

Table of Contents

Introduction .. 3

Patterns and anti-patterns .. 4
The Build Up Approach ... 4
The Standards Committee Approach ... 5
The Copy Cat Approach ... 6

A simple interface to a complex system .. 7
Designing the interface ... 8
Three Small Problems ... 9
One Big Problem ... Error! Bookmark not defined.

Common patterns .. 11
Errors ... 11
Responses & data stubs ... 14
URLs .. 15
Limited clients .. 16
Versions ... 17
Data Formats ... 18

Facades for internal and external systems .. 20

Technology .. 21
Technology for set-up .. 21
Technology for versioning, firewalls, caching ... 24
Technology for orchestration.. 27
Technology for transformation and compression ... 29
An additional layer of complexity? .. 30

People and agility .. 31

Summary .. 35

API Facade Pattern - A Simple Interface to a Complex System

2

API Facade Pattern - A Simple Interface to a Complex System

Introduction .. 3

Patterns and anti-patterns .. 4
The Build Up approach ... 4
The standards committee approach .. 5
The copy cat approach .. 6

A simple interface to a complex system .. 7
Designing the interface ... 8
From one big problem to three small problems .. 9

Common patterns .. 11
Errors ... 11
Responses & data stubs ... 14
URLs .. 15
Limited clients .. 16
Versions ... 17
Data formats .. 18

Facades for internal and external systems .. 20

Technology .. 21
Technology for set-up .. 21
Technology for versioning, firewalls, caching ... 24
Technology for orchestration.. 27
Technology for transformation and compression ... 29
An additional layer of complexity? .. 30

People and agility .. 31

Summary .. 35

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.

http://creativecommons.org/licenses/by-nc/3.0/

API Facade Pattern - A Simple Interface to a Complex System

3

Introduction

The API Facade Design Pattern is a solution to a design problem that arises for API
designers when back-end and internal systems of record are too complex to expose
directly to application developers.

Because app developers build apps using the APIs provided by an API Team (API
provider), many businesses find that they need to craft solutions to deal with exposing
complex systems.

It is beneficial to your API strategy if app developers are as productive as possible and
adopt your API. This helps build value within your organization and extend that value
proposition out beyond the boundaries of your organization and to the broader market.

The advantages of internal systems of record are that they are stable (have been
hardened over time) and dependable (they are running key aspects of your business),
but they are often based on legacy technologies and not always easy to expose to Web
standards like HTTP. These systems can also have complex interdependencies and
they change slowly meaning that they can’t move as quickly as the needs of mobile app
developers and keep up with changing formats.

In fact, the problem is not creating an API for just one big system but creating an API for
an array of complementary systems that all need to be used to make an API valuable to
a developer.

The goal of an API Facade Pattern is to articulate internal systems and make them
useful for the app developer.

“USE THE FAÇADE PATTERN WHEN YOU WANT TO PROVIDE A SIMPLE INTERFACE TO A COMPLEX

SUBSYSTEM. SUBSYSTEMS OFTEN GET MORE COMPLEX AS THEY EVOLVE.”

Design Patterns – Elements of Reusable Object-Oriented Software
(Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides)

API Facade Pattern - A Simple Interface to a Complex System

4

Patterns and anti-patterns

Let's start by looking at a few anti-patterns that we’ve seen people use when creating an
API for a big system (or for an array of systems) and why we believe they don’t work
well. The first is what we’ll call the “Build Up” approach.

The Build Up approach

In the build-up approach, a developer exposes the core objects of a big system and
puts an XML parsing layer on top.

This approach has merit in that it can get you to market with version 1 quickly. Also,
your API team members (your internal developers) already understand the details of the
system.

Unfortunately, those details of an internal system at the object level are fine grained and
can be confusing to external developers. You’re also exposing details of internal
architecture, which is rarely a good idea. This approach can be inflexible because you
have 1:1 mapping to how a system works and how it is exposed to API. In short,
building up from the systems of record to the API can be overly complicated.

