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PREFACE 

This book has been written to support a practically oriented course in programming language
translation for senior undergraduates in Computer Science. More specifically, it is aimed at students
who are probably quite competent in the art of imperative programming (for example, in C++,
Pascal, or Modula-2), but whose mathematics may be a little weak; students who require only a
solid introduction to the subject, so as to provide them with insight into areas of language design
and implementation, rather than a deluge of theory which they will probably never use again;
students who will enjoy fairly extensive case studies of translators for the sorts of languages with
which they are most familiar; students who need to be made aware of compiler writing tools, and to
come to appreciate and know how to use them. It will hopefully also appeal to a certain class of
hobbyist who wishes to know more about how translators work. 

The reader is expected to have a good knowledge of programming in an imperative language and,
preferably, a knowledge of data structures. The book is practically oriented, and the reader who
cannot read and write code will have difficulty following quite a lot of the discussion. However, it
is difficult to imagine that students taking courses in compiler construction will not have that sort of
background! 

There are several excellent books already extant in this field. What is intended to distinguish this
one from the others is that it attempts to mix theory and practice in a disciplined way, introducing
the use of attribute grammars and compiler writing tools, at the same time giving a highly practical
and pragmatic development of translators of only moderate size, yet large enough to provide
considerable challenge in the many exercises that are suggested. 

Overview 

The book starts with a fairly simple overview of the translation process, of the constituent parts of a
compiler, and of the concepts of porting and bootstrapping compilers. This is followed by a chapter
on machine architecture and machine emulation, as later case studies make extensive use of code
generation for emulated machines, a very common strategy in introductory courses. The next
chapter introduces the student to the notions of regular expressions, grammars, BNF and EBNF,
and the value of being able to specify languages concisely and accurately. 

Two chapters follow that discuss simple features of assembler language, accompanied by the
development of an assembler/interpreter system which allows not only for very simple assembly,
but also for conditional assembly, macro-assembly, error detection, and so on. Complete code for
such an assembler is presented in a highly modularized form, but with deliberate scope left for
extensions, ranging from the trivial to the extensive. 

Three chapters follow on formal syntax theory, parsing, and the manual construction of scanners
and parsers. The usual classifications of grammars and restrictions on practical grammars are
discussed in some detail. The material on parsing is kept to a fairly simple level, but with a
thorough discussion of the necessary conditions for LL(1) parsing. The parsing method treated in
most detail is the method of recursive descent, as is found in many Pascal compilers; LR parsing is
only briefly discussed. 



The next chapter is on syntax directed translation, and stresses to the reader the importance and
usefulness of being able to start from a context-free grammar, adding attributes and actions that
allow for the manual or mechanical construction of a program that will handle the system that it
defines. Obvious applications come from the field of translators, but applications in other areas
such as simple database design are also used and suggested. 

The next two chapters give a thorough introduction to the use of Coco/R, a compiler generator
based on L- attributed grammars. Besides a discussion of Cocol, the specification language for this
tool, several in-depth case studies are presented, and the reader is given some indication of how
parser generators are themselves constructed. 

The next two chapters discuss the construction of a recursive descent compiler for a simple
Pascal-like source language, using both hand-crafted and machine-generated techniques. The
compiler produces pseudo-code for a hypothetical stack-based computer (for which an interpreter
was developed in an earlier chapter). "On the fly" code generation is discussed, as well as the use of
intermediate tree construction. 

The last chapters extend the simple language (and its compiler) to allow for procedures and
functions, demonstrate the usual stack-frame approach to storage management, and go on to discuss
the implementation of simple concurrent programming. At all times the student can see how these
are handled by the compiler/interpreter system, which slowly grows in complexity and usefulness
until the final product enables the development of quite sophisticated programs. 

The text abounds with suggestions for further exploration, and includes references to more
advanced texts where these can be followed up. Wherever it seems appropriate the opportunity is
taken to make the reader more aware of the strong and weak points in topical imperative languages.
Examples are drawn from several languages, such as Pascal, Modula-2, Oberon, C, C++, Edison
and Ada. 

Support software 

An earlier version of this text, published by Addison-Wesley in 1986, used Pascal throughout as a
development tool. By that stage Modula-2 had emerged as a language far better suited to serious
programming. A number of discerning teachers and programmers adopted it enthusiastically, and
the material in the present book was originally and successfully developed in Modula-2. More
recently, and especially in the USA, one has witnessed the spectacular rise in popularity of C++,
and so as to reflect this trend, this has been adopted as the main language used in the present text.
Although offering much of value to skilled practitioners, C++ is a complex language. As the aim of
the text is not to focus on intricate C++programming, but compiler construction, the supporting
software has been written to be as clear and as simple as possible. Besides the C++ code, complete
source for all the case studies has also been provided on an accompanying IBM-PC compatible
diskette in Turbo Pascal and Modula-2, so that readers who are proficient programmers in those
languages but only have a reading knowledge of C++ should be able to use the material very
successfully. 

Appendix A gives instructions for unpacking the software provided on the diskette and installing it
on a reader’s computer. In the same appendix will be found the addresses of various sites on the
Internet where this software (and other freely available compiler construction software) can be
found in various formats. The software provided on the diskette includes 



Emulators for the two virtual machines described in Chapter 4 (one of these is a simple
accumulator based machine, the other is a simple stack based machine). 

The one- and two-pass assemblers for the accumulator based machine, discussed in Chapter 6.

A macro assembler for the accumulator-based machine, discussed in Chapter 7. 

Three executable versions of the Coco/R compiler generator used in the text and described in
detail in Chapter 12, along with the frame files that it needs. (The three versions produce
Turbo Pascal, Modula-2 or C/C++ compilers) 

Complete source code for hand-crafted versions of each of the versions of the Clang compiler
that is developed in a layered way in Chapters 14 through 18. This highly modularized code
comes with an "on the fly" code generator, and also with an alternative code generator that
builds and then walks a tree representation of the intermediate code. 

Cocol grammars and support modules for the numerous case studies throughout the book that
use Coco/R. These include grammars for each of the versions of the Clang compiler. 

A program for investigating the construction of minimal perfect hash functions (as discussed
in Chapter 14). 

A simple demonstration of an LR parser (as discussed in Chapter 10). 

Use as a course text 

The book can be used for courses of various lengths. By choosing a selection of topics it could be
used on courses as short as 5-6 weeks (say 15-20 hours of lectures and 6 lab sessions). It could also
be used to support longer and more intensive courses. In our university, selected parts of the
material have been successfully used for several years in a course of about 35 - 40 hours of lectures
with strictly controlled and structured, related laboratory work, given to students in a pre-Honours
year. During that time the course has evolved significantly, from one in which theory and formal
specification played a very low key, to the present stage where students have come to appreciate the
use of specification and syntax-directed compiler-writing systems as very powerful and useful tools
in their armoury. 

It is hoped that instructors can select material from the text so as to suit courses tailored to their
own interests, and to their students’ capabilities. The core of the theoretical material is to be found
in Chapters 1, 2, 5, 8, 9, 10 and 11, and it is suggested that this material should form part of any
course based on the book. Restricting the selection of material to those chapters would deny the
student the very important opportunity to see the material in practice, and at least a partial selection
of the material in the practically oriented chapters should be studied. However, that part of the
material in Chapter 4 on the accumulator-based machine, and Chapters 6 and 7 on writing
assemblers for this machine could be omitted without any loss of continuity. The development of
the small Clang compiler in Chapters 14 through 18 is handled in a way that allows for the later
sections of Chapter 15, and for Chapters 16 through 18 to be omitted if time is short. A very wide
variety of laboratory exercises can be selected from those suggested as exercises, providing the
students with both a challenge, and a feeling of satisfaction when they rise to meet that challenge.
Several of these exercises are based on the idea of developing a small compiler for a language



similar to the one discussed in detail in the text. Development of such a compiler could rely entirely
on traditional hand-crafted techniques, or could rely entirely on a tool-based approach (both
approaches have been successfully used at our university). If a hand-crafted approach were used,
Chapters 12 and 13 could be omitted; Chapter 12 is largely a reference manual in any event, and
could be left to the students to study for themselves as the need arose. Similarly, Chapter 3 falls into
the category of background reading. 

At our university we have also used an extended version of the Clang compiler as developed in the
text (one incorporating several of the extensions suggested as exercises) as a system for students to
study concurrent programming per se, and although it is a little limited, it is more than adequate for
the purpose. We have also used a slightly extended version of the assembler program very
successfully as our primary tool for introducing students to the craft of programming at the
assembler level. 

Limitations 

It is, perhaps, worth a slight digression to point out some things which the book does not claim to
be, and to justify some of the decisions made in the selection of material. 

In the first place, while it is hoped that it will serve as a useful foundation for students who are
already considerably more advanced, a primary aim has been to make the material as accessible as
possible to students with a fairly limited background, to enhance the background, and to make them
somewhat more critical of it. In many cases this background is still Pascal based; increasingly it is
tending to become C++ based. Both of these languages have become rather large and complex, and
I have found that many students have a very superficial idea of how they really fit together. After a
course such as this one, many of the pieces of the language jigsaw fit together rather better. 

When introducing the use of compiler writing tools, one might follow the many authors who
espouse the classic lex/yacc approach. However, there are now a number of excellent LL(1) based
tools, and these have the advantage that the code which is produced is close to that which might be
hand-crafted; at the same time, recursive descent parsing, besides being fairly intuitive, is powerful
enough to handle very usable languages. 

That the languages used in case studies and their translators are relative toys cannot be denied. The
Clang language of later chapters, for example, supports only integer variables and simple
one-dimensional arrays of these, and has concurrent features allowing little beyond the simulation
of some simple textbook examples. The text is not intended to be a comprehensive treatise on
systems programming in general, just on certain selected topics in that area, and so very little is said
about native machine code generation and optimization, linkers and loaders, the interaction and
relationship with an operating system, and so on. These decisions were all taken deliberately, to
keep the material readily understandable and as machine-independent as possible. The systems may
be toys, but they are very usable toys! Of course the book is then open to the criticism that many of
the more difficult topics in translation (such as code generation and optimization) are effectively
not covered at all, and that the student may be deluded into thinking that these areas do not exist.
This is not entirely true; the careful reader will find most of these topics mentioned somewhere. 

Good teachers will always want to put something of their own into a course, regardless of the
quality of the prescribed textbook. I have found that a useful (though at times highly dangerous)
technique is deliberately not to give the best solutions to a problem in a class discussion, with the



optimistic aim that students can be persuaded to "discover" them for themselves, and even gain a
sense of achievement in so doing. When applied to a book the technique is particularly dangerous,
but I have tried to exploit it on several occasions, even though it may give the impression that the
author is ignorant. 

Another dangerous strategy is to give too much away, especially in a book like this aimed at
courses where, so far as I am aware, the traditional approach requires that students make far more
of the design decisions for themselves than my approach seems to allow them. Many of the books
in the field do not show enough of how something is actually done: the bridge between what they
give and what the student is required to produce is in excess of what is reasonable for a course
which is only part of a general curriculum. I have tried to compensate by suggesting what I hope is
a very wide range of searching exercises. The solutions to some of these are well known, and
available in the literature. Again, the decision to omit explicit references was deliberate (perhaps
dangerously so). Teachers often have to find some way of persuading the students to search the
literature for themselves, and this is not done by simply opening the journal at the right page for
them. 

Acknowledgements 

I am conscious of my gratitude to many people for their help and inspiration while this book has
been developed. 

Like many others, I am grateful to Niklaus Wirth, whose programming languages and whose
writings on the subject of compiler construction and language design refute the modern trend
towards ever-increasing complexity in these areas, and serve as outstanding models of the way in
which progress should be made. 

This project could not have been completed without the help of Hanspeter Mössenböck (author of
the original Coco/R compiler generator) and Francisco Arzu (who ported it to C++), who not only
commented on parts of the text, but also willingly gave permission for their software to be
distributed with the book. My thanks are similarly due to Richard Cichelli for granting permission
to distribute (with the software for Chapter 14) a program based on one he wrote for computing
minimal perfect hash functions, and to Christopher Cockburn for permission to include his
description of tonic sol-fa (used in Chapter 13). 

I am grateful to Volker Pohlers for help with the port of Coco/R to Turbo Pascal, and to Dave
Gillespie for developing p2c , a most useful program for converting Modula-2 and Pascal code to
C/C++. 

I am deeply indebted to my colleagues Peter Clayton, George Wells and Peter Wentworth for many
hours of discussion and fruitful suggestions. John Washbrook carefully reviewed the manuscript,
and made many useful suggestions for its improvement. Shaun Bangay patiently provided
incomparable technical support in the installation and maintenance of my hardware and software,
and rescued me from more than one disaster when things went wrong. To Rhodes University I am
indebted for the use of computer facilities, and for granting me leave to complete the writing of the
book. And, of course, several generations of students have contributed in intangible ways by their
reaction to my courses. 

The development of the software in this book relied heavily on the use of electronic mail, and I am
grateful to Randy Bush, compiler writer and network guru extraordinaire, for his friendship, and for
his help in making the Internet a reality in developing countries in Africa and elsewhere. 



But, as always, the greatest debt is owed to my wife Sally and my children David and Helen, for
their love and support through the many hours when they must have wondered where my priorities
lay. 

Pat Terry
Rhodes University 
Grahamstown 

Trademarks 

Ada is a trademark of the US Department of Defense.
Apple II is a trademark of Apple Corporation.
Borland C++, Turbo C++, TurboPascal and Delphi are trademarks of Borland
International Corporation.
GNU C Compiler is a trademark of the Free Software Foundation.
IBM and IBM PC are trademarks of International Business Machines Corporation.
Intel is a registered trademark of Intel Corporation.
MC68000 and MC68020 are trademarks of Motorola Corporation.
MIPS is a trademark of MIPS computer systems.
Microsoft, MS and MS-DOS are registered trademarks and Windows is a trademark of
Microsoft Corporation.
SPARC is a trademark of Sun Microsystems.
Stony Brook Software and QuickMod are trademarks of Gogesch Micro Systems, Inc.
occam and Transputer are trademarks of Inmos.
UCSD Pascal and UCSD p-System are trademarks of the Regents of the University of
California.
UNIX is a registered trademark of AT&T Bell Laboratories.
Z80 is a trademark of Zilog Corporation.



COMPILERS AND COMPILER
GENERATORS 

an introduction with C++ 

© P.D. Terry, Rhodes University, 1996 

e-mail p.terry@ru.ac.za 

The Postscript ® edition of this book was derived from the on-line versions available at
http://www.scifac.ru.ac.za/compilers/, a WWW site that is occasionally updated, and which
contains the latest versions of the various editions of the book, with details of how to download
compressed versions of the text and its supporting software and courseware. 

The original edition of this book, published originally by International Thomson, is now out of
print, but has a home page at http://cs.ru.ac.za/homes/cspt/compbook.htm. In preparing the on-line
edition, the opportunity was taken to correct the few typographical mistakes that crept into the first
printing, and to create a few hyperlinks to where the source files can be found. 

Feel free to read and use this book for study or teaching, but please respect my copyright and do not
distribute it further without my consent. If you do make use of it I would appreciate hearing from
you. 

CONTENTS 

Preface 

Acknowledgements 

1 Introduction 

1.1 Objectives
1.2 Systems programs and translators
1.3 The relationship between high-level languages and translators

2 Translator classification and structure 

2.1 T-diagrams
2.2 Classes of translator
2.3 Phases in translation
2.4 Multi-stage translators
2.5 Interpreters, interpretive compilers, and emulators

3 Compiler construction and bootstrapping 

3.1 Using a high-level host language
3.2 Porting a high-level translator



3.3 Bootstrapping
3.4 Self-compiling compilers
3.5 The half bootstrap
3.6 Bootstrapping from a portable interpretive compiler
3.7 A P-code assembler

4 Machine emulation 

4.1 Simple machine architecture
4.2 Addressing modes
4.3 Case study 1 - a single-accumulator machine
4.4 Case study 2 - a stack-oriented computer

5 Language specification

5.1 Syntax, semantics, and pragmatics 
5.2 Languages, symbols, alphabets and strings 
5.3 Regular expressions 
5.4 Grammars and productions 
5.5 Classic BNF notation for productions 
5.6 Simple examples 
5.7 Phrase structure and lexical structure 
5.8 -productions 
5.9 Extensions to BNF 
5.10 Syntax diagrams 
5.11 Formal treatment of semantics 

6 Simple assemblers 

6.1 A simple ASSEMBLER language
6.2 One- and two-pass assemblers, and symbol tables
6.3 Towards the construction of an assembler
6.4 Two-pass assembly
6.5 One-pass assembly

7 Advanced assembler features 

7.1 Error detection
7.2 Simple expressions as addresses
7.3 Improved symbol table handling - hash tables
7.4 Macro-processing facilities
7.5 Conditional assembly
7.6 Relocatable code
7.7 Further projects

8 Grammars and their classification

8.1 Equivalent grammars 
8.2 Case study - equivalent grammars for describing expressions 
8.3 Some simple restrictions on grammars 



8.4 Ambiguous grammars 
8.5 Context sensitivity 
8.6 The Chomsky hierarchy 
8.7 Case study - Clang 

9 Deterministic top-down parsing 

9.1 Deterministic top-down parsing
9.2 Restrictions on grammars so as to allow LL(1) parsing
9.3 The effect of the LL(1) conditions on language design

10 Parser and scanner construction 

10.1 Construction of simple recursive descent parsers
10.2 Case studies
10.3 Syntax error detection and recovery
10.4 Construction of simple scanners
10.5 Case studies
10.6 LR parsing
10.7 Automated construction of scanners and parsers

11 Syntax-directed translation 

11.1 Embedding semantic actions into syntax rules
11.2 Attribute grammars
11.3 Synthesized and inherited attributes
11.4 Classes of attribute grammars
11.5 Case study - a small student database

12 Using Coco/R - overview 

12.1 Installing and running Coco/R
12.2 Case study - a simple adding machine
12.3 Scanner specification
12.4 Parser specification
12.5 The driver program

13 Using Coco/R - Case studies 

13.1 Case study - Understanding C declarations
13.2 Case study - Generating one-address code from expressions
13.3 Case study - Generating one-address code from an AST
13.4 Case study - How do parser generators work?
13.5 Project suggestions

14 A simple compiler - the front end 

14.1 Overall compiler structure
14.2 Source handling
14.3 Error reporting



14.4 Lexical analysis
14.5 Syntax analysis
14.6 Error handling and constraint analysis
14.7 The symbol table handler
14.8 Other aspects of symbol table management - further types

15 A simple compiler - the back end 

15.1 The code generation interface
15.2 Code generation for a simple stack machine
15.3 Other aspects of code generation

16 Simple block structure 

16.1 Parameterless procedures
16.2 Storage management

17 Parameters and functions 

17.1 Syntax and semantics
17.2 Symbol table support for context sensitive features
17.3 Actual parameters and stack frames
17.4 Hypothetical stack machine support for parameter passing
17.5 Context sensitivity and LL(1) conflict resolution
17.6 Semantic analysis and code generation
17.7 Language design issues

18 Concurrent programming 

18.1 Fundamental concepts
18.2 Parallel processes, exclusion and synchronization
18.3 A semaphore-based system - syntax, semantics, and code generation
18.4 Run-time implementation

Appendix A: Software resources for this book

Appendix B: Source code for the Clang compiler/interpreter

Appendix C: Cocol grammar for the Clang compiler/interpreter

Appendix D: Source code for a macro assembler

Bibliography 

Index



Compilers and Compiler Generators © P.D. Terry, 2000

1 INTRODUCTION 

1.1 Objectives 

The use of computer languages is an essential link in the chain between human and computer. In
this text we hope to make the reader more aware of some aspects of 

Imperative programming languages - their syntactic and semantic features; the ways of
specifying syntax and semantics; problem areas and ambiguities; the power and usefulness of
various features of a language. 

Translators for programming languages - the various classes of translator (assemblers,
compilers, interpreters); implementation of translators. 

Compiler generators - tools that are available to help automate the construction of translators
for programming languages. 

This book is a complete revision of an earlier one published by Addison-Wesley (Terry, 1986). It
has been written so as not to be too theoretical, but to relate easily to languages which the reader
already knows or can readily understand, like Pascal, Modula-2, C or C++. The reader is expected
to have a good background in one of those languages, access to a good implementation of it, and,
preferably, some background in assembly language programming and simple machine architecture.
We shall rely quite heavily on this background, especially on the understanding the reader should
have of the meaning of various programming constructs. 

Significant parts of the text concern themselves with case studies of actual translators for simple
languages. Other important parts of the text are to be found in the many exercises and suggestions
for further study and experimentation on the part of the reader. In short, the emphasis is on "doing"
rather than just "reading", and the reader who does not attempt the exercises will miss many, if not
most, of the finer points. 

The primary language used in the implementation of our case studies is C++ (Stroustrup, 1990).
Machine readable source code for all these case studies is to be found on the IBM-PC compatible
diskette that is included with the book. As well as C++ versions of this code, we have provided
equivalent source in Modula-2 and Turbo Pascal, two other languages that are eminently suitable
for use in a course of this nature. Indeed, for clarity, some of the discussion is presented in a
pseudo-code that often resembles Modula-2 rather more than it does C++. It is only fair to warn the
reader that the code extracts in the book are often just that - extracts - and that there are many
instances where identifiers are used whose meaning may not be immediately apparent from their
local context. The conscientious reader will have to expend some effort in browsing the code.
Complete source for an assembler and interpreter appears in the appendices, but the discussion
often revolves around simplified versions of these programs that are found in their entirety only on
the diskette. 



1.2 Systems programs and translators 

Users of modern computing systems can be divided into two broad categories. There are those who
never develop their own programs, but simply use ones developed by others. Then there are those
who are concerned as much with the development of programs as with their subsequent use. This
latter group - of whom we as computer scientists form a part - is fortunate in that program
development is usually aided by the use of high-level languages for expressing algorithms, the use
of interactive editors for program entry and modification, and the use of sophisticated job control
languages or graphical user interfaces for control of execution. Programmers armed with such tools
have a very different picture of computer systems from those who are presented with the hardware
alone, since the use of compilers, editors and operating systems - a class of tools known generally
as systems programs - removes from humans the burden of developing their systems at the
machine level. That is not to claim that the use of such tools removes all burdens, or all possibilities
for error, as the reader will be well aware. 

Well within living memory, much program development was done in machine language - indeed,
some of it, of necessity, still is - and perhaps some readers have even tried this for themselves when
experimenting with microprocessors. Just a brief exposure to programs written as almost
meaningless collections of binary or hexadecimal digits is usually enough to make one grateful for
the presence of high-level languages, clumsy and irritating though some of their features may be. 

However, in order for high-level languages to be usable, one must be able to convert programs
written in them into the binary or hexadecimal digits and bitstrings that a machine will understand.
At an early stage it was realized that if constraints were put on the syntax of a high-level language
the translation process became one that could be automated. This led to the development of
translators or compilers - programs which accept (as data) a textual representation of an algorithm
expressed in a source language, and which produce (as primary output) a representation of the
same algorithm expressed in another language, the object or target language. 

Beginners often fail to distinguish between the compilation (compile-time) and execution (run-time)
phases in developing and using programs written in high-level languages. This is an easy trap to fall
into, since the translation (compilation) is often hidden from sight, or invoked with a special
function key from within an integrated development environment that may possess many other
magic function keys. Furthermore, beginners are often taught programming with this distinction
deliberately blurred, their teachers offering explanations such as "when a computer executes a read
statement it reads a number from the input data into a variable". This hides several low-level
operations from the beginner. The underlying implications of file handling, character conversion,
and storage allocation are glibly ignored - as indeed is the necessity for the computer to be
programmed to understand the word read in the first place. Anyone who has attempted to program
input/output (I/O) operations directly in assembler languages will know that many of them are
non-trivial to implement. 

A translator, being a program in its own right, must itself be written in a computer language, known
as its host or implementation language. Today it is rare to find translators that have been
developed from scratch in machine language. Clearly the first translators had to be written in this
way, and at the outset of translator development for any new system one has to come to terms with
the machine language and machine architecture for that system. Even so, translators for new
machines are now invariably developed in high-level languages, often using the techniques of
cross-compilation and bootstrapping that will be discussed in more detail later. 

The first major translators written may well have been the Fortran compilers developed by Backus



and his colleagues at IBM in the 1950’s, although machine code development aids were in
existence by then. The first Fortran compiler is estimated to have taken about 18 person-years of
effort. It is interesting to note that one of the primary concerns of the team was to develop a system
that could produce object code whose efficiency of execution would compare favourably with that
which expert human machine coders could achieve. An automatic translation process can rarely
produce code as optimal as can be written by a really skilled user of machine language, and to this
day important components of systems are often developed at (or very near to) machine level, in the
interests of saving time or space. 

Translator programs themselves are never completely portable (although parts of them may be), and
they usually depend to some extent on other systems programs that the user has at his or her
disposal. In particular, input/output and file management on modern computer systems are usually
controlled by the operating system. This is a program or suite of programs and routines whose job
it is to control the execution of other programs so as best to share resources such as printers,
plotters, disk files and tapes, often making use of sophisticated techniques such as parallel
processing, multiprogramming and so on. For many years the development of operating systems
required the use of programming languages that remained closer to the machine code level than did
languages suitable for scientific or commercial programming. More recently a number of successful
higher level languages have been developed with the express purpose of catering for the design of
operating systems and real-time control. The most obvious example of such a language is C,
developed originally for the implementation of the UNIX operating system, and now widely used in
all areas of computing. 

1.3 The relationship between high-level languages and translators 

The reader will rapidly become aware that the design and implementation of translators is a subject
that may be developed from many possible angles and approaches. The same is true for the design
of programming languages. 

Computer languages are generally classed as being "high-level" (like Pascal, Fortran, Ada,
Modula-2, Oberon, C or C++) or "low-level" (like ASSEMBLER). High-level languages may
further be classified as "imperative" (like all of those just mentioned), or "functional" (like Lisp,
Scheme, ML, or Haskell), or "logic" (like Prolog). 

High-level languages are claimed to possess several advantages over low-level ones: 

Readability: A good high-level language will allow programs to be written that in some ways
resemble a quasi-English description of the underlying algorithms. If care is taken, the coding
may be done in a way that is essentially self-documenting, a highly desirable property when
one considers that many programs are written once, but possibly studied by humans many
times thereafter. 

Portability: High-level languages, being essentially machine independent, hold out the
promise of being used to develop portable software. This is software that can, in principle
(and even occasionally in practice), run unchanged on a variety of different machines -
provided only that the source code is recompiled as it moves from machine to machine. 

To achieve machine independence, high-level languages may deny access to low-level
features, and are sometimes spurned by programmers who have to develop low-level machine
dependent systems. However, some languages, like C and Modula-2, were specifically
designed to allow access to these features from within the context of high-level constructs. 



Structure and object orientation: There is general agreement that the structured programming
movement of the 1960’s and the object-oriented movement of the 1990’s have resulted in a
great improvement in the quality and reliability of code. High-level languages can be
designed so as to encourage or even subtly enforce these programming paradigms. 

Generality: Most high-level languages allow the writing of a wide variety of programs, thus
relieving the programmer of the need to become expert in many diverse languages. 

Brevity: Programs expressed in high-level languages are often considerably shorter (in terms
of their number of source lines) than their low-level equivalents. 

Error checking: Being human, a programmer is likely to make many mistakes in the
development of a computer program. Many high-level languages - or at least their
implementations - can, and often do, enforce a great deal of error checking both at
compile-time and at run-time. For this they are, of course, often criticized by programmers
who have to develop time-critical code, or who want their programs to abort as quickly as
possible. 

These advantages sometimes appear to be over-rated, or at any rate, hard to reconcile with reality.
For example, readability is usually within the confines of a rather stilted style, and some beginners
are disillusioned when they find just how unnatural a high-level language is. Similarly, the
generality of many languages is confined to relatively narrow areas, and programmers are often
dismayed when they find areas (like string handling in standard Pascal) which seem to be very
poorly handled. The explanation is often to be found in the close coupling between the development
of high-level languages and of their translators. When one examines successful languages, one finds
numerous examples of compromise, dictated largely by the need to accommodate language ideas to
rather uncompromising, if not unsuitable, machine architectures. To a lesser extent, compromise is
also dictated by the quirks of the interface to established operating systems on machines. Finally,
some appealing language features turn out to be either impossibly difficult to implement, or too
expensive to justify in terms of the machine resources needed. It may not immediately be apparent
that the design of Pascal (and of several of its successors such as Modula-2 and Oberon) was
governed partly by a desire to make it easy to compile. It is a tribute to its designer that, in spite of
the limitations which this desire naturally introduced, Pascal became so popular, the model for so
many other languages and extensions, and encouraged the development of superfast compilers such
as are found in Borland’s Turbo Pascal and Delphi systems. 

The design of a programming language requires a high degree of skill and judgement. There is
evidence to show that one’s language is not only useful for expressing one’s ideas. Because
language is also used to formulate and develop ideas, one’s knowledge of language largely
determines how and, indeed, what one can think. In the case of programming languages, there has
been much controversy over this. For example, in languages like Fortran - for long the lingua
franca of the scientific computing community - recursive algorithms were "difficult" to use (not
impossible, just difficult!), with the result that many programmers brought up on Fortran found
recursion strange and difficult, even something to be avoided at all costs. It is true that recursive
algorithms are sometimes "inefficient", and that compilers for languages which allow recursion
may exacerbate this; on the other hand it is also true that some algorithms are more simply
explained in a recursive way than in one which depends on explicit repetition (the best examples
probably being those associated with tree manipulation). 

There are two divergent schools of thought as to how programming languages should be designed.
The one, typified by the Wirth school, stresses that languages should be small and understandable,



and that much time should be spent in consideration of what tempting features might be omitted
without crippling the language as a vehicle for system development. The other, beloved of
languages designed by committees with the desire to please everyone, packs a language full of
every conceivable potentially useful feature. Both schools claim success. The Wirth school has
given us Pascal, Modula-2 and Oberon, all of which have had an enormous effect on the thinking of
computer scientists. The other approach has given us Ada, C and C++, which are far more difficult
to master well and extremely complicated to implement correctly, but which claim spectacular
successes in the marketplace. 

Other aspects of language design that contribute to success include the following: 

Orthogonality: Good languages tend to have a small number of well thought out features that
can be combined in a logical way to supply more powerful building blocks. Ideally these
features should not interfere with one another, and should not be hedged about by a host of
inconsistencies, exceptional cases and arbitrary restrictions. Most languages have blemishes -
for example, in Wirth’s original Pascal a function could only return a scalar value, not one of
any structured type. Many potentially attractive extensions to well-established languages
prove to be extremely vulnerable to unfortunate oversights in this regard. 

Familiar notation: Most computers are "binary" in nature. Blessed with ten toes on which to
check out their number-crunching programs, humans may be somewhat relieved that
high-level languages usually make decimal arithmetic the rule, rather than the exception, and
provide for mathematical operations in a notation consistent with standard mathematics.
When new languages are proposed, these often take the form of derivatives or dialects of
well-established ones, so that programmers can be tempted to migrate to the new language
and still feel largely at home - this was the route taken in developing C++ from C, Java from
C++, and Oberon from Modula-2, for example. 

Besides meeting the ones mentioned above, a successful modern high-level language will have
been designed to meet the following additional criteria: 

Clearly defined: It must be clearly described, for the benefit of both the user and the compiler
writer. 

Quickly translated: It should admit quick translation, so that program development time when
using the language is not excessive. 

Modularity: It is desirable that programs can be developed in the language as a collection of
separately compiled modules, with appropriate mechanisms for ensuring self-consistency
between these modules. 

Efficient: It should permit the generation of efficient object code. 

Widely available: It should be possible to provide translators for all the major machines and
for all the major operating systems. 

The importance of a clear language description or specification cannot be over-emphasized. This
must apply, firstly, to the so-called syntax of the language - that is, it must specify accurately what
form a source program may assume. It must apply, secondly, to the so-called static semantics of
the language - for example, it must be clear what constraints must be placed on the use of entities of
differing types, or the scope that various identifiers have across the program text. Finally, the



specification must also apply to the dynamic semantics of programs that satisfy the syntactic and
static semantic rules - that is, it must be capable of predicting the effect any program expressed in
that language will have when it is executed. 

Programming language description is extremely difficult to do accurately, especially if it is
attempted through the medium of potentially confusing languages like English. There is an
increasing trend towards the use of formalism for this purpose, some of which will be illustrated in
later chapters. Formal methods have the advantage of precision, since they make use of the clearly
defined notations of mathematics. To offset this, they may be somewhat daunting to programmers
weak in mathematics, and do not necessarily have the advantage of being very concise - for
example, the informal description of Modula-2 (albeit slightly ambiguous in places) took only some
35 pages (Wirth, 1985), while a formal description prepared by an ISO committee runs to over 700
pages. 

Formal specifications have the added advantage that, in principle, and to a growing degree in
practice, they may be used to help automate the implementation of translators for the language.
Indeed, it is increasingly rare to find modern compilers that have been implemented without the
help of so-called compiler generators. These are programs that take a formal description of the
syntax and semantics of a programming language as input, and produce major parts of a compiler
for that language as output. We shall illustrate the use of compiler generators at appropriate points
in our discussion, although we shall also show how compilers may be crafted by hand. 

Exercises 

1.1 Make a list of as many translators as you can think of that can be found on your computer
system. 

1.2 Make a list of as many other systems programs (and their functions) as you can think of that can
be found on your computer system. 

1.3 Make a list of existing features in your favourite (or least favourite) programming language that
you find irksome. Make a similar list of features that you would like to have seen added. Then
examine your lists and consider which of the features are probably related to the difficulty of
implementation. 

Further reading 

As we proceed, we hope to make the reader more aware of some of the points raised in this section.
Language design is a difficult area, and much has been, and continues to be, written on the topic.
The reader might like to refer to the books by Tremblay and Sorenson (1985), Watson (1989), and
Watt (1991) for readable summaries of the subject, and to the papers by Wirth (1974, 1976a,
1988a), Kernighan (1981), Welsh, Sneeringer and Hoare (1977), and Cailliau (1982). Interesting
background on several well-known languages can be found in ACM SIGPLAN Notices for August
1978 and March 1993 (Lee and Sammet, 1978, 1993), two special issues of that journal devoted to
the history of programming language development. Stroustrup (1993) gives a fascinating exposition
of the development of C++, arguably the most widely used language at the present time. The terms
"static semantics" and "dynamic semantics" are not used by all authors; for a discussion on this
point see the paper by Meek (1990). 
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2 TRANSLATOR CLASSIFICATION AND STRUCTURE 

In this chapter we provide the reader with an overview of the inner structure of translators, and
some idea of how they are classified. 

A translator may formally be defined as a function, whose domain is a source language, and whose
range is contained in an object or target language. 

A little experience with translators will reveal that it is rarely considered part of the translator’s
function to execute the algorithm expressed by the source, merely to change its representation from
one form to another. In fact, at least three languages are involved in the development of translators:
the source language to be translated, the object or target language to be generated, and the host
language to be used for implementing the translator. If the translation takes place in several stages,
there may even be other, intermediate, languages. Most of these - and, indeed, the host language
and object languages themselves - usually remain hidden from a user of the source language. 

2.1 T-diagrams 

A useful notation for describing a computer program, particularly a translator, uses so-called
T-diagrams, examples of which are shown in Figure 2.1. 

We shall use the notation "M-code" to stand for "machine code" in these diagrams. Translation
itself is represented by standing the T on a machine, and placing the source program and object
program on the left and right arms, as depicted in Figure 2.2. 



We can also regard this particular combination as depicting an abstract machine (sometimes called
a virtual machine), whose aim in life is to convert Turbo Pascal source programs into their 8086
machine code equivalents. 

T-diagrams were first introduced by Bratman (1961). They were further refined by Earley and
Sturgis (1970), and are also used in the books by Bennett (1990), Watt (1993), and Aho, Sethi and
Ullman (1986). 

2.2 Classes of translator 

It is common to distinguish between several well-established classes of translator: 

The term assembler is usually associated with those translators that map low-level language
instructions into machine code which can then be executed directly. Individual source
language statements usually map one-for-one to machine-level instructions. 

The term macro-assembler is also associated with those translators that map low-level
language instructions into machine code, and is a variation on the above. Most source
language statements map one- for-one into their target language equivalents, but some macro
statements map into a sequence of machine- level instructions - effectively providing a text
replacement facility, and thereby extending the assembly language to suit the user. (This is
not to be confused with the use of procedures or other subprograms to "extend" high-level
languages, because the method of implementation is usually very different.) 

The term compiler is usually associated with those translators that map high-level language
instructions into machine code which can then be executed directly. Individual source
language statements usually map into many machine-level instructions. 

The term pre-processor is usually associated with those translators that map a superset of a
high-level language into the original high-level language, or that perform simple text
substitutions before translation takes place. The best-known pre-processor is probably that
which forms an integral part of implementations of the language C, and which provides many
of the features that contribute to the widely- held perception that C is the only really portable
language. 

The term high-level translator is often associated with those translators that map one
high-level language into another high-level language - usually one for which sophisticated
compilers already exist on a range of machines. Such translators are particularly useful as
components of a two-stage compiling system, or in assisting with the bootstrapping
techniques to be discussed shortly. 



The terms decompiler and disassembler refer to translators which attempt to take object
code at a low level and regenerate source code at a higher level. While this can be done quite
successfully for the production of assembler level code, it is much more difficult when one
tries to recreate source code originally written in, say, Pascal. 

Many translators generate code for their host machines. These are called self-resident translators.
Others, known as cross-translators, generate code for machines other than the host machine.
Cross-translators are often used in connection with microcomputers, especially in embedded
systems, which may themselves be too small to allow self-resident translators to operate
satisfactorily. Of course, cross-translation introduces additional problems in connection with
transferring the object code from the donor machine to the machine that is to execute the translated
program, and can lead to delays and frustration in program development. 

The output of some translators is absolute machine code, left loaded at fixed locations in a machine
ready for immediate execution. Other translators, known as load-and-go translators, may even
initiate execution of this code. However, a great many translators do not produce fixed-address
machine code. Rather, they produce something closely akin to it, known as semicompiled or
binary symbolic or relocatable form. A frequent use for this is in the development of composite
libraries of special purpose routines, possibly originating from a mixture of source languages.
Routines compiled in this way are linked together by programs called linkage editors or linkers,
which may be regarded almost as providing the final stage for a multi-stage translator. Languages
that encourage the separate compilation of parts of a program - like Modula-2 and C++ - depend
critically on the existence of such linkers, as the reader is doubtless aware. For developing really
large software projects such systems are invaluable, although for the sort of "throw away" programs
on which most students cut their teeth, they can initially appear to be a nuisance, because of the
overheads of managing several files, and of the time taken to link their contents together. 

T-diagrams can be combined to show the interdependence of translators, loaders and so on. For
example, the FST Modula-2 system makes use of a compiler and linker as shown in Figure 2.3. 

Exercises 

2.1 Make a list of as many translators as you can think of that can be found on your system. 

2.2 Which of the translators known to you are of the load-and-go type? 

2.3 Do you know whether any of the translators you use produce relocatable code? Is this of a
standard form? Do you know the names of the linkage editors or loaders used on your system? 



2.4 Are there any pre-processors on your system? What are they used for? 

2.3 Phases in translation 

Translators are highly complex programs, and it is unreasonable to consider the translation process
as occurring in a single step. It is usual to regard it as divided into a series of phases. The simplest
breakdown recognizes that there is an analytic phase, in which the source program is analysed to
determine whether it meets the syntactic and static semantic constraints imposed by the language.
This is followed by a synthetic phase in which the corresponding object code is generated in the
target language. The components of the translator that handle these two major phases are said to
comprise the front end and the back end of the compiler. The front end is largely independent of
the target machine, the back end depends very heavily on the target machine. Within this structure
we can recognize smaller components or phases, as shown in Figure 2.4. 

The character handler is the section that communicates with the outside world, through the
operating system, to read in the characters that make up the source text. As character sets and file
handling vary from system to system, this phase is often machine or operating system dependent. 

The lexical analyser or scanner is the section that fuses characters of the source text into groups
that logically make up the tokens of the language - symbols like identifiers, strings, numeric
constants, keywords like while  and if , operators like <=, and so on. Some of these symbols are
very simply represented on the output from the scanner, some need to be associated with various
properties such as their names or values. 

Lexical analysis is sometimes easy, and at other times not. For example, the Modula-2 statement 

                   WHILE A > 3 * B DO A := A - 1 END

easily decodes into tokens 

           WHILE        keyword 
           A            identifier               name A 



           >            operator                 comparison 
           3            constant literal         value 3 
           *            operator                 multiplication 
           B            identifier               name B 
           DO           keyword 
           A            identifier               name A 
           :=           operator                 assignment 
           A            identifier               name A 
           -            operator                 subtraction 
           1            constant literal         value 1 
           END          keyword 

as we read it from left to right, but the Fortran statement 

                   10      DO 20 I = 1 . 30

is more deceptive. Readers familiar with Fortran might see it as decoding into 

           10           label 
           DO           keyword 
           20           statement label 
           I            INTEGER identifier 
           =            assignment operator 
           1            INTEGER constant literal 
           ,            separator 
           30           INTEGER constant literal 

while those who enjoy perversity might like to see it as it really is: 

           10           label 
           DO20I        REAL identifier 
           =            assignment operator 
           1.30         REAL constant literal 

One has to look quite hard to distinguish the period from the "expected" comma. (Spaces are
irrelevant in Fortran; one would, of course be perverse to use identifiers with unnecessary and
highly suggestive spaces in them.) While languages like Pascal, Modula-2 and C++ have been
cleverly designed so that lexical analysis can be clearly separated from the rest of the analysis, the
same is obviously not true of Fortran and other languages that do not have reserved keywords. 

The syntax analyser or parser groups the tokens produced by the scanner into syntactic structures
- which it does by parsing expressions and statements. (This is analogous to a human analysing a
sentence to find components like "subject", "object" and "dependent clauses"). Often the parser is
combined with the contextual constraint analyser, whose job it is to determine that the
components of the syntactic structures satisfy such things as scope rules and type rules within the
context of the structure being analysed. For example, in Modula-2 the syntax of a while statement is
sometimes described as 

                   WHILE  Expression  DO  StatementSequence  END

It is reasonable to think of a statement in the above form with any type of Expression as being
syntactically correct, but as being devoid of real meaning unless the value of the Expression is
constrained (in this context) to be of the Boolean type. No program really has any meaning until it
is executed dynamically. However, it is possible with strongly typed languages to predict at
compile-time that some source programs can have no sensible meaning (that is, statically, before an
attempt is made to execute the program dynamically). Semantics is a term used to describe
"meaning", and so the constraint analyser is often called the static semantic analyser, or simply
the semantic analyser. 

The output of the syntax analyser and semantic analyser phases is sometimes expressed in the form
of a decorated abstract syntax tree (AST). This is a very useful representation, as it can be used in
clever ways to optimize code generation at a later stage. 



Whereas the concrete syntax of many programming languages incorporates many keywords and
tokens, the abstract syntax is rather simpler, retaining only those components of the language
needed to capture the real content and (ultimately) meaning of the program. For example, whereas
the concrete syntax of a while statement requires the presence of WHILE, DO and END as shown
above, the essential components of the while statement are simply the (Boolean) Expression and the
statements comprising the StatementSequence. 

Thus the Modula-2 statement 

                   WHILE  (1 < P)  AND  (P < 9)  DO  P := P + Q  END

or its C++ equivalent 

                   while  (1 < P && P < 9)  P = P + Q;

are both depicted by the common AST shown in Figure 2.5. 

An abstract syntax tree on its own is devoid of some semantic detail; the semantic analyser has the
task of adding "type" and other contextual information to the various nodes (hence the term
"decorated" tree). 

Sometimes, as for example in the case of most Pascal compilers, the construction of such a tree is
not explicit, but remains implicit in the recursive calls to procedures that perform the syntax and
semantic analysis. 

Of course, it is also possible to construct concrete syntax trees. The Modula-2 form of the statement

                   WHILE  (1 < P)  AND  (P < 9)  DO  P := P + Q  END

could be depicted in full and tedious detail by the tree shown in Figure 2.6. The reader may have to
make reference to Modula-2 syntax diagrams and the knowledge of Modula-2 precedence rules to
understand why the tree looks so complicated. 



The phases just discussed are all analytic in nature. The ones that follow are more synthetic. The
first of these might be an intermediate code generator, which, in practice, may also be integrated
with earlier phases, or omitted altogether in the case of some very simple translators. It uses the
data structures produced by the earlier phases to generate a form of code, perhaps in the form of
simple code skeletons or macros, or ASSEMBLER or even high-level code for processing by an
external assembler or separate compiler. The major difference between intermediate code and
actual machine code is that intermediate code need not specify in detail such things as the exact
machine registers to be used, the exact addresses to be referred to, and so on. 

Our example statement 

                   WHILE  (1 < P)  AND  (P < 9)  DO   P := P + Q  END

might produce intermediate code equivalent to 

                 L0      if 1 < P goto L1
                         goto L3
                 L1      if P < 9 goto L2
                         goto L3
                 L2      P := P + Q
                         goto L0
                 L3      continue

Then again, it might produce something like 

                 L0      T1 := 1 < P
                         T2 := P < 9
                         if T1 and T2 goto L1
                         goto L2
                 L1      P := P + Q
                         goto L0
                 L2      continue

depending on whether the implementors of the translator use the so-called sequential conjunction or
short-circuit approach to handling compound Boolean expressions (as in the first case) or the
so-called Boolean operator approach. The reader will recall that Modula-2 and C++ require the
short-circuit approach. However, the very similar language Pascal did not specify that one approach



be preferred above the other. 

A code optimizer may optionally be provided, in an attempt to improve the intermediate code in
the interests of speed or space or both. To use the same example as before, obvious optimization
would lead to code equivalent to 

                 L0      if 1 >= P goto L1
                         if P >= 9 goto L1
                         P := P + Q
                         goto L0
                 L1      continue

The most important phase in the back end is the responsibility of the code generator. In a real
compiler this phase takes the output from the previous phase and produces the object code, by
deciding on the memory locations for data, generating code to access such locations, selecting
registers for intermediate calculations and indexing, and so on. Clearly this is a phase which calls
for much skill and attention to detail, if the finished product is to be at all efficient. Some translators
go on to a further phase by incorporating a so-called peephole optimizer in which attempts are
made to reduce unnecessary operations still further by examining short sequences of generated code
in closer detail. 

Below we list the actual code generated by various MS-DOS compilers for this statement. It is
readily apparent that the code generation phases in these compilers are markedly different. Such
differences can have a profound effect on program size and execution speed. 

 Borland C++ 3.1 (47 bytes)                 Turbo Pascal (46 bytes)
                                            (with no short circuit evaluation)

 CS:A0 BBB702     MOV  BX,02B7              CS:09 833E3E0009 CMP  WORD PTR[003E],9
 CS:A3 C746FE5100 MOV  WORD PTR[BP-2],0051  CS:0E 7C04       JL   14
 CS:A8 EB07       JMP  B1                   CS:10 B000       MOV  AL,0
 CS:AA 8BC3       MOV  AX,BX                CS:12 EB02       JMP  16
 CS:AC 0346FE     ADD  AX,[BP-2]            CS:14 B001       MOV  AL,1
 CS:AF 8BD8       MOV  BX,AX                CS:16 8AD0       MOV  DL,AL
 CS:B1 83FB01     CMP  BX,1                 CS:18 833E3E0001 CMP  WORD PTR[003E],1
 CS:B4 7E05       JLE  BB                   CS:1D 7F04       JG   23
 CS:B6 B80100     MOV  AX,1                 CS:1F B000       MOV  AL,0
 CS:B9 EB02       JMP  BD                   CS:21 EB02       JMP  25
 CS:BB 33C0       XOR  AX,AX                CS:23 B001       MOV  AL,01
 CS:BD 50         PUSH AX                   CS:25 22C2       AND  AL,DL
 CS:BE 83FB09     CMP  BX,9                 CS:27 08C0       OR   AL,AL
 CS:C1 7D05       JGE  C8                   CS:29 740C       JZ   37
 CS:C3 B80100     MOV  AX,1                 CS:2B A13E00     MOV  AX,[003E]
 CS:C6 EB02       JMP  CA                   CS:2E 03064000   ADD  AX,[0040]
 CS:C8 33C0       XOR  AX,AX                CS:32 A33E00     MOV  [003E],AX
 CS:CA 5A         POP  DX                   CS:35 EBD2       JMP  9
 CS:CB 85D0       TEST DX,AX
 CS:CD 75DB       JNZ  AA

 JPI TopSpeed Modula-2 (29 bytes)           Stony Brook QuickMod (24 bytes)

 CS:19 2E         CS:                       CS:69 BB2D00     MOV  BX,2D
 CS:1A 8E1E2700   MOV  DS,[0027]            CS:6C B90200     MOV  CX,2
 CS:1E 833E000001 CMP  WORD PTR[0000],1     CS:6F E90200     JMP  74
 CS:23 7E11       JLE  36                   CS:72 01D9       ADD  CX,BX
 CS:25 833E000009 CMP  WORD PTR[0000],9     CS:74 83F901     CMP  CX,1
 CS:2A 7D0A       JGE  36                   CS:77 7F03       JG   7C
 CS:2C 8B0E0200   MOV  CX,[0002]            CS:79 E90500     JMP  81
 CS:30 010E0000   ADD  [0000],CX            CS:7C 83F909     CMP  CX,9
 CS:34 EBE3       JMP  19                   CS:7F 7CF1       JL   72

A translator inevitably makes use of a complex data structure, known as the symbol table, in which
it keeps track of the names used by the program, and associated properties for these, such as their
type, and their storage requirements (in the case of variables), or their values (in the case of
constants). 



As is well known, users of high-level languages are apt to make many errors in the development of
even quite simple programs. Thus the various phases of a compiler, especially the earlier ones, also
communicate with an error handler and error reporter which are invoked when errors are
detected. It is desirable that compilation of erroneous programs be continued, if possible, so that the
user can clean several errors out of the source before recompiling. This raises very interesting
issues regarding the design of error recovery and error correction techniques. (We speak of error
recovery when the translation process attempts to carry on after detecting an error, and of error
correction or error repair when it attempts to correct the error from context - usually a contentious
subject, as the correction may be nothing like what the programmer originally had in mind.) 

Error detection at compile-time in the source code must not be confused with error detection at
run-time when executing the object code. Many code generators are responsible for adding
error-checking code to the object program (to check that subscripts for arrays stay in bounds, for
example). This may be quite rudimentary, or it may involve adding considerable code and data
structures for use with sophisticated debugging systems. Such ancillary code can drastically reduce
the efficiency of a program, and some compilers allow it to be suppressed. 

Sometimes mistakes in a program that are detected at compile-time are known as errors, and errors
that show up at run-time are known as exceptions, but there is no universally agreed terminology
for this. 

Figure 2.4 seems to imply that compilers work serially, and that each phase communicates with the
next by means of a suitable intermediate language, but in practice the distinction between the
various phases often becomes a little blurred. Moreover, many compilers are actually constructed
around a central parser as the dominant component, with a structure rather more like the one in
Figure 2.7. 

Exercises 

2.5 What sort of problems can you foresee a Fortran compiler having in analysing statements
beginning 

                       IF ( I(J) - I(K) ) ........
                       CALL IF (4 ,    ...........
                       IF (3 .EQ. MAX) GOTO ......
                 100   FORMAT(X3H)=(I5)

2.6 What sort of code would you have produced had you been coding a statement like "WHILE (1 <



P) AND (P < 9) DO P := P + Q END " into your favourite ASSEMBLER language? 

2.7 Draw the concrete syntax tree for the C++ version of the while statement used for illustration in
this section. 

2.8 Are there any reasons why short-circuit evaluation should be preferred over the Boolean
operator approach? Can you think of any algorithms that would depend critically on which
approach was adopted? 

2.9 Write down a few other high-level constructs and try to imagine what sort of
ASSEMBLER-like machine code a compiler would produce for them. 

2.10 What do you suppose makes it relatively easy to compile Pascal? Can you think of any aspects
of Pascal which could prove really difficult? 

2.11 We have used two undefined terms which at first seem interchangeable, namely "separate" and
"independent" compilation. See if you can discover what the differences are. 

2.12 Many development systems - in particular debuggers - allow a user to examine the object code
produced by a compiler. If you have access to one of these, try writing a few very simple (single
statement) programs, and look at the sort of object code that is generated for them. 

2.4 Multi-stage translators 

Besides being conceptually divided into phases, translators are often divided into passes, in each of
which several phases may be combined or interleaved. Traditionally, a pass reads the source
program, or output from a previous pass, makes some transformations, and then writes output to an
intermediate file, whence it may be rescanned on a subsequent pass. 

These passes may be handled by different integrated parts of a single compiler, or they may be
handled by running two or more separate programs. They may communicate by using their own
specialized forms of intermediate language, they may communicate by making use of internal data
structures (rather than files), or they may make several passes over the same original source code. 

The number of passes used depends on a variety of factors. Certain languages require at least two
passes to be made if code is to be generated easily - for example, those where declaration of
identifiers may occur after the first reference to the identifier, or where properties associated with
an identifier cannot be readily deduced from the context in which it first appears. A multi-pass
compiler can often save space. Although modern computers are usually blessed with far more
memory than their predecessors of only a few years back, multiple passes may be an important
consideration if one wishes to translate complicated languages within the confines of small systems.
Multi-pass compilers may also allow for better provision of code optimization, error reporting and
error handling. Lastly, they lend themselves to team development, with different members of the
team assuming responsibility for different passes. However, multi-pass compilers are usually
slower than single-pass ones, and their probable need to keep track of several files makes them
slightly awkward to write and to use. Compromises at the design stage often result in languages that
are well suited to single-pass compilation. 

In practice, considerable use is made of two-stage translators in which the first stage is a high-level



translator that converts the source program into ASSEMBLER, or even into some other relatively
high-level language for which an efficient translator already exists. The compilation process would
then be depicted as in Figure 2.8 - our example shows a Modula-3 program being prepared for
execution on a machine that has a Modula-3 to C converter: 

It is increasingly common to find compilers for high-level languages that have been implemented
using C, and which themselves produce C code as output. The success of these is based on the
premises that "all modern computers come equipped with a C compiler" and "source code written in
C is truly portable". Neither premise is, unfortunately, completely true. However, compilers written
in this way are as close to achieving the dream of themselves being portable as any that exist at the
present time. The way in which such compilers may be used is discussed further in Chapter 3. 

Exercises 

2.13 Try to find out which of the compilers you have used are single-pass, and which are
multi-pass, and for the latter, find out how many passes are involved. Which produce relocatable
code needing further processing by linkers or linkage editors? 

2.14 Do any of the compilers in use on your system produce ASSEMBLER, C or other such code
during the compilation process? Can you foresee any particular problems that users might
experience in using such compilers? 

2.15 One of several compilers that translates from Modula-2 to C is called mtc , and is freely
available from several ftp sites. If you are a Modula-2 programmer, obtain a copy, and experiment
with it. 

2.16 An excellent compiler that translates Pascal to C is called p2c , and is widely available for Unix
systems from several ftp sites. If you are a Pascal programmer, obtain a copy, and experiment with
it. 

2.17 Can you foresee any practical difficulties in using C as an intermediate language? 

2.5 Interpreters, interpretive compilers, and emulators 

Compilers of the sort that we have been discussing have a few properties that may not immediately
be apparent. Firstly, they usually aim to produce object code that can run at the full speed of the
target machine. Secondly, they are usually arranged to compile an entire section of code before any
of it can be executed. 



In some interactive environments the need arises for systems that can execute part of an application
without preparing all of it, or ones that allow the user to vary his or her course of action on the fly.
Typical scenarios involve the use of spreadsheets, on-line databases, or batch files or shell scripts
for operating systems. With such systems it may be feasible (or even desirable) to exchange some
of the advantages of speed of execution for the advantage of procuring results on demand. 

Systems like these are often constructed so as to make use of an interpreter. An interpreter is a
translator that effectively accepts a source program and executes it directly, without, seemingly,
producing any object code first. It does this by fetching the source program instructions one by one,
analysing them one by one, and then "executing" them one by one. Clearly, a scheme like this, if it
is to be successful, places some quite severe constraints on the nature of the source program.
Complex program structures such as nested procedures or compound statements do not lend
themselves easily to such treatment. On the other hand, one-line queries made of a data base, or
simple manipulations of a row or column of a spreadsheet, can be handled very effectively. 

This idea is taken quite a lot further in the development of some translators for high-level
languages, known as interpretive compilers. Such translators produce (as output) intermediate
code which is intrinsically simple enough to satisfy the constraints imposed by a practical
interpreter, even though it may still be quite a long way from the machine code of the system on
which it is desired to execute the original program. Rather than continue translation to the level of
machine code, an alternative approach that may perform acceptably well is to use the intermediate
code as part of the input to a specially written interpreter. This in turn "executes" the original
algorithm, by simulating a virtual machine for which the intermediate code effectively is the
machine code. The distinction between the machine code and pseudo-code approaches to execution
is summarized in Figure 2.9. 

We may depict the process used in an interpretive compiler running under MS-DOS for a toy
language like Clang, the one illustrated in later chapters, in T-diagram form (see Figure 2.10). 

It is not necessary to confine interpreters merely to work with intermediate output from a translator.
More generally, of course, even a real machine can be viewed as a highly specialized interpreter -
one that executes the machine level instructions by fetching, analysing, and then interpreting them
one by one. In a real machine this all happens "in hardware", and hence very quickly. By carrying
on this train of thought, the reader should be able to see that a program could be written to allow
one real machine to emulate any other real machine, albeit perhaps slowly, simply by writing an
interpreter - or, as it is more usually called, an emulator - for the second machine. 



For example, we might develop an emulator that runs on a Sun SPARC machine and makes it
appear to be an IBM PC (or the other way around). Once we have done this, we are (in principle) in
a position to execute any software developed for an IBM PC on the Sun SPARC machine -
effectively the PC software becomes portable! 

The T-diagram notation is easily extended to handle the concept of such virtual machines. For
example, running Turbo Pascal on our Sun SPARC machine could be depicted by Figure 2.11. 

The interpreter/emulator approach is widely used in the design and development both of new
machines themselves, and the software that is to run on those machines. 

An interpretive approach may have several points in its favour: 

It is far easier to generate hypothetical machine code (which can be tailored towards the
quirks of the original source language) than real machine code (which has to deal with the
uncompromising quirks of real machines). 

A compiler written to produce (as output) well-defined pseudo-machine code capable of easy
interpretation on a range of machines can be made highly portable, especially if it is written in
a host language that is widely available (such as ANSI C), or even if it is made available
already implemented in its own pseudo- code. 

It can more easily be made "user friendly" than can the native code approach. Since the
interpreter works closer to the source code than does a fully translated program, error
messages and other debugging aids may readily be related to this source. 

A whole range of languages may quickly be implemented in a useful form on a wide range of
different machines relatively easily. This is done by producing intermediate code to a
well-defined standard, for which a relatively efficient interpreter should be easy to implement
on any particular real machine. 

It proves to be useful in connection with cross-translators such as were mentioned earlier. The
code produced by such translators can sometimes be tested more effectively by simulated
execution on the donor machine, rather than after transfer to the target machine - the delays
inherent in the transfer from one machine to the other may be balanced by the degradation of
execution time in an interpretive simulation. 

Lastly, intermediate languages are often very compact, allowing large programs to be
handled, even on relatively small machines. The success of the once very widely used UCSD
Pascal and UCSD p-System stands as an example of what can be done in this respect. 



For all these advantages, interpretive systems carry fairly obvious overheads in execution speed,
because execution of intermediate code effectively carries with it the cost of virtual translation into
machine code each time a hypothetical machine instruction is obeyed. 

One of the best known of the early portable interpretive compilers was the one developed at
Zürich and known as the "Pascal-P" compiler (Nori et al., 1981). This was supplied in a kit of three
components: 

The first component was the source form of a Pascal compiler, written in a very complete
subset of the language, known as Pascal-P. The aim of this compiler was to translate Pascal-P
source programs into a well-defined and well-documented intermediate language, known as
P-code, which was the "machine code" for a hypothetical stack-based computer, known as the
P-machine. 

The second component was a compiled version of the first - the P-codes that would be
produced by the Pascal-P compiler, were it to compile itself. 

Lastly, the kit contained an interpreter for the P-code language, supplied as a Pascal
algorithm. 

The interpreter served primarily as a model for writing a similar program for the target machine, to
allow it to emulate the hypothetical P-machine. As we shall see in a later chapter, emulators are
relatively easy to develop - even, if necessary, in ASSEMBLER - so that this stage was usually
fairly painlessly achieved. Once one had loaded the interpreter - that is to say, the version of it
tailored to a local real machine - into a real machine, one was in a position to "execute" P-code, and
in particular the P-code of the P-compiler. The compilation and execution of a user program could
then be achieved in a manner depicted in Figure 2.12. 

Exercises 

2.18 Try to find out which of the translators you have used are interpreters, rather than full
compilers. 

2.19 If you have access to both a native-code compiler and an interpreter for a programming
language known to you, attempt to measure the loss in efficiency when the interpreter is used to run
a large program (perhaps one that does substantial number-crunching). 
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3 COMPILER CONSTRUCTION AND BOOTSTRAPPING 

By now the reader may have realized that developing translators is a decidedly non-trivial exercise.
If one is faced with the task of writing a full-blown translator for a fairly complex source language,
or an emulator for a new virtual machine, or an interpreter for a low-level intermediate language,
one would probably prefer not to implement it all in machine code. 

Fortunately one rarely has to contemplate such a radical step. Translator systems are now widely
available and well understood. A fairly obvious strategy when a translator is required for an old
language on a new machine, or a new language on an old machine (or even a new language on a
new machine), is to make use of existing compilers on either machine, and to do the development in
a high level language. This chapter provides a few examples that should make this clearer. 

3.1 Using a high-level host language 

If, as is increasingly common, one’s dream machine M is supplied with the machine coded version
of a compiler for a well-established language like C, then the production of a compiler for one’s
dream language X is achievable by writing the new compiler, say XtoM, in C and compiling the
source (XtoM.C) with the C compiler (CtoM.M) running directly on M (see Figure 3.1). This
produces the object version (XtoM.M) which can then be executed on M. 

Even though development in C is much easier than development in machine code, the process is
still complex. As was mentioned earlier, it may be possible to develop a large part of the compiler
source using compiler generator tools - assuming, of course, that these are already available either
in executable form, or as C source that can itself be compiled easily. The hardest part of the
development is probably that associated with the back end, since this is intensely machine
dependent. If one has access to the source code of a compiler like CtoM one may be able to use this
to good avail. Although commercial compilers are rarely released in source form, source code is
available for many compilers produced at academic institutions or as components of the GNU
project carried out under the auspices of the Free Software Foundation. 

3.2 Porting a high level translator 

The process of modifying an existing compiler to work on a new machine is often known as



porting the compiler. In some cases this process may be almost trivially easy. Consider, for
example, the fairly common scenario where a compiler XtoC for a popular language X has been
implemented in C on machine A by writing a high-level translator to convert programs written in X
to C, and where it is desired to use language X on a machine M that, like A, has already been
blessed with a C compiler of its own. To construct a two-stage compiler for use on either machine,
all one needs to do, in principle, is to install the source code for XtoC on machine M and recompile
it. 

Such an operation is conveniently represented in terms of T-diagrams chained together. Figure
3.2(a) shows the compilation of the X to C compiler, and Figure 3.2(b) shows the two-stage
compilation process needed to compile programs written in X to M-code. 

The portability of a compiler like XtoC.C is almost guaranteed, provided that it is itself written in
"portable" C. Unfortunately, or as Mr. Murphy would put it, "interchangeable parts don’t" (more
explicitly, "portable C isn’t"). Some time may have to be spent in modifying the source code of
XtoC.C before it is acceptable as input to CtoM.M, although it is to be hoped that the developers of
XtoC.C will have used only standard C in their work, and used pre-processor directives that allow
for easy adaptation to other systems. 

If there is an initial strong motivation for making a compiler portable to other systems it is, indeed,
often written so as to produce high-level code as output. More often, of course, the original
implementation of a language is written as a self-resident translator with the aim of directly
producing machine code for the current host system. 

3.3 Bootstrapping 

All this may seem to be skirting around a really nasty issue - how might the first high-level
language have been implemented? In ASSEMBLER? But then how was the assembler for
ASSEMBLER produced? 

A full assembler is itself a major piece of software, albeit rather simple when compared with a
compiler for a really high level language, as we shall see. It is, however, quite common to define
one language as a subset of another, so that subset 1 is contained in subset 2 which in turn is
contained in subset 3 and so on, that is: 



One might first write an assembler for subset 1 of ASSEMBLER in machine code, perhaps on a
load-and-go basis (more likely one writes in ASSEMBLER, and then hand translates it into
machine code). This subset assembler program might, perhaps, do very little other than convert
mnemonic opcodes into binary form. One might then write an assembler for subset 2 of
ASSEMBLER in subset 1 of ASSEMBLER, and so on. 

This process, by which a simple language is used to translate a more complicated program, which
in turn may handle an even more complicated program and so on, is known as bootstrapping, by
analogy with the idea that it might be possible to lift oneself off the ground by tugging at one’s
boot-straps. 

3.4 Self-compiling compilers 

Once one has a working system, one can start using it to improve itself. Many compilers for popular
languages were first written in another implementation language, as implied in section 3.1, and then
rewritten in their own source language. The rewrite gives source for a compiler that can then be
compiled with the compiler written in the original implementation language. This is illustrated in
Figure 3.3. 

Clearly, writing a compiler by hand not once, but twice, is a non-trivial operation, unless the
original implementation language is close to the source language. This is not uncommon: Oberon
compilers could be implemented in Modula-2; Modula-2 compilers, in turn, were first implemented
in Pascal (all three are fairly similar), and C++ compilers were first implemented in C. 

Developing a self-compiling compiler has four distinct points to recommend it. Firstly, it
constitutes a non-trivial test of the viability of the language being compiled. Secondly, once it has
been done, further development can be done without recourse to other translator systems. Thirdly,
any improvements that can be made to its back end manifest themselves both as improvements to
the object code it produces for general programs and as improvements to the compiler itself. Lastly,
it provides a fairly exhaustive self-consistency check, for if the compiler is used to compile its own
source code, it should, of course, be able to reproduce its own object code (see Figure 3.4). 

Furthermore, given a working compiler for a high-level language it is then very easy to produce
compilers for specialized dialects of that language. 



3.5 The half bootstrap 

Compilers written to produce object code for a particular machine are not intrinsically portable.
However, they are often used to assist in a porting operation. For example, by the time that the first
Pascal compiler was required for ICL machines, the Pascal compiler available in Zürich (where
Pascal had first been implemented on CDC mainframes) existed in two forms (Figure 3.5). 

The first stage of the transportation process involved changing PasToCDC.Pas to generate ICL
machine code - thus producing a cross compiler. Since PasToCDC.Pas had been written in a
high-level language, this was not too difficult to do, and resulted in the compiler PasToICL.Pas. 

Of course this compiler could not yet run on any machine at all. It was first compiled using
PasToCDC.CDC, on the CDC machine (see Figure 3.6(a)). This gave a cross-compiler that could
run on CDC machines, but still not, of course, on ICL machines. One further compilation of
PasToICL.Pas, using the cross-compiler PasToICL.CDC on the CDC machine, produced the final
result, PasToICL.ICL (Figure 3.6(b)). 



The final product (PasToICL.ICL) was then transported on magnetic tape to the ICL machine, and
loaded quite easily. Having obtained a working system, the ICL team could (and did) continue
development of the system in Pascal itself. 

This porting operation was an example of what is known as a half bootstrap system. The work of
transportation is essentially done entirely on the donor machine, without the need for any translator
in the target machine, but a crucial part of the original compiler (the back end, or code generator)
has to be rewritten in the process. Clearly the method is hazardous - any flaws or oversights in
writing PasToICL.Pas could have spelled disaster. Such problems can be reduced by minimizing
changes made to the original compiler. Another technique is to write an emulator for the target
machine that runs on the donor machine, so that the final compiler can be tested on the donor
machine before being transferred to the target machine. 

3.6 Bootstrapping from a portable interpretive compiler 

Because of the inherent difficulty of the half bootstrap for porting compilers, a variation on the full
bootstrap method described above for assemblers has often been successfully used in the case of
Pascal and other similar high-level languages. Here most of the development takes place on the
target machine, after a lot of preliminary work has been done on the donor machine to produce an
interpretive compiler that is almost portable. It will be helpful to illustrate with the well-known
example of the Pascal-P implementation kit mentioned in section 2.5. 

Users of this kit typically commenced operations by implementing an interpreter for the P-machine.
The bootstrap process was then initiated by developing a compiler (PasPtoM.PasP) to translate
Pascal-P source programs to the local machine code. This compiler could be written in Pascal-P
source, development being guided by the source of the Pascal-P to P-code compiler supplied as part
of the kit. This new compiler was then compiled with the interpretive compiler (PasPtoP.P) from
the kit (Figure 3.7(a)) and the source of the Pascal to M-code compiler was then compiled by this



new compiler, interpreted once again by the P-machine, to give the final product, PasPtoM.M
(Figure 3.7(b)). 

The Zürich P-code interpretive compiler could be, and indeed was, used as a highly portable
development system. It was employed to remarkable effect in developing the UCSD Pascal system,
which was the first serious attempt to implement Pascal on microcomputers. The UCSD Pascal
team went on to provide the framework for an entire operating system, editors and other utilities -
all written in Pascal, and all compiled into a well-defined P-code object code. Simply by providing
an alternative interpreter one could move the whole system to a new microcomputer system
virtually unchanged. 

3.7 A P-code assembler 

There is, of course, yet another way in which a portable interpretive compiler kit might be used.
One might commence by writing a P-code to M-code assembler, probably a relatively simple task.
Once this has been produced one would have the assembler depicted in Figure 3.8. 

The P-codes for the P-code compiler would then be assembled by this system to give another cross
compiler (Figure 3.9(a)), and the same P-code/M-code assembler could then be used as a back-end
to the cross compiler (Figure 3.9(b)). 

Exercises 

3.1 Draw the T-diagram representations for the development of a P-code to M-code assembler,
assuming that you have a C++ compiler available on the target system. 

3.2 Later in this text we shall develop an interpretive compiler for a small language called Clang,



using C++ as the host language. Draw T-diagram representations of the various components of the
system as you foresee them. 

Further reading 

A very clear exposition of bootstrapping is to be found in the book by Watt (1993). The ICL
bootstrap is further described by Welsh and Quinn (1972). Other early insights into bootstrapping
are to be found in papers by Lecarme and Peyrolle-Thomas (1973), by Nori et al. (1981), and
Cornelius, Lowman and Robson (1984). 
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4 MACHINE EMULATION 

In Chapter 2 we discussed the use of emulation or interpretation as a tool for programming
language translation. In this chapter we aim to discuss hypothetical machine languages and the
emulation of hypothetical machines for these languages in more detail. Modern computers are
among the most complex machines ever designed by the human mind. However, this is a text on
programming language translation and not on electronic engineering, and our restricted discussion
will focus only on rather primitive object languages suited to the simple translators to be discussed
in later chapters. 

4.1 Simple machine architecture 

Many CPU (central processor unit) chips used in modern computers have one or more internal
registers or accumulators, which may be regarded as highly local memory where simple
arithmetic and logical operations may be performed, and between which local data transfers may
take place. These registers may be restricted to the capacity of a single byte (8 bits), or, as is typical
of most modern processors, they may come in a variety of small multiples of bytes or machine
words. 

