensuring no Trojan Horse or virus
can release anything completely unnoticed. Of course, a really clever malicious
program can piggy-back classified material on stuff that the user does wish to
release, so there are other tricks to make that harder. There is also an audit
trail to provide a record of all downgrades, so that errors and attacks (whether
by users, or by malware) can be traced after the fact [1032]. The security policy
was described to me by one of its authors as ‘we accept that we can’t stop
people leaking the order of battle to the Guardian newspaper if they really
want to; we just want to make sure we arrest the right person for it.’

8.4.7 Wiretap Systems
One of the large applications of MLS is in wiretapping systems. Commu-
nications intelligence is generally fragile; once a target knows his traffic is
being read he can usually do something to frustrate it. Traditional wiretap
kit, based on ‘loop extenders’ spliced into the line, could often be detected by
competent targets; modern digital systems try to avoid these problems, and

8.5 Future MLS Systems 257

provide a multilevel model in which multiple agencies at different levels can
monitor a target, and each other; the police might be tapping a drug dealer,
and an anti-corruption unit watching the police, and so on. Wiretaps are
commonly implemented as conference calls with a silent third party, and the
main protection goal is to eliminate any covert channels that might disclose
the existence of surveillance. This is not always met. For a survey, see [1161],
which also points out that the pure MLS security policy is insufficient: suspects
can confuse wiretapping equipment by introducing bogus signalling tones.
The policy should thus have included resistance against online tampering.

Another secondary protection goal should have been to protect against
software tampering. In a recent notorious case, a wiretap was discovered on
the mobile phones of the Greek Prime Minister and his senior colleagues; this
involved unauthorised software in the mobile phone company’s switchgear
that abused the lawful intercept facility. It was detected when the buggers’
modifications caused some text messages not to be delivered [1042]. The
phone company was fined 76 million Euros (almost $100m). Perhaps phone
companies will be less willing to report unauthorized wiretaps in future.

8.5 Future MLS Systems

In the first edition of this book, I wrote that the MLS industry’s attempts to
market its products as platforms for firewalls, web servers and other exposed
systems were failing because ‘the BLP controls do not provide enough of
a protection benefit in many commercial environments to justify their large
development costs, and widely fielded products are often better because of
the evolution that results from large-scale user feedback’. I also noted research
on using mandatory access controls to accommodate both confidentiality and
integrity in environments such as smartcards [692], and to provide real-time
performance guarantees to prevent service denial attacks [889]. I ventured that
‘perhaps the real future of multilevel systems is not in confidentiality, but
integrity’.

The last seven years appear to have proved this right.

8.5.1 Vista
Multilevel integrity is coming to the mass market in Vista. As I already
mentioned, Vista essentially uses the Biba model. All processes do, and all
securable objects (including directories, files and registry keys) may, have an
integrity-level label. File objects are labelled at ‘Medium’ by default, while
Internet Explorer (and everything downloaded using it) is labelled ‘Low’. User
action is therefore needed to upgrade downloaded content before it can modify

258 Chapter 8 ■ Multilevel Security

existing files. This may not be a panacea: it may become so routine a demand
from all installed software that users will be trained to meekly upgrade viruses
too on request. And it must be borne in mind that much of the spyware infesting
the average home PC was installed there deliberately (albeit carelessly and with
incomplete knowledge of the consequences) after visiting some commercial
website. This overlap between desired and undesired software sets a limit on
how much can be achieved against downloaded malware. We will have to
wait and see.

It is also possible to implement a crude BLP policy using Vista, as you can
also set ‘NoReadUp’ and ‘NoExecuteUp’ policies. These are not installed as
default; the reason appears to be that Microsoft was principally concerned
about malware installing itself in the system and then hiding. Keeping the
browser ‘Low’ makes installation harder, and allowing all processes (even
Low ones) to inspect the rest of the system makes hiding harder. But it does
mean that malware running at Low can steal all your data; so some users
might care to set ‘NoReadUp’ for sensitive directories. No doubt this will
break a number of applications, so a cautious user might care to have separate
accounts for web browsing, email and sensitive projects. This is all discussed
by Joanna Rutkowska in [1099]; she also describes some interesting potential
attacks based on virtualization. A further problem is that Vista, in protected
mode, does still write to high-integrity parts of the registry, even though
Microsoft says it shouldn’t [555].