API Facade Pattern - A Simple Interface to a Complex System

5

The standards committee approach

Often the internal systems are owned and managed by different people and
departments with different views about how things should work. Designing an API by a
standards committee often involves creating a standards document, which defines the
schema and URLs and such. All the stakeholders build toward that common goal.

The benefits of this approach include getting to version 1 quickly. You can also create a
sense of unification across an organization and a comprehensive strategy, which can be
significant accomplishments when you have a large organization and a number of
stakeholders and contributors.

A drawback of the standards committee pattern is that it can be slow. Even if you get
the document created quickly, getting everybody to implement against it can be slow
and can lack adherence. This approach can also lead to a mediocre design as a result
of too many compromises.

API Facade Pattern - A Simple Interface to a Complex System

6

The copy cat approach

We sometimes see this pattern when an organization is late to market – for example,
when their close competitor has already delivered a solution. Again, this approach can
get you to version 1 quickly and you may have a built-in adoption curve if the app
developers who will use your API are already familiar with your competitor’s API.
However, you can end up with an undifferentiated product that is considered an inferior
offering in the market of APIs. You might have missed exposing your own key value and
differentiation by just copying someone else’s API design.

API Facade Pattern - A Simple Interface to a Complex System

7

A simple interface to a complex system

The best solution to exposing internal systems in a straightforward and usable way for
developers to consume starts with thinking about the fundamentals of product
management. Your product (your API) needs to be credible, relevant, and differentiated.
Once your product manager has decided what the big picture is like, it’s up to the
architects.

We recommend you implement an API façade pattern. This pattern gives you a buffer or
virtual layer between the interface on top and the API implementation on the bottom.
You essentially create a façade – a comprehensive view of what the API should be and
importantly it is the view from the perspective of the app developer and end user of the
apps they create.

Not only will you provide a simple interface to a complex internal system, but you’ll also
future-proof your environment. As Gamma et. al. observed in Design Patterns –
Elements of Reusable Object-Oriented Software, systems often get more complex as
they evolve and grow.

“USE THE FAÇADE PATTERN WHEN YOU WANT TO PROVIDE A SIMPLE INTERFACE TO A COMPLEX

SUBSYSTEM. SUBSYSTEMS OFTEN GET MORE COMPLEX AS THEY EVOLVE.”

Design Patterns – Elements of Reusable Object-Oriented Software
(Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides)

API Facade Pattern - A Simple Interface to a Complex System

8

Designing the interface

Let’s look at the basic steps to implement an API Façade - our recommended solution to the

problem of exposing complex internal systems' functionality in a way that's useful for app

developers is to implement an API facade pattern.

This pattern gives you a buffer or virtual layer between the interface on top and the API
implementation on the bottom. You essentially create a façade – a comprehensive view
of what the API looks like from the perspective of the app developer and end-user of the
apps they create.

The developer and the app that consume the API are on top. The API façade isolates
the developer and the application and the API. Making a clean design in the facade
allows you to decompose one really hard problem into a few simpler problems.

Implementing an API façade pattern involves three basic steps.

1 - Design the ideal API – design the URLs, request parameters and responses,
payloads, headers, query parameters, and so on. The API design should be self-
consistent.

2 - Implement the design with data stubs. This allows application developers to use your
API and give you feedback even before your API is connected to internal systems.

3 - Mediate or integrate between the façade and the systems.

API Facade Pattern - A Simple Interface to a Complex System

9

From one big problem to three small problems

Using the three-step approach you’ve decomposed one big problem to three smaller
problems. If you try to solve the one big problem, you’ll be starting in code, and trying to
build up from your business logic (systems of record) to a clean API interface.

You would be exposing objects or tables or RSS feeds from each silo, mapping each to
XML in the right format before exposing to the app. It is a machine–to-machine
orientation focused around an app and is difficult to get this right.