One fundamental internal register is the instruction register (IR), through which moves the
bitstrings (bytes) representing the fundamental machine-level instructions that the processor can
obey. These instructions tend to be extremely simple - operations such as "clear a register" or
"move a byte from one register to another" being the typical order of complexity. Some of these
instructions may be completely defined by a single byte value. Others may need two or more bytes
for a complete definition. Of these multi-byte instructions, the first usually denotes an operation,
and the rest relate either to a value to be operated upon, or to the address of a location in memory at
which can be found the value to be operated upon. 

The simplest processors have only a few data registers, and are very limited in what they can
actually do with their contents, and so processors invariably make provision for interfacing to the
memory of the computer, and allow transfers to take place along so-called bus lines between the
internal registers and the far greater number of external memory locations. When information is to
be transferred to or from memory, the CPU places the appropriate address information on the
address bus, and then transmits or receives the data itself on the data bus. This is illustrated in
Figure 4.1. 



The memory may simplistically be viewed as a one-dimensional array of byte values, analogous to
what might be described in high-level language terms by declarations like the following 

  TYPE
    ADDRESS = CARDINAL [0 .. MemSize - 1];
    BYTES   = CARDINAL [0 .. 255];
  VAR
    Mem : ARRAY ADDRESS OF BYTES;

in Modula-2, or, in C++ (which does not provide for the subrange types so useful in this regard) 

  typedef unsigned char BYTES;
  BYTES Mem[MemSize];

Since the memory is used to store not only "data" but also "instructions", another important internal
register in a processor, the so-called program counter or instruction pointer (denoted by PC or
IP), is used to keep track of the address in memory of the next instruction to be fed to the
processor’s instruction register (IR). 

Perhaps it will be helpful to think of the processor itself in high-level terms: 

  TYPE
    PROCESSOR =                   struct processor {
      RECORD                        BYTES IR;
        IR,                         BYTES R1, R2, R3;
        R1, R2, R3 : BYTES;         unsigned PC;
        PC : ADDRESS;             };
      END;
  VAR                             processor cpu;
    CPU : PROCESSOR;

The operation of the machine is repeatedly to fetch a byte at a time from memory (along the data
bus), place it in the IR, and then execute the operation which this byte represents. Multi-byte
instructions may require the fetching of further bytes before the instruction itself can be decoded
fully by the CPU, of course. After the instruction denoted by the contents of IR has been executed,
the value of PC will have been changed to point to the next instruction to be fetched. This
fetch-execute cycle may be described by the following algorithm: 

  BEGIN
    CPU.PC := initialValue;  (* address of first code instruction *)
    LOOP
      CPU.IR := Mem[CPU.PC]; (* fetch *)
      Increment(CPU.PC);     (* bump PC in anticipation *)
      Execute(CPU.IR);       (* affecting other registers, memory, PC *)
                             (* handle machine interrupts if necessary *)
    END
  END.

Normally the value of PC alters by small steps (since instructions are usually stored in memory in
sequence); execution of branch instructions may, however, have a rather more dramatic effect. So
might the occurrence of hardware interrupts, although we shall not discuss interrupt handling
further. 

A program for such a machine consists, in the last resort, of a long string of byte values. Were these
to be written on paper (as binary, decimal, or hexadecimal values), they would appear pretty
meaningless to the human reader. We might, for example, find a section of program reading 

         25  45  21  34  34  30  45

Although it may not be obvious, this might be equivalent to a high-level statement like 

         Price := 2 * Price + MarkUp; 

Machine-level programming is usually performed by associating mnemonics with the recognizable



operations, like HLT for "halt" or ADD for "add to register". The above code is far more
comprehensible when written (with commentary) as 

         LDA  45   ; load accumulator with value stored in memory location 45
         SHL       ; shift accumulator one bit left (multiply by 2)
         ADI  34   ; add 34 to the accumulator
         STA  45   ; store the value in the accumulator at memory location 45

Programs written in an assembly language - which have first to be assembled before they can be
executed - usually make use of other named entities, for example 

  MarkUp EQU  34       ; CONST MarkUp = 34;
         LDA  Price    ; CPU.A := Price;
         SHL           ; CPU.A := 2 * CPU.A;
         ADI  MarkUp   ; CPU.A := CPU.A + 34;
         STA  Price    ; Price := CPU.A;

When we use code fragments such as these for illustration we shall make frequent use of
commentary showing an equivalent fragment written in a high-level language. Commentary follows
the semicolon on each line, a common convention in assembler languages. 

4.2 Addressing modes 

As the examples given earlier suggest, programs prepared at or near the machine level frequently
consist of a sequence of simple instructions, each involving a machine-level operation and one or
more parameters. 

An example of a simple operation expressed in a high-level language might be 

         AmountDue := Price + Tax;

Some machines and assembler languages provide for such operations in terms of so-called
three-address code, in which an operation - denoted by a mnemonic usually called the opcode - is
followed by two operands and a destination. In general this takes the form 

         operation     destination, operand1, operand2

for example 

         ADD      AmountDue, Price, Tax

We may also express this in a general sense as a function call 

         destination  :=  operation(operand1, operand2 )

which helps to stress the important idea that the operands really denote "values", while the
destination denotes a processor register, or an address in memory where the result is to be stored. 

In many cases this generality is restricted (that is, the machine suffers from non-orthogonality in
design). Typically the value of one operand is required to be the value originally stored at the
destination. This corresponds to high-level statements like 

         Price := Price * InflationFactor; 

and is mirrored at the low-level by so-called two-address code of the general form 

         operation     destination, operand



for example 

         MUL      Price, InflationFactor

In passing, we should point out an obvious connection between some of the assignment operations
in C++ and two-address code. In C++ the above assignment would probably have been written 

         Price *= InflationFactor; 

which, while less transparent to a Modula-2 programmer, is surely a hint to a C++ compiler to
generate code of this form. (Perhaps this example may help you understand why C++ is regarded by
some as the world’s finest assembly language!) 

In many real machines even general two-address code is not found at the machine level. One of
destination and operand might be restricted to denoting a machine register (the other one might
denote a machine register, or a constant, or a machine address). This is often called one and a half
address code, and is exemplified by 

         MOV     R1, Value     ; CPU.R1 := Value
         ADD     Answer, R1    ; Answer := Answer + CPU.R1
         MOV     Result, R2    ; Result := CPU.R2

Finally, in so-called accumulator machines we may be restricted to one-address code, where the
destination is always a machine register (except for those operations that copy (store) the contents
of a machine register into memory). In some assembler languages such instructions may still appear
to be of the two-address form, as above. Alternatively they might be written in terms of opcodes
that have the register implicit in the mnemonic, for example 

         LDA     Value        ; CPU.A := Value
         ADA     Answer       ; CPU.A := CPU.A + Answer
         STB     Result       ; Result := CPU.B

Although many of these examples might give the impression that the corresponding machine level
operations require multiple bytes for their representation, this is not necessarily true. For example,
operations that only involve machine registers, exemplified by 

         MOV     R1, R2       ;  CPU.R1 := CPU.R2
         LDA     B            ;  CPU.A := CPU.B
         TAX                  ;  CPU.X := CPU.A

might require only a single byte - as would be most obvious in an assembler language that used the
third representation. The assembly of such programs is be eased considerably by a simple and
self-consistent notation for the source code, a subject that we shall consider further in a later
chapter. 

In those instructions that do involve the manipulation of values other than those in the machine
registers alone, multi-byte instructions are usually required. The first byte typically specifies the
operation itself (and possibly the register or registers that are involved), while the remaining bytes
specify the other values (or the memory addresses of the other values) involved. In such
instructions there are several ways in which the ancillary bytes might be used. This variety gives
rise to what are known as different addressing modes for the processor, and whose purpose it is to
provide an effective address to be used in an instruction. Exactly which modes are available varies
tremendously from processor to processor, and we can mention only a few representative examples
here. The various possibilities may be distinguished in some assembler languages by the use of
different mnemonics for what at first sight appear to be closely related operations. In other
assembler languages the distinction may be drawn by different syntactic forms used to specify the
registers, addresses or values. One may even find different assembler languages for a common



processor. 

In inherent addressing the operand is implicit in the opcode itself, and often the instruction is
contained in a single byte. For example, to clear a machine register named A we might have 

         CLA          or       CLR  A         ;  CPU.A := 0

Again we stress that, though the second form seems to have two components, it does not always
imply the use of two bytes of code at the machine level. 

In immediate addressing the ancillary bytes for an instruction typically give the actual value that
is to be combined with a value in a register. Examples might be 

         ADI  34      or       ADD  A, #34    ;  CPU.A := CPU.A + 34

In these two addressing modes the use of the word "address" is almost misleading, as the value of
the ancillary bytes may often have nothing to do with a memory address at all. In the modes now to
be discussed the connection with memory addresses is far more obvious. 

In direct or absolute addressing the ancillary bytes typically specify the memory address of the
value that is to be retrieved or combined with the value in a register, or specify where a register
value is to be stored. Examples are 

         LDA  34      or       MOV  A, 34     ;  CPU.A := Mem[34]
         STA  45               MOV  45, A     ;  Mem[45] := CPU.A
         ADD  38               ADD  A, 38     ;  CPU.A := CPU.A + Mem[38]

Beginners frequently confuse immediate and direct addressing, a situation not improved by the fact
that there is no consistency in notation between different assembler languages, and there may even
be a variety of ways of expressing a particular addressing mode. For example, for the Intel 80x86
processors as used in the IBM-PC and compatibles, low-level code is written in a two-address form
similar to that shown above - but the immediate mode is denoted without needing a special symbol
like #, while the direct mode may have the address in brackets: 

         ADD  AX, 34    ;  CPU.AX := CPU.AX + 34  Immediate
         MOV  AX, [34]  ;  CPU.AX := Mem[34]      Direct

In register-indexed addressing one of the operands in an instruction specifies both an address and
also an index register, whose value at the time of execution may be thought of as specifying the
subscript to an array stored from that address 

         LDX  34      or       MOV  A, 34[X]  ;  CPU.A := Mem[34 + CPU.X]
         STX  45               MOV  45[X], A  ;  Mem[45+CPU.X] := CPU.A
         ADX  38               ADD  A, 38[X]  ;  CPU.A := CPU.A + Mem[38+CPU.X]

In register-indirect addressing one of the operands in an instruction specifies a register whose
value at the time of execution gives the effective address where the value of the operand is to be
found. This relates to the concept of pointers as used in Modula-2, Pascal and C++. 

         MOV   R1, @R2     ;  CPU.R1 := Mem[CPU.R2]
         MOV   AX, [BX]    ;  CPU.AX := Mem[CPU.BX]

Not all the registers in a machine can necessarily be used in these ways. Indeed, some machines
have rather awkward restrictions in this regard. 

Some processors allow for very powerful variations on indexed and indirect addressing modes. For
example, in memory-indexed addressing, a single operand may specify two memory addresses -
the first of which gives the address of the first element of an array, and the second of which gives



the address of a variable whose value will be used as a subscript to the array. 

         MOV   R1, 400[100]    ;  CPU.R1 := Mem[400 + Mem[100]]

Similarly, in memory-indirect addressing one of the operands in an instruction specifies a
memory address at which will be found a value that forms the effective address where another
operand is to be found. 

         MOV   R1, @100    ;  CPU.R1 := Mem[Mem[100]]

This mode is not as commonly found as the others; where it does occur it directly corresponds to
the use of pointer variables in languages that support them. Code like 

  TYPE
    ARROW = POINTER TO CARDINAL;          typedef int *ARROW;
  VAR
    Arrow  : ARROW;                       ARROW Arrow;
    Target : CARDINAL;                    int Target;
  BEGIN
    Target := Arrow^;                     Target = *Arrow;

might translate to equivalent code in assembler like 

         MOV   AX, @Arrow
         MOV   Target, AX

or even 

         MOV   Target, @Arrow

where, once again, we can see an immediate correspondence between the syntax in C++ and the
corresponding assembler. 

Finally, in relative addressing an operand specifies an amount by which the current program count
register PC must be incremented or decremented to find the actual address of interest. This is
chiefly found in "branching" instructions, rather than in those that move data between various
registers and/or locations in memory. 

Further reading 

Most books on assembler level programming have far deeper discussions of the subject of
addressing modes than we have presented. Two very readable accounts are to be found in the books
by Wakerly (1981) and MacCabe (1993). A deeper discussion of machine architectures is to be
found in the book by Hennessy and Patterson (1990). 

4.3 Case study 1 - A single-accumulator machine 

Although sophisticated processors may have several registers, their basic principles - especially as
they apply to emulation - may be illustrated by the following model of a single-accumulator
processor and computer, very similar to one suggested by Wakerly (1981). Here we shall take
things to extremes and presume the existence of a system with all registers only 1 byte (8 bits)
wide. 



4.3.1 Machine architecture 

Diagrammatically we might represent this machine as in Figure 4.2. 

The symbols in this diagram refer to the following components of the machine 

ALU is the arithmetic logic unit, where arithmetic and logical operations are actually
performed. 

A is the 8-bit accumulator, a register for doing arithmetic or logical operations. 

SP is an 8-bit stack pointer, a register that points to an area in memory that may be
utilized as a stack. 

X is an 8-bit index register, which is used in indexing areas of memory which
conceptually form data arrays. 

Z, P, C  are single bit condition flags or status registers, which are set "true" when an
operation causes a register to change to a zero value, or to a positive value, or to
propagate a carry, respectively. 

IR  is the 8-bit instruction register, in which is held the byte value of the instruction
currently being executed. 

PC is the 8-bit program counter, which contains the address in memory of the
instruction that is next to be executed. 

EAR is the effective address register, which contains the address of the byte of data
which is being manipulated by the current instruction. 

The programmer’s model of this sort of machine is somewhat simpler - it consists of a number of
"variables" (in the C++ or Modula-2 sense), each of which is one byte in capacity. Some of these
correspond to processor registers, while the others form the random access read/write (RAM)
memory, of which we have assumed there to be 256 bytes, addressed by the values 0 through 255.
In this memory, as usual, will be stored both the data and the instructions for the program under
execution. The processor, its registers, and the associated RAM memory can be thought of as
though they were described by declarations like 

  TYPE
    BYTES = CARDINAL [0 .. 255];                 typedef unsigned char bytes;
    PROCESSOR = RECORD                           struct processor {
      A, SP, X, IR, PC : BYTES;                    bytes a, sp, x, ir, pc;
      Z, P, C : BOOLEAN;                           bool z, p, c;
    END;                                         };



  TYPE STATUS = (running, finished,              typedef enum { running, finished,
                 nodata, baddata,                  nodata, baddata, badop
                 badop);                         } status;
  VAR
    CPU : PROCESSOR;                             processor cpu;
    Mem : ARRAY BYTES OF BYTES;                  bytes mem[256];
    PS  : STATUS;                                status ps;

where the concept of the processor status PS has been introduced in terms of an enumeration that
defines the states in which an emulator might find itself. 

4.3.2 Instruction set 

Some machine operations are described by a single byte. Others require two bytes, and have the
format 

                    Byte 1     Opcode
                    Byte 2     Address field

The set of machine code functions available is quite small. Those marked * affect the P and Z flags,
and those marked + affect the C flag. An informal description of their semantics follows: 

Mnemonic Hex Decimal Function 
opcode 

NOP          00h   0  No operation (this might be used to set a break point in an emulator)
CLA          01h   1  Clear accumulator A

CLC    +     02h   2  Clear carry bit C 

CLX          03h   3  Clear index register X

CMC    +     04h   4  Complement carry bit C

INC       *  05h   5  Increment accumulator A by 1
DEC       *  06h   6  Decrement accumulator A by 1
INX       *  07h   7  Increment index register X by 1
DEX       *  08h   8  Decrement index register X by 1
TAX          09h   9  Transfer accumulator A to index register X

INI       *  0Ah  10  Load accumulator A with integer read from input in decimal
INH       *  0Bh  11  Load accumulator A with integer read from input in hexadecimal
INB       *  0Ch  12  Load accumulator A with integer read from input in binary
INA       *  0Dh  13  Load accumulator A with ASCII value read from input (a single character)
OTI          0Eh  14  Write value of accumulator A to output as a signed decimal number
OTC          0Fh  15  Write value of accumulator A to output as an unsigned decimal number
OTH          10h  16  Write value of accumulator A to output as an unsigned hexadecimal number
OTB          11h  17  Write value of accumulator A to output as an unsigned binary number
OTA          12h  18  Write value of accumulator A to output as a single character
PSH          13h  19  Decrement SP and push value of accumulator A onto stack
POP       *  14h  20  Pop stack into accumulator A and increment SP

SHL    +  *  15h  21  Shift accumulator A one bit left
SHR    +  *  16h  22  Shift accumulator A one bit right
RET          17h  23  Return from subroutine (return address popped from stack)
HLT          18h  24  Halt program execution

The above are all single-byte instructions. The following are all double-byte instructions. 

LDA  B    *  19h  25  Load accumulator A directly with contents of location whose address is
                      given as B 

LDX  B    *  1Ah  26  Load accumulator A with contents of location whose address is given as B,
                      indexed by the value of X (that is, an address computed as the value of B + X)
LDI  B    *  1Bh  27  Load accumulator A with the immediate value B

LSP  B       1Ch  28  Load stack pointer SP with contents of location whose address is given as B

LSI  B       1Dh  29  Load stack pointer SP immediately with the value B
                      

STA  B       1Eh  30  Store accumulator A on the location whose address is given as B



STX  B       1Fh  31  Store accumulator A on the location whose address is given as B, indexed
                      by the value of X
ADD  B  + *  20h  32  Add to accumulator A the contents of the location whose address is given as B

ADX  B  + *  21h  33  Add to accumulator A the contents of the location whose address is given as
                      B ,indexed by the value of X

ADI  B  + *  22h  34  Add the immediate value B to accumulator A

ADC  B  + *  23h  35  Add to accumulator A the value of the carry bit C plus the contents of the
                      location whose address is given as B

ACX  B  + *  24h  36  Add to accumulator A the value of the carry bit C plus the contents of the
                      location whose address is given as B, indexed by the value of X

ACI  B  + *  25h  37  Add the immediate value B plus the value of the carry bit C to accumulator A

SUB  B  + *  26h  38  Subtract from accumulator A the contents of the location whose address is
                      given as B
SBX  B  + *  27h  39  Subtract from accumulator A the contents of the location whose address is
                      given as B, indexed by the value of X

SBI  B  + *  28h  40  Subtract the immediate value B from accumulator A

SBC  B  + *  29h  41  Subtract from accumulator A the value of the carry bit C plus the contents
                      of the location whose address is given as B

SCX  B  + *  2Ah  42  Subtract from accumulator A the value of the carry bit C plus the contents
                      of the location whose address is given as B, indexed by the value of X

SCI  B  + *  2Bh  43  Subtract the immediate value B plus the value of the carry bit C from
                      accumulator A 

CMP  B  + *  2Ch  44  Compare accumulator A with the contents of the location whose address is
                      given as B
CPX  B  + *  2Dh  45  Compare accumulator A with the contents of the location whose address is
                      given as B, indexed by the value of X

CPI  B  + *  2Eh  46  Compare accumulator A directly with the value B

These comparisons are done by virtual subtraction of the operand from A, and setting the flags P

and Z as appropriate 

ANA  B  + *  2Fh  47  Bitwise AND accumulator A with the contents of the location whose address
                      is given as B
ANX  B  + *  30h  48  Bitwise AND accumulator A with the contents of the location whose address
                      is given as B, indexed by the value of X

ANI  B  + *  31h  49  Bitwise AND accumulator A with the immediate value B

ORA  B  + *  32h  50  Bitwise OR accumulator A with the contents of the location whose address
                      is given as B 

ORX  B  + *  33h  51  Bitwise OR accumulator A with the contents of the location whose address
                      is given as B, indexed by the value of X

ORI  B  + *  34h  52  Bitwise OR accumulator A with the immediate value B

BRN  B       35h  53  Branch to the address given as B

BZE  B       36h  54  Branch to the address given as B if the Z condition flag is set
BNZ  B       37h  55  Branch to the address given as B if the Z condition flag is unset
BPZ  B       38h  56  Branch to the address given as B if the P condition flag is set
BNG  B       39h  57  Branch to the address given as B if the P condition flag is unset
BCC  B       3Ah  58  Branch to the address given as B if the C condition flag is unset
BCS  B       3Bh  59  Branch to the address given as B if the C condition flag is set

JSR  B       3Ch  60  Call subroutine whose address is B, pushing return address onto the stack

Most of the operations listed above are typical of those found in real machines. Notable exceptions
are provided by the I/O (input/output) operations. Most real machines have extremely primitive
facilities for doing anything like this directly, but for the purposes of this discussion we shall cheat
somewhat and assume that our machine has several very powerful single-byte opcodes for handling
I/O. (Actually this is not cheating too much, for some macro-assemblers allow instructions like this
which are converted into procedure calls into part of an underlying operating system, stored perhaps
in a ROM BIOS). 



A careful examination of the machine and its instruction set will show some features that are
typical of real machines. Although there are three data registers, A, X  and SP, two of them (X and
SP) can only be used in very specialized ways. For example, it is possible to transfer a value from A

to X, but not vice versa, and while it is possible to load a value into SP it is not possible to examine
the value of SP at a later stage. The logical operations affect the carry bit (they all unset it), but,
surprisingly, the INC and DEC operations do not. 

It is this model upon which we shall build an emulator in section 4.3.4. In a sense the formal
semantics of these opcodes are then embodied directly in the operational semantics of the machine
(or pseudo-machine) responsible for executing them. 

Exercises 

4.1 Which addressing mode is used in each of the operations defined above? Which addressing
modes are not represented? 

4.2 Many 8-bit microprocessors have 2-byte (16-bit) index registers, and one, two, and three-byte
instructions (and even longer). What peculiar or restrictive features does our machine possess,
compared to such processors? 

4.3 As we have already commented, informal descriptions in English, as we have above, are not as
precise as semantics that are formulated mathematically. Compare the informal description of the
INC operation with the following: 

     INC  *  05h   5   A := (A + 1) mod 256;  Z := A = 0;  P := A IN {0 ... 127} 

Try to express the semantics of each of the other machine instructions in a similar way. 

4.3.3 A specimen program 

Some examples of code for this machine may help the reader’s understanding. Consider the
problem of reading a number and then counting the number of non-zero bits in its binary
representation. 

Example 4.1 

The listing below shows a program to solve this problem coded in an ASSEMBLER language
based on the mnemonics given previously, as it might be listed by an assembler program, showing
the hexadecimal representation of each byte and where it is located in memory. 

   00                   BEG                  ; Count the bits in a number
   00    0A             INI                  ; Read(A)
   01           LOOP                         ; REPEAT
   01    16             SHR                  ;  A := A DIV 2
   02    3A 0D          BCC     EVEN         ;  IF A MOD 2 # 0 THEN
   04    1E 13          STA     TEMP         ;    TEMP := A
   06    19 14          LDA     BITS
   08    05             INC
   09    1E 14          STA     BITS         ;    BITS := BITS + 1
   0B    19 13          LDA     TEMP         ;    A := TEMP
   0D    37 01  EVEN    BNZ     LOOP         ; UNTIL A = 0
   0F    19 14          LDA     BITS         ;
   11    0E             OTI                  ; Write(BITS)
   12    18             HLT                  ; terminate execution
   13           TEMP    DS      1            ; VAR TEMP : BYTE
   14    00     BITS    DC      0            ;     BITS : BYTE



   15                   END

Example 4.2 (absolute byte values) 

In a later chapter we shall discuss how this same program can be translated into the following
corresponding absolute format (expressed this time as decimal numbers): 

  10 22 58 13 30 19 25 20  5 30 20 25 19 55  1 25 20 14 24  0  0

Example 4.3 (mnemonics with absolute address fields) 

For the moment, we shall allow ourselves to consider the absolute form as equivalent to a form in
which the mnemonics still appear for the sake of clarity, but where the operands have all been
converted into absolute (decimal) addresses and values: 

   INI
   SHR
   BCC   13
   STA   19
   LDA   20
   INC
   STA   20
   LDA   19
   BNZ   1
   LDA   20
   OTI
   HLT
   0
   0

Exercises 

4.4 The machine does not possess an instruction for negating the value in the accumulator. What
code would one have to write to be able to achieve this? 

4.5 Similarly, it does not possess instructions for multiplication and division. Is it possible to use
the existing instructions to develop code for doing these operations? If so, how efficiently can they
be done? 

4.6 Try to write programs for this machine that will 

(a) Find the largest of three numbers. 

(b) Find the largest and the smallest of a list of numbers terminated by a zero (which is
not regarded as a member of the list). 

(c) Find the average of a list of non-zero numbers, the list being terminated by a zero. 

(d) Compute N! for small N. Try using an iterative as well as a recursive approach. 

(e) Read a word and then write it backwards. The word is terminated with a period. Try
using an "array", or alternatively, the "stack". 

(f) Determine the prime numbers between 0 and 255. 

(g) Determine the longest repeated sequence in a sequence of digits terminated with



zero. For example, for data reading 1 2 3 3 3 3 4 5 4 4 4 4 4 4 4 6 5 5 report that "4
appeared 7 times". 

(h) Read an input sequence of numbers terminated with zero, and then extract the
embedded monotonically increasing sequence. For example, from 1 2 12 7 4 14 6 23
extract the sequence 1 2 12 14 23. 

(i) Read a small array of integers or characters and sort them into order. 

(j) Search for and report on the largest byte in the program code itself. 

(k) Search for and report on the largest byte currently in memory. 

(l) Read a piece of text terminated with a period, and then report on how many times
each letter appeared. To make things interesting, ignore the difference between upper
and lower case. 

(m) Repeat some of the above problems using 16-bit arithmetic (storing values as pairs
of bytes, and using the "carry" operations to perform extended arithmetic). 

4.7 Based on your experiences with Exercise 4.6, comment on the usefulness, redundancy and any
other features of the code set for the machine. 

4.3.4 An emulator for the single-accumulator machine 

Although a processor for our machine almost certainly does not exist "in silicon", its action may
easily be simulated "in software". Essentially we need only to write an emulator that models the
fetch-execute cycle of the machine, and we can do this in any suitable language for which we
already have a compiler on a real machine. 

Languages like Modula-2 or C++ are highly suited to this purpose. Not only do they have
"bit-twiddling" capabilities for performing operations like "bitwise and", they have the advantage
that one can implement the various phases of translators and emulators as coherent, clearly
separated modules (in Modula-2) or classes (in C++). Extended versions of Pascal, such as Turbo
Pascal, also provide support for such modules in the form of units. C is also very suitable on the
first score, but is less well equipped to deal with clearly separated modules, as the header file
mechanism used in C is less watertight than the mechanisms in the other languages. 

In modelling our hypothetical machine in Modula-2 or C++ it will thus be convenient to define an
interface in the usual way by means of a definition module, or by the public interface to a class. (In
this text we shall illustrate code in C++; equivalent code in Modula-2 and Turbo Pascal will be
found on the diskette that accompanies the book.) 

The main responsibility of the interface is to declare an emulator  routine for interpreting the code
stored in the memory of the machine. For expediency we choose to extend the interface to expose
the values of the operations, and the memory itself, and to provide various other useful facilities
that will help us develop an assembler or compiler for the machine in due course. (In this, and in
other interfaces, "private" members are not shown.) 

  // machine instructions - order is significant
  enum MC_opcodes {
    MC_nop, MC_cla, MC_clc, MC_clx, MC_cmc, MC_inc, MC_dec, MC_inx, MC_dex,
    MC_tax, MC_ini, MC_inh, MC_inb, MC_ina, MC_oti, MC_otc, MC_oth, MC_otb,



    MC_ota, MC_psh, MC_pop, MC_shl, MC_shr, MC_ret, MC_hlt, MC_lda, MC_ldx,
    MC_ldi, MC_lsp, MC_lsi, MC_sta, MC_stx, MC_add, MC_adx, MC_adi, MC_adc,
    MC_acx, MC_aci, MC_sub, MC_sbx, MC_sbi, MC_sbc, MC_scx, MC_sci, MC_cmp,
    MC_cpx, MC_cpi, MC_ana, MC_anx, MC_ani, MC_ora, MC_orx, MC_ori, MC_brn,
    MC_bze, MC_bnz, MC_bpz, MC_bng, MC_bcc, MC_bcs, MC_jsr, MC_bad = 255 };

  typedef enum { running, finished, nodata, baddata, badop } status;
  typedef unsigned char MC_bytes;

  class MC {
    public:
      MC_bytes mem[256];    // virtual machine memory

      void listcode(void);
      // Lists the 256 bytes stored in mem on requested output file

      void emulator(MC_bytes initpc, FILE *data, FILE *results, bool tracing);
      // Emulates action of the instructions stored in mem, with program counter
      // initialized to initpc.  data and results are used for I/O.
      // Tracing at the code level may be requested

      void interpret(void);
      // Interactively opens data and results files, and requests entry point.
      // Then interprets instructions stored in mem

      MC_bytes opcode(char *str);
      // Maps str to opcode, or to MC_bad (0FFH) if no match can be found

      MC();
      // Initializes accumulator machine

  };

The implementation of emulator  must model the typical fetch-execute cycle of the hypothetical
machine. This is easily achieved by the repetitive execution of a large switch  or CASE statement,
and follows the lines of the algorithm given in section 4.1, but allowing for the possibility that the
program may halt, or otherwise come to grief: 

  BEGIN
    InitializeProgramCounter(CPU.PC);
    InitializeRegisters(CPU.A, CPU.X, CPU.SP, CPU.Z, CPU.P, CPU.C);
    PS := running;
    REPEAT
      CPU.IR := Mem[CPU.PC]; Increment(CPU.PC)    (* fetch *)
      CASE CPU.IR OF                              (* execute *)
          . . . .
      END
    UNTIL PS # running;
    IF PS # finished THEN PostMortem END
  END

A detailed implementation of the machine class is given as part of Appendix D, and the reader is
urged to study it carefully. 

Exercises 

4.8 You will notice that the code in Appendix D makes no use of an explicit EAR register. Develop
an emulator that does have such a register, and investigate whether this is an improvement. 

4.9 How well does the informal description of the machine instruction set allow you to develop
programs and an interpreter for the machine? Would a description in the form suggested by
Exercise 4.3 be better? 

4.10 Do you suppose interpreters might find it difficult to handle I/O errors in user programs? 

4.11 Although we have required that the machine incorporate the three condition flags P, Z  and C,
we have not provided another one commonly found on such machines, namely for detecting



overflow. Introduce V as such a flag into the definition of the machine, provide suitable instructions
for testing it, and modify the emulator so that V is set and cleared by the appropriate operations. 

4.12 Extend the instruction set and the emulator to include operations for negating the accumulator,
and for providing multiplication and division operations. 

4.13 Enhance the emulator so that when it interprets a program, a full screen display is given,
highlighting the instruction that is currently being obeyed and depicting the entire memory contents
of the machine, as well as the state of the machine registers. For example we might have a display
like that in Figure 4.3 for the program exemplified earlier, at the stage where it is about to execute
the first instruction. 

4.3.5 A minimal assembler for the machine 

Given the emulator as implemented above, and some way of assembling or compiling programs, it
becomes possible to implement a complete load-and-go system for developing and running simple
programs. An assembler can be provided through a class with a public interface like 

  class AS {
    public:
      AS(char *sourcename, MC *M);
      // Opens source file from supplied sourcename

      ~AS();
      // Closes source file

      void assemble(bool &errors);
      // Assembles source code from src file and loads bytes of code directly
      // into memory.  Returns errors = true if source code is corrupt
  };

In terms of these two classes, a load-and-go system might then take the form 

  void main(int argc, char *argv[])
  { bool errors;
    if (argc == 1) { printf("Usage: ASSEMBLE source\n"); exit(1); }
    MC *Machine = new MC();
    AS *Assembler = new AS(argv[1], Machine);
    Assembler->assemble(errors);
    delete Assembler;
    if (errors)
      printf("Unable to interpret code\n");
    else
    { printf("Interpreting code ...\n");
      Machine->interpret();
    }
    delete Machine;
  }



A detailed discussion of assembler techniques is given in a later chapter. For the moment we note
that various implementations matching this interface might be written, of various complexities. The
very simplest of these might require the user to hand-assemble his or her programs and would
amount to nothing more than a simple loader: 

  AS::AS(char *sourcename, MC *M)
  { Machine = M;
    src = fopen(sourcename, "r");
    if (src == NULL) { printf("Could not open input file\n"); exit(1); }
  }

  AS::~AS()
  { if (src) fclose(src); src = NULL; }

  void AS::assemble(bool &errors)
  { int number;
    errors = false;
    for (int i = 0; i <= 255; i++)
    { if (fscanf(src, "%d", &number) != 1)
        { errors = true; number = MC_bad; }
      Machine->mem[i] = number % 256;
    }
  }

However, it is not difficult to write an alternative implementation of the assemble  routine that
allows the system to accept a sequence of mnemonics and numerical address fields, like that given
in Example 4.3 earlier. We present possible code, with sufficient commentary that the reader should
be able to follow it easily. 

  void readmnemonic(FILE *src, char &ch, char *mnemonic)
  { int i = 0;
    while (ch > ’ ’)
    { if (i <= 2) { mnemonic[i] = ch; i++; }
      ch = toupper(getc(src));
    }
    mnemonic[i] = ’\0’;
  }

  void readint(FILE *src, char &ch, int &number, bool &okay)
  { okay = true;
    number = 0;
    bool negative = (ch == ’-’);
    if (ch == ’-’ || ch == ’+’) ch = getc(src);
    while (ch > ’ ’)
    { if (isdigit(ch))
        number = number * 10 + ch - ’0’;
      else
        okay = false;
      ch = getc(src);
    }
    if (negative) number = -number;
  }

  void AS::assemble(bool &errors)
  { char mnemonic[4]; // mnemonic for matching
    MC_bytes lc = 0;  // location counter
    MC_bytes op;      // assembled opcode
    int number;       // assembled number
    char ch;          // general character for input
    bool okay;        // error checking on reading numbers

    printf("Assembling code ... \n");
    for (int i = 0; i <= 255; i++)          // fill with invalid opcodes
      Machine->mem[i] = MC_bad;
    lc = 0;                                 // initialize location counter
    errors = false;                         // optimist!
    do
    { do ch = toupper(getc(src));
      while (ch <= ’ ’ && !feof(src));      // skip spaces and blank lines
      if (!feof(src))                       // there should be a line to assemble
      { if (isupper(ch))                    // we should have a mnemonic
        { readmnemonic(src, ch, mnemonic);  // unpack it
          op = Machine->opcode(mnemonic);   // look it up
          if (op == MC_bad)                 // the opcode was unrecognizable
            { printf("%s - Bad mnemonic at %d\n", mnemonic, lc); errors = true; }
          Machine->mem[lc] = op;            // store numerical equivalent



        }
        else                                // we should have a numeric constant
        { readint(src, ch, number, okay);   // unpack it
          if (!okay) { printf("Bad number at %d\n", lc); errors = true; }
          if (number >= 0)                  // convert to proper byte value
            Machine->mem[lc] = number % 256;
          else
            Machine->mem[lc] = (256 - abs(number) % 256) % 256;
        }
        lc = (lc + 1) % 256;                // bump up location counter
      }
    } while (!feof(src));
  }

4.4 Case study 2 - a stack-oriented computer 

In later sections of this text we shall be looking at developing a compiler that generates object code
for a hypothetical "stack machine", one that may have no general data registers of the sort discussed
previously, but which functions primarily by manipulating a stack pointer and associated stack. An
architecture like this will be found to be ideally suited to the evaluation of complicated arithmetic
or Boolean expressions, as well as to the implementation of high-level languages which support
recursion. It will be appropriate to discuss such a machine in the same way as we did for the
single-accumulator machine in the last section. 

4.4.1 Machine architecture 

Compared with normal register based machines, this one may at first seem a little strange, because
of the paucity of registers. In common with most machines we shall still assume that it stores code
and data in a memory that can be modelled as a linear array. The elements of the memory are
"words", each of which can store a single integer - typically using a 16 bit two’s-complement
representation. Diagrammatically we might represent this machine as in Figure 4.4: 

The symbols in this diagram refer to the following components of the machine 

ALU is the arithmetic logic unit where arithmetic and logical operations are actually
performed. 

Temp is a set of 16-bit registers for holding intermediate results needed during arithmetic
or logical operations. These registers cannot be accessed explicitly. 

SP is the 16-bit stack pointer, a register that points to the area in memory utilized as the
main stack. 

BP is the 16-bit base pointer, a register that points to the base of an area of memory



within the stack, known as a stack frame, which is used to store variables. 

MP is the 16-bit mark stack pointer, a register used in handling procedure calls, whose
use will become apparent only in later chapters. 

IR  is the 16-bit instruction register, in which is held the instruction currently being
executed. 

PC is the 16-bit program counter, which contains the address in memory of the
instruction that is the next to be executed. 

EAR is the effective address register, which contains the address in memory of the data
that is being manipulated by the current instruction. 

A programmer’s model of the machine is suggested by declarations like 

  CONST
    MemSize = 512;                                    const int MemSize = 512;
  TYPE                                                typedef short address;
    ADDRESS = CARDINAL [0 .. MemSize - 1];            struct processor {
    PROCESSOR = RECORD                                  opcodes ir;
      IR : OPCODES;                                     address bp, mp, sp, pc;
      BP, MP, SP, PC : ADDRESS;                       };
    END;
  TYPE STATUS = (running, finished,                   typedef enum { running, finished,
                 badMem, badData,                       badmem, baddata, nodata,
                 noData, divZero,                       divzero, badop
                 badOP);                              } status;
  VAR
    CPU : PROCESSOR;                                 processor cpu;
    Mem : ARRAY ADDRESS OF INTEGER;                  int mem[MemSize];
    PS : STATUS;                                     status ps;

For simplicity we shall assume that the code is stored in the low end of memory, and that the top
part of memory is used as the stack for storing data. We shall assume that the topmost section of
this stack is a literal pool, in which are stored constants, such as literal character strings.
Immediately below this pool is the stack frame, in which the static variables are stored. The rest of
the stack is to be used for working storage. A typical memory layout might be as shown in Figure
4.5, where the markers CodeTop and StkTop  will be useful for providing memory protection in an
emulated system. 

We assume that the program loader will load the code at the bottom of memory (leaving the marker
denoted by CodeTop pointing to the last word of code). It will also load the literals into the literal
pool (leaving the marker denoted by StkTop  pointing to the low end of this pool). It will go on to
initialize both the stack pointer SP and base pointer BP to the value of StkTop . The first instruction
in any program will have the responsibility of reserving further space on the stack for its variables,
simply by decrementing the stack pointer SP by the number of words needed for these variables. A
variable can be addressed by adding an offset to the base register BP. Since the stack "grows
downwards" in memory, from high addresses towards low ones, these offsets will usually have



negative values. 

4.4.2 Instruction set 

A minimal set of operations for this machine is described informally below; in later chapters we
shall find it convenient to add more opcodes to this set. We shall use the mnemonics introduced
here to code programs for the machine in what appears to be a simple assembler language, albeit
with addresses stipulated in absolute form. 

Several of these operations belong to a category known as zero address instructions. Even though
operands are clearly needed for operations such as addition and multiplication, the addresses of
these are not specified by part of the instruction, but are implicitly derived from the value of the
stack pointer SP. The two operands are assumed to reside on the top of the stack and just below the
top; in our informal descriptions their values are denoted by TOS (for "top of stack") and SOS (for
"second on stack"). A binary operation is performed by popping its two operands from the stack
into (inaccessible) internal registers in the CPU, performing the operation, and then pushing the
result back onto the stack. Such operations can be very economically encoded in terms of the
storage taken up by the program code itself - the high density of stack-oriented machine code is
another point in its favour so far as developing interpretive translators is concerned. 

ADD     Pop TOS and SOS, add SOS to TOS, push sum to form new TOS 

SUB     Pop TOS and SOS, subtract TOS from SOS, push result to form new TOS 

MUL     Pop TOS and SOS, multiply SOS by TOS, push result to form new TOS 

DVD     Pop TOS and SOS, divide SOS by TOS, push result to form new TOS 

EQL     Pop TOS and SOS, push 1 to form new TOS if SOS = TOS, 0 otherwise
NEQ     Pop TOS and SOS, push 1 to form new TOS if SOS # TOS, 0 otherwise
GTR     Pop TOS and SOS, push 1 to form new TOS if SOS > TOS, 0 otherwise
LSS     Pop TOS and SOS, push 1 to form new TOS if SOS < TOS, 0 otherwise
LEQ     Pop TOS and SOS, push 1 to form new TOS if SOS <= TOS, 0 otherwise
GEQ     Pop TOS and SOS, push 1 to form new TOS if SOS >= TOS, 0 otherwise
NEG     Negate TOS 
        

STK     Dump stack to output (useful for debugging)
PRN     Pop TOS and write it to the output as an integer value
PRS  A  Write the nul-terminated string that was stacked in the literal pool from Mem[A] 

NLN     Write a newline (carriage-return-line-feed) sequence
INN     Read integer value, pop TOS, store the value that was read in Mem[TOS]
        

DSP  A  Decrement value of stack pointer SP by A
LIT  A  Push the integer value A onto the stack to form new TOS

ADR  A  Push the value BP + A  onto the stack to form new TOS. (This value is conceptually the address
        of a variable stored at an offset A within the stack frame pointed to by the base register BP.)
IND     Pop TOS to yield Size ; pop TOS and SOS; if 0 <= TOS < Size

        then subtract TOS from SOS, push result to form new TOS

VAL     Pop TOS, and push the value of Mem[TOS] to form new TOS (an operation we
        shall call dereferencing)
STO     Pop TOS and SOS; store TOS in Mem[SOS]

HLT     Halt
BRN  A  Unconditional branch to instruction A

BZE  A  Pop TOS, and branch to instruction A if TOS is zero
NOP     No operation

The instructions in the first group are concerned with arithmetic and logical operations, those in the
second group afford I/O facilities, those in the third group allow for the access of data in memory
by means of manipulating addresses and the stack, and those in the last group allow for control of
flow of the program itself. The IND operation allows for array indexing with subscript range



checking. 

As before, the I/O operations are not typical of real machines, but will allow us to focus on the
principles of emulation without getting lost in the trivia and overheads of handling real I/O systems.

Exercises 

4.14 How closely does the machine code for this stack machine resemble anything you have seen
before? 

4.15 Notice that there is a BZE operation, but not a complementary BNZ (one that would branch if
TOS were non-zero). Do you suppose this is a serious omission? Are there any opcodes which have
been omitted from the set above which you can foresee as being absolutely essential (or at least
very useful) for defining a viable "integer" machine? 

4.16 Attempt to write down a mathematically oriented version of the semantics of each of the
machine instructions, as suggested by Exercise 4.3. 

4.4.3 Specimen programs 

As before, some samples of program code for the machine may help to clarify various points. 

Example 4.4 

To illustrate how the memory is allocated, consider a simple section of program that corresponds to
high-level code of the form 

   X := 8; Write("Y = ", Y);

                       ; Example 4.4
   0 DSP    2          ; X is at Mem[CPU.BP-1], Y is at Mem[CPU.BP-2]
   2 ADR   -1          ; push address of X
   4 LIT    8          ; push 8
   6 STO               ;        X := 8
   7 STK               ; dump stack to look at it
   8 PRS   ’Y = ’      ;        Write string "Y = "
  10 ADR   -2          ; push address of Y
  12 VAL               ; dereference
  13 PRN               ;        Write integer Y
  14 HLT               ; terminate execution

This would be stored in memory as 

    DSP  2  ADR -1  LIT  8  STO STK PRS 510 ADR -2  VAL PRN HLT
     0   1   2   3   4   5   6   7   8   9  10  11  12  13  14

     ...   (Y)   (X)   0   ’ ’  ’=’  ’ ’  ’Y’   0
           504   505  506  507  508  509  510  511

Immediately after loading this program (and before executing the DSP instruction), the program
counter PC would have the value 0, while the base register BP and stack pointer SP would each have
the value 506. 

Example 4.5 

Example 4.4 scarcely represents the epitome of the programmer’s art! A more ambitious program
follows, as a translation of the simple algorithm 



  BEGIN
    Y := 0;
    REPEAT  READ(X);  Y := X + Y   UNTIL X = 0;
    WRITE(’Total is ’, Y);
  END

This would require a stack frame of size two to contain the variables X and Y. The machine code
might read 

                       ;  Example 4.5
   0 DSP    2          ;  X is at Mem[CPU.BP-1], Y is at Mem[CPU.BP-2]
   2 ADR   -2          ;  push address of Y (CPU.BP-2) on stack
   4 LIT    0          ;  push 0 on stack
   6 STO               ;  store 0 as value of Y
   7 ADR   -1          ;  push address of X (CPU.BP-1) on stack
   9 INN               ;  read value, store on X
  10 ADR   -2          ;  push address of Y on stack
  12 ADR   -1          ;  push address of X on stack
  14 VAL               ;  dereference - value of X now on stack
  15 ADR   -2          ;  push address of Y on stack
  17 VAL               ;  dereference - value of Y now on stack
  18 ADD               ;  add X to Y
  19 STO               ;  store result as new value of Y
  20 ADR   -1          ;  push address of X on stack
  22 VAL               ;  dereference - value of X now on stack
  23 LIT    0          ;  push constant 0 onto stack
  25 EQL               ;  check equality
  26 BZE    7          ;  branch if X # 0
  28 PRS   ’Total is’  ;  label output
  30 ADR   -2          ;  push address of Y on stack
  32 VAL               ;  dereference - value of Y now on stack
  33 PRN               ;  write result
  34 HLT               ;  terminate execution

Exercises 

4.17 Would you write code anything like that given in Example 4.5 if you had to translate the
corresponding algorithm into a familiar ASSEMBLER language directly? 

4.18 How difficult would it be to hand translate programs written in this stack machine code into
your favourite ASSEMBLER ? 

4.19 Use the stack language (and, in due course, its interpreter) to write and test the simple
programs suggested in Exercises 4.6. 

4.4.4 An emulator for the stack machine 

Once again, to emulate this machine by means of a program written in Modula-2 or C++, it will be
convenient to define an interface to the machine by means of a definition module or appropriate
class. As in the case of the accumulator machine, the main exported facility is a routine to perform
the emulation itself, but for expediency we shall export further entities that make it easy to develop
an assembler, compiler, or loader that will leave pseudo-code directly in memory after translation
of some source code. 

  const int STKMC_memsize = 512;  // Limit on memory

  // machine instructions - order is significant
  enum STKMC_opcodes {
    STKMC_adr, STKMC_lit, STKMC_dsp, STKMC_brn, STKMC_bze, STKMC_prs, STKMC_add,
    STKMC_sub, STKMC_mul, STKMC_dvd, STKMC_eql, STKMC_neq, STKMC_lss, STKMC_geq,
    STKMC_gtr, STKMC_leq, STKMC_neg, STKMC_val, STKMC_sto, STKMC_ind, STKMC_stk,
    STKMC_hlt, STKMC_inn, STKMC_prn, STKMC_nln, STKMC_nop, STKMC_nul
  };



  typedef enum {
    running, finished, badmem, baddata, nodata, divzero, badop, badind
  } status;
  typedef int STKMC_address;

  class STKMC {
    public:
      int mem[STKMC_memsize];  // virtual machine memory

      void listcode(char *filename, STKMC_address codelen);
      // Lists the codelen instructions stored in mem on named output file

      void emulator(STKMC_address initpc, STKMC_address codelen,
                    STKMC_address initsp, FILE *data, FILE *results,
                    bool tracing);
      // Emulates action of the codelen instructions stored in mem, with
      // program counter initialized to initpc, stack pointer initialized to
      // initsp.  data and results are used for I/O.  Tracing at the code level
      // may be requested

      void interpret(STKMC_address codelen, STKMC_address initsp);
      // Interactively opens data and results files.  Then interprets the
      // codelen instructions stored in mem, with stack pointer initialized
      // to initsp

      STKMC_opcodes opcode(char *str);
      // Maps str to opcode, or to STKMC_nul if no match can be found

      STKMC();
      // Initializes stack machine
  };

The emulator itself has to model the typical fetch-execute cycle of an actual machine. This is easily
achieved as before, and follows an almost identical pattern to that used for the other machine. A full
implementation is to be found on the accompanying diskette; only the important parts are listed
here for the reader to study: 

  bool STKMC::inbounds(int p)
  // Check that memory pointer p does not go out of bounds.  This should not
  // happen with correct code, but it is just as well to check
  { if (p < stackmin || p >= STKMC_memsize) ps = badmem;
    return (ps == running);
  }

  void STKMC::stackdump(STKMC_address initsp, FILE *results, STKMC_address pcnow)
  // Dump data area - useful for debugging
  { int online = 0;
    fprintf(results, "\nStack dump at %4d", pcnow);
    fprintf(results, " SP:%4d BP:%4d SM:%4d\n", cpu.sp, cpu.bp, stackmin);
    for (int l = stackmax - 1; l >= cpu.sp; l--)
    { fprintf(results, "%7d:%5d", l, mem[l]);
      online++; if (online % 6 == 0) putc(’\n’, results);
    }
    putc(’\n’, results);
  }

  void STKMC::trace(FILE *results, STKMC_address pcnow)
  // Simple trace facility for run time debugging
  { fprintf(results, " PC:%4d BP:%4d SP:%4d TOS:", pcnow, cpu.bp, cpu.sp);
    if (cpu.sp < STKMC_memsize)
      fprintf(results, "%4d", mem[cpu.sp]);
    else
      fprintf(results, "????");
    fprintf(results, " %s", mnemonics[cpu.ir]);
    switch (cpu.ir)
    { case STKMC_adr:
      case STKMC_prs:
      case STKMC_lit:
      case STKMC_dsp:
      case STKMC_brn:
      case STKMC_bze:
        fprintf(results, "%7d", mem[cpu.pc]); break;
      // no default needed
    }
    putc(’\n’, results);
  }

  void STKMC::postmortem(FILE *results, STKMC_address pcnow)
  // Report run time error and position
  { putc(’\n’, results);



    switch (ps)
    { case badop:    fprintf(results, "Illegal opcode"); break;
      case nodata:   fprintf(results, "No more data"); break;
      case baddata:  fprintf(results, "Invalid data"); break;
      case divzero:  fprintf(results, "Division by zero"); break;
      case badmem:   fprintf(results, "Memory violation"); break;
      case badind:   fprintf(results, "Subscript out of range"); break;
    }
    fprintf(results, " at %4d\n", pcnow);
  }

  void STKMC::emulator(STKMC_address initpc, STKMC_address codelen,
                       STKMC_address initsp, FILE *data, FILE *results,
                       bool tracing)
  { STKMC_address pcnow;  // current program counter
    stackmax = initsp;
    stackmin = codelen;
    ps = running;
    cpu.sp = initsp;
    cpu.bp = initsp;      // initialize registers
    cpu.pc = initpc;      // initialize program counter
    do
    { pcnow = cpu.pc;
      if (unsigned(mem[cpu.pc]) > int(STKMC_nul)) ps = badop;
      else
      { cpu.ir = STKMC_opcodes(mem[cpu.pc]); cpu.pc++;  // fetch
        if (tracing) trace(results, pcnow);
        switch (cpu.ir)                                 // execute
        { case STKMC_adr:
            cpu.sp--;
            if (inbounds(cpu.sp))
              { mem[cpu.sp] = cpu.bp + mem[cpu.pc]; cpu.pc++; }
            break;
          case STKMC_lit:
            cpu.sp--;
            if (inbounds(cpu.sp)) { mem[cpu.sp] = mem[cpu.pc]; cpu.pc++; }
            break;
          case STKMC_dsp:
            cpu.sp -= mem[cpu.pc];
            if (inbounds(cpu.sp)) cpu.pc++;
            break;
          case STKMC_brn:
            cpu.pc = mem[cpu.pc]; break;
          case STKMC_bze:
            cpu.sp++;
            if (inbounds(cpu.sp))
            { if (mem[cpu.sp - 1] == 0) cpu.pc = mem[cpu.pc]; else cpu.pc++; }
            break;
          case STKMC_prs:
            if (tracing) fputs(BLANKS, results);
            int loop = mem[cpu.pc];
            cpu.pc++;
            while (inbounds(loop) && mem[loop] != 0)
              { putc(mem[loop], results); loop--; }
            if (tracing) putc(’\n’, results);
            break;
          case STKMC_add:
            cpu.sp++;
            if (inbounds(cpu.sp)) mem[cpu.sp] += mem[cpu.sp - 1];
            break;
          case STKMC_sub:
            cpu.sp++;
            if (inbounds(cpu.sp)) mem[cpu.sp] -= mem[cpu.sp - 1];
            break;
          case STKMC_mul:
            cpu.sp++;
            if (inbounds(cpu.sp)) mem[cpu.sp] *= mem[cpu.sp - 1];
            break;
          case STKMC_dvd:
            cpu.sp++;
            if (inbounds(cpu.sp))
            { if (mem[cpu.sp - 1] == 0)
                ps = divzero;
              else
                mem[cpu.sp] /= mem[cpu.sp - 1];
            }
            break;
          case STKMC_eql:
            cpu.sp++;
            if (inbounds(cpu.sp)) mem[cpu.sp] = (mem[cpu.sp] == mem[cpu.sp - 1]);
            break;
          case STKMC_neq:
            cpu.sp++;



            if (inbounds(cpu.sp)) mem[cpu.sp] = (mem[cpu.sp] != mem[cpu.sp - 1]);
            break;
          case STKMC_lss:
            cpu.sp++;
            if (inbounds(cpu.sp)) mem[cpu.sp] = (mem[cpu.sp] < mem[cpu.sp - 1]);
            break;
          case STKMC_geq:
            cpu.sp++;
            if (inbounds(cpu.sp)) mem[cpu.sp] = (mem[cpu.sp] >= mem[cpu.sp - 1]);
            break;
          case STKMC_gtr:
            cpu.sp++;
            if (inbounds(cpu.sp)) mem[cpu.sp] = (mem[cpu.sp] > mem[cpu.sp - 1]);
            break;
          case STKMC_leq:
            cpu.sp++;
            if (inbounds(cpu.sp)) mem[cpu.sp] = (mem[cpu.sp] <= mem[cpu.sp - 1]);
            break;
          case STKMC_neg:
            if (inbounds(cpu.sp)) mem[cpu.sp] = -mem[cpu.sp];
            break;
          case STKMC_val:
            if (inbounds(cpu.sp) && inbounds(mem[cpu.sp]))
              mem[cpu.sp] = mem[mem[cpu.sp]];
            break;
          case STKMC_sto:
            cpu.sp++;
            if (inbounds(cpu.sp) && inbounds(mem[cpu.sp]))
              mem[mem[cpu.sp]] = mem[cpu.sp - 1];
            cpu.sp++;
            break;
          case STKMC_ind:
            if ((mem[cpu.sp + 1] < 0) || (mem[cpu.sp + 1] >= mem[cpu.sp]))
              ps = badind;
            else
            { cpu.sp += 2;
              if (inbounds(cpu.sp)) mem[cpu.sp] -= mem[cpu.sp - 1];
            }
            break;
          case STKMC_stk:
            stackdump(initsp, results, pcnow); break;
          case STKMC_hlt:
            ps = finished; break;
          case STKMC_inn:
            if (inbounds(cpu.sp) && inbounds(mem[cpu.sp]))
            { if (fscanf(data, "%d", &mem[mem[cpu.sp]]) == 0)
                ps = baddata;
              else
                cpu.sp++;
            }
            break;
          case STKMC_prn:
            if (tracing) fputs(BLANKS, results);
            cpu.sp++;
            if (inbounds(cpu.sp)) fprintf(results, " %d", mem[cpu.sp - 1]);
            if (tracing) putc(’\n’, results);
            break;
          case STKMC_nln:
            putc(’\n’, results); break;
          case STKMC_nop:
            break;
          default:
            ps = badop; break;
        }
      }
    } while (ps == running);
    if (ps != finished) postmortem(results, pcnow);
  }

We should remark that there is rather more error-checking code in this interpreter than we should
like. This will detract from the efficiency of the interpreter, but is code that is probably very
necessary when testing the system. 

Exercises 



4.20 Can you think of ways in which this interpreter can be improved, both as regards efficiency,
and user friendliness? In particular, try adding debugging aids over and above the simple stack
dump already provided. Can you think of any ways in which it could be made to detect infinite
loops in a user program, or to allow itself to be manually interrupted by an irate or frustrated user? 

4.21 The interpreter attempts to prevent corruption of the memory by detecting when the machine
registers go out of bounds. The implementation above is not totally foolproof so, as a useful
exercise, improve on it. One might argue that correct code will never cause such corruption to
occur, but if one attempts to write stack machine code by hand, it will be found easy to "push"
without "popping" or vice versa, and so the checks are very necessary. 

4.22 The interpreter checks for division by zero, but does no other checking that arithmetic
operations will stay within bounds. Improve it so that it does so, bearing in mind that one has to
predict overflow, rather than wait for it to occur. 

4.23 As an alternative, extend the machine so that overflow detection does not halt the program, but
sets an overflow flag in the processor. Provide operations whereby the programmer can check this
flag and take whatever action he or she deems appropriate. 

4.24 One of the advantages of an emulated machine is that it is usually very easy to extend it
(provided the host language for the interpreter can support the features required). Try introducing
two new operations, say INC and PRC, which will read and print single character data. Then rework
those of Exercises 4.6 that involve characters. 

4.25 If you examine the code in Examples 4.4 and 4.5 - and in the solutions to Exercises 4.6 - you
will observe that the sequences 

                 ADR x
                 VAL

and 

                 ADR x
                 (calculations)
                 STO

are very common. Introduce and implement two new operations 

                 PSH  A     Push   Mem[CPU.BP + A]   onto stack to form new  TOS
                 POP  A     Pop   TOS   and assign   Mem[CPU.BP + A] := TOS

Then rework some of Exercise 4.6 using these facilities, and comment on the possible advantages
of having these new operations available. 

4.26 As a further variation on the emulated machine, develop a variation where the branch
instructions are "relative" rather than "absolute". This makes for rather simpler transition to
relocatable code. 

4.27 Is it possible to accomplish Boolean (NOT, AND and OR) operations using the current
instruction set? If not, how would you extend the instruction set to incorporate these? If they are not
strictly necessary, would they be useful additions anyway? 

4.28 As yet another alternative, suppose the machine had a set of condition flags such as Z and P,
similar to those used in the single-accumulator machine of the last section. How would the
instruction set and the emulator need to be changed to use these? Would their presence make it



easier to write programs, particularly those that need to evaluate complex Boolean expressions? 

4.4.5 A minimal assembler for the machine 

To be able to use this system we must, of course, have some way of loading or assembling code
into memory. An assembler might conveniently be developed using the following interface, very
similar to that used for the single- accumulator machine. 

  class STKASM {
    public:
      STKASM(char *sourcename, STKMC *M);
      // Opens source file from supplied sourcename

      ~STKASM();
      // Closes source file

      void assemble(bool &errors, STKMC_address &codetop,
                    STKMC_address &stktop);
      // Assembles source code from an input file and loads codetop
      // words of code directly into memory mem[0 .. codetop-1],
      // storing strings in the string pool at the top of memory in
      // mem[stktop .. STKMC_memsize-1].
      //
      // Returns
      //    codetop = number of instructions assembled and stored
      //              in mem[0] .. mem[codetop - 1]
      //    stktop  = 1 + highest byte in memory available
      //              below string pool in mem[stktop] .. mem[STK_memsize-1]
      //    errors  = true if erroneous instruction format detected
      // Instruction format :
      //    Instruction  = [Label] Opcode [AddressField] [Comment]
      //    Label        = Integer
      //    Opcode       = STKMC_Mnemonic
      //    AddressField = Integer | ’String’
      //    Comment      = String
      //
      // A string AddressField may only be used with a PRS opcode
      // Instructions are supplied one to a line; terminated at end of input file
  };

This interface would allow us to develop sophisticated assemblers without altering the rest of the
system - merely the implementation. In particular we can write a load-and-go assembler/interpreter
very easily, using essentially the same system as was suggested in section 4.3.5. 

The objective of this chapter is to introduce the principles of machine emulation, and not to be too
concerned about the problems of assembly. If, however, we confine ourselves to assembling code
where the operations are denoted by their mnemonics, but all the addresses and offsets are written
in absolute form, as was done for Examples 4.4 and 4.5, a rudimentary assembler can be written
relatively easily. The essence of this is described informally by an algorithm like 

  BEGIN
    CodeTop := 0;
    REPEAT
      SkipLabel;
      IF NOT EOF(SourceFile) THEN
        Extract(Mnemonic);
        Convert(Mnemonic, OpCode);
        Mem[CodeTop] := OpCode; Increment(CodeTop);
        IF OpCode = PRS THEN
          Extract(String); Store(String, Address);
          Mem[CodeTop] := Address; Increment(CodeTop);
        ELSIF OpCode in {ADR, LIT, DSP, BRN, BZE} THEN
          Extract(Address); Mem[CodeTop] := Address; Increment(CodeTop);
        END;
        IgnoreComments;
      END
    UNTIL EOF(SourceFile)
  END

An implementation of this is to be found on the source diskette, where code is assumed to be



supplied to the machine in free format, one instruction per line. Comments and labels may be
added, as in the examples given earlier, but these are simply ignored by the assembler. Since
absolute addresses are required, any labels are more of a nuisance than they are worth. 

Exercises 

4.29 The assembler on the source diskette attempts some, but not much, error detection. Investigate
how it could be improved. 

4.30 The machine is rather wasteful of memory. Had we used a byte oriented approach we could
have stored the code and the literal strings far more compactly. Develop an implementation that
does this. 

4.31 It might be deemed unsatisfactory to locate the literal pool in high memory. An alternative
arrangement would be to locate it immediately above the executable code, on the lines of Figure
4.6. Develop a variation on the assembler (and, if necessary, the interpreter) to exploit this idea. 

Further reading 

Other descriptions of pseudo-machines and of stack machines are to be found in the books by
Wakerly (1981), Brinch Hansen (1985), Wirth (1986, 1996), Watt (1993), and Bennett (1990). 

The very comprehensive stack-based interpreter for the Zürich Pascal-P system is fully described in
the book by Pemberton and Daniels (1982). 
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5 LANGUAGE SPECIFICATION 

A study of the syntax and semantics of programming languages may be made at many levels, and is
an important part of modern Computer Science. One can approach it from a very formal viewpoint,
or from a very informal one. In this chapter we shall mainly be concerned with ways of specifying
the concrete syntax of languages in general, and programming languages in particular. This forms a
basis for the further development of the syntax- directed translation upon which much of the rest of
this text depends. 

5.1 Syntax, semantics, and pragmatics 

People use languages in order to communicate. In ordinary speech they use natural languages like
English or French; for more specialized applications they use technical languages like that of
mathematics, for example 

 x   :: | x -  | < 

We are mainly concerned with programming languages, which are notations for describing
computations. (As an aside, the word "language" is regarded by many to be unsuitable in this
context. The word "notation" is preferable; we shall, however, continue to use the traditional
terminology.) A useful programming language must be suited both to describing and to
implementing the solution to a problem, and it is difficult to find languages which satisfy both
requirements - efficient implementation seems to require the use of low-level languages, while easy
description seems to require the use of high-level languages. 

Most people are taught their first programming language by example. This is admirable in many
respects, and probably unavoidable, since learning the language is often carried out in parallel with
the more fundamental process of learning to develop algorithms. But the technique suffers from the
drawback that the tuition is incomplete - after being shown only a limited number of examples, one
is inevitably left with questions of the "can I do this?" or "how do I do this?" variety. In recent years
a great deal of effort has been spent on formalizing programming (and other) languages, and in
finding ways to describe them and to define them. Of course, a formal programming language has
to be described by using another language. This language of description is called the
metalanguage. Early programming languages were described using English as the metalanguage.
A precise specification requires that the metalanguage be completely unambiguous, and this is not a
strong feature of English (politicians and comedians rely heavily on ambiguity in spoken languages
in pursuing their careers!). Some beginner programmers find that the best way to answer the
questions which they have about a programming language is to ask them of the compilers which
implement the language. This is highly unsatisfactory, as compilers are known to be error-prone,
and to differ in the way they handle a particular language. 

Natural languages, technical languages and programming languages are alike in several respects. In
each case the sentences of a language are composed of sets of strings of symbols or tokens or
words, and the construction of these sentences is governed by the application of two sets of rules. 

Syntax Rules describe the form of the sentences in the language. For example, in English, the



sentence "They can fish" is syntactically correct, while the sentence "Can fish they" is
incorrect. To take another example, the language of binary numerals uses only the symbols 0
and 1, arranged in strings formed by concatenation, so that the sentence 101 is syntactically
correct for this language, while the sentence 1110211 is syntactically incorrect. 

Semantic Rules, on the other hand, define the meaning of syntactically correct sentences in a
language. By itself the sentence 101 has no meaning without the addition of semantic rules to
the effect that it is to be interpreted as the representation of some number using a positional
convention. The sentence "They can fish" is more interesting, for it can have two possible
meanings; a set of semantic rules would be even harder to formulate. 

The formal study of syntax as applied to programming languages took a great step forward in about
1960, with the publication of the Algol 60 report by Naur (1960, 1963), which used an elegant, yet
simple, notation known as Backus-Naur-Form (sometimes called Backus-Normal-Form) which
we shall study shortly. Simply understood notations for describing semantics have not been so
forthcoming, and many semantic features of languages are still described informally, or by
example. 

Besides being aware of syntax and semantics, the user of a programming language cannot avoid
coming to terms with some of the pragmatic issues involved with implementation techniques,
programming methodology, and so on. These factors govern subtle aspects of the design of almost
every practical language, often in a most irritating way. For example, in Fortran 66 and Fortran 77
the length of an identifier was restricted to a maximum of six characters - a legacy of the word size
on the IBM computer for which the first Fortran compiler was written. 

5.2 Languages, symbols, alphabets and strings 

In trying to specify programming languages rigorously one must be aware of some features of
formal language theory. We start with a few abstract definitions: 

A symbol or token is an atomic entity, represented by a character, or sometimes by a reserved
or key word, for example + , ; END . 

An alphabet A is a non-empty, but finite, set of symbols. For example, the alphabet of
Modula-2 includes the symbols 

- / * a b c A B C BEGIN CASE END

while that for C++ would include a corresponding set 

- / * a b c A B C { switch }

A phrase, word or string "over" an alphabet A is a sequence  = a1a2...an of symbols from A.

It is often useful to hypothesize the existence of a string of length zero, called the null string
or empty word, usually denoted by  (some authors use  instead). This has the property that
if it is concatenated to the left or right of any word, that word remains unaltered. 

a  =  a = a



The set of all strings of length n over an alphabet A is denoted by An. The set of all strings
(including the null string) over an alphabet A is called its Kleene closure or, simply, closure,
and is denoted by A*. The set of all strings of length at least one over an alphabet A is called
its positive closure, and is denoted by A+. Thus 

A* = A0    A1    A2    A3 ...

A language L over an alphabet A is a subset of A*. At the present level of discussion this
involves no concept of meaning. A language is simply a set of strings. A language consisting
of a finite number of strings can be defined simply by listing all those strings, or giving a rule
for their derivation. This may even be possible for simple infinite languages. For example, we
might have 

L = { ( [a+ )n ( b] )n | n > 0 }

(the vertical stroke can be read "such that"), which defines exciting expressions like 

[a + b]
[a + [a + b] b]
[a + [a + [a + b] b] b]

5.3 Regular expressions 

Several simple languages - but by no means all - can be conveniently specified using the notation of
regular expressions. A regular expression specifies the form that a string may take by using the
symbols from the alphabet A in conjunction with a few other metasymbols, which represent
operations that allow for 

Concatenation - symbols or strings may be concatenated by writing them next to one another,
or by using the metasymbol · (dot) if further clarity is required. 

Alternation - a choice between two symbols a and b is indicated by separating them by the
metasymbol | (bar). 

Repetition - a symbol a followed by the metasymbol * (star) indicates that a sequence of zero
or more occurrences of a is allowable. 

Grouping - a group of symbols may be surrounded by the metasymbols ( and ) (parentheses). 

As an example of a regular expression, consider 

1 ( 1 | 0 )* 0

This generates the set of strings, each of which has a leading 1, is followed by any number of 0’s or
1’s, and is terminated with a 0 - that is, the set 

{ 10, 100, 110, 1000 ... }



If a semantic interpretation is required, the reader will recognize this as the set of strings
representing non-zero even numbers in a binary representation, 

Formally, regular expressions may be defined inductively as follows: 

A regular expression denotes a regular set of strings. 

Ø is a regular expression denoting the empty set. 

 is a regular expression denoting the set that contains only the empty string. 

 is a regular expression denoting a set containing only the string . 

If A and B are regular expressions, then ( A ) and A | B and A · B and A* are also regular
expressions. 

Thus, for example, if  and  are strings generated by regular expressions,  and  ·  are also
generated by a regular expression. 

The reader should take note of the following points: 

As in arithmetic, where multiplication and division take precedence over addition and
subtraction, there is a precedence ordering between these operators. Parentheses take
precedence over repetition, which takes precedence over concatenation, which in turn takes
precedence over alternation. Thus, for example, the following two regular expressions are
equivalent 

his | hers        and        h ( i | er ) s

and both define the set of strings   {  his , hers }. 

If the metasymbols are themselves allowed to be members of the alphabet, the convention is
to enclose them in quotes when they appear as simple symbols within the regular expression.
For example, comments in Pascal may be described by the regular expression 

"( " "* "    c*    "* " ") "        where  c    A

Some other shorthand is commonly found. For example, the positive closure symbol + is
sometimes used, so that a+ is an alternative representation for a a*. A question mark is
sometimes used to denote an optional instance of a, so that a? denotes a | . Finally, brackets
and hyphens are often used in place of parentheses and bars, so that [a-eBC] denotes
(a | b | c | d | e | B | C). 

Regular expressions have a variety of algebraic properties, among which we can draw
attention to 

        A | B = B | A                       (commutativity for alternation)
        A | ( B | C ) = ( A | B ) | C       (associativity for alternation)
        A | A  =  A                         (absorption for alternation)
        A · ( B · C ) = ( A · B ) · C       (associativity for concatenation)
        A ( B | C ) = A B | A C             (left distributivity)
        ( A | B ) C = A C | B C             (right distributivity)
        A  =  A = A                       (identity for concatenation)



        A * A * = A *                       (absorption for closure)

Regular expressions are of practical interest in programming language translation because they can
be used to specify the structure of the tokens (like identifiers, literal constants, and comments)
whose recognition is the prerogative of the scanner (lexical analyser) phase of a compiler. 

For example, the set of integer literals in many programming languages is described by the regular
expression 

(0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)+ 

or, more verbosely, by 

(0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9) · (0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)* 

or, more concisely, by 

[0-9 ]+

and the set of identifiers by a similar regular expression 

(a | b | c | ...  | Z) · (0 | 1 | ...  | 9 | a | ...  | Z)* 

or, more concisely, by 

[a-zA-Z ][a-zA-Z0-9 ]*

Regular expressions are also powerful enough to describe complete simple assembler languages of
the forms illustrated in the last chapter, although the complete expression is rather tedious to write
down, and so is left as an exercise for the zealous reader. 

Exercises 

5.1 How would the regular expression for even binary numbers need modification if the string 0
(zero) was allowed to be part of the language? 

5.2 In some programming languages, identifiers may have embedded underscore characters.
However, the first character may not be an underscore, nor may two underscores appear in
succession. Write a regular expression that generates such identifiers. 