In passing, it’s also worth mentioning rights management, whether of the
classical DRM kind or the more recent IRM variety, as a case of mandatory
access control. Vista, for example, tries to ensure that no high definition video
content is ever available to an untrusted process. I will discuss it in more detail
later, but for now I’ll just remark that many of the things that go wrong with
multilevel systems might also become vulnerabilities in, or impediments to
the use of, rights-management systems. Conversely, the efforts expended by
opponents of rights management in trying to hack the Vista DRM mechanisms
may also open up holes in its integrity protection.

8.5.2 Linux
The case of SELinux and Red Hat is somewhat similar to Vista in that the
immediate goal of the new mandatory access control mechanisms is also
to limit the effects of a compromise. SELinux [813] is based on the Flask
security architecture [1209], which separates the policy from the enforcement
mechanism; a security context contains all of the security attributes associated
with a subject or object in Flask, where one of those attributes includes the
Type Enforcement type attribute. A security identifier is a handle to a security
context, mapped by the security server. It has a security server where policy
decisions are made, this resides in-kernel since Linux has a monolithic kernel

8.5 Future MLS Systems 259

and the designers did not want to require a kernel-userspace call for security
decisions (especially as some occur on critical paths where the kernel is holding
locks) [557]). The server which provides a general security API to the rest of the
kernel, with the security model hidden behind that API. The server internally
implements RBAC, TE, and MLS (or to be precise, a general constraints engine
that can express MLS or any other model you like). SELinux is included in a
number of Linux distributions, and Red Hat’s use is typical. There its function
is to separate various services. Thus an attacker who takes over your web
server does not thereby acquire your DNS server as well.

Suse Linux has taken a different path to the same goal. It uses AppArmor,
a monitoring mechanism maintained by Novell, which keeps a list of all the
paths each protected application uses and prevents it accessing any new ones.
It is claimed to be easier to use than the SELinux model; but operating-system
experts distrust it as it relies on pathnames as the basis for its decisions. In
consequence, it has ambiguous and mutable identifiers; no system view of
subjects and objects; no uniform abstraction for handling non-file objects; and
no useful information for runtime files (such as /tmp). By forcing policy to
be written in terms of individual objects and filesystem layout rather than
security equivalence classes, it makes policy harder to analyze. However, in
practice, with either AppArmor or SELinux, you instrument the code you plan
to protect, watch for some months what it does, and work out a policy that
allows it to do just what it needs. Even so, after you have fielded it, you will
still have to observe and act on bug reports for a year or so. Modern software
components tend to be so complex that figuring out what access they need is
an empirical and iterative process2.

It’s also worth bearing in mind that simple integrity controls merely stop
malware taking over the machine — they don’t stop it infecting a Low com-
partment and using that as a springboard from which to spread elsewhere.

Integrity protection is not the only use of SELinux. At present there is
considerable excitement about it in some sections of government, who are
excited at the prospect of ‘cross department access to data . . . and a common
trust infrastructure for shared services’ (UK Cabinet Office) and allowing ‘users
to access multiple independent sessions at varying classification levels’ (US
Coast Guard) [505]. Replacing multiple terminals with single ones, and moving
from proprietary systems to open ones, is attractive for many reasons — and
providing simple separation between multiple terminal emulators or browsers
running on the same PC is straightforward. However, traditional MAC might
not be the only way to do it.

2Indeed, some of the mandatory access control mechanisms promised in Vista — such as remote
attestation — did not ship in the first version, and there have been many papers from folks
at Microsoft Research on ways of managing access control and security policy in complex
middleware. Draw your own conclusions.

260 Chapter 8 ■ Multilevel Security

8.5.3 Virtualization
Another technological approach is virtualization. Products such as VMware
and Xen are being used to provide multiple virtual machines at different
levels. Indeed, the NSA has produced a hardened version of VMware, called
NetTop, which is optimised for running several Windows virtual machines
on top of an SELinux platform. This holds out the prospect of giving the
users what they want — computers that have the look and feel of ordinary
windows boxes — while simultaneously giving the security folks what they
want, namely high-assurance separation between material at different levels
of classification. So far, there is little information available on NetTop, but it
appears to do separation rather than sharing.

A current limit is the sheer technical complexity of modern PCs; it’s very
difficult to find out what things like graphics cards actually do, and thus to
get high assurance that they don’t contain huge covert channels. It can also
be quite difficult to ensure that a device such as a microphone or camera is
really connected to the Secret virtual machine rather than the Unclassified
one. However, given the effort being put by Microsoft into assurance for
high-definition video content, there’s at least the prospect that some COTS
machines might eventually offer reasonable assurance on I/O eventually.