API Facade Pattern - A Simple Interface to a Complex System

10

Taking the façade pattern approach helps shift the thinking from a silo approach in a
number of important ways. First, you can get buy in around each of the three separate
steps and have people more clearly understand how you’re taking a pragmatic
approach to the design. Secondly, the orientation shifts from the app to the app
developer. The goal becomes to ensure that the app developer can use your API
because the design is self-consistent and intuitive.

Because of where it is in the architecture, the façade becomes an interesting gateway.
You can now have the façade implement the handling of common patterns (for
pagination, queries, ordering, sorting, etc.), authentication, authorization, versioning,
and so on, uniformly across the API. (This is a big topic, which we'll delve into later.)

Other benefits for the API team include being more easily able to adapt to different use
cases regardless of whether they are internal developer, partner, or open scenarios.
The API team will be able to keep pace with the changing needs of developers,
including the ever-changing protocols and languages. It is also easier to extend an API
by building out more capability from your enterprise or plugging in additional existing
systems.

API Facade Pattern - A Simple Interface to a Complex System

11

Common patterns

An API façade provides repeatable patterns to help design the common and critical
elements of your API. You'll see by examining a handful of common patterns that you
can surface simple interfaces to complex systems in a number of contexts, and in
predictable and reusable ways. We’ll look at the following:

- Errors
- Responses & data stubs
- URLs
- Versions
- Data formats

Errors

"When I say errors, you say test-driven development"

Test-driven development involves building test cases and when they fail they help guide
developers towards creating the right app. Because the black box is more stringently
enforced with a Web API, this model and the errors are more important in the world of
APIs and apps than in other areas of software development.

Design the HTTP codes and responses you want

Start with a facade, not connected to any internal systems yet and then get the error
codes right. In Web API Design: Crafting Interfaces that Developers Love, we talked
about the 8 error codes we think are most important (shown below too). (The important
error codes may vary for your domain.)

Get the error messages in place so that you can start to build your test suite, including
the HTTP error codes and the payload response.

API Facade Pattern - A Simple Interface to a Complex System

12

Control over the facade - raise the error

Sometimes you want to explicitly cause a raise to happen. Here's a useful trick and
pattern we created for a large API provider, which worked well. It involves putting a
raise query parameter in your HTTP request.

It will raise that HTTP code. When you are building your test suite, this allows you to
ensure your app logic handles exceptions properly.

API Facade Pattern - A Simple Interface to a Complex System

13

Warning - don't let this make it's way to your production servers.

Test and implement - plug internal system into the facade

You've designed your set of HTTP codes from the outside in. You have a big internal
system, which let's say was built on the .NET framework. Microsoft has an extension of

the HTTP status codes - 449 Retry With. You will want to map the 449 to something

more aligned with what mobile developers are familiar with today. To do so, you can
implement a lookup table and transform the 449 code into a 404 error.

API Facade Pattern - A Simple Interface to a Complex System

14

So, you started with the design intent - the HTTP codes and responses. You've exerted
some controls over the facade by explicitly forcing the raise. And finally, you've tested it
all by plugging internal system into the facade.

Responses & data stubs

In the same way we designed for errors with the facade unconnected to any back-end
systems, you can stub out what response data would look like, and have the facade
return that to you.

In the same way we designed the forced raise for errors, you can force the mock.
Setting mock = true, you have a shunt in the facade that returns the stub. Again, we're
looking at predictable behavior to do test driven development.

Warning: It's a good idea to only support the mock attribute on the test server and to
raise an error if the mock parameter is included in production.

API Facade Pattern - A Simple Interface to a Complex System

15

URLs

We think of the URL as the strongest affordance for a well-designed API. This is where
the facade pattern begins to shine.

The goal is something like this - an app developer wants to do something as simple as
see a collection of accounts by doing an HTTP GET on /v2/accounts. However, the
internal system may be far more complex than /v2/accounts, like this Salesforce URL.