5.3 Can you find regular expressions that describe the form of REAL literal constants in Pascal? In
C++? In Modula-2? 

5.4 Find a regular expression that generates the Roman representation of numbers from 1 through
99. 

5.5 Find a regular expression that generates strings like "facetious" and "abstemious" that contain
all five vowels, in order, but appearing only once each. 



5.6 Find a regular expression that generates all strings of 0’s and 1’s that have an odd number of 0’s
and an even number of 1’s. 

5.7 Describe the simple assembler languages of the last chapter by means of regular expressions. 

5.4 Grammars and productions 

Most practical languages are, of course, rather more complicated than can be defined by regular
expressions. In particular, regular expressions are not powerful enough to describe languages that
manifest self-embedding in their descriptions. Self-embedding comes about, for example, in
describing structured statements which have components that can themselves be statements, or
expressions comprised of factors that may contain further parenthesized expressions, or variables
declared in terms of types that are structured from other types, and so on. 

Thus we move on to consider the notion of a grammar. This is essentially a set of rules for
describing sentences - that is, choosing the subsets of A* in which one is interested. Formally, a
grammar G is a quadruple { N, T, S, P } with the four components 

(a) N - a finite set of non-terminal symbols,
(b) T - a finite set of terminal symbols,
(c) S - a special goal or start or distinguished symbol,
(d) P - a finite set of production rules or, simply, productions.

(The word "set" is used here in the mathematical sense.) A sentence is a string composed entirely of
terminal symbols chosen from the set T. On the other hand, the set N denotes the syntactic classes
of the grammar, that is, general components or concepts used in describing sentence construction. 

The union of the sets N and T denotes the vocabulary V of the grammar. 

V  =  N  T

and the sets N and T are required to be disjoint, so that 

N  T = Ø

where Ø is the empty set. 

A convention often used when describing grammars in the abstract is to use lower-case Greek
letters ( , , , ...) to represent strings of terminals and/or non-terminals, capital Roman letters

(A, B, C ...) to represent single non- terminals and lower case Roman letters (a, b, c ...) to represent
single terminals. Each author seems to have his or her own set of conventions, so the reader should
be on guard when consulting the literature. Furthermore, when referring to the types of strings
generated by productions, use is often made of the closure operators. Thus, if a string  consists of
zero or more terminals (and no non-terminals) we should write 

  T *

while if  consists of one or more non-terminals (but no terminals) 



  N+

and if  consists of zero or more terminals and/or non-terminals 

  (N  T )*    that is,    V*

English words used as the names of non-terminals, like sentence or noun are often non-terminals.
When describing programming languages, reserved or key words (like END, BEGIN  and CASE) are
inevitably terminals. The distinction between these is sometimes made with the use of different type
face - we shall use italic font for non-terminals and monospaced font  for terminals where it is
necessary to draw a firm distinction. 

This probably all sounds very abstruse, so let us try to enlarge a little, by considering English as a
written language. The set T here would be one containing the 26 letters of the common alphabet,
and punctuation marks. The set N would be the set containing syntactic descriptors - simple ones
like noun, adjective, verb, as well as more complex ones like noun phrase, adverbial clause and
complete sentence. The set P would be one containing syntactic rules, such as a description of a
noun phrase as a sequence of adjective followed by noun. Clearly this set can become very large
indeed - much larger than T or even N. The productions, in effect, tell us how we can derive
sentences in the language. We start from the distinguished symbol S, (which is always a
non-terminal such as complete sentence) and, by making successive substitutions, work through a
sequence of so- called sentential forms towards the final string, which contains terminals only. 

There are various ways of specifying productions. Essentially a production is a rule relating to a
pair of strings, say  and , specifying how one may be transformed into the other. Sometimes they
are called rewrite rules or syntax equations to emphasize this property. One way of denoting a
general production is 

  

To introduce our last abstract definitions, let us suppose that  and  are two strings each consisting
of zero or more non-terminals and/or terminals (that is, ,    V = (N  T)* ). 

If we can obtain the string  from the string  by employing one of the productions of the
grammar G, then we say that  directly produces  (or that  is directly derived from ), and
express this as    . 

That is, if   =  and   = , and    is a production in G, then   . 

If we can obtain the string  from the string  by applying n productions of G, with n  1, then
we say that  produces  in a non-trivial way (or that  is derived from  in a non-trivial way),
and express this as  + . 

That is, if there exists a sequence o, 1, 2, ... k (with k  1), such that 

 = o,

j-1  j      (for 1  j  k)

k = ,



then  +  . 

If we can produce the string  from the string  by applying n productions of G, with n  0
(this includes the above and, in addition, the trivial case where  = ), then we say that 
produces  (or that  is derived from  ), and express this   *   . 

In terms of this notation, a sentential form is the goal or start symbol, or any string that can
be derived from it, that is, any string  such that S *  . 

A grammar is called recursive if it permits derivations of the form A + 1 A 2, (where

A  N, and 1, 2  V *. More specifically, it is called left recursive if A + A  and right

recursive if A +  A. 

A grammar is self-embedding if it permits derivations of the form A + 1 A 2, (where

A  N, and where 1, 2  V*, but where 1 or 2 contain at least one terminal (that is

( 1  T )    ( 2  T )  Ø ). 

Formally we can now define a language L(G) produced by a grammar G by the relation 

L(G) = { w | w  T * ; S * w }

5.5 Classic BNF notation for productions 

As we have remarked, a production is a rule relating to a pair of strings, say  and , specifying how
one may be transformed into the other. This may be denoted   , and for simple theoretical
grammars use is often made of this notation, using the conventions about the use of upper case
letters for non-terminals and lower case ones for terminals. For more realistic grammars, such as
those used to specify programming languages, the most common way of specifying productions for
many years was to use an alternative notation invented by Backus, and first called
Backus-Normal-Form. Later it was realized that it was not, strictly speaking, a "normal form", and
was renamed Backus-Naur-Form. Backus and Naur were largely responsible for the Algol 60 report
(Naur, 1960 and 1963), which was the first major attempt to specify the syntax of a programming
language using this notation. Regardless of what the acronym really stands for, the notation is now
universally known as BNF. 

In classic BNF, a non-terminal is usually given a descriptive name, and is written in angle brackets
to distinguish it from a terminal symbol. (Remember that non-terminals are used in the construction
of sentences, although they do not actually appear in the final sentence.) In BNF, productions have
the form 

leftside  definition

Here " " can be interpreted as "is defined as" or "produces" (in some texts the symbol ::=  is used
in preference to ). In such productions, both leftside and definition consist of a string
concatenated from one or more terminals and non-terminals. In fact, in terms of our earlier notation 



leftside  (N  T )+ 

and 

definition  (N  T )* 

although we must be more restrictive than that, for leftside must contain at least one non-terminal,
so that we must also have 

leftside  N  Ø

Frequently we find several productions with the same leftside, and these are often abbreviated by
listing the definitions as a set of one or more alternatives, separated by a vertical bar symbol "|". 

5.6 Simple examples 

It will help to put the abstruse theory of the last two sections in better perspective if we consider
two simple examples in some depth. 

Our first example shows a grammar for a tiny subset of English itself. In full detail we have 

   G = { N , T , S , P}
   N  = {<sentence> , <qualified noun> , <noun> , <pronoun> , <verb> , <adjective> }
   T = { the , man , girl , boy , lecturer , he , she , drinks , sleeps ,
         mystifies , tall , thin , thirsty }
   S = <sentence> 
   P = {  <sentence>          the <qualified noun> <verb>       (1)
                              | <pronoun> <verb>                  (2)
          <qualified noun>   <adjective> <noun>                 (3)
          <noun>             man | girl | boy | lecturer        (4, 5, 6, 7)
          <pronoun>          he | she                           (8, 9)
          <verb>             talks | listens | mystifies        (10, 11, 12)
          <adjective>        tall | thin | sleepy               (13, 14, 15)
       }

The set of productions defines the non-terminal <sentence> as consisting of either the terminal "the"
followed by a <qualified noun> followed by a <verb>, or as a <pronoun> followed by a <verb>. A
<qualified noun> is an <adjective> followed by a <noun>, and a <noun> is one of the terminal
symbols "man" or "girl" or "boy" or "lecturer". A <pronoun> is either of the terminals "he" or "she",
while a <verb> is either "talks" or "listens" or "mystifies". Here <sentence>, <noun>, <qualified
noun>, <pronoun>, <adjective> and <verb> are non-terminals. These do not appear in any sentence
of the language, which includes such majestic prose as 

the thin lecturer mystifies
he talks
the sleepy boy listens

From a grammar, one non-terminal is singled out as the so-called goal or start symbol. If we want
to generate an arbitrary sentence we start with the goal symbol and successively replace each
non-terminal on the right of the production defining that non-terminal, until all non-terminals have
been removed. In the above example the symbol <sentence> is, as one would expect, the goal
symbol. 

Thus, for example, we could start with <sentence> and from this derive the sentential form 



the <qualified noun> <verb>

In terms of the definitions of the last section we say that <sentence> directly produces "the
<qualified noun> <verb>". If we now apply production 3 ( <qualified noun>  <adjective> <noun>
) we get the sentential form 

the <adjective> <noun> <verb>

In terms of the definitions of the last section, "the <qualified noun> <verb>" directly produces "the
<adjective> <noun> <verb>", while <sentence> has produced this sentential form in a non-trivial
way. If we now follow this by applying production 14 ( <adjective>  thin ) we get the form 

the thin <noun> <verb>

Application of production 10 ( <verb>  talks ) gets to the form 

the thin <noun> talks

Finally, after applying production 6 ( <noun>  boy ) we get the sentence 

the thin boy talks

The end result of all this is often represented by a tree, as in Figure 5.1, which shows a phrase
structure tree or parse tree for our sentence. In this representation, the order in which the
productions were used is not readily apparent, but it should now be clear why we speak of
"terminals" and "non-terminals" in formal language theory - the leaves of such a tree are all
terminals of the grammar; the interior nodes are all labelled by non-terminals. 

A moment’s thought should reveal that there are many possible derivation paths from the goal or
start symbol to the final sentence, depending on the order in which the productions are applied. It is
convenient to be able to single out a particular derivation as being the derivation. This is generally
called the canonical derivation, and although the choice is essentially arbitrary, the usual one is
that where at each stage in the derivation the left-most non-terminal is the one that is replaced - this
is called a left canonical derivation. (In a similar way we could define a right canonical
derivation.) 

Not only is it important to use grammars generatively in this way, it is also important - perhaps
more so - to be able to take a given sentence and determine whether it is a valid member of the
language - that is, to see whether it could have been obtained from the goal symbol by a suitable
choice of derivations. When mere recognition is accompanied by the determination of the
underlying tree structure, we speak of parsing. We shall have a lot more to say about this in later
chapters; for the moment note that there are several ways in which we can attempt to solve the



problem. A fairly natural way is to start with the goal symbol and the sentence, and, by reading the
sentence from left to right, to try to deduce which series of productions must have been applied. 

Let us try this on the sentence 

the thin boy talks

If we start with the goal <sentence> we can derive a wide variety of sentences. Some of these will
arise if we choose to continue by using production 1, some if we choose production 2. By reading
no further than "the" in the given sentence we can be fairly confident that we should try production
1. 

<sentence>  the <qualified noun> <verb>.

In a sense we now have a residual input string "thin boy talks" which somehow must match
<qualified noun> <verb>. We could now choose to substitute for <verb> or for <qualified noun>.
Again limiting ourselves to working from left to right, our residual sentential form <qualified noun>
<verb> must next be transformed into <adjective> <noun> <verb> by applying production 3. 

In a sense we now have to match "thin boy talks" with a residual sentential form <adjective>
<noun> <verb>. We could choose to substitute for any of <adjective>, <noun> or <verb>; if we read
the input string from the left we see that by using production 14 we can reduce the problem of
matching a residual input string "boy talks" to the residual sentential form <noun> <verb>. And so it
goes; we need not labour a very simple point here. 

The parsing problem is not always as easily solved as we have done. It is easy to see that the
algorithms used to parse a sentence to see whether it can be derived from the goal symbol will be
very different from algorithms that might be used to generate sentences (almost at random) starting
from the start symbol. The methods used for successful parsing depend rather critically on the way
in which the productions have been specified; for the moment we shall be content to examine a few
sets of productions without worrying too much about how they were developed. 

In BNF, a production may define a non-terminal recursively, so that the same non-terminal may
occur on both the left and right sides of the  sign. For example, if the production for <qualified
noun> were changed to 

<qualified noun>  <noun> | <adjective> <qualified noun> (3a, 3b)

this would define a <qualified noun> as either a <noun>, or an <adjective> followed by a <qualified
noun> (which in turn may be a <noun>, or an <adjective> followed by a <qualified noun> and so
on). In the final analysis a <qualified noun> would give rise to zero or more <adjective>s followed
by a <noun>. Of course, a recursive definition can only be useful provided that there is some way of
terminating it. The single production 

<qualified noun>  <adjective> <qualified noun> (3b)

is effectively quite useless on its own, and it is the alternative production 

<qualified noun>  <noun> (3a)

which provides the means for terminating the recursion. 



As a second example, consider a simple grammar for describing a somewhat restricted set of
algebraic expressions: 

    G = { N , T , S , P}
    N  = {<goal> , <expression> , <term> , <factor> }
    T = { a , b , c , - , * }
    S = <goal> 
    P =
        <goal>          <expression>                              (1)
        <expression>    <term> | <expression> - <term>            (2, 3)
        <term>          <factor> | <term> * <factor>              (4, 5)
        <factor>        a | b | c                                 (6, 7, 8)

It is left as an easy exercise to show that it is possible to derive the string a - b * c using these
productions, and that the corresponding phrase structure tree takes the form shown in Figure 5.2. 

A point that we wish to stress here is that the construction of this tree has, happily, reflected the
relative precedence of the multiplication and subtraction operations - assuming, of course, that the
symbols *  and - are to have implied meanings of "multiply" and "subtract" respectively. We should
also point out that it is by no means obvious at this stage how one goes about designing a set of
productions that not only describe the syntax of a programming language but also reflect some
semantic meaning for the programs written in that language. Hopefully the reader can foresee that
there will be a very decided advantage if such a choice can be made, and we shall have more to say
about this in later sections. 

Exercises 

5.8 What would be the shortest sentence in the language defined by our first example? What would
be the longest sentence? Would there be a difference if we used the alternative productions (3a,
3b)? 

5.9 Draw the phrase structure trees that correspond to the expressions a - b - c and a * b * c using
the second grammar. 

5.10 Try to extend the grammar for expressions so as to incorporate the + and /  operators. 

5.7 Phrase structure and lexical structure 

It should not take much to see that a set of productions for a real programming language grammar
will usually divide into two distinct groups. In such languages we can distinguish between the
productions that specify the phrase structure - the way in which the words or tokens of the



language are combined to form components of programs - and the productions that specify the
lexical structure or lexicon - the way in which individual characters are combined to form such
words or tokens. Some tokens are easily specified as simple constant strings standing for
themselves. Others are more generic - lexical tokens such as identifiers, literal constants, and strings
are themselves specified by means of productions (or, in many cases, by regular expressions). 

As we have already hinted, the recognition of tokens for a real programming language is usually
done by a scanner (lexical analyser) that returns these tokens to the parser (syntax analyser) on
demand. The productions involving only individual characters on their right sides are thus the
productions used by a sub-parser forming part of the lexical analyser, while the others are
productions used by the main parser in the syntax analyser. 

5.8 -productions 

The alternatives for the right-hand side of a production usually consist of a string of one or more
terminal and/or non-terminal symbols. At times it is useful to be able to derive an empty string, that
is, one consisting of no symbols. This string is usually denoted by  when it is necessary to reveal
its presence explicitly. For example, the set of productions 

            <unsigned integer>       <digit> <rest of integer>
            <rest of integer>        <digit> <rest of integer> | 
            <digit>                  0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

defines <rest of integer> as a sequence of zero or more <digit>s, and hence <unsigned integer> is
defined as a sequence of one or more <digit>s. In terms of our earlier notation we should have 

            <rest of integer>    <digit> *

or 

            <unsigned integer>    <digit> +

The production 

            <rest of integer>    

is called a null production, or an -production, or sometimes a lambda production (from an
alternative convention of using  instead of  for the null string). Applying a production of the form
L   amounts to the erasure of the non-terminal L from a sentential form; for this reason such
productions are sometimes called erasures. More generally, if for some string  it is possible that 

  *  

then we say that  is nullable. A non-terminal L is said to be nullable if it has a production whose
definition (right side) is nullable. 

5.9 Extensions to BNF 

Various simple extensions are often employed with BNF notation for the sake of increased
readability and for the elimination of unnecessary recursion (which has a strange habit of confusing



people brought up on iteration). Recursion is often employed in BNF as a means of specifying
simple repetition, as for example 

        <unsigned integer>    <digit> | <digit> <unsigned integer>

(which uses right recursion) or 

        <unsigned integer>    <digit> | <unsigned integer> <digit>

(which uses left recursion). 

Then we often find several productions used to denote alternatives which are very similar, for
example 

       <integer>              <unsigned integer> | <sign> <unsigned integer>
       <unsigned integer>     <digit> | <digit> <unsigned integer>
       <sign>                 + | -

using six productions (besides the omitted obvious ones for <digit>) to specify the form of an
<integer>. 

The extensions introduced to simplify these constructions lead to what is known as EBNF
(Extended BNF). There have been many variations on this, most of them inspired by the
metasymbols used for regular expressions. Thus we might find the use of the Kleene closure
operators to denote repetition of a symbol zero or more times, and the use of round brackets or
parentheses ( ) to group items together. 

Using these ideas we might define an integer by 

       <integer>             <sign> <unsigned integer>
       <unsigned integer>    <digit> ( <digit> ) * 

       <sign>                + | - | 

or even by 

              <integer>       ( + | - |  )  <digit> ( <digit> ) * 

which is, of course, nothing other than a regular expression anyway. In fact, a language that can be
expressed as a regular expression can always be expressed in a single EBNF expression. 

5.9.1 Wirth’s EBNF notation 

In defining Pascal and Modula-2, Wirth came up with one of these many variations on BNF which
has now become rather widely used (Wirth, 1977). Further metasymbols are used, so as to express
more succinctly the many situations that otherwise require combinations of the Kleene closure
operators and the  string. In addition, further simplifications are introduced to facilitate the
automatic processing of productions by parser generators such as we shall discuss in a later section.
In this notation for EBNF: 

Non-terminals are written as single words, as in VarDeclaration (rather than the
              < Var Declaration> of our previous notation)
Terminals     are all written in quotes, as in "BEGIN"
              (rather than as themselves, as in BNF)
|             is used, as before, to denote alternatives
(  )          (parentheses) are used to denote grouping
[  ]          (brackets) are used to denote the optional appearance of a



              symbol or group of symbols
{  }          (braces) are used to denote optional repetition of a symbol
              or group of symbols
=             is used in place of the ::=  or  symbol
.             is used to denote the end of each production
(*  *)        are used in some extensions to allow comments
             can be handled by using the [ ] notation

spaces        are essentially insignificant.

For example 

  Integer         =  Sign UnsignedInteger .
  UnsignedInteger =  digit  {  digit  } .
  Sign            =  [ "+" | " -" ] .
  digit           =  "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" .

The effect is that non-terminals are less "noisy" than in the earlier forms of BNF, while terminals
are "noisier". Many grammars used to define programming language employ far more
non-terminals than terminals, so this is often advantageous. Furthermore, since the terminals and
non-terminals are textually easily distinguishable, it is usually adequate to give only the set of
productions P when writing down a grammar, and not the complete quadruple { N, T, S, P }. 

As another example of the use of this notation we show how to describe a set of EBNF productions
in EBNF itself: 

  EBNF        =  { Production } .
  Production  =  nonterminal "=" Expression "." .
  Expression  =  Term { "|" Term } .
  Term        =  Factor { Factor } .
  Factor      =      nonterminal | terminal | "[" Expression "]"
                  | "(" Expression ")" | "{" Expression "}" .
  nonterminal =  letter { letter } .
  terminal    =  "’" character { character } "’" | ’"’ character { character } ’"’ .
  character   =  (* implementation defined *)  .

Here we have chosen to spell nonterminal and terminal in lower case throughout to emphasize that
they are lexical non-terminals of a slightly different status from the others like Production,
Expression, Term and Factor. 

A variation on the use of braces allows the (otherwise impossible) specification of a limit on the
number of times a symbol may be repeated - for example to express that an identifier in Fortran
may have a maximum of six characters. This is done by writing the lower and upper limits as sub-
and super-scripts to the right of the curly braces, as for example 

FortranIdentifier  letter { letter | digit }0
5 

5.9.2 Semantic overtones 

Sometimes productions are developed to give semantic overtones. As we shall see in a later section,
this leads more easily towards the possibility of extending or attributing the grammar to incorporate
a formal semantic specification along with the syntactic specification. For example, in describing
Modula-2, where expressions and identifiers fall into various classes at the static semantic level, we
might find among a large set of productions: 

 ConstDeclarations    =  "CONST"
                            ConstIdentifier "=" ConstExpression ";"
                            { ConstIdentifier "=" ConstExpression ";" } .
 ConstIdentifier      =  identifier .



 ConstExpression      =  Expression .

5.9.3 The British Standard for EBNF 

The British Standards Institute has a published standard for EBNF (BS6154 of 1981). The BSI
standard notation is noisier than Wirth’s one: elements of the productions are separated by commas,
productions are terminated by semicolons, and spaces become insignificant. This means that
compound words like ConstIdentifier are unnecessary, and can be written as separate words. An
example in BSI notation follows: 

 Constant Declarations  =  "CONST",
                                Constant Identifier, "=", Constant Expression, ";",
                              { Constant Identifier, "=", Constant Expression, ";" }  ;
 Constant Identifier    =  identifier ;
 Constant Expression    =  Expression ;

5.9.4 Lexical and phrase structure emphasis 

We have already commented that real programming language grammars have a need to specify
phrase structure as well as lexical structure. Sometimes the distinction between "lexical" and
"syntactic" elements is taken to great lengths. For example we might find: 

 ConstDeclarations    =  constSym 
                            ConstIdentifier equals ConstExpression semicolon
                            { ConstIdentifier equals ConstExpression semicolon } .

with productions like 

  constSym            =  "CONST" .
  semicolon           =  ";" .
  equals              =  "=" .

and so on. This may seem rather long-winded, but there are occasional advantages, for example in
allowing alternatives for limited character set machines, as in 

  leftBracket         =  "["  |  "(." .
  pointerSym          =  "^"  |  "@" .

as is used in some Pascal systems. 

5.9.5 Cocol 

The reader will recall from Chapter 2 that compiler writers often make use of compiler generators
to assist with the automated construction of parts of a compiler. Such tools usually take as input an
augmented description of a grammar, one usually based on a variant of the EBNF notations we
have just been discussing. We stress that far more is required to construct a compiler than a
description of syntax - which is, essentially, all that EBNF can provide. In later chapters we shall
describe the use of a specific compiler generator, Coco/R, a product that originated at the
University of Linz in Austria (Rechenberg and Mössenböck, 1989, Mössenböck, 1990a,b). The
name Coco/R is derived from "Compiler-Compiler/Recursive descent. A variant of Wirth’s EBNF
known as Cocol/R is used to define the input to Coco/R, and is the notation we shall prefer in the
rest of this text (to avoid confusion between two very similar acronyms we shall simply refer to
Cocol/R as Cocol). Cocol draws a clear distinction between lexical and phrase structure, and also
makes clear provision for describing the character sets from which lexical tokens are constructed. 

A simple example will show the main features of a Cocol description. The example describes a
calculator that is intended to process a sequence of simple four-function calculations involving
decimal or hexadecimal whole numbers, for example 3 + 4 * 8 =  or $3F / 7 + $1AF =  . 



  COMPILER Calculator

  CHARACTERS
    digit      = "0123456789" .
    hexdigit   = digit + "ABCDEF" .

  IGNORE CHR(1) .. CHR(31)

  TOKENS
    decNumber  = digit { digit } .
    hexNumber  = "$" hexdigit { hexdigit } .

  PRODUCTIONS
    Calculator = { Expression "=" } .
    Expression = Term { "+" Term  |  "-" Term } .
    Term       = Factor { "*" Factor |  "/" Factor } .
    Factor     = decNumber | hexNumber .
  END Calculator.

The CHARACTERS section describes the set of characters that can appear in decimal or hexadecimal
digit strings - the right sides of these productions are to be interpreted as defining sets. The TOKENS

section describes the valid forms that decimal and hexadecimal numbers may take - but notice that
we do not, at this stage, indicate how the values of these numbers are to be computed from the
digits. The PRODUCTIONS section describes the phrase structure of the calculations themselves -
again without indicating how the results of the calculations are to be obtained. 

At this stage it will probably come as no surprise to the reader to learn that Cocol, the language of
the input to Coco/R, can itself be described by a grammar - and, indeed, we may write this grammar
in a way that it could be processed by Coco/R itself. (Using Coco/R to process its own grammar is,
of course, just another example of the bootstrapping techniques discussed in Chapter 3; Coco/R is
another good example of a self-compiling compiler). A full description of Coco/R and Cocol
appears later in this text, and while the finer points of this may currently be beyond the reader’s
comprehension, the following simplified description will suffice to show the syntactic elements of
most importance: 

  COMPILER Cocol

  CHARACTERS
    letter       = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" .
    digit        = "0123456789" .
    tab          = CHR(9) .
    cr           = CHR(13) .
    lf           = CHR(10) .
    noQuote2     = ANY - ’"’ - cr - lf .
    noQuote1     = ANY - "’" - cr - lf .

  IGNORE tab + cr + lf

  TOKENS
    identifier   = letter { letter | digit } .
    string       = ’"’ { noQuote2 } ’"’ | "’" { noQuote1 } "’" .
    number       = digit { digit } .

  PRODUCTIONS
    Cocol        = "COMPILER"  Goal
                      [ Characters ]
                      [ Ignorable ]
                      [ Tokens ]
                      Productions
                   "END" Goal "." .
    Goal         = identifier .

    Characters   = "CHARACTERS" { NamedCharSet } .
    NamedCharSet = SetIdent "=" CharacterSet "." .
    CharacterSet = SimpleSet { "+" SimpleSet | "-" SimpleSet } .
    SimpleSet    = SetIdent | string | SingleChar [ ".." SingleChar ] | "ANY" .
    SingleChar   = "CHR" "(" number ")" .
    SetIdent     = identifier .

    Ignorable    = "IGNORE" CharacterSet .

    Tokens       = "TOKENS" { Token } .
    Token        = TokenIdent "=" TokenExpr "."  .



    TokenExpr    = TokenTerm { "|" TokenTerm } .
    TokenTerm    = TokenFactor { TokenFactor } [ "CONTEXT" "(" TokenExpr ")" ] .
    TokenFactor  =   TokenSymbol | "(" TokenExpr ")" | "[" TokenExpr "]"
                   | "{" TokenExpr "}" .
    TokenSymbol  = SetIdent | string .
    TokenIdent   = identifier .

    Productions  = "PRODUCTIONS" { Production } .
    Production   = NonTerminal "=" Expression  "." .
    Expression   = Term { "|" Term } .
    Term         = Factor { Factor } .
    Factor       =   Symbol | "(" Expression ")" | "[" Expression "]"
                   | "{" Expression "}" .
    Symbol       = string | NonTerminal | TokenIdent .
    NonTerminal  = identifier .

  END Cocol.

The following points are worth emphasizing: 

The productions in the TOKENS section specify identifiers, strings and numbers in the usual
simple way. 

The first production (for Cocol) shows the overall form of a grammar description as
consisting of four sections, the first three of which are all optional (although they are usually
present in practice). 

The productions for CharacterSets  show how character sets may be given names (SetIdents)
and values (of SimpleSets). 

The production for Ignorable  allows certain characters - typically line feeds and other
unimportant characters - to be included in a set that will simply be ignored by the scanner
when it searches for and recognizes tokens. 

The productions for Tokens  show how tokens (terminal classes) may be named (TokenIdents)
and defined by expressions in EBNF. Careful study of the semantic overtones of these
productions will show that they are not self-embedding - that is, one token may not be defined
in terms of another token, but only as a quoted string, or in terms of characters chosen from
the named character sets defined in the CHARACTERS section. This amounts, in effect, to
defining these tokens by means of regular expressions, even though the notation used is not
the same as that given for regular expressions in section 5.3. 

The productions for Productions  show how we define the phrase structure by naming
NonTerminals and expressing their productions in EBNF. Notice that here we are allowed to
have self-embedding and recursive productions. Although terminals may again be specified
directly as strings, we are not allowed to use the names of character sets as symbols in the
productions. 

Although it is not specified by the grammar above, one non-terminal must have the same
identifier name as the grammar itself to act as the goal symbol (and, of course, all identifiers
must be "declared" properly). 

It is possible to write input in Cocol that is syntactically correct (in terms of the grammar
above) but which cannot be fully processed by Coco/R because it does not satisfy other
constraints. This topic will be discussed further in later sections. 

We stress again that Coco/R input really specifies two grammars. One is the grammar specifying
the non- terminals for the lexical analyser (TOKENS) and the other specifies non-terminals for the



higher level phrase structure grammar used by the syntax analyser (PRODUCTIONS). However,
terminals may also be implicitly declared in the productions section. So the following, in one sense,
may appear to be equivalent: 

      COMPILER Sample   (* one *)

      CHARACTERS
        letter = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" .

      TOKENS
        ident = letter { letter } .

      PRODUCTIONS
        Sample = "BEGIN" ident ":=" ident "END" .

      END Sample .

     --------------------------------------------------------------------

      COMPILER Sample   (* two *)

      CHARACTERS
        letter = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" .

      TOKENS
        Letter = letter .

      PRODUCTIONS
        Sample = "BEGIN" Ident ":=" Ident "END" .
        Ident  = Letter { Letter } .

      END Sample .

     --------------------------------------------------------------------

      COMPILER Sample   (* three *)

      CHARACTERS
        letter = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" .

      TOKENS
        ident = letter { letter } .
        begin = "BEGIN" .
        end   = "END" .
        becomes = ":=" .

      PRODUCTIONS
        Sample = begin ident becomes ident end .

      END Sample .

Actually they are not quite the same. Since Coco/R always ignores spaces (other than in strings),
the second one would treat the input 

      A C E := S P A D E

as the first would treat the input 

      ACE := SPADE

The best simple rule seems to be that one should declare under TOKENS any class of symbol that has
to be recognized as a contiguous string of characters, and of which there may be several instances
(this includes entities like identifiers, numbers, and strings) - as well as special character terminals
(like EOL) that cannot be graphically represented as quoted characters. Reserved keywords and
symbols like ":= " are probably best introduced as terminals implicitly declared in the PRODUCTIONS

section. Thus grammar (1) above is probably the best so far as Coco/R is concerned. 

Exercises 



5.11 Develop simple grammars to describe each of the following 

(a) A person’s name, with optional title and qualifications (if any), for example 

        S.B. Terry , BSc
        Master Kenneth David Terry
        Helen Margaret Alice Terry

(b) A railway goods train, with one (or more) locomotives, several varieties of trucks,
and a guard’s van at the rear. 

(c) A mixed passenger and goods train, with one (or more) locomotives, then one or
more goods trucks, followed either by a guard’s van, or by one or more passenger
coaches, the last of which should be a passenger brake van. In the interests of safety, try
to build in a regulation to the effect that fuel trucks may not be marshalled immediately
behind the locomotive, or immediately in front of a passenger coach. 

(d) A book, with covers, contents, chapters and an index. 

(e) A shopping list, with one or more items, for example 

        3 Practical assignments
        124 bottles Castle Lager
        12 cases Rhine Wine
        large box aspirins

(f) Input to a postfix (reverse Polish) calculator. In postfix notation, brackets are not
used, but instead the operators are placed after the operands. 

For example, 

             infix expression             reverse Polish equivalent

             6 + 9 =                      6 9 + =
             (a + b) * (c + d)            a b + c d + *

(g) A message in Morse code. 

(h) Unix or MS-DOS file specifiers. 

(i) Numbers expressed in Roman numerals. 

(j) Boolean expressions incorporating conjunction (OR), disjunction (AND) and
negation (NOT). 

5.12 Develop a Cocol grammar using only BNF-style productions that defines the rules for
expressing a set of BNF productions. 

5.13 Develop a Cocol grammar using only BNF-style productions that defines the rules for
expressing a set of EBNF productions. 

5.14 Develop an EBNF grammar that defines regular expressions as described in section 5.3. 



5.15 What real practical advantage does the Wirth notation using [ ] and { } afford over the use of
the Kleene closure symbols? 

5.16 In yet another variation on EBNF  can be written into an empty right side of a production
explicitly, in addition to being handled by using the [ ] notation, for example: 

               Sign = "+" | " -" | .  (* the  or null is between the last | and . *)

Productions like this cannot be described by the productions for EBNF given in section 5.9.1.
Develop a Cocol grammar that describes EBNF productions that do allow an empty string to appear
implicitly. 

5.17 The local Senior Citizens Association make a feature of Friday evenings, when they employ a
mediocre group to play for dancing. At such functions the band perform a number of selections,
interspersed with periods of silence which are put to other good use. The band have only four kinds
of selection at present. The first of these consists of waltzes - such a selection always starts with a
slow waltz, which may be followed by several more slow waltzes, and finally (but only if the mood
of the evening demands it) by one or more fast waltzes. The second type of selection consists of
several Rock’n’Roll numbers. The third is a medley, consisting of a number of tunes of any sort
played in any order. The last is the infamous "Paul Jones", which is a special medley in which every
second tune is "Here we go round the mulberry bush". During the playing of this, the dancers all
pretend to change partners, in some cases actually succeeding in doing so. Develop a grammar
which describes the form that the evening assumes. 

5.18 Scottish pipe bands often compete at events called Highland Gatherings where three forms of
competition are traditionally mounted. There is the so-called "Slow into Quick March" competition,
in which each band plays a single Slow March followed by a single Quick March. There is the
so-called "March, Strathspey and Reel" competition, where each band plays a single Quick March,
followed by a single Strathspey, and then by a single Reel; this set may optionally be followed by a
further Quick March. And there is also the "Medley", in which a band plays a selection of tunes in
almost any order. Each tune fall into one of the categories of March, Strathspey, Reel, Slow March,
Jig and Hornpipe but, by tradition, a group of one or more Strathspeys within such a medley is
always followed by a group of one or more Reels. 

Develop a grammar to describe the activity at a Highland Gathering at which a number of
competitions are held, and in each of which at least one band performs. Competitions are held in
one category at a time. Regard concepts like "March", "Reel" and so on as terminals - in fact there
are many different possible tunes of each sort, but you may have to be a piper to recognize one tune
from another. 

5.19 Here is an extract from the index of my forthcoming bestseller "Hacking out a Degree": 

abstract class 12, 45
abstraction, data 165
advantages of Modula-2 1-99, 100-500, Appendix 4
aegrotat examinations -- see unethical doctors
class attendance, intolerable 745
deadlines, compiler course -- see sunrise
horrible design (C and C++) 34, 45, 85-96
lectures, missed 1, 3, 5-9, 12, 14-17, 21-25, 28
recursion -- see recursion
senility, onset of 21-24, 105



subminimum 30
supplementary exams 45 - 49
wasted years 1996-1998

Develop a grammar that describes this form of index. 

5.20 You may be familiar with the "make" facility that is found on Unix (and sometimes on
MS-DOS) for program development. A "make file" consists of input to the make command that
typically allows a system to be re-built correctly after possibly modifying some of its component
parts. A typical example for a system involving C++ compilation is shown below. Develop a
grammar that describes the sort of make files that you may have used in your own program
development. 

            # makefile for maintaining my compiler
            CFLAGS = -Wall
            CC     = g++
            HDRS   = parser.h scanner.h generator.h
            SRCS   = compiler.cpp \
                     parser.cpp scanner.cpp generator.cpp
            OBJS   = compiler.o parser.o scanner.o generator.o

            %.o: %.cpp $(HDRS)
                    $(CC) -c $(CFLAGS) $<

            all:    compiler

            new:    clean compiler

            cln:    $(OBJS)
                    $(CC) -o cln $(CFLAGS) $(OBJS)

            clean:
                    rm *.o
                    rm compiler

5.21 C programmers should be familiar with the use of the standard functions scanf  and printf

for performing input and output. Typical calls to these functions are 

       scanf("%d %s %c", &n, string, &ch);
       printf("Total = %-10.4d\nProfit = %d\%%\n", total, profit);

in which the first argument is usually a literal string incorporating various specialized format
specifiers describing how the remaining arguments are to be processed. 

Develop a grammar that describes such statements as fully as you can. For simplicity restrict
yourself to the situation where any arguments after the first refer to simple variables. 

Further reading 

The use of BNF and EBNF notation is covered thoroughly in all good books on compilers and
syntax analysis. Particularly useful insight will be found in the books by Watt (1991), Pittman and
Peters (1992) and Gough (1988). 

5.10 Syntax diagrams 

An entirely different method of syntax definition is by means of the graphic representation known



as syntax diagrams, syntax charts, or sometimes "railroad diagrams". These have been used to
define the syntax of Pascal, Modula-2 and Fortran 77. The rules take the form of flow diagrams, the
possible paths representing the possible sequences of symbols. One starts at the left of a diagram,
and traces a path which may incorporate terminals, or incorporate transfers to other diagrams if a
word is reached that corresponds to a non-terminal. For example, an identifier might be defined by 

with a similar diagram applying to Letter , which we can safely assume readers to be intelligent
enough to draw for themselves. 

Exercises 

5.22 Attempt to express some of the solutions to previous exercises in terms of syntax diagrams. 

5.11 Formal treatment of semantics 

As yet we have made no serious attempt to describe the semantics of programs written in any of our
"languages", and have just assumed that these would be self-evident to a reader who already has
come to terms with at least one imperative language. In one sense this is satisfactory for our
purposes, but in principle it is highly unsatisfactory not to have a simple, yet rigidly formal means
of specifying the semantics of a language. In this section we wish to touch very briefly on ways in
which this might be achieved. 

We have already commented that the division between syntax and semantics is not always
clear-cut, something which may be exacerbated by the tendency to specify productions using names
with clearly semantic overtones, and whose sentential forms already reflect meanings to be attached
to operator precedence and so on. When specifying semantics a distinction is often attempted
between what is termed static semantics - features which, in effect, mean something that can be
checked at compile-time, such as the requirement that one may not branch into the middle of a
procedure, or that assignment may only be attempted if type checking has been satisfied - and
dynamic semantics - features that really only have meaning at run-time, such as the effect of a
branch statement on the flow of control, or the effect of an assignment statement on elements of
storage. 

Historically, attempts formally to specify semantics did not meet with the same early success as
those which culminated in the development of BNF notation for specifying syntax, and we find that
the semantics of many, if not most, common programming languages have been explained in terms
of a natural language document, often regrettably imprecise, invariably loaded with jargon, and
difficult to follow (even when one has learned the jargon). It will suffice to give two examples: 



(a) In a draft description of Pascal, the syntax of the with statement was defined by 

              <with-statement> ::=  with <record-variable-list> do <statement>
        <record-variable-list> ::=  <record-variable> { , <record-variable> }
        <variable-identifier>  ::=  <field-identifier>

with the commentary that 

"The occurrence of a <record-variable> in the <record-variable-list> is a defining occurrence of its
<field-identifier>s as <variable-identifier>s for the <with-statement> in which the <record-variable-
list> occurs." 

The reader might be forgiven for finding this awkward, especially in the way it indicates that within
the <statement> the <field-identifier>s may be used as though they were <variable-identifier>s. 

(b) In the same description we find the while statement described by 

<while-statement> ::=  while <Boolean-expression> do <statement>

with the commentary that 

"The <statement> is repeatedly executed while the <Boolean-expression> yields the value TRUE. If
its value is FALSE at the beginning, the <statement> is not executed at all. The <while- statement> 

while b do body

is equivalent to 

if b then repeat body until not b."

If one is to be very critical, one might be forgiven for wondering what exactly is meant by
"beginning" (does it mean the beginning of the program, or of execution of this one part of the
program). One might also conclude, especially from all the emphasis given to the effect when the
<Boolean-expression> is initially FALSE, that in that case the <while-statement> is completely
equivalent to an empty statement. This is not necessarily true, for evaluation of the
<Boolean-expression> might require calls to a function which has side-effects; nowhere (at least in
the vicinity of this description) was this point mentioned. 

The net effect of such imprecision and obfuscation is that users of a language often resort to writing
simple test programs to help them understand language features, that is to say, they use the
operation of the machine itself to explain the language. This is a technique which can be disastrous
on at least two scores. In the first place, the test examples may be incomplete, or too special, and
only a half-truth will be gleaned. Secondly, and perhaps more fundamentally, one is then confusing
an abstract language with one concrete implementation of that language. Since implementations
may be error prone, incomplete, or, as often happens, may have extensions that do not form part of
the standardized language at all, the possibilities for misconception are enormous. 

However, one approach to formal specification, known as operational semantics essentially
refines this ad-hoc arrangement. To avoid the problems mentioned above, the (written)
specification usually describes the action of a program construction in terms of the changes in state
of an abstract machine which is supposed to be executing the construction. This method was used to
specify the language PL/I, using the metalanguage VDL (Vienna Definition Language). Of course,



to understand such specifications, the reader has to understand the definition of the abstract
machine, and not only might this be confusingly theoretical, it might also be quite unlike the actual
machines which he or she has encountered. As in all semantic descriptions, one is simply shifting
the problem of "meaning" from one area to another. Another drawback of this approach is that it
tends to obscure the semantics with a great detail of what is essentially useful knowledge for the
implementor of the language, but almost irrelevant for the user of the same. 

Another approach makes use of attribute grammars, in which the syntactic description (in terms
of EBNF) is augmented by a set of distinct attributes V (each one associated with a single terminal
or non-terminal) and a set of assertions or predicates involving these attributes, each assertion being
associated with a single production. We shall return to this approach in a later chapter, for it forms
the basis of practical applications of several compiler generators, among them Coco/R. 

Other approaches taken to specifying semantics tend to rely rather more heavily on mathematical
logic and mathematical notation, and for this reason may be almost impossible to understand if the
programmer is one of the many thousands whose mathematical background is comparatively weak.
Denotational semantics, for example defines programs in terms of mappings into mathematical
operations and constructs: a program is simply a function that maps its input data to its output data,
and its individual component statements are functions that map an environment and store to an
updated store. A variant of this, VDM (Vienna Definition Method), has been used in formal
specifications of Ada, Algol-60, Pascal and Modula-2. These specifications are long and difficult to
follow (that for Modula-2 runs to some 700 pages). 

Another mathematically based method, which was used by Hoare and Wirth (1973) to specify the
semantics of most of Pascal, uses so-called axiomatic semantics, and it is worth a slight digression
to examine the notation used. It is particularly apposite when taken in conjunction with the subject
of program proving, but, as will become apparent, rather limited in the way in which it specifies
what a program actually seems to be doing. 

In the notation, S is used to represent a statement or statement sequence, and letters like P, Q and R
are used to represent predicates, that is, the logical values of Boolean variables or expressions. A
notation like 

{ P } S { Q }

denotes a so-called inductive expression, and is intended to convey that if P is true before S is
executed, then Q will be true after S terminates (assuming that it does terminate, which may not
always happen). 

P is often called the precondition and Q the postcondition of S. Such inductive expressions may
be concatenated with logical operations like  (and) and  (not) and  (implies) to give expressions
like 

{ P } S1 { Q }  { Q } S2 { R }

from which one can infer that 

{ P } S1 ; S2 { R }

which is written more succinctly as a rule of inference 



{ P } S1 { Q }  { Q } S2 { R }

------------------------------------
    { P } S1 ; S2 { R }

Expressions like 

P  Q and { Q } S { R }

and 

{ P } S { Q } and Q  R

lead to the consequence rules 

P  Q and { Q } S { R }
------------------------------
    { P } S { R }

and 

{ P } S { Q } and Q  R
------------------------------
   { P } S { R }

In these rules, the top line is called the antecedent and the bottom one is called the consequent; so
far as program proving is concerned, to prove the truth of the consequent it is necessary only to
prove the truth of the antecedent. 

In terms of this notation one can write down rules for nearly all of Pascal remarkably tersely. For
example, the while statement can be described by 

     { P  B } S { P }
------------------------------------
{ P } while B do S { P   B }

and the if statements by 

{ P  B } S { Q } and P   B  Q
-------------------------------------------
    { P } if B then S { Q }

{ P  B } S1 { Q } and { P   B } S2 { Q }

----------------------------------------------------
     { P } if B then S1 else S2 { Q }

With a little reflection one can understand this notation quite easily, but it has its drawbacks.
Firstly, the rules given are valid only if the evaluation of B proceeds without side-effects (compare
the discussion earlier). Secondly, there seems to be no explicit description of what the machine
implementing the program actually does to alter its state - the idea of "repetition" in the rule for the
while statement probably does not exactly strike the reader as obvious. 



Further reading 

In what follows we shall, perhaps cowardly, rely heavily on the reader’s intuitive grasp of
semantics. However, the keen reader might like to follow up the ideas germinated here. So far as
natural language descriptions go, a draft description of the Pascal Standard is to be found in the
article by Addyman et al (1979). This was later modified to become the ISO Pascal Standard,
known variously as ISO 7185 and BS 6192, published by the British Standards Institute, London (a
copy is given as an appendix to the book by Wilson and Addyman (1982)). A most readable guide
to the Pascal Standard was later produced by Cooper (1983). Until a standard for C++ is completed,
the most precise description of C++ is probably the "ARM" (Annotated Reference Manual) by Ellis
and Stroustrup (1990), but C++ has not yet stabilized fully (in fact the standard appeared shortly
after this book was published). In his book, Brinch Hansen (1983) has a very interesting chapter on
the problems he encountered in trying to specify Edison completely and concisely. 

The reader interested in the more mathematically based approach will find useful introductions in
the very readable books by McGettrick (1980) and Watt (1991). Descriptions of VDM and
specifications of languages using it are to be found in the book by Bjorner and Jones (1982).
Finally, the text by Pittman and Peters (1992) makes extensive use of attribute grammars. 
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6 SIMPLE ASSEMBLERS 

In this chapter we shall be concerned with the implementation of simple assembler language
translator programs. We assume that the reader already has some experience in programming at the
assembler level; readers who do not will find excellent discussions of this topic in the books by
Wakerly (1981) and MacCabe (1993). To distinguish between programs written in "assembler
code", and the "assembler program" which translates these, we shall use the convention that
ASSEMBLER means the language and "assembler" means the translator. 

The basic purpose of an assembler is to translate ASSEMBLER language mnemonics into binary or
hexadecimal machine code. Some assemblers do little more than this, but most modern assemblers
offer a variety of additional features, and the boundary between assemblers and compilers has
become somewhat blurred. 

6.1 A simple ASSEMBLER language

Rather than use an assembler for a real machine, we shall implement one for a rudimentary
ASSEMBLER language for the hypothetical single-accumulator machine discussed in section 4.3. 

An example of a program in our proposed language is given below, along with its equivalent object
code. We have, as is conventional, used hexadecimal notation for the object code; numeric values
in the source have been specified in decimal. 

            Assembler 1.0 on 01/06/96 at 17:40:45

            00                   BEG                  ; count the bits in a number
            00    0A             INI                  ; Read(A)
            01           LOOP                         ; REPEAT
            01    16             SHR                  ;  A := A DIV 2
            02    3A 0D          BCC     EVEN         ;  IF A MOD 2 # 0 THEN
            04    1E 13          STA     TEMP         ;    TEMP := A
            06    19 14          LDA     BITS
            08    05             INC
            09    1E 14          STA     BITS         ;    BITS := BITS + 1
            0B    19 13          LDA     TEMP         ;    A := TEMP
            0D    37 01  EVEN    BNZ     LOOP         ; UNTIL A = 0
            0F    19 14          LDA     BITS         ;
            11    0E             OTI                  ; Write(BITS)
            12    18             HLT                  ; terminate execution
            13           TEMP    DS      1            ; VAR TEMP : BYTE
            14    00     BITS    DC      0            ;     BITS : BYTE
            15                   END

ASSEMBLER programs like this usually consist of a sequence of statements or instructions,
written one to a line. These statements fall into two main classes. 

Firstly, there are the executable instructions that correspond directly to executable code. These can
be recognized immediately by the presence of a distinctive mnemonic for an opcode. For our
machine these executable instructions divide further into two classes: there are those that require an
address or operand as part of the instruction (as in STA TEMP) and occupy two bytes of object code,
and there are those that stand alone (like INI  and HLT). When it is necessary to refer to such
statements elsewhere, they may be labelled with an introductory distinctive label identifier of the
programmer’s choice (as in EVEN BNZ LOOP), and may include a comment, extending from an
introductory semicolon to the end of a line. 



The address or operand for those instructions that requires them is denoted most simply by either a
numeric literal, or by an identifier of the programmer’s choice. Such identifiers usually correspond
to the ones that are used to label statements - when an identifier is used to label a statement itself
we speak of a defining occurrence of a label; when an identifier appears as an address or operand
we speak of an applied occurrence of a label. 

The second class of statement includes the directives. In source form these appear to be deceptively
similar to executable instructions - they are often introduced by a label, terminated with a comment,
and have what may appear to be mnemonic and address components. However, directives have a
rather different role to play. They do not generally correspond to operations that will form part of
the code that is to be executed at run-time, but rather denote actions that direct the action of the
assembler at compile-time - for example, indicating where in memory a block of code or data is to
be located when the object code is later loaded, or indicating that a block of memory is to be preset
with literal values, or that a name is to be given to a literal to enhance readability. 

For our ASSEMBLER we shall introduce the following directives and their associated
compile-time semantics, as a representative sample of those found in more sophisticated languages:

   Label Mnemonic   Address    Effect

  not used   BEG    not used   Mark the beginning of the code
  not used   END    not used   Mark the end of the code
  not used   ORG    location   Specify location where the following code
                               is to be loaded
  optional   DC     value      Define an (optionally labelled) byte,
                               to have a specified initial value
  optional   DS     length     Reserve length bytes (optional label associated
                               with the first byte)
  name       EQU    value      Set name to be a synonym for the given value

Besides lines that contain a full statement, most assemblers usually permit incomplete lines. These
may be completely blank (so as to enhance readability), or may contain only a label, or may contain
only a comment, or may contain only a label and a comment. 

Our first task might usefully be to try to find a grammar that describes this (and similar) programs.
This can be done in several ways. Our informal description has already highlighted various
syntactic classes that will be useful in specifying the phrase structure of our programs, as well as
various token classes that a scanner may need to recognize as part of the assembly process. One
possible grammar - which leaves the phrase structure very loosely defined - is given below. This
has been expressed in Cocol, the EBNF variant introduced in section 5.9.5. 

  COMPILER ASM

    CHARACTERS
      eol        = CHR(13) .
      letter     = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" .
      digit      = "0123456789" .
      printable  = CHR(32) .. CHR(127) .

    IGNORE  CHR(9) .. CHR(12)

    TOKENS
      number     = digit { digit } .
      identifier = letter { letter | digit } .
      EOL        = eol .
      comment    = ";" { printable } .

    PRODUCTIONS
      ASM        = { Statement } EOF .
      Statement  = [ Label ] [ Mnemonic [ Address ] ] [ comment ] EOL .
      Address    = Label | number .
      Mnemonic   = identifier .
      Label      = identifier .
  END ASM.



This grammar has the advantage of simplicity, but makes no proper distinction between directives
and executable statements, nor does it indicate which statements require labels or address fields. It
is possible to draw these distinctions quite easily if we introduce a few more non-terminals into the
phrase structure grammar: 

  COMPILER ASM

    CHARACTERS
      eol        = CHR(13) .
      letter     = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" .
      digit      = "0123456789" .
      printable  = CHR(32) .. CHR(127) .

    IGNORE  CHR(9) .. CHR(12)

    TOKENS
      number     = digit { digit } .
      identifier = letter { letter | digit } .
      EOL        = eol .
      comment    = ";" { printable } .

    PRODUCTIONS
      ASM               = StatementSequence "END" EOF .
      StatementSequence = { Statement [ comment ] EOL } .
      Statement         = Executable | Directive .
      Executable        = [ Label ] [ OneByteOp | TwoByteOp Address ] .
      OneByteOp         = "HLT" | "PSH" | "POP"  (* | . . . . etc *) .
      TwoByteOp         = "LDA" | "LDX" | "LDI"  (* | . . . . etc *) .
      Address           = Label | number .
      Directive         =   Label "EQU" KnownAddress
                          | [ Label ] ( "DC" Address | "DS" KnownAddress )
                          | "ORG" KnownAddress | "BEG" .
      Label             = identifier .
      KnownAddress      = Address .
  END ASM.

When it comes to developing a practical assembler, the first of these grammars appears to have the
advantage of simplicity so far as syntax analysis is concerned - but this simplicity comes at a price,
in that the static semantic constrainer would have to expend effort in distinguishing the various
statement forms from one another. An assembler based on the second grammar would not leave so
much to the semantic constrainer, but would apparently require a more complex parser. In later
sections, using the simpler description as the basis of a parser, we shall see how both it and the
constrainer are capable of development in an ad hoc way. 

Neither of the above syntactic descriptions illustrates some of the pragmatic features that may beset
a programmer using the ASSEMBLER language. Typical of these are restrictions or relaxations on
case-sensitivity of identifiers, or constraints that labels may have to appear immediately at the start
of a line, or that identifiers may not have more than a limited number of significant characters. Nor,
unfortunately, can the syntactic description enforce some essential static semantic constraints, such
as the requirement that each alphanumeric symbol used as an address should also occur uniquely in
a label field of an instruction, or that the values of the address fields that appear with directives like
DS and ORG must have been defined before the corresponding directives are first encountered. The
description may appear to enforce these so-called context-sensitive features of the language,
because the non-terminals have been given suggestive names like KnownAddress , but it turns out
that a simple parser will not be able to enforce them on its own. 

As it happens, neither of these grammars yet provides an adequate description for a compiler
generator like Coco/R, for reasons that will become apparent after studying Chapter 9. The
modifications needed for driving Coco/R may be left as an interesting exercise when the reader has
had more experience in parsing techniques. 



6.2 One- and two-pass assemblers, and symbol tables

Readers who care to try the assembly translation process for themselves will realize that this cannot
easily be done on a single pass through the ASSEMBLER source code. In the example given
earlier, the instruction 

                       BCC  EVEN

cannot be translated completely until one knows the address of EVEN, which is only revealed when
the statement 

                EVEN   BNZ  LOOP

is encountered. In general the process of assembly is always non-trivial, the complication arising -
even with programs as simple as this one - from the inevitable presence of forward references. 

An assembler may solve these problems by performing two distinct passes over the user program.
The primary aim of the first pass of a two-pass assembler is to draw up a symbol table. Once the
first pass has been completed, all necessary information on each user defined identifier should have
been recorded in this table. A second pass over the program then allows full assembly to take place
quite easily, referring to the symbol table whenever it is necessary to determine an address for a
named label, or the value of a named constant. 

The first pass can perform other manipulations as well, such as some error checking. The second
pass depends on being able to rescan the program, and so the first pass usually makes a copy of this
on some backing store, usually in a slightly altered form from the original. 

The behaviour of a two-pass assembler is summarized in Figure 6.1. 

The other method of assembly is via a one-pass assembler. Here the source is scanned but once,
and the construction of the symbol table is rather more complicated, since outstanding references
must be recorded for later fixup or backpatching once the appropriate addresses or values are
revealed. In a sense, a two-pass assembler may be thought of as making two passes over the source
program, while a one-pass assembler makes a single pass over the source program, followed by a
later partial pass over the object program. 

As will become clear, construction of a sophisticated assembler, using either approach, calls for a
fair amount of ingenuity. In what follows we shall illustrate several principles rather simply and
naïvely, and leave the refinements to the interested reader in the form of exercises. 

Assemblers all make considerable use of tables. There are always (conceptually at least) two of
these: 

The Opcode Translation Table. In this will be found matching pairs of mnemonics and their
numerical equivalents. This table is of fixed length in simple assemblers. 



The Symbol Table. In this will be entered the user defined identifiers, and their corresponding
addresses or values. This table varies in length with the program being assembled. 

Two other commonly found tables are: 

The Directive Table. In this will be found mnemonics for the directives or pseudo-operations.
The table is of fixed length, and is usually incorporated into the opcode translation table in
simple assemblers. 

The String Table. As a space saving measure, the various user-defined names are often
gathered into one closely packed table - effectively being stored in one long string, with some
distinctive separator such as a NUL character between each sub-string. Each identifier in the
symbol table is then cross-linked to this table. For example, for the program given earlier we
might have a symbol table and string table as shown in Figure 6.2. 

More sophisticated macro-assemblers need several other tables, so as to be able to handle
user-defined opcodes, their parameters, and the source text which constitutes the definition of each
macro. We return to a consideration of this point in the next chapter. 

The first pass, as has been stated, has as its primary aim the creation of a symbol table. The "name"
entries in this are easily made as the label fields of the source are read. In order to be able to
complete the "address" entries, the first pass has to keep track, as it scans the source, of the
so-called location counter - that is, the address at which each code and data value will later be
located (when the code generation takes place). Such addresses are controlled by the directives ORG

and DS (which affect the location counter explicitly), as well as by the directive DC, and, of course,
by the opcodes which will later result in the creation of one or two machine words. The directive
EQU is a special case; it simply gives a naming facility. 

Besides constructing the symbol table, this pass must supervise source handling, and lexical,
syntactic and semantic analysis. In essence it might be described by something on the lines of the
following, where, we hasten to add, considerable liberties have been taken with the pseudo-code
used to express the algorithm. 

  Initialize tables, and set Assembling := TRUE; Location := 0;
  WHILE Assembling DO
    Read line of source and unpack into constituent fields
       Label, Mnemonic, AddressField (* which could be a Name or Number *)
    Use Mnemonic to identify Opcode from OpTable
    Copy line of source to work file for later use by pass two
    CASE Mnemonic OF
      "BEG" : Location := 0
      "ORG" : Location := AddressField.Number
      "DS " : IF Line.Labelled THEN SymbolTable.Enter(Label, Location)
              Location := Location + AddressField.Number
      "EQU" : SymbolTable.Enter(Label, AddressField.Number)
      "END" : Assembling := FALSE
      all others (* including DC *):
              IF Line.Labelled THEN SymbolTable.Enter(Label, Location)
              Location := Location + number of bytes to be generated
    END



  END

The second pass is responsible mainly for code generation, and may have to repeat some of the
source handling and syntactic analysis. 

  Rewind work file, and set Assembling := TRUE
  WHILE Assembling DO
    Read a line from work file and unpack Mnemonic, Opcode, AddressField
    CASE Mnemonic OF
      "BEG" : Location := 0
      "ORG" : Location := AddressField.Number
      "DS " : Location := Location + AddressField.Number
      "EQU" : no action (* EQU dealt with on pass one *)
      "END" : Assembling := FALSE
      "DC " : Mem[Location] := ValueOf(AddressField); INC(Location)
      all others:
              Mem[Location] := Opcode;  INC(Location)
              IF two-byte Opcode THEN
                Mem[Location] := ValueOf(AddressField); INC(Location)
              END
    END
    Produce source listing of this line
  END

6.3 Towards the construction of an assembler 

The ideas behind assembly may be made clearer by slowly refining a simple assembler for the
language given earlier, allowing only for the creation of fixed address, as opposed to relocatable
code. We shall assume that the assembler and the assembled code can co-reside in memory. We are
confined to write a cross-assembler, not only because no such real machine exists, but also because
the machine is far too rudimentary to support a resident assembler - let alone a large C++ or
Modula-2 compiler. 

In C++ we can define a general interface to the assembler by introducing a class with a public
interface on the lines of the following: 

  class AS {
    public:
      void assemble(bool &errors);
      // Assembles and lists program.
      // Assembled code is dumped to file for later interpretation, and left
      // in pseudo-machine memory for immediate interpretation if desired.
      // Returns errors = true if assembly fails

      AS(char *sourcename, char *listname, char *version, MC *M);
      // Instantiates version of the assembler to process sourcename, creating
      // listings in listname, and generating code for associated machine M
  };

This public interface allows for the development of a variety of assemblers (simple, sophisticated,
single-pass or multi-pass). Of course there are private members too, and these will vary somewhat
depending on the techniques used to build the assembler. The constructor for the class creates a link
to an instance of a machine class MC - we are aiming at the construction of an assembler for our
hypothetical single-accumulator machine that will leave assembled code in the pseudo-machine’s
memory, where it can be interpreted as we have already discussed in Chapter 4. The main program
for our system will essentially be developed on the lines of the following code: 

  void main(int argc, char *argv[])
  { bool errors;
    char SourceName[256], ListName[256];

    // handle command line parameters
    strcpy(SourceName, argv[1]);
    if (argc > 2) strcpy(ListName, argv[2]);
    else appendextension(SourceName, ".lst", ListName);



    // instantiate assembler components
    MC *Machine   = new MC();
    AS *Assembler = new AS(SourceName, ListName, "Assembler version 1", Machine);

    // start assembly
    Assembler->assemble(errors);

    // examine outcome and interpret if possible
    if (errors) { printf("\nAssembly failed\n"); }
    else { printf("\nAssembly successful\n"); Machine->interpret(); }
    delete Machine;
    delete Assembler;
  }

This driver routine has made provision for extracting the file names for the source and listing files
from command line parameters set up when the assembler program is invoked. 

In using a language like C++ or Modula-2 to implement the assembler (or rather assemblers, since
we shall develop both one-pass and two-pass versions of the assembler class), it is convenient to
create classes or modules to be responsible for each of the main phases of the assembly process. In
keeping with our earlier discussion we shall develop a source handler, scanner, and simple parser.
In a two-pass assembler the parser is called from a first pass that follows parsing with static
semantic analysis; control then passes to the second pass that completes code generation. In a
one-pass assembler the parser is called in combination with semantic analysis and code generation. 

On the source diskette that accompanies this book can be found a great deal of code illustrating this
development, and the reader is urged to study this as he or she reads the text, since there is too
much code to justify printing it all in this chapter. Appendix D contains a complete listing of the
source code for the assembler as finally developed by the end of the next chapter. 

6.3.1 Source handling 

In terms of the overall translator structure illustrated in Figure 2.4, the first phase of an assembler
will embrace the source character handler, which scans the source text, and analyses it into lines,
from which the scanner will be then able to extract tokens or symbols. The public interface to a
class for handling this phase might be: 

  class SH {
    public:
      FILE *lst; // listing file
      char ch;   // latest character read

      void nextch(void);
      // Returns ch as the next character on current source line, reading a new
      // line where necessary.  ch is returned as NUL if src is exhausted

      bool endline(void);
      // Returns true when end of current line has been reached

      bool startline(void);
      // Returns true if current ch is the first on a line

      void writehex(int i, int n);
      // Writes (byte valued) i to lst file as hex pair, left-justified in n spaces

      void writetext(char *s, int n);
      // Writes s to lst file, left-justified in n spaces

      SH();
      // Default constructor

      SH(char *sourcename, char *listname, char *version);
      // Opens src and lst files using given names
      // Initializes source handler, and displays version information on lst file

      ~SH();
      // Closes src and lst files
  };



Some aspects of this interface deserve further comment: 

It is probably bad practice to declare variables like ch  as public, as this leaves them open to
external abuse. However, we have compromised here in the interests of efficiency. 

Client routines (like those which call nextch ) should not have to worry about anything other
than the values provided by ch , startline()  and endline() . The main client routine is, of
course, the lexical analyser. 

Little provision has been made here for producing a source listing, other than to export the file
on which the listing might be made, and the mechanism for writing some version information
and hexadecimal values to this file. A source line might be listed immediately it is read, but in
the case of a two-pass assembler the listing is usually delayed until the second pass, when it
can be made more complete and useful to the user. Furthermore, a free-format input can be
converted to a fixed-format output, which will probably look considerably better. 

The implementation of this class is straightforward and can be studied in Appendix D. As with the
interface, some aspects of the implementation call for comment: 

nextch  has to provide for situations in which it might be called after the input file has been
exhausted. This situation should only arise with erroneous source programs, of course. 

Internally the module stores the source on a line-buffered basis, and adds a blank character to
the end of each line  (or a NUL character in the case where the source has ended). This is
useful for ensuring that a symbol that extends to the end of a line can easily be recognized. 

Exercises 

6.1 A source handler implemented in this way will be found to be very slow on many systems,
where each call to a routine to read a single character may involve a call to an underlying operating
system. Experiment with the idea that the source handler first reads the entire source into a large
memory buffer in one fell swoop, and then returns characters by extracting them from this buffer.
Since memory (even on microcomputers) now tends to be measured in megabytes, while source
programs are rather small, this idea is usually quite feasible. Furthermore, this suggestion
overcomes the problem of using a line buffer of restricted size, as is used in our simple
implementation. 

6.3.2 Lexical analysis 

The next phase to be tackled is that of lexical analysis. For our simple ASSEMBLER language we
recognize immediately that source characters can only be assembled into numbers, alphanumeric
names (as for labels or opcodes) or comment strings. Accordingly we adopt the following public
interface to our scanner class: 

  enum LA_symtypes {
    LA_unknown, LA_eofsym, LA_eolsym, LA_idsym, LA_numsym, LA_comsym
  };

  struct LA_symbols {
    bool islabel;           // if in first column
    LA_symtypes sym;        // class



    ASM_strings str;        // lexeme
    int num;                // value if numeric
  };

  class LA {
    public:
      void getsym(LA_symbols &SYM, bool &errors);
      // Returns the next symbol on current source line.
      // Sets errors if necessary and returns SYM.sym = unknown if no
      // valid symbol can be recognized

      LA(SH *S);
      // Associates scanner with its source handler S
  };

where we draw the reader’s attention to the following points: 

The LA_symbols  structure allows the client to recognize that the first symbol found on a line
has defined a label if it began in the very first column of the line - a rather messy feature of
our ASSEMBLER language. 

In ASSEMBLER programs, the ends of lines become significant (which is not the case with
languages like C++, Pascal or Modula-2), so that it is useful to introduce LA_eolsym  as a
possible symbol type. 

Similarly, we must make provision for not being able to recognize a symbol (by returning
LA_unknown ), or not finding a symbol (LA_eofsym ). 

Developing the getsym  routine for the recognition of these symbols is quite easy. It is governed
essentially by the lexical grammar (defined in the TOKENS section of our Cocol specification given
earlier), and is sensibly driven by a switch  or CASE statement that depends on the first character of
the token. The essence of this - again taking considerable liberties with syntax - may be expressed 

   BEGIN
     skip leading spaces, or to end of line
     recognize end-of-line and start-of-line conditions, else
     CASE CH OF
       letters: SYM.Sym := LA_idsym;  unpack word;
       digits : SYM.Sym := LA_numsym; unpack number;
       ’;’    : SYM.Sym := LA_comsym; unpack comment;
       ELSE   : SYM.Sym := LA_unknown
     END
   END

A detailed implementation may be found on the source diskette. It is worth pointing out the
following: 

All fields (attributes) of SYM are well defined after a call to getsym , even those of no
immediate interest. 

While determining the value of SYM.num we also copy the digits into SYM.name for the
purposes of later listing. At this stage we have assumed that overflow will not occur in the
computation of SYM.num. 

Identifiers and comments that are too long are ruthlessly truncated. 

Identifiers are converted to upper case for consistency. Comments are preserved unchanged. 



Exercises 

6.2 First extend the lexical grammar, and then extend the lexical analyser to allow hexadecimal
constants as alternatives in addresses, for example 

           LAB  LDI  $0A        ; 0A(hex) = 10(decimal)

6.3 Another convention is to allow hexadecimal constants like 0FFh or 0FFH, with the trailing H
implying hexadecimal. A hex number must, however, start with a digit in the range ’0’ .. ’9’, so that
it can be distinguished from an identifier. Extend the lexical grammar, and then implement this
option. Why is it harder to handle than the convention suggested in Exercise 6.2? 

6.4 Extend the grammar and the analyser to allow a single character as an operand or address, for
example 

           LAB    LDI  ’A’        ; load immediate ’A’ (ASCII 041H)

The character must, of course, be converted into the corresponding ordinal value by the assembler.
How can one allow the quote character itself to be used as an address? 

6.5 If the entire source of the program were to be read into memory as suggested in Exercise 6.1 it
would no longer be necessary to copy the name field for each symbol. Instead, one could use two
numeric fields to record the starting position and the length of each name. Modify the lexical
analyser to use such a technique. Clearly this will impact the detailed implementation of some later
phases of assembly as well - see Exercise 6.8. 

6.6 As an alternative to storing the entire source program in memory, explore the possibility of
constructing a string table on the lines of that discussed in section 6.2. 

6.3.3 Syntax analysis 

Our suggested method of syntax analysis requires that each free format source line be decomposed
in a consistent way. A suitable public interface for a simple class that handles this phase is given
below: 

  enum SA_addresskinds { SA_absent, SA_numeric, SA_alphameric };

  struct SA_addresses {
    SA_addresskinds kind;
    int number;     // value if known
    ASM_alfa name;  // character representation
  };

  struct SA_unpackedlines {
    // source text, unpacked into fields
    bool labelled, errors;
    ASM_alfa labfield, mnemonic;
    SA_addresses address;
    ASM_strings comment;
  };

  class SA {
    public:
      void parse(SA_unpackedlines &srcline);
      // Analyses the next source line into constituent fields

      SA(LA * L);
      // Associates syntax analyser with its lexical analyser L
  };

and, as before, some aspects of this deserve further comment: 



The SA_addresses  structure has been introduced to allow for later extensibility. 

The SA_unpackedlines  structure makes provision for recording whether a source line has
been labelled. It also makes provision for recording that the line is erroneous. Some errors
might be detected when the syntax analysis is performed; others might only be detected when
the constraint analysis or code generation are attempted. 

Not only does syntax analysis in the first pass of a two-pass assembler require that we unpack
a source line into its constituent fields, using the getsym  routine, the first pass also has to be
able to write the source line information to a work file for later use by the second pass. It is
convenient to do this after unpacking, to save the necessity of re-parsing the source on the
second pass. 

The routine for unpacking a source line is relatively straightforward, but has to allow for various
combinations of present or absent fields. The syntax analyser can be programmed by following the
EBNF productions given in Cocol under the PRODUCTIONS section of the simpler grammar in
section 6.1, and the implementation on the source diskette is worthy of close study, bearing in mind
the following points: 

The analysis is very ad hoc. This is partly because it has to take into account the possibility of
errors in the source. Later in the text we shall look at syntax analysis from a rather more
systematic perspective, but it is usually true that syntax analysers incorporate various messy
devices for side-stepping errors. 

Every field is well defined when analysis is complete - default values are inserted where they
are not physically present in the source. 

Should the source text become exhausted, the syntax analyser performs "error correction",
effectively by creating a line consisting only of an END directive. 

When an unrecognizable symbol is detected by the scanner, the syntax analyser reacts by
recording that the line is in error, and then copies the rest of the line to the comment field. In
this way it is still possible to list the offending line in some form at a later stage. 

The simple routine for getaddress  will later be modified to allow expressions as addresses. 

Exercises 

6.7 At present mnemonics and user defined identifiers are both handled in the same way. Perhaps a
stronger distinction should be drawn between the two. Then again, perhaps one should allow
mnemonics to appear in address fields, so that an instruction like 

           LAB   LDI   LDI      ;  A := 27

would become legal. What modifications to the underlying grammar and to the syntax analyser
would be needed to implement any ideas you may have on these issues? 

6.8 How would the syntax analyser have to be modified if we were to adopt the suggestion that all
the source code be retained in memory during the assembly process? Would it be necessary to
unpack each line at all? 