The next question must be whether mandatory access control for confiden-
tiality, as opposed to integrity, will make its way out of the government sector
and into the corporate world. The simplest application might be for a company
to provide its employees with separate virtual laptops for corporate and home
use (whether with virtualisation or with mandatory access controls). From the
engineering viewpoint, virtualization might preferable, as it’s not clear that
corporate security managers will want much information flow between the
two virtual laptops: flows from ‘home’ to ‘work’ could introduce malware
while flow from ‘work’ to ‘home’ could leak corporate secrets. From the busi-
ness viewpoint, it’s less clear that virtualization will take off. Many corporates
would rather pretend that company laptops don’t get used for anything else,
and as the software industry generally charges per virtual machine rather than
per machine, there could be nontrivial costs involved. I expect most companies
will continue to ignore the problem and just fire people whose machines cause
visible trouble.

The hardest problem is often managing the interfaces between levels, as
people usually end up having to get material from one level to another in
order to get their work done. If the information flows are limited and easy
to model, as with the Pump and the CMW, well and good; the way forward
may well be Pump or CMW functionality also hosted on virtual machines.
(Virtualisation per se doesn’t give you CMW — you need a trusted client for
that, or an app running on a trusted server — but it’s possible to envisage a
trusted thin client plus VMs at two different levels all running on the same box.

8.6 What Goes Wrong 261

So virtualization should probably be seen as complementary to mandatory
access control, rather than a competitor.

But many things can go wrong, as I will discuss in the next session.

8.5.4 Embedded Systems
There are more and more fielded systems which implement some variant of the
Biba model. As well as the medical-device and railroad signalling applications
already mentioned, there are utilities. In an electricity utility, for example,
operational systems such as power dispatching should not be affected by any
others. The metering systems can be observed by, but not influenced by, the
billing system. Both billing and power dispatching feed information into fraud
detection, and at the end of the chain the executive information systems can
observe everything while having no direct effect on operations. These one-way
information flows can be implemented using mandatory access controls and
there are signs that, given growing concerns about the vulnerability of critical
infrastructure, some utilities are starting to look at SELinux.

There are many military embedded systems too. The primitive mail guards
of 20 years ago have by now been supplanted by guards that pass not just
email but chat, web services and streaming media, often based on SELinux;
an example is described in [478]. There are many more esoteric applications:
for example, some US radars won’t display the velocity of a US aircraft whose
performance is classified, unless the operator has the appropriate clearance.
(This has always struck me as overkill, as he can just use a stopwatch.)

Anyway, it’s now clear that many of the lessons learned in the early
multilevel systems go across to a number of applications of much wider
interest. So do a number of the failure modes, which I’ll now discuss.

8.6 What Goes Wrong

As I’ve frequently pointed out, engineers learn more from the systems that fail
than from those that succeed, and MLS systems have certainly been an effective
teacher. The large effort expended in building systems to follow a simple policy
with a high level of assurance has led to the elucidation of many second- and
third-order consequences of information flow controls. I’ll start with the more
theoretical and work through to the business and engineering end.

8.6.1 Composability
Consider a simple device that accepts two ‘High’ inputs H1 and H2; mul-
tiplexes them; encrypts them by xor’ing them with a one-time pad (i.e., a
random generator); outputs the other copy of the pad on H3; and outputs the

262 Chapter 8 ■ Multilevel Security

H1
�

H2
�

XOR

RAND �H3

XOR

•

�

�
� L

Figure 8.4: Insecure composition of secure systems with feedback

ciphertext, which being encrypted with a cipher system giving perfect secrecy,
is considered to be low (output L), as in Figure 8.4.

In isolation, this device is provably secure. However, if feedback is permitted,
then the output from H3 can be fed back into H2, with the result that the high
input H1 now appears at the low output L. Timing inconsistencies can also
lead to the composition of two secure systems being insecure (see for example
McCullough [854]). Simple information flow doesn’t compose; neither does
noninterference or nondeducibility.

In general, the problem of how to compose two or more secure components
into a secure system is hard, even at the relatively uncluttered level of proving
results about ideal components. Most of the low-level problems arise when
some sort of feedback is introduced into the system; without it, composition
can be achieved under a number of formal models [865]. However, in real
life, feedback is pervasive, and composition of security properties can be
made even harder by detailed interface issues, feature interactions and so on.
For example, one system might produce data at such a rate as to perform a
service-denial attack on another. (I’ll discuss some of the interface problems
with reference monitors in detail in Chapter 18, ‘API Attacks’.)