Doing URL mediation through the facade, you can show the developer on the outside
the simple /v2/accounts interface while keeping the complexity of the internal system
behind the facade.

API Facade Pattern - A Simple Interface to a Complex System

16

Limited clients

Certain clients have limitations on the HTTP methods that they support. This is a good
scenario to consider in the context of the URL pattern.

Take for example a client app that doesn't support HTTP DELETE.

You can handle this through the facade by making the method an optional parameter.
As the request comes into the facade, the facade changes the HTTP method from GET
to DELETE. It also strips the method=delete query parameter and translates to original
request of the backend system.

API Facade Pattern - A Simple Interface to a Complex System

17

Versions

Best practices and principles for versioning your API are described in RESTful API
Design: Tips for versioning and in the Web API Design: Crafting Interfaces that
Developers Love e-book. Here we'll focus on designing for a scenario in which you
need to support more than one version. This is common scenario especially in certain
phases of your API's life cycle.

The way to handle this with a facade is to design it such that regardless of which
request comes into the facade, you have a shunt in place that points the request to the
proper internal system, which serves the response.

http://blog.apigee.com/detail/restful_api_design_tips_for_versioning/
http://blog.apigee.com/detail/restful_api_design_tips_for_versioning/
http://apigee.com/about/resources
http://apigee.com/about/resources

API Facade Pattern - A Simple Interface to a Complex System

18

Data formats

Different developers have different expectations for formats. For example, an HTML5
developer might want JSON responses while a Java developer might depend on
libraries to handle SOAP requests and responses.

Let's look at how a facade handles this for a developer who needs SOAP. Take a
developer who does a POST to get a collection of accounts. The facade mediates the
POST into the more complicated internal system and returns SOAP. This is a simple
scenario not unlike the URL mapping scenario. There's no real data format mediation
happening here.

A more complex mediation happens for example when the developer does an HTTP
GET and wants JSON in the response. The facade maps SOAP to JSON on the
response, probably using XSLT. Note that the developer has no knowledge of the
complexity or the mediation and only knows that they are getting the right format data
returned for their app.

http://blog.apigee.com/detail/api_facade_common_patterns_data_stubs_urls/

API Facade Pattern - A Simple Interface to a Complex System

19

API Facade Pattern - A Simple Interface to a Complex System

20

Facades for internal and external systems

So far, we've talked about API facades that make it easy to provide access to internal
systems, and a lot of companies use a facade in this mode.

Another use of the same pattern is to easily consume APIs from external systems.

All of the same issues and considerations come into play with internal and external
systems. We've seen a number of cases in which core businesses rely on external
services. We've also seen cases where those service providers change their pricing
models and with that the business that is tied to the service provider can see its profit
margins shrink, it's SLAs deteriorate, or other business relationship change. A facade
pattern can help mitigate risk in cases like this.

With a facade pattern in place, apps that consume the external services can expect a
canonical model to consume the APIs. Also, if implemented through the facade, the
external services can easily be plugged and replaced.

All of the same approaches to implementing common patterns come into play for the
external scenario - starting with building out the errors facade and the data stubs. You’ll
quickly create your canonical model of service consumption.

API Facade Pattern - A Simple Interface to a Complex System

21

Technology

What are the technologies at the heart of implementing an API façade? You’ll need to
set up domains and servers, gateways, sub-domain routing. Then you’ll need to design
for versioning, firewalls, caching and finally orchestration, transformation, compression,
and authorization.

Technology for set-up

We'll begin with the set up involving DNS, Cloud Platform, Web server, app server, API
Gateway and subdomain routing.

DNS provider & cloud platform

In the spirit of test-driven development, the first thing to set up is our test environment.
The first piece of technology we'll need is a DNS Provider.

Set up a CNAME entry, which points to our test facade. A good choice for the
subdomain is api-test.