6.3.4 The symbol table interface 

We define a clean public interface to a symbol table handler, thus allowing us to implement various
strategies for symbol table construction without disturbing the rest of the system. The interface
chosen is 

  typedef void (*ST_patch)(MC_bytes mem[], MC_bytes b, MC_bytes v);

  class ST {
    public:
      void printsymboltable(bool &errors);
      // Summarizes symbol table at end of assembly, and alters errors
      // to true if any symbols have remained undefined

      void enter(char *name, MC_bytes value);
      // Adds name to table with known value

      void valueofsymbol(char *name, MC_bytes location, MC_bytes &value,
                         bool &undefined);
      // Returns value of required name, and sets undefined if not found.
      // location is the current value of the instruction location counter

      void outstandingreferences(MC_bytes mem[], ST_patch fix);
      // Walks symbol table, applying fix to outstanding references in mem

      ST(SH *S);
      // Associates table handler with source handler S (for listings)
  };

6.4 Two-pass assembly 

For the moment we shall focus attention on a two-pass assembler, and refine the code from the
simple algorithms given earlier. The first pass is mainly concerned with static semantics, and with
constructing a symbol table. To be able to do this, it needs to keep track of a location counter,
which is updated as opcodes are recognized, and which may be explicitly altered by the directives
ORG, DS and DC. 

6.4.1 Symbol table structures 

A simple implementation of the symbol table handler outlined in the last section, suited to two-pass
assembly, is to be found on the source diskette. It uses a dynamically allocated stack, in a form that
should readily be familiar to students of elementary data structures. More sophisticated table
handlers usually employ a so-called hash table, and are the subject of later discussion. The reader
should note the following: 

For a two-pass assembler, labels are entered into the table (by making calls on enter ) only
when their defining occurrences are encountered during the first pass. 

On the second pass, calls to valueofsymbol  will be made when applied occurrences of labels
are encountered. 

For a two-pass assembler, function type ST_patch  and function outstandingreferences  are
irrelevant - as, indeed, is the location  parameter to valueofsymbol . 

The symbol table entries are very simple structures defined by 

         struct ST_entries {
           ASM_alfa name;      // name



           MC_bytes value;     // value once defined
           bool defined;       // true after defining occurrence encountered
           ST_entries *slink;  // to next entry
         };

6.4.2 The first pass - static semantic analysis 

Even though no code is generated until the second pass, the location counter (marking the address
of each byte of code that is to be generated) must be tracked on both passes. To this end it is
convenient to introduce the concept of a code line - a partial translation of each source line. The
fields in this structure keep track of the location counter, opcode value, and address value (for
two-byte instructions), and are easily assigned values after extending the analysis already
performed by the syntax analyser. These extensions effectively constitute static semantic analysis.
For each unpacked source line the analysis is required to examine the mnemonic  field and - if
present - to attempt to convert this to an opcode, or to a directive, as appropriate. The opcode  value
is then used as the despatcher in a switching construct that keeps track of the location counter and
creates appropriate entries in the symbol table whenever defining occurrences of labels are met. 

The actual code for the first pass can be found on the source diskette, and essentially follows the
basic algorithm outlined in section 6.2. The following points are worth noting: 

Conversion from mnemonic  to opcode  requires the use of some form of opcode table. In this
implementation we have chosen to construct a table that incorporates both the machine
opcodes and the directive pseudo-opcodes in one simple sorted list, allowing a simple binary
search to locate a possible opcode entry quickly. 

An alternative strategy might be to incorporate the opcode table into the scanner, and to
handle the conversion as part of the syntax analysis, but we have chosen to leave that as the
subject of an exercise. 

The attempt to convert a mnemonic may fail in two situations. In the case of a line with a
blank opcode field we may sensibly return a fictitious legal empty opcode. However, when an
opcode is present, but cannot be recognized (and must thus be assumed to be in error) we
return a fictitious illegal opcode err . 

The system makes use of an intermediate work file for communicating between the two
passes. This file can be discarded after assembly has been completed, and so can, in principle,
remain hidden from the user. 

The arithmetic on the location counter location  must be done modulo 256 because of the
limitations of the target machine. 

Our assembler effectively requires that all identifiers used as labels must be "declared". In this
context this means that all the identifiers in the symbol table must have appeared in the label
field of some source line, and should all have been entered into the symbol table by the end of
the first pass. When appropriate, we determine the value of an address, either directly, or from
the symbol table, by calling the table handler routine valueofsymbol , which returns a
parameter indicating the success of the search. It might be thought that failure is ruled out,
and that calls to this routine are made only in the second pass. However, source lines using
the directives EQU, DS and ORG may have address fields specified in terms of labels, and so
even on the first pass the assembler may have to refer to the values of these labels. Clearly
chaos will arise if the labels used in the address fields for these directives are not declared
before use, and the assembler must be prepared to flag violations of this principle as errors. 



6.4.3 The second pass - code generation 

The second pass rescans the program by extracting partially assembled lines from the intermediate
file, and then passing each of these to the code generator. The code generator has to keep track of
further errors that might arise if any labels were not properly defined on the first pass. Because of
the work already done in the first pass, handling the directives is now almost trivial in this pass. 

Once again, complete code for a simple implementation is to be found on the source diskette, and it
should be necessary only to draw attention to the following points: 

For our simple machine, all the generated objected code can be contained in an array of length
256. A more realistic assembler might not be able to contain the entire object code in
memory, because of lack of space. For a two-pass assembler few problems would arise, as the
code could be written out to a file as soon as it was generated. 

Exactly how the object code is finally to be treated is a matter for debate. Here we have called
on the listcode  routine from the class defining the pseudo-machine, which dumps the 256
bytes in a form that is suitable for input to a simple loader. However, the driver program
suggested earlier also allows this code to be interpreted immediately after assembly has been
successful. 

An assembler program typically gives the user a listing of the source code, usually with
assembled code alongside it. Occasionally extra frills are provided, like cross reference tables
for identifiers and so on. Our one is quite simple, and an example of a source listing produced
by this assembler was given earlier. 

Exercises 

6.9 Make an extension to the ASSEMBLER language, to its grammar, and to the assembler
program, to allow a character string as an operand in the DC directive. For example 

                TYRANT  DC  "TERRY"

should be treated as equivalent to 

                TYRANT  DC  ’T’
                        DC  ’E’
                        DC  ’R’
                        DC  ’R’
                        DC  ’Y’

Is it desirable or necessary to delimit strings with different quotes from those used by single
characters? 

6.10 Change the table handler so that the symbol table is stored in a binary search tree, for
efficiency. 

6.11 The assembler will accept a line consisting only of a non-empty LABEL field. Is there any
advantage in being able to do this? 

6.12 What would happen if a label were to be defined more than once? 



6.13 What would happen if a label were left undefined by the end of the first pass? 

6.14 How would the symbol table handling alter if the source code were all held in memory
throughout assembly (see Exercise 6.1), or if a string table were used (see Exercise 6.6)? 

6.5 One-pass assembly 

As we have already mentioned, the main reason for having the second pass is to handle the problem
of forward references - that is, the use of labels before their locations or values have been defined.
Most of the work of lexical analysis and assembly can be accomplished directly on the first pass, as
can be seen from a close study of the algorithms given earlier and the complete code used for their
implementation. 

6.5.1 Symbol table structures 

Although a one-pass assembler not always be able to determine the value of an address field
immediately it is encountered, it is relatively easy to cope with the problem of forward references.
We create an additional field flink  in the symbol table entries, which then take the form 

  struct ST_entries {
    ASM_alfa name;          // name
    MC_bytes value;         // value once defined
    bool defined;           // true after defining occurrence encountered
    ST_entries *slink;      // to next entry
    ST_forwardrefs *flink;  // to forward references
  };

The flink  field points to entries in a forward reference table, which is maintained as a set of
linked lists, with nodes defined by 

  struct ST_forwardrefs {   // forward references for undefined labels
    MC_bytes byte;          // to be patched
    ST_forwardrefs *nlink;  // to next reference
  };

The byte  fields of the ST_forwardrefs  nodes record the addresses of as yet incompletely defined
object code bytes. 

6.5.2 The first pass - analysis and code generation 

When reference is made to a label in the address field of an instruction, the valueofsymbol  routine
searches the symbol table for the appropriate entry, as before. Several possibilities arise: 

If the label has already been defined, it will already be in the symbol table, marked as
defined = true , and the corresponding address or value can immediately be obtained from
the value  field. 

If the label is not yet in the symbol table, an entry is made in this table, marked as defined =

false . The flink  field is then initialized to point to a newly created entry in the forward
reference table, in the byte  field of which is recorded the address of the object byte whose
value has still to be determined. 

If the label is already in the symbol table, but still flagged as defined = false , then a
further entry is made in the forward reference table, linked to the earlier entries for this label. 



This may be made clearer by considering the same program as before (shown fully assembled, for
convenience). 

            00                   BEG                  ; count the bits in a number
            00    0A             INI                  ; Read(A)
            01           LOOP                         ; REPEAT
            01    16             SHR                  ;  A := A DIV 2
            02    3A 0D          BCC     EVEN         ;  IF A MOD 2 # 0 THEN
            04    1E 13          STA     TEMP         ;    TEMP := A
            06    19 14          LDA     BITS
            08    05             INC
            09    1E 14          STA     BITS         ;    BITS := BITS + 1
            0B    19 13          LDA     TEMP         ;    A := TEMP
            0D    37 01  EVEN    BNZ     LOOP         ; UNTIL A = 0
            0F    19 14          LDA     BITS         ;
            11    0E             OTI                  ; Write(BITS)
            12    18             HLT                  ; terminate execution
            13           TEMP    DS      1            ; VAR TEMP : BYTE
            14    00     BITS    DC      0            ;     BITS : BYTE
            15                   END

When the instruction at 02h (BCC EVEN) is encountered, EVEN is entered in the symbol table,
undefined, linked to an entry in the forward reference table, which refers to 03h. Assembly of the
next instruction enters TEMP in the symbol table, undefined, linked to a new entry in the forward
reference table, which refers to 05h. The next instruction adds BITS  to the symbol table, and when
the instruction at 09h (STA BITS ) is encountered, another entry is made to the forward reference
table, which refers to 0Ah, itself linked to the entry which refers to 07h. This continues in the same
vein, until by the time the instruction at 0Dh (EVEN BNZ LOOP) is encountered, the tables are as
shown in Figure 6.3. 

In passing, we might comment that in a real system this strategy might lead to extremely large
structures. These can, fairly obviously, be kept smaller if the bytes labelled by the DC and DS

instructions are all placed before the "code" which manipulates them, and some assemblers might
even insist that this be done. 

Since we shall also have to examine the symbol table whenever a label is defined by virtue of its
appearance in the label field of an instruction or directive, it turns out to be convenient to introduce
a private routine findentry , internal to the table handler, to perform the symbol table searching. 

    void findentry(ST_entries *&symentry, char *name, bool &found);

This involves a simple algorithm to scan through the symbol table, being prepared for either finding
or not finding an entry. In fact, we go further and code the routine so that it always finds an
appropriate entry, if necessary creating a new node for the purpose. Thus, findentry  is a routine
with side-effects, and so might be frowned upon by the purists. The parameter found  records
whether the entry refers to a previously created node or not. 

The code for enter  also changes somewhat. As already mentioned, when a non-blank label  field



is encountered, the symbol table is searched. Two possibilities arise: 

If the label  was not previously there, the new entry is completed, flagged as defined =

true , and its value  field is set to the now known value. 

If it was previously there, but flagged defined = false , the extant symbol table entry is
updated, with defined  set to true , and its value  field set to the now known value. 

At the end of assembly the symbol table will, in most situations, contain entries in the forward
reference lists. Our table handler exports an outstandingreferences  routine to allow the
assembler to walk through these lists. Rather than have the symbol table handler interact directly
with the code generation process, this pass is accomplished by applying a procedural parameter as
each node of the forward reference lists is visited. In effect, rather than making a second pass over
the source of the program, a partial second pass is made over the object code. 

This may be made clearer by considering the same program fragment as before. When the
definition of BITS  is finally encountered at 14h, the symbol table and forward reference table will
effectively have become as shown in Figure 6.4. 

Exercises 

6.15 What modifications (if any) are needed to incorporate the extensions suggested as exercises at
the end of the last section into the simple one-pass assembler? 

6.16 We mentioned in section 6.4.3 that there was no great difficulty in assembling large programs
with a two-pass assembler. How does one handle programs too large to co-reside with a one-pass
assembler? 

6.17 What currently happens in our one-pass assembler if a label is redefined? Should one be
allowed to do this (that is, is there any advantage to be gained from being allowed to do so), and if
not, what should be done to prevent it? 

6.18 Constructing the forward reference table as a dynamic linked structure may be a little grander
than it needs to be. Explore the possibility of holding the forward reference chains within the code
being assembled. For example, if we allow the symbol table entries to be defined as follows 

             struct ST_entries {
               ASM_alfa name;      // name
               MC_bytes value;     // value once defined
               bool defined;       // true after defining occurrence encountered
               ST_entries *slink;  // to next entry
               MC_bytes flink;     // to forward references
             };

we can arrange that the latest forward reference "points" to a byte in memory in which will be



stored the label’s value  once this is known. In the interim, this byte contains a pointer to an earlier
byte in memory where the same value  has ultimately to be recorded. For the same program
fragment as was used in earlier illustrations, the code would be stored as follows, immediately
before the final END directive is encountered. Within this code the reader should note the chain of
values 0Ah, 07h, 00h (the last of which marks the end of the list) giving the list of bytes where the
value of BITS  is yet to be stored. 

             00                  BEG          ; count the bits in a number
             00  0A              INI          ; read(A)
             01         LOOP                  ; REPEAT
             01  16              SHR          ;  A := A DIV 2
             02  3A 00           BCC EVEN     ;  IF A MOD 2 # 0 THEN
             04  1E 00           STA TEMP     ;    TEMP := A
             06  19 00           LDA BITS
             08  05              INC
             09  1E 07           STA BITS     ;    BITS := BITS + 1
             0B  19 05           LDA TEMP     ;    A := TEMP
             0D  37 01  EVEN     BNZ LOOP     ; UNTIL A = 0
             0F  19 0A           LDA BITS     ;
             11  0E              OTI          ; Write(BITS)
             12  18              HLT          ; terminate execution
             13         TEMP     DS  1        ; VAR TEMP : BYTE
             14  00     BITS     DC  0        ;     BITS : BYTE
             15                  END

By the end of assembly the forward reference table effectively becomes as shown below. The
outstanding references may be fixed up in much the same way as before, of course. 

             Name    Defined    Value   FLink

             BITS     true       14h     0Ah
             TEMP     true       13h     0Ch
             EVEN     true       0Dh     00h
             LOOP     true       01h     00h
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7 ADVANCED ASSEMBLER FEATURES 

It cannot be claimed that the assemblers of the last chapter are anything other than toys - but by
now the reader will be familiar with the drawbacks of academic courses. In this chapter we discuss
some extensions to the ideas put forward previously, and then leave the reader with a number of
suggestions for exercises that will help turn the assembler into something more closely resembling
the real thing. 

Complete source code for the assembler discussed in this chapter can be found in Appendix D. This
source code and equivalent implementations in Modula-2 and Pascal are also to be found on the
accompanying source diskette. 

7.1 Error detection 

Our simple assemblers are deficient in a very important area - little attempt is made to report errors
in the source code in a helpful manner. As has often been remarked, it is very easy to write a
translator if one can assume that it will only be given correctly formed programs. And, as the reader
will soon come to appreciate, error handling adds considerably to the complexity of any translation
process. 

Errors can be classified on the basis of the stage at which they can be detected. Among others, some
important potential errors are as follows: 

Errors that can be detected by the source handler 

Premature end of source file - this might be a rather fatal error, or its detection might be used
to supply an effective END line, as is done by some assemblers, including our own. 

Errors that can be detected by the lexical analyser 

Use of totally unrecognizable characters. 

Use of symbols whose names are too long. 

Comment fields that are too wide. 

Overflow in forming numeric constants. 

Use of non-digit characters in numeric literals. 

Use of symbols in the label field that do not start with a letter. 

Errors that can be detected by the syntax analyser 

Use of totally unrecognizable symbols, or misplaced symbols, such as numbers where the
comment field should appear. 



Failure to form address fields correctly, by misplacing operators, omitting commas in
parameter lists, and so on. 

Errors that can be detected by the semantic analyser 

These are rather more subtle, for the semantics of ASSEMBLER programming are often
deliberately vague. Some possible errors are: 

Use of undefined mnemonics. 

Failure to define all labels. 

Supplying address fields for one-byte instructions, or for directives like BEG, END. 

Omitting the address for a two-byte instruction, or for directives like DS or DC. 

Labelling any of the BEG, ORG, IF  or END directives. 

Supplying a non-numeric address field to ORG or EQU. (This might be allowed in some
circumstances). 

Attempting to reference an address outside the available memory. A simple recovery action
here is to treat all addresses modulo the available memory size, but this, almost certainly,
needs reporting. 

Use of the address of "data" as the address in a "branch" instruction. This is sometimes used
in clever programming, and so is not usually regarded as an error. 

Duplicate definition, either of macro names, of formal parameter names, or of label names.
This may allow trick effects, but should probably be discouraged. 

Failure to supply the correct number of actual parameters in a macro expansion. 

Attempting to use address fields for directives like ORG, DS, IF  and EQU that cannot be fully
evaluated at the time these directives take effect. This is a particularly nasty problem in a
one-pass system, for forward references will be set up to object bytes that have no real
existence. 

The above list is not complete, and the reader is urged to reflect on what other errors might be made
by the user of the assembler. 

A moment’s thought will reveal that many errors can be detected during the first pass of a two-pass
assembler, and it might be thought reasonable not to attempt the second pass if errors are detected
on the first one. However, if a complete listing is to be produced, showing object code alongside
source code, then this will have to wait for the second pass if forward references are to be filled in. 

How best to report errors is a matter of taste. Many assemblers are fairly cryptic in this regard,
reporting each error only by giving a code number or letter alongside the line in the listing where
the error was detected. A better approach, exemplified in our code, makes use of the idea of
constructing a set of errors. We then associate with each parsed line, not a Boolean error field, but
one of some suitable set type. As errors are discovered this set can be augmented, and at an



appropriate time error reporting can take place using a routine like listerrors  that can be found in
the enhanced assembler class in Appendix D. 

This is very easily handled with implementation languages like Modula-2 or Pascal, which directly
support the idea of a set type. In C++ we can make use of a simple template set class, with operators
overloaded so as to support virtually the same syntax as is found in the other languages. Code for
such a class appears in the appendix. 

7.2 Simple expressions as addresses 

Many assemblers allow the programmer the facility of including expressions in the address field of
instructions. For example, we might have the following (shown fully assembled, and with some
deliberate quirks of coding): 

       Macro Assembler 1.0 on 30/05/96 at 21:47:53

       (One Pass Assembler)

       00                 BEG              ; Count chars and lowercase letters
       00         LOOP                     ; LOOP
       00  0D             INA              ;   Read(CH)
       01  2E 2E          CPI  PERIOD      ;   IF CH = "." THEN EXIT
       03  36 19          BZE  EXIT
       05  2E 61          CPI  SMALLZ - 25 ;   IF (CH >= "a")
       07  39 12          BNG  * + 10
       09  2E 7B          CPI  SMALLZ + 1  ;      AND (CH <= "z")
       0B  38 12          BPZ  * + 6
       0D  19 20          LDA  LETTERS     ;     THEN INC(Letters)
       0F  05             INC
       10  1E 20          STA  LETTERS     ;   END
       12  19 21          LDA  LETTERS + 1 ;   INC(Total)
       14  05             INC
       15  1E 21          STA  LETTERS + 1
       17  35 00          BRN  LOOP        ; END
       19  19 20  EXIT    LDA  LETTERS
       1B  0F             OTC              ; Write(Letters)
       1C  19 21          LDA  TOTAL
       1E  0F             OTC              ; Write(Total)
       1F  18             HLT
       20  00     LETTERS DC   0           ; RECORD Letters, Total : BYTE END
       21         TOTAL   EQU  *
       21  00             DC   0
       22         SMALLZ  EQU  122         ; ascii ’z’
       22         PERIOD  EQU  46          ; ascii ’.’
       22                 END

Here we have used addresses like LETTERS + 1  (meaning one location after that assigned to
LETTERS), SMALLZ-25 (meaning, in this case, an obvious 97), and * + 6  and * + 10  (a rather
dangerous notation, meaning "6 bytes after the present one" and "10 bytes after the present one",
respectively). These are typical of what is allowed in many commercial assemblers. Quite how
complicated the expressions can become in a real assembler is not a matter for discussion here, but
it is of interest to see how to extend our one-pass assembler if we restrict ourselves to addresses of a
form described by 

          Address  =   Term { "+" Term  |  "-" Term } .
          Term     =   Label  |  number |  "*" .

where *  stands for "address of this byte". Note that we can, in principle, have as many terms as we
like, although the example above used only one or two. 

In a one-pass assembler, address fields of this kind can be handled fairly easily, even allowing for
the problem of forward references. As we assemble each line we compute the value of each address



field as fully as we can. In some cases (as in * + 6 ) this will be completely; in other cases forward
references will be needed. In the forward reference table entries we record not only the address of
the bytes to be altered when the labels are finally defined, but also whether these values are later to
be added to or subtracted from the value already residing in that byte. There is a slight complication
in that all expressions must be computed modulo 256 (corresponding to a two’s complement
representation). 

Perhaps this will be made clearer by considering how a one-pass assembler would handle the above
code, where we have deliberately delayed the definition of LETTERS, TOTAL, SMALLZ  and PERIOD

till the end. For the LETTERS + 1  address in instructions like STA  LETTERS + 1  we assemble as
though the instruction were STA  1 , and for the SMALLZ - 25  address in the instruction
CPI  SMALLZ - 25  we assemble as though the instruction were CPI  -25 , or, since addresses are
computed modulo 256, as though the instruction were CPI 231 . At the point just before LETTERS is
defined, the assembled code would look as follows: 

       Macro Assembler 1.0 on 30/05/96 at 21:47:53

       (One Pass Assembler)

       00                 BEG              ; Count chars and lowercase letters
       00         LOOP                     ; LOOP
       00  0D             INA              ;   Read(CH)
       01  2E 00          CPI  PERIOD      ;   IF CH = "." THEN EXIT
       03  36 00          BZE  EXIT
       05  2E E7          CPI  SMALLZ - 25 ;   IF (CH >= "a")
       07  39 12          BNG  * + 10
       09  2E 01          CPI  SMALLZ + 1  ;      AND (CH <= "z")
       0B  38 12          BPZ  * + 6
       0D  19 00          LDA  LETTERS     ;     THEN INC(Letters)
       0F  05             INC
       10  1E 00          STA  LETTERS     ;   END
       12  19 01          LDA  LETTERS + 1 ;   INC(Total)
       14  05             INC
       15  1E 01          STA  LETTERS + 1
       17  35 00          BRN  LOOP        ; END
       19  19 00  EXIT    LDA  LETTERS
       1B  0F             OTC              ; Write(Letters)
       1C  19 00          LDA  TOTAL
       1E  0F             OTC              ; Write(Total)
       1F  18             HLT
       20  00     LETTERS DC   0           ; RECORD Letters, Total : BYTE END
       21         TOTAL   EQU  *
       21  00             DC   0
       22         SMALLZ  EQU  122         ; ascii ’z’
       22         PERIOD  EQU  46          ; ascii ’.’
       22                 END

with the entries in the symbol and forward reference tables as depicted in Figure 7.1. 



To incorporate these changes requires modifications to the lexical analyser, (which now has to be
able to recognize the characters +, -  and *  as corresponding to lexical tokens or symbols), to the
syntax analyser (which now has more work to do in decoding the address field of an instruction -
what was previously the complete address is now possibly just one term of a complex address), and
to the semantic analyser (which now has to keep track of how far each address has been computed,
as well as maintaining the symbol table). 

Some of these changes are almost trivial: in the lexical analyser we simply extend the LA_symtypes

enumeration, and modify the getsym  routine to recognize the comma, plus, minus and asterisk as
new tokens. 

The changes to the syntax analyser are more profound. We change the definition of an unpacked
line: 

  const int SA_maxterms = 16;

  enum SA_termkinds {
    SA_absent, SA_numeric, SA_alphameric, SA_comma, SA_plus, SA_minus, SA_star
  };

  struct SA_terms {
    SA_termkinds kind;
    int number;      // value if known
    ASM_alfa name;   // character representation
  };

  struct SA_addresses {
    char length;     // number of fields
    SA_terms term[SA_maxterms - 1];
  };

  struct SA_unpackedlines {
    // source text, unpacked into fields
    bool labelled;
    ASM_alfa labfield, mnemonic;
    SA_addresses address;
    ASM_strings comment;
    ASM_errorset errors;
  };

and provide a rather grander routine for doing the syntax analysis, which also takes more care to
detect errors than before. Much of the spirit of this analysis is similar to the code used in the
previous assemblers; the main changes occur in the getaddress  routine. However, we should
comment on the choice of an array to store the entries in an address field. Since each line will have
a varying number of terms it might be thought better (especially with all the practice we have been
having!) to use a dynamic structure. This has not been done here because we do not really need to
create a new structure for each line - once we have assembled a line the address field is of no
further interest, and the structure used to record it is thus reusable. However, we need to check that
the capacity of the array is never exceeded. 

The semantic actions needed result in a considerable extension to the algorithm used to evaluate an
address field. The algorithm used previously is delegated to a termvalue  routine, one that is called
repeatedly from the main evaluate  routine. The forward reference handling is also marginally
more complex, since the forward reference entries have to record the outstanding action to be
performed when the back-patching is finally attempted. The revised table handler interface needed
to accommodate this is as follows: 

  enum ST_actions { ST_add, ST_subtract };

  typedef void (*ST_patch)(MC_bytes mem[], MC_bytes b, MC_bytes v, ST_actions a);

  class ST {
    public:
      void printsymboltable(bool &errors);



      // Summarizes symbol table at end of assembly, and alters errors
      // to true if any symbols have remained undefined

      void enter(char *name, MC_bytes value);
      // Adds name to table with known value

      void valueofsymbol(char *name, MC_bytes location, MC_bytes &value,
                         ST_actions action, bool &undefined);
      // Returns value of required name, and sets undefined if not found.
      // Records action to be applied later in fixing up forward references.
      // location is the current value of the instruction location counter

      void outstandingreferences(MC_bytes mem[], ST_patch fix);
      // Walks symbol table, applying fix to outstanding references in mem

      ST(SH *S);
      // Associates table handler with source handler S (for listings)
  };

Exercises 

7.1 Is it possible to allow a one-pass assembler to handle address fields that contain more general
forms of expression, including multiplication and division? Attempt to do so, restricting your effort
to the case where the expression is evaluated strictly from left to right. 

7.2 One drawback of using dynamic structures for storing the elements of a composite address field
is that it may be difficult to recover the storage when the structures are destroyed or are no longer
needed. Would this drawback detract from their use in constructing the symbol table or forward
reference table? 

7.3 Improved symbol table handling - hash tables

In assembly, a great deal of time can be spent looking up identifiers and mnemonics in tables, and it
is worthwhile considering how one might improve on the very simple linear search used in the
symbol table handler of the previous chapter. A popular way of implementing very efficient table
look-up is through the use of hashing functions. These are discussed at great length in most texts
on data structures, and we shall provide only a very superficial discussion here, based on the idea of
maintaining a symbol table in an array of fixed maximum length. For an assembler for a machine as
simple as the one we are considering, a fairly small array would surely suffice. Although the
possibilities for choosing identifiers are almost unlimited, the choice for any one program will be
severely limited - after all, with only 256 bytes in the machine, we are scarcely likely to want to
define even as many as 256 labels! 

With this in mind we might set up a symbol table structure based on the following declarations: 

  struct ST_entries {
    ASM_alfa name;          // name
    MC_bytes value;         // value once defined
    bool used;              // true after entry made in a table slot
    bool defined;           // true after defining occurrence encountered
    ST_forwardrefs *flink;  // to forward references
  };

  const int tablemax = 239; // symbol table size (prime number)
  ST_entries hashtable[tablemax + 1];

The table is initialized by setting the used  field for each entry to false  before assembly
commences; every time a new entry is made in the table this field is set to true . 



The fundamental idea behind hashing is to define a simple function based on the characters in an
identifier, and to use the returned value as an initial index or key into the table, at which position we
hope to be able to store or find the identifier and its associated value. If we are lucky, all identifiers
will map to rather scattered and different keys, making or finding an entry in the table will never
take more than one comparison, and by the end of assembly there will still be unused slots in the
table, and possibly large gaps between the slots that are used. 

Of course, we shall never be totally lucky, except, perhaps, in trivial programs. Hash functions are
kept very simple so that they can be computed quickly. The simplest of such functions will have the
undesirable property that many different identifiers may map onto the same key, but a little
reflection will show that, no matter how complicated one makes the function, one always runs the
risk that this will happen. Some hash functions are clearly very risky - for example, simply using
the value of the first letter in the identifier as a key. It would be much better to use something like 

            hash = (ident[first] * ident[last]) % tablemax;

(which would still fail to discriminate between identifiers like ABC and CBA), or 

            hash = (ident[first] * 256 + ident[last]) % tablemax;

(which would still fail to discriminate between identifiers like AC and ABC). 

The subtle part of using a hash table concerns the action to take when we find that some other
identifier is occupying the slot identified by the key (when we want to add to the table) or that a
different identifier is occupying the slot (when we want to look up the value of an identifier in the
table). 

If this happens - an event known as a collision - we must be prepared to probe elsewhere in the
table looking for the correct entry, a process known as rehashing. This can be done in a variety of
ways. The easiest is simply to make a simple linear search in unit steps from the position identified
by the key. This suffers from the disadvantage that the entries in the table tend to get very clustered
- for example, if the key is simply the first letter, the first identifier starting with A will grab the
obvious slot, the second identifier starting with A will collide with the first starting with B, and so
on. A better technique is to use bigger steps in looking for the next slot. A fairly effective way is to
use steps defined by a moderately small prime number - and, as we have already suggested, to use a
symbol table that is itself able to contain a prime number of items. Then in the worst case we shall
easily be able to detect that the table is full, while still being able to utilize every available slot
before this happens. 

The implementation in Appendix D shows how these ideas can be implemented in a table handler
compatible with the rest of the assembler. The suggested hashing function is relatively complicated,
but is intended to produce a relatively large range of keys. The search itself is programmed using
the so-called state variable approach: while searching we can be in one of four states - still looking,
found the identifier we are looking for, found a free slot, or found that the table is full. 

The above discussion may have given the impression that the use of hashing functions is so beset
with problems as to be almost useless, but in fact they turn out to be the method of choice for
serious applications. If a little care is taken over the choice of hashing function, the collision rate
can be kept very low, and the speed of access very high. 



Exercises 

7.3 How could one make use of a hash table to speed up the process of matching mnemonics to
opcodes? 

7.4 Could one use a single hash table to store opcode mnemonics, directive mnemonics, macro
labels, and user defined labels? 

7.5 In the implementation in Appendix D the hash function is computed within the symbol table
handler itself. It might be more efficient to compute it as the identifier is recognized within the
scanner. What modifications would be needed to the scanner interface to achieve this? 

Further reading 

Our treatment of hash functions has been very superficial. Excellent treatments of this subject are to
be found in the books by Gough (1988), Fischer and LeBlanc (1988, 1991) and Elder (1994). 

7.4 Macro processing facilities 

Programming in ASSEMBLER is a tedious business at the best of times, because assembler
languages are essentially very simple, and lack the powerful constructs possible in high level
languages. One way in which life can be made easier for programmers is to permit them to use
macros. A macro is a device that effectively allows the assembler language to be extended, by the
programmer defining new mnemonics that can then be used repeatedly within the program
thereafter. As usual, it is useful to have a clear syntactic description of what we have in mind.
Consider the following modification to the PRODUCTIONS section of the second Cocol grammar of
section 6.1, which allows for various of the extensions now being proposed: 

  PRODUCTIONS
    ASM               = StatementSequence "END" EOF .
    StatementSequence = { Statement [ comment ] EOL } .
    Statement         = Executable | MacroExpansion | Directive .
    Executable        = [ Label ] [ OneByteOp | TwoByteOp Address ] .
    OneByteOp         = "HLT" | "PSH" | "POP"  (* | . . . . etc *) .
    TwoByteOp         = "LDA" | "LDX" | "LDI"  (* | . . . . etc *) .
    Address           = Term { "+" Term | "-" Term } .
    Term              = Label | number | "*" .
    MacroExpansion    = [ Label ] MacroLabel ActualParameters .
    ActualParameters  = [ OneActual { "," OneActual } ] .
    OneActual         = Term | OneByteOp | TwoByteOp .
    Directive         =   Label "EQU" KnownAddress
                        | [ Label ] ( "DC" Address | "DS" KnownAddress )
                        | "ORG" KnownAddress | "BEG"
                        | "IF" KnownAddress | MacroDefinition .
    Label             = identifier .
    KnownAddress      = Address .
    MacroDefinition   = MacroLabel "MAC" FormalParameters [ comment ] EOL
                        StatementSequence
                        "END" .
    MacroLabel        = identifier .
    FormalParameters  = [ identifier { "," identifier } ] .

Put less formally, we are adopting the convention that a macro is defined by code like 

     LABEL   MAC     P1, P2, P3 ...  ; P1, P2, P3 ... are formal parameters
                                     ; lines of code as usual,
                                     ; using P1, P2, P3 ... in various fields
             END                     ; end of definition



where LABEL is the name of the new instruction, and where MAC is a new directive. For example, we
might have 

     SUM     MAC     A,B,C   ; Macro to add A to B and store in C
             LDA     A
             ADD     B
             STA     C
             END             ; of macro SUM

It must be emphasized that a macro definition gives a template or model, and does not of itself
immediately generate executable code. The program will, in all probability, not have labels or
variables with the same names as those given to the formal parameters. 

If a program contains one or more macro definitions, we may then use them to generate executable
code by a macro expansion, which takes a form exemplified by 

             SUM     X,Y,Z

where SUM, the name of the macro, appears in the opcode field, and where X,Y,Z  are known as
actual parameters. With SUM defined as in this example, code of the apparent form 

             SUM     X,Y,Z
         L1  SUM     P,Q,R

would be expanded by the assembly process to generate actual code equivalent to 

             LDA     X
             ADD     Y
             STA     Z
         L1  LDA     P
             ADD     Q
             STA     R

In the example above the formal parameters appeared only in the address fields of the lines
constituting the macro definition, but they are not restricted to such use. For example, the macro 

     CHK     MAC     A,B,OPCODE,LAB
     LAB     LDA     A
             CPI     B
             OPCODE  LAB
             END                ; of macro CHK

if invoked by code of the form 

             CHK     X,Y,BNZ,L1

would produce code equivalent to 

      L1     LDA     X
             CPI     Y
             BNZ     L1

A macro facility should not be confused with a subroutine facility. The definition of a macro causes
no code to be assembled, nor is there any obligation on the programmer ever to expand any
particular macro. On the other hand, defining a subroutine does cause code to be generated
immediately. Whenever a macro is expanded the assembler generates code equivalent to the macro
body, but with the actual parameters textually substituted for the formal parameters. For the call of
a subroutine the assembler simply generates code for a special form of jump to the subroutine. 

We may add a macro facility to a one-pass assembler quite easily, if we stipulate that each macro
must be fully defined before it is ever invoked (this is no real limitation if one thinks about it). 



The first problem to be solved is that of macro definition. This is easily recognized as imminent by
the assembleline  routine, which handles the MAC directive by calling a definemacro  routine from
within the switching construct responsible for handling directives. The definemacro  routine
provides (recursively) for the definition of one macro within the definition of another one, and for
fairly sophisticated error handling. 

The definition of a macro is handled in two phases. Firstly, an entry must be made into a macro
table, recording the name of the macro, the number of parameters, and their formal names.
Secondly, provision must be made to store the source text of the macro so that it may be rescanned
every time a macro expansion is called for. As usual, in a C++ implementation we can make
effective use of yet another class, which we introduce with the following public interface: 

  typedef struct MH_macentries *MH_macro;

  class MH {
    public:
      void newmacro(MH_macro &m, SA_unpackedlines header);
      // Creates m as a new macro, with given header line that includes
      // the formal parameters

      void storeline(MH_macro m, SA_unpackedlines line);
      // Adds line to the definition of macro m

      void checkmacro(char *name, MH_macro &m, bool &ismacro, int &params);
      // Checks to see whether name is that of a predefined macro.  Returns
      // ismacro as the result of the search.  If successful, returns m as
      // the macro, and params as the number of formal parameters

      void expand(MH_macro m, SA_addresses actualparams,
                  ASMBASE *assembler, bool &errors);
      // Expands macro m by invoking assembler for each line of the macro
      // definition, and using the actualparams supplied in place of the
      // formal parameters appearing in the macro header.
      // errors is altered to true if the assembly fails for any reason

      MH();
      // Initializes macro handler
  };

The algorithm for assembling an individual line is, essentially, the same as before. The difference is
that, before assembly, the mnemonic  field is checked to see whether it is a user-defined macro name
rather than a standard machine opcode. If it is, the macro is expanded, effectively by assembling
lines from the text stored in the macro body, rather than from the incoming source. 

The implementation of the macro handler class is quite interesting, and calls for some further
commentary: 

A variable of MC_macro type is simply a pointer to a node from which depends a queue of
unpacked source lines. This header node records the unpacked line that forms the macro
header itself, and the address field in this header line contains the formal parameters of the
macro. 

Macro expansion is accomplished by passing the lines stored in the queue to the same
assembleline  routine that is responsible for assembling "normal" lines. The mutual
recursion which this introduces into the system (the assembler has to be able to invoke the
macro expansion, which has to be able to invoke the assembler) is handled in a C++

implementation by declaring a small base class 

      class ASMBASE {
        public:
          virtual void assembleline(SA_unpackedlines &srcline, bool &failure) = 0;
          // Assembles srcline, reporting failure if it occurs
      };



The assembler class is then derived from this one, and the base class is also used as a formal
parameter type in the MH::expand  function. The same sort of functionality is achieved in
Pascal and Modula-2 implementations by passing the assembleline  routine as an actual
parameter directly to the expand  routine. 

The macro expansion has to substitute the actual parameters from the address field of the
macro invocation line in the place of any formal parameter references that may appear in each
of the lines stored in the macro "body" before those lines can be assembled. These formal
parameters may of course appear as labels, mnemonics, or as elements of addresses. 

A macro expansion may instigate another macro expansion - indeed any use of macro
processing other than the most trivial probably takes advantage of this feature. Fortunately
this is easily handled by the various routines calling one another in a (possibly) mutually
recursive manner. 

Exercises 

7.6 The following represents an attempt to solve a very simple problem: 

                   BEG
           CR      EQU     13        ; ASCII carriage return
           LF      EQU     10        ; ASCII line feed
           WRITE   MAC     A, B, C   ; write integer A and characters B,C
                   LDA     A
                   OTI               ; write integer
                   LDI     B
                   OTA               ; write character
                   LDI     C
                   OTA               ; write character
                   END               ; of WRITE macro
           READ    MAC     A
                   INI
                   STA     A
                   WRITE   A, CR, LF ; reflect on output
                   END               ; of READ macro
           LARGE   MAC     A, B, C   ; store larger of A,B in C
                   LDA     A
                   CMP     B
                   BPZ     * + 3
                   LDA     B
                   STA     C
                   END               ; of LARGE macro

                   READ    X
                   READ    Y
                   READ    Z
                   LARGE   X, Y, LARGE
                   LARGE   LARGE, Z, LARGE
           EXIT    WRITE   LARGE, CR, LF
                   HLT
           LARGE   DS      1
           X       DS      1
           Y       DS      1
           Z       DS      1
                   END               ; of program

If this were assembled by our macro assembler, what would the symbol, forward reference and
macro tables look like just before the line labelled EXIT  was assembled? Is it permissible to use the
identifier LARGE as both the name of a macro and of a label? 

7.7 The LARGE macro of the last example is a little dangerous, perhaps. Addresses like * + 3  are
apt to cause trouble when modifications are made, because programmers forget to change absolute
addresses or offsets. Discuss the implications of coding the body of this macro as 



                   LDA     A
                   CMP     B
                   BPZ     LAB
                   LDA     B
            LAB    STA     C
                   END             ; of LARGE macro

7.8 Develop macros using the language suggested here that will allow you to simulate the if ... then
... else, while ... do, repeat ... until, and for loop constructions allowed in high level languages. 

7.9 In our system, a macro may be defined within another macro. Is there any advantage in allowing
this, especially as macros are all entered in a globally accessible macro table? Would it be possible
to make nested macros obey scope rules similar to those found in Pascal or Modula-2? 

7.10 Suppose two macros use the same formal parameter names. Does this cause problems when
attempting macro expansion? Pay particular attention to the problems that might arise in the various
ways in which nesting of macro expansions might be required. 

7.11 Should one be able to redefine macro names? What does our system do if this is attempted,
and how should it be changed to support any ideas you may have for improving it? 

7.12 Should the number of formal and actual parameters be allowed to disagree? 

7.13 To what extent can a macro assembler be used to accept code in one assembly language and
translate it into opcodes for another one? 

7.5 Conditional assembly 

To realize the full power of an assembler (even one with no macro facilities), it may be desirable to
add the facility for what is called conditional assembly, whereby the assembler can determine at
assembly-time whether to include certain sections of source code, or simply ignore them. A simple
form of this is obtained by introducing an extra directive IF , used in code of the form 

             IF      Expression

which signals to the assembler that the following line is to be assembled only if the assembly-time
value of Expression is non-zero. Frequently this line might be a macro invocation, but it does not
have to be. Thus, for example, we might have 

     SUM     MAC     A,B,C
             LDA     A
             ADD     B
             STA     C
             END             ; macro
             . . .
     FLAG    EQU     1
             . . .
             IF      FLAG
             SUM     X,Y,RESULT

which (in this case) would generate code equivalent to 

             LDA     X
             ADD     Y
             STA     RESULT

but if we had set FLAG EQU 0  the macro expansion for SUM would not have taken place. 



This may seem a little silly, and another example may be more convincing. Suppose we have
defined the macro 

       SUM   MAC     A,B,C,FLAG
             LDA     A
             IF      FLAG
             ADI     B
             IF      FLAG-1
             ADX     B
             STA     C
             END             ; macro

Then if we ask for the expansion 

             SUM     X,45,RESULT,1

we get assembled code equivalent to 

             LDA     X
             ADI     45
             STA     RESULT

but if we ask for the expansion 

             SUM     X,45,RESULT,0

we get assembled code equivalent to 

             LDA     X
             ADX     45
             STA     RESULT

This facility is almost trivially easily added to our one-pass assembler, as can be seen by studying
the code for the first few lines of the AS::assembleline  function in Appendix D (which handles
the inclusion or rejection of a line), and the case AS_if  clause that handles the recognition of the
IF  directive. Note that the value of Expression must be completely defined by the time the IF

directive is encountered, which may be a little more restrictive than we could allow with a two-pass
assembler. 

Exercises 

7.14 Should a macro be allowed to contain a reference to itself? This will allow recursion, in a
sense, in assembly language programming, but how does one prevent the system from getting into
an indefinite expansion? Can it be done with the facilities so far developed? If not, what must be
added to the language to allow the full power of recursive macro calls? 

7.15 N! can be defined recursively as 

if N = 1 then N! = 1 else N! = N(N-1)!

In the light of your answer to Exercise 7.14, can you make use of this idea to let the macro
assembler developed so far generate code for computing 4! by using recursive macro calls? 

7.16 Conditional assembly may be enhanced by allowing constructions of the form 

                    IF      EXPRESSION
                       line 1
                       line 2
                       . . .



                    ENDIF

with the implication that the code up to the directive ENDIF is only assembled if EXPRESSION

evaluates to a non-zero result at assembly-time. Is this really a necessary, or a desirable variation?
How could it be implemented? Other extensions might allow code like that below (with fairly
obvious meaning): 

                    IF      EXPRESSION
                         line 1
                         line 2
                         . . .
                    ELSE
                         line m
                         line n
                         . . .
                    ENDIF

7.17 Conditional assembly might be made easier if one could use Boolean expressions rather than
numerical ones. Discuss the implications of allowing, for example 

                    IF      A > 0

or 

                    IF      A <> 0 AND B = 1

7.6 Relocatable code 

The assemblers that we have considered so far have been load-and-go type assemblers, producing
the machine instructions for the absolute locations where they will reside when the code is finally
executed. However, when developing a large program it is convenient to be able to assemble it in
sections, storing each separately, and finally linking the sections together before execution. To
some extent this can be done with our present system, by placing an extra load on programmers to
ensure that all the sections of code and data are assembled for different areas in memory, and letting
them keep track of where they all start and stop. 

This is so trivial that it need be discussed no further here. However, such a scheme, while in
keeping with the highly simplified view of actual code generation used in this text, is highly
unsatisfactory. More sophisticated systems provide the facility for generating relocatable code,
where the decision as to where it will finally reside is delayed until loading time. 

At first sight even this seems easy to implement. With each byte that is generated we associate a
flag, indicating whether the byte will finally be loaded unchanged, or whether it must be modified
at load time by adding an offset to it. For example, the section of code 

       00                 BEG
       00  19 06          LDA  A
       02  22 37          ADI  55
       04  1E 07          STA  B
       06  0C     A       DC   12
       07  00     B       DC   0
       08                 END

contains two bytes (assembled as at 01h and 05h) that refer to addresses which would alter if the
code was relocated. The assembler could easily produce output for the loader on the lines of the
following (where, as usual, values are given in hexadecimal): 

    19 0    06 1    22 0    37 0    1E 0    07 1    0C 0    00 0



Here the first of each pair denotes a loadable byte, and the second is a flag denoting whether the
byte needs to be offset at load time. A relocatable code file of this sort of information could, again,
be preceded by a count of the number of bytes to be loaded. The loader could read a set of such
files, effectively concatenating the code into memory from some specified overall starting address,
and keeping track as it did so of the offset to be used. 

Unfortunately, the full ramifications of this soon reach far beyond the scope of a naïve discussion.
The main point of concern is how to decide which bytes must be regarded as relocatable. Those
defined by "constants", such as the opcodes themselves, or entries in the symbol table generated by
EQU directives are clearly "absolute". Entries in the symbol table defined by "labels" in the label
field of other instructions may be thought of as relocatable, but bytes defined by expressions that
involve the use of such labels are harder to analyse. This may be illustrated by a simple example. 

Suppose we had the instruction 

            LDA   A - B

If A and B are absolute, or are both relocatable, and both defined in the section of code being
assembled, then the difference is absolute. If B is absolute and A is relocatable, then the difference is
still relocatable. If A is absolute and B is relocatable, then the difference should probably be ruled
inadmissible. Similarly, if we have an instruction like 

            LDA   A + B

the sum is absolute if both A and B are absolute, is relocatable if A is relocatable and B is absolute,
and probably inadmissible otherwise. Similar arguments may be extended to handle an expression
with more than two operands (but notice that expressions with multiplication and division become
still harder to analyse). 

The problem is exacerbated still further if - as will inevitably happen when such facilities are
properly exploited - the programmer wishes to make reference to labels which are not defined in the
code itself, but which may, perhaps, be defined in a separately assembled routine. It is not
unreasonable to expect the programmer explicitly to declare the names of all labels to be used in
this way, perhaps along the lines of 

            BEG
            DEF     A,B,C     ; these are available for external use
            USE     X,Y,Z     ; these are not defined, but required

In this case it is not hard to see that the information presented to the loader will have to be quite
considerably more complex, effectively including those parts of the symbol table relating to the
elements of the DEF list, and those parts of the forward reference tables that relate to the USE list.
Rather cowardly, we shall refrain from attempting to discuss these issues in further detail here, but
leave them as interesting topics for the more adventurous reader to pursue on his or her own. 

7.7 Further projects 

The following exercises range from being almost trivial to rather long and involved, but the reader
who successfully completes them will have learned a lot about the assembly translation process,
and possibly even something about assembly language programming. 

7.18 We have discussed extensions to the one-pass assembler, rather than the two-pass assembler.



Attempt to extend the two-pass assembler in the same way. 

7.19 What features could you add to, and what restrictions could you remove from the assembly
process if you used a two-pass rather than a one-pass assembler? Try to include these extra features
in your two-pass assembler. 

7.20 Modify your assembler to provide for the generation of relocatable code, and possibly for code
that might be handled by a linkage editor, and modify the loader developed in Chapter 4, so as to
include a more sophisticated linkage editor. 

7.21 How could you prevent programmers from branching to "data", or from treating "instruction"
locations as data - assuming that you thought it desirable to do so? (As we have mentioned,
assembler languages usually allow the programmer complete freedom in respect of the treatment of
identifiers, something which is expressly forbidden in strictly typed languages like Pascal, but
which some programmers regard as a most desirable feature of a language.) 

7.22 We have carefully chosen our opcode mnemonics for the language so that they are lexically
unique. However, some assemblers do not do this. For example, the 6502 assembler as used on the
pioneering Apple II microcomputer had instructions like 

                   LDA  2      equivalent to our     LDA  2

and 

                   LDA  #2     equivalent to our     LDI  2

that is, an extra character in the address field denoted whether the addressing mode was "direct" or
"immediate". In fact it was even more complex than that: the LDA mnemonic in 6502 assembler
could be converted into one of 8 machine instructions, depending on the exact form of the address
field. What differences would it make to the assembly process if you had to cater for such
conventions? To make it realistic, study the 6502 assembler mnemonics in detail. 

7.23 Another variation on address field notation was provided by the Intel 8080 assembler, which
used mnemonics like 

                   MOV  A, B         and     MOV  B, A

to generate different single byte instructions. How would this affect the assembly process? 

7.24 Some assemblers allow the programmer the facility to use "local" labels, which are not really
part of a global symbol list. For example, that provided with the UCSD p-System allowed code like 

                        LAB    MVI   A, 4
                               JMP   $2
                               MVI   B, C
                        $2     NOP
                               LHLD  1234
                        LAB2   XCHG
                               POP   H
                        $2     POP   B
                               POP   D
                               JMP   $2
                        LAB3   NOP

Here the $2 label between the LAB1 and LAB2 labels and the $2 label between the LAB2 and LAB3

labels are local to those demarcated sections of code. How difficult is it to add this sort of facility to
an assembler, and what would be the advantages in having it? 



7.25 Develop a one-pass or two-pass macro assembler for the stack-oriented machine discussed in
Chapter 4. 

7.26 As a more ambitious project, examine the assembler language for a real microprocessor, and
write a good macro assembler for it. 
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8 GRAMMARS AND THEIR CLASSIFICATION 

In this chapter we shall explore the underlying ideas behind grammars further, identify some
potential problem areas in designing grammars, and examine the ways in which grammars can be
classified. Designing a grammar to describe the syntax of a programming language is not merely an
interesting academic exercise. The effort is, in practice, usually made so as to be able to aid the
development of a translator for the language (and, of course so that programmers who use the
language may have a reference to consult when All Else Fails and they have to Read The
Instructions). Our study thus serves as a prelude to the next chapter, where we shall address the
important problem of parsing rather more systematically than we have done until now. 

8.1 Equivalent grammars 

As we shall see, not all grammars are suitable as the starting point for developing practical parsing
algorithms, and an important part of compiler theory is concerned with the ability to find
equivalent grammars. Two grammars are said to be equivalent if they describe the same language,
that is, can generate exactly the same set of sentences (not necessarily using the same set of
sentential forms or parse trees). 

In general we may be able to find several equivalent grammars for any language. A distinct
problem in this regard is a tendency to introduce far too few non-terminals, or alternatively, far too
many. It should not have escaped attention that the names chosen for non-terminals usually convey
some semantic implication to the reader, and the way in which productions are written (that is, the
way in which the grammar is factorized) often serves to emphasize this still further. Choosing too
few non-terminals means that semantic implications are very awkward to discern at all, too many
means that one runs the risk of ambiguity, and of hiding the semantic implications in a mass of hard
to follow alternatives. 

It may be of some interest to give an approximate count of the numbers of non-terminals and
productions that have been used in the definition of a few languages: 

           Language                            Non-terminals  Productions

           Pascal  (Jensen + Wirth report)          110          180
           Pascal  (ISO standard)                   160          300
           Edison                                    45           90
           C                                         75          220
           C++                                      110          270
           ADA                                      180          320
           Modula-2 (Wirth)                          74          135
           Modula-2 (ISO standard)                  225          306

8.2 Case study - equivalent grammars for describing expressions

One problem with the grammars found in text books is that, like many complete programs found in
text books, their final presentation often hides the thought which has gone into their development.
To try to redress the balance, let us look at a typical language construct - arithmetic expressions -
and explore several grammars which seem to define them. 



Consider the following EBNF descriptions of simple algebraic expressions. One set is
left-recursive, while the other is right-recursive: 

  (E1)      Goal        =  Expression .                        (1)
            Expression  =  Term | Term "-" Expression .        (2 ,3)
            Term        =  Factor | Factor "*" Term .          (4, 5)
            Factor      =  " a" | " b" | " c" .                   (6, 7, 8)

  (E2)      Goal        =  Expression .                        (1)
            Expression  =  Term | Expression "-" Term .        (2, 3)
            Term        =  Factor | Term "*" Factor .          (4, 5)
            Factor      =  " a" | " b" | " c" .                   (6, 7, 8)

Either of these grammars can be used to derive the string a - b * c, and we show the corresponding
phrase structure trees in Figure 8.1 below. 

We have already commented that it is frequently the case that the semantic structure of a sentence is
reflected in its syntactic structure, and that this is a very useful property for programming language
specification. The terminals -  and *  fairly obviously have the "meaning" of subtraction and
multiplication. We can reflect this by drawing the abstract syntax tree (AST) equivalents of the
above diagrams; ones constructed essentially by eliding out the names of the non-terminals, as
depicted in Figure 8.2. Both grammars lead to the same AST, of course. 

The appropriate meaning can then be extracted from such a tree by performing a post-order (LRN)
tree walk. 

While the two sets of productions lead to the same sentences, the second set of productions
corresponds to the usual implied semantics of "left to right" associativity of the operators -  and * ,
while the first set has the awkward implied semantics of "right to left" associativity. We can see this
by considering the parse trees for each grammar for the string a - b - c, depicted in Figure 8.3. 



Another attempt at writing a grammar for this language is of interest: 

  (E3)      Goal        =  Expression .                        (1)
            Expression  =  Term | Term "*" Expression .        (2, 3)
            Term        =  Factor | Factor " -" Term .          (4, 5)
            Factor      =  " a" | " b" | " c" .                   (6, 7, 8)

Here we have the unfortunate situation that not only is the associativity of the operators wrong; the
relative precedence of multiplication and subtraction has also been inverted from the norm. This
can be seen from the parse tree for the expression a - b * c shown in Figure 8.4. 

Of course, if we use the EBNF metasymbols it is possible to write grammars without using
recursive productions. Two such grammars follow: 

  (E4)      Goal        =  Expression .                        (1)
            Expression  =  Term { "-" Term } .                 (2)
            Term        =  Factor { "*" Factor } .             (3)
            Factor      =  " a" | " b" | " c" .                   (4, 5, 6)

  (E5)      Goal        =  Expression .                        (1)
            Expression  =  { Term "-" } Term .                 (2)
            Term        =  { Factor  "*" } Factor .            (3)
            Factor      =  " a" | " b" | " c" .                   (4, 5, 6)

Exercises

8.1 Draw syntax diagrams which reflect the different approaches taken to factorizing these
grammars. 

8.2 Comment on the associativity and precedence that seem to underpin grammars E4 and E5. 

8.3 Develop sets of productions for algebraic expressions that will describe the operations of
addition and division as well as subtraction and multiplication. Analyse your attempts in some
detail, paying heed to the issues of associativity and precedence. 



8.4 Develop sets of productions which describe expressions exemplified by 

- a + sin(b + c) * ( - ( b - a) )

that is to say, fairly general mathematical expressions, with bracketing, leading unary signs, the
usual operations of addition, subtraction, division and multiplication, and simple function calls.
Ensure that the productions correspond to the conventional precedence and associativity rules for
arithmetic expressions. 

8.5 Extend Exercise 8.4 to allow for exponentiation as well. 

8.3 Some simple restrictions on grammars 

Had he looked at our grammars, Mr. Orwell might have been tempted to declare that, while they
might be equal, some are more equal than others. Even with only limited experience we have seen
that some grammars will have features which will make them awkward to use as the basis of
compiler development. There are several standard restrictions which are called for by different
parsing techniques, among which are some fairly obvious ones. 

8.3.1 Useless productions and reduced grammars 

For a grammar to be of practical value, especially in the automatic construction of parsers and
compilers, it should not contain superfluous rules that cannot be used in parsing a sentence.
Detection of useless productions may seem a waste of time, but it may also point to a clerical error
(perhaps an omission) in writing the productions. An example of a grammar with useless
productions is 

              G = { N , T , S , P }
              N  = { W , X , Y , Z }
              T = { a }
              S = W
              P =
                  W     aW                 (1)
                  W     Z                 (2)
                  W     X                 (3)
                  Z    aZ                (4)
                  X    a                 (5)
                  Y     aa                (6)

The useful productions are (1), (3) and (5). Production (6) ( Y    aa ) is useless, because Y is
non-reachable or non-derivable - there is no way of introducing Y into a sentential form (that is,
S  >* Y  for any , ). Productions (2) and (4) are useless, because Z is non-terminating - if Z

appears in a sentential form then this cannot generate a terminal string (that is, Z  >*  for any
  T *). 

A reduced grammar is one that does not contain superfluous rules of these two types
(non-terminals that can never be reached from the start symbol, and non-terminals that cannot
produce terminal strings). 

More formally, a context-free grammar is said to be reduced if, for each non-terminal B we can
write 



S *  B 

for some strings  and , and where 

B * 

for some   T * . 

In fact, non-terminals that cannot be reached in any derivation from the start symbol are sometimes
added so as to assist in describing the language - an example might be to write, for C 

Comment = "/* " CommentString "*/ " .
CommentString = character | CommentString character .

8.3.2 -free grammars 

Intuitively we might expect that detecting the presence of "nothing" would be a little awkward, and
for this reason certain compiling techniques require that a grammar should contain no -productions
(those which generate the null string). Such a grammar is referred to as an -free grammar. 

-productions are usually used in BNF as a way of terminating recursion, and are often easily
removed. For example, the productions 

        Integer        =  digit  RestOfInteger .
        RestOfInteger  =  digit  RestOfInteger |  .
        digit          =  "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" .

can be replaced by the -free equivalent 

        Integer        =  digit  |  Integer  digit .
        digit          =  "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" .

Such replacement may not always be so easy: the reader might like to look at the grammar of
Section 8.7, which uses -productions to express ConstDeclarations, VarDeclarations and
Statement, and try to eliminate them. 

8.3.3 Cycle-free grammars 

A production in which the right side consists of a single non-terminal 

A    B      ( where A , B    N )

is termed a single production. Fairly obviously, a single production of the form 

A    A

serves no useful purpose, and should never be present. It could be argued that it causes no harm, for
it presumably would be an alternative which was never used (so being useless, in a sense not quite
that discussed above). A less obvious example is provided by the set of productions 

A    B
B    C



C    A

Not only is this useless in this new sense, it is highly undesirable from the point of obtaining a
unique parse, and so all parsing techniques require a grammar to be cycle-free - it should not permit
a derivation of the form 

A  +  A

8.4 Ambiguous grammars 

An important property which one looks for in programming languages is that every sentence that
can be generated by the language should have a unique parse tree, or, equivalently, a unique left (or
right) canonical parse. If a sentence produced by a grammar has two or more parse trees then the
grammar is said to be ambiguous. An example of ambiguity is provided by another attempt at
writing a grammar for simple algebraic expressions - this time apparently simpler than before: 

  (E6)          Goal          =   Expression .                 (1)
                Expression    =   Expression " -" Expression    (2)
                                  | Expression "*" Expression  (3)
                                  | Factor  .                  (4)
                Factor        =   " a" | " b" | " c" .            (5, 6, 7)

With this grammar the sentence a - b * c has two distinct parse trees and two canonical derivations.
We refer to the numbers to show the derivation steps. 

The parse tree shown in Figure 8.5 corresponds to the derivation 

    Goal     Expression                                    (1)
             Expression - Expression                       (2)
             Factor - Expression                           (4)
             a - Expression                                (5)
             a - Expression * Expression                   (3)
             a - Factor * Expression                       (4)
             a - b * Expression                            (6)
             a - b * Factor                                (4)
             a - b * c                                     (7)

while the second derivation 

    Goal     Expression                                    (1)
             Expression * Expression                       (3)
             Expression - Expression * Expression          (2)
             Factor - Expression * Expression              (4)
             a - Expression * Expression                   (5)
             a - Factor * Expression                       (4)
             a - b * Expression                            (6)
             a - b * Factor                                (4)
             a - b * c                                     (7)



corresponds to the parse tree depicted in Figure 8.6. 

If the only use for grammars was to determine whether a string belonged to the language, ambiguity
would be of little consequence. However, if the meaning of a program is to be tied to its syntactic
structure, then ambiguity must be avoided. In the example above, the two trees correspond to two
different evaluation sequences for the operators *  and - . In the first case the "meaning" would be
the usual mathematical one, namely a - (b * c), but in the second case the meaning would
effectively be (a - b) * c . 

We have already seen various examples of unambiguous grammars for this language in an earlier
section, and in this case, fortunately, ambiguity is quite easily avoided. 

The most famous example of an ambiguous grammar probably relates to the IF ... THEN ...

ELSE statement in simple Algol-like languages. Let us demonstrate this by defining a simple
grammar for such a construct. 

            Program       =  Statement .
            Statement     =  Assignment | IfStatement .
            Assignment    =  Variable ":=" Expression .
            Expression    =  Variable .
            Variable      =  " i" | " j" | " k" | " a" | " b" | " c" .
            IfStatement   =  "IF" Condition "THEN" Statement
                             | "IF" Condition "THEN" Statement "ELSE" Statement .
            Condition     =  Expression "=" Expression
                             | Expression "#" Expression .

In this grammar the string 

                IF i = j THEN IF i = k THEN a := b ELSE a := c

has two possible parse trees. The reader is invited to draw these out as an exercise; the essential
point is that we can parse the string to correspond either to 

                IF i = j THEN (IF i = k THEN a := b ELSE a := c)
                         ELSE (nothing)

or to 

                IF i = j THEN (IF i = k THEN a := b ELSE nothing)
                         ELSE ( a := c)

Any language which allows a sentence such as this may be inherently ambiguous unless certain
restrictions are imposed on it, for example, on the part following the THEN of an IfStatement, as was
done in Algol (Naur, 1963). In Pascal and C++, as is hopefully well known, an ELSE is deemed to
be attached to the most recent unmatched THEN, and the problem is avoided that way. In other
languages it is avoided by introducing closing tokens like ENDIF and ELSIF . It is, however, possible
to write productions that are unambiguous: 

    Statement     =   Matched | Unmatched .



    Matched       =   "IF" Condition "THEN" Matched "ELSE" Matched
                       | OtherStatement .

    Unmatched     =   "IF" Condition "THEN" Statement
                       | "IF" Condition "THEN" Matched "ELSE" Unmatched .

In the general case, unfortunately, no algorithm exists (or can exist) that can take an arbitrary
grammar and determine with certainty and in a finite amount of time whether it is ambiguous or
not. All that one can do is to develop fairly simple but non-trivial conditions which, if satisfied by a
grammar, assure one that it is unambiguous. Fortunately, ambiguity does not seem to be a problem
in practical programming languages. 

Exercises 

8.6 Convince yourself that the last set of productions for IF ... THEN ... ELSE  statements is
unambiguous. 

8.5 Context sensitivity 

Some potential ambiguities belong to a class which is usually termed context-sensitive. Spoken
and written language is full of such examples, which the average person parses with ease, albeit
usually within a particular cultural context or idiom. For example, the sentences 

Time flies like an arrow

and 

Fruit flies like a banana

in one sense have identical construction 

Noun   Verb   Adverbial phrase

but, unless we were preoccupied with aerodynamics, in listening to them we would probably
subconsciously parse the second along the lines of 

Adjective   Noun   Verb   Noun phrase

Examples like this can be found in programming languages too. In Fortran a statement of the form 

A = B(J)

(when taken out of context) could imply a reference either to the Jth element of array B, or to the
evaluation of a function B with integer argument J. Mathematically there is little difference - an
array can be thought of as a mapping, just as a function can, although programmers may not often
think that way. 



8.6 The Chomsky hierarchy 

Until now all our practical examples of productions have had a single non-terminal on the left side,
although grammars may be more general than that. Based on pioneering work by a linguist
(Chomsky, 1959), computer scientists now recognize four classes of grammar. The classification
depends on the format of the productions, and may be summarized as follows: 

8.6.1 Type 0 Grammars (Unrestricted) 

An unrestricted grammar is one in which there are virtually no restrictions on the form of any of
the productions, which have the general form 

                with   (N  T )* N (N  T )* ,   (N  T )*

(thus the only restriction is that there must be at least one non-terminal symbol on the left side of
each production). The other types of grammars are more restricted; to qualify as being of type 0
rather than one of these more restricted types it is necessary for the grammar to contain at least one
production     with |  | > |  |, where |  | denotes the length of . Such a production can be used

to "erase" symbols - for example, aAB   aB erases A from the context aAB. This type is so rare in
computer applications that we shall consider it no further here. Practical grammars need to be far
more restricted if we are to base translators on them. 

8.6.2 Type 1 Grammars (Context-sensitive) 

If we impose the restriction on a type 0 grammar that the number of symbols in the string on the left
of any production is less than or equal to the number of symbols on the right side of that
production, we get the subset of grammars known as type 1 or context-sensitive. In fact, to qualify
for being of type 1 rather than of a yet more restricted type, it is necessary for the grammar to
contain at least one production with a left side longer than one symbol. 

Productions in type 1 grammars are of the general form 

               with |  |  |  | ,   (N  T )* N (N  T )* ,   (N  T )+ 

Strictly, it follows that the null string would not be allowed as a right side of any production.
However, this is sometimes overlooked, as -productions are often needed to terminate recursive
definitions. Indeed, the exact definition of "context-sensitive" differs from author to author. In
another definition, productions are required to be limited to the form 

A           with ,   (N  T )*, A  N+,   (N  T )+

although examples are often given where productions are of a more general form, namely 

A           with , , ,   (N  T )*, A  N+,   (N  T )+

(It can be shown that the two definitions are equivalent.) Here we can see the meaning of
context-sensitive more clearly - A may be replaced by  when A is found in the context of (that is,
surrounded by)  and . 



A much quoted simple example of such a grammar is as follows: 

            G = {  N , T , S , P }
            N  = {  A , B , C }
            T = {  a , b , c }
            S = A
            P =
                    A  aABC | abC              (1, 2)
                    CB  BC                     (3)
                    bB  bb                     (4)
                    bC  bc                     (5)
                    cC  cc                     (6)

Let us derive a sentence using this grammar. A is the start string: let us choose to apply production
(1) 

A  aABC

and then in this new string choose another production for A, namely (2) to derive 

A  a abC BC

and follow this by the use of (3). (We could also have chosen (5) at this point.) 

A  aab BC C

We follow this by using (4) to derive 

A  aa bb CC

followed by the use of (5) to get 

A  aab bc C

followed finally by the use of (6) to give 

A  aabbcc

However, with this grammar it is possible to derive a sentential form to which no further
productions can be applied. For example, after deriving the sentential form 

aabCBC

if we were to apply (5) instead of (3) we would obtain 

aabcBC

but no further production can be applied to this string. The consequence of such a failure to obtain a
terminal string is simply that we must try other possibilities until we find those that yield terminal
strings. The consequences for the reverse problem, namely parsing, are that we may have to resort
to considerable backtracking to decide whether a string is a sentence in the language. 

Exercises 



8.7 Derive (or show how to parse) the strings 

abc and aaabbbccc

using the above grammar. 

8.8 Show informally that the strings 

abbc , aabc and abcc

cannot be derived using this grammar. 

8.9 Derive a context-sensitive grammar for strings of 0’s and 1’s so that the number of 0’s and 1’s
is the same. 

8.10 Attempt to write context-sensitive productions from which the English examples in section 8.5
could be derived. 

8.11 An attempt to use context-sensitive productions in an actual computer language was made by
Lee (1972), who gave such productions for the PRINT statement in BASIC. Such a statement may
be described informally as having the keyword PRINT followed by an arbitrary number of
Expressions and Strings. Between each pair of Expressions a Separator is required, but between
any other pair (String - Expression, String - String or Expression - String) the Separator is optional.

Study Lee’s work, criticize it, and attempt to describe the BASIC PRINT statement using a
context-free grammar. 

8.6.3 Type 2 Grammars (Context-free) 

A more restricted subset of context-sensitive grammars yields the type 2 or context-free grammars.
A grammar is context-free if the left side of every production consists of a single non-terminal, and
the right side consists of a non-empty sequence of terminals and non-terminals, so that productions
have the form 

                with |  |  |  | ,   N ,   (N  T )+

that is 

A                with A  N ,   (N  T )+

Strictly, as before, no -productions should be allowed, but this is often relaxed to allow

    (N  T)*. Such productions are easily seen to be context-free, because if A occurs in any

string, say A , then we may effect a derivation step A    without any regard for the particular

context (prefix or suffix) in which A occurs. 

Most of our earlier examples have been of this form, and we shall consider a larger example
shortly, for a complete small programming language. 



Exercises 

8.12 Develop a context-free grammar that specifies the set of REAL decimal literals that may be
written in Fortran. Examples of these literals are 

                 -21.5      0.25     3.7E-6    .5E7     6E6   100.0E+3

8.13 Repeat the last exercise for REAL literals in Modula-2 and Pascal, and float  literals in C++. 

8.14 Find a context-free grammar that describes Modula-2 comments (unlike Pascal and C++, these
may be nested). 

8.15 Develop a context-free grammar that generates all palindromes constructed of the letters a and
b (palindromes are strings that read the same from either end, like ababbaba). 

8.6.4 Type 3 Grammars (Regular, Right-linear or Left-linear) 

Imposing still further constraints on productions leads us to the concept of a type 3 or regular
grammar. This can take one or other of two forms (but not both at once). It is right-linear if the
right side of every production consists of zero or one terminal symbols, optionally followed by a
single non-terminal, and if the left side is a single non-terminal, so that productions have the form 

A  a or A  aB     with a  T , A, B  N

It is left-linear if the right side of every production consists of zero or one terminals optionally
preceded by a single non-terminal, so that productions have the form 

A  a or A  Ba     with a  T , A, B  N

(Strictly, as before,  productions are ruled out - a restriction often overlooked). A simple example
of such a grammar is one for describing binary integers 

           BinaryInteger  = "0" BinaryInteger | "1" BinaryInteger | "0" | "1" .

Regular grammars are rather restrictive - local features of programming languages like the
definitions of integer numbers and identifiers can be described by them, but not much more. Such
grammars have the property that their sentences may be parsed by so-called finite state automata,
and can be alternatively described by regular expressions, which makes them of theoretical interest
from that viewpoint as well. 

Exercises 

8.16 Can you describe signed integers and Fortran identifiers in terms of regular grammars as well
as in terms of context-free grammars? 