Finally, the composition of secure components or systems is very often
frustrated by higher-level incompatibilities. Components might have been
designed in accordance with two different security policies, or designed
according to requirements that are inconsistent or even incompatible. This is
bad enough for different variants on the BLP theme but even worse when one
of the policies is of a non-BLP type, as we will encounter in the following two
chapters. Composability is a long-standing and very serious problem with
trustworthy systems; a good recent survey is the final report of the CHATS
project [963].

8.6.2 The Cascade Problem
An example of the difficulty of composing multilevel secure systems is given
by the cascade problem (Figure 8.5). After the Orange book introduced a series

8.6 What Goes Wrong 263

Top Secret

Secret Secret

Unclassified

Figure 8.5: The cascade problem

of graduated evaluation levels, this led to led to rules about the number of
levels which a system can span [379]. For example, a system evaluated to B3
was in general allowed to process information at Unclassified, Confidential
and Secret, or at Confidential, Secret and Top Secret; there was no system
permitted to process Unclassified and Top Secret data simultaneously [379].

As the diagram shows, it is straightforward to connect together two B3
systems in such a way that this security policy is broken. The first system
connects together Unclassified, Confidential and Secret, and its Confidential
and Secret levels communicate with the second system which also processes
Top Secret information. (The problem’s discussed in more detail in [622].)
This illustrates another kind of danger which formal models of security (and
practical implementations) must take into account.

8.6.3 Covert Channels
One of the reasons why these span limits are imposed on multilevel systems
emerges from a famous — and extensively studied — problem: the covert chan-
nel. First pointed out by Lampson in 1973 [768], a covert channel is a mechanism
that was not designed for communication but which can nonetheless be abused
to allow information to be communicated down from High to Low.

264 Chapter 8 ■ Multilevel Security

A typical covert channel arises when a high process can signal to a low
one by affecting some shared resource. For example, it could position the
disk head at the outside of the drive at time ti to signal that the i-th bit in
a Top Secret file was a 1, and position it at the inside to signal that the bit
was a 0.

All systems with shared resources must find a balance between covert
channel capacity, resource utilization, and fairness. If a machine is shared
between high and low, and resources are not allocated in fixed slices, then the
high process can signal by filling up the disk drive, or by using a lot of CPU or
bus cycles (some people call the former case a storage channel and the latter a
timing channel, though in practice they can often be converted into each other).
There are many others such as sequential process IDs, shared file locks and last
access times on files — reimplementing all of these in a multilevel secure way
is an enormous task. Various strategies have been adopted to minimize their
bandwidth; for example, we can arrange that the scheduler assigns a fixed
disk quota to each level, and reads the boot sector each time control is passed
downwards; and we might also allocate a fixed proportion of the available time
slices to processes at each level, and change these proportions infrequently.
Each change might allow one or more bits to be signalled, but such strategies
can enormously reduce the available bandwidth. (A more complex multilevel
design, which uses local schedulers at each level plus a global scheduler to
maintain overall consistency, is described in [686].)

It is also possible to limit the covert channel capacity by introducing noise.
Some machines have had randomised system clocks for this purpose. But
some covert channel capacity almost always remains. (Techniques to analyze
the trade-offs between covert channel capacity and system performance are
discussed in [554].)

Many covert channels occur at the application layer, and are a real concern
to security engineers (especially as they are often overlooked). An example
from social care is a UK proposal to create a national database of all children,
for child-protection and welfare purposes, containing a list of all professionals
with which each child has contact. Now it may be innocuous that child X
is registered with family doctor Y, but the fact of a child’s registration with
a social work department is not innocuous at all — it’s well known to be
stigmatizing. For example, teachers will have lower expectations of children
whom they know to have been in contact with social workers. So it is quite
reasonable for parents (and children) to want to keep any record of such
contact private [66].

A more subtle example is that in general personal health information derived
from visits to genitourinary medicine clinics is High in the sense that it can’t
be shared with the patient’s normal doctor and thus appear in their normal
medical record (Low) unless the patient consents. In one case, a woman’s visit
to a GUM clinic leaked when the insurer failed to recall her for a smear test

8.6 What Goes Wrong 265

which her normal doctor knew was due [886]. The insurer knew that a smear
test had been done already by the clinic, and didn’t want to pay twice.

Another case of general interest arises in multilevel integrity systems such
as banking and utility billing, where a programmer who has inserted Trojan
code in a bookkeeping system can turn off the billing to an account by a
certain pattern of behavior (in a phone system he might call three numbers in
succession, for example). Code review is the only real way to block such attacks,
though balancing controls can also help in the specific case of bookkeeping.