For the sake of our example, we're assuming a Cloud Platform technology because it's
the most complicated case and will allow us to explore the most options. It's definitely
simpler if everything is behind your firewall.

API Facade Pattern - A Simple Interface to a Complex System

22

Web server, app server, and API gateway

Once you have the DNS and the Cloud Platform set up, you are ready to implement the
first patterns, errors and data stubs.

To ensure that you have a solid foundation for test-driven development, HTTP codes
and error responses need to be in place; you need to be able to stub out data to support

mock=true and raise={HTTP code}, and so on.

To do so, you need either a static Web server, or an app server for more dynamic
content, or an API Gateway (the Swiss army knife for this scenario) in the Cloud
Platform.

Subdomain routing and production environment

The next step is to set up your production environment. You'll add a new CNAME entry
in the DNS so that the production subdomain is api. In our example below, we've
pointed api to the same Cloud Platform as in our test environment, but of course you
can have different test and production targets if you like.

In the API facade, you'll specify the IP address of the target system.

Note that the error capability is also here in the production environment. Just as it is
important in the test environment, you need to ensure verbose error messages and
comprehensive codes in the production environment.

API Facade Pattern - A Simple Interface to a Complex System

23

With these pieces in place, you'll have requests coming in to api-test and api. In

addition to the target IP address, the facade has a shunt that knows where the
subdomain is and understands where to point - for example to the data stub server for
test or to an internal system for production.

API Facade Pattern - A Simple Interface to a Complex System

24

Technology for versioning, firewalls, caching

Once you’ve up your test and production environment with DNS settings, a Cloud
Platform, Web servers, app servers and an API Gateway, you’re ready to think about
the technologies required to handle some of the more common use cases including
versioning, caching and securing with a firewall.

Versioning and URL routing
Once you've got subdomain routing taken care of as discussed in our previous section
Technology for Set Up, you can look at designing to handle multiple versions.

This is a similar scenario to subdomain routing but in this case you're doing URL
parsing. Here for example, a request comes in for v2.

V1 of your facade may point at an old system, while v2 points at a new system. In this
way, you have a simple way to shunt between two IP addresses and handle the
scenario in which you need multiple versions of your API available.

API Facade Pattern - A Simple Interface to a Complex System

25

Firewall
You want app requests coming through the API facade. You don't want anyone figuring
out the IP address to which your facade is pointing and bypassing it. If the API facade is
bypassed, you'll be unable to track the requests and unable to apply the API design
logic you've built into your facade.

To counteract this, you create a firewall to block all the API traffic with the exception of
the trusted IP address of the facade. That is, you ALLOW the IP address of the facade
in firewall. Your system is then secure with all requests coming through the facade.

API Facade Pattern - A Simple Interface to a Complex System

26

Geo DNS and Caching
In this scenario, we'll build out our facade functionality some more by adding a geo-
distributed DNS. The DNS sends the app to a geographically close API facade, based
on the source of the request.

The number one use case for the geo DNS is caching. This is especially important
functionality for apps that have a social network element. You can cache information
that doesn't cross-regions so that clients enjoy a fast experience because the facade is
caching the API responses where the requests originated.

So you've added geo DNS and in the API facade have caching capability. You've told
the DNS that based on region; you have 2 different IP addresses to target - either
1.2.3.4 or 1.2.3.5 in our example.

API Facade Pattern - A Simple Interface to a Complex System

27

Technology for orchestration

Another common pattern we see is the insertion of a facade to orchestrate across a
complex and fine-grained set of API calls. The design represented by the anti-pattern
diagram below will likely present a poor and complex design to the app developer.

The facade in this scenario orchestrates across a number of calls. There are
configuration- or policy-orientated orchestration technologies available or you can write
the orchestration logic in code. Code is often one of the best orchestration tools but the
approach you take will depend on the skills and capacity of the team that's
implementing the API facade.