8.17 Can you develop a regular grammar that specifies the set of float  decimal literals that may be
written in C++? 

8.18 Repeat the last exercise for REAL literals in Modula-2, Pascal and Fortran. 



8.6.5 The relationship between grammar type and language type 

It should be clear from the above that type 3 grammars are a subset of type 2 grammars, which
themselves form a subset of type 1 grammars, which in turn form a subset of type 0 grammars (see
Figure 8.7). 

A language L(G) is said to be of type k if it can be generated by a type k grammar. Thus, for
example, a language is said to be context-free if a context-free grammar may be used to define it.
Note that if a non context- free definition is given for a particular language, it does not necessarily
imply that the language is not context-free - there may be an alternative (possibly
yet-to-be-discovered) context-free grammar that describes it. Similarly, the fact that a language can,
for example, most easily be described by a context-free grammar does not necessarily preclude our
being able to find an equivalent regular grammar. 

As it happens, grammars for modern programming languages are usually largely context-free, with
some unavoidable context-sensitive features, which are usually handled with a few extra ad hoc
rules and by using so- called attribute grammars, rather than by engaging on the far more difficult
task of finding suitable context- sensitive grammars. Among these features are the following: 

The declaration of a variable must precede its use. 

The number of formal and actual parameters in a procedure call must be the same. 

The number of index expressions or fields in a variable designator must match the number
specified in its declaration. 

Exercises 

8.19 Develop a grammar for describing scanf  or printf  statements in C. Can this be done in a
context-free way, or do you need to introduce context-sensitivity? 

8.20 Develop a grammar for describing Fortran FORMAT statements. Can this be done in a
context-free way, or do you need to introduce context-sensitivity? 

Further reading 

The material in this chapter is very standard, and good treatments of it can be found in many books.
The keen reader might do well to look at the alternative presentation in the books by Gough (1988),
Watson (1989), Rechenberg and Mössenböck (1989), Watt (1991), Pittman and Peters (1992), Aho,



Sethi and Ullman (1986), or Tremblay and Sorenson (1985). The last three references are
considerably more rigorous than the others, drawing several fine points which we have glossed
over, but are still quite readable. 

8.7 Case study - Clang 

As a rather larger example, we give here the complete syntactic specification of a simple
programming language, which will be used as the basis for discussion and enlargement at several
points in the future. The language is called Clang, an acronym for Concurrent Language (also
chosen because it has a fine ring to it), deliberately contains a mixture of features drawn from
languages like Pascal and C++, and should be immediately comprehensible to programmers familiar
with those languages. 

The semantics of Clang, and especially the concurrent aspects of the extensions that give it its
name, will be discussed in later chapters. It will suffice here to comment that the only data
structures (for the moment) are the scalar INTEGER and simple arrays of INTEGER. 

8.7.1 BNF Description of Clang 

In the first set of productions we have used recursion to show the repetition: 

  COMPILER Clang

  IGNORE CASE
  IGNORE CHR(9) .. CHR(13)
  COMMENTS FROM "(*" TO "*)"

  CHARACTERS
    cr         = CHR(13) .
    lf         = CHR(10) .
    letter     = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" .
    digit      = "0123456789" .
    instring   = ANY - "’" - cr - lf .

  TOKENS
    identifier = letter { letter | digit } .
    number     = digit { digit } .
    string     = "’" (instring | "’’") { instring | "’’" } "’" .

  PRODUCTIONS
    Clang             = "PROGRAM" identifier ";" Block "." .
    Block             = Declarations CompoundStatement .
    Declarations      = OneDeclaration Declarations | .
    OneDeclaration    = ConstDeclarations | VarDeclarations .
    ConstDeclarations = "CONST" ConstSequence .
    ConstSequence     = OneConst | ConstSequence OneConst .
    OneConst          = identifier "=" number ";" .
    VarDeclarations   = "VAR" VarSequence ";" .
    VarSequence       = OneVar | VarSequence "," OneVar .
    OneVar            = identifier UpperBound .
    UpperBound        = "[" number "]" | .
    CompoundStatement = "BEGIN" StatementSequence "END" .
    StatementSequence = Statement | StatementSequence ";" Statement .
    Statement         =   CompoundStatement | Assignment
                        | IfStatement       | WhileStatement
                        | ReadStatement     | WriteStatement | .
    Assignment        = Variable ":=" Expression .
    Variable          = Designator .
    Designator        = identifier Subscript .
    Subscript         = "[" Expression "]" | .
    IfStatement       = "IF" Condition "THEN" Statement .
    WhileStatement    = "WHILE" Condition "DO" Statement .
    Condition         = Expression RelOp Expression .
    ReadStatement     = "READ" "(" VariableSequence ")" .
    VariableSequence  = Variable | VariableSequence "," Variable .
    WriteStatement    = "WRITE" WriteParameters .



    WriteParameters   = "(" WriteSequence ")" | .
    WriteSequence     = WriteElement | WriteSequence "," WriteElement .
    WriteElement      = string | Expression .
    Expression        = Term | AddOp Term | Expression AddOp Term .
    Term              = Factor | Term MulOp Factor .
    Factor            = Designator | number | "(" Expression ")" .
    AddOp             = "+" | "-" .
    MulOp             = "*" | "/" .
    RelOp             = "=" | "<>" | "<" | "<=" | ">" | ">=" .
  END Clang.

8.7.2 EBNF description of Clang 

As usual, an EBNF description is somewhat more concise: 

  COMPILER Clang

  IGNORE CASE
  IGNORE CHR(9) .. CHR(13)
  COMMENTS FROM "(*" TO "*)"

  CHARACTERS
    cr         = CHR(13) .
    lf         = CHR(10) .
    letter     = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" .
    digit      = "0123456789" .
    instring   = ANY - "’" - cr - lf .

  TOKENS
    identifier = letter { letter | digit } .
    number     = digit { digit } .
    string     = "’" (instring | "’’") { instring | "’’" } "’" .

  PRODUCTIONS
    Clang             = "PROGRAM" identifier ";" Block "." .
    Block             = { ConstDeclarations | VarDeclarations }
                        CompoundStatement .
    ConstDeclarations = "CONST" OneConst { OneConst } .
    OneConst          = identifier "=" number ";" .
    VarDeclarations   = "VAR" OneVar { "," OneVar } ";" .
    OneVar            = identifier [ UpperBound ] .
    UpperBound        = "[" number "]" .
    CompoundStatement = "BEGIN" Statement { ";" Statement } "END" .
    Statement         = [   CompoundStatement | Assignment
                          | IfStatement       | WhileStatement
                          | ReadStatement     | WriteStatement ] .
    Assignment        = Variable ":=" Expression .
    Variable          = Designator .
    Designator        = identifier [ "[" Expression "]" ] .
    IfStatement       = "IF" Condition "THEN" Statement .
    WhileStatement    = "WHILE" Condition "DO" Statement .
    Condition         = Expression RelOp Expression .
    ReadStatement     = "READ" "(" Variable { "," Variable } ")" .
    WriteStatement    = "WRITE"
                        [ "(" WriteElement { "," WriteElement }  ")" ] .
    WriteElement      = string | Expression .
    Expression        = ( "+" Term | "-" Term | Term ) { AddOp Term } .
    Term              = Factor { MulOp Factor } .
    Factor            = Designator | number | "(" Expression ")" .
    AddOp             = "+" | "-" .
    MulOp             = "*" | "/" .
    RelOp             = "=" | "<>" | "<" | "<=" | ">" | ">=" .
  END Clang.

8.7.3 A sample program 

It is fairly common practice to illustrate a programming language description with an example of a
program illustrating many of the language’s features. To keep up with tradition, we follow suit. The
rather obtuse way in which Eligible  is incremented before being used in a subscripting expression
in line 16 is simply to illustrate that a subscript can be an expression. 

   PROGRAM Debug;
     CONST
       VotingAge = 18;
     VAR
       Eligible, Voters[100], Age, Total;



     BEGIN
       Total := 0;
       Eligible := 0;
       READ(Age);
       WHILE Age > 0 DO
         BEGIN
           IF Age > VotingAge THEN
             BEGIN
               Voters[Eligible] := Age;
               Eligible := Eligible + 1;
               Total := Total + Voters[Eligible - 1]
             END;
           READ(Age);
         END;
       WRITE(Eligible, ’ voters.  Average age = ’, Total / Eligible);
     END.

Exercises 

8.21 Do the BNF style productions use right or left recursion? Write an equivalent grammar which
uses the opposite form of recursion. 

8.22 Develop a set of syntax diagrams for Clang (see section 5.10). 

8.23 We have made no attempt to describe the semantics of programs written in Clang; to a reader
familiar with similar languages they should be self-evident. Write simple programs in the language
to: 

(a) Find the sum of the numbers between two input data, which can be supplied in either
order.

(b) Use Euclid’s algorithm to find the HCF of two integers.

(c) Determine which of a set of year dates correspond to leap years.

(d) Read a sequence of numbers and print out the embedded monotonic increasing
sequence.

(e) Use a "sieve" algorithm to determine which of the numbers less than 255 are prime.

In the light of your experience in preparing these solutions, and from the intuition which you have
from your background in other languages, can you foresee any gross deficiencies in Clang as a
language for handling problems in integer arithmetic (apart from its lack of procedural facilities,
which we shall deal with in a later chapter)? 

8.24 Suppose someone came to you with the following draft program, seeking answer to the
questions currently found in the comments next to some statements. How many of these questions
can you answer by referring only to the syntactic description given earlier? (The program is not
supposed to do anything useful!) 

          PROGRAM Query;
            CONST
              Header = ’Title’;  (* Can I declare a string constant? *)
            VAR
              L1[10], L2[10],    (* Are these the same size? *)
              L3[20], I, Query,  (* Can I reuse the program name as a variable? *)
              L3[15];            (* What happens if I use a variable name again? *)
            CONST                (* Can I declare constants after variables? *)
              Max = 1000;



              Min = -89;         (* Can I define negative constants? *)
            VAR                  (* Can I have another variable section? *)
              BigList[Max];      (* Can I use named constants to set array sizes? *)
            BEGIN
              Write(Heading)     (* Can I write constants? *)
              L1[10] := 34;      (* Does L[10] exist? *)
              L1 := L2;          (* Can I copy complete arrays? *)
              Write(L3);         (* Can I write complete arrays? *)
              ;; I := Query;;;   (* What about spurious semicolons? *)
            END.

8.25 As a more challenging exercise, consider a variation on Clang, one that resembles C++ rather
more closely than it does Pascal. Using the translation below of the sample program given earlier as
a guide, derive a grammar that you think describes this language (which we shall later call
"Topsy"). For simplicity, regard cin  and cout  as keywords leading to special statement forms. 

          void main (void) {
            const VotingAge = 18;
            int Eligible, Voters[100], Age, Total;

            Total = 0;
            Eligible = 0;
            cin >> Age;
            while (Age > 0) {
              if (Age > VotingAge) {
                Voters[Eligible] = Age;
                Eligible = Eligible + 1;
                Total = Total + Voters[Eligible - 1];
              }
              cin >> Age;
            }
            cout << Eligible << " voters.  Average age = " << Total / Eligible;
          }

8.26 In the light of your experience with Exercises 8.24 and 8.25, discuss the ease of
"reverse-engineering" a programming language description by consulting only a few example
programs? Why do you suppose so many students attempt to learn programming by imitation? 

8.27 Modify the Clang language definition to incorporate Pascal-like forms of: 

(a) the REPEAT ... UNTIL  statement
(b) the IF ... THEN ... ELSE  statement
(c) the CASE statement
(d) the FOR loop
(e) the MOD operator.

8.28 Repeat the last exercise for the language suggested by Exercise 8.25, using syntax that
resembles that found in C++. 

8.29 In Modula-2, structured statements are each terminated with their own END. How would you
have to change the Clang language definition to use Modula-2 forms for the existing statements,
and for the extensions suggested in Exercise 8.27? What advantages, if any, do these forms have
over those found in Pascal or C++? 

8.30 Study how the specification of string tokens has been achieved in Cocol. Some languages, like
Modula- 2, allow strings to be delimited by either single or double quotes, but not to contain the
delimiter as a member of the string (so that we might write "David’s Helen’s brother" or ’He said
"Hello"’, but not ’He said "That’s rubbish!"’). How would you specify string tokens if these had to
match those found in Modula-2, or those found in C++ (where various escape characters are
allowed within the string)? 
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9 DETERMINISTIC TOP-DOWN PARSING 

In this chapter we build on the ideas developed in the last one, and discuss the relationship between
the formal definition of the syntax of a programming language, and the methods that can be used to
parse programs written in that language. As with so much else in this text, our treatment is
introductory, but detailed enough to make the reader aware of certain crucial issues. 

9.1 Deterministic top-down parsing

The task of the front end of a translator is, of course, not the generation of sentences in a source
language, but the recognition of them. This implies that the generating steps which led to the
construction of a sentence must be deduced from the finished sentence. How difficult this is to do
depends on the complexity of the production rules of the grammar. For Pascal-like languages it is,
in fact, not too bad, but in the case of languages like Fortran and C++ it becomes quite complicated,
for reasons that may not at first be apparent. 

Many different methods for parsing sentences have been developed. We shall concentrate on a
rather simple, and yet quite effective one, known as top-down parsing by recursive descent,
which can be applied to Pascal, Modula-2, and many similar languages, including the simple one of
section 8.7. 

The reason for the phrase "by recursive descent" will become apparent later. For the moment we
note that top- down methods effectively start from the goal symbol and try to regenerate the
sentence by applying a sequence of appropriate productions. In doing this they are guided by
looking at the next terminal in the string that they have been given to parse. 

To illustrate top-down parsing, consider the toy grammar 

              G = { N , T , S , P }
              N  = { A , B }
              T = { x , y , z }
              S = A 
              P =
                  A    xB           (1)
                  B    z            (2)
                  B    yB           (3)

Let us try to parse the sentence xyyz, which clearly is formed from the terminals of this grammar.
We start with the goal symbol and the input string 

            Sentential form  S = A             Input string      xyyz

To the sentential form A we apply the only possible production (1) to get 

            Sentential form     xB             Input string     xyyz

So far we are obviously doing well. The leading terminals in both the sentential form and the input
string match, and we can effectively discard them from both; what then remains implies that from
the non-terminal B we must be able to derive yyz. 

            Sentential form     B              Input string     yyz



We could choose either of productions (2) or (3) in handling the non-terminal B; simply looking at
the input string indicates that (3) is the obvious choice. If we apply this production we get 

            Sentential form     yB             Input string     yyz

which implies that from the non-terminal B we must be able to derive yz. 

            Sentential form     B              Input string     yz

Again we are led to use production (3) and we get 

            Sentential form     yB             Input string     yz

which implies that from the non-terminal B we must be able to derive the terminal z directly - which
of course we can do by applying (2). 

The reader can easily verify that a sentence composed only of the terminal x (such as xxxx) could
not be derived from the goal symbol, nor could one with y as the rightmost symbol, such as xyyyy. 

The method we are using is a special case of so-called LL(k) parsing. The terminology comes from
the notion that we are scanning the input string from Left to right (the first L), applying productions
to the Leftmost non- terminal in the sentential form we are manipulating (the second L), and
looking only as far ahead as the next k terminals in the input string to help decide which production
to apply at any stage. In our example, fairly obviously, k = 1; LL(1) parsing is the most common
form of LL(k) parsing in practice. 

Parsing in this way is not always as easy, as is evident from the following example 

              G = { N , T , S , P }
              N  = { A , B , C }
              T = { x , y , z }
              S = A 
              P =
                  A    xB            (1)
                  A    xC            (2)
                  B    xB            (3)
                  B    y             (4)
                  C    xC            (5)
                  C    z             (6)

If we try to parse the sentence xxxz we might proceed as follows 

            Sentential form     S  =  A       Input string     xxxz

In manipulating the sentential form A we must make a choice between productions (1) and (2). We
do not get any real help from looking at the first terminal in the input string, so let us try production
(1). This leads to 

            Sentential form     xB            Input string     xxxz

which implies that we must be able to derive xxz from B. We now have a much clearer choice; of
the productions for B it is (3) which will yield an initial x, so we apply it and get to 

            Sentential form     xB            Input string     xxz

which implies that we must be able to derive xz from B. If we apply (1) again we get 

            Sentential form     xB            Input string     xz

which implies that we must be able to derive z directly from B, which we cannot do. If we reflect on
this we see that either we cannot derive the string, or we made a wrong decision somewhere along



the line. In this case, fairly obviously, we went wrong right at the beginning. Had we used
production (2) and not (1) we should have matched the string quite easily. 

When faced with this sort of dilemma, a parser might adopt the strategy of simply proceeding
according to one of the possible options, being prepared to retreat along the chosen path if no
further progress is possible. Any backtracking action is clearly inefficient, and even with a
grammar as simple as this there is almost no limit to the amount of backtracking one might have to
be prepared to do. One approach to language design suggests that syntactic structures which can
only be described by productions that run the risk of requiring backtracking algorithms should be
identified, and avoided. 

This may not be possible after the event of defining a language, of course - Fortran is full of
examples where it seems backtracking might be needed. A classic example is found in the pair of
statements 

                DO 10 I = 1 , 2

and 

                DO 10 I = 1 . 2

These are distinguishable as examples of two totally different statement types (DO statement and
REAL assignment) only by the period/comma. This kind of problem is avoided in modern languages
by the introduction of reserved keywords, and by an insistence that white space appear between
some tokens (neither of which are features of Fortran, but neither of which cause difficulties for
programmers who have never known otherwise). 

The consequences of backtracking for full-blooded translators are far more severe than our simple
example might suggest. Typically these do not simply read single characters (even "unreading"
characters is awkward enough for a computer), but also construct explicit or implicit trees, generate
code, create symbol tables and so on - all of which may have to be undone, perhaps just to be
redone in a very slightly different way. In addition, backtracking makes the detection of malformed
sentences more complicated. All in all, it is best avoided. 

In other words, we should like to be able to confine ourselves to the use of deterministic parsing
methods, that is, ones where at each stage we can be sure of which production to apply next - or,
where, if we cannot find a production to use, we can be sure that the input string is malformed. 

It might occur to the reader that some of these problems - including some real ones too, like the
Fortran example just given - could be resolved by looking ahead more than one symbol in the input
string. Perhaps in our toy problem we should have been prepared to scan four symbols ahead? A
little more reflection shows that even this is quite futile. The language which this grammar
generates can be described by: 

L(G) = { xn p | n > 0, p  {y , z} }

or, if the reader prefers less formality: 

"at least one, but otherwise as many x’s in a row as you like, followed by a single y or z"

We note that being prepared to look more than one terminal ahead is a strategy which can work
well in some situations (Parr and Quong, 1996), although, like backtracking, it will clearly be more
difficult to implement. 



9.2 Restrictions on grammars so as to allow LL(1) parsing

The top-down approach to parsing looks so promising that we should consider what restrictions
have to be placed on a grammar so as to allow us to use the LL(1) approach (and its close cousin,
the method of recursive descent). Once these have been established we shall pause to consider the
effects they might have on the design or specification of "real" languages. 

A little reflection on the examples above will show that the problems arise when we have
alternative productions for the next (left-most) non-terminal in a sentential form, and should lead to
the insight that the initial symbols that can be derived from the alternative right sides of the
production for a given non-terminal must be distinct. 

9.2.1 Terminal start sets, the FIRST function and LL(1) conditions for -free grammars 

To enhance the discussion, we introduce the concept of the terminal start symbols of a
non-terminal: the set FIRST(A) of the non-terminal A is defined to be the set of all terminals with
which a string derived from A can start, that is 

a  FIRST(A)        if A + a      9 (A  N ; a  T ;   (N  T )* )

-productions, as we shall see, are a source of complication; for the moment we note that for a
unique production of the form A    , FIRST(A) = Ø. 

In fact we need to go further, and so we introduce the related concept of the terminal start symbols
of a general string  in a similar way, as the set of all terminals with which  or a string derived from

 can start, that is 

a  FIRST( )        if  * a       (a  T ;  ,   (N  T )* )

again with the ad hoc rule that FIRST() = Ø. Note that  is not a member of the terminal
vocabulary T, and that it is important to distinguish between FIRST() and FIRST(A). The string 

might consist of a single non- terminal A, but in general it might be a concatenation of several
symbols. 

With the aid of these we may express a rule that easily allows us to determine when an -free
grammar is LL(1): 

Rule 1 

When the productions for any non-terminal A admit alternatives 

A  1 | 2 | . . . n

but where k >  for any k, the sets of initial terminal symbols of all strings that can be

generated from each of the ’s must be disjoint, that is 



generated from each of the k’s must be disjoint, that is 

FIRST( j)  FIRST( k) = Ø     for all j  k

If all the alternatives for a non-terminal A were simply of the form 

k = ak k       (ak  T ; k , k  (N  T )* )

it would be easy to check the grammar very quickly. All productions would have right-hand sides
starting with a terminal, and obviously FIRST(ak k) = { ak }. 

It is a little restrictive to expect that we can write or rewrite all productions with alternatives in this
form. More likely we shall find several alternatives of the form 

k = Bk k 

where Bk is another non-terminal. In this case to find FIRST(Bk k) we shall have to consider the

production rules for Bk, and look at the first terminals which can arise from those (and so it goes on,

because there may be alternatives all down the line). All of these must be added to the set

FIRST( k). Yet another complication arises if Bk is nullable, that is, if Bk 
* , because in that case

we have to add FIRST(k) into the set FIRST(k) as well. 

The whole process of finding the required sets may be summarized as follows: 

If the first symbol of the right-hand string k is a terminal, then FIRST(k) is of the form

FIRST(ak k), and then FIRST(ak k) = { ak }. 

If the first symbol of the right-hand string k is a non-terminal, then FIRST(k) is of the form

FIRST(Bk k). If Bk is a non-terminal with the derivation rule 

Bk  k1 | k2 | . . . . | kn 

then 

FIRST( k) = FIRST(Bk k) = FIRST( k1)  FIRST( k2) . . .  FIRST( kn)

with the addition that if any kj is capable of generating the null string, then the set FIRST(k)

has to be included in the set FIRST(k) as well. 

We can demonstrate this with another toy grammar, rather similar to the one of the last section.
Suppose we have 

              G = { N , T , S , P }
              N  = { A , B , C }
              T = { x , y , z }



              S = A
              P =
                  A    B             (1)
                  A    C             (2)
                  B    xB            (3)
                  B    y             (4)
                  C    xC            (5)
                  C    z             (6)

This generates exciting sentences with any number of x’s, followed by a single y or z. On looking at
the alternatives for the non-terminal A we see that 

FIRST(A1) = FIRST(B) = FIRST(xB)  FIRST(y) = { x , y }

FIRST(A2) = FIRST(C) = FIRST(xC)  FIRST(z) = { x , z }

so that Rule 1 is violated, as both FIRST(B) and FIRST(C) have x as a member. 

9.2.2 Terminal successors, the FOLLOW function, and LL(1) conditions for non -free
grammars 

We have already commented that -productions might cause difficulties in parsing. Indeed, Rule 1
is not strong enough to detect another source of trouble, which may arise if such productions are
used. Consider the grammar 

              G = { N , T , S , P }
              N  = { A , B }
              T = { x , y }
              S = A
              P =
                  A    Bx     (1)
                  B    xy     (2)
                  B          (3)

In terms of the discussion above, Rule 1 is satisfied. Of the alternatives for the non-terminal B, we
see that 

FIRST(B1) = FIRST(xy) = x

FIRST(B2) = FIRST() = Ø

which are disjoint. However, if we try to parse the string x we may come unstuck 

            Sentential form   S = A           Input string   x
            Sentential form   Bx              Input string   x

As we are working from left to right and have a non-terminal on the left we substitute for B, to get,
perhaps 

            Sentential form   xyx              Input string   x

which is clearly wrong. We should have used (3), not (2), but we had no way of telling this on the
basis of looking at only the next terminal in the input. 

This situation is called the null string problem, and it arises only for productions which can
generate the null string. One might try to rewrite the grammar so as to avoid -productions, but in
fact that is not always necessary, and, as we have commented, it is sometimes highly inconvenient.
With a little insight we should be able to see that if a non-terminal is nullable, we need to examine
the terminals that might legitimately follow it, before deciding that the -production is to be applied.
With this in mind it is convenient to define the terminal successors of a non-terminal A as the set
of all terminals that can follow A in any sentential form, that is 



a  FOLLOW(A)       if S * Aa       (A, S  N ; a  T ;  ,   (N  T )* )

To handle this situation, we impose the further restriction 

Rule 2 

When the productions for a non-terminal A admit alternatives 

A  1 | 2 | . . . n 

and in particular where k   for some k, the sets of initial terminal symbols of all

sentences that can be generated from each of the j for j  k must be disjoint from the

set FOLLOW(A) of symbols that may follow any sequence generated from A, that is 

FIRST( j)  FOLLOW(A) = Ø,      j  k

or, rather more loosely, 

FIRST(A)  FOLLOW(A) = Ø

where, as might be expected 

FIRST(A) = FIRST(1)  FIRST( 2)  . . . FIRST(n )

In practical terms, the set FOLLOW(A) is computed by considering every production Pk of the

form 

Pk  k A k

and forming the sets FIRST(k), when 

FOLLOW(A) = FIRST(1)  FIRST( 2)  . . .  FIRST( n)

with the addition that if any k is also capable of generating the null string, then the set

FOLLOW(Pk) has to be included in the set FOLLOW(A) as well. 

In the example given earlier, Rule 2 is clearly violated, because 

FIRST(B1) = FIRST(xy) = { x } = FOLLOW(B)

9.2.3 Further observations 

It is important to note two points that may have slipped the reader’s attention: 

In the case where the grammar allows -productions as alternatives, Rule 2 applies in addition



to Rule 1. Although we stated Rule 1 as applicable to -free grammars, it is in fact a necessary
(but not sufficient) condition that any grammar must meet in order to satisfy the LL(1)
conditions. 

FIRST is a function that may be applied to a string (in general) and to a non-terminal (in
particular), while FOLLOW is a function that is applied to a non-terminal (only). 

It may be worth studying a further example so as to explore these rules further. Consider the
language defined by the grammar 

              G = { N , T , S , P }
              N  = { A , B , C , D }
              T = { w , x , y , z }
              S = A
              P =
                  A    BD  |  CB           (1, 2)
                  B    x B z  |  y  |     (3, 4, 5)
                  C     w   |  z            (6, 7)
                  D     x  |  z            (8, 9)

All four non-terminals admit to alternatives, and B is capable of generating the empty string . Rule
1 is clearly satisfied for the alternative productions for B, C and D, since these alternatives all
produce sentential forms that start with distinctive terminals. 

To check Rule 1 for the alternatives for A requires a little more work. We need to examine the
intersection of FIRST(BD) and FIRST(CB). 

FIRST(CB) is simply FIRST(C) = { w }  { z } = { w , z }. 

FIRST(BD) is not simply FIRST(B), since B is nullable. Applying our rules to this situation leads to
the result that FIRST(BD) = FIRST(B)  FIRST(D) = ( { x }  { y } )  ( { x }  { z } ) =
{ x , y , z }. 

Since FIRST(CB)  FIRST(BD) = { z }, Rule 1 is broken and the grammar is non-LL(1). Just for
completeness, let us check Rule 2 for the productions for B. We have already noted that
FIRST(B) = { x , y }. To compute FOLLOW(B) we need to consider all productions where B
appears on the right side. These are productions (1), (2) and (3). This leads to the result that 

     FOLLOW( B)    =  FIRST( D)                          (from the rule  A  BD)
                         FOLLOW( A)                    (from the rule  A  CB)
                         FIRST( z)                     (from the rule  B  xBz)
                  =  { x , z }  Ø  { z } = { x , z }

Since FIRST(B)  FOLLOW(B) = { x , y }    { x , z } = { x }, Rule 2 is broken as well. 

The rules derived in this section have been expressed in terms of regular BNF notation, and we
have so far avoided discussing whether they might need modification in cases where the
productions are expressed in terms of the option and repetition (closure) metasymbols ( [ ] and { }
respectively). While it is possible to extend the discussion further, it is not really necessary, in a
theoretical sense, to do so. Grammars that are expressed in terms of these symbols are easily
rewritten into standard BNF by the introduction of extra non-terminals. For example, the set of
productions 

A   [  ] 

B   {  } 



is readily seen to be equivalent to 

A   C 
B   D 
C   | 

D   D | 

to which the rules as given earlier are easily applied (note that the production for D is right
recursive). In effect, of course, these rules amount to saying for this example that 

FIRST( )  FIRST( ) = Ø

FIRST( )  FIRST() = Ø

with the proviso that if  or  are nullable, then we must add conditions like 

FIRST( )  FOLLOW(A) = Ø

FIRST( )  FOLLOW(B) = Ø

There are a few other points that are worth making before closing this discussion. 

The reader can probably foresee that in a really large grammar one might have to make many
iterations over the productions in forming all the FIRST and FOLLOW sets and in checking the
applications of all these rules. Fortunately software tools are available to help in this regard - any
reasonable LL(1) compiler generator like Coco/R must incorporate such facilities. 

A difficulty might come about in automatically applying the rules to a grammar with which it is
possible to derive the empty string. A trivial example of this is provided by 

              G = { N , T , S , P }
              N  = { A }
              T = { x , y }
              S = A
              P =
                  A    xy     (1)
                  A          (2)

Here the nullable non-terminal A admits to alternatives. In trying to determine FOLLOW(A) we
should reach the uncomfortable conclusion that this was not really defined, as there are no
productions in which A appears on the right side. Situations like this are usually handled by
constructing a so-called augmented grammar, by adding a new terminal symbol (denoted, say, by
#), a new goal symbol, and a new single production. For the above example we would create an
augmented grammar on the lines of 

              G = { N , T , S , P }
              N  = { A, B }
              T = { x , y, # }
              S = B
              P =
                  B    A #    (1)
                  A    xy     (2)
                  A          (3)

The new terminal # amounts to an explicit end-of-file or end-of-string symbol; we note that realistic
parsers and scanners must always be able to detect and react to an end-of-file in a sensible way, so
that augmenting a grammar in this way really carries no practical overheads. 



9.2.4 Alternative formulations of the LL(1) conditions 

The two rules for determining whether a grammar is LL(1) are sometimes found stated in other
ways (which are, of course, equivalent). Some authors combine them as follows: 

Combined LL(1) Rule 

A grammar is LL(1) if for every non-terminal A that admits alternatives 

A  1 | 2 | . . . n 

the following holds 

FIRST( j ° FOLLOW(A))  FIRST( k ° FOLLOW(A)) = Ø,     j  k

where ° denotes "composition" in the mathematical sense. Here the cases j >  and j   are

combined - for j >*  we have that FIRST(j ° FOLLOW(A)) = FIRST( j), while for j 
*  we

have similarly that FIRST(j ° FOLLOW(A)) = FOLLOW(A) . 

Other authors conduct this discussion in terms of the concept of director sets. For every
non-terminal A that admits to alternative productions of the form 

A  1 | 2 | . . . | n

we define DS(A, k) for each alternative to be the set which helps choose whether to use the

alternative; when the input string contains the terminal a we choose k such that a  DS(A, k). The

LL(1) condition is then 

DS(A, j)  DS(A, k) = Ø,     j  k

The director sets are found from the relation 

a  DS(A, k) if either a  FIRST( k)       (if k >*  )

or     a  FOLLOW(A)       (if k 
*  )

Exercises 

9.1 Test the following grammar for being LL(1) 

              G = { N , T , S , P }
              N  = { A , B  }
              T = { w , x , y , z }
              S = A
              P =
                  A    B ( x | z ) | ( w  | z ) B
                  B    x B z  | { y }

9.2 Show that the grammar describing EBNF itself (section 5.9.1) is LL(1). 



9.3 The grammar for EBNF as presented in section 5.9.1 does not allow an implicit  to appear in a
production, although the discussion in that section implied that this was often found in practice.
What change could you make to the grammar to allow an implicit ? Is your resulting grammar still
LL(1)? If not, can you find a formulation that is LL(1)? 

9.4 In section 8.7.2, constant declarations in Clang were described by the productions 

         ConstDeclarations = "CONST" OneConst { OneConst } .
         OneConst          = identifier  "="  number  ";" .

Is this part of the grammar LL(1)? What would be the effect if one were to factorize the grammar 

         ConstDeclarations = "CONST" OneConst { ";" OneConst } ";" .
         OneConst          = identifier  "="  number  .

9.5 As a more interesting example of applying an analysis to a grammar expressed in EBNF, let us
consider how we might describe the theatrical production of a Shakespearian play with five acts. In
each act there may be several scenes, and in each scene appear one or more actors, who gesticulate
and make speeches to one another (for the benefit of the audience, of course). Actors come onto the
stage at the start of each scene, and come and go as the scene proceeds - to all intents and purposes
between speeches - finally leaving at the end of the scene (in the Tragedies some may leave dead,
but even these usually revive themselves in time to go home). Plays are usually staged with an
interval between the third and fourth acts. 

Actions like "speech", "entry" and "exit" are really in the category of the lexical terminals which a
scanner (in the person of a member of the audience) would recognize as key symbols while
watching a play. So one description of such a staged play might be on the lines of 

            Play   =  Act Act Act "interval" Act Act .
            Act    =  Scene { Scene } .
            Scene  =  { "speech" } "entry" { Action } .
            Action =  "speech" | "entry" | "exit" | "death" | "gesticulation" .

This does not require all the actors to leave at the end of any scene (sometimes this does not happen
in real life, either). We could try to get this effect by writing 

            Scene  =  { "speech" } "entry" { Action } { "exit" } .

but note that this context-free grammar cannot force as many actors to leave as entered - in
computer language terms the reader should recognize this as the same problem as being unable to
specify that the number of formal and actual parameters to a procedure agree. 

Analyse this grammar in detail. If it proves out to be non-LL(1), try to find an equivalent that is
LL(1), or argue why this should be impossible. 

9.3 The effect of the LL(1) conditions on language design

There are some immediate implications which follow from the rules of the last section as regards
language design and specification. Alternative right-hand sides for productions are very common;
we cannot hope to avoid their use in practice. Let us consider some common situations where
problems might arise, and see whether we can ensure that the conditions are met. 

Firstly, we should note that we cannot hope to transform every non-LL(1) grammar into an



equivalent LL(1) grammar. To take an extreme example, an ambiguous grammar must have two
parse trees for at least one input sentence. If we really want to allow this we shall not be able to use
a parsing method that is capable of finding only one parse tree, as deterministic parsers must do.
We can argue that an ambiguous grammar is of little interest, but the reader should not go away
with the impression that it is just a matter of trial and error before an equivalent LL(1) grammar is
found for an arbitrary grammar. 

Often a combination of substitution and re-factorization will resolve problems. For example, it is
almost trivially easy to find a grammar for the problematic language of section 9.1 which satisfies
Rule 1. Once we have seen the types of strings the language allows, then we easily see that all we
have to do is to find productions that sensibly deal with leading strings of x’s, but delay introducing
y and z for as long as possible. This insight leads to productions of the form 

                       A    xA  |  C
                       C    y  |  z

Productions with alternatives are often found in specifying the kinds of Statement that a
programming language may have. Rule 1 suggests that if we wish to parse programs in such a
language by using LL(1) techniques we should design the language so that each statement type
begins with a different reserved keyword. This is what is attempted in several languages, but it is
not always convenient, and we may have to get round the problem by factorizing the grammar
differently. 

As another example, if we were to extend the language of section 8.7 we might contemplate
introducing REPEAT loops in one of two forms 

         RepeatStatement      =    "REPEAT"  StatementSequence  "UNTIL"  Condition
                                 |  "REPEAT"  StatementSequence  "FOREVER" .

Both of these start with the reserved word REPEAT. However, if we define 

         RepeatStatement      =  "REPEAT"  StatementSequence  TailRepeatStatement .
         TailRepeatStatement  =  "UNTIL"  Condition  |  "FOREVER" .

parsing can proceed quite happily. Another case which probably comes to mind is provided by the
statements 

         Statement            =  IfStatement  |  OtherStatement .
         IfStatement          =   "IF"  Condition  "THEN"  Statement
                                 | "IF"  Condition  "THEN"  Statement  "ELSE"  Statement .

Factorization on the same lines as for the REPEAT loop is less successful. We might be tempted to
try 

         Statement            =  IfStatement  |  OtherStatement .                 (1, 2)
         IfStatement          =  "IF"  Condition  "THEN"  Statement  IfTail .     (3)
         IfTail               =  "ELSE"  Statement  |   .                        (4, 5)

but then we run foul of Rule 2. The production for IfTail is nullable; a little reflection shows that 

         FIRST("ELSE" Statement) = { "ELSE" }

while to compute FOLLOW(IfTail) we consider the production (3) (which is where IfTail appears
on the right side), and obtain 

         FOLLOW( IfTail)   = FOLLOW( IfStatement)     (production 3)
                          = FOLLOW( Statement)       (production 1)

which clearly includes ELSE. 



The reader will recognize this as the "dangling else" problem again. We have already remarked that
we can find ways of expressing this construct unambiguously; but in fact the more usual solution is
just to impose the semantic meaning that the ELSE is attached to the most recent unmatched THEN,
which, as the reader will discover, is handled trivially easily by a recursive descent parser.
(Semantic resolution is quite often used to handle tricky points in recursive descent parsers, as we
shall see.) 

Perhaps not quite so obviously, Rule 1 eliminates the possibility of using left recursion to specify
syntax. This is a very common way of expressing a repeated pattern of symbols in BNF. For
example, the two productions 

A  B | AB

describe the set of sequences B , BB , BBB ... . Their use is now ruled out by Rule 1, because 

FIRST(A1) = FIRST(B)

FIRST(A2) = FIRST(AB) = FIRST(A) = FIRST(B)  FIRST(AB)

FIRST(A1)  FIRST(A2)  Ø

Direct left recursion can be avoided by using right recursion. Care must be taken, as sometimes the
resulting grammar is still unsuitable. For example, the productions above are equivalent to 

A  B | BA

but this still more clearly violates Rule 1. In this case, the secret lies in deliberately introducing
extra non- terminals. A non-terminal which admits to left recursive productions will in general have
two alternative productions, of the form 

A  AX | Y

By expansion we can see that this leads to sentential forms like 

Y , YX , YXX , YXXX

and these can easily be derived by the equivalent grammar 

A  YZ
Z   | XZ

The example given earlier is easily dealt with in this way by writing X = Y = B, that is 

A  BZ
Z   | BZ

The reader might complain that the limitation on two alternatives for A is too severe. This is not
really true, as suitable factorization can allow X and Y to have alternatives, none of which start with
A. For example, the set of productions 

A  Ab | Ac | d | e



can obviously be recast as 

A  AX | Y
X  b | c
Y  d | e

(Indirect left recursion, for example 

A  B
B  C . . .
C  A . . .

is harder to handle, and is, fortunately, not very common in practice.) 

This might not be quite as useful as it first appears. For example, the problem with 

             Expression      =  Expression  "-"  Term  |  Term .

can readily be removed by using right recursion 

             Expression      =  Term  RestExpression .
             RestExpression  =    |  "-"  Term  RestExpression .

but this may have the side-effect of altering the implied order of evaluation of an Expression. For
example, adding the productions 

             Term            =  " x"  |  " y"  |  " z" .

to the above would mean that with the former production for Expression, a string of the form
x -  y -  z would be evaluated as (x -  y) -  z. With the latter production it might be evaluated as
x -  (y -  z), which would result in a very different answer (unless z were zero). 

The way to handle this situation would be to write the parsing algorithms to use iteration, as
introduced earlier, for example 

             Expression      =  Term {  "-"  Term } .

Although this is merely another way of expressing the right recursive productions used above, it
may be easier for the reader to follow. It carries the further advantage of more easily retaining the
left associativity which the "- " terminal normally implies. 

It might be tempting to try to use such iteration to remove all the problems associated with
recursion. Again, care must be taken, since this action often implies that -productions either
explicitly or implicitly enter the grammar. For example, the construction 

A  { B }

actually implies, and can be written 

A   | B A

but can only be handled if FIRST(B)  FOLLOW(A) = Ø. The reader might already have realized
that all our manipulations to handle Expression would come to naught if "- " could follow
Expression in other productions of the grammar. 



Exercises 

9.6 Determine the FIRST and FOLLOW sets for the following non-terminals of the grammar
defined in various ways in section 8.7, and comment on which formulations may be parsed using
LL(1) techniques. 

Block
ConstDeclarations
VarDeclarations
Statement
Expression
Factor
Term

9.7 What are the semantic implications of using the productions suggested in section 8.4 for the IF

... THEN  and IF ... THEN ... ELSE  statements? 

9.8 Whether to regard the semicolon as a separator or as a terminator has been a matter of some
controversy. Do we need semicolons at all in a language like the one suggested in section 8.7? Try
to write productions for a version of the language where they are simply omitted, and check
whether the grammar you produce satisfies the LL(1) conditions. If it does not, try to modify the
grammar until it does satisfy these conditions. 

9.9 A close look at the syntax of Pascal, Modula-2 or the language of section 8.7 shows that an
-production is allowed for Statement. Can you think of any reasons at all why one should not

simply forbid empty statements? 

9.10 Write down a set of productions that describes the form that REAL literal constants may assume
in Pascal, and check to see whether they satisfy the LL(1) conditions. Repeat the exercise for REAL

literal constants in Modula-2 and for float  literals in C++ (surprisingly, perhaps, the grammars are
different). 

9.11 In a language like Modula-2 or Pascal there are two classes of statements that start with
identifiers, namely assignment statements and procedure calls. Is it possible to find a grammar that
allows this potential LL(1) conflict to be resolved? Does the problem arise in C++? 

9.12 A full description of C or C++ is not possible with an LL(1) grammar. How large a subset of
these languages could one describe with an LL(1) grammar? 

9.13 C++ and Modula-2 are actually fairly close in many respects - both are imperative, both have
the same sorts of statements, both allow user defined data structures, both have functions and
procedures. What features of C++ make description in terms of LL(1) grammars difficult or
impossible, and is it easier or more difficult to describe the corresponding features in Modula-2?
Why? 

9.14 Why do you suppose C++ has so many levels of precedence and the rules it does have for
associativity? What do they offer to a programmer that Modula-2 might appear to withhold? Does
Modula-2 really withhold these features? 

9.15 Do you suppose there may be any correlation between the difficulty of writing a grammar for a



language (which programmers do not usually try to do) and learning to write programs in that
language (which programmers often do)? 

Further reading 

Good treatments of the material in this chapter may be found at a comprehensible level in the books
by Wirth (1976b, 1996), Welsh and McKeag (1980), Hunter (1985), Gough (1988), Rechenberg
and Mössenböck (1989), and Tremblay and Sorenson (1985). Pittman and Peters (1992) have a
good discussion of what can be done to transform non-LL(k) grammars into LL(k) ones. 

Algorithms exist for the detection and elimination of useless productions. For a discussion of these
the reader is referred to the books by Gough (1988), Rechenberg and Mössenböck (1989), and
Tremblay and Sorenson (1985). 

Our treatment of the LL(1) conditions may have left the reader wondering whether the process of
checking them - especially the second one - ever converges for a grammar with anything like the
number of productions needed to describe a real programming language. In fact, a little thought
should suggest that, even though the number of sentences which they can generate might be
infinite, convergence should be guaranteed, since the number of productions is finite. The process
of checking the LL(k) conditions can be automated, and algorithms for doing this and further
discussion of convergence can be found in the books mentioned above. 
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10 PARSER AND SCANNER CONSTRUCTION 

In this chapter we aim to show how parsers and scanners may be synthesized once appropriate
grammars have been written. Our treatment covers the manual construction of these important
components of the translation process, as well as an introduction to the use of software tools that
help automate the process. 

10.1 Construction of simple recursive descent parsers

For the kinds of language that satisfy the rules discussed in the last chapter, parser construction
turns out to be remarkably easy. The syntax of these languages is governed by production rules of
the form 

non-terminal  allowable string

where the allowable string is a concatenation derived from 

the basic symbols or terminals of the language 
other non-terminals 
the actions of meta-symbols such as { }, [ ], and | . 

We express the effect of applying each production by writing a procedure (or void function in C++

terminology) to which we give the name of the non-terminal that appears on its left side. The
purpose of this routine is to analyse a sequence of symbols, which will be supplied on request from
a suitable scanner (lexical analyser), and to verify that it is of the correct form, reporting errors if it
is not. To ensure consistency, the routine corresponding to any non-terminal S: 

may assume that it has been called after some (globally accessible) variable Sym has been
found to contain one of the terminals in FIRST(S). 

will then parse a complete sequence of terminals which can be derived from S, reporting an
error if no such sequence is found. (In doing this it may have to call on similar routines to
handle sub-sequences.) 

will relinquish parsing after leaving Sym with the first terminal that it finds which cannot be
derived from S, that is to say, a member of the set FOLLOW(S). 

The shell of each parsing routine is thus 

                PROCEDURE S;
                (* S    string *)
                  BEGIN

                    (* we assert Sym    FIRST(S) *)
                    Parse(string)

                    (* we assert  Sym    FOLLOW(S) *)
                  END S;

where the transformation Parse(string) is governed by the following rules: 



(a) If the production yields a single terminal, then the action of Parse is to report an error if an
unexpected terminal is detected, or (more optimistically) to accept it, and then to scan to the next
symbol. 

                Parse (terminal) 
                  IF IsExpected(terminal)
                    THEN Get(Sym)
                    ELSE ReportError
                  END

(b) If we are dealing with a "single" production (that is, one of the form A = B), then the action of
Parse is a simple invocation of the corresponding routine 

          Parse(SingleProduction A)    B

This is a rather trivial case, just mentioned here for completeness. Single productions do not really
need special mention, except where they arise in the treatment of longer strings, as discussed below.

(c) If the production allows a number of alternative forms, then the action can be expressed as a
selection 

                Parse ( 1  |  2  |  ... n ) 
                  CASE Sym OF
                    FIRST( 1 ) : Parse( 1 );
                    FIRST( 2 ) : Parse( 2 );
                    ......
                    FIRST( n ) : Parse( n )
                  END

in which we see immediately the relevance of Rule 1. In fact we can go further to see the relevance
of Rule 2, for to the above we should add the action to be taken if one of the alternatives of Parse is
empty. Here we do nothing to advance Sym - an action which must leave Sym, as we have seen, as
one of the set FOLLOW(S) - so that we may augment the above in this case as 

                Parse ( 1  |  2  | ... n  |   ) 
                  CASE Sym OF
                    FIRST( 1 ) : Parse( 1 );
                    FIRST( 2 ) : Parse( 2 );
                    ......
                    FIRST( n ) : Parse( n );
                    FOLLOW(S)  :  (* do nothing *)
                    ELSE ReportError
                  END

(d) If the production allows for a nullable option, the transformation involves a decision 

                Parse ( [  ] ) 

                  IF Sym  FIRST( ) THEN Parse( ) END

(e) If the production allows for possible repetition, the transformation involves a loop, often of the
form 

                Parse ( {  } ) 

                  WHILE Sym  FIRST( ) DO Parse( ) END

Note the importance of Rule 2 here again. Some repetitions are of the form 

          S      {  }

which transforms to 

          Parse( );  WHILE Sym  FIRST( ) DO Parse( )  END



On occasions this may be better written 

          REPEAT  Parse( ) UNTIL Sym  FIRST( )

(f) Very often, the production generates a sequence of terminal and non-terminals. The action is
then a sequence derived from (a) and (b), namely 

                 Parse ( 1 2 ... n ) 
                   Parse( 1 ); Parse( 2 ); ... Parse( n )

10.2 Case studies 

To illustrate these ideas further, let us consider some concrete examples. 

The first involves a rather simple grammar, chosen to illustrate the various options discussed above.

              G = { N , T , S , P }
              N  = { A , B , C , D }
              T = { "("  ,  ")"  ,  "+"  ,  " a"  ,  "["  ,  "]"  ,  "." }
              S = A
              P =
                  A    B  "."
                  B    [  " a"   |   "("  C  ")"   |   "["  B  "]"  ]
                  C    B D
                  D    { "+"  B }

We first check that this language satisfies the requirements for LL(1) parsing. We can easily see
that Rule 1 is satisfied. As before, in order to apply our rules more easily we first rewrite the
productions to eliminate the EBNF metasymbols: 

                  A    B  "."                                          (1)
                  B    " a"   |   "("  C  ")"   |   "["  B  "]"  |     (2, 3, 4, 5)
                  C    B D                                             (6)
                  D    "+"  B  D  |                                   (7, 8)

The only productions for which there are alternatives are those for B and D, and each non-nullable
alternative starts with a different terminal. However, we must continue to check Rule 2. We note
that B and D can both generate the null string. We readily compute 

FIRST(B) = { "a" , "( " , "[ " }
FIRST(D) = { "+" }

The computation of the FOLLOW sets is a little trickier. We need to compute FOLLOW(B) and
FOLLOW(D). 

For FOLLOW(D) we use the rules of section 9.2. We check productions that generate strings of the
form  D . These are the ones for C (6) and for D (7). Both of these have D as their rightmost

symbol; (7) in fact tells us nothing of interest, and we are lead to the result that 

FOLLOW(D) = FOLLOW(C) = { " ) " }.

(FOLLOW(C) is determined by looking at production (3)). 

For FOLLOW(B) we check productions that generate strings of the form  B . These are the ones

for A (1) and C (6), the third alternative for B itself (4), and the first alternative for D (7). This



seems to indicate that 

FOLLOW(B) = { "." , " ] " }  FIRST(D) = {  "."  ,  "] "  ,  "+" }

We must be more careful. Since the production for D can generate a null string, we must augment
FOLLOW(B) by FOLLOW(C) to give 

FOLLOW(B) = { "." , " ] " , "+" }  { " ) " } = {  "."  ,  " ] "  ,  "+"  ,  ") " }

Since FIRST(B)  FOLLOW(B) = Ø and FIRST(D)  FOLLOW(D) = Ø, Rule 2 is satisfied for
both the non-terminals that generate alternatives, both of which are nullable. 

A C++ program for a parser follows. The terminals of the language are all single characters, so that
we do not have to make any special arrangements for character handling (a simple getchar

function call suffices) or for lexical analysis. 

The reader should note that, because the grammar is strictly LL(1), the function that parses the
non-terminal B may discriminate between the genuine followers of B (thereby effectively
recognizing where the -production needs to be applied) and any spurious followers of B (which
would signal a gross error in the parsing process). 

  // Simple Recursive Descent Parser for the language defined by the grammar
  //         G = { N , T , S , P }
  //         N = { A , B , C , D }
  //         T = { "(" , ")" , "+" , "a" , "[" , "]" , "." }
  //         S = A
  //         P =
  //             A  =  B "." .
  //             B  =  "a"   |   "(" C ")"   |   "[" B "]"   |   .
  //             C  =  B D .
  //             D  =  { "+" B } .
  // P.D. Terry,  Rhodes University, 1996

  #include <stdio.h>
  #include <stdlib.h>

  char sym;  // Source token

  void getsym(void)
  { sym = getchar(); }

  void accept(char expectedterminal, char *errormessage)
  { if (sym != expectedterminal) { puts(errormessage); exit(1); }
    getsym();
  }

  void A(void);  // prototypes
  void B(void);
  void C(void);
  void D(void);

  void A(void)
  //  A = B "." .
  { B(); accept(’.’, " Error - ’.’ expected"); }

  void B(void)
  //  B  =  "a"   |   "(" C ")"   |   "[" B "]"   |   .
  { switch (sym)
    { case ’a’:
        getsym(); break;
      case ’(’:
        getsym(); C(); accept(’)’, " Error - ’)’ expected"); break;
      case ’[’:
        getsym(); B(); accept(’]’, " Error - ’]’ expected"); break;
      case ’)’:
      case ’]’:
      case ’+’:
      case ’.’:
        break;  // no action for followers of B
      default:



        printf("Unknown symbol\n"); exit(1);
    }
  }

  void C(void)
  //  C = B D .
  { B(); D(); }

  void D(void)
  //  D  =  { "+" B } .
  { while (sym == ’+’) { getsym(); B(); } }

  void main()
  { sym = getchar(); A();
    printf("Successful\n");
  }

Some care may have to be taken with the relative ordering of the declaration of the functions, which
in this example, and in general, are recursive in nature. (These problems do not occur if the
functions have "prototypes" like those illustrated here.) 

It should now be clear why this method of parsing is called Recursive Descent, and that such
parsers are most easily implemented in languages which directly support recursive programming.
Languages like Modula-2 and C++ are all very well suited to the task, although they each have their
own particular strengths and weaknesses. For example, in Modula-2 one can take advantage of
other organizational strategies, such as the use of nested procedures (which are not permitted in C
or C++), and the very tight control offered by encapsulating a parser in a module with a very thin
interface (only the routine for the goal symbol need be exported), while in C++ one can take
advantage of OOP facilities (both to encapsulate the parser with a thin public interface, and to
create hierarchies of specialized parser classes). 

A little reflection shows that one can often combine routines (this corresponds to reducing the
number of productions used to define the grammar). While this may produce a shorter program,
precautions must be taken to ensure that the grammars, and any implicit semantic overtones, are
truly equivalent. An equivalent grammar to the above one is 

          G = { N , T , S , P }
          N  = { A , B }
          T = { "("  ,  ")"  ,  "+"  ,  " a"  ,  "["  ,  "]"  ,  "." }
          S = A
          P =
              A    B "."                                                      (1)
              B    " a"   |   "("  B  { "+"  B }  ")"   |   "["  B  "]"   |   (2, 3, 4, 5)

leading to a parser 

  // Simple Recursive Descent Parser for the same language
  // using an equivalent but different grammar
  // P.D. Terry,  Rhodes University, 1996

  #include <stdio.h>
  #include <stdlib.h>

  char sym;  // Source token

  void getsym(void)
  { sym = getchar(); }

  void accept(char expectedterminal, char *errormessage)
  { if (sym != expectedterminal) { puts(errormessage); exit(1); }
    getsym();
  }

  void B(void)
  //  B = "a"  |  "(" B { "+" B } ")"  |  "[" B "]"  |   .
  { switch (sym)
    { case ’a’:
        getsym(); break;
      case ’(’:
        getsym(); B(); while (sym == ’+’) { getsym(); B(); }



        accept(’)’, " Error - ’)’ expected"); break;
      case ’[’:
        getsym(); B(); accept(’]’, " Error - ’]’ expected"); break;
      case ’)’:
      case ’]’:
      case ’+’:
      case ’.’:
        break;    // no action for followers of B
      default:
        printf("Unknown symbol\n"); exit(1);
    }
  }

  void A(void)
  //  A = B "." .
  { B(); accept(’.’, " Error - ’.’ expected"); }

  void main(void)
  { sym = getchar(); A();
    printf("Successful\n");
  }

Although recursive descent parsers are eminently suitable for handling languages which satisfy the
LL(1) conditions, they may often be used, perhaps with simple modifications, to handle languages
which, strictly, do not satisfy these conditions. The classic example of a situation like this is
provided by the IF ... THEN ... ELSE  statement. Suppose we have a language in which
statements are defined by 

     Statement      =  IfStatement  |  OtherStatement .
     IfStatement    =  "IF"  Condition  "THEN"  Statement [ "ELSE" Statement  ] .

which, as we have already discussed, is actually ambiguous as it stands. A grammar defined like
this is easily parsed deterministically with code like 

  void Statement(void); // prototype

  void OtherStatement(void);
  // handle parsing of other statement - not necessary to show this here

  void IfStatement(void)
  { getsym(); Condition();
    accept(thensym, " Error - ’THEN’ expected");
    Statement();
    if (sym == elsesym) { getsym(); Statement(); }
  }

  void Statement(void)
  { switch(sym)
    { case ifsym : IfStatement(); break;
      default :    OtherStatement(); break;
    }
  }

The reader who cares to trace the function calls for an input sentence of the form 

      IF  Condition  THEN  IF  Condition  THEN  OtherStatement  ELSE  OtherStatement

will note that this parser has the effect of recognizing and handling an ELSE clause as soon as it can
- effectively forcing an ad hoc resolution of the ambiguity by coupling each ELSE to the closest
unmatched THEN. Indeed, it would be far more difficult to design a parser that implemented the
other possible disambiguating rule - no wonder that the semantics of this statement are those which
correspond to the solution that becomes easy to parse! 

As a further example of applying the LL(1) rules and considering the corresponding parsers,
consider how one might try to describe variable designators of the kind found in many languages to
denote elements of record structures and arrays, possibly in combination, for example A[B.C.D] .
One set of productions that describes some (although by no means all) of these constructions might
appear to be: 



       Designator     =  identifier  Qualifier .                (1)
       Qualifier      =  Subscript | FieldSpecifier .           (2, 3)
       Subscript      =   "["  Designator  "]" |   .           (4, 5)
       FieldSpecifier =   "."  Designator  |  .                (6, 7)

This grammar is not LL(1), although it may be at first difficult to see this. The production for
Qualifier has alternatives, and to check Rule 1 for productions 2 and 3 we need to consider
FIRST(Qualifier1) and FIRST(Qualifier2). At first it appears obvious that 

FIRST(Qualifier1) = FIRST(Subscript ) = { "[ " }

but we must be more careful. Subscript is nullable, so to find FIRST(Qualifier1) we must augment

this singleton set with FOLLOW(Subscript). The calculation of this requires that we find
productions with Subscript on the right side - there is only one of these, production (2). From this
we see that FOLLOW(Subscript) = FOLLOW(Qualifier), which from production (1) is
FOLLOW(Designator). To determine FOLLOW(Designator) we must examine productions (4)
and (6). Only the first of these contributes anything, namely { "] " }. Thus we eventually conclude
that 

FIRST(Qualifier1) = { " [ ", "] " }.

Similarly, the obvious conclusion that 

FIRST(Qualifier2) = FIRST(FieldSpecifier) = { "." }

is also too naïve (since FieldSpecifier is also nullable); a calculation on the same lines leads to the
result that 

FIRST(Qualifier2) = { "." , " ] " }

Rule 1 is thus broken; the grammar is not LL(1). 

The reader will complain that this is ridiculous. Indeed, rewriting the grammar in the form 

       Designator     =  identifier Qualifier .                (1)
       Qualifier      =  Subscript  |  FieldSpecifier |  .    (2, 3, 4)
       Subscript      =   "[" Designator "]" .                 (5)
       FieldSpecifier =   "." Designator .                     (6)

leads to no such transgressions of Rule 1, or, indeed of Rule 2 (readers should verify this to their
own satisfaction). Once again, a recursive descent parser is easily written: 

  void Designator(void); // prototype

  void Subscript(void)
  { getsym(); Designator(); accept(rbracket, " Error - ’]’ expected"); }

  void FieldSpecifier(void)
  { getsym(); Designator(); }

  void Qualifier(void)
  { switch(sym)
    { case lbracket : Subscript(); break;
      case period   : FieldSpecifier(); break;
      case rbracket : break; // FOLLOW(Qualifier) is empty
      default :       printf("Unknown symbol\n"); exit(1);
    }
  }

  void Designator(void)



  { accept(identifier, " Error - identifier expected");
    Qualifier();
  }

In this case there is an easy, if not even obvious way to repair the grammar, and to develop the
parser. However, a more realistic version of this problem leads to a situation that cannot as easily be
resolved. In Modula-2 a Designator is better described by the productions 

       Designator           =  QualifiedIdentifier  {  Selector  } .
       QualifiedIdentifier  =  identifier  { "."  identifier } .
       Selector             =  "."  identifier  |  "["  Expression  "]"  | "^" .

It is left as an exercise to demonstrate that this is not LL(1). It is left as a harder exercise to come to
a formal conclusion that one cannot find an LL(1) grammar that describes Designator
unambiguously. The underlying reason is that "." is used in one context to separate a module
identifier from the identifier that it qualifies (as in Scanner.SYM ) and in a different context to
separate a record identifier from a field identifier (as in SYM.Name). When these are combined (as in
Scanner.SYM.Name ) the problem becomes more obvious. 

The reader may have wondered at the fact that the parsing methods we have advocated all look
"ahead", and never seem to make use of what has already been achieved, that is, of information
which has become embedded in the previous history of the parse. All LL(1) grammars are, of
course, context-free, yet we pointed out in Chapter 8 that there are features of programming
languages which cannot be specified in a context-free grammar (such as the requirement that
variables must be declared before use, and that expressions may only be formed when terms and
factors are of the correct types). In practice, of course, a parser is usually combined with a semantic
analyser; in a sense some of the past history of the parse is recorded in such devices as symbol
tables which the semantic analysis needs to maintain. The example given here is not as serious as it
may at first appear. By making recourse to the symbol table, a Modula-2 compiler will be able to
resolve the potential ambiguity in a static semantic way (rather than in an ad hoc syntactic way as is
done for the "dangling else" situation). 

Exercises 

10.1 Check the LL(1) conditions for the equivalent grammar used in the second of the programs
above. 

10.2 Rework Exercise 10.1 by checking the director sets for the productions. 

10.3 Suppose we wished the language in the previous example to be such that spaces in the input
file were irrelevant. How could this be done? 

10.4 In section 8.4 an unambiguous set of productions was given for the IF ... THEN ... ELSE

statement. Is the corresponding grammar LL(1)? Whatever the outcome, can you construct a
recursive descent parser to handle such a formulation of the grammar? 

10.3 Syntax error detection and recovery 

Up to this point our parsers have been content merely to stop when a syntactic error is detected. In
the case of a real compiler this is probably unacceptable. However, if we modify the parser as given



above so as simply not to stop after detecting an error, the result is likely to be chaotic. The analysis
process will quickly get out of step with the sequence of symbols being scanned, and in all
likelihood will then report a plethora of spurious errors. 

One useful feature of the compilation technique we are using is that the parser can detect a
syntactically incorrect structure after being presented with its first "unexpected" terminal. This will
not necessarily be at the point where the error really occurred. For example, in parsing the sequence

                BEGIN IF A > 6 DO B := 2; C := 5 END END

we could hope for a sensible error message when DO is found where THEN is expected. Even if
parsing does not get out of step, we would get a less helpful message when the second END is found
- the compiler can have little idea where the missing BEGIN should have been. 

A production quality compiler should aim to issue appropriate diagnostic messages for all the
"genuine" errors, and for as few "spurious" errors as possible. This is only possible if it can make
some likely assumption about the nature of each error and the probable intention of the author, or if
it skips over some part of the malformed text, or both. Various approaches may be made to
handling the problem. Some compilers go so far as to try to correct the error, and continue to
produce object code for the program. Error correction is a little dangerous, except in some trivial
cases, and we shall discuss it no further here. Many systems confine themselves to attempting error
recovery, which is the term used to describe the process of simply trying to get the parser back into
step with the source code presented to it. The art of doing this for hand-crafted compilers is rather
intricate, and relies on a mixture of fairly well defined methods and intuitive experience, both with
the language being compiled, and with the class of user of the same. 

Since recursive descent parsers are constructed as a set of routines, each of which tackles a sub-goal
on behalf of its caller, a fairly obvious place to try to regain lost synchronization is at the entry to
and exit from these routines, where the effects of getting out of step can be confined to examining a
small range of known FIRST and FOLLOW symbols. To enforce synchronization at the entry to
the routine for a non-terminal S we might try to employ a strategy like 

        IF Sym  FIRST(S) THEN
          ReportError; SkipTo(FIRST(S))
        END

where SkipTo is an operation which simply calls on the scanner until it returns a value for Sym that
is a member of FIRST(S). Unfortunately this is not quite adequate - if the leading terminal has been
omitted we might then skip over symbols that should be processed later, by the routine which called
S. 

At the exit from S, we have postulated that Sym should be a member of FOLLOW(S). This set may
not be known to S, but it should be known to the routine which calls S, so that it may conveniently
be passed to S as a parameter. This suggests that we might employ a strategy like 

        IF Sym  FOLLOW(S) THEN
          ReportError; SkipTo(FOLLOW(S))
        END

The use of FOLLOW(S) also allows us to avoid the danger mentioned earlier of skipping too far at
routine entry, by employing a strategy like 

        IF Sym  FIRST(S) THEN
          ReportError; SkipTo(FIRST(S) | FOLLOW(S))
        END;

        IF SYM.Sym  FIRST(S) THEN



          Parse(S);

          IF SYM.Sym  FOLLOW(S) THEN
            ReportError; SkipTo(FOLLOW(S))
          END
        END

Although the FOLLOW set for a non-terminal is quite easy to determine, the legitimate follower
may itself have been omitted, and this may lead to too many symbols being skipped at routine exit.
To prevent this, a parser using this approach usually passes to each sub-parser a Followers
parameter, which is constructed so as to include 

the minimally correct set FOLLOW(S), augmented by 

symbols that have already been passed as Followers to the calling routine (that is, later
followers), and also 

so-called beacon symbols, which are on no account to be passed over, even though their
presence would be quite out of context. In this way the parser can often avoid skipping large
sections of possibly important code. 

On return from sub-parser S we can then be fairly certain that Sym contains a terminal which was
either expected (if it is in FOLLOW(S)), or can be used to regain synchronization (if it is one of the
beacons, or is in FOLLOW(Caller(S)). The caller may need to make a further test to see which of
these conditions has arisen. 

In languages like Modula-2 and Pascal, where set operations are directly supported, implementing
this scheme is straightforward. C++ does not have "built-in" set types. Their implementation in
terms of a template class is easily achieved, and operator overloading can be put to good effect. An
interface to such a class, suited to our applications in this text, can be defined as follows 

  template <int maxElem>
  class Set {                         // { 0 .. maxElem }
    public:
      Set();                          // Construct { }
      Set(int e1);                    // Construct { e1 }
      Set(int e1, int e2);            // Construct { e1, e2 }
      Set(int e1, int e2, int e3);    // Construct { e1, e2, e3 }
      Set(int n, int e[]);            // Construct { e[0] .. e[n-1] }
      void incl(int e);               // Include e
      void excl(int e);               // Exclude e
      int memb(int e);                // Test membership for e
      Set operator + (const Set &s)   // Union with s                (OR)
      Set operator * (const Set &s)   // Intersection with s         (AND)
      Set operator - (const Set &s)   // Difference with s
      Set operator / (const Set &s)   // Symmetric difference with s (XOR)
    private:
      unsigned char bits[(maxElem + 8) / 8];
      int length;
      int wrd(int i);
      int bitmask(int i);
      void clear();
  };

The implementation is realized by treating a large set as an array of small bitsets; full details of this
can be found in the source code supplied on the accompanying diskette and in Appendix B. 

Syntax error recovery is then conveniently implemented by defining functions on the lines of 

  typedef Set<lastDefinedSym> symset;

  void accept(symtypes expected, int errorcode)
  { if (Sym == expected) getsym(); else reporterror(errorcode); }

  void test(symset allowed, symset beacons, int errorcode)
  { if (allowed.memb(Sym)) return;



    reporterror(errorcode);
    symset stopset = allowed + beacons;
    while (!stopset.memb(Sym)) getsym();
  }

where we note that the amended accept  routine does not try to regain synchronization in any way.
The way in which these functions could be used is exemplified in a routine for handling variable
declarations for Clang: 

  void VarDeclarations(symset followers);
  // VarDeclarations = "VAR" OneVar { "," OneVar } ";" .
  { getsym();                               // accept "var"
    test(symset(identifier), followers, 6); // FIRST(OneVar)
    if (Sym == identifier)                  // we are in step
    { OneVar(symset(comma, semicolon) + followers);
      while (Sym == comma)                  // more variables follow
      { getsym(); OneVar(symset(comma, semicolon) + followers); }
      accept(semicolon, 2);
      test(followers, symset(), 34);
    }
  }

The followers  passed to VarDeclarations  should include as "beacons" the elements of
FIRST(Statement) - symbols which could start a Statement (in case BEGIN was omitted) - and the
symbol which could follow a Block (period, and end-of-file). Hence, calling VarDeclarations

might be done from within Block  on the lines of 

  if (Sym == varsym)
    VarDeclarations(FirstBlock + FirstStatement + followers);

Too rigorous an adoption of this scheme will result in some spurious errors, as well as an efficiency
loss resulting from all the set constructions that are needed. In hand-crafted parsers the ideas are
often adapted somewhat. As mentioned earlier, one gains from experience when dealing with
learners, and some concession to likely mistakes is, perhaps, a good thing. For example, beginners
are likely to confuse operators like ":= ", "=" and "==", and also THEN and DO after IF , and these may
call for special treatment. As an example of such an adaptation, consider the following variation on
the above code, where the parser will, in effect, handle variable declarations in which the separating
commas have been omitted. This is strategically a good idea - variable declarations that are not
properly processed are likely to lead to severe difficulties in handling later stages of a compilation. 

  void VarDeclarations(symset followers);
  // VarDeclarations = "VAR" OneVar { "," OneVar } ";" .
  { getsym()                                    // accept "var"
    test(symset(identifier), followers, 6);     // FIRST(OneVar)
    if (Sym == identifier)                      // we are in step
    { OneVar(symset(comma, semicolon) + followers);
      while (Sym == comma || Sym == identifier) // only comma is legal
      { accept(comma), 31); OneVar(symset(comma, semicolon) + followers); }
      accept(semicolon, 2);
      test(followers, symset(), 34);
    }
  }

Clearly it is impossible to recover from all possible contortions of code, but one should guard
against the cardinal sins of not reporting errors when they are present, or of collapsing completely
when trying to recover from an error, either by giving up prematurely, or by getting the parser
caught in an infinite loop reporting the same error. 

Exercises 

10.5 Extend the parsers developed in section 10.2 to incorporate error recovery. 



10.6 Investigate the efficacy of the scheme suggested for parsing variable declarations, by tracing
the way in which parsing would proceed for incorrect source code such as the following: 

                 VAR A, B C , , D; E, F;

Further reading 

Error recovery is an extensive topic, and we shall have more to say on it in later chapters. Good
treatments of the material of this section may be found in the books by Welsh and McKeag (1980),
Wirth (1976b), Gough (1988) and Elder (1994). A much higher level treatment is given by
Backhouse (1979), while a rather simplified version is given by Brinch Hansen (1983, 1985).
Papers by Pemberton (1980) and by Topor (1982), Stirling (1985) and Grosch (1990b) are also
worth exploring, as is the bibliographical review article by van den Bosch (1992). 

10.4 Construction of simple scanners 

In a sense, a scanner or lexical analyser may be thought of as just another syntax analyser. It
handles a grammar with productions relating non-terminals such as identifier, number and Relop to
terminals supplied, in effect, as single characters of the source text. When used in conjunction with
a higher level parser a subtle shift in emphasis comes about: there is, in effect, no special goal
symbol. Each invocation of the scanner is very much bottom-up rather than top-down; its task ends
when it has reduced a string of characters to a token, without preconceived ideas of what that
should be. These tokens or non-terminals are then regarded as terminals by the higher level
recursive descent parser that analyses the phrase structure of Block, Statement, Expression and so
on. 

There are at least five reasons for wishing to decouple the scanner from the main parser: 

The productions involved are usually very simple. Very often they amount to regular
expressions, and then a scanner may be programmed without recourse to methods like
recursive descent. 

A symbol like an identifier is lexically equivalent to a "reserved word"; the distinction may
sensibly be made as soon as the basic token has been synthesized. 

The character set may vary from machine to machine, a variation easily isolated in this phase.

The semantic analysis of a numeric literal constant (deriving the internal representation of its
value from the characters) is easily performed in parallel with lexical analysis. 

The scanner can be made responsible for screening out superfluous separators, like blanks and
comments, which are rarely of interest in the formulation of the higher level grammar. 

In common with the parsing strategy suggested earlier, development of the routine or function
responsible for token recognition 

may assume that it is always called after some (globally accessible) variable CH has been
found to contain the next character to be handled in the source 



will then read a complete sequence of characters that form a recognizable token 

will relinquish scanning after leaving CH with the first character that does not form part of
this token (so as to satisfy the precondition for the next invocation of the scanner). 