The highest-bandwidth covert channel of which I’m aware is also a feature
of a specific application. It occurs in large early warning radar systems,
where High — the radar processor — controls hundreds of antenna elements
that illuminate Low — the target — with high speed pulse trains that are
modulated with pseudorandom noise to make jamming harder. In this case,
the radar code must be trusted as the covert channel bandwidth is many
megabits per second.

The best that developers have been able to do consistently with BLP
confidentiality protection in regular time-sharing operating systems is to limit
it to 1 bit per second or so. (That is a DoD target [376], and techniques for doing
a systematic analysis may be found in Kemmerer [706].) One bit per second
may be tolerable in an environment where we wish to prevent large TS/SCI
files — such as satellite photographs — leaking down from TS/SCI users to
‘Secret’ users. It is much less than the rate at which malicious code might hide
data in outgoing traffic that would be approved by a guard. However, it is
inadequate if we want to prevent the leakage of a cryptographic key. This is
one of the reasons for the military doctrine of doing crypto in special purpose
hardware rather than in software.

8.6.4 The Threat from Viruses
The vast majority of viruses are found on mass-market products such as
PCs. However, the defense computer community was shocked when Cohen
used viruses to penetrate multilevel secure systems easily in 1983. In his first
experiment, a file virus which took only eight hours to write managed to
penetrate a system previously believed to be multilevel secure [311].

There are a number of ways in which viruses and other malicious code
can be used to perform such attacks. If the reference monitor (or other TCB
components) can be corrupted, then a virus could deliver the entire system to
the attacker, for example by issuing him with an unauthorised clearance. For
this reason, slightly looser rules apply to so-called closed security environments
which are defined to be those where ‘system applications are adequately
protected against the insertion of malicious logic’ [379]. But even if the TCB
remains intact, the virus could still use any available covert channel to signal
information down.

266 Chapter 8 ■ Multilevel Security

So in many cases a TCB will provide some protection against viral attacks,
as well as against careless disclosure by users or application software — which
is often more important than malicious disclosure. However, the main effect
of viruses on military doctrine has been to strengthen the perceived case for
multilevel security. The argument goes that even if personnel can be trusted,
one cannot rely on technical measures short of total isolation to prevent viruses
moving up the system, so one must do whatever reasonably possible to stop
them signalling back down.

8.6.5 Polyinstantiation
Another problem that has much exercised the research community is polyin-
stantiation. Suppose that our High user has created a file named agents, and
our Low user now tries to do the same. If the MLS operating system prohibits
him, it will have leaked information — namely that there is a file called agents

at High. But if it lets him, it will now have two files with the same name.
Often we can solve the problem by a naming convention, which could be

as simple as giving Low and High users different directories. But the problem
remains a hard one for databases [1112]. Suppose that a High user allocates
a classified cargo to a ship. The system will not divulge this information to a
Low user, who might think the ship is empty, and try to allocate it another
cargo or even to change its destination.

The solution favoured in the USA for such systems is that the High user
allocates a Low cover story at the same time as the real High cargo. Thus the
underlying data will look something like Figure 8.6.

In the UK, the theory is simpler — the system will automatically reply
‘classified’ to a Low user who tries to see or alter a High record. The two
available views would be as in Figure 8.7.

Level Cargo Destination
Secret Missiles Iran
Restricted — —
Unclassified Engine spares Cyprus

Figure 8.6: How the USA deals with classified data

Level Cargo Destination
Secret Missiles Iran
Restricted Classified Classified
Unclassified — —

Figure 8.7: How the UK deals with classified data

8.6 What Goes Wrong 267

This makes the system engineering simpler. It also prevents the mistakes
and covert channels which can still arise with cover stories (e.g., a Low user
tries to add a container of ammunition for Cyprus). The drawback is that
everyone tends to need the highest available clearance in order to get their
work done. (In practice, of course, cover stories still get used in order not to
advertise the existence of a covert mission any more than need be.)

There may be an interesting new application to the world of online gaming.
Different countries have different rules about online content; for example,
the USA limits online gambling, while Germany has strict prohibitions on the
display of swastikas and other insignia of the Third Reich. Now suppose a
second-world-war reenactment society wants to operate in Second Life. If
a German resident sees flags with swastikas, an offence is committed there.
Linden Labs, the operator of Second Life, has suggested authenticating users’
jurisdictions; but it’s not enough just to exclude Germans, as one of them
might look over the fence. An alternative proposal is to tag alternative objects
for visibility, so that a German looking at the Battle of Kursk would see only
inoffensive symbols. Similarly, an American looking at an online casino might
just see a church instead. Here too the lie has its limits; when the American
tries to visit that church he’ll find that he can’t get through the door.