API Facade Pattern - A Simple Interface to a Complex System

28

Technology for Authorization - OAuth

Let's look at how to handle authorization through the API facade. A request comes into
the facade with an OAuth token or other indications of the authorization scheme.

The facade can make the calls to the authorization system of record.

If the request is valid, the facade passes it to the core system; if invalid, the facade
returns with an invalid response code.

API Facade Pattern - A Simple Interface to a Complex System

29

Technology for transformation and compression

To handle the common use case for apps, in general, of transforming XML to JSON or
vice versa, you would use a transformation library (like XSLT) in the facade.

API Facade Pattern - A Simple Interface to a Complex System

30

To handle a common use case for verbose and large XML documents, you add a
compression engine to your API facade.

Not clogging the bandwidth is especially important for mobile apps where large
payloads become a problem because they impact the cost of users' data plans and use
battery powering the radio. Apps that impact the users' bottom line get uninstalled.

An additional layer of complexity?

One reaction to the facade pattern is that it adds a layer of complexity to the technology
stack. However, whether or not an organization uses the facade pattern, there is
inherent complexity, which must be addressed between the app developer and the API.

Too often this complexity is buried within individual systems and so is difficult to track.
Adding complexity on top of unknowns is bad. The facade pattern actually helps to
create order where there was none.

API Facade Pattern - A Simple Interface to a Complex System

31

People and agility

It’s easy to focus on the technology but the people involved in your API strategy are key
to its success. Although we’re technologists, we should think about the people on the
team in the context of the API façade and API program in general. It boils down to the
need for agility.

Agility

On the one hand, internal systems tend to be slow moving. On the other, the
marketplace – as represented by the app developers who are trying to keep up with
trends and shifts in the market – is moving pretty quickly. The API façade does a great
job of being the intermediary and doing the frequency matching between the two
systems.

It’s not just about wiring the requests and responses. It’s also about having a system in
place that allows the API team to adapt the API facade to the needs of the evolving app
developer as well as to the changes in internal systems.

API Facade Pattern - A Simple Interface to a Complex System

32

Who are the people in that system - in the API value chain? The key players
include the API team and the app developers.

The API Team

Building out a solid API team starts with a strong Web team. The core of that team
includes architects, software engineers, operations professionals, QA engineers
and database administrators. But don’t stop there.

You’ll also need API-specific roles on the team in the form of an API product manager
(the subject matter expert for the company and the domain), an API Designer
(technical thinker, critical thinker with a strong sense of design and user-interaction),
and what we typically refer to as a Gateway operations person (.

One person may play multiple roles, but for a successful API program, you’ll need to
cover all these bases.

The Web team and the API specific team in place, you’ll need some additional roles.
Depending on the kind of developers who will develop apps that take advantage of your
API, you add different people to the API team. The four main persona of app developer
we talk about depends on what kind of API strategy you have – whether internal,
partner, customer, or open.

Internal: The app developer using the API works for the company – the API provider.

Partner: The developer works for or is a strategic partner. The go-to-market strategy is
one with a shared value proposition.

Customer: The “customer developer” is especially important if your organization is a
SaaS provider or if a large amount of revenue comes from B2B customers as opposed
to consumer end users.

Open: The developer in this case is any developer who signs up to build apps against
your API.

API Facade Pattern - A Simple Interface to a Complex System

33

It is our experience that if you target an open scenario you will get things right in the
other scenarios. So we finish out this third category of API team member with the open
use case in mind. This last set of roles will have only subtle nuances depending on
which scenario is your first or primary use case.

One of the most important people is an executive sponsor who will not only help with
funding for your initiative but who can also set expectations about the business value an
open API brings to the marketplace.

The next role is for a community manager who will facilitate two core and critical
connections. The first is from the API team to the app developers and the second is
helping connect developers with other developers to share expertise and collaborate to
spur innovation. The community manager builds and forges relationships both online
and in real life situations.