A scanner is necessarily a top-down parser, and for ease of implementation it is desirable that the
productions defining the token grammar also obey the LL(1) rules. However, checking these is
much simpler, as token grammars are almost invariably regular, and do not display self-embedding
(and thus can be almost always easily be transformed into LL(1) grammars). 

There are two main strategies that are employed in scanner construction: 

Rather than being decomposed into a set of recursive routines, simple scanners are often
written in an ad hoc manner, controlled by a large CASE or switch  statement, since the
essential task is one of choosing between a number of tokens, which are sometimes
distinguishable on the basis of their initial characters. 

Alternatively, since they usually have to read a number of characters, scanners are often
written in the form of a finite state automaton (FSA) controlled by a loop, on each iteration
of which a single character is absorbed, the machine moving between a number of "states",
determined by the character just read. This approach has the advantage that the construction
can be formalized in terms of an extensively developed automata theory, leading to
algorithms from which scanner generators can be constructed automatically. 

A proper discussion of automata theory is beyond the scope of this text, but in the next section we
shall demonstrate both approaches to scanner construction by means of some case studies. 

10.5 Case studies 

To consider a concrete example, suppose that we wish to extend the grammar used for earlier
demonstrations into one described in Cocol as follows: 

  COMPILER A
    CHARACTERS
      digit  = "0123456789" .
      letter = "abcdefgefghijklmnopqrstuvwxyz" .
    TOKENS
      number      = digit { digit } .
      identifier  = "a" { letter } .
    PRODUCTIONS
      A = B "." .
      B = identifier | number | "(" C ")" | "(." B ".)" | .
      C = B D .
      D = { "+" B } .
  END A.

Combinations like (.  and .)  are sometimes used to represent the brackets [ and ] on machines with
limited character sets. The tokens we need to be able to recognize are definable by an enumeration: 

   TOKENS = { number, lbrack, lparen, rbrack, rparen, plus, period, identifier }

It should be easy to see that these tokens are not uniquely distinguishable on the basis of their
leading characters, but it is not difficult to write a set of productions for the token grammar that
obeys the LL(1) rules: 



     token  =    digit { digit }   (* number *)
              | "(" [ "." ]        (* lparen, lbrack *)
              | "." [ ")" ]        (* period, rbrack *)
              | ")"                (* rparen *)
              | "+"                (* plus *)
              | "a" { letter }     (* identifier *) .

from which an ad hoc scanner algorithm follows very easily on the lines of 

  TOKENS FUNCTION GetSym;
  (* Precondition:  CH is already available
     Postcondition: CH is left as the character following token *)
    BEGIN
      IgnoreCommentsAndSeparators;
      CASE CH OF
        ’a’ :

          REPEAT Get(CH) UNTIL CH  {’a’ .. ’z’};
          RETURN identifier;
        ’0’ .. ’9’ :

          REPEAT Get(CH) UNTIL CH  {’0’ .. ’9’};
          RETURN number;
        ’(’ :
          Get(CH);
          IF CH = ’.’
            THEN Get(CH); RETURN lbrack
            ELSE RETURN lparen
          END;
        ’.’ :
          Get(CH);
          IF CH = ’)’
            THEN Get(CH); RETURN rbrack
            ELSE RETURN period
          END;
        ’+’ :
          Get(CH); RETURN plus
        ’)’ :
          Get(CH); RETURN rparen
        ELSE
          Get(CH); RETURN unknown
      END
    END

A characteristic feature of this algorithm - and of most scanners constructed in this way - is that
they are governed by a selection statement, within the alternatives of which one frequently finds
loops that consume sequences of characters. To illustrate the FSA approach - in which the
algorithm is inverted to be governed by a single loop - let us write our grammar in a slightly
different way, in which the comments have been placed to reflect the state that a scanner can be
thought to possess at the point where a character has just been read. 

     token  =   (* unknown *) digit (* number *) { digit (* number *) }
              | (* unknown *) "(" (* lparen *) [ "." (* lbrack *) ]
              | (* unknown *) "." (* period *) [ ")" (* rbrack *) ]
              | (* unknown *) ")" (* rparen *)
              | (* unknown *) "+" (* plus *)
              | (* unknown *) "a" (* identifier *) { letter (* identifier *)  }

Another way of representing this information is in terms of a transition diagram like that shown in
Figure 10.1, where, as is more usual, the states have been labelled with small integers, and where
the arcs are labelled with the characters whose recognition causes the automaton to move from one
state to another. 



There are many ways of developing a scanner from these ideas. One approach, using a table-driven
scanner, is suggested below. To the set of states suggested by the diagram we add one more,
denoted by finished , to allow the postcondition to be easily realized. 

  TOKENS FUNCTION GetSym;
  (* Preconditions: CH is already available,
                    NextState, Token mappings defined
     Postcondition: CH is left as the character following token *)
    BEGIN
      State := 0;
      WHILE state  finished DO
        LastState := State;
        State := NextState[State, CH];
        Get(CH);
      END;
      RETURN Token[LastState];
    END

Here we have made use of various mapping functions, expressed in the form of arrays: 

   Token[s]           is defined to be the token recognized when the machine has reached state s
   NextState[s, x]    indicates the transition that must be taken when the machine
                      is currently in state s, and has just recognized character x.

For our example, the arrays Token  and NextState  would be set up as in the table below. For
clarity, the many transitions to the finished  state have been left blank. 

A table-driven algorithm is efficient in time, and effectively independent of the token grammar, and
thus highly suited to automated construction. However it should not take much imagination to see
that it is very hungry and wasteful of storage. A complex scanner might run to dozens of states, and
many machines use an ASCII character set, with 256 values. For each character a column would be
needed in the matrix, yet most of the entries (as in the example above) would be identical. And
although we may have given the impression that this method will always succeed, this is not
necessarily so. If the underlying token grammar were not LL(1) it might not be possible to define
an unambiguous transition matrix - some entries might appear to require two or more values. In this
situation we speak of requiring a non-deterministic finite automaton (NDFA) as opposed to the
deterministic finite automaton (DFA) that we have been considering up until now. 



Small wonder that considerable research has been invested in developing variations on this theme.
The code below shows one possible variation, for our specimen grammar, in the form of a complete
C++ function. In this case it is necessary to have but one static array (denoted by state0 ),
initialized so as to map each possible character into a single state. 

  TOKENS getsym(void)
  // Preconditions: First character ch has already been read
  //                state0[] has been initialized
  { IgnoreCommentsAndSeparators();
    int state = state0[ch];
    while (1)
    { ch = getchar();
      switch (state)
      { case 1 :
          if (!isdigit(ch)) return number;
          break; // state unchanged
        case 2 :
          if (ch = ’.’) state = 3; else return lparen;
          break;
        case 3 :
          return lbrack;
        case 4 :
          if (ch = ’)’) state = 5; else return period;
          break;
        case 5 :
          return rbrack;
        case 6 :
          return plus;
        case 7 :
          return rparen;
        case 8 :
          if (!isletter(ch)) return identifier;
          break; // state unchanged
        default :
          return unknown;
      }
    }
  }

Our scanner algorithms are as yet immature. Earlier we claimed that scanners often incorporated
such tasks as the recognition of keywords (which usually resemble identifiers), the evaluation of
constant literals, and so on. There are various ways in which these results can be achieved, and in
later case studies we shall demonstrate several of them. In the case of the state machine it may be
easiest to build up a string that stores all the characters scanned, a task that requires minimal
perturbation to the algorithms just discussed. Subsequent processing of this lexeme can then be
done in an application-specific way. For example, searching for a string in a table of keywords will
easily distinguish between keywords and identifiers. 

Exercises 

10.7 Our scanner algorithms have all had the property that they consume at least one character.
Suppose that the initial character could not form part of a token (that is, did not belong to the
vocabulary of the language). Would it not be better not to consume it? 

10.8 Similarly, we have made no provision for the very real possibility that the scanner may not
find any characters when it tries to read them, as would happen if it tried to read past the end of the
source. Modify the algorithm so that the scanner can recognize this condition, and return a
distinctive eof  token when necessary. Take care to get this correct: the solution may not be as
obvious as it at first appears. 

10.9 Suppose that our example language was extended to recognize abs  as a keyword. We could



accomplish this by extending the last part of the transition diagram given earlier to that shown in
Figure 10.2. 

What corresponding changes would need to be made to the tables needed to drive the parser? In
principle one could, of course, handle any number of keywords in a similar fashion. The number of
states would grow very rapidly to the stage where manual construction of the table would become
very tedious and error-prone. 

10.10 How could the C++ code given earlier be modified to handle the extension suggested in
Exercise 10.9? 

10.11 Suppose our scanner was also required to recognize quoted strings, subject to the common
restriction that these should not be allowed to carry across line breaks in the source. How could this
be handled? Consider both the extensions that would be needed to the ad hoc scanner given earlier,
and also to the table driven scanner. 

Further reading

Automata theory and the construction of finite state automata are discussed in most texts on
compiler construction. A particularly thorough treatment is is to be found in the book by Gough
(1988); those by Holub (1990), Watson (1989) and Fischer and LeBlanc (1988, 1991) are also
highly readable. 

Table driven parsers may also be used to analyse the higher level phrase structure for languages
which satisfy the LL(k) conditions. Here, as in the FSA discussed above, and as in the LR parser to
be discussed briefly later, the parser itself becomes essentially language independent. The automata
have to be more sophisticated, of course. They are known as "push down automata", since they
generally need to maintain a stack, so as to be able to handle the self-embedding found in the
productions of the grammar. We shall not attempt to discuss such parsers here, but refer the
interested reader to the books just mentioned, which all treat the subject thoroughly. 

10.6 LR parsing 

Although space does not permit of a full description, no modern text on translators would be
complete without some mention of so-called LR(k) parsing. The terminology here comes from the
notion that we scan the input string from Left to right (the L), applying reductions so as to yield a
Rightmost parse (the R), by looking as far ahead as the next k terminals to help decide which
production to apply. (In practice k is never more than 1, and may be zero.) 



The technique is bottom-up rather than top-down. Starting from the input sentence, and making
reductions, we aim to end up with the goal symbol. The reduction of a sentential form is achieved
by substituting the left side of a production for a string (appearing in the sentential form) which
matches the right side, rather than by substituting the right side of a production whose left side
appears as a non-terminal in the sentential form. 

A bottom-up parsing algorithm might employ a parse stack, which contains part of a possible
sentential form of terminals and/or non terminals. As we read each terminal from the input string
we push it onto the parse stack, and then examine the top elements of this to see whether we can
make a reduction. Some terminals may remain on the parse stack quite a long time before they are
finally pushed off and discarded. (By way of contrast, a top- down parser can discard the terminals
immediately after reading them. Furthermore, a recursive descent parser stores the non-terminal
components of the partial sentential form only implicitly, as a chain of as yet uncompleted calls to
the routines which handle each non-terminal.) 

Perhaps an example will help to make this clearer. Suppose we have a highly simplified
(non-LL(1)) grammar for expressions, defined by 

                Goal        =  Expression "." .                  (1)
                Expression  =  Expression "-" Term  |  Term .    (2, 3)
                Term        =  " a"                               (4)

and are asked to parse the string "a - a - a ." . 

The sequence of events could be summarized 

      Step    Action     Using production      Stack
                                              
        1      read   a                        a
        2      reduce            4             Term
        3      reduce            3             Expression
        4      read   -                        Expression -
        5      read   a                        Expression - a
        6      reduce            4             Expression - Term
        7      reduce            2             Expression
        8      read   -                        Expression -
        9      read   a                        Expression - a
       10      reduce            4             Expression - Term
       11      reduce            2             Expression
       12      read   .                        Expression .
       13      reduce            1             Goal

We have reached Goal and can conclude that the sentence is valid. 

The careful reader may declare that we have cheated! Why did we not use the production
Goal = Expression when we had reduced the string "a" to Expression after step 3? To apply a
reduction it is, of course necessary that the right side of a production be currently on the parse
stack, but this in itself is insufficient. Faced with a choice of right sides which match the top
elements on the parse stack, a practical parser will have to employ some strategy, perhaps of
looking ahead in the input string, to decide which to apply. 

Such parsers are invariably table driven, with the particular strategy at any stage being determined
by looking up an entry in a rectangular matrix indexed by two variables, one representing the
current "state" of the parse (the position the parser has reached within the productions of the
grammar) and the other representing the current "input symbol" (which is one of the terminal or
non-terminals of the grammar). The entries in the table specify whether the parser is to accept the
input string as correct, reject as incorrect, shift to another state, or reduce by applying a particular
production. Rather than stack the symbols of the grammar, as was implied by the trace above, the
parsing algorithm pushes or pops elements representing states of the parse - a shift operation



pushing the newly reached state onto the stack, and a reduce operation popping as many elements
as there are symbols on the right side of the production being applied. The algorithm can be
expressed: 

  BEGIN
    GetSYM(InputSymbol); (* first Sym in sentence *)
    State := 1; Push(State); Parsing := TRUE;
    REPEAT
      Entry := Table[State, InputSymbol];
      CASE Entry.Action OF
        shift:
          State := Entry.NextState; Push(State);
          IF IsTerminal(InputSymbol) THEN
            GetSYM(InputSymbol) (* accept *)
          END
        reduce:
          FOR I := 1 TO Length(Rule[Entry].RightSide) DO Pop END;
          State := Top(Stack);
          InputSymbol := Rule[Entry].LeftSide;
        reject:
          Report(Failure); Parsing := FALSE
        accept:
          Report(Success); Parsing := FALSE
      END
    UNTIL NOT Parsing
  END

Although the algorithm itself is very simple, construction of the parsing table is considerably more
difficult. Here we shall not go into how this is done, but simply note that for the simple example
given above the parsing table might appear as follows (we have left the reject  entries blank for
clarity): 

Given this table, a parse of the string "a - a - a ." would proceed as follows. Notice that the period
has been introduced merely to make recognizing the end of the string somewhat easier. 

  State      Symbol    Stack      Action

    1            a     1          Shift to state 4, accept  a
    4            -     1 4        Reduce by (4) Term = a
    1          Term    1          Shift to state 3
    3            -     1 3        Reduce by (3) Expression = Term
    1     Expression   1          Shift to state 2
    2            -     1 2        Shift to state 5, accept  -
    5            a     1 2 5      Shift to state 4, accept  a
    4            -     1 2 5 4    Reduce by (4) Term = a
    5          Term    1 2 5      Shift to state 6
    6            -     1 2 5 6    Reduce by (2) Expression = Expression - Term
    1     Expression   1          Shift to state 2
    2            -     1 2        Shift to state 5, accept  -
    5            a     1 2 5      Shift to state 4, accept  a
    4            .     1 2 5 4    Reduce by (4) Term = a
    5          Term    1 2 5      Shift to state 6
    6            .     1 2 5 6    Reduce by (2) Expression = Expression - Term
    1     Expression   1          Shift to state 2
    2            .     1 2        Reduce by (1) Goal = Expression
    1          Goal    1          Accept as completed

The reader will have noticed that the parsing table for the toy example is very sparsely filled. The
use of fixed size arrays for this, for the production lists, or for the parse stack is clearly non-optimal.



One of the great problems in using the LR method in real applications is the amount of storage
which these structures require, and considerable research has been done so as to minimize this. 

As in the case of LL(1) parsers it is necessary to ensure that productions are of the correct form
before we can write a deterministic parser using such algorithms. Technically one has to avoid what
are known as "shift/reduce conflicts", or ambiguities in the action that is needed at each entry in the
parse table. In practice the difficult task of producing the parse table for a large grammar with many
productions and many states, and of checking for such conflicts, is invariably left to parser
generator programs, of which the best known is probably yacc (Johnson, 1975). A discussion of
yacc, and of its underlying algorithms for LR(k) parsing is, regrettably, beyond the scope of this
book. 

It turns out that LR(k) parsing is much more powerful than LL(k) parsing. Before an LL(1) parser
can be written it may be necessary to transform an intuitively obvious grammar into one for which
the LL(1) conditions are met, and this sometimes leads to grammars that look unnaturally
complicated. Fewer transformations of this sort are needed for LR(k) parsers - for example, left
recursion does not present a problem, as can be seen from the simple example discussed earlier. On
the other hand, when a parser is extended to handle constraint analysis and code generation, an
LL(1)-based grammar presents fewer problems than does an LR(1)-based one, where the extensions
are sometimes found to introduce violations of the LR(k) rules, resulting in the need to transform
the grammar anyway. 

The rest of our treatment will all be presented in terms of the recursive descent technique, which
has the great advantage that it is intuitively easy to understand, is easy to incorporate into
hand-crafted compilers, and leads to small and efficient compilers. 

Further reading

On the accompanying diskette will be found source code for a demonstration program that
implements the above algorithm in the case where the symbols can be represented by single
characters. The reader may like to experiment with this, but be warned that the simplicity of the
parsing algorithm is rather overwhelmed by all the code required to read in the productions and the
elements of the parsing tables. 

In the original explanation of the method we demonstrated the use of a stack which contained
symbols; in the later discussion we commented that the algorithm could merely stack states.
However, for demonstration purposes it is convenient to show both these structures, and so in the
program we have made use of a variant record or union for handling the parse stack, so as to
accommodate elements which represent symbols as well as ones which represent parse states. An
alternative method would be to use two separate stacks, as is outlined by Hunter (1981). 

Good discussions of LR(k) parsing and of its variations such as SLR (Simple LR) and LALR (Look
Ahead LR) appear in many of the sources mentioned earlier in this chapter. (These variations aim to
reduce the size of the parsing tables, at the cost of being able to handle slightly less general
grammars.) The books by Gough (1988) and by Fischer and LeBlanc (1988, 1991) have useful
comparisons of the relative merits of LL(k) and LR(k) parsing techniques. 



10.7 Automated construction of scanners and parsers 

Recursive descent parsers are easily written, provided a satisfactory grammar can be found. Since
the code tends to match the grammar very closely, they may be developed manually quickly and
accurately. Similarly, for many applications the manual construction of scanners using the
techniques demonstrated in the last section turns out to be straightforward. 

However, as with so many "real" programming projects, when one comes to develop a large
compiler, the complexities of scale raise their ugly heads. An obvious course of action is to
interleave the parser with the semantic analysis and code generation phases. Even when modular
techniques are used - such as writing the system to encapsulate the phases in well-defined separate
classes or modules - real compilers all too easily become difficult to understand, or to maintain
(especially in a "portable" form). 

For this reason, among others, increasing use is now made of parser generators and scanner
generators - programs that take for their input a system of productions and create the
corresponding parsers and scanners automatically. We have already made frequent reference to one
such tool, Coco/R (Mössenböck, 1990a), which exists in a number of versions that can generate
systems, embodying recursive descent parsers, in either C, C++, Java, Pascal, Modula-2 or Oberon.
We shall make considerable use of this tool in the remainder of this text. 

Elementary use of a tool like Coco/R is deceptively easy. The user prepares a Cocol grammar
description of the language for which the scanner and parser are required. This grammar description
forms the most obvious part of the input to Coco/R. Other parts come in the form of so-called
frame files that give the skeleton of the common code that is to be generated for any scanner,
parser or driver program. Such frame files are highly generic, and a user can often employ a
standard set of frame files for a wide number of applications. 

The tool is typically invoked with a command like 

cocor -c -l -f grammarName

where grammarName is the name of the file containing the Cocol description. The arguments
prefixed with hyphens are used in the usual way to select various options, such as the generation of
a driver module (-c ), the production of a detailed listing (-l ), a summary of the FIRST and
FOLLOW sets for each non-terminal (-f ), and so on. 

After the grammar has been analysed and tested for self-consistency and correctness (ensuring, for
example, that all non-terminals have been defined, that there are no circular derivations, and that all
tokens can be distinguished), a recursive descent parser and complementary FSA scanner are
generated in the form of highly readable source code. The exact form of this depends on the version
of Coco/R that is being used. The Modula-2 version, for example, generates DEFINITION MODULES

specifying the interfaces, along with IMPLEMENTATION MODULES detailing the implementation of
each component, while the C++ version produces separate header and implementation files that
define a hierarchical set of classes. 

Of course, such tools can only be successfully used if the user understands the premises on which
they are based (for example, Coco/R can guarantee real success only if it is presented with an
underlying grammar that is LL(1)). Their full power comes about when the grammar descriptions
are extended further in ways to be described in the next chapter, allowing for the construction of
complete compilers incorporating constraint analysis, error recovery, and code generation, and so



we delay further discussion for the present. 

Exercises 

10.12 On the accompanying diskette will be found implementations of Coco/R for C/C++, Turbo
Pascal, and Modula-2. Submit the sample grammar given earlier to the version of your choice, and
compare the code generated with that produced by hand in earlier sections. 

10.13 Exercises 5.11 through 5.21 required you to produce Cocol descriptions of a number of
grammars. Submit these to Coco/R and explore its capabilities for testing grammars, listing FIRST
and FOLLOW sets, and constructing scanners and parsers. 

Further reading 

Probably the most famous parser generator is yacc, originally developed by Johnson (1975). There
are several excellent texts that describe the use of yacc and its associated scanner generator lex
(Lesk, 1975), for example those by Aho, Sethi and Ullman (1986), Bennett (1990), Levine, Mason
and Brown (1992), and Schreiner and Friedman (1985). 

The books by Fischer and LeBlanc (1988) and Alblas and Nymeyer (1996) describe other
generators written in Pascal and in C respectively. 

There are now a great many compiler generating toolkits available. Many of them are freely
available from one or other of the large repositories of software on the Internet (some of these are
listed in Appendix A). The most powerful are more difficult to use than Coco/R, offering, as they
do, many extra features, and, in particular, incorporating more sophisticated error recovery
techniques than are found in Coco/R. It will suffice to mention three of these. 

Grosch (1988, 1989, 1990a), has developed a toolkit known as Cocktail, with components for
generating LALR based parsers (LALR), recursive descent parsers (ELL), and scanners (REX), in a
variety of languages. 

Grune and Jacobs (1988) describe their LL(1)-based tool (LLGen), as a "programmer friendly
LL(1) parser". It incorporates a number of interesting techniques for helping to resolve LL(1)
conflicts, improving error recovery, and speeding up the development of large grammars. 

A toolkit for generating compilers written in C or C++ that has received much attention is PCCTS,
the Purdue University Compiler Construction Tool Set (Parr, Dietz and Cohen (1992), Parr (1996)).
This is comprised of a parser generator (ANTLR), a scanner generator (DLG) and a tree-parser
generator (SORCERER). It provides internal support for a number of frequently needed operations
(such as abstract syntax tree construction), and is particularly interesting in that it uses LL(k)
parsing with k > 1, which its authors claim give it a distinct edge over the more traditional LL(1)
parsers (Parr and Quong, 1995, 1996). 
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11 SYNTAX-DIRECTED TRANSLATION 

In this chapter we build on the ideas developed in the last two, and continue towards our goal of
developing translators for computer languages, by discussing how syntax analysis can form the
basis for driving a translator, or similar programs that process input strings that can be described by
a grammar. Our discussion will be limited to methods that fit in with the top-down approach studied
so far, and we shall make the further simplifying assumption that the sentences to be analysed are
essentially syntactically correct. 

11.1 Embedding semantic actions into syntax rules 

The primary goal of the types of parser studied in the last chapter - or, indeed, of any parser - is the
recognition or rejection of input strings that claim to be valid sentences of the language under
consideration. However, it does not take much imagination to see that once a parser has been
constructed it might be enhanced to perform specific actions whenever various syntactic constructs
have been recognized. 

As usual, a simple example will help to crystallize the concept. We turn again to the grammars that
can describe simple algebraic expressions, and in this case to a variant that can handle
parenthesized expressions in addition to the usual four operators: 

   Expression =  Term { "+" Term | " -" Term } .
   Term       =  Factor { "*" Factor | "/" Factor } .
   Factor     =  identifier | number | "(" Expression ")" .

It is easily verified that this grammar is LL(1). A simple recursive descent parser is readily
constructed, with the aim of accepting a valid input expression, or aborting with an appropriate
message if the input expression is malformed. 

  void Expression(void);  // function prototype

  void Factor(void)
  // Factor = identifier | number | "(" Expression ")" .
  { switch (SYM.sym)
    { case identifier:
      case number:
        getsym(); break;
      case lparen:
        getsym(); Expression();
        accept(rparen, " Error - ’)’ expected"); break;
      default:
        printf("Unexpected symbol\n"); exit(1);
    }
  }

  void Term(void)
  // Term = Factor { "*" Factor | "/" Factor } .
  { Factor();
    while (SYM.sym == times || SYM.sym == slash)
    { getsym(); Factor(); }
  }

  void Expression(void)
  // Expression = Term { "+" Term | "-" Term } .
  { Term();
    while (SYM.sym == plus || SYM.sym == minus)
    { getsym(); Term(); }
  }



Note that in this and subsequent examples we have assumed the existence of a lower level scanner
that recognizes fundamental terminal symbols, and constructs a globally accessible variable SYM

that has a structure declared on the lines of 

  enum symtypes {
    unknown, eofsym, identifier, number, plus, minus, times, slash,
    lparen, rparen, equals
  };

  struct symbols {
    symtypes sym;     // class
    char name;        // lexeme
    int num;          // value
  };

  symbols SYM; // Source token

The parser proper requires that an initial call to getsym()  be made before calling Expression()

for the first time. 

We have also assumed the existence of a severe error handler, similar to that used in the last
chapter: 

  void accept(symtypes expectedterminal, char *errormessage)
  { if (SYM.sym != expectedterminal) { puts(errormessage); exit(1); }
    getsym();
  }

Now consider the problem of reading a valid string in this language, and translating it into a string
that has the same meaning, but which is expressed in postfix (that is, "reverse Polish") notation.
Here the operators follow the pair-wise operands, and there is no need for parentheses. For
example, the infix expression 

( a + b ) *  ( c - d )

is to be translated into its postfix equivalent 

a b + c d - *

This is a well-known problem, admitting of a fairly straightforward solution. As we read the input
string from left to right we immediately copy all the operands to the output stream as soon as they
are recognized, but we delay copying the operators until we can do so in an order that relates to the
familiar precedence rules for the operations. With a little thought the reader should see that the
grammar and the parser given above capture the spirit of these precedence rules. Given this insight,
it is not difficult to see that the augmented routine below not only parses input strings; the execution
of the carefully positioned output statements effectively produces the required postfix translation. 

  void Factor(void)
  // Factor = identifier | number | "(" Expression ")" .
  { switch (SYM.sym)
    { case identifier:
      case number:
        printf(" %c ", SYM.name); getsym(); break;
      case lparen:
        getsym(); Expression();
        accept(rparen, " Error - ’)’ expected"); break;
      default:
        printf("Unexpected symbol\n"); exit(1);
    }
  }

  void Term(void)
  // Term = Factor { "*" Factor | "/" Factor } .
  { Factor();
    while (SYM.sym == times || SYM.sym == slash)



    { switch (SYM.sym)
      { case times: getsym(); Factor(); printf(" * "); break;
        case slash: getsym(); Factor(); printf(" / "); break;
      }
    }
  }

  void Expression(void)
  // Expression = Term { "+" Term | "-" Term } .
  { Term();
    while (SYM.sym == plus || SYM.sym == minus)
    { switch (SYM.sym)
      { case plus:  getsym(); Term(); printf(" + "); break;
        case minus: getsym(); Term(); printf(" - "); break;
      }
    }
  }

In a very real sense we have moved from a parser to a compiler in one easy move! What we have
illustrated is a simple example of a syntax-directed program; one in which the underlying algorithm
is readily developed from an understanding of an underlying syntactic structure. Compilers are
obvious candidates for this sort of development, although the technique is more generally
applicable, as hopefully will become clear. 

The reader might wonder whether this idea could somehow be reflected back to the formal
grammar from which the parser was developed. Various schemes have been proposed for doing
this. Many of these use the idea of adding semantic actions into context-free BNF or EBNF
production schemes. 

Unfortunately there is no clear winner among the notations proposed for this purpose. Most,
however, incorporate the actions by writing statements in some implementation language (for
example, Modula-2 or C++) between suitably chosen meta-brackets that are not already bespoke in
that language. For example, Coco/R uses EBNF for expressing the productions and brackets the
actions with "(. " and ".) ", as in the example below. 

   Expression
   =  Term
      {   "+" Term             (. Write(’+’); .)
        | " -" Term             (. Write(’-’); .)
      } .

   Term
   =  Factor
      {   "*" Factor           (. Write(’*’); .)
        | "/" Factor           (. Write(’/’); .)
      } .

   Factor
   =   ( identifier | number ) (. Write(SYM.name); .)
     | "("  Expression  ")" .

The yacc parser generator on UNIX systems uses unextended BNF for the productions and uses
braces "{ " and "} " around actions expressed in C. 

Exercises

11.1 Extend the grammar and the parsers so as to handle an expression language in which one may
have an optional leading + or - sign (as exemplified by + a *  ( - b + c ) ). 



11.2 Attribute grammars 

A little reflection will show that, although an algebraic expression clearly has a semantic meaning
(in the sense of its "value"), this was not brought out when developing the last example. While the
idea of incorporating actions into the context-free productions of a grammar gives a powerful tool
for documenting and developing syntax- directed programs, what we have seen so far is still
inadequate for handling the many situations where some deeper semantic meaning is required. 

We have seen how a context-free grammar can be used to describe many features of programming
languages. Such grammars effectively define a derivation or parse tree for each syntactically correct
program in the language, and we have seen that with care we can construct the grammar so that a
parse tree in some way reflects the meaning of the program as well. 

As an example, consider the usual old chestnut language, albeit expressed with a slightly different
(non-LL(1)) grammar 

   Goal        =  Expression .
   Expression  =  Term  |  Expression  "+"  Term  |  Expression  " -"  Term.
   Term        =  Factor  |  Term  "*"  Factor  |  Term  "/"  Factor .
   Factor      =  identifier  |  number  |  "("  Expression  ")" .

and consider the phrase structure tree for x + y * z, shown in Figure 11.1. 

Suppose x, y and z had associated numerical values of 3, 4 and 5, respectively. We can think of
these as semantic attributes of the leaf nodes x, y and z. Similarly we can think of the nodes ’+’
and ’*’ as having attributes of "add" and "multiply". Evaluation of the whole expression can be
regarded as a process where these various attributes are passed "up" the tree from the terminal
nodes and are semantically transformed and combined at higher nodes to produce a final result or
attribute at the root - the value (23) of the Goal symbol. This is illustrated in Figure 11.2. 

In principle, and indeed in practice, parsing algorithms can be written whose embedded actions
explicitly construct such trees as the input sentences are parsed, and also decorate or annotate the
nodes with the semantic attributes. Associated tree-walking algorithms can then later be invoked to



process this semantic information in a variety of ways, possibly making several passes over the tree
before the evaluation is complete. This approach lends itself well to the construction of optimizing
compilers, where repeatedly walking the tree can be used to prune or graft nodes in a way that a
simpler compiler cannot hope to do. 

The parser constructed in the last section for recognizing this language did not, of course, construct
an explicit parse tree. The grammar we have now employed seems to map immediately to parse
trees in which the usual associativity and precedence of the operators is correctly reflected. It is left
recursive, and thus unsuitable as the basis on which to construct a recursive descent parser.
However, as we saw in section 10.6, it is possible to construct other forms of parser to handle
grammars that employ left recursion. For the moment we shall not pursue the interesting problem
of whether or how a recursive descent parser could be modified to generate an explicit tree. We
shall content ourselves with the observation that the execution of such a parser effectively walks an
implicit structure, whose nodes correspond to the various calls made to the sub-parsers as the parse
proceeds. 

Notwithstanding any apparent practical difficulties, our notions of formal grammars may be
extended to try to capture the essence of the attributes associated with the nodes, by extending the
notation still further. In one scheme, attribute rules are associated with the context-free productions
in much the same way as we have already seen for actions, giving rise to what is known as an
attribute grammar. As usual, an example will help to clarify: 

   Goal
   =   Expression            (. Goal.Value := Expr.Value .) .
   Expression
   =   Term                  (. Expr.Value := Term.Value .)
     | Expression  "+"  Term (. Expr.Value := Expr.Value + Term.Value .)
     | Expression  " -"  Term (. Expr.Value := Expr.Value - Term.Value .) .
   Term
   =   Factor                (. Term.Value := Fact.Value .)
     | Term  "*"  Factor     (. Term.Value := Term.Value * Fact.Value .)
     | Term  "/"  Factor     (. Term.Value := Term.Value / Fact.Value .) .
   Factor
   =   identifier            (. Fact.Value := identifier.Value .)
     | number                (. Fact.Value := number.Value .)
     | "("  Expression  ")"  (. Fact.Value := Expr.Value .) .

Here we have employed the familiar "dot" notation that many imperative languages use in
designating the elements of record structures. Were we to employ a parsing algorithm that
constructed an explicit tree, this notation would immediately be consistent with the declarations of
the tree nodes used for these structures. 

It is important to note that the semantic rules for a given production specify the relationships
between attributes of other symbols in the same production, and are essentially "local". 

It is not necessary to have a left recursive grammar to be able to provide attribute information. We
could write an iterative LL(1) grammar in much the same way: 

   Goal
   =  Expression             (. Goal.Value := Expr.Value .) .
   Expression
   =  Term                   (. Expr.Value := Term.Value .)
      {   "+"  Term          (. Expr.Value := Expr.Value + Term.Value .)
        | " -"  Term          (. Expr.Value := Expr.Value - Term.Value .)
      } .
   Term
   =  Factor                 (. Term.Value := Fact.Value .)
      {   "*"  Factor        (. Term.Value := Term.Value * Fact.Value .)
        | "/"  Factor        (. Term.Value := Term.Value / Fact.Value .)
      } .
   Factor
   =   identifier            (. Fact.Value := identifier.Value .)
     | number                (. Fact.Value := number.Value .)



     | "("  Expression  ")"  (. Fact.Value := Expr.Value .) .

Our notation does yet lend itself immediately to the specification and construction of those parsers
that do not construct explicit structures of decorated nodes. However, it is not difficult to develop a
suitable extension. We have already seen that the construction of parsers can be based on the idea
that expansion of each non-terminal is handled by an associated routine. These routines can be
parameterized, and the parameters can transmit the attributes to where they are needed. Using this
idea we might express our expression grammar as follows (where we have introduced yet more
meta-brackets, this time denoted by "<" and ">"): 

   Goal < Value >
   =  Expression  < Value > .
   Expression < Value >
   =  Term < Value >
      {   "+"  Term < TermValue >     (. Value := Value + TermValue .)
        | " -"  Term < TermValue >     (. Value := Value - TermValue .)
      } .
   Term < Value >
   =  Factor < Value >
      {   "*"  Factor < FactorValue > (. Value := Value * FactorValue .)
        | "/"  Factor < FactorValue > (. Value := Value / FactorValue .)
      } .
   Factor < Value >
   =    identifier < Value >
     |  number  < Value >
     |  "("  Expression  < Value > ")" .

11.3 Synthesized and inherited attributes 

A little contemplation of the parse tree in our earlier example, and of the attributes as given here,
should convince the reader that (in this example at least) we have a situation in which the attributes
of any particular node depend only on the attributes of nodes in the subtrees of the node in question.
In a sense, information is always passed "up" the tree, or "out" of the corresponding routines. The
parameters must be passed "by reference", and the grammar above maps into code of the form
shown below (where we shall, for the moment, ignore the issue of how one attributes an identifier
with an associated numeric value). 

  void Factor(int &value)
  // Factor = identifier | number | "(" Expression ")" .
  { switch (SYM.sym)
    { case identifier:
      case number:
        value = SYM.num; getsym(); break;
      case lparen:
        getsym(); Expression(value);
        accept(rparen, " Error - ’)’ expected"); break;
      default:
        printf("Unexpected symbol\n"); exit(1);
    }
  }

  void Term(int &value)
  // Term = Factor { "*" Factor | "/" Factor } .
  { int factorvalue;
    Factor(value);
    while (SYM.sym == times || SYM.sym == slash)
    { switch (SYM.sym)
      { case times:
          getsym(); Factor(factorvalue); value *= factorvalue; break;
        case slash:
          getsym(); Factor(factorvalue); value /= factorvalue; break;
      }
    }
  }

  void Expression(int &value)
  // Expression = Term { "+" Term | "-" Term } .
  { int termvalue;



    Term(value);
    while (SYM.sym == plus || SYM.sym == minus)
    { switch (SYM.sym)
      { case plus:
          getsym(); Term(termvalue); value += termvalue; break;
        case minus:
          getsym(); Term(termvalue); value -= termvalue; break;
      }
    }
  }

Attributes that travel in this way are known as synthesized attributes. In general, given a
context-free production rule of the form 

A =  B 

then an associated semantic rule of the form 

A.attributei = f  ( .attributej, B.attributek, .attributel )

is said to specify a synthesized attribute of A. 

Attributes do not always travel up a tree. As a rather grander example, consider the very small
CLANG program: 

       PROGRAM Silly;
         CONST
           Bonus = 4;
         VAR
           Pay;
         BEGIN
           WRITE(Pay + Bonus)
         END.

which has the phrase structure tree shown in Figure 11.3. 

In this case we can think of the Boolean IsConstant and IsVariable attributes of the nodes CONST

and VAR as being passed up the tree (synthesized), and then later passed back down and inherited by



other nodes like Bonus  and Pay (see Figure 11.4). In a sense, the context in which the identifiers
were declared is being remembered - the system is providing a way of handling context-sensitive
features of an otherwise context-free language. 

Of course, this idea must be taken much further. Attributes like this form part of what is usually
termed an environment. Compilation or parsing of programs in a language like Pascal or Modula-2
generally begins in a "standard" environment, into which pervasive identifiers like TRUE, FALSE,

ORD, CHR and so on are already incorporated. This environment is inherited by Program and then
by Block and then by ConstDeclarations, which augments it and passes it back up, to be inherited in
its augmented form by VarDeclarations which augments it further and passes it back, so that it may
then be passed down to the CompoundStatement. We may try to depict this as shown in Figure
11.5. 

More generally, given a context-free production rule of the form 

A =  B 

an associated semantic rule of the form 



B.attributei = f  ( .attributej, A.attributek, .attributel )

is said to specify an inherited attribute of B. The inherited attributes of a symbol are computed
from information held in the environment of the symbol in the parse tree. 

As before, our formal notation needs modification to reflect the different forms and flows of
attributes. A notation often used employs arrows  and  in conjunction with the parameters
mentioned in the < >  metabrackets. Inherited attributes are marked with , and synthesized
attributes with . In terms of actual coding,  attributes correspond to "reference" parameters, while 
 attributes correspond to "value" parameters. In practice, reference parameters may also be used to

manipulate features (such as an environment) that are inherited, modified, and then returned; these
are sometimes called transmitted attributes, and are marked with  or . 

11.4 Classes of attribute grammars 

Attribute grammars have other important features. If the action of a parser is in some way to
construct a tree whose nodes are decorated with semantic attributes relevant to each node, then
"walking" this tree after it has been constructed should constitute a possible mechanism for
developing the synthetic aspects of a translator, such as code generation. If this is this case, then the
order in which the tree is walked becomes crucially important, since attributes can depend on one
another. The simplest tree walk - the depth-first, left-to-right method - may not suffice. Indeed, we
have a situation completely analogous to that which arises in attempting single-pass assembly and
discovering forward references to labels. In principle we can, of course, perform multiple tree
walks, just as we can perform multiple-pass assembly. There are, however, two types of attribute
grammars for which this is not necessary. 

An S-attributed grammar is one that uses only synthesized attributes. For such a grammar
the attributes can obviously be correctly evaluated using a bottom-up walk of the parse tree.
Furthermore, such a grammar is easily handled by parsing algorithms (such as recursive
descent) that do not explicitly build the parse tree. 

An L-attributed grammar is one in which the inherited attributes of a particular symbol in
any given production are restricted in certain ways. For each production of the general form 

A  B1 B2 ... Bn 

the inherited attributes of Bk may depend only on the inherited attributes of A or synthesized

attributes of B1, B2 ... Bk-1. For such a grammar the attributes can be correctly evaluated using

a left- to-right depth-first walk of the parse tree, and such grammars are usually easily
handled by recursive descent parsers, which implicitly walk the parse tree in this way. 

We have already pointed out that there are various aspects of computer languages that involve
context sensitivity, even though the general form of the syntax might be expressed in a context-free
way. Context-sensitive constraints on such languages - often called context conditions - are often
conveniently expressed by conditions included in its attribute grammar, specifying relations that
must be satisfied between the attribute values in the parse tree of a valid program. For example, we
might have a production like 



   Assignment =  VarDesignator < TypeV  > ":=" Expression < TypeE  >

                 (. where AssignmentCompatible(TypeV , TypeE ) .) .

Alternatively, and more usefully in the construction of real parsers, the context conditions might be
expressed in the same notation as for semantic actions, for example 

   Assignment =  VarDesignator < TypeV  > ":=" Expression < TypeE  >

                 (. if (Incompatible(TypeV , TypeE ))
                        SemanticError("Incompatible types"); .) .

Finally, we should note that the concept of an attribute grammar may be formally defined in several
ways. Waite and Goos (1984) and Rechenberg and Mössenböck (1989) suggest: 

An attribute grammar is a quadruple { G, A, R, K }, where G = { N, T, S, P } is a
reduced context-free grammar, A is a finite set of attributes, R is a finite set of semantic
actions, and K is a finite set of context conditions. Zero or more attributes from A are
associated with each symbol X  N  T, and zero or more semantic actions from R and
zero or more context conditions from K are associated with each production in P. For
each occurrence of a non-terminal X in the parse tree of a sentence in L(G) the attributes
of X can be computed in at most one way by semantic actions. 

Further reading 

Good treatments of the material discussed in this section can be found in the books by Gough
(1988), Bennett (1990), and Rechenberg and Mössenböck (1989). As always, the text by Aho, Sethi
and Ullman (1986) is a mine of information. 

11.5 Case study - a small student database 

As another example of using an attribute grammar to construct a system, consider the problem of
constructing a database of the members of a student group. In particular, we wish to record their
names, along with their intended degrees, after extracting information from an original data file that
has records like the following: 

   CompScience3
       BSc  : Mike, Juanito, Rob, Keith, Bruce ;
       BScS : Erik, Arne, Paul, Rory, Andrew, Carl, Jeffrey ;
       BSc  : Nico, Kirsten, Peter, Luanne, Jackie, Mark .

Although we are not involved with constructing a compiler in this instance, we still have an
example of a syntax directed computation. This data can be described by the context-free
productions 

   ClassList  =  ClassName [ Group { ";" Group  } ]  "." .
   Group      =  Degree  ":"  Student { "," Student } .
   Degree     =  "BSc" | "BScS" .
   ClassName  =  identifier .
   Student    =  identifier .

The attributes of greatest interest are, probably, those that relate to the students’ names and degree
codes. An attribute grammar, with semantic actions that define how the database could be set up, is
as follows: 



   ClassList
   =  ClassName                (. OpenDataBase .)
      [ Group { ";" Group } ]  (. CloseDataBase .)
      "." .
   Group

   =  Degree < DegreeCode  >

      ":"  Student < DegreeCode  >

      { "," Student < DegreeCode  > } .

   Degree < DegreeCode  > 
   =   "BSc"                   (. DegreeCode := bsc .)
     | "BScS"                  (. DegreeCode := bscs .) .
   ClassName
   =  identifier .

   Student < DegreeCode  >

   =  identifier < Name  >     (. AddToDataBase(Name , DegreeCode ) .) .

It should be easy to see that this can be used to derive code on the lines of 

  void Student(codes DegreeCode)
  { if (SYM.sym == identifier)
      { AddToDataBase(SYM.name, DegreeCode); getsym(); }
    else
      { printf(" error - student name expected\n"); exit(1); }
  }

  void Degree(codes &DegreeCode)
  { switch (SYM.sym)
    { case bscsym  : DegreeCode = bsc; break;
      case bscssym : DegreeCode = bscs; break;
      default : printf(" error - invalid degree\n"); exit(1);
    }
    getsym();
  }

  void Group(void)
  { codes DegreeCode;
    Degree(DegreeCode);
    accept(colon, " error - ’:’ expected");
    Student(DegreeCode);
    while (SYM.sym == comma)
    { getsym(); Student(DegreeCode); }
  }

  void ClassName(void)
  { accept(identifier, " error - class name expected"); }

  void ClassList(void)
  { ClassName();
    OpenDataBase();
    if (SYM.sym == bscsym || SYM.sym == bscssym)
    { Group();
      while (SYM.sym == semicolon) { getsym(); Group(); }
    }
    CloseDataBase();
    accept(period, " error - ’.’ expected");
  }

Although all the examples so far have lent themselves to very easy implementation by a recursive
descent parser, it is not difficult to find an example where difficulties arise. Consider the ClassList
example again, but suppose that the input data had been of a form like 

   CompScience3
      Mike, Juanito, Rob, Keith, Bruce              : BSc ;
      Erik, Arne, Paul, Rory, Andrew, Carl, Jeffrey : BScS ;
      Nico, Kirsten, Peter, Luanne, Jackie, Mark    : BSc .

This data can be described by the context-free productions 

   ClassList  =  ClassName [ Group { ";" Group } ]  "." .
   Group      =  Student { "," Student } ":" Degree .
   Degree     =  "BSc" | "BScS" .
   ClassName  =  identifier .
   Student    =  identifier .



Now a moment’s thought should convince the reader that attributing the grammar as follows 

   Group

   =  Student < Name  >           (. AddToDataBase(Name , DegreeCode ) .)

      { "," Student < Name  >     (. AddToDataBase(Name , DegreeCode ) .)

      } ":" Degree < DegreeCode  > .

   Student < Name  >

   =  identifier < Name  >

does not create an L-attributed grammar, but has the unfortunate effect that at the point where it
seems natural to add a student to the database, his or her degree has not yet been ascertained. 

Just as we did for the one-pass assembler, so here we can sidestep the problem by creating a local
forward reference table. It is not particularly difficult to handle this grammar with a recursive
descent parser, as the following amended code will reveal: 

  void Student(names &Name)
  { if (SYM.sym == identifier)
      { Name = SYM.name; getsym(); }
    else
      { printf(" error - student name expected\n"); exit(1); }
  }

  void Group(void)
  { codes DegreeCode;
    names Name[100];
    int last = 0;
    Student(Name[last]);            // first forward reference
    while (SYM.sym == comma)
    { getsym();
      last++; Student(Name[last]);  // add to forward references
    }
    accept(colon, " error - ’:’ expected");
    Degree(DegreeCode);
    for (int i = last; i >= 0; i--) // process forward reference list
      AddToDataBase(Name[i], DegreeCode);
  }

Exercises 

11.2 Develop an attribute grammar and corresponding parser to handle the evaluation of an
expression where there may be an optional leading + or - sign (as exemplified by
+ 9 * ( - 6 + 5 )  ). 

11.3 Develop an attribute grammar for the 8-bit ASSEMBLER language used in section 4.3, and
use it to build an assembler for this language. 

11.4 Develop an attribute grammar for the stack ASSEMBLER language used in section 4.4, and
use it to build an assembler for this language. 
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12 USING COCO/R - OVERVIEW 

One of the main reasons for developing attributed grammars like those discussed in the last chapter
is to be able to use them as input to compiler generator tools, and so construct complete programs.
It is the aim of this chapter and the next to illustrate how this process is achieved with Coco/R, and
to discuss the Cocol specification language in greater detail than before. Our discussion will, as
usual, focus mainly on C++ applications, but a study of the documentation and examples on the
diskette should allow Modula-2, Pascal and "traditional C" readers to develop in those languages
just as easily. 

12.1 Installing and running Coco/R 

On the diskette that accompanies this book can be found three implementations of Coco/R that can
generate applications in C/C++, Modula-2, or Turbo Pascal. These have been configured for easy
use on MS-DOS based systems. Versions of Coco/R are also available for use with many other
compilers and operating systems. These can be obtained from several sites on the Internet; a list of
some of these appears in Appendix A. 

The installation and execution of Coco/R is rather system-specific, and readers will be obliged to
make use of the documentation that is provided on the diskette. Nevertheless, a brief overview of
the process can usefully be given here. 

12.1.1 Installation 

The MS-DOS versions of Coco/R are supplied as compressed, self-extracting executable files, and
for these the installation process requires a user to 

create a system directory to store the system files [MKDIR C:\COCO]; 
make this the active directory [CD C:\COCO]; 
copy the distribution file to the system directory [COPY A:COCORC.EXE C:\COCO]; 
start the decompression process [COCORC] (this process will extract the files, and create further
subdirectories to contain Coco/R and its support files and library modules); 
add the system directory to the MS-DOS "path" (this may often most easily be done by
modifying the PATH statement in the AUTOEXEC.BAT file); 
compile the library support modules; 
modify the host compiler and linker parameters, so that applications created by Coco/R can
easily be linked to the support modules; 
set an "environment variable", so that Coco/R can locate its "frame files" (this may often most
easily be done by adding a line like SET CRFRAMES = C:\COCO\FRAMES to the AUTOEXEC.BAT

file). 

12.1.2 Input file preparation 

For each application, the user has to prepare a text file to contain the attributed grammar. Points to
be aware of are that 



it is sensible to work within a "project directory" (say C:\WORK) and not within the "system
directory" (C:\COCO); 
text file preparation must be done with an ASCII editor, and not with a word processor; 
by convention the file is named with a primary name that is based on the grammar’s goal
symbol, and with an "ATG" extension, for example CALC.ATG. 

Besides the grammar, Coco/R needs to be able to read frame files. These contain outlines of the
scanner, parser, and driver files, to which will be added statements derived from an analysis of the
attributed grammar. Frame files for the scanner and parser are of a highly standard form; the ones
supplied with the distribution are suitable for use in many applications without the need for any
customization. However, a complete compiler consists of more than just a scanner and parser - in
particular it requires a driver program to call the parser. A basic driver frame file (COMPILER.FRM)
comes with the kit. This will allow simple applications to be generated immediately, but it is
usually necessary to copy this basic file to the project directory, and then to edit it to suit the
application. The resulting file should be given the same primary name as the grammar file, and a
FRM extension, for example CALC.FRM. 

12.1.3 Execution 

Once the input files have been prepared, generation of the application is started with a command
like 

            COCOR CALC.ATG

A number of compiler options may be specified in a way that is probably familiar, for example 

            COCOR -L -C CALC.ATG

The options depend on the particular version of Coco/R in use. A summary of those available may
be obtained by issuing the COCOR command with no parameters at all, or with only a -H  parameter.
Compiler options may also be selected by pragmas embedded in the attributed grammar itself, and
this is probably the preferred approach for serious applications. Examples of such pragmas can be
found in the case studies later in this chapter. 

12.1.4 Output from Coco/R 

Assuming that the attributed grammar appears to be satisfactory, and depending on the compiler
switches specified, execution of Coco/R will typically result in the production of header and
implementation files (with names derived from the goal symbol name) for 

a FSA scanner (for example CALCS.HPP and CALCS.CPP) 
a recursive descent parser (for example CALCP.HPP and CALCP.CPP) 
a driver routine (for example CALC.CPP) 
a list of error messages (for example CALCE.H) 
a file relating the names of tokens to the integer numbers by which they will be known to the
parser (for example CALCC.H) 

12.1.5 Assembling the generated system 

After they have been generated, the various parts of an application can be compiled and linked with
one another, and with any other components that they need. The way in which this is done depends
very much on the host compiler. For a very simple MS-DOS application using the Borland C++

system, one might be able to use commands like 



    BCC -ml -IC:\COCO\CPLUS2 -c CALC.CPP CALCS.CPP CALCP.CPP
    BCC -ml -LC:\COCO\CPLUS2 -eCALC.EXE CALC.OBJ CALCS.OBJ CALCP.OBJ CR_LIB.LIB

but for larger applications the use of a makefile is probably to be preferred. Examples of makefiles
are found on the distribution diskette. 

12.2 Case study - a simple adding machine 

Preparation of completely attributed grammars suitable as input to Coco/R requires an in-depth
understanding of the Cocol specification language, including many features that we have not yet
encountered. Sections 12.3 and 12.4 discuss these aspects in some detail, and owe much to the
original description by Mössenböck (1990a). 

The discussion will be clarified by reference to a simple example, chosen to illustrate as many
features as possible (as a result, it may appear rather contrived). Suppose we wish to construct an
adding machine that can add numbers arranged in various groups into subtotals, and then either add
these subtotals to a running grand total, or reject them. Our numbers can have fractional parts; just
to be perverse we shall allow a shorthand notation for handling ranges of numbers. Typical input is
exemplified by 

   clear                       // start the machine
   10 + 20 + 3 .. 7 accept     // one subtotal 10+20+3+4+5+6+7, accepted
   3.4 + 6.875..50 cancel      // another one, but rejected
   3 + 4 + 6 accept            // and a third, this time accepted
   total                       // display grand total and then stop

Correct input of this form can be described by a simple LL(1) grammar that we might try initially to
specify in Cocol on the lines of the following: 

   COMPILER Calc

     CHARACTERS
       digit    = "0123456789" .

     TOKENS
       number   = digit { digit } [ "." digit { digit } ] .

     PRODUCTIONS
       Calc     = "clear" { Subtotal } "total" .
       Subtotal = Range { "+" Range } ( "accept" | "cancel" ) .
       Range    = Amount [ ".." Amount ] .
       Amount   = number .

   END Calc.

In general a grammar like this can itself be described in EBNF by 

   Cocol =   "COMPILER" GoalIdentifier
                 ArbitraryText
                 ScannerSpecification
                 ParserSpecification
             "END" GoalIdentifier "." .

We note immediately that the identifier after the keyword COMPILER gives the grammar name, and
must match the name after the keyword END. The grammar name must also match the name chosen
for the non-terminal that defines the goal symbol of the phrase structure grammar. 

Each of the productions leads to the generation of a corresponding parsing routine. It should not
take much imagination to see that the routines in our case study will also need to perform



operations like 

converting the string that defines a number  token into a corresponding numerical value. Thus
we need mechanisms for extracting attributes of the various tokens from the scanner that
recognizes them. 
adding such numbers into variables declared for the purpose of recording totals and subtotals,
and passing these values between the routines. Thus we need mechanisms for declaring
parameters and local variables in the generated routines, and for incorporating arithmetic
statements. 
displaying the values of the variables on an output device. Thus we need mechanisms for
interfacing our parsing routines to external library routines. 
reacting sensibly to input data that does not conform to the proper syntax. Thus we need
mechanisms for specifying how error recovery should be accomplished. 
reacting sensibly to data that is syntactically correct, but still meaningless, as might happen if
one was asked to process numbers in the range 6 .. 2. Thus we need mechanisms for reporting
semantic and constraint violations. 

These mechanisms are all incorporated into the grammar by attributing it with extra information, as
discussed in the next sections. As an immediate example of this, arbitrary text may follow the
GoalIdentifier, preceding the ScannerSpecification. This is not checked by Coco/R, but is simply
incorporated directly in the generated parser. This offers the facility of providing code for IMPORT

clauses in Modula-2, USES clauses in Turbo Pascal, or #include  directives in C++, and for the
declaration of global objects (constants, types, variables or functions) that may be needed by later
semantic actions. 

12.3 Scanner specification 

A scanner has to read source text, skip meaningless characters, and recognize tokens that can be
handled by the parser. Clearly there has to be some way for the parser to retrieve information about
these tokens. The most fundamental information can be returned in the form of a simple integer,
unique to the type of token recognized. While a moment’s thought will confirm that the members of
such an enumeration will allow a parser to perform syntactic analysis, semantic properties (such as
the numeric value of the number  that appears in our example grammar) may require a token to be
analysed in more detail. To this end, the generated scanner allows the parser to retrieve the lexeme
or textual representation of a token. 

Tokens may be classified either as literals or as token classes. As we have already seen, literals (like
"END" and "!= ") may be introduced directly into productions as strings, and do not need to be
named. Token classes (such as identifiers or numbers) must be named, and have structures that are
specified by regular expressions, defined in EBNF. 

In Cocol, a scanner specification consists of six optional parts, that may, in fact, be introduced in
arbitrary order. 

   ScannerSpecification =  {  CharacterSets
                             | Ignorable
                             | Comments
                             | Tokens
                             | Pragmas
                             | UserNames
                            } .



12.3.1 Character sets 

The CharacterSets component allows for the declaration of names for character sets like letters or
digits, and defines the characters that may occur as members of these sets. These names may then
be used in the other sections of the scanner specification (but not, it should be noted, in the parser
specification). 

   CharacterSets   =  "CHARACTERS" { NamedCharSet } .
   NamedCharSet    =  SetIdent "=" CharacterSet "." .
   CharacterSet    =  SimpleSet { ( "+" | "-" ) SimpleSet } .
   SimpleSet       =  SetIdent  |  string | SingleChar [ ".." SingleChar ] | "ANY" .
   SingleChar      =  "CHR" "(" number ")" .
   SetIdent        =  identifier .

Simple character sets are denoted by one of 

SetIdent            a previously declared character set with that name
String              a set consisting of all characters in the string
CHR(i)             a set of one character with ordinal value i
CHR(i) .. CHR( j)   a set consisting of all characters whose ordinal
                   values are in the range i ... j.
ANY                the set of all characters acceptable to the implementation

Simple sets may then be combined by the union (+) and difference operators (- ). 

As examples we might have 

  digit     = "0123456789" .      /* The set of all digits */
  hexdigit  = digit + "ABCDEF" .  /* The set of all hexadecimal digits */
  eol       = CHR(10) .           /* Line feed character */
  noDigit   = ANY - digit .       /* Any character that is not a digit */
  ctrlChars = CHR(1) .. CHR(31) . /* The ASCII control characters */
  InString  = ANY - ’"’ - eol .   /* Strings may not cross line boundaries */

12.3.2 Comments and ignorable characters 

Usually spaces within the source text of a program are irrelevant, and in scanning for the start of a
token, a Coco/R generated scanner will simply ignore them. Other separators like tabs, line ends,
and form feeds may also be declared irrelevant, and some applications may prefer to ignore the
distinction between upper and lower case input. 

Comments are difficult to specify with the regular expressions used to denote tokens - indeed,
nested comments may not be specified at all in this way. Since comments are usually discarded by a
parsing process, and may typically appear in arbitrary places in source code, it makes sense to have
a special construct to express their structure. 

Ignorable aspects of the scanning process are defined in Cocol by 

   Comments  = "COMMENTS" "FROM" TokenExpr "TO" TokenExpr [ "NESTED" ] .
   Ignorable = "IGNORE" ( "CASE" | CharacterSet ) .

where the optional keyword NESTED should have an obvious meaning. A practical restriction is that
comment brackets must not be longer than 2 characters. It is possible to declare several kinds of
comments within a single grammar, for example, for C++: 

      COMMENTS FROM "/*" TO "*/"
      COMMENTS FROM "//" TO eol
      IGNORE CHR(9) .. CHR(13)



The set of ignorable characters in this example is that which includes the standard white space
separators in ASCII files. The null character CHR(0)  should not be included in any ignorable set. It
is used internally by Coco/R to mark the end of the input file. 

12.3.3 Tokens 

A very important part of the scanner specification declares the form of terminal tokens: 

   Tokens       =  "TOKENS" { Token } .
   Token        =  TokenSymbol [ "=" TokenExpr "." ] .
   TokenExpr    =  TokenTerm { "|" TokenTerm } .
   TokenTerm    =  TokenFactor { TokenFactor } [ "CONTEXT" "(" TokenExpr ")" ] .
   TokenFactor  =  SetIdent | string
                     | "(" TokenExpr ")"
                     | "[" TokenExpr "]"
                     | "{" TokenExpr "}" .
   TokenSymbol  =  TokenIdent | string .
   TokenIdent   =  identifier .

Tokens may be declared in any order. A token declaration defines a TokenSymbol together with its
structure. Usually the symbol on the left-hand side of the declaration is an identifier, which is then
used in other parts of the grammar to denote the structure described on the right-hand side of the
declaration by a regular expression (expressed in EBNF). This expression may contain literals
denoting themselves (for example "END"), or the names of character sets (for example letter),
denoting an arbitrary character from such sets. The restriction to regular expressions means that it
may not contain the names of any other tokens. 

While token specification is usually straightforward, there are a number of subtleties that may need
emphasizing: 

Since spaces are deemed to be irrelevant when they come between tokens in the input for
most languages, one should not attempt to declare literal tokens that have spaces within them. 

Our case study has introduced but one explicit token class: 

          number = digit { digit } [ "." digit { digit } ] .

However it has also introduced tokens like "clear ", "cancel " and "..". This last one is
particularly interesting. A scanner might have trouble distinguishing the tokens in input like 

          3 .. 5.4  +  5.4..16.4  + 50..80

because in some cases the periods form part of a real literal, in others they form part of an
ellipsis. This sort of situation arises quite frequently, and Cocol makes special provision for it.
An optional CONTEXT phrase in a TokenTerm specifies that this term only be recognized when
its right-hand context in the input stream is the TokenExpr specified in brackets. Our case
study example requires alteration: 

       TOKENS
         number =   digit { digit } [ "." digit { digit } ]
                  | digit { digit } CONTEXT ( ".." ) .

The grammar for tokens allows for empty right-hand sides. This may seem strange, especially
as no scanner is generated if the right-hand side of a declaration is missing. This facility is
used if the user wishes to supply a hand-crafted scanner, rather than the one generated by
Coco/R. In this case, the symbol on the left- hand side of a token declaration may also simply
be specified by a string, with no right-hand side. 



Tokens specified without right-hand sides are numbered consecutively starting from 0, and
the hand-crafted scanner has to return token codes according to this numbering scheme. 

12.3.4 Pragmas 

A pragma, like a comment, is a token that may occur anywhere in the input stream, but, unlike a
comment, it cannot be ignored. Pragmas are often used to allow programmers to select compiler
switches dynamically. Since it becomes impractical to modify the phrase structure grammar to
handle this, a special mechanism is provided for the recognition and treatment of pragmas. In Cocol
they are declared like tokens, but may have an associated semantic action that is executed whenever
they are recognized by the scanner. 

   Pragmas     =  "PRAGMAS" { Pragma } .
   Pragma      =  Token [ Action ] .
   Action      =  "(." arbitraryText ".)" .

As an example, we might add to our case study 

      PRAGMAS
        page = "page" .  (. printf("\f"); .)

to allow the word page  to appear anywhere in the input data; each appearance would have the effect
of moving to a new page on the output. 

12.3.5 User names 

The scanner and parser produced by Coco/R use small integer values to distinguish tokens. This
makes their code harder to understand by a human reader (some would argue that humans should
never need to read such code anyway). When used with appropriate options, Coco/R can generate
code that uses names for the tokens. By default these names have a rather stereotyped form (for
example "..." would be named "pointpointpointSym "). The UserNames section may be used to
prefer user-defined names, or to help resolve name clashes (for example, between the default names
that would be chosen for "point " and "."). 

   UserNames  = "NAMES" { UserName } .
   UserName   = TokenIdent  "=" ( identifier | string ) "." .

As examples we might have 

      NAMES
        period   = "." .
        ellipsis = "..." .

12.3.6 The scanner interface 

The scanner generated by Coco/R declares various procedures and functions that may be called
from the parser whenever it needs to obtain a new token, or to analyse one that has already been
recognized. As it happens, a user rarely has to make direct use of this interface, as the generated
parser incorporates all the necessary calls to the scanner routines automatically, and also provides
facilities for retrieving lexemes. 

The form of the interface depends on the host system. For example, for the C++ version, the
interface is effectively that shown below, although there is actually an underlying class hierarchy,
so that the declarations are not exactly the same as those shown. The reader should take note that
there are various ways in which source text may be retrieved from the scanner (to understand these
in full it will be necessary to study the class hierarchy, but easier interfaces are provided for the



parser; see section 12.4.6). 

  class grammarScanner
  { public:
      grammarScanner(int SourceFile, int ignoreCase);
      // Constructs scanner for grammar and associates this with a
      // previously opened SourceFile.  Specifies whether to IGNORE CASE

      int Get();
      // Retrieves next token from source

      void GetString(Token *Sym, char *Buffer, int Max);
      // Retrieves at most Max characters from Sym into Buffer

      void GetName(Token *Sym, char *Buffer, int Max);
      // Retrieves at most Max characters from Sym into Buffer
      // Buffer is capitalized if IGNORE CASE was specified

      long GetLine(long Pos, char *Line, int Max);
      // Retrieves at most Max characters (or until next line break)
      // from position Pos in source file into Line

  };

12.4 Parser specification 

The parser specification is the main part of the input to Coco/R. It contains the productions of an
attributed grammar specifying the syntax of the language to be recognized, as well as the action to
be taken as each phrase or token is recognized. 

12.4.1 Productions 

The form of the parser specification may itself be described in EBNF as follows. For the Modula-2
and Pascal versions we have: 

   ParserSpecification =  "PRODUCTIONS" { Production } .
   Production          =  NonTerminal [ FormalAttributes ]
                            [ LocalDeclarations ]        (* Modula-2 and Pascal *)
                            "=" Expression "." .
   FormalAttributes    =  "<"  arbitraryText ">" | "<."  arbitraryText ".>" .
   LocalDeclarations   =  "(." arbitraryText ".)" .
   NonTerminal         =  identifier .

For the C and C++ versions the LocalDeclarations follow the "=" instead: 

   Production          =  NonTerminal [ FormalAttributes ]
                            "=" [ LocalDeclarations ]  /* C and C++ */
                            Expression "." .

Any identifier appearing in a production that was not previously declared as a terminal token is
considered to be the name of a NonTerminal, and there must be exactly one production for each
NonTerminal that is used in the specification (this may, of course, specify a list of alternative right
sides). 

A production may be considered as a specification for creating a routine that parses the
NonTerminal. This routine will constitute its own scope for parameters and other local components
like variables and constants. The left-hand side of a Production specifies the name of the
NonTerminal as well as its FormalAttributes (which effectively specify the formal parameters of
the routine). In the Modula-2 and Pascal versions the optional LocalDeclarations allow the
declaration of local components to precede the block of statements that follow. The C and C++

versions define their local components within this statement block, as required by the host
language. 



As in the case of tokens, some subtleties in the specification of productions should be emphasized: 

The productions may be given in any order. 

A production must be given for a GoalIdentifier that matches the name used for the grammar.

The formal attributes enclosed in angle brackets "<" and ">" (or "<. " and ".> ") simply consist
of parameter declarations in the host language. Similarly, where they are required and
permitted, local declarations take the form of host language declarations enclosed in "(. " and
".) " brackets. However, the syntax of these components is not checked by Coco/R; this is left
to the responsibility of the compiler that will actually compile the generated application. 

All routines give rise to "regular procedures" (in Modula-2 terminology) or "void functions"
(in C++ terminology). Coco/R cannot construct true functions that can be called from within
other expressions; any return values must be transmitted using reference parameter
mechanisms. 

The goal symbol may not have any FormalAttributes. Any information that the parser is
required to pass back to the calling driver program must be handled in other ways. At times
this may prove slightly awkward. 

While a production constitutes a scope for its formal attributes and its locally declared
objects, terminals and non-terminals, globally declared objects, and imported modules are
visible in any production. 

It may happen that an identifier chosen as the name of a NonTerminal may clash with one of
the internal names used in the rest of the system. Such clashes will only become apparent
when the application is compiled and linked, and may require the user to redefine the
grammar to use other identifiers. 

The Expression on the right-hand-side of each Production defines the context-free structure of
some part of the source language, together with the attributes and semantic actions that specify how
the parser must react to the recognition of each component. The syntax of an Expression may itself
be described in EBNF (albeit not in LL(1) form) as 

   Expression   =  Term { "|" Term } .
   Term         =  Factor { Factor }  .
   Factor       =     [ "WEAK" ] TokenSymbol
                   |  NonTerminal [ Attributes ]
                   |  Action
                   |  "ANY"
                   |  "SYNC"
                   |  "(" Expression ")"
                   |  "[" Expression "]"
                   |  "{" Expression "}" .
   Attributes   =  "<"  arbitraryText ">" |  "<."  arbitraryText ".>" .
   Action       =  "(." arbitraryText ".)" .

The Attributes enclosed in angle brackets that may follow a NonTerminal effectively denote the
actual parameters that will be used in calling the corresponding routine. If a NonTerminal is defined
on the left-hand side of a Production to have FormalAttributes, then every occurrence of that
NonTerminal in a right-hand side Expression must have a list of actual attributes that correspond to
the FormalAttributes according to the parameter compatibility rules of the host language. However,
the conformance is only checked when the generated parser is itself compiled. 

An Action is an arbitrary sequence of host language statements enclosed in "(. " and ".) ". These



are simply incorporated into the generated parser in situ; once again, no syntax is checked at that
stage. 

These points may be made clearer by considering a development of part of our case study, which
hopefully needs little further explanation: 

  PRODUCTIONS
    Calc                                                        /* goal */
    =                 (. double total = 0.0, sub; .)            /* locals */
      "clear"
      { Subtotal<sub> (. total += sub; .)                       /* add to total */
      }
      "total"         (. printf("   total: %5.2f\n", total); .) /* display */
      .

    Subtotal<double &s>                                         /* ref param */
    =                 (. double r; .)                           /* local */
      Range<s>
      { "+" Range<r>  (. s += r; .)                             /* add to s */
      }
      (   "accept"    (. printf("subtotal: %5.2f\n", s); .)     /* display */
        | "cancel"    (. s = 0.0; .)                            /* nullify */
      ) .

Although the input to Coco/R is free-format, it is suggested that the regular EBNF appear on the
left, with the actions on the right, as in the example above. 

Many aspects of parser specification are straightforward, but there are some subtleties that call for
comment: 

Where it appears, the keyword ANY denotes any terminal that cannot follow ANY in that
context. It can conveniently be used to parse structures that contain arbitrary text. 

The WEAK and SYNC keywords are used in error recovery, as discussed in the next section. 

In earlier versions of Coco/R there was a potential pitfall in the specification of attributes.
Suppose the urge arises to attribute a NonTerminal as follows: 

        SomeNonTerminal< record->field >

where the parameter uses the right arrow selection operator "-> ". Since the ">" would
normally have been taken as a Cocol meta-bracket, this had to be recoded in terms of other
operators as 

        SomeNonTerminal< (*record).field >

The current versions of Coco/R allow for attributes to be demarcated by "<. " and ".> "
brackets to allow for this situation, and for other operators that involve the > character. 

Close perusal of the grammar for Expression will reveal that it is legal to write a Production
in which an Action appears to be associated with an alternative for an Expression that
contains no terminals or non- terminals at all. This feature is often useful. For example we
might have 

        Option =   "push" (. stack[++top] = item; .)
                 | "pop"  (. item = stack[top--]; .)
                 |        (. for (int i = top; i > 0; i--) cout << stack[i]; .) .

Another useful feature that can be exploited is the ability of an Action to drive the parsing
process "semantically". For example, the specification of assignment statements and
procedure calls in a simple language might be defined as follows so as to conform to LL(1)



restrictions 

        AssignmentOrCall = Identifier [ ":=" Expression ] .

Clearly the semantics of the two statement forms are very different. To handle this we might
write the grammar on the lines of 

        AssignmentOrCall
        = Identifier<name>          (. Lookup(name);
                                       if (IsProcedure(name))
                                         { HandleCall(name); return; } .)
          ":=" Expression<value>    (. HandleAssignment(name, value); .) .

12.4.2 Syntax error recovery 

Compiler generators vary tremendously in the way in which they provide for recovery from
syntactic errors, a subject that was discussed in section 10.3. 