8.6.6 Other Practical Problems
Multilevel secure systems are surprisingly expensive and difficult to build and
deploy. There are many sources of cost and confusion.

1. MLS systems are built in small volumes, and often to high standards of
physical robustness, using elaborate documentation, testing and other
quality control measures driven by military purchasing bureaucracies.

2. MLS systems have idiosyncratic administration tools and procedures. A
trained Unix administrator can’t just take on an MLS installation without
significant further training. A USAF survey showed that many MLS sys-
tems were installed without their features being used [1044].

3. Many applications need to be rewritten or at least greatly modified to run
under MLS operating systems [1092]. For example, compartmented mode
workstations that display information at different levels in different win-
dows, and prevent the user from doing cut-and-paste operations from
high to low, often have problems with code which tries to manipulate the
colour map. Access to files might be quite different, as well as the format
of things like access control lists. Another source of conflict with commer-
cial software is the licence server; if a High user invokes an application,
which goes to a licence server for permission to execute, then an MLS
operating system will promptly reclassify the server High and deny access
to Low users. So in practice, you usually end up (a) running two separate

268 Chapter 8 ■ Multilevel Security

license servers, thus violating the license terms, or (b) you have an MLS
license server which tracks licenses at all levels (this restricts your choice
of platforms), or (c) you only access the licensed software at one of the
levels.

4. Because processes are automatically upgraded as they see new labels, the
files they use have to be too. New files default to the highest label belong-
ing to any possible input. The result of all this is a chronic tendency for
things to be overclassified.

5. It is often inconvenient to deal with ‘blind write-up’ — when a low level
application sends data to a higher level one, BLP prevents any acknowl-
edgment being sent. The effect is that information vanishes into a ‘black
hole’. The answer to this is varied. Some organizations accept the problem
as a fact of life; in the words of a former NSA chief scientist ‘When you
pray to God, you do not expect an individual acknowledgement of each
prayer before saying the next one’. Others use pumps rather than prayer,
and accept a residual covert bandwidth as a fact of life.

6. The classification of data can get complex:

in the run-up to a military operation, the location of ‘innocuous’ stores
such as food could reveal tactical intentions, and so may be suddenly
upgraded. It follows that the tranquility property cannot simply be
assumed;

classifications are not necessarily monotone. Equipment classified at
‘confidential’ in the peacetime inventory may easily contain compo-
nents classified ‘secret’;

information may need to be downgraded. An intelligence analyst might
need to take a satellite photo classified at TS/SCI, and paste it into an
assessment for field commanders at ‘secret’. However, information
could have been covertly hidden in the image by a virus, and retrieved
later once the file is downgraded. So downgrading procedures may
involve all sorts of special filters, such as lossy compression of images
and word processors which scrub and reformat text, in the hope that
the only information remaining is that which lies in plain sight. (I will
discuss information hiding in more detail in the context of copyright
marking.)

we may need to worry about the volume of information available to
an attacker. For example, we might be happy to declassify any single
satellite photo, but declassifying the whole collection would reveal
our surveillance capability and the history of our intelligence priori-
ties. Similarly, the government payroll may not be very sensitive per
se, but it is well known that journalists can often identify intelligence
personnel working under civilian cover from studying the evolution of

8.7 Broader Implications of MLS 269

departmental staff lists over a period of a few years. (I will look at this
issue — the ‘aggregation problem’ — in more detail in section 9.3.2.)

a related problem is that the output of an unclassified program acting
on unclassified data may be classified. This is also related to the aggre-
gation problem.

7. There are always system components — such as memory management —
that must be able to read and write at all levels. This objection is dealt
with by abstracting it away, and assuming that memory management is
part of the trusted computing base which enforces our mandatory access
control policy. The practical outcome is that often a quite uncomfortably
large part of the operating system (plus utilities, plus windowing system
software, plus middleware such as database software) ends up part of the
trusted computing base. ‘TCB bloat’ constantly pushes up the cost of eval-
uation and reduces assurance.