While the role for a community manager is clear when you have an open API strategy,
even when your strategy is internal, it is valuable to have a person on the team with the
mindset of community manager. They will facilitate developer-to-developer interactions
and collaborations internally. It’s also a great way to learn lessons about running a
developer community before you do it externally.

API Facade Pattern - A Simple Interface to a Complex System

34

For the customer API scenario, you will likely want to add a customer support role.
While the developer community manager may play this role, you may need a more
typical customer support role that can handle traditional customer tracking systems,
follow ups and so on as are expected in typical B2B relationships.

For the partner scenario, you will likely need a partner support role. Partner support is
very similar to customer support in that there are similar expectations between parties in
the business relationship.

Then finally, you should consider a business developer. Perhaps this person doubles
as the executive sponsor. They are responsible for pushing the API program in the
direction of increased business opportunity.

API Facade Pattern - A Simple Interface to a Complex System

35

Summary

Going back to our API value chain, app developers build apps using the APIs provided
by the API Team (API provider). Everybody wins if app developers are as productive as
possible and adopt your API quickly. Those app developers will help build the value
within your organization and to extend that value proposition out beyond the boundaries
of your organization into the broader market.

The best way we’ve found to facilitate this success is to implement an API façade
pattern. This pattern gives you a virtual layer between the interface on top and the API
implementation on the bottom. It is a comprehensive view of what the API should be.
Importantly, it is the view from the perspective of the app developer and end user of the
apps they create.

You break one major problem (exposing a set of complex internal systems in such a
way as to be beneficial for developers) into three smaller problems (designing the ideal
API; implementing the design with data stubs; integrating between the façade and the
systems).

Using an API facade allows your organization to keep pace with developers in the real
world. Their world changes quickly and frequently and they need to make apps that
remain competitive in an ever growing and evolving market place.

It also has benefits internally (behind the façade) in that it enables an API team to
create an extensible API that allows new systems to be plugged in, allowing your
organization to keep pace with both the marketplace and with changing internal
systems.

Resources

Web API Design – Crafting Interfaces that Developers Love (Brian Mulloy)

RESTful API Design Webinar, 2nd edition, Brian Mulloy, 2011

Apigee API Tech and Best Practices Blog

API Craft Google Group

About the author

Brian Mulloy, Products at Apigee

Brian has 15 years of experience ranging from enterprise software to founding a Web
startup. He co-founded and was CEO of Swivel, a Website for social data analysis. He
was President and General Manager of Grand Central, a cloud-based offering for
application infrastructure (before we called it the cloud). And was Director of Product
Marketing at BEA Systems. Brian holds a degree in Physics from the University of
Michigan.

Brian is a frequent contributor on the Apigee API Tech and best practices blog, the
Apigee YouTube channel, Webcasts, and the API Craft Google Group,

http://apigee.com/about/resources
http://blog.apigee.com/detail/slides_for_restful_api_design_second_edition_webinar/
http://blog.apigee.com/
http://groups.google.com/group/api-craft/
http://blog.apigee.com/
http://www.youtube.com/apigee
http://blog.apigee.com/taglist/webinar
http://groups.google.com/group/api-craft/

About Apigee
Apigee is the leading provider of API products and technology for enterprises
and developers. Hundreds of enterprises like Comcast, GameSpy, TransUnion
Interactive, Guardian Life and Constant Contact and thousands of developers
use Apigee's technology. Enterprises use Apigee for visibility, control and scale
of their API strategies. Developers use Apigee to learn, explore and develop
API-based applications. Learn more at http://www.apigee.com.

Accelerate your API Strategy

Scale Control and Secure your Enterprise

 Developers – Consoles for the APIs you

 Usergrid - A scalable data platform for mobile apps

http://www.apigee.com/
http://apigee.com/about/resources
http://apigee.com/about/products/enterprise
http://apigee.com/providers
http://apigee.com/about/products/usergrid/

	comments