The technique described there, although systematically applicable, slows down error-free parsing,
inflates the parser code, and is relatively difficult to automate. Coco/R uses a simpler technique, as
suggested by Wirth (1986), since this has proved to be almost as effective, and is very easily
understood. Recovery takes place only at a rather small number of synchronization points in the
grammar. Errors at other points are reported, but cause no recovery - parsing simply continues up to
the next synchronization point. One consequence of this simplification is that many spurious errors
are then likely to be detected for as long as the parser and the input remain out of step. An effective
technique for handling this is to arrange that errors are simply not reported if they follow too
closely upon one another (that is, a minimum amount of text must be correctly parsed after one
error is detected before the next can be reported). 

In the simplest approach to using this technique, the designer of the grammar is required to specify
synchronization points explicitly. As it happens, this does not usually turn out to be a difficult task:
the usual heuristic is to choose locations in the grammar where especially safe terminals are
expected that are hardly ever missing or mistyped, or appear so often in source code that they are
bound to be encountered again at some stage. In most Pascal-like languages, for example, good
candidates for synchronization points are the beginning of a statement (where keywords like IF  and
WHILE are expected), the beginning of a declaration sequence (where keywords like CONST and VAR

are expected), or the beginning of a type definition (where keywords like RECORD and ARRAY are
expected). 

In Cocol, a synchronization point is specified by the keyword SYNC, and the effect is to generate
code for a loop that is prepared simply to consume source tokens until one is found that would be
acceptable at that point. The sets of such terminals can be precomputed at parser generation time.
They are always extended to include the end-of-file symbol (denoted by the keyword EOF), thus
guaranteeing that if all else fails, synchronization will succeed at the end of the source text. 

For our case study we might choose the end of the routine for handling a subtotal as such a point: 

    Subtotal = Range { "+" Range } SYNC ( "accept" | "cancel" ) .

This would have the effect of generating code on the following lines: 

   PROCEDURE Subtotal;
     BEGIN
       Range;
       WHILE Sym = plus DO GetSym; Range END;

       WHILE Sym  { accept, cancel, EOF } DO GetSym END;

       IF Sym  { accept, cancel } THEN GetSym END;



     END

The union of all the synchronization sets (which we shall denote by AllSyncs) is also computed by
Coco/R, and is used in further refinements on this idea. A terminal can be designated to be weak in
a certain context by preceding its appearance in the phrase structure grammar with the keyword
WEAK. A weak terminal is one that might often be mistyped or omitted, such as the semicolon
between statements. When the parser expects (but does not find) such a terminal, it adopts the
strategy of consuming source tokens until it recognizes either a legal successor of the weak
terminal, or one of the members of AllSyncs - since terminals expected at synchronization points are
considered to be very "strong", it makes sense that they never be skipped in any error recovery
process. 

As an example of how this could be used, consider altering our case study grammar to read: 

   Calc     = WEAK "clear" Subtotal { Subtotal } WEAK "total" .
   Subtotal = Range { "+" Range } SYNC ( "accept" | "cancel" ) .
   Range    = Amount [ ".." Amount ] .
   Amount   = number .

This would give rise to code on the lines of 

   PROCEDURE Calc;
     BEGIN
       ExpectWeak(clear, FIRST(Subtotal)); (* ie { number } *)
       Subtotal; WHILE Sym = number DO Subtotal END;
       ExpectWeak(total, { EOF })
     END

The ExpectWeak  routine would be internal to the parser, implemented on the lines of: 

   PROCEDURE ExpectWeak (Expected : TERMINAL; WeakFollowers : SYMSET);
     BEGIN
       IF Sym = Expected
         THEN GetSym
         ELSE
           ReportError(Expected);

           WHILE sym  (WeakFollowers + AllSyncs) DO GetSym END
       END
     END

Weak terminals give the parser another chance to synchronize in case of an error. The
WeakFollower  sets can be precomputed at parser generation time, and the technique causes no
run-time overhead if the input is error-free. 

Frequently iterations start with a weak terminal, in situations described by EBNF of the form 

     Sequence =  FirstPart { "WEAK" ExpectedTerminal  IteratedPart } LastPart .

Such terminals will be called weak separators and can be handled in a special way: if the
ExpectedTerminal cannot be recognized, source tokens are consumed until a terminal is found that
is contained in one of the following three sets: 

FOLLOW(ExpectedTerminal) (that is, FIRST(IteratedPart))
FIRST(LastPart)
AllSyncs

As an example of this, suppose we were to modify our case study grammar to read 

     Subtotal = Range { WEAK "+" Range } ( "accept" | "cancel" ) .

The generated code would then be on the lines of 



   PROCEDURE Subtotal;
     BEGIN
       Range;
       WHILE WeakSeparator(plus, { number }, { accept, cancel } ) DO
         Range
       END;

       IF Sym  {accept, cancel } THEN GetSym END;
     END

The WeakSeparator  routine would be implemented internally to the parser on the lines of 

   BOOLEAN FUNCTION WeakSeparator (Expected : TERMINAL;
                                   WeakFollowers, IterationFollowers : SYMSET);
     BEGIN
       IF Sym = Expected THEN GetSym; RETURN TRUE

         ELSIF Sym  IterationFollowers THEN RETURN FALSE
         ELSE
           ReportError(Expected);

           WHILE Sym  (WeakFollowers + IterationFollowers + AllSyncs) DO
             GetSym
           END;

           RETURN Sym  WeakFollowers
       END
     END

Once again, all the necessary sets can be precomputed at generation time. Occasionally, in highly
embedded grammars, the inclusion of AllSyncs (which tends to be "large") may detract from the
efficacy of the technique, but with careful choice of the placing of WEAK and SYNC keywords it can
work remarkably well. 

12.4.3 Grammar checks 

Coco/R performs several tests to check that the grammar submitted to it is well-formed. In
particular it checks that 

each non-terminal has been associated with exactly one production; 
there are no useless productions (in the sense discussed in section 8.3.1); 
the grammar is cycle free (in the sense discussed in section 8.3.3); 
all tokens can be distinguished from one another (that is, no two terminals have been declared
to have the same structure). 

If any of these tests fail, no code generation takes place. In other respects the system is more
lenient. Coco/R issues warnings if analysis of the grammar reveals that 

a non-terminal is nullable (this occurs frequently in correct grammars, but may sometimes be
indicative of an error); 
the LL(1) conditions are violated, either because at least two alternatives for a production
have FIRST sets with elements in common, or because the FIRST and FOLLOWER sets for a
nullable string have elements in common. 

If Coco/R reports an LL(1) error for a construct that involves alternatives or iterations, the user
should be aware that the generated parser is highly likely to misbehave. As simple examples,
productions like the following 

      P = "a" A | "a" B .
      Q = [ "c" B ] "c"  .
      R = { "d" C } "d" .

result in generation of code that can be described algorithmically as 

      IF Sym = "a" THEN Accept("a"); A ELSIF Sym = "a" THEN Accept("a"); B END;



      IF Sym = "c" THEN Accept("c"); B END; Accept("c");
      WHILE Sym = "d" DO Accept("d"); C END; Accept("d");

Of these, only the second can possibly ever have any meaning (as it does in the case of the
"dangling else"). If these situations arise it may often be necessary to redesign the grammar. 

12.4.4 Semantic errors 

The parsers generated by Coco/R handle the reporting of syntax errors automatically. The default
driver programs can summarize these errors at the end of compilation, along with source code line
and column references, or produce source code listings with the errors clearly marked with
explanatory messages (an example of such a listing appears in section 12.4.7). Pure syntax analysis
cannot reveal static semantic errors, but Coco/R supports a mechanism whereby the grammar
designer can arrange for such errors to be reported in the same style as is used for syntactic errors.
The parser class has routines that can be called from within the semantic actions, with an error
number parameter that can be associated with a matching user-defined message. 

In the grammar of our case study, for example, it might make sense to introduce a semantic check
into the actions for the non-terminal Range. The grammar allows for a range of values to be
summed; clearly this will be awkward if the "upper" limit is supplied as a lower value than the
"lower" limit. The code below shows how this could be detected, resulting in the reporting of the
semantic error 200. 

    Range<double &r>
    =                        (. double low, high; .)
      Amount<low>            (. r = low; .)
      [ ".." Amount<high>    (. if (low > high) SemError(200);
                                else while (low < high) { low++; r += low; } .)
      ] .

(Alternatively, we could also arrange for the system to run the loop in the appropriate direction, and
not regard this as an error at all.) Numbers chosen for semantic error reporting must start at some
fairly large number to avoid conflict with the low numbers chosen internally by Coco/R to report
syntax errors. 

12.4.5 Interfacing to support modules 

It will not have escaped the reader’s attention that the code specified in the actions of the attributed
grammar will frequently need to make use of routines that are not defined by the grammar itself.
Two typical situations are exemplified in our case study. 

Firstly, it has seen fit to make use of the printf  routine from the stdio  library found in all
standard C and C++ implementations. To make use of such routines - or ones defined in other
support libraries that the application may need - it is necessary simply to incorporate the appropriate
#define, IMPORT  or USES clauses into the grammar before the scanner specification, as discussed
in section 12.2. 

Secondly, the need arises in routines like Amount  to be able to convert a string, recognized by the
scanner as a number, into a numerical value that can be passed back via a formal parameter to the
calling routine (Range). This situation arises so frequently that the parser interface defines several
routines to simplify the extraction of this string. The production for Amount , when fully attributed,
might take the form 

    Amount<double &a>
    = number                 (. char str[100];
                                LexString(str, 100);



                                a = atof(str); .) .

The LexString  routine (defined in the parser interface) retrieves the string into the local string str ,
whence it is converted to the double  value a by a call to the atof  function that is defined in the
stdlib  library. If the functionality of routines like LexString  and LexName is inadequate, the user
can incorporate calls to the even lower level routines defined in the scanner interface, such as were
mentioned in section 12.3.6. 

12.4.6 The parser interface 

The parser generated by Coco/R defines various routines that may be called from an application. As
for the scanner, the form of the interface depends on the host system. For the C++ version, it
effectively takes the form below. (As before, there is actually an underlying class hierarchy, and the
declarations are really slightly different from those presented here). 

The functionality provides for the parser to 

initiate the parse for the goal symbol by calling Parse() . 
investigate whether the parse succeeded by calling Successful() . 
report on the presence of syntactic and semantic errors by calling SynError  and SemError . 
obtain the lexeme value of a particular token in one of four ways (LexString , LexName,
LookAheadString  and LookAheadName). Calls to LexString  are most common; the others
are used for special variations. 

  class grammarParser
  { public:
      grammarParser(AbsScanner *S, CRError *E);
      // Constructs parser associated with scanner S and error reporter E

      void Parse();
      // Parses the source

      int Successful();
      // Returns 1 if no errors have been recorded while parsing

    private:
      void LexString(char *lex, int size);
      // Retrieves at most size characters from the most recently parsed
      // token into lex

      void LexName(char *lex, int size);
      // Retrieves at most size characters from the most recently parsed
      // token into lex, converted to upper case if IGNORE CASE was specified

      void LookAheadString(char *lex, int size);
      // Retrieves at most size characters from the lookahead token into lex

      void LookAheadName(char *lex, int size);
      // Retrieves at most size characters from the lookahead token into lex,
      // converted to upper case if IGNORE CASE was specified

      void SynError(int errorcode);
      // Reports syntax error denoted by errorcode

      void SemError(int errorcode);
      // Reports semantic error denoted by errorcode

      // ... Prototypes of functions for parsing each non-terminal in grammar
  };

12.4.7 A complete example 

To place all of the ideas of the last sections in context, we present a complete version of the
attributed grammar for our case study: 

  $CX     /* pragmas - generate compiler, and use C++ classes */



  COMPILER Calc

    #include <stdio.h>
    #include <stdlib.h>

    CHARACTERS
      digit =  "0123456789" .

    IGNORE CHR(9) .. CHR(13)

    TOKENS
      number =   digit { digit } [ "." digit { digit } ]
               | digit { digit } CONTEXT ( ".." ) .

    PRAGMAS
      page   = "page" .        (. printf("\f"); .)

    PRODUCTIONS
      Calc
      =                        (. double total = 0.0, sub; .)
        WEAK "clear"
        { Subtotal<sub>        (. total += sub; .)
        } SYNC "total"         (. printf("   total: %5.2f\n", total); .)
        .

      Subtotal<double &s>
      =                        (. double r; .)
        Range<s>
        { WEAK "+" Range<r>    (. s += r; .)
        } SYNC
        (   "accept"           (. printf("subtotal: %5.2f\n", s); .)
          | "cancel"           (. s = 0.0; .)
        ) .

      Range<double &r>
      =                        (. double low, high; .)
        Amount<low>            (. r = low; .)
        [ ".." Amount<high>    (. if (low > high) SemError(200);
                                  else while (low < high)
                                  { low++; r += low; } .)
        ] .

      Amount<double &a>
      = number                 (. char str[100];
                                  LexString(str, 100);
                                  a = atof(str); .) .

  END Calc.

To show how errors are reported, we show the output from applying the generated system to input
that is fairly obviously incorrect. 

        1  clr
    ***** ^  clear  expected (E2)
        2  1 + 2 + 3 .. 4 + 4..5 accep
    *****                        ^  +  expected (E4)
        3  3.4 5 cancel
    *****      ^  +  expected (E4)
        4  3 + 4 .. 2 + 6 accept
    *****           ^ High < Low (E200)
        5  TOTAL
    *****  ^ unexpected symbol in Calc (E10)

12.5 The driver program 

The most important tasks that Coco/R has to perform are the construction of the scanner and parser.
However, these always have to be incorporated into a complete program before they become useful.

12.5.1 Essentials of the driver program 

Any main routine for a driver program must be a refinement of ideas that can be summarized: 



  BEGIN
    Open(SourceFile);
    IF Okay THEN
      InstantiateScanner;
      InstantiateErrorHandler;
      InstantiateParser;
      Parse();
      IF Successful() THEN ApplicationSpecificAction END
    END
  END

Much of this can be automated, of course, and Coco/R can generate such a program, consistent with
its other components. To do so requires the use of an appropriate frame file. A generic version of
this is supplied with the distribution. Although it may be suitable for constructing simple
prototypes, it acts best as a model from which an application-specific frame file can easily be
derived. 

12.5.2 Customizing the driver frame file 

A customized driver frame file generally requires at least three simple additions: 

It is often necessary to declare global or external variables, and to add application specific
#include, USES  or IMPORT directives so that the necessary library support will be provided. 

The section dealing with error messages may need extension if the grammar has made use of
the facility for adding errors to those derived by the parser generator, as discussed in section
12.4.4. For example, the default C++ driver frame file has code that reads 

         char *MyError::GetUserErrorMsg(int n)
         { switch (n) {
             // Put your customized messages here
             default:  return "Unknown error";
           }
         }

To tailor this to the case study application we should need to add an option to the switch

statement: 

         char *MyError::GetUserErrorMsg(int n)
         { switch (n) {
             case 200: return "High < Low";
             default:  return "Unknown error";
           }
         }

Finally, at the end of the default frame file can be found code like 

          // instantiate Scanner, Parser and Error handler
          Scanner = new -->ScanClass(S_src, -->IgnoreCase);
          Error   = new MyError(SourceName, Scanner);
          Parser  = new -->ParserClass(Scanner, Error);

          // parse the source
          Parser->Parse();
          close(S_src);

          // Add to the following code to suit the application
          if (Error->Errors) fprintf(stderr, "Compilation errors\n");
          if (Listinfo) SourceListing(Error, Scanner);
          else if (Error->Errors) Error->SummarizeErrors();

          delete Scanner;
          delete Parser;
          delete Error;
        }

the intention of which should be almost self explanatory. For example, in the case of a



compiler/interpreter such as we shall discuss in a later chapter, we might want to modify this
to read 

         // generate source listing
         FILE *lst = fopen("listing");
         Error->SetOutput(lst);
         Error->PrintListing(Scanner);
         fclose(lst);

         if (Error->Errors)
           fprintf(stderr, "Compilation failed - see %s\n", ListName);
         else {
           fprintf(stderr, "Compilation successful\n");
           CGen->getsize(codelength, initsp);
           Machine->interpret(codelength, initsp);
         }

Exercises 

12.1 Study the code produced by Coco/R from the grammar used in this case study. How closely
does it correspond to what you might have written by hand? 

12.2 Experiment with the grammar suggested in the case study. What happens if the CONTEXT

clause is omitted in the scanner specification? What happens if the placement of the WEAK and SYNC

keywords is changed? 

12.3 Extend the system in various ways. For example, direct output to a file other than stdout , use
the iostreams  library rather than the stdio  library, develop the actions so that they conform to
"traditional" C (rather than using reference parameters), or arrange that ranges can be correctly
interpreted in either order. 

Further reading 

The text by Rechenberg and Mössenböck (1989) describes the original Coco system in great detail.
This system did not have an integrated scanner generator, but made use of one known as Alex
(Mössenböck, 1986). Dobler and Pirklbauer (1990) and Dobler (1991) discuss Coco-2, a variant of
Coco that incorporated automatic and sophisticated error recovery into table-driven LL(1) parsers.
Literature on the inner workings of Coco/R is harder to come by, but the reader is referred to the
papers by Mössenböck (1990a, 1990b). 
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13 USING COCO/R - CASE STUDIES 

The best way to come to terms with the use of a tool like Coco/R is to try to use it, so in this chapter
we make use of several case studies to illustrate how simple and powerful a tool it really is. 

13.1 Case study - Understanding C declarations 

It is generally acknowledged, even by experts, that the syntax of declarations in C and C++ can be
quite difficult to understand. This is especially true for programmers who have learned Pascal or
Modula-2 before turning to a study of C or C++. Simple declarations like 

    int x, list[100];

present few difficulties (x is a scalar integer, list  is an array of 100 integers). However, in
developing more abstruse examples like 

    char **a;      // a is a pointer to a pointer to a character
    int *b[10];    // b is an array of 10 pointers to single integers
    int (*c)[10];  // c is a pointer to an array of 10 integers
    double *d();   // d is a function returning a pointer to a double
    char (*e)();   // e is a pointer to a function returning a character

it is easy to confuse the placement of the various brackets, parentheses and asterisks, perhaps even
writing syntactically correct declarations that do not mean what the author intended. By the time
one is into writing (or reading) declarations like 

    short (*(*f())[])();
    double (*(*g[50])())[15];

there may be little consolation to be gained from learning that C was designed so that the syntax of
declarations (defining occurrences) should mirror the syntax for access to the corresponding
quantities in expressions (applied occurrences). 

Algorithms to help humans unravel such declarations can be found in many text books - for
example, the recent excellent one by King (1996), or the original description of C by Kernighan and
Ritchie (1988). In this latter book can be found a hand-crafted recursive descent parser for
converting a subset of the possible declaration forms into an English description. Such a program is
very easily specified in Cocol. 

The syntax of the restricted form of declarations that we wish to consider can be described by 

       Decl      =  { name Dcl ";" } .
       Dcl       =  { "*" } DirectDcl .
       DirectDcl =    name
                    | "(" Dcl ")"
                    | DirectDcl "(" ")"
                    | DirectDcl "[" [ number ] "]" .

if we base the productions on those found in the usual descriptions of C, but change the notation to
match the one we have been using in this book. Although these productions are not in LL(1) form,
it is easy to find a way of eliminating the troublesome left recursion. It also turns out to be
expedient to rewrite the production for Dcl so as to use right recursion rather than iteration: 

       Decl      =  { name Dcl ";" } .



       Dcl       =  "*" Dcl | DirectDcl .
       DirectDcl =  ( name | "(" Dcl ")" ) { Suffix } .
       Suffix    =  "(" ")" | "[" [ number ] "]" .

When adding attributes we make use of ideas similar to those already seen for the conversion of
infix expressions into postfix form in section 11.1. We arrange to read the token stream from left to
right, writing descriptions of some tokens immediately, but delaying the output of descriptions of
others. The full Cocol specification follows readily as 

  $CX   /* Generate Main Module, C++ */
  COMPILER Decl
  #include <stdlib.h>
  #include <iostream.h>

  CHARACTERS
    digit =  "0123456789" .
    letter = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyx_" .

  IGNORE CHR(9) .. CHR(13)

  TOKENS
    number = digit { digit } .
    name = letter { letter } .

  PRODUCTIONS
    Decl
    =                    (. char Tipe[100]; .)
      { name             (. LexString(Tipe, sizeof(Tipe) - 1); .)
        Dcl              (. cout << ’ ’ << Tipe << endl; .)
        ";" } .

    Dcl
    =   "*" Dcl          (. cout << " pointer to"; .)
      | DirectDcl .

    DirectDcl
    =                    (. char Name[100]; .)
      (   name           (. LexString(Name, sizeof(Name) - 1);
                            cout << ’ ’ << Name << " is"; .)
        | "(" Dcl ")"
      ) { Suffix } .

    Suffix
    =                    (. char buff[100]; .)
        "["              (. cout << " array ["; .)
         [ number        (. LexString(buff, sizeof(buff) - 1);
                            cout << atoi(buff); .)
         ]
        "]"              (. cout << "] of"; .)
      | "(" ")"          (. cout << " function returning"; .) .

  END Decl.

Exercises 

13.1 Perusal of the original grammar (and of the equivalent LL(1) version) will suggest that the
following declarations would be allowed. Some of them are, in fact, illegal in C: 

            int f()[100];  // Functions cannot return arrays
            int g()();     // Functions cannot return functions
            int x[100]();  // We cannot declare arrays of functions
            int p[12][20]; // We are allowed arrays of arrays
            int q[][100];  // We are also allowed to declare arrays like this
            int r[100][];  // We are not allowed to declare arrays like this

Can you write a Cocol specification for a parser that accepts only the valid combinations of
suffixes? If not, why not? 

13.2 Extend the grammar to cater for the declaration of more than one item based on the same type,
as exemplified by 



            int f[100], *x, (*g)[100];

13.3 Extend the grammar and the parser to allow function prototypes to describe parameter lists,
and to allow variable declarators to have initializers, as exemplified by 

            int x = 10, y[3] = { 4, 5, 6 };
            int z[2][2] = {{ 4, 5 }, { 6, 7 }};
            double f(int x, char &y, double *z);

13.4 Develop a system that will do the reverse operation - read in a description of a declaration
(such as might be output from the program we have just discussed) and construct the C code that
corresponds to this. 

13.2 Case study - Generating one-address code from expressions 

The simple expression grammar is, understandably, very often used in texts on programming
language translation. We have already seen it used as the basis of a system to convert infix to
postfix (section 11.1), and for evaluating expressions (section 11.2). In this case study we show
how easy it is to attribute the grammar to generate one- address code for a multi-register machine
whose instruction set supports the following operations: 

       LDI Rx,value     ;  Rx := value (immediate)
       LDA Rx,variable  ;  Rx := value of variable (direct)
       ADD Rx,Ry        ;  Rx := Rx + Ry
       SUB Rx,Ry        ;  Rx := Rx - Ry
       MUL Rx,Ry        ;  Rx := Rx * Ry
       DVD Rx,Ry        ;  Rx := Rx / Ry

For this machine we might translate some example expressions into code as follows: 

       a + b       5 * 6       x / 12       (a + b) * (c - 5)

       LDA R1,a    LDI R1,5    LDA R1,x     LDA  R1,a    ;  R1 := a
       LDA R2,b    LDI R2,6    LDI R2,12    LDA  R2,b    ;  R2 := b
       ADD R1,R2   MUL R1,R2   DVD R1,R2    ADD  R1,R2   ;  R1 := a+b
                                            LDA  R2,c    ;  R2 := c
                                            LDI  R3,5    ;  R3 := 5
                                            SUB  R2,R3   ;  R2 := c-5
                                            MUL  R1,R2   ;  R1 := (a+b)*(c-5)

If we make the highly idealized assumption that the machine has an inexhaustible supply of
registers (so that any values may be used for x and y), then an expression compiler becomes almost
trivial to specify in Cocol. 

  $CX /* Compiler, C++ */
  COMPILER Expr

  CHARACTERS
    digit    = "0123456789" .
    letter   = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" .

  IGNORE CHR(9) .. CHR(13)

  TOKENS
    number   = digit { digit } .
    variable = letter .

  PRODUCTIONS
    Expr
    = { Expression<1> SYNC ";"   (. printf("\n"); .)
      } .

    Expression<int R>
    = Term<R>
      {   "+" Term<R+1>          (. printf("ADD R%d,R%d\n", R, R+1); .)



        | "-" Term<R+1>          (. printf("SUB R%d,R%d\n", R, R+1); .)
      } .

    Term<int R>
    = Factor<R>
      {   "*" Factor<R+1>        (. printf("MUL R%d,R%d\n", R, R+1); .)
        | "/" Factor<R+1>        (. printf("DVD R%d,R%d\n", R, R+1); .)
      } .

    Factor<int R>
    =                            (. char CH; int N; .)
        Identifier<CH>           (. printf("LDA R%d,%c\n", R, CH); .)
      | Number<N>                (. printf("LDI R%d,%d\n", R, N); .)
      | "(" Expression<R> ")" .

    Identifier<char &CH>
    =  variable                  (. char str[100];
                                    LexString(str, sizeof(str) - 1);
                                    CH = str[0]; .) .

    Number<int &N>
    =  number                    (. char str[100];
                                    LexString(str, sizeof(str) - 1);
                                    N = atoi(str); .) .

  END Expr.

The formal attribute to each routine is the number of the register in which the code generated by
that routine is required to store the value for whose computation it is responsible. Parsing starts by
assuming that the final value is to be stored in register 1. A binary operation is applied to values in
registers x and x + 1, leaving the result in register x. The grammar is factorized, as we have seen, in
a way that correctly reflects the associativity and precedence of the parentheses and arithmetic
operators as they are found in infix expressions, so that, where necessary, the register numbers
increase steadily as the parser proceeds to decode complex expressions. 

Exercises 

13.5 Use Coco/R to develop a program that will convert infix expressions to postfix form. 

13.6 Use Coco/R to develop a program that will evaluate infix arithmetic expressions directly. 

13.7 The parser above allows only single character variable names. Extend it to allow variable
names that consist of an initial letter, followed by any sequence of digits and letters. 

13.8 Suppose that we wished to be able to generate code for expressions that permit leading signs,
as for example  + x * ( - y + z). Extend the grammar to describe such expressions, and then develop
a program that will generate appropriate code. Do this in two ways (a) assume that there is no
special machine instruction for negating a register (b) assume that such an operation is available
(NEG Rx). 

13.9 Suppose the machine also provided logical operations: 

                AND Rx,Ry        ;  Rx := Rx AND Ry
                OR  Rx,Ry        ;  Rx := Rx OR Ry
                XOR Rx,Ry        ;  Rx := Rx XOR Ry
                NOT Rx           ;  Rx := NOT Rx

Extend the grammar to allow expressions to incorporate infix and prefix logical operations, in
addition to arithmetic operations, and develop a program to translate them into simple machine
code. This will require some decision as to the relative precedence of all the operations. NOT
always takes precedence over AND, which in turn takes precedence over OR. In Pascal and



Modula-2, NOT, AND and OR are deemed to have precedence equal to unary negation,
multiplication and addition (respectively). However, in C and C++, NOT has precedence equal to
unary negation, while AND and OR have lower precedence than the arithmetic operators - the 16
levels of precedence in C, like the syntax of declarations, are another example of baroque language
design that cause a great difficulty to beginners. Choose whatever relative precedence scheme you
prefer, or better still, attempt the exercise both ways. 

13.10 (Harder). Try to incorporate short-circuit Boolean semantics into the language suggested by
Exercise 13.9, and then use Coco/R to write a translator for it. The reader will recall that these
semantics demand that 

A AND B      is defined to mean     IF A THEN B ELSE FALSE

A OR  B      is defined to mean     IF A THEN TRUE ELSE B

that is to say, in evaluating the AND operation there is no need to evaluate the second operand if
the first one is found to be FALSE, and in evaluating the OR operation there is no need to evaluate
the second operand if the first is found to be TRUE. You may need to extend the instruction set of
the machine to provide conditional and other branch instructions; feel free to do so! 

13.11 It is unrealistic to assume that one can simply allocate registers numbered from 1 upwards.
More usually a compiler has to select registers from a set of those known to be free at the time the
expression evaluation commences, and to arrange to release the registers once they are no longer
needed for storing intermediate values. Modify the grammar (and hence the program) to incorporate
this strategy. Choose a suitable data structure to keep track of the set of available registers - in
Pascal and Modula-2 this becomes rather easy; in C++ you could make use of the template class for
set handling discussed briefly in section 10.3. 

13.12 It is also unreasonable to assume that the set of available registers is inexhaustible. What sort
of expression requires a large set of registers before it can be evaluated? How big a set do you
suppose is reasonable? What sort of strategy do you suppose has to be adopted if a compiler finds
that the set of available registers becomes exhausted? 

13.3 Case study - Generating one-address code from an AST 

It should not take much imagination to realize that code generation for expression evaluation using
an "on-the fly" technique like that suggested in section 13.2, while easy, leads to very inefficient
and bloated code - especially if, as is usually the case, the machine instruction set incorporates a
wider range of operations. If, for example, it were to include direct and immediate addressing
operations like 

       ADD Rx,variable  ;  Rx := Rx + value of variable
       SUB Rx,variable  ;  Rx := Rx - value of variable
       MUL Rx,variable  ;  Rx := Rx * value of variable
       DVD Rx,variable  ;  Rx := Rx / value of variable

       ADI Rx,constant  ;  Rx := Rx + value of constant
       SBI Rx,constant  ;  Rx := Rx - value of constant
       MLI Rx,constant  ;  Rx := Rx * value of constant
       DVI Rx,constant  ;  Rx := Rx / value of constant

then we should be able to translate the examples of code shown earlier far more effectively as
follows: 



       a + b       5 * 6       x / 12       (a + b) * (c - 5)

       LDA R1,a    LDI R1,30   LDA R1,x     LDA  R1,a    ;  R1 := a
       ADD R1,b                DVI R1,12    ADD  R1,b    ;  R1 := a + b
                                            LDA  R2,c    ;  R2 := c
                                            SBI  R2,5    ;  R2 := c - 5
                                            MUL  R1,R2   ;  R1 := (a+b)*(c-5)

To be able to generate such code requires that we delay the choice of instruction somewhat - we
should no longer simply emit instructions as soon as each operator is recognized (once again we
can see a resemblance to the conversion from infix to postfix notation). The usual strategy for
achieving such optimizations is to arrange to build an abstract syntax tree (AST) from the
expression, and then to "walk" it in LRN (post) order, emitting machine code apposite to the form
of the operation associated with each node. An example may make this clearer. The tree
corresponding to the expression (a + b) * (c - 5) is shown in Figure 13.1. 

The code generating operations needed as each node is visited are depicted in Figure 13.2. 

It is, in fact, remarkably easy to attribute our grammar so as to incorporate tree-building actions
instead of immediate code generation: 

  $CX /* Compiler, C++ */
  COMPILER Expr
  /* Convert infix expressions into machine code using a simple AST */

  #include "trees.h"

  CHARACTERS
    digit  =  "0123456789" .
    letter =  "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" .

  IGNORE CHR(9) .. CHR(13)

  TOKENS
    number = digit { digit } .
    variable = letter .

  PRODUCTIONS
    Expr
    =                          (. AST Exp; .)
      { Expression<Exp>
        SYNC ";"               (. if (Successful()) GenerateCode(Exp); .)
      } .

    Expression<AST &E>
    =                          (. AST T; .)
      Term<E>
      {   "+" Term<T>          (. E = BinOpNode(Plus, E, T); .)
        | "-" Term<T>          (. E = BinOpNode(Minus, E, T); .)
      } .



    Term<AST &T>
    =                          (. AST F; .)
      Factor<T>
      {   "*" Factor<F>        (. T = BinOpNode(Times, T, F); .)
        | "/" Factor<F>        (. T = BinOpNode(Slash, T, F); .)
      } .

    Factor<AST &F>
    =                          (. char CH; int N; .)
                               (. F = EmptyNode(); .)
    (   Identifier<CH>         (. F = VarNode(CH); .)
      | Number<N>              (. F = ConstNode(N); .)
      | "(" Expression<F> ")"
    ) .

    Identifier<char &CH>
    =  variable                (. char str[100];
                                  LexName(str, sizeof(str) - 1);
                                  CH = str[0]; .) .

    Number<int &N>
    =  number                  (. char str[100];
                                  LexString(str, sizeof(str) - 1);
                                  N = atoi(str); .) .

  END Expr.

Here, rather than pass register indices as "value" parameters to the various parsing routines, we
arrange that they each return an AST (as a "reference" parameter) - essentially a pointer to a
structure created as each Expression, Term or Factor is recognized. The Factor parser is
responsible for creating the leaf nodes, and these are stitched together to form larger trees as a result
of the iteration components in the Expression and Term parsers. Once the tree has been built in this
way - that is, after the goal symbol has been completely parsed - we can walk it so as to generate
the code. 

The reader may feel a bit cheated, as this does not reveal very much about how the trees are really
constructed. However, that is in the spirit of "data abstraction"! The grammar above can be used
unaltered with a variety of implementations of the AST tree handling module. In compiler
technology terminology, we have succeeded in separating the "front end" or parser from the "back
end" or tree-walker that generates the code. By providing machine specific versions of the
tree-walker we can generate code for a variety of different machines, indulge in various
optimization techniques, and so on. The AST tree-builder and tree-walker have the following
interface: 

  enum optypes { Load, Plus, Minus, Times, Slash };

  class NODE;

  typedef NODE* AST;

  AST BinOpNode(optypes op, AST left, AST right);
  // Creates an AST for the binary operation "left op right"

  AST VarNode(char name);
  // Creates an AST for a variable factor with specified name

  AST ConstNode(int value);
  // Creates an AST for a constant factor with specified value

  AST EmptyNode();
  // Creates an empty node

  void GenerateCode (AST A);
  // Generates code from AST A

Here we are defining an AST type as a pointer to a (dynamically allocated) NODE object. The
functions exported from this interface allow for the construction of several distinct varieties of
nodes, of course, and in particular (a) an "empty" node (b) a "constant" node (c) a "variable" node
and (d) a "binary operator" node. There is also a routine that can walk the tree, generating code as



each node is visited. 

In traditional implementations of this module we should have to resort to constructing the NODE type
as some sort of variant record (in Modula-2 or Pascal terminology) or union (in C terminology), and
on the source diskette can be found examples of such implementations. In languages that support
object-oriented programming it makes good sense to define the NODE type as an abstract base class,
and then to derive the other types of nodes as sub- classes or derived classes of this type. The code
below shows one such implementation in C++ for the generation of code for our hypothetical
machine. On the source diskette can be found various class based implementations, including one
that generates code no more sophisticated than was discussed in section 13.2, as well as one
matching the same interface, but which generates code for the single-accumulator machine
introduced in Chapter 4. There are also equivalent implementations that make use of the
object-oriented extensions found in Turbo Pascal and various dialects of Modula-2. 

  // Abstract Syntax Tree facilities for simple expression trees
  // used to generate reasonable one-address machine code.

  #include <stdio.h>
  #include "trees.h"

  class NODE
  { friend AST BinOpNode(optypes op, AST left, AST right);
    friend class BINOPNODE;
    public:
      NODE()                             { defined = 0; }
      virtual void load(int R) = 0;
      // Generate code for loading value of a node into register R
    protected:
      int value;     // value derived from this node
      int defined;   // 1 if value is defined
      virtual void operation(optypes O, int R) = 0;
      virtual void loadreg(int R)        {;}
  };

  class BINOPNODE : public NODE
  { public:
      BINOPNODE(optypes O, AST L, AST R)   { op = O; left = L; right = R; }
      virtual void load(int R);
    protected:
      optypes op;
      AST left, right;
      virtual void operation(optypes O, int R);
      virtual void loadreg(int R)        { load(R); }
  };

  void BINOPNODE::operation(optypes op, int R)
  { switch (op)
    { case Load:  printf("LDA"); break;
      case Plus:  printf("ADD"); break;
      case Minus: printf("SUB"); break;
      case Times: printf("MUL"); break;
      case Slash: printf("DVD"); break;
    }
    printf(" R%d,R%d\n", R, R + 1);
  }

  void BINOPNODE::load(int R)
  { if (!left || !right) return;
    left->load(R); right->loadreg(R+1); right->operation(op, R);
    delete left; delete right;
  }

  AST BinOpNode(optypes op, AST left, AST right)
  { if (left && right && left->defined && right->defined)
    { // constant folding
      switch (op)
      { case Plus:  left->value += right->value; break;
        case Minus: left->value -= right->value; break;
        case Times: left->value *= right->value; break;
        case Slash: left->value /= right->value; break;
      }
      delete right; return left;
    }
    return new BINOPNODE(op, left, right);



  }

  class VARNODE : public NODE
  {  public:
      VARNODE(char C)                    { name = C; }
      virtual void load(int R)           { operation(Load, R); }
    protected:
      char name;
      virtual void operation(optypes O, int R);
  };

  void VARNODE::operation(optypes op, int R)
  { switch (op)
    { case Load:  printf("LDA"); break;
      case Plus:  printf("ADD"); break;
      case Minus: printf("SUB"); break;
      case Times: printf("MUL"); break;
      case Slash: printf("DVD"); break;
    }
    printf(" R%d,%c\n", R, name);
  }

  AST VarNode(char name)
  { return new VARNODE(name); }

  class CONSTNODE : public NODE
  { public:
      CONSTNODE(int V)                   { value = V; defined = 1; }
      virtual void load(int R)           { operation(Load, R); }
    protected:
      virtual void operation(optypes O, int R);
  };

  void CONSTNODE::operation(optypes op, int R)
  { switch (op)
    { case Load:  printf("LDI"); break;
      case Plus:  printf("ADI"); break;
      case Minus: printf("SBI"); break;
      case Times: printf("MLI"); break;
      case Slash: printf("DVI"); break;
    }
    printf(" R%d,%d\n", R, value);
  }

  AST ConstNode(int value)
  { return new CONSTNODE(value); }

  AST EmptyNode()
  { return NULL; }

  void GenerateCode(AST A)
  { A->load(1); printf("\n"); }

The reader’s attention is drawn to several points that might otherwise be missed: 

We have deliberately chosen to implement a single BINOPNODE class, rather than using this as
a base class from which were derived ADDNODE, SUBNODE, MULNODE and DIVNODE classes.
The alternative approach makes for a useful exercise for the reader. 

When the BinOpNode  routine constructs a binary node, some optimization is attempted. If
both the left and right subexpressions are defined , that is to say, are represented by constant
nodes, then arithmetic can be done immediately. This is known as constant folding, and,
once again, is something that is far more easily achieved if an AST is constructed, rather than
resorting to "on-the-fly" code generation. It often results in a saving of registers, and in
shorter (and hence faster) object code. 

Some care must be taken to ensure that the integrity of the AST is preserved even if the
source expression is syntactically incorrect. The Factor parser is arranged so as to return an
empty node if it fails to recognize a valid member of FIRST(Factor), and there are various
other checks in the code to ensure that tree walking is not attempted if such nodes have been
incorporated into the tree (for example, in the BINOPNODE::load  and BinOpNode  routines). 



Exercises 

13.13 The constant folding demonstrated here is dangerous, in that it has assumed that arithmetic
overflow will never occur. Try to improve it. 

13.14 One disadvantage of the approach shown here is that the operators have been "hard wired"
into the optypes  enumeration. Extending the parser to handle other operations (such as AND and
OR) would require modification in several places, which would be error-prone, and not in the spirit
of extensibility that OOP techniques are meant to provide. If this strikes you as problematic, rework
the AST handler to introduce further classes derived from BINOPNODE. 

13.15 The tree handler is readily extended to perform other simple optimizations. For example,
binary expressions like x * 1, 1 * x, x + 0, x * 0 are quite easily detected, and the otherwise
redundant operations can be eliminated. Try to incorporate some of these optimizations into the
routines given earlier. Is it better to apply them while the tree is under construction, or when it is
later walked? 

13.16 Rework Exercises 13.8 through 13.12 to use abstract syntax trees for intermediate
representations of source expressions. 

13.4 Case study - How do parser generators work? 

Our last case study aims to give the reader some insight into how a program like Coco/R might
itself be developed. In effect, we wish to be able to develop a program that will take as input an
LL(1) type grammar, and go on to construct a parser for that grammar. As we have seen, such
grammars can be described in EBNF notation, and the same EBNF notation can be used to describe
itself, rather simply, and in a form suitable for top- down parsing. In particular we might write 

    Syntax       =   { Production } "EOG" .
    Production   =   NonTerminal "=" Expression "." .
    Expression   =   Term { "|" Term } .
    Term         =   [ Factor { Factor } ] .
    Factor       =      NonTerminal
                     |  Terminal
                     |  "(" Expression ")" | "[" Expression "]"
                     |  "{" Expression "}" .

where NonTerminal and Terminal would be chosen from a particular set of symbols for a grammar,
and where the terminal "EOG" has been added to ease the task of recognizing the end of the
grammar. It is left to the reader formally to show that this grammar is LL(1), and hence capable of
being parsed by recursive descent. 

A parser generator may be constructed by enriching this grammar, providing actions at appropriate
points so as to construct, from the input data, some code (or similar structure which can later be
"executed") either to parse other programs, or to construct parsers for those programs. One method
of doing this, outlined by Wirth (1976b, 1986) and Rechenberg and Mössenböck (1989), is to
develop the parser actions so that they construct a data structure that encapsulates a syntax diagram
representation of the grammar as a graph, and then to apply a graph walker that traverses these
syntax diagrams. 



To take a particular example, consider the ClassList grammar of section 11.5, for which the
productions are 

       ClassList  =  ClassName [ Group { ";" Group } ]  "." .
       Group      =  Degree ":"  Student { "," Student } .
       Degree     =  "BSc" | "BScS" .
       ClassName  =  identifier .
       Student    =  identifier .

A corresponding set of syntax diagrams for these productions is shown in Figure 13.3. 

Such graphs may be represented in programs by linked data structures. At the top level we maintain
a linked list of nodes, each one corresponding to a non-terminal symbol of the grammar. For each
such symbol in the grammar we then go on to introduce (for each of its alternative productions) a
sub-graph of nodes linked together. 

In these dependent graphs there are two basic types of nodes: those corresponding to terminal
symbols, and those corresponding to non-terminals. Terminal nodes can be labelled by the terminal
itself; non-terminal nodes can contain pointers back to the nodes in the non-terminal list. Both
variants of graph nodes contain two pointers, one (Next ) designating the symbol that follows the
symbol "stored" at the node, and the other (Alternate ) designating the next in a list of alternatives.
Once again, the reader should be able to see that this lends itself to the fruitful adoption of OOP
techniques - an abstract base class can be used for a node, with derived classes to handle the
specializations. 

As it turns out, one needs to take special cognizance of the empty terminal , especially in those
situations where it appears implicitly through the "{" Expression "}" or "[" Expression "]"
construction rather than through an explicit empty production. 

The way in which the graphs are constructed is governed by four quite simple rules: 

A sequence of Factors generated by a Term gives rise to a list of nodes linked by their Next

pointers, as shown in Figure 13.4(a); 

A succession of alternative Terms produced by an Expression gives rise to a list of nodes
linked by their Alternate  pointers, as shown in Figure 13.4(b); 

A loop produced by a factor of the form { Expression } gives rise to a structure of the form



shown in Figure 13.4(c); 

An option produced by a factor of the form [ Expression ] gives rise to a structure of the form
shown in Figure 13.4(d). 

As a complete example, the structures that correspond to our ClassList example lead to the graph
depicted in Figure 13.5. 

Construction of the data structures is a non-trivial exercise - especially when they are extended
further to allow for semantic attributes to be associated with the various nodes. As before, we have
attempted to introduce a large measure of abstraction in the attributed Cocol grammar given below: 

  $CX /* compiler, C++ */
  COMPILER EBNF
  /* Augmented Coco/R grammar describing a set of EBNF productions
     and allowing the construction of a graph driven parser */

  #include "misc.h"
  #include "gp.h"



  extern GP *GParser;

  CHARACTERS
    cr       = CHR(13) .
    lf       = CHR(10) .
    letter   = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" .
    lowline  = "_" .
    digit    = "0123456789" .
    noquote1 = ANY - "’" - cr - lf .
    noquote2 = ANY - ’"’ - cr - lf .

  IGNORE CHR(9) .. CHR(13)
  IGNORE CASE

  COMMENTS FROM "(*" TO "*)"  NESTED

  TOKENS
    nonterminal = letter { letter | lowline | digit } .
    terminal    = "’" noquote1 { noquote1 } "’" | ’"’ noquote2 { noquote2 } ’"’ .
    EOG         = "$" .

  PRODUCTIONS
    EBNF
    = { Production } EOG           (. bool haserrors = !Successful();
                                      GParser->checkgraph(stderr, haserrors);
                                      if (haserrors) SemError(200); .) .

    Production
    =                              (. GP_GRAPH rhs;
                                      GP_PROD lhs;
                                      char name[100]; .)
      NonTerminal<name>            (. GParser->startproduction(name, lhs); .)
      "=" Expression<rhs>          (. if (Successful())
                                        GParser->completeproduction(lhs, rhs); .)
      "." .

    Expression<GP_GRAPH &first>
    =                              (. GP_GRAPH next; .)
      Term<first>
      { "|" Term<next>             (. GParser->linkterms(first, next); .)
      } .

    Term<GP_GRAPH &first>
    =                              (. GP_GRAPH next; .)
      ( Factor<first>
        { Factor<next>             (. GParser->linkfactors(first, next); .)
        }
        |                          (. GParser->epsnode(first); .)
      ) .

    Factor<GP_GRAPH &node>
    =                              (. char name[100]; .)
        NonTerminal<name>          (. GParser->nonterminalnode(name, node); .)
      | Terminal<name>             (. GParser->terminalnode(name, node); .)
      | "[" Expression<node> "]"   (. GParser->optionalnode(node); .)
      | "{" Expression<node> "}"   (. GParser->repeatednode(node); .)
      | "(" Expression<node> ")" .

    NonTerminal<char *name>
    =  nonterminal                 (. LexName(name, 100); .) .

    Terminal<char *name>
    =  terminal                    (. char local[100];
                                      LexName(local, sizeof(local) - 1);
                                      int i = 0; /* strip quotes */
                                      while (local[i])
                                      { local[i] = local[i+1]; i++; }
                                      local[i-2] = ’\0’;
                                      strcpy(name, local); .) .

  END EBNF.

The simplicity here is deceptive: this system has delegated control to various node creation and
linker routines that are members of an instance GParser  of a general graph parser class GP. It is
predominantly the task of Factor (at the lowest point in the hierarchy) to call the routines to
generate new actual nodes in the graph: the task of the routines called from other functions is to link
them correctly (that called from Term uses the Next  field, while Expression uses the Alternate

field). 



A non-terminal might appear in an Expression before it has appeared on the left side of a
production. In this case it is still entered into the list of rules by a call to the StartProduction
routine. 

Once one has constructed these sorts of structures, what can be done with them? The idea of a
graph-walker can be used in various ways. In Coco/R such graph-walkers are used in conjunction
with the frame files, merging appropriately generated source code with these files to produce
complete programs. 

Further exploration

An implementation of the GP class, and of an associated scanner class GS has been provided on the
source diskette, and will allow the reader to study these ideas in more detail. Be warned that the
code, while quite concise, is not particularly easy to follow - and is still a long way short of being a
program that can handle attributes and perform checks that the grammar submitted to it satisfies
constraints like LL(1) conditions. Furthermore, the code does not demonstrate the construction of a
complete parser generator, although it does show the development of a simple direct graph driven
parser based on that suggested by Wirth (1976b, 1996). 

This is actually a very naïve parsing algorithm, requiring rather special constraints on the grammar.
It has the property of pursuing a new subgoal whenever it appears (by virtue of the recursive call to
ParseFrom ), without first checking whether the current symbol is in the set
FIRST(Goal->RightSide). This means that the syntax must have been described in a rather special
way - if a NonTerminal is nullable, then none of its right parts must start with a non-terminal, and
each Factor (except possibly the last one) in the group of alternatives permitted by a Term must
start with a distinct terminal symbol. 

So, although this parser sometimes appears to work quite well - for example, for the ClassList
grammar above it will correctly report that input sentences like 

    CS3 BSc : Tom, Dick ,, Harry .
    CS3 BScS : Tom Dick .

are malformed - it will accept erroneous input like 

    CS3 BSc : .

as being correct. The assiduous reader might like to puzzle out why this is so. 

The source code for Coco/R, its support modules, and the attributed grammar from which it is
bootstrapped, are available from various Internet sites, as detailed in Appendix A. The really
curious reader is encouraged to obtain copies of these if he or she wishes to learn more about
Coco/R itself, or about how it is used in the construction of really large applications. 

13.5 Project suggestions 

Coco/R, like other parser generators, is a very powerful tool. Here are some suggestions for further
projects that the reader might be encouraged to undertake. 



13.17 The various expression parsers that have been used in earlier case studies have all assumed
that the operands are simple integers. Suppose we wished to extend the underlying grammar to
allow for comparison operations (which would operate on integer values but produce Boolean
results), arithmetic operations (which operate on integer values and produce integer results) and
logical operations (which act on Boolean values to produce Boolean results). A context-free
grammar for such expressions, based on that used in Pascal and Modula-2, is given below.
Incorporate this into an attributed Cocol grammar that will allow you to check whether expressions
are semantically acceptable (that is, whether the operators have been applied in the correct context).
Some examples follow 

            Acceptable                 Not acceptable

            3 + 4 * 6                  3 + 4 < 6
            (x > y) AND (a < b)        x < y OR a < b

            Expression       =  SimpleExpression [ RelOp SimpleExpression ] .
            SimpleExpression =  Term { AddOp Term } .
            Term             =  Factor { MulOp Factor } .
            Factor           =   identifier | number  | "(" Expression ")"
                                 | "NOT" Factor | "TRUE" | "FALSE" .
            AddOp            =  "+" | "-" | "OR" .
            MulOp            =  "*" | "/" | "AND"  .
            RelOp            =  "<" | "<=" | ">" | ">=" | "=" | "<>" .

13.18 The "spreadsheet" has become a very popular tool in recent years. This projects aims to use
Coco/R to develop a simple spreadsheet package. 

A modern commercial package provides many thousands of features; we shall be less ambitious. In
essence a simple two-dimensional spreadsheet is based on the concept of a matrix of cells, typically
identified by a letter-digit pair (such as E7) in which the letter specifies a row, and the digit
specifies a column. Part (or all) of this matrix is displayed on the terminal screen; one cell is taken
as the active cell, and is usually highlighted in some way (for example, in inverse video). 

Input to a spreadsheet is then provided in the form of expressions typed by the user, interleaved
with commands that can reselect the position of the active cell. Each time an expression is typed, its
formula is associated with the active cell, and its value is displayed in the correct position.
Changing the contents of one cell may affect the values of other cells. In a very simple spreadsheet
implementation, each time one cell is assigned a new expression, the values of all the other cells are
recomputed and redisplayed. 

For this exercise assume that the expressions are confined to integer expressions of the sort
exhaustively discussed in this text. The operands may be integer literals, or the designators of cells.
No attempt need be made to handle string or character values. 

A simple session with such a spreadsheet might be described as follows 

       (* we start in cell A1 *)
       1 RIGHT              (* enter 1 in cell A1 and move on to cell A2 *)
       99 RIGHT             (* enter 99 in cell A2 and move on to cell A3 *)
       (A1 + A2) / 2  ENTER (* cell A3 contains the average of A1 and A2 *)
       DOWN LEFT LEFT       (* move to cell B1 *)
       2 * A1               (* cell B1 now contains twice the value of A1 *)
       UP                   (* move back to cell A1 *)
       5                    (* alter expression in A1 : A3 and B1 affected *)
       GOTO B3              (* move to cell B3 *)
       A3 % 3 ENTER         (* B3 contains remainder when A3 is divided by 3 *)
       QUIT

At the point just before we quit, the grid displayed on the top left of the screen might display 



It is possible to develop such a system using Coco/R in a number of ways, but it is suggested that
you proceed as follows: 

(a) Derive a context-free grammar that will describe the form of a session with the spreadsheet like
that exemplified above. 

(b) Enhance your grammar to provide the necessary attributes and actions to enable a complete
system to be generated that will read and process a file of input and compute and display the
spreadsheet, updating the display each time new expressions become associated with cells. 

Make the following simplifying assumptions: 

(a) A spreadsheet is normally run "interactively". However, Coco/R generates systems that most
conveniently take their input from a disk file. If you want to work interactively you will need to
modify the scanner frame file considerably. 

(b) Assume that the spreadsheet has only 20 rows and 9 columns, extending from A1 through S9. 

(c) Apart from accepting expressions typed in an obvious way, assume that the movement
commands are input as LEFT, RIGHT, UP, DOWN, HOME  and GOTO Cell  as exemplified above.
Assume that attempts to move too far in one direction either "wrap around" (so that a sequence like
GOTO A1  UP  results in cell S1 becoming the active cell; GOTO A12 actually moves to A3, and so on)
or simply "stick" at the edge, as you please. 

(d) An expression may also be terminated by ENTER, which does not affect the selection of the
active cell. 

(e) Input to the spreadsheet is terminated by the QUIT operation. 

(f) The semantics of updating the spreadsheet display are captured in the following pseudo-code: 

                  When Expression is recognized as complete
                    Store Expression[CurrentRow, CurrentColumn] in a form
                          that can be used for future interpretation
                    Update value of Value[CurrentRow, CurrentColumn]
                    FOR Row FROM A TO S DO
                      FOR Column FROM 1 TO 9 DO
                        Update Value[Row, Column] by
                          evaluating Expression[Row, Column]
                        Display new Value[Row, Column]
                      END
                    END

(g) Arrange that the spreadsheet starts with the values of each cell set to zero, and with no
expressions associated with any cell. 

(h) No facilities for "editing" an expression need be provided; if a cell’s expression is to be altered
it must be typed afresh. 

Hint: The most intriguing part of this exercise is deciding on a way to store an expression so that it
can be evaluated again when needed. It is suggested that you associate a simple auxiliary data



structure with each cell of the spreadsheet. Each element of this structure can store an operation or
operand for a simple interpreter. 

13.19 A rather useful tool to have when dealing with large amounts of source code is a "cross
reference generator". This is a program that will analyse the source text and produce a list of all the
identifiers that appear in it, along with a list for each identifier of the line numbers on which it can
be found. Construct a cross reference generator for programs written in Clang, for which a grammar
was given in section 8.7, or for one of the variations on it suggested in Exercises 8.25 through 8.30.
This can be done at various levels of sophistication; you should at least try to distinguish between
the line on which an identifier is "declared", and those where it is "applied". A useful way to
decompose the problem might be to develop a support module with an interface to a hidden data
structure: 

            void Create();
            // Initialize a new (empty) Table

            void Add(char *Name, int Reference, bool Defining);
            // Add Name to Table with given Reference, specifying whether
            // this is a Defining (as opposed to an applied occurrence)

            void List(FILE *lst);
            // List out cross reference Table on lst file

You should then find that the actions needed to enhance the grammar are very straightforward, and
the bulk of any programming effort falls on the development of a simple tree or queue-based data
structure similar to those which you should have developed in other courses you have taken in
Computer Science. 

13.20 In case you have not met this concept before, a pretty printer is a "compiler" that takes a
source program and "translates" the source into the same language. That probably does not sound
very useful! However, the "object code" is formatted neatly and consistently, according to some
simple conventions, making it far easier for humans to understand. 

Develop a pretty printer for the simple Clang language for which the grammar was given in section
8.7. The good news is that you will not have to develop any semantic analysers, code generators, or
symbol table handlers in this project, but can assume that the source program is semantically
correct if it is syntactically correct. The bad news is that you may have some difficulty in retaining
the comments. They can no longer be ignored, but should preferably be copied across to the output
in some way. 

An obvious starting point is to enhance the grammar with actions that simply write output as
terminals are parsed. An example will make this clearer 

            CompoundStatement =
              "BEGIN"                (. Append("BEGIN"); IndentNewLine(); .)
                 Statement
                   { ";"             (. Append(";"); NewLine(); .)
                     Statement }
              "END"                  (. ExdentNewLine(); Append("END"); .)   .

Of course, the productions for all the variations on Statement append their appropriate text as they
are unravelled. 

Once again, an external module might conveniently be introduced to give the support needed for
these semantic actions, perhaps with an interface on the lines of 

            void Append(char *String);
            // Append String to output



            void IndentNewLine(void);
            // Write line mark to output, and then prepare to indent further
            // lines by a fixed amount more than before

            void ExdentNewLine(void);
            // Write line mark to output, and then prepare to indent further
            // lines by a fixed amount less than before

            void NewLine(void);
            // Write line mark to output, but leave indentation as before

            void Indent(void);
            // Increment indentation level

            void Exdent(void);
            // Decrement indentation level

            void SetIndentationStep(int Step);
            // Set indentation step size to Step

13.21 If two high level languages are very similar, a translator from one to the other can often be
developed by taking the idea of a pretty printer one stage further - rather than writing the same
terminals as it reads, it writes slightly different ones. For example, a Clang CompoundStatement
would be translated to the equivalent Topsy version by attributing the production as follows: 

            CompoundStatement =
              "BEGIN"                (. Append("{"); IndentNewLine(); .)
                 Statement
                   { ";"             (. NewLine(); .)
                     Statement }
              "END"                  (. ExdentNewLine(); Append("}"); .)   .

Develop a complete Clang - Topsy translator in this way. 

13.22 The Computer Centre has decided to introduce a system of charging users for electronic mail
messages. The scale of charges will be as follows: 

Message charge: 20 units plus a charge per word of message text: 10 units for each word with
at most 8 characters, 60 units for each word with more than 8 characters. 
The total charge is applied to every copy of the message transmitted - if a message is
addressed to N multiple users, the sender’s account is debited by N * Charge. 

The program will be required to process data files exemplified by the following (read the messages
- they give you some hints): 

            From: cspt@cs.ru.ac.za
            To:   reader@in.bed, guru@sys-admin.uni-rhodes.ac.za
            CC:   cslect@cs, pdterry@psg.com
            This is a message containing twenty-seven words
            The charge will be 20 plus 24 times 10 plus 3 times 60 units -
            total 440 multiplied by 4
            ####
            From: tutor@cs
            To:   students@lab.somewhere
            You should note that messages contain only words composed of plain
            text or numbers or possible - signs

            Assume for this project that no punctuation marks or other extra
            characters will ever appear - this will make it much easier to do

            User names and addresses may also contain digits and - characters
            ####

Each message has mandatory "From" and "To" lines, and an optional "CC" (carbon copy) line. Users
are addressed in the usual Internet form, and case is insignificant. Ends of lines are, however,
significant in addressing, and hence an EOL token must be catered for. 

The chargeable text of a message starts after the To or CC line, and is terminated by the



(non-chargeable) #### line. 

Describe this input by means of a suitable grammar, and then enhance it to provide the necessary
attributes and actions to construct a complete charging system that will read and process a file of
messages and then list the charges. In doing so you might like to consider developing a support
module with an interface on the lines of that suggested below, and you should take care to
incorporate error recovery. 

            void ChargeUser(char *Sender; int Charge);
            // Pre:  Sender contains unique user name extracted from a From line
            //       For example  cspt  extracted from  From: cspt@somewhere.com
            //       Charge contains the charge for sending all copies of message
            // Post: Database of charges updated to debit Charge to Sender

            void ShowCharges(FILE *F);
            // Pre:  Opened(F) AND the internal data base contains a list of user
            //       names and accrued charges
            // Post: The list has been displayed on file F

13.23 (This project requires some familiarity with music). "Tonic Solfa" is a notation sometimes
used to help learn to play an instrument, or more frequently to sing, without requiring the use of
expensive music printed in "staff notation". Many readers may have come across this as it applies to
representing pitch. The notes of a major scale are named doh, ray, me, fah, soh, lah, te (and, as Julie
Andrews taught us in The Sound of Music, that brings us back to doh). In the written notation these
syllables are indicated by their initial letters only: d  r  m  f  s  l  t. Sharpened notes are indicated by
adding the letter e, and flattened notes by adding the letter a (so that if the major scale were C
major, fe would indicate F sharp and la would indicate A flat). Notes in octaves above the
"starting" doh are indicated by superscript numbers, and notes below the "starting" doh are
indicated by subscripts. Although the system is basically designed to indicate relative pitch, specific
keys can be named at the beginning of the piece. 

If, for the moment, we ignore timing information, the notes of the well-known jingle "Happy
Birthday To You" could be represented by 

s1 s1 l1 s1 d t1 s1 s1 l1 s1 r d

s1 s1 s m d t1 l1 f f m d r d

Of course we cannot really ignore timing information, which, unfortunately, complicates the picture
considerably. In this notation, bar lines | and double bar lines || appear much as in staff notation.
Braces { and } are used at the beginning and end of every line (except where a double bar line
occurs). 

The notation indicates relative note lengths, according to the basic pulse of the music. A bar line is
placed before a strong pulse, a colon is placed before a weak pulse, and a shorter vertical line |

indicates the secondary accent at the half bar in quadruple time. Horizontal lines indicate notes
lasting longer than one beat (including dotted or tied notes). Pulses are divided in half by using dots
as separators, and half pulses are further divided into quarter pulses by commas. Rests are indicated
simply by leaving spaces. For example 

|  d : d |  indicates duple time with notes on each pulse (two crotchets, if it were 2/4
time)

|  d : - |  d : d |  indicates quadruple time (minim followed by two crotchets, in 4/4 time)

|  d : - . d : |  indicates triple time (dotted crotchet, quaver, crotchet rest, in 3/4 time)



|  d : d . d : d,d . d |  indicates triple time (crotchet, two quavers, two semiquavers,
quaver, in 3/4
time)

"Happy Birthday To You" might then be coded fully as 

{| : : s1 . - , s1 | l1 : s1 : d | t1 : - : s1 . - , s1 }

{| l1 : s1 : r | d : - : s1 . - , s1 | s : m : d }

{| t1 : l1 : f  . - , f  | m : d : r | d : - : ||

Clearly this is fairly complex, and one suspects that singers may learn the rhythms "by ear" rather
than by decoding this as they sing! 

Write a Cocol grammar that describes this notation. Then go on to use it to develop a program that
can read in a tune expressed this way and produce "machine code" for a device that is driven by a
long stream of pairs of numbers, the first indicating the frequency of the note in Hz, and the second
the duration of that note in milliseconds. 

Recognizing superscripts and subscripts is clearly awkward, and it is suggested that you might
initially use d0 r0 m0 f0 s0 l0 t0 d r m f s l t d1 r1 m1 f1 s1 l1 t1 to give a range of three octaves,
which will suffice for most songs. 

Initially you might like to assume that a time signature (like the key) will preface the piece (which
will simplify the computation of the duration of each note), and that the timing information has
been correctly transcribed. As a later extension you might like to consider how varying time
signatures and errors in transcription could be handled, while still assuming that each bar takes the
same time to play. 
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14 A SIMPLE COMPILER - THE FRONT END

At this point it may be of interest to consider the construction of a compiler for a simple
programming language, specifically that of section 8.7. In a text of this nature it is impossible to
discuss a full-blown compiler, and the value of our treatment may arguably be reduced by the fact
that in dealing with toy languages and toy compilers we shall be evading some of the real issues
that a compiler writer has to face. However, we hope the reader will find the ensuing discussion of
interest, and that it will serve as a useful preparation for the study of much larger compilers. The
technique we shall follow is one of slow refinement, supplementing the discussion with numerous
asides on the issues that would be raised in compiling larger languages. Clearly, we could opt to
develop a completely hand-crafted compiler, or simply to use a tool like Coco/R. We shall discuss
both approaches. Even when a compiler is constructed by hand, having an attributed grammar to
describe it is very worthwhile. 

On the source diskette can be found a great deal of code, illustrating different stages of
development of our system. Although some of this code is listed in appendices, its volume
precludes printing all of it. Some of it has deliberately been written in a way that allows for simple
modification when attempting the exercises, and is thus not really of "production quality". For
example, in order to allow components such as the symbol table handler and code generator to be
used either with hand-crafted or with Coco/R generated systems, some compromises in design have
been necessary. 

Nevertheless, the reader is urged to study the code along with the text, and to attempt at least some
of the many exercises based on it. A particularly worthwhile project is to construct a similar
compiler, based on a language whose syntax resembles C++ rather more than it does Pascal, and
whose development, like that of C++, will be marked by the steady assimilation of extra features.
This language we shall name "Topsy", after the little girl in Harriet Beecher Stowe’s story who
knew little of her genealogy except a suspicion that she had "grow’d". A simple Topsy program
was illustrated in Exercise 8.25, where the reader was invited to create an initial syntactic
specification in Cocol. 

14.1 Overall compiler structure 

In Chapter 2 we commented that a compiler is often developed as a sequence of phases, of which
syntactic analysis is only one. Although a recursive descent parser is easily written by applying the
ideas of earlier chapters, it should be clear that consideration will have to be given to the
relationship of this to the other phases. We can think of a compiler with a recursive descent parser
at its core as having the structure depicted in Figure 14.1. 



We emphasize that phases need not be sequential, as passes would be. In a recursive descent
compiler the phases of syntax analysis, semantic analysis and code generation are very often
interleaved, especially if the source language is designed in such a way as to permit one-pass
compilation. Nevertheless, it is useful to think of developing modular components to handle the
various phases, with clear simple interfaces between them. 

In our Modula-2 implementations, the various components of our diagram have been implemented
as separate modules, whose DEFINITION MODULE components export only those facilities that the
clients need be aware of. The corresponding C++ implementations use classes to achieve the same
sort of abstraction and protection. 

In principle, the main routine of our compiler must resemble something like the following 

  void main(int argc, char *argv[])
  { char SourceName[256], ListName[256];

    // handle command line parameters
    strcpy(SourceName, argv[1]);
    if (argc > 2) strcpy(ListName, argv[2]);
    else appendextension(SourceName, ".lst", ListName);

    // instantiate compiler components
    SRCE   *Source  = new SRCE(SourceName, ListName, "Compiler Version 1", true);
    REPORT *Report  = new REPORT(Source);
    SCAN   *Scanner = new SCAN(Source, Report);
    CGEN   *CGen    = new CGEN(Report);
    TABLE  *Table   = new TABLE(Report);
    PARSER *Parser  = new PARSER(CGen, Scanner, Table, Report);

    // start compilation
    Parser->parse();
  }

where we notice that instances of the various classes are constructed dynamically, and that their
constructors establish links between them that correspond to those shown in Figure 14.1. 

In practice our compilers do not look exactly like this. For example, Coco/R generates only a
scanner, a parser, a rudimentary error report generator and a driver routine. The scanner and the
source handling section of the file handler are combined into one module, and the routines for
producing the error listing are generated along with the main driver module. The C++ version of
Coco/R makes use of a standard class hierarchy involving parser, scanner and error reporter classes,
and establishes links between the various instances of these classes as they are constructed. This
gives the flexibility of having multiple instances of parsers or scanners within one system (however,
our case studies will not exploit this power). 



14.2 Source handling 

Among the file handling routines is to be found one that has the task of transmitting the source,
character by character, to the scanner or lexical analyser (which assembles it into symbols for
subsequent parsing by the syntax analyser). Ideally this source handler should have to scan the
program text only once, from start to finish, and in a one-pass compiler this should always be
possible. 

14.2.1 A hand-crafted source handler 

The interface needed between source handler and lexical analyser is straightforward, and can be
supplied by a routine that simply extracts the next character from the source each time it is invoked.
It is convenient to package this with the routines that assume responsibility for producing a source
listing, and, where necessary, producing an error message listing, because all these requirements
will be input/output device dependent. It is useful to add some extra functionality, and so the public
interface to our source handling class is defined by 

  class SRCE {
    public:
      FILE *lst;                  // listing file
      char ch;                    // latest character read

      void nextch(void);
      // Returns ch as the next character on this source line, reading a new
      // line where necessary.  ch is returned as NUL if src is exhausted.

      bool endline(void);
      // Returns true when end of current line has been reached

      void listingon(void);
      // Requests source to be listed as it is read

      void listingoff(void);
      // Requests source not to be listed as it is read

      void reporterror(int errorcode);
      // Points out error identified by errorcode with suitable message

      virtual void startnewline()  {;}
      // Called at start of each line

      int getline(void);
      // Returns current line number

      SRCE(char *sourcename, char *listname, char *version, bool listwanted);
      // Opens src and lst files using given names.
      // Resets internal state in readiness for starting to scan.
      // Notes whether listwanted.  Displays version information on lst file.

      ~SRCE();
      // Closes src and lst files
  };

Some aspects of this interface deserve further comment: 

We have not shown the private members of the class, but of course there are several of these. 

The startnewline  routine has been declared virtual so that a simple class can be derived
from this one to allow for the addition of extra material at the start of each new line on the
listing - for example, line numbers or object code addresses. In Modula-2, Pascal or C, the
same sort of functionality may be obtained by manipulating a procedure variable or function
pointer. 

Ideally, both source and listing files should remain private. This source handler declares the



listing file public only so that we can add trace or debugging information while the system is
being developed. 

The class constructor and destructor assume responsibility for opening and closing the files,
whose names are passed as arguments. 

The implementation of this class is fairly straightforward, and has much in common with the
similar class used for the assemblers of Chapter 6. The code appears in Appendix B, and the
following implementation features are worthy of brief comment: 

The source is scanned and reflected a whole line at a time, as this makes subsequent error
reporting much easier. 

The handler effectively inserts an extra blank at the end of each line. This decouples the rest
of the system from the vagaries of whatever method the host operating system uses to
represent line ends in text files. It also ensures that no symbol may extend over a line break. 

It is not possible to read past the end of file - attempts to do so simply return a NUL character. 

The reporterror  routine will not display an error message unless a minimum number of
characters have been scanned since the last error was reported. This helps suppress the
cascade of error messages that might otherwise appear at any one point during error recovery
of the sort discussed in sections 10.3 and 14.6. 

Our implementation has chosen to use the stdio  library, rather than iostreams , mainly to
take advantage of the concise facilities provided by the printf  routine. 

Exercises 

14.1 The nextch  routine will be called once for every character in the source text. This can
represent a considerable bottleneck, especially as programs are often prepared with a great many
blanks at the starts of indented lines. Some editors also pad out the ends of lines with unnecessary
blanks. Can you think of any way in which this overhead might be reduced? 

14.2 Some systems allowing an ASCII character set (with ordinal values in the range 0 ... 127) are
used with input devices which generate characters having ordinal values in the range 0 ... 255 -
typically the "eighth bit" might always be set, or used or confused with parity checking. How and
where could this bit be discarded? 

14.3 A source handler might improve on efficiency rather dramatically were it able to read the
entire source file into a large memory buffer. Since modern systems are often blessed with
relatively huge amounts of RAM, this is usually quite feasible. Develop such a source handler,
compatible with the class interface suggested above, bearing in mind that we wish to be able to
reflect the source line by line as it is read, so that error messages can be appended as exemplified in
section 14.6. 

14.4 Develop a source handler implementation that uses the C++ stream-based facilities from the
iostreams  library. 



14.2.2 Source handling in Coco/R generated systems 

As we have already mentioned, Coco/R integrates the functions of source handler and scanner, so
as to be able to cut down on the number of files it has to generate. The source and listing files have
to be opened before making the call to instantiate or initialize the scanner, but this is handled
automatically by the generated driver routine. It is of interest that the standard frame files supplied
with Coco/R arrange for this initialization to read the entire source file into a buffer, as suggested in
Exercise 14.3. 