8. Finally, although MLS systems can prevent undesired things (such as
information leakage) from happening, they also prevent desired things
from happening too (such as efficient ways of enabling data to be down-
graded from High to Low, which are essential if many systems are to be
useful). So even in military environments, the benefits they provide can
be very questionable. The associated doctrine also sets all sorts of traps for
government systems builders. A recent example comes from the debate
over a UK law to extend wiretaps to Internet Service Providers (ISPs).
(I’ll discuss wiretapping in Part III). Opponents of the bill forced the gov-
ernment to declare that information on the existence of an interception
operation against an identified target would be classified ‘Secret’. This
would have made wiretaps on Internet traffic impossible without rede-
veloping all the systems used by Internet Service Providers to support an
MLS security policy — which would have been totally impractical. So the
UK government had to declare that it wouldn’t apply the laid down stan-
dards in this case because of cost.

8.7 Broader Implications of MLS

The reader’s reaction by this point may well be that mandatory access control
is too hard to do properly; there are just too many complications. This may be
true, and we are about to see the technology seriously tested as it’s deployed in
hundreds of millions of Vista PCs and Linux boxes. We will see to what extent
mandatory access control really helps contain the malware threat, whether
to commodity PCs or to servers in hosting centres. We’ll also see whether
variants of the problems described here cause serious or even fatal problems
for the DRM vision.

270 Chapter 8 ■ Multilevel Security

However it’s also true that Bell-LaPadula and Biba are the simplest security
policy models we know of, and everything else is even harder. We’ll look at
other models in the next few chapters.

Anyway, although the MLS program has not delivered what was expected,
it has spun off a lot of useful ideas and know-how. Worrying about not just
the direct ways in which a secure system could be defeated but also about the
second- and third-order consequences of the protection mechanisms has been
important in developing the underlying science. Practical work on building
MLS systems also led people to work through many other aspects of computer
security, such as Trusted Path (how does a user know he’s talking to a genuine
copy of the operating system?), Trusted Distribution (how does a user know
he’s installing a genuine copy of the operating system?) and Trusted Facility
Management (how can we be sure it’s all administered correctly?). In effect,
tackling one simplified example of protection in great detail led to many things
being highlighted which previously were glossed over. The resulting lessons
can be applied to systems with quite different policies.

These lessons were set out in the ‘Rainbow Series’ of books on computer
security, produced by the NSA following the development of SCOMP and the
publication of the Orange Book which it inspired. These books are so called
because of the different coloured covers by which they’re known. The series
did a lot to raise consciousness of operational and evaluation issues that are
otherwise easy to ignore (or to dismiss as boring matters best left to the end
purchasers). In fact, the integration of technical protection mechanisms with
operational and procedural controls is one of the most critical, and neglected,
aspects of security engineering. I will have much more to say on this topic in
Part III, and in the context of a number of case studies throughout this book.

Apart from the official ‘lessons learned’ from MLS, there have been other
effects noticed over the years. In particular, the MLS program has had negative
effects on many of the government institutions that used it. There is a tactical
problem, and a strategic one.

The tactical problem is that the existence of trusted system components
plus a large set of bureaucratic guidelines has a strong tendency to displace
critical thought. Instead of working out a system’s security requirements in
a methodical way, designers just choose what they think is the appropriate
security class of component and then regurgitate the description of this class
as the security specification of the overall system [1044].

One should never lose sight of the human motivations which drive a system
design, and the costs which it imposes. Moynihan’s book [907] provides a
critical study of the real purposes and huge costs of obsessive secrecy in US
foreign and military affairs. Following a Senate enquiry, he discovered that
President Truman was never told of the Venona decrypts because the material
was considered ‘Army Property’ — despite its being the main motivation for
the prosecution of Alger Hiss. As his book puts it: ‘Departments and agencies

8.7 Broader Implications of MLS 271

hoard information, and the government becomes a kind of market. Secrets
become organizational assets, never to be shared save in exchange for another
organization’s assets.’ He reports, for example, that in 1996 the number of
original classification authorities decreased by 959 to 4,420 (following post-
Cold-War budget cuts) but that the total of all classification actions reported
for fiscal year 1996 increased by 62 percent to 5,789,625.

I wrote in the first edition in 2001: ‘Yet despite the huge increase in secrecy,
the quality of intelligence made available to the political leadership appears to
have declined over time. Effectiveness is undermined by inter-agency feuding
and refusal to share information, and by the lack of effective external critique3.
So a strong case can be made that MLS systems, by making the classification
process easier and controlled data sharing harder, actually impair operational
effectiveness’. A few months after the book was published, the attacks of 9/11
drove home the lesson that the US intelligence community, with its resources
fragmented into more than twenty agencies and over a million compartments,
was failing to join up the dots into an overall picture. Since then, massive
efforts have been made to get the agencies to share data. It’s not clear that this
is working; some barriers are torn down, others are erected, and bureaucratic
empire building games continue as always. There have, however, been leaks
of information that the old rules should have prevented. For example, a Bin
Laden video obtained prior to its official release by Al-Qaida in September
2007 spread rapidly through U.S. intelligence agencies and was leaked by
officials to TV news, compromising the source [1322].

In the UK, the system of classification is pretty much the same as the U.S.
system described in this chapter, but the system itself is secret, with the full
manual being available only to senior officials. This was a contributory factor in
a public scandal in which a junior official at the tax office wrote a file containing
the personal information of all the nation’s children and their families to two
CDs, which proceeded to get lost in the post. He simply was not aware that
data this sensitive should have been handled with more care [591]. I’ll describe
this scandal and discuss its implications in more detail in the next chapter.

So multilevel security can be a double-edged sword. It has become en-
trenched in government, and in the security-industrial complex generally, and
is often used in inappropriate ways. Even long-time intelligence insiders have
documented this [671]. There are many problems which we need to be a ‘fox’
rather than a ‘hedgehog’ to solve. Even where a simple, mandatory, access
control system could be appropriate, we often need to control information
flows across, rather than information flows down. Medical systems are a good
example of this, and we will look at them next.

3Although senior people follow the official line when speaking on the record, once in private
they rail at the penalties imposed by the bureaucracy. My favorite quip is from an exasperated
British general: ‘What’s the difference between Jurassic Park and the Ministry of Defence? One’s
a theme park full of dinosaurs, and the other’s a movie!’

272 Chapter 8 ■ Multilevel Security

8.8 Summary

Mandatory access control was developed for military applications, most
notably specialized kinds of firewalls (guards and pumps). They are being
incorporated into commodity platforms such as Vista and Linux. They have
even broader importance in that they have been the main subject of computer
security research since the mid-1970’s, and their assumptions underlie many
of the schemes used for security evaluation. It is important for the practitioner
to understand both their strengths and limitations, so that you can draw on
the considerable research literature when it’s appropriate, and avoid being
dragged into error when it’s not.

Research Problems

Multilevel confidentiality appears to have been comprehensively done to death
by generations of DARPA-funded research students. The opportunity now is
to explore what can be done with the second-generation mandatory access
control systems shipped with Vista and SELinux, and with virtualization
products such as VMware and Xen; what can be done to make it easier
to devise policies for these systems that enable them to do useful work; in
better mechanisms for controlling information flow between compartments;
the interaction which multilevel systems have with other security policies; and
in ways to make mandatory access control systems usable.

An ever broader challenge, sketched out by Earl Boebert after the NSA
launched SELinux, is to adapt mandatory access control mechanisms to safety-
critical systems (see the quote at the head of this chapter, and [197]). As a tool
for building high-assurance, special-purpose devices where the consequences
of errors and failures can be limited, mechanisms such as type enforcement
and role-based access control look like they will be useful outside the world of
security. By locking down intended information flows, designers can reduce
the likelihood of unanticipated interactions.

Further Reading

The report on the Walker spy ring is essential reading for anyone interested
in the system of classifications and clearances [587]: this describes in great
detail the system’s most spectacular known failure. It brings home the sheer
complexity of running a system in which maybe three million people have a
current SECRET or TOP SECRET clearance at any one time, with a million
applications being processed each year — especially when the system was

Further Reading 273

designed on the basis of how people should behave, rather than on how they
actually do behave. And the classic on the abuse of the classification process
to cover up waste, fraud and mismanagement in the public sector was written
by Chapman [282].

On the technical side, one of the better introductions to MLS systems,
and especially the problems of databases, is Gollmann’s Computer Secu-
rity [537]. Amoroso’s ‘Fundamentals of Computer Security Technology’ [27] is
the best introduction to the formal mathematics underlying the Bell-LaPadula,
noninterference and nondeducibility security models.

The bulk of the published papers on engineering actual MLS systems can be
found in the annual proceedings of three conferences: the IEEE Symposium on
Security & Privacy (known as ‘Oakland’ as that’s where it’s held), the National
Computer Security Conference (renamed the National Information Systems Security
Conference in 1995), whose proceedings were published by NIST until the
conference ended in 1999, and the Computer Security Applications Conference
whose proceedings are (like Oakland’s) published by the IEEE. Fred Cohen’s
experiments on breaking MLS systems using viruses are described in his book,
‘A Short Course on Computer Viruses’ [311]. Many of the classic early papers in
the field can be found at the NIST archive [934].