14.3 Error reporting

As can be seen from Figure 14.1, most components of a compiler have to be prepared to signal that
something has gone awry in the compilation process. To allow all of this to take place in a uniform
way, we have chosen to introduce a base class with a very small interface: 

  class REPORT {
    public:
      REPORT();
      // Initializes error reporter

      virtual void error(int errorcode);
      // Reports on error designated by suitable errorcode number

      bool anyerrors(void);
      // Returns true if any errors have been reported

    protected:
      bool errors;
  };

Error reporting is then standardized by calling on the error  member of this class whenever an error
is detected, passing it a unique number to distinguish the error. 

The base class can choose simply to abort compilation altogether. Although at least one highly
successful microcomputer Pascal compiler uses this strategy (Turbo Pascal, from Borland
International), it tends to become very annoying when one is developing large systems. Since the
error  member is virtual, it is an easy matter to derive a more suitable class from this one, without,
of course, having to amend any other part of the system. For our hand-crafted system we can do this
as follows: 

  class clangReport : public REPORT {
    public:
      clangReport(SRCE *S)   { Srce = S; }
      virtual void error(int errorcode)
        { Srce->reporterror(errorcode); errors = true; }
    private:
      SRCE *Srce;
  };

and the same technique can be used to enhance Coco/R generated systems. The Modula-2 and
Pascal implementations achieve the same functionality through the use of procedure variables. 

14.4 Lexical analysis

The main task of the scanner is to provide some way of uniquely identifying each successive token
or symbol in the source code that is being compiled. Lexical analysis was discussed in section 10.4,



and presents few problems for a language as simple as ours. 

14.4.1 A hand-crafted scanner 

The interface between the scanner and the main parser is conveniently provided by a routine
getsym  for returning a parameter SYM of a record or structure type assembled from the source text.
This can be achieved by defining a class with a public interface as follows: 

  enum SCAN_symtypes {
    SCAN_unknown, SCAN_becomes, SCAN_lbracket, SCAN_times, SCAN_slash, SCAN_plus,
    SCAN_minus, SCAN_eqlsym, SCAN_neqsym, SCAN_lsssym, SCAN_leqsym, SCAN_gtrsym,
    SCAN_geqsym, SCAN_thensym, SCAN_dosym, SCAN_rbracket, SCAN_rparen, SCAN_comma,
    SCAN_lparen, SCAN_number, SCAN_stringsym, SCAN_identifier, SCAN_coendsym,
    SCAN_endsym, SCAN_ifsym, SCAN_whilesym, SCAN_stacksym, SCAN_readsym,
    SCAN_writesym, SCAN_returnsym, SCAN_cobegsym, SCAN_waitsym, SCAN_signalsym,
    SCAN_semicolon, SCAN_beginsym, SCAN_constsym, SCAN_varsym, SCAN_procsym,
    SCAN_funcsym, SCAN_period, SCAN_progsym, SCAN_eofsym
  };

  const int lexlength = 128;
  typedef char lexeme[lexlength + 1];

  struct SCAN_symbols {
    SCAN_symtypes sym;    // symbol type
    int num;              // value
    lexeme name;          // lexeme
  };

  class SCAN {
    public:
      void getsym(SCAN_symbols &SYM);
      // Obtains the next symbol in the source text

      SCAN(SRCE *S, REPORT *R);
      // Initializes scanner
  };

Some aspects of this interface deserve further comment: 

SCAN_symbols  makes provision for returning not only a unique symbol type, but also the
corresponding textual representation (known as a lexeme), and also the numeric value when a
symbol is recognized as a number. 

SCAN_unknown caters for erroneous characters like # and ? which do not really form part of
the terminal alphabet. Rather than take action, the humble scanner returns the symbol without
comment, and leaves the parser to cope. Similarly, an explicit SCAN_eofsym is always
returned if getsym  is called after the source code has been exhausted. 

The ordering of the SCAN_symtypes  enumeration is significant, and supports an interesting
form of error recovery that will be discussed in section 14.6.1. 

The enumeration has also made provision for a few symbol types that will be used in the
extensions of later chapters. 

A scanner for Clang is readily programmed in an ad hoc manner, driven by a selection statement,
and an implementation can be found in Appendix B. As with source handling, some
implementation issues call for comment: 

Some ingenuity has to be applied to the recognition of literal strings. A repeated quote within
a string is used (as in Pascal) to denote a single quote, so that the end of a string can only be
detected when an odd number of quotes is followed by a non-quote. 



The scanner has assumed responsibility for a small amount of semantic activity, namely the
evaluation of a number. Although it may seem a convenient place to do this, such analysis is
not always as easy as it might appear. It becomes slightly more difficult to develop scanners
that have to distinguish between numbers represented in different bases, or between real and
integer numbers. 

There are two areas where the scanner has been given responsibility for detecting errors: 

Although the syntactic description of the language does not demand it, practical
considerations require that the value of a numeric constant should be within the range of the
machine. This is somewhat tricky to ensure in the case of cross-compilers, where the range on
the host and target machines may be different. Some authors go so far as to suggest that this
semantic activity be divorced from lexical analysis for that reason. Our implementation shows
how range checking can be handled for a self-resident compiler. 

Not only do many languages insist that no identifier (or any other symbol) be carried across a
line break, they usually do this for strings as well. This helps to guard against the chaos that
would arise were a closing quote to be omitted - further code would become string text, and
future string text would become code! The limitation that a string be confined to one source
line is, in practice, rarely a handicap, and the restriction is easily enforced. 

We have chosen to use a binary search to recognize the reserved keywords. Tables of symbol
types that correspond to keywords, and symbols that correspond to single character terminals,
are initialized as the scanner is instantiated. The idioms of C++ programming suggest that
such activities are best achieved by having static members of the class, set up by a
"initializer" that forms part of their definition. For a binary search to function correctly it is
necessary that the table of keywords be in alphabetic order, and care must be taken if and
when the scanner is extended. 

Exercises 

14.5 The only screening this scanner does is to strip blanks separating symbols. How would you
arrange for it to strip comments 

(a) of the form { comment in curly braces }

(b) of the form (* comment in Modula-2 braces *)

(c) of the form // comment to end of the line as in C++

(d) of either or both of forms (a) and (b), allowing for nesting?

14.6 Balanced comments are actually dangerous. If not properly closed, they may consume valid
source code. One way of assisting the coder is to issue a warning if a semicolon is found within a
comment. How could this be implemented as part of the answer to Exercise 14.5? 

14.7 The scanner does not react sensibly to the presence of tab or formfeed characters in the source.
How can this be improved? 

14.8 Although the problem does not arise in the case of Clang, how do you suppose a hand-crafted
scanner is written for languages like Modula-2 and Pascal that must distinguish between REAL

literals of the form 3.4  and subrange specifiers of the form 3..4 , where no spaces delimit the "..",



as is quite legal? Can you think of an alternative syntax which avoids the issue altogether? Why do
you suppose Modula-2 and Pascal do not use such a syntax? 

14.9 Modula-2 allow string literals to be delimited by either single or double quotes, but not to
contain the delimiter as a member of the string. C and C++ use single and double quotes to
distinguish between character literals and string literals. Develop scanners that meet such
requirements. 

14.10 In C++, two strings that appear in source with nothing but white space between them are
automatically concatenated into a single string. This allows long strings to be spread over several
lines, if necessary. Extend your scanner to support this feature. 

14.11 Extend the scanner to allow escape sequences like the familiar \n  (newline) or \t  (tab) to
represent "control" characters in literal strings, as in C++. 

14.12 Literal strings present other difficulties to the rest of the system that may have to process
them. Unlike identifiers (which usually find their way into a symbol table), strings may have to be
stored in some other way until the code generator is able to handle them. Consider extending the
SCAN_symbols  structure so that it contains a member that points to a dynamically allocated array of
exactly the correct length for storing any string that has been recognized (and is a null pointer
otherwise). 

14.13 In our compiler, a diagnostic listing of the symbol table will be provided if the name Debug is
used for the main program. Several compilers make use of pragmatic comments as compiler
directives, so as to make such demands of the system - for example a comment of the form
(*$L- *)  might request that the listing be switched off, and one of the form (*$L+ *)  that it be
reinstated. These requests are usually handled by the scanner. Implement such facilities for
controlling listing of the source program, and listing the symbol table (for example, using (*$T+ *)

to request a symbol table listing). What action should be taken if a source listing has been
suppressed, and if errors are discovered? 

14.14 The restriction imposed on the recognizable length of a lexeme, while generous, could prove
embarrassing at some stage. If, as suggested in Exercise 14.3, a source handler is developed that
stores the entire source text in a memory buffer, it becomes possible to use a less restrictive
structure for SCAN_symbols , like that defined by 

           struct SCAN_symbols {
             SCAN_symtypes sym;  // symbol type
             int num;            // value
             long pos, length;   // starting position and length of lexeme
           };

Develop a scanner based on this idea. While this is easy to do, it may have ramifications on other
parts of the system. Can you predict what these might be? 

14.15 Develop a hand-crafted scanner for the Topsy language of Exercise 8.25. Incorporate some of
the features suggested in Exercises 14.5 to 14.14. 

14.4.2 A Coco/R generated scanner 

A Cocol specification of the token grammar for our language is straightforward, and little more
need be said. In C++, the generated scanner class is derived from a standard base class that assumes
that the source file has already been opened; its constructor takes an argument specifying the
corresponding "file handle". As we have already noted in Chapter 12, calls to the Get  routine of this



scanner simply return a token number. If we need to determine the text of a string, the name of an
identifier, or the value of a numeric literal, we are obliged to write appropriately attributed
productions into the phrase structure grammar. This is easily done, as will be seen by studying these
productions in the grammars to be presented later. 

Exercises 

14.16 Is it possible to write a Cocol specification that generates a scanner that can handle the
suggestions made in Exercises 14.10 and 14.11 (allowing strings that immediately follow one
another to be automatically concatenated, and allowing for escape sequences like "\n " to appear
within strings to have the meanings that they do in C++)? If not, how else might such features be
incorporated into Coco/R generated systems? 

14.4.3 Efficient keyword recognition 

The subject of keyword recognition is important enough to warrant further comment. It is possible
to write a FSA to do this directly (see section 10.5). However, in most languages, including Clang
and Topsy, identifiers and keywords have the same basic format, suggesting the construction of
scanners that simply extract a "word" into a string, which is then tested to see whether it is, in fact,
a keyword. Since string comparisons are tedious, and since typically 50%-70% of program text
consists of either identifiers or keywords, it makes sense to be able to perform this test as quickly as
possible. The technique used in our hand-crafted scanner of arranging the keywords in an
alphabetically ordered table and then using a binary search is only one of several ideas that strive
for efficiency. At least three other methods are often advocated: 

The keywords can be stored in a table in length order, and a sequential search used among
those that have the same length as the word just assembled. 

The keywords can be stored in alphabetic order, and a sequential search used among those
that have the same initial letter as the word just assembled. This is the technique employed by
Coco/R. 

A "perfect hashing function" can be derived for the keyword set, allowing for a single string
comparison to distinguish between all identifiers and keywords. 

A hashing function is one that is applied to a string so as to extract particular characters, map these
onto small integer values, and return some combination of those. The function is usually kept very
simple, so that no time is wasted in its computation. A perfect hash function is one chosen to be
clever enough so that its application to each of the strings in a set of keywords results in a unique
value for each keyword. Several such functions are known. For example, if we use an ASCII
character set, then the C++ function 

   int hash (char *s)
   { int L = strlen(s); return (256 * s[0] + s[L-1] + L) % 139; }

will return 40 unique values in the range 0 ... 138 when applied to the 40 strings that are the
keywords of Modula-2 (Gough and Mohay, 1988). Of course, it will return some of these values for
non-keywords as well (for example the keyword "VAR" maps to the value 0, as does any other three
letter word starting with "V" and ending with "R"). To use this function one would first construct a
139 element string table, with the appropriate 40 elements initialized to store the keywords, and the



rest to store null strings. As each potential identifier is scanned, its hash value is computed using the
above formula. A single probe into the table will then ascertain whether the word just recognized is
a keyword or not. 

Considerable effort has gone into the determination of "minimal perfect hashing functions" - ones
in which the number of possible values that the function can return is exactly the same as the
number of keywords. These have the advantage that the lookup table can be kept small (Gough’s
function would require a table in which nearly 60% of the space was wasted). 

For example, when applied to the 19 keywords used for Clang, the C++ function 

    int hash (char *s)
    { int L = strlen(s); return Map[s[0]] + Map[s[L-2]] + L - 2; }

will return a unique value in the range 0 ... 18 for each of them. Here the mapping is done via a 256
element array Map, which is initialized so that all values contain zero save for those shown below: 

   Map[’B’] = 6; Map[’D’] = 8; Map[’E’] =  5; Map[’L’] = 9;
   Map[’M’] = 7; Map[’N’] = 8; Map[’O’] = 12; Map[’P’] = 3;
   Map[’S’] = 3; Map[’T’] = 8; Map[’W’] =  1;

Clearly this particular function cannot be applied to strings consisting of a single character, but such
strings can easily be recognized as identifiers anyway. It is one of a whole class of similar functions
proposed by Cichelli (1980), who also developed a backtracking search technique for determining
the values of the elements of the Map array. 

It must be emphasized that if a perfect hash function technique is used for constructing scanners for
languages like Clang and Topsy that are in a constant state of flux as new keywords are proposed,
then the hash function has to be devised afresh with each language change. This makes it an
awkward technique to use for prototyping. However, for production quality compilers for well
established languages, the effort spent in finding a perfect hash function can have a marked
influence on the compilation time of tens of thousands of programs thereafter. 

Exercises 

To assist with these exercises, a program incorporating Cichelli’s algorithm, based on the one
published by him in 1979, appears on the source diskette. Another well known program for the
construction of perfect hash functions is known as gperf . This is written in C, and is available from
various Internet sites that mirror the extensive GNU archives of software distributed by the Free
Software Foundation (see Appendix A). 

14.17 Develop hand-crafted scanners that make use of the alternative methods of keyword
identification suggested here. 

14.18 Carry out experiments to discover which method seems to be best for the reserved word lists
of languages like Clang, Topsy, Pascal, Modula-2 or C++. To do so it is not necessary to develop a
full scale parser for each of these languages. It will suffice to invoke the getsym  routine repeatedly
on a large source program until all symbols have been scanned, and to time how long this takes. 

Further reading 



Several texts treat lexical analysis in far more detail than we have done; justifiably, since for larger
languages there are considerably more problem areas than our simple one raises. Good discussions
are found in the books by Gough (1988), Aho, Sethi and Ullman (1986), Welsh and Hay (1986) and
Elder (1994). Pemberton and Daniels (1982) give a very detailed discussion of the lexical analyser
found in the Pascal-P compiler. 

Discussion of perfect hash function techniques is the source of a steady stream of literature. Besides
the papers by Cichelli (1979, 1980), the reader might like to consult those by Cormack, Horspool
and Kaiserwerth (1985), Sebesta and Taylor (1985), Panti and Valenti (1992), and Trono (1995). 

14.5 Syntax analysis

For languages like Clang or Topsy, which are essentially described by LL(1) grammars,
construction of a simple parser presents few problems, and follows the ideas developed in earlier
chapters. 

14.5.1 A hand-crafted parser 

Once again, if C++ is the host language, it is convenient to define a hand-crafted parser in terms of
its own class. If all that is required is syntactic analysis, the public interface to this can be kept very
simple: 

  class PARSER {
    public:
      PARSER(SCAN *S, REPORT *R);
      // Initializes parser

      void parse(void);
      // Parses the source code
  };

where we note that the class constructor associates the parser instance with the appropriate
instances of a scanner and error reporter. Our complete compiler will need to go further than this -
an association will have to be made with at least a code generator and symbol table handler. As
should be clear from Figure 14.1, in principle no direct association need be made with a source
handler (in fact, our system makes such an association, but only so that the parser can direct
diagnostic output to the source listing). 

An implementation of this parser, devoid of any attempt at providing error recovery, constraint
analysis or code generation, is provided on the source diskette. The reader who wishes to see a
much larger application of the methods discussed in section 10.2 might like to study this. In this
connection it should be noted that Modula-2 and Pascal allow for procedures and functions to be
nested. This facility (which is lacking in C and C++) can be used to good effect when developing
compilers in those languages, so as to mirror the highly embedded nature of the phrase structure
grammar. 

14.5.2 A Coco/R generated parser 

A parser for Clang can be generated immediately from the Cocol grammar presented in section
8.7.2. At this stage, of course, no attempt has been made to attribute the grammar to incorporate
error recovery, constraint analysis, or code generation. 



Exercises 

Notwithstanding the fact that the construction of an parser that does little more than check syntax is
still some distance away from having a complete compiler, the reader might like to turn his or her
attention to some of the following exercises, which suggest extensions to Clang or Topsy, and to
construct grammars, scanners and parsers for recognizing such extensions. 

14.19 Compare the hand-crafted parser found on the source diskette with the source code that is
produced by Coco/R. 

14.20 Develop a hand-crafted parser for Topsy as suggested by Exercise 8.25. 

14.21 Extend your parser for Clang to accept the REPEAT ... UNTIL  loop as it is found in Pascal or
Modula-2, or add an equivalent do loop to Topsy. 

14.22 Extend the IF ... THEN  statement to provide an ELSE clause. 

14.23 How would you parse a Pascal-like CASE statement? The standard Pascal CASE statement does
not have an ELSE or OTHERWISE option. Suggest how this could be added to Clang, and modify the
parser accordingly. Is it a good idea to use OTHERWISE or ELSE for this purpose - assuming that you
already have an IF ... THEN ... ELSE  construct? 

14.24 What advantages does the Modula-2 CASE statement have over the Pascal version? How
would you parse the Modula-2 version? 

14.25 The C++ switch  statement bears some resemblance to the CASE statement, although its
semantics are rather different. Add the switch  statement to Topsy. 

14.26 How would you add a Modula-2 or Pascal-like FOR loop to Clang? 

14.27 The C++ for  statement is rather different from the Pascal one, although it is often used in
much the same way. Add a for  statement to Topsy. 

14.28 The WHILE, FOR  and REPEAT loops used in Wirth’s languages are structured - they have only
one entry point, and only one exit point. Some languages allow a slightly less structured loop,
which has only one entry point, but which allows exit from various places within the loop body. An
example of this might be as follows 

Like others, LOOP statements can be nested. However, EXIT  statements may only appear within
LOOP sequences. Can you find context-free productions that will allow you to incorporate these
statements into Clang? 



14.29 If you are extending Topsy to make it resemble C++ as closely as possible, the equivalent of
the EXIT  statement would be found in the break  or continue  statements that C++ allows within its
various structured statements like switch , do and while . How would you extend the grammar for
Topsy to incorporate these statements? Can the restrictions on their placement be expressed in a
context-free grammar? 

14.30 As a more challenging exercise, suppose we wished to extend Clang or Topsy to allow for
variables and expressions of other types besides integer (for example, Boolean). Various
approaches might be taken, as exemplified by the following 

(a) Replacing the Clang keyword VAR by a set of keywords used to introduce variable lists: 

              int  X, Y, Z[4];
              bool InTime, Finished;

(b) Retention of the VAR symbol, along with a set of standard type identifiers, used after variable
lists, as in Pascal or Modula-2: 

              VAR
                X, Y, Z[4] : INTEGER;
                InTime, Finished : BOOLEAN;

Develop a grammar (and parser) for an extended version of Clang or Topsy that uses one or other
of these approaches. The language should allow expressions to use Boolean operators (AND, OR,

NOT) and Boolean constants (TRUE and FALSE). Some suggestions were made in this regard in
Exercise 13.17. 

14.31 The approach used in Pascal and Modula-2 has the advantage that it extends seamlessly to the
more general situations in which users may introduce their own type identifiers. In C++ one finds a
hybrid: variable lists may be preceded either by special keywords or by user defined type names: 

           typedef bool sieve[1000];
           int X, Y;      // introduced by keyword
           sieve Primes;  // introduced by identifier

Critically examine these alternative approaches, and list the advantages and disadvantages either
seems to offer. Can you find context-free productions for Topsy that would allow for the
introduction of a simple typedef  construct? 

A cynic might contend that if a language has features which are the cause of numerous beginners’
errors, then one should redesign the language. Consider a selection of the following: 

14.32 Bailes (1984) made a plea for the introduction of a "Rational Pascal". According to him, the
keywords DO (in WHILE and FOR statements), THEN (in IF  statements) and the semicolons which are
used as terminators at the ends of declarations and as statement separators should all be discarded.
(He had a few other ideas, some even more contentious). Can you excise semicolons from Clang
and Topsy, and then write a recursive descent parser for them? If, indeed, semicolons seem to serve
no purpose other than to confuse learner programmers, why do you suppose language designers use
them? 

14.33 The problems with IF ... THEN  and IF ... THEN ... ELSE  statements are such that one
might be tempted to try a language construct described by 

          IfStatement =  "IF" Condition "THEN" Statement
                            { "ELSIF" Condition "THEN" Statement }
                            [ "ELSE Statement ] .



Discuss whether this statement form might easily be handled by extensions to your parser. Does it
have any advantages over the standard IF ... THEN ... ELSE  arrangement - in particular, does it
resolve the "dangling else" problem neatly? 

14.34 Extend your parser to accept structured statements on the lines of those used in Modula-2, for
example 

          IfStatement        =  "IF" Condition "THEN" StatementSequence
                                   { "ELSIF" Condition "THEN" StatementSequence }
                                   [ "ELSE" StatementSequence  ]
                                "END" .
          WhileStatement     =  "WHILE" Condition "DO" StatementSequence  "END" .
          StatementSequence  =  Statement { ";" Statement } .

14.35 Brinch Hansen (1983) did not approve of implicit "empty" statements. How do these appear
in our languages, are they ever of practical use, and if so, in what ways would an explicit statement
(like the SKIP  suggested by Brinch Hansen) be any improvement? 

14.36 Brinch Hansen incorporated only one form of loop into Edison - the WHILE loop - arguing
that the other forms of loops were unnecessary. What particular advantages and disadvantages do
these loops have from the points of view of a compiler writer and a compiler user respectively? If
you were limited to only one form of loop, which would you choose, and why? 

14.6 Error handling and constraint analysis 

In section 10.3 we discussed techniques for ensuring that a recursive descent parser can recover
after detecting a syntax error in the source code presented to it. In this section we discuss how best
to apply these techniques to our Clang compiler, and then go on to discuss how the parser can be
extended to perform context-sensitive or constraint analysis. 

14.6.1 Syntax error handling in hand-crafted parsers 

The scheme discussed previously - in which each parsing routine is passed a set of "follower"
symbols that it can use in conjunction with its own known set of "first" symbols - is easily applied
systematically to hand-crafted parsers. It suffers from a number of disadvantages, however: 

It is quite expensive, since each call to a parsing routine is effectively preceded by two
time-consuming operations - the dynamic construction of a set object, and the parameter
passing operation itself - operations which turn out not to have been required if the source
being translated is correct. 

If, as often happens, seemingly superfluous symbols like semicolons are omitted from the
source text, the resynchronization process can be overly severe. 

Thus the scheme is usually adapted somewhat, often in the light of experience gained by observing
typical user errors. A study of the source code for such parsers on the source diskette will reveal
examples of the following useful variations on the basic scheme: 

In those many places where "weak" separators are found in constructs involving iterations,
such as 

        VarDeclarations     =  "VAR" OneVar { "," OneVar } ";"



        CompoundStatement   =  "BEGIN" Statement { ";" Statement } "END" .
        Term                =  Factor  { MulOp  Factor } .

the iteration is started as long as the parser detects the presence of the weak separator or a
valid symbol that would follow it in that context (of course, appropriate errors are reported if
the separator has been omitted). This has the effect of "inserting" such missing separators into
the stream of symbols being parsed, and proves to be a highly effective enhancement to the
basic technique. 

Places where likely errors are expected - such as confusion between the ":= " and "="
operators, or attempting to provide an integer expression rather than a Boolean comparison
expression in an IfStatement or WhileStatement - are handled in an ad-hoc way. 

Many sub-parsers do not need to make use of the prologue and epilogue calls to the test

routine. In particular, there is no need to do this in routines like those for IfStatement,
WhileStatement and so on, which have been introduced mainly to enhance the modularity of
Statement. 

The Modula-2 and Pascal implementations nest their parsing routines as tightly as possible.
Not only does this match the embedded nature of the grammar very nicely, it also reduces the
number of parameters that have to be passed around. 

Because of the inherent cost in the follower-set based approach to error recovery, some compiler
writers make use of simpler schemes that can achieve very nearly the same degree of success at far
less cost. One of these, suggested by Wirth (1986, 1996), is based on the observation that the
symbols passed as members of follower sets to high level parsing routines - such as Block -
effectively become members of every follower set parameter computed thereafter. When one finally
gets to parse a Statement, for example, the set of stopping symbols used to establish
synchronization at the start of the Statement routine is the union of FIRST(Statement) +
FOLLOW(Program) + FOLLOW(Block), while the set of stopping symbols used to establish
synchronization at the end of Statement is the union of FOLLOW(Statement) +
FOLLOW(Program) + FOLLOW(Block). Furthermore, if we treat the semicolon that separates
statements as a "weak" separator, as previously discussed, no great harm is done if the set used to
establish synchronization at the end of Statement also includes the elements of FIRST(Statement). 

Careful consideration of the SCAN_symtypes  enumeration introduced in section 14.4.1 will reveal
that the values have been ordered so that the following patterns hold to a high degree of accuracy: 

     SCAN_unknown .. SCAN_lbracket,     Miscellaneous
     SCAN_times, SCAN_slash,            FOLLOW( Factor)
     SCAN_plus, SCAN_minus,             FOLLOW( Term)
     SCAN_eqlsym .. SCAN_geqsym,        FOLLOW( Expression1) in Condition
     SCAN_thensym, SCAN_dosym,          FOLLOW( Condition)
     SCAN_rbracket .. SCAN_comma,       FOLLOW( Expression)
     SCAN_lparen, .. SCAN_identifier,   FIRST( Factor)
     SCAN_coendsym, SCAN_endsym,        FOLLOW( Statement)
     SCAN_ifsym .. SCAN_signalsym,      FIRST( Statement)
     SCAN_semicolon,                    FOLLOW( Block)
     SCAN_beginsym .. SCAN_funcsym,     FIRST( Block)
     SCAN_period,                       FOLLOW( Program)
     SCAN_progsym,                      FIRST( Program)
     SCAN_eofsym

The argument now goes that, with this carefully ordered enumeration, virtually all of the tests of the
form 

              Sym  SynchronizationSet



can be accurately replaced by tests of the form 

              Sym SmallestElement(SynchronizationSet)

and that synchronization at crucial points in the grammar can be achieved by using a routine
developed on the lines of 

  void synchronize(SCAN_symtypes SmallestElement, int errorcode)
  { if (SYM.sym >= SmallestElement) return;
    reporterror(errorcode);
    do { getsym(); } while (SYM.sym < SmallestElement);
  }

The way in which this idea could be used is exemplified in a routine for parsing Clang statements. 

  void Statement(void)
  // Statement = [ CompoundStatement | Assignment | IfStatement
  //              | WhileStatement | WriteStatement | ReadStatement ] .
  { synchronize(SCAN_identifier, 15);
    // We shall return correctly if SYM.sym is a semicolon or END (empty statement)
    // or if we have synchronized (prematurely) on a symbol that really follows
    // a Block
    switch (SYM.sym)
    { case SCAN_identifier: Assignment(); break;
      case SCAN_ifsym:      IfStatement(); break;
      case SCAN_whilesym:   WhileStatement(); break;
      case SCAN_writesym:   WriteStatement(); break;
      case SCAN_readsym:    ReadStatement(); break;
      case SCAN_beginsym:   CompoundStatement(); break;
      default:              return;
    }
    synchronize(SCAN_endsym, 32);
    // In some situations we shall have synchronized on a symbol that can start
    // a further Statement, but this should be handled correctly from the call
    // made to Statement from within CompoundStatement
  }

It turns out to be necessary to replace some other set inclusion tests, by providing predicate
functions exemplified by 

  bool inFirstStatement(SCAN_symtypes Sym)
  // Returns true if Sym can start a Statement
  { return (Sym == SCAN_identifier || Sym == SCAN_beginsym ||
            Sym >= SCAN_ifsym && Sym <= SCAN_signalsym);
  }

Complete parsers using this ingenious scheme are to be found on the source diskette. However, the
idea is fairly fragile. Symbols do not always fall uniquely into only one of the FIRST or FOLLOW
sets, and in large languages there may be several keywords (like END, CASE and OF in Pascal) that
can appear in widely different contexts. If new keywords are added to an evolving language, great
care has to be taken to maintain the optimum ordering; if a token value is misplaced, error recovery
would be badly affected. 

The scheme can be made more robust by declaring various synchronization set constants, without
requiring their elements to have contiguous values. This is essentially the technique used in Coco/R
generated recovery schemes, and adapting it to hand-crafted parsers is left as an interesting exercise
for the reader. 

14.6.2 Syntax error handling in Coco/R generated parsers 

The way in which a Cocol description of a grammar is augmented to indicate where
synchronization should be attempted has already been discussed in section 12.4.2. To be able to
achieve optimal use of the basic facilities offered by the use of the SYNC and WEAK directives calls
for some ingenuity. If too many SYNC directives are introduced, the error recovery achievable with



the use of WEAK can actually deteriorate, since the union of all the SYNC symbol sets tends to become
the entire universe. Below we show a modification of the grammar in section 8.7.2 that has been
found to work quite well, and draw attention to the use of two places (in the productions for
Condition and Term) where an explicit call to the error reporting interface has been used to handle
situations where one wishes to be lenient in the treatment of missing symbols. 

  PRODUCTIONS /* some omitted to save space */
    Clang             = "PROGRAM" identifier WEAK ";" Block "." .
    Block             = SYNC { ( ConstDeclarations | VarDeclarations ) SYNC }
                        CompoundStatement .
    OneConst          = identifier WEAK "=" number ";" .
    VarDeclarations   = "VAR" OneVar { WEAK "," OneVar } ";" .
    CompoundStatement = "BEGIN" Statement { WEAK ";" Statement } "END" .
    Statement         = SYNC [   CompoundStatement | Assignment
                               | IfStatement       | WhileStatement
                               | ReadStatement     | WriteStatement ] .
    Assignment        = Variable ":=" Expression SYNC .
    Condition         = Expression ( RelOp Expression | (. SynError(91); .) ) .
    ReadStatement     = "READ" "(" Variable { WEAK "," Variable } ")" .
    WriteStatement    = "WRITE"
                        [ "(" WriteElement { WEAK "," WriteElement }  ")" ] .
    Term              = Factor { ( MulOp | (. SynError(92); .) ) Factor } .

14.6.3 Constraint analysis and static semantic error handling 

We have already had cause to remark that the boundary between syntactic and semantic errors can
be rather vague, and that there are features of real computer languages that cannot be readily
described by context-free grammars. To retain the advantages of simple one-pass compilation when
we include semantic analysis, and start to attach meaning to our identifiers, usually requires that the
"declaration" parts of a program come before the "statement" parts. This is easily enforced by a
context-free grammar, all very familiar to a Modula-2, Pascal or C programmer, and seems quite
natural after a while. But it is only part of the story. Even if we insist that declarations precede
statements, a context-free grammar is still unable to specify that only those identifiers which have
appeared in the declarations (so-called defining occurrences) may appear in the statements (in
so-called applied occurrences). Nor is a context-free grammar powerful enough to specify such
constraints as insisting that only a variable identifier can be used to denote the target of an
assignment statement, or that a complete array cannot be assigned to a scalar variable. We might be
tempted to write productions that seem to capture these constraints: 

   Clang             =  "PROGRAM" ProgIdentifier ";" Block "." .
   Block             =  { ConstDeclarations | VarDeclarations }
                        CompoundStatement .
   ConstDeclarations =  "CONST" OneConst { OneConst } .
   OneConst          =  ConstIdentifier "=" number ";" .
   VarDeclarations   =  "VAR" OneVar { "," OneVar } ";" .
   OneVar            =  ScalarVarIdentifier | ArrayVarIdentifier UpperBound .
   UpperBound        =  "[" number "]" .
   Assignment        =  Variable ":=" Expression .
   Variable          =  ScalarVarIdentifier | ArrayVarIdentifier "[" Expression "]" .
   ReadStatement     =  "READ" "(" Variable { "," Variable } ")" .
   Expression        =  ( "+" Term | "-" Term | Term ) { AddOp Term } .
   Term              =  Factor { MulOp Factor } .
   Factor            =    ConstIdentifier | Variable | number
                        | "(" Expression ")" .

This would not really get us very far, since all identifiers are lexically equivalent! We could attempt
to use a context-sensitive grammar to overcome such problems, but that turns out to be
unnecessarily complicated, for they are easily solved by leaving the grammar as it was, adding
attributes in the form of context conditions, and using a symbol table. 

Demanding that identifiers be declared in such a way that their static semantic attributes can be
recorded in a symbol table, whence they can be retrieved at any future stage of the analysis, is not
nearly as tedious as users might at first imagine. It is clearly a semantic activity, made easier by a
syntactic association with keywords like CONST, VAR and PROGRAM. 



Setting up a symbol table may be done in many ways. If one is interested merely in performing the
sort of constraint analysis suggested earlier for a language as simple as Clang we may begin by
noting that identifiers designate objects that are restricted to one of three simple varieties - namely
constant, variable and program. The only apparent complication is that, unlike the other two, a
variable identifier can denote either a simple scalar, or a simple linear array. A simple table handler
can then be developed with a class having a public interface like the following: 

  const int TABLE_alfalength = 15; // maximum length of identifiers
  typedef char TABLE_alfa[TABLE_alfalength + 1];

  enum TABLE_idclasses { TABLE_consts, TABLE_vars, TABLE_progs };

  struct TABLE_entries {
    TABLE_alfa name;             // identifier
    TABLE_idclasses idclass;     // class
    bool scalar;                 // distinguish arrays from scalars
  };

  class TABLE {
    public:
      TABLE(REPORT *R);
      // Initializes symbol table

      void enter(TABLE_entries &entry);
      // Adds entry to symbol table

      void search(char *name, TABLE_entries &entry, bool &found);
      // Searches table for presence of name.  If found then returns entry

      void printtable(FILE *lst);
      // Prints symbol table for diagnostic purposes
  };

An augmented parser must construct appropriate entry  structures and enter these into the table
when identifiers are first recognized by the routine that handles the productions for OneConst and
OneVar. Before identifiers are accepted by the routines that handle the production for Designator
they are checked against this table for non-declaration of name, abuse of idclass  (such as trying to
assign to a constant) and abuse of scalar  (such as trying to subscript a constant, or a scalar
variable). The interface suggested here is still inadequate for the purposes of code generation, so we
delay further discussion of the symbol table itself until the next section. 

However, we may take the opportunity of pointing out that the way in which the symbol table
facilities are used depends rather critically on whether the parser is being crafted by hand, or by
using a parser generator. We draw the reader’s attention to the production for Factor, which we
have written 

  Factor = Designator | number | "(" Expression ")" .

rather than the more descriptive 

  Factor = ConstIdentifier | Variable | number | "(" Expression ")" .

which does not satisfy the LL(1) constraints. In a hand-crafted parser we are free to use semantic
information to drive the parsing process, and to break this LL(1) conflict, as the following extract
from such a parser will show. 

  void Factor(symset followers)
  // Factor = Variable | ConstIdentifier | Number | "(" Expression ")" .
  // Variable = Designator .
  { TABLE_entries entry;
    bool found;
    test(FirstFactor, followers, 14);               // Synchronize
    switch (SYM.sym)
    { case SCAN_identifier:
        Table->search(SYM.name, entry, found);      // Look it up
        if (!found) Report->error(202);             // Undeclared identifier



        if (entry.idclass = TABLE_consts) GetSym(); // ConstIdentifier
        else Designator(entry, followers, 206);     // Variable
        break;
      case SCAN_number:
        GetSym(); break;
      case SCAN_lparen:
        GetSym(); Expression(symset(SCAN_rparen) + followers);
        accept(SCAN_rparen, 17); break;
      default:                                      // Synchronized on a
        Report->error(14); break;                   // follower instead
    }
  }

In a Coco/R generated parser some other way must be found to handle the conflict. The generated
parser will always set up a call to parse a Designator, and so the distinction must be drawn at that
stage. The following extracts from an attributed grammar shows one possible way of doing this. 

  Factor
  =                           (. int value; TABLE_entries entry; .)
       Designator<classset(TABLE_consts, TABLE_vars), entry>
     | Number<value>
     | "(" Expression ")" .

Notice that the Designator routine is passed the set of idclasses  that are acceptable in this context.
The production for Designator needs to check quite a number of context conditions: 

  Designator<classset allowed, TABLE_entries &entry>
  =                           (. TABLE_alfa name;
                                 bool isvariable, found; .)
     Ident<name>              (. Table->search(name, entry, found);
                                 if (!found) SemError(202);
                                 if (!allowed.memb(entry.idclass)) SemError(206);
                                 isvariable = entry.idclass == TABLE_vars; .)
     ( "["                    (. if (!isvariable || entry.scalar) SemError(204); .)
       Expression "]"
       |                      (. if (isvariable && !entry.scalar) SemError(205); .)
     ) .

Other variations on this theme are possible. One of these is interesting in that it effectively uses
semantic information to drive the parser, returning prematurely if it appears that a subscript should
not be allowed: 

  Designator<classset allowed, TABLE_entries &entry>
  =                           (. TABLE_alfa name;
                                 bool found; .)
     Ident<name>              (. Table->search(name, entry, found);
                                 if (!found) SemError(202);
                                 if (!allowed.memb(entry.idclass)) SemError(206);
                                 if (entry.idclass != TABLE_vars) return; .)
     ( "["                    (. if (entry.scalar) SemError(204); .)
       Expression "]"
       |                      (. if (!entry.scalar) SemError(205); .)
     ) .

As an example of how these ideas combine in the reporting of incorrect programs we present a
source listing produced by the hand-crafted parser found on the source diskette: 

   1 : PROGRAM Debug
   2 :   CONST
   2 :        ^; expected
   3 :     TooBigANumber = 328000;
   3 :                           ^Constant out of range
   4 :     Zero := 0;
   4 :            ^:= in wrong context
   5 :   VAR
   6 :     Valu, Smallest, Largest, Total;
   7 :   CONST
   8 :     Min = Zero;
   8 :               ^Number expected
   9 :   BEGIN
  10 :     Total := Zero;
  11 :     IF Valu THEN;
  11 :                 ^Relational operator expected
  12 :     READ (Valu); IF Valu > Min DO WRITE(Valu);



  12 :                                  ^THEN expected
  13 :     Largest := Valu; Smallest = Valu;
  13 :                                ^:= expected
  14 :     WHILE Valu <> Zero DO
  15 :       BEGIN
  16 :         Total := Total + Valu
  17 :         IF Valu > = Largest THEN Largest := Value;
  17 :           ^; expected
  17 :                    ^Invalid factor
  17 :                                                  ^Undeclared identifier
  18 :         IF Valu < Smallest THEN Smallest := Valu;
  19 :         READLN(Valu); IF Valu > Zero THEN WRITE(Valu)
  19 :               ^Undeclared identifier
  20 :       END;
  21 :     WRITE(’TOTAL:’, Total, ’ LARGEST:’, Largest);
  22 :     WRITE(’SMALLEST: , Smallest)
  22 :                                 ^Incomplete string
  23 :   END.
  23 :      ^) expected

Exercises 

14.37 Submit the incorrect program given above to a Coco/R generated parser, and compare the
quality of error reporting and recovery with that achieved by the hand-crafted parser. 

14.38 At present the error messages for the hand-crafted system are reported one symbol after the
point where the error was detected. Can you find a way of improving on this? 

14.39 A disadvantage of the error recovery scheme used here is that a user may not realize which
symbols have been skipped. Can you find a way to mark some or all of the symbols skipped by
test ? Has test  been used in the best possible way to facilitate error recovery? 

14.40 If, as we have done, all error messages after the first at a given point are suppressed, one
might occasionally find that the quality of error message deteriorates - "early" messages might be
less apposite than "later" messages might have been. Can you implement a better method than the
one we have? (Notice that the Followers parameter passed to a sub-parser for S includes not only
the genuine FOLLOW(S) symbols, but also further Beacons.) 

14.41 If you study the code for the hand-crafted parser carefully you will realize that Identifier
effectively appears in all the Follower sets? Is this a good idea? If not, what alterations are needed? 

14.42 Although not strictly illegal, the appearance of a semicolon in a program immediately
following a DO or THEN, or immediately preceding an END may be symptomatic of omitted code. Is it
possible to warn the user when this has occurred, and if so, how? 

14.43 The error reporter makes no real distinction between context-free and semantic or
context-sensitive errors. Do you suppose it would be an improvement to try to do this, and if so,
how could it be done? 

14.44 Why does this parser not allow you to assign one array completely to another array? What
modifications would you have to make to the context-free grammar to permit this? How would the
constraint analysis have to be altered? 

14.45 In Topsy - at least as it is used in the example program of Exercise 8.25 - all "declarations"
seem to precede "statements". In C++ it is possible to declare variables at the point where they are
first needed. How would you define Topsy to support the mingling of declarations and statements? 



14.46 One school of thought maintains that in a statement like a Modula-2 FOR loop, the control
variable should be implicitly declared at the start of the loop, so that it is truly local to the loop. It
should also not be possible to alter the value of the control variable within the loop. Can you extend
your parser and symbol table handler to support these ideas? 

14.47 Exercises 14.21 through 14.36 suggested many syntactic extensions to Clang or Topsy.
Extend your parsers so that they incorporate error recovery and constraint analysis for all these
extensions. 

14.48 Experiment with error recovery mechanisms that depend on the ordering of the
SCAN_symtypes  enumeration, as discussed in section 14.6.1. Can you find an ordering that works
adequately for Topsy? 

14.7 The symbol table handler 

In an earlier section we claimed that it would be advantageous to split our compiler into distinct
phases for syntax/constraint analysis and code generation. One good reason for doing this is to
isolate the machine dependent part of compilation as far as possible from the language analysis.
The degree to which we have succeeded may be measured by the fact that we have not yet made
any mention of what sort of object code we are trying to generate. 

Of course, any interface between source and object code must take cognizance of data-related
concepts like storage, addresses and data representation, as well as control-related ones like
location counter, sequential execution and branch instruction, which are fundamental to nearly all
machines on which programs in our imperative high-level languages execute. Typically, machines
allow some operations which simulate arithmetic or logical operations on data bit patterns which
simulate numbers or characters, these patterns being stored in an array-like structure of memory,
whose elements are distinguished by addresses. In high-level languages these addresses are usually
given mnemonic names. The context-free syntax of many high-level languages, as it happens,
rarely seems to draw a distinction between the "address" for a variable and the "value" associated
with that variable, and stored at its address. Hence we find statements like 

                   X  :=  X + 4

in which the X on the left of the :=  operator actually represents an address, (sometimes called the
L-value of X) while the X on the right (sometimes called the R-value of X) actually represents the
value of the quantity currently residing at the same address. Small wonder that mathematically
trained beginners sometimes find the assignment notation strange! After a while it usually becomes
second nature - by which time notations in which the distinction is made clearer possibly only
confuse still further, as witness the problems beginners often have with pointer types in C++ or
Modula-2, where *P  or P^ (respectively) denote the explicit value residing at the explicit address P.
If we relate this back to the productions used in our grammar, we would find that each X in the
above assignment was syntactically a Designator. Semantically these two designators are very
different - we shall refer to the one that represents an address as a Variable Designator, and to the
one that represents a value as a Value Designator. 

To perform its task, the code generation interface will require the extraction of further information
associated with user-defined identifiers and best kept in the symbol table. In the case of constants
we need to record the associated values, and in the case of variables we need to record the
associated addresses and storage demands (the elements of array variables will occupy a contiguous



block of memory). If we can assume that our machine incorporates a "linear array" model of
memory, this information is easily added as the variables are declared. 

Handling the different sorts of entries that need to be stored in a symbol table can be done in
various ways. In a object-oriented class-based implementation one might define an abstract base
class to represent a generic type of entry, and then derive classes from this to represent entries for
variables or constants (and, in due course, records, procedures, classes and any other forms of entry
that seem to be required). The traditional way, still required if one is hosting a compiler in a
language that does not support inheritance as a concept, is to make use of a variant record (in
Modula-2 terminology) or union (in C++ terminology). Since the class-based implementation gives
so much scope for exercises, we have chosen to illustrate the variant record approach, which is very
efficient, and quite adequate for such a simple language. We extend the declaration of the
TABLE_entries  type to be 

  struct TABLE_entries {
    TABLE_alfa name;          // identifier
    TABLE_idclasses idclass;  // class
    union {
      struct {
        int value;
      } c;                    // constants
      struct {
        int size, offset;     // number of words, relative address
        bool scalar;          // distinguish arrays
      } v;                    // variables
    };
  };

The way in which the symbol table is constructed can be illustrated with reference to the relevant
parts of a Cocol specification for handling OneConst and OneVar: 

  OneConst
  =                             (. TABLE_entries entry; .)
     Ident<entry.name>          (. entry.idclass = TABLE_consts; .)
     WEAK "="
     Number<entry.c.value> ";"  (. Table->enter(entry); .) .

  OneVar<int &framesize>
  =                             (. TABLE_entries entry;
                                   entry.idclass = TABLE_vars;
                                   entry.v.size = 1; entry.v.scalar = true;
                                   entry.v.offset = framesize + 1; .)
     Ident<entry.name>
     [ UpperBound<entry.v.size> (. entry.v.scalar = false; .)
     ]                          (. Table->enter(entry);
                                   framesize += entry.v.size; .) .

  UpperBound<int &size>
  =  "[" Number<size> "]"       (. size++; .) .

  Ident<char *name>
  =  identifier                 (. LexName(name, TABLE_alfalength); .) .

Here framesize  is a simple count, which is initialized to zero at the start of parsing a Block. It
keeps track of the number of variables declared, and also serves to define the addresses which these
variables will have relative to some known location in memory when the program runs. A trivial
modification gets around the problem if it is impossible or inconvenient to use zero-based addresses
in the real machine. 

Programming a symbol table handler for a language as simple as ours can be correspondingly
simple. On the source diskette can be found such implementations, based on the idea that the
symbol table can be stored within a fixed length array. A few comments on implementation
techniques will guide the reader who wishes to study this code: 

The table is set up so that the entry indexed by zero can be used as a sentinel in a simple



sequential search by search . Although this is inefficient, it is adequate for prototyping the
system. 

A call to Table->search(name, entry, found)  will always return with a well defined
value for entry , even if the name had never been declared. Such undeclared identifiers will
seem to have an effective idclass = TABLE_progs , which will be semantically unacceptable
everywhere, thus ensuring that incorrect code can never be generated. 

Exercises 

14.49 How would you check that no identifier is declared more than once? 

14.50 Identifiers that are undeclared by virtue of mistyped declarations tend to be annoying, for
they result in many subsequent errors being reported. Perhaps in languages as simple as ours one
could assume that all undeclared identifiers should be treated as variables, and entered as such in
the symbol table at the point of first reference. Is this a good idea? Can it easily be implemented?
What happens if arrays are undeclared? 

14.51 Careful readers may have noticed that a Clang array declaration is different from a C++ one -
the bracketed number in Clang specifies the highest permitted index value, rather than the array
length. This has been done so that one can declare variables like 

              VAR Scalar, List[10], VeryShortList[0];

How would you modify Clang and Topsy to use C++ semantics, where the declaration of
VeryShortList  would have to be forbidden? 

14.52 The names of identifiers are held within the symbol table as fixed length strings, truncated if
necessary. It may seem unreasonable to expect compilers (especially written in Modula-2 or Pascal,
which do not have dynamic strings as standard types) to cater for identifiers of any length, but too
small a limitation on length is bound to prove irksome sooner or later, and too generous a limitation
simply wastes valuable space when, as so often happens, users choose very short names. Develop a
variation on the symbol table handler that allocates the name fields dynamically, to be of the correct
size. (This can, of course, also be done in Modula-2.) Making table entries should be quite simple;
searching for them may call for a little more ingenuity. 

14.53 A simple sequential search algorithm is probably perfectly adequate for the small Clang
programs that one is likely to write. It becomes highly inefficient for large applications. It is far
more efficient to store the table in the form of a binary search tree, of the sort that you may have
encountered in other courses in Computer Science. Develop such an implementation, noting that it
should not be necessary to alter the public interface to the table class. 

14.54 Yet another approach is to construct the symbol table using a hash table, which probably
yields the shortest times for retrievals. Hash tables were briefly discussed in Chapter 7, and should
also be familiar from other courses you may have taken in Computer Science. Develop a hash table
implementation for your Clang or Topsy compiler. 

14.55 We might consider letting the scanner interact with the symbol table. Consider the
implications of developing a scanner that stores the strings for identifiers and string literals in a
string table, as suggested in Exercise 6.6 for the assemblers of Chapter 6. 



14.56 Develop a symbol table handler that utilizes a simple class hierarchy for the possible types of
entries, inheriting appropriately from a suitable base class. Once again, construction of such a table
should prove to be straightforward, regardless of whether you use a linear array, tree, or hash table
as the underlying storage structure. Retrieval might call for more ingenuity, since C++ does not
provide syntactic support for determining the exact class of an object that has been statically
declared to be of a base class type. 

14.8 Other aspects of symbol table management - further types

It will probably not have escaped the reader’s attention, especially if he or she has attempted the
exercises in the last few sections, that compilers for languages which handle a wide variety of
types, both "standard" and "user defined", must surely take a far more sophisticated approach to
constructing a symbol table and to keeping track of storage requirements than anything we have
seen so far. Although the nature of this text does not warrant a full discussion of this point, a few
comments may be of interest, and in order. 

In the first place, a compiler for a block-structured language will probably organize its symbol table
as a collection of dynamically allocated trees, with one root for each level of nesting. Although
using simple binary trees runs the risk of producing badly unbalanced trees, this is unlikely. Except
for source programs which are produced by program generators, user programs tend to introduce
identifiers with fairly random names; few compilers are likely to need really sophisticated tree
constructing algorithms. 

Secondly, the nodes in the trees will be fairly complex record structures. Besides the obvious links
to other nodes in the tree, there will probably be pointers to other dynamically constructed nodes,
which contain descriptions of the types of the identifiers held in the main tree. 

Thus a Pascal declaration like 

        VAR
          Matrix : ARRAY [1 .. 10, 2 .. 20] OF SET OF CHAR;

might result in a structure that can be depicted something like that of Figure 14.2. 



We may take this opportunity to comment on a rather poorly defined area in Pascal, one that came
in for much criticism. Suppose we were to declare 

  TYPE
    LISTS = ARRAY [1 .. 10] OF CHAR;
  VAR
    X : LISTS;
    A : ARRAY [1 .. 10] OF CHAR;
    B : ARRAY [1 .. 10] OF CHAR;
    Z : LISTS;

A and B are said to be of anonymous type, but to most people it would seem obvious that A and B
are of the same type, implying that an assignment of the form A := B  should be quite legal, and,
furthermore, that X and Z would be of the same type as A and B. However, some compilers will be
satisfied with mere structural equivalence of types before such an assignment would be permitted,
while others will insist on so-called name equivalence. The original Pascal Report did not specify
which was standard. 

In this example A, B, X  and Z all have structural equivalence. X and Z have name equivalence as
well, as they have been specified in terms of a named type LISTS . 

With the insight we now have we can see what this difference means from the compiler writer’s
viewpoint. Suppose A and B have entries in the symbol table pointed to by ToA and ToB respectively.
Then for name equivalence we should insist on ToA^.Type  and ToB^.Type  being the same (that is,
their Type  pointers address the same descriptor), while for structural equivalence we should insist
on ToA^.Type^  and ToA^.Type^  being the same (that is, their Type  pointers address descriptors
that have the same structure). 

Further reading and exploration 

We have just touched on the tip of a large and difficult iceberg. If one adds the concept of types and
type constructors into a language, and insists on strict type-checking, the compilers become much
larger and harder to follow than we have seen up till now. The energetic reader might like to follow
up several of the ideas which should now come to mind. Try a selection of the following, which are
deliberately rather vaguely phrased. 

14.57 Just how do real compilers deal with symbol tables? 

14.58 Just how do real compilers keep track of type checking? Why should name equivalence be
easier to handle than structural equivalence? 

14.59 Why do some languages simply forbid the use of "anonymous types", and why don’t more
languages forbid them? 

14.60 How do you suppose compilers keep track of storage allocation for struct  or RECORD types,
and for union  or variant record types? 

14.61 Find out how storage is managed for dynamically allocated variables in language like C++,
Pascal, or Modula-2. 

14.62 How does one cope with arrays of variable (dynamic) length in subprograms? 



14.63 Why can we easily allow the declaration of a pointer type to precede the definition of the type
it points to, even in a one-pass system? For example, in Modula-2 we may write 

           TYPE
             LINKS = POINTER TO NODES (* NODES not yet seen *);
             NODES = RECORD
                       ETC  : JUNK;
                       Link : LINKS;
                       . . .

14.64 Brinch Hansen did not like the Pascal subrange type because it seems to lead to ambiguities
(for example, a value of 34 can be of type 0 .. 45 , and also of type 30 .. 90  and so on), and so
omitted them from Edison. Interestingly, a later Wirth language, Oberon, omits them as well. How
might Pascal and Modula-2 otherwise have introduced the subrange concept, how could we
overcome Brinch Hansen’s objections, and what is the essential point that he seems to have
overlooked in discarding them? 

14.65 One might accuse the designers of Pascal, Modula-2 and C of making a serious error of
judgement - they do not introduce a string type as standard, but rely on programmers to manipulate
arrays of characters, and to use error prone ways of recognizing the end, or the length, of a string.
Do you agree? Discuss whether what they offer in return is adequate, and if not, why not. Suggest
why they might deliberately not have introduced a string type. 

14.66 Brinch Hansen did not like the Pascal variant record (or union ). What do such types allow
one to do in Pascal which is otherwise impossible, and why should it be necessary to provide the
facility to do this? How else are these facilities catered for in Modula-2, C and C++? Which is the
better way, and why? Do the ideas of type extension, as found in Oberon, C++ and other "object
oriented" languages provide even better alternatives? 

14.67 Many authors dislike pointer types because they allow "insecure" programming". What is
meant by this? How could the security be improved? If you do not like pointer types, can you think
of any alternative feature that would be more secure? 

There is quite a lot of material available on these subjects in many of the references cited
previously. Rather than give explicit references, we leave the Joys of Discovery to the reader. 
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15 A SIMPLE COMPILER - THE BACK END

After the front end has analysed the source code, the back end of a compiler is responsible for
synthesizing object code. The critical reader will have realized that code generation, of any form,
implies that we consider the semantics of our language and of our target machine, and the
interaction between them, in far more detail than we have done until now. Indeed, we have made no
real attempt to define what programs written in Clang or Topsy "mean", although we have tacitly
assumed that the reader has quite an extensive knowledge of imperative languages, and that we
could safely draw on this. 

15.1 The code generation interface 

In considering the interface between analysis and code generation it will again pay to aim for some
degree of machine independence. Generation of code should take place without too much, if any,
knowledge of how the analyser works. A common technique for achieving this seemingly
impossible task is to define a hypothetical machine, with instruction set and architecture convenient
for the execution of programs of the source language, but without being too far removed from the
actual system for which the compiler is required. The action of the interface routines will be to
translate the source program into an equivalent sequence of operations for the hypothetical
machine. Calls to these routines can be embedded in the parser without overmuch concern for how
the final generator will turn the operations into object code for the target machine. Indeed, as we
have already mentioned, some interpretive systems hand such operations over directly to an
interpreter without ever producing real machine code. 

The concepts of the meaning of an expression, and of assignment of the "values" of expressions to
locations in memory labelled with the "addresses" of variables are probably well understood by the
reader. As it happens, such operations are very easily handled by assuming that the hypothetical
machine is stack-based, and translating the normal infix notation used in describing expressions
into a postfix or Polish equivalent. This is then easily handled with the aid of an evaluation stack,
the elements of which are either addresses of storage locations, or the values found at such
addresses. These ideas will probably be familiar to readers already acquainted with stack- based
machines like the Hewlett-Packard calculator. Furthermore, we have already examined a model of
such a machine in section 2.4, and discussed how expressions might be converted into postfix
notation in section 11.1. 

A little reflection on this theme will suggest that the public interface of such a code generation class
might take the form below. 

  enum CGEN_operators {
    CGEN_opadd, CGEN_opsub, CGEN_opmul, CGEN_opdvd, CGEN_opeql,
    CGEN_opneq, CGEN_oplss, CGEN_opgeq, CGEN_opgtr, CGEN_opleq
  };

  typedef short CGEN_labels;

  class CGEN {
    public:
      CGEN_labels undefined;    // for forward references

      CGEN(REPORT *R);
      // Initializes code generator



      void negateinteger(void);
      // Generates code to negate integer value on top of evaluation stack

      void binaryintegerop(CGEN_operators op);
      // Generates code to pop two values A,B from stack and push value A op B

      void comparison(CGEN_operators op);
      // Generates code to pop two values A,B from stack; push Boolean value A op B

      void readvalue(void);
      // Generates code to read an integer; store on address found on top-of-stack

      void writevalue(void);
      // Generates code to pop and then output the value at top-of-stack

      void newline(void);
      // Generates code to output line mark

      void writestring(CGEN_labels location);
      // Generates code to output string stored from known location

      void stackstring(char *str, CGEN_labels &location);
      // Stores str in literal pool in memory and returns its location

      void stackconstant(int number);
      // Generates code to push number onto evaluation stack

      void stackaddress(int offset);
      // Generates code to push address for known offset onto evaluation stack

      void subscript(void);
      // Generates code to index an array and check that bounds are not exceeded

      void dereference(void);
      // Generates code to replace top-of-stack by the value stored at the
      // address currently stored at top-of-stack

      void assign(void);
      // Generates code to store value currently on top-of-stack on the
      // address stored at next-to-top, popping these two elements

      void openstackframe(int size);
      // Generates code to reserve space for size variables

      void leaveprogram(void);
      // Generates code needed as a program terminates (halt)

      void storelabel(CGEN_labels &location);
      // Stores address of next instruction in location for use in backpatching

      void jump(CGEN_labels &here, CGEN_labels destination);
      // Generates unconditional branch from here to destination

      void jumponfalse(CGEN_labels &here, CGEN_labels destination);
      // Generates branch from here to destination, conditional on the Boolean
      // value currently on top of the evaluation stack, popping this value

      void backpatch(CGEN_labels location);
      // Stores the current location counter as the address field of the branch
      // instruction assumed to be held in an incomplete form at location

      void dump(void);
      // Generates code to dump the current state of the evaluation stack

      void getsize(int &codelength, int &initsp);
      // Returns length of generated code and initial stack pointer

      int gettop(void);
      // Returns the current location counter
  };

As usual, there are several points that need further comment and explanation: 

The code generation routines have been given names that might suggest that they actually
perform operations like jump . They only generate code for such operations, of course. 

There is an unavoidable interaction between this class and the machine for which code is to
be generated - the implementation will need to import the machine address type, and we have



seen fit to export a routine (getsize ) that will allow the compiler to determine the amount of
code generated. 

Code for data manipulation on such a machine can be generated by making calls on routines
like stackconstant, stackaddress, stackstring, subscript  and dereference  for
storage access; by calls to routines like negateinteger  and binaryintegerop  to generate
code to perform simple arithmetic; and finally by calls to assign  to handle the familiar
assignment process. 

For example, compilation of the Clang assignment statement 

                    A := 4 + List[5]

(where List  has 14 elements) should result in the following sequence of code generator
routine calls 

                     stackaddress(offset of A)
                       stackconstant(4)
                       stackaddress(offset of List[0])
                       stackconstant(5)
                       stackconstant(14)
                       subscript
                       dereference
                       binaryintegerop(CGEN_opadd)
                     assign

The address associated with an array in the symbol table will denote the offset of the first
element of the array (the zero-subscript one) from some known "base" at run-time. Our arrays
are very simple indeed. They have only one dimension, a size N fixed at compile-time, a fixed
lower subscript bound of zero, and can easily be handled after allocating them N consecutive
elements in memory. Addressing an individual element at run time is achieved by computing
the value of the subscripting expression, and adding this to (or, on a stack implementation,
subtracting it from) the address of the first element in the array. In the interests of safety we
shall insist that all subscripting operations incorporate range checks (this is, of course, not
done in C++). 

To generate code to handle simple I/O operations we can call on the routines readvalue,

writevalue , writestring  and newline . 

To generate code to allow comparisons to be effected we call on comparison , suitable
parameterized according to the test to be performed. 

Control statements are a little more interesting. In the type of machine being considered it is
assumed that machine code will be executed in the order in which it was generated, except
where explicit "branch" operations occur. Although our simple language does not incorporate
the somewhat despised GOTO statement, this maps very closely onto real machine code, and
must form the basis of code generated by higher level control statements. The transformation
is, of course, easily automated, save for the familiar problem of forward references. In our
case there are two source statements that give rise to these. Source code like 

                 IF Condition THEN Statement

should lead to object code of the more fundamental form 

                        code for Condition
                        IF NOT Condition THEN GOTO LAB END
                        code for Statement
                 LAB    continue



and the problem is that when we get to the stage of generating GOTO LAB we do not know the
address that will apply to LAB. Similarly, the source code 

                 WHILE Condition DO Statement

should lead to object code of the form 

                 LAB    code for Condition
                        IF NOT Condition THEN GOTO EXIT END
                        code for Statement
                        GOTO LAB
                 EXIT   continue

Here we should know the address of LAB as we start to generate the code for Condition, but
we shall not know the address of EXIT  when we get to the stage of generating GOTO EXIT. 

In general the solution to this problem might require the use of a two-pass system. However,
we shall assume that we are developing a one-pass load-and-go compiler, and that the
generated code is all in memory, or at worst on a random access file, so that modification of
addresses in branch instructions can easily be effected. We generate branch instructions with
the aid of jump(here, label)  and jumponfalse(here, label) , and we introduce two
auxiliary routines storelabel(location)  and backpatch(location)  to remember the
location of an instruction, and to be able to repair the address fields of incompletely generated
branch instructions at a later stage. The code generator exports a special value of the
CGEN_labels  type that can be used to generate a temporary target destination for such
incomplete instructions. 

We have so far made no mention of the forward reference tables which the reader may be
dreading. In fact we can leave the system to sort these out implicitly, pointing to yet another
advantage of the recursive descent method. A little thought should show that side-effects of
allowing only the structured WhileStatement and IfStatement are that we never need explicit
labels, and that we need the same number of implicit labels for each instance of any construct.
These labels may be handled by declaring appropriate variables local to parsing routines like
IfStatement; each time a recursive call is made to IfStatement new variables will come into
existence, and remain there for as long as it takes to complete parsing of the construction,
after which they will be discarded. When compiling an IfStatement we simply use a technique
like the following (shown devoid of error handling for simplicity): 

      void IfStatement(void)
      // IfStatement = "IF" Condition "THEN" Statement .
      { CGEN_labels testlabel;   // must be declared locally
        getsym();                // scan past IF
        Condition();             // generates code to evaluate Condition
        jumponfalse(testlabel,
                    undefined);  // remember address of incomplete instruction
        accept(thensym);         // scan past THEN
        Statement();             // generates code for intervening Statement(s)
        backpatch(testlabel);    // use local test value stored by jumponfalse
      }

If the interior call to Statement  needs to parse a further IfStatement, another instance of
testlabel  will be created for the purpose. Clearly, all variables associated with handling
implicit forward references must be declared "locally", or chaos will ensue. 

We may need to generate special housekeeping code as we enter or leave a Block. This may
not be apparent in the case of a single block program - which is all our language allows at
present - but will certainly be the case when we extend the language to support procedures.
This code can be generated by the routines openstackframe  (for code needed as we enter the
program) and leaveprogram  (for code needed as we leave it to return, perhaps, to the charge



of some underlying operating system). 

gettop  is provided so that a source listing may give details of the object code addresses
corresponding to statements in the source. 

We are now in a position to show a fully attributed phrase structure grammar for a complete Clang
compiler. This could be submitted to Coco/R to generate such a compiler, or could be used to assist
in the completion of a hand-crafted compiler such as the one to be found on the source diskette. The
power and usefulness of this notation should now be very apparent. 

  PRODUCTIONS
    Clang
    =                           (. TABLE_entries entry; .)
       "PROGRAM"
       Ident<entry.name>        (. debug = (strcmp(entry.name, "DEBUG") == 0);
                                   entry.idclass = TABLE_progs;
                                   Table->enter(entry); .)
       WEAK ";" Block "." .

    Block
    =                           (. int framesize = 0; .)
       SYNC { (  ConstDeclarations | VarDeclarations<framesize> )
       SYNC }                   (. /* reserve space for variables */
                                   CGen->openstackframe(framesize); .)
       CompoundStatement        (. CGen->leaveprogram();
                                   if (debug) /* demonstration purposes */
                                     Table->printtable(stdout); .) .

    ConstDeclarations
    =  "CONST" OneConst { OneConst } .

    OneConst
    =                           (. TABLE_entries entry; .)
       Ident<entry.name>        (. entry.idclass = TABLE_consts; .)
       WEAK "="
       Number<entry.c.value>    (. Table->enter(entry); .)
       ";" .

    VarDeclarations<int &framesize>
    =  "VAR" OneVar<framesize> { WEAK "," OneVar<framesize> } ";" .

    OneVar<int &framesize>
    =                           (. TABLE_entries entry; .)
                                (. entry.idclass = TABLE_vars;
                                   entry.v.size = 1; entry.v.scalar = true;
                                   entry.v.offset = framesize + 1; .)
       Ident<entry.name>
       [ UpperBound<entry.v.size> (. entry.v.scalar = false; .)
       ]                        (. Table->enter(entry);
                                   framesize += entry.v.size; .) .

    UpperBound<int &size>
    =  "[" Number<size> "]"     (. size++; .) .

    CompoundStatement
    =  "BEGIN" Statement { WEAK ";" Statement } "END" .

    Statement
    =  SYNC [  CompoundStatement | Assignment
              | IfStatement      | WhileStatement
              | ReadStatement    | WriteStatement
              | "STACKDUMP"     (. CGen->dump(); .)
            ] .

    Assignment
    =  Variable ":="
       Expression SYNC          (. CGen->assign(); .) .

    Variable
    =                           (. TABLE_entries entry; .)
       Designator<classset(TABLE_vars), entry> .

    Designator<classset allowed, TABLE_entries &entry>
    =                           (. TABLE_alfa name;
                                   bool found; .)
       Ident<name>              (. Table->search(name, entry, found);



                                   if (!found) SemError(202);
                                   if (!allowed.memb(entry.idclass)) SemError(206);
                                   if (entry.idclass != TABLE_vars) return;
                                   CGen->stackaddress(entry.v.offset); .)
       ( "["                    (. if (entry.v.scalar) SemError(204); .)
         Expression             (. /* determine size for bounds check */
                                   CGen->stackconstant(entry.v.size);
                                   CGen->subscript(); .)
         "]"
         |                      (. if (!entry.v.scalar) SemError(205); .)
       ) .

    IfStatement
    =                           (. CGEN_labels testlabel; .)
       "IF" Condition "THEN"    (. CGen->jumponfalse(testlabel, CGen->undefined); .)
       Statement                (. CGen->backpatch(testlabel); .) .

    WhileStatement
    =                           (. CGEN_labels startloop, testlabel, dummylabel; .)
       "WHILE"                  (. CGen->storelabel(startloop); .)
       Condition "DO"           (. CGen->jumponfalse(testlabel, CGen->undefined); .)
       Statement                (. CGen->jump(dummylabel, startloop);
                                   CGen->backpatch(testlabel); .) .

    Condition
    =                           (. CGEN_operators op; .)
       Expression
       (  RelOp<op> Expression  (. CGen->comparison(op); .)
        | /* Missing op */      (. SynError(91); .)
       ) .

    ReadStatement
    =  "READ" "(" Variable      (. CGen->readvalue(); .)
       { WEAK "," Variable      (. CGen->readvalue(); .)
       } ")" .

    WriteStatement
    =  "WRITE" [ "(" WriteElement { WEAK "," WriteElement } ")" ]
                                (. CGen->newline(); .) .

    WriteElement
    =                           (. char str[600];
                                   CGEN_labels startstring; .)
        String<str>             (. CGen->stackstring(str, startstring);
                                   CGen->writestring(startstring); .)
      | Expression              (. CGen->writevalue(); .) .

    Expression
    =                           (. CGEN_operators op; .)
       (   "+" Term
         | "-" Term             (. CGen->negateinteger(); .)
         | Term
       )
       { AddOp<op> Term         (. CGen->binaryintegerop(op); .)
       } .

    Term
    =                           (. CGEN_operators op; .)
       Factor
       { (  MulOp<op>
          | /* missing op */    (. SynError(92); op = CGEN_opmul; .)
         ) Factor               (. CGen->binaryintegerop(op); .)
       } .

    Factor
    =                           (. TABLE_entries entry;
                                   int value; .)
         Designator<classset(TABLE_consts, TABLE_vars), entry>
                                (. switch (entry.idclass)
                                   { case TABLE_vars :
                                       CGen->dereference(); break;
                                     case TABLE_consts :
                                       CGen->stackconstant(entry.c.value); break;
                                   } .)
       | Number<value>          (. CGen->stackconstant(value); .)
       | "(" Expression ")" .

    AddOp<CGEN_operators &op>
    =    "+"                    (. op = CGEN_opadd; .)
       | "-"                    (. op = CGEN_opsub; .) .

    MulOp<CGEN_operators &op>
    =    "*"                    (. op = CGEN_opmul; .)



       | "/"                    (. op = CGEN_opdvd; .) .

    RelOp<CGEN_operators &op>
    =    "="                    (. op = CGEN_opeql; .)
       | "<>"                   (. op = CGEN_opneq; .)
       | "<"                    (. op = CGEN_oplss; .)
       | "<="                   (. op = CGEN_opleq; .)
       | ">"                    (. op = CGEN_opgtr; .)
       | ">="                   (. op = CGEN_opgeq; .) .

    Ident<char *name>
    =  identifier               (. LexName(name, TABLE_alfalength); .) .

    String<char *str>
    =  string                   (. char local[100];
                                   LexString(local, sizeof(local) - 1);
                                   int i = 0;
                                   while (local[i]) /* strip quotes */
                                   { local[i] = local[i+1]; i++; }
                                   local[i-2] = ’\0’;
                                   i = 0;
                                   while (local[i]) /* find internal quotes */
                                   { if (local[i] == ’\’’)
                                     { int j = i;
                                       while (local[j])
                                       { local[j] = local[j+1]; j++; }
                                     }
                                     i++;
                                   }
                                   strcpy(str, local); .) .

    Number <int &num>
    =  number                   (. char str[100];
                                   int i = 0, l, digit, overflow = 0;
                                   num = 0;
                                   LexString(str, sizeof(str) - 1);
                                   l = strlen(str);
                                   while (i <= l && isdigit(str[i]))
                                   { digit = str[i] - ’0’; i++;
                                     if (num <= (maxint - digit) / 10)
                                       num = 10 * num + digit;
                                     else overflow = 1;
                                   }
                                   if (overflow) SemError(200); .) .

  END Clang.

A few points call for additional comment: 

The reverse Polish (postfix) form of the expression manipulation is accomplished simply by
delaying the calls for "operation" code generation until after the second "operand" code
generation has taken place - this is, of course, completely analogous to the system developed
in section 11.1 for converting infix expression strings to their reverse Polish equivalents. 

It turns out to be useful for debugging purposes, and for a full understanding of the way in
which our machine works, to be able to print out the evaluation stack at any point in the
program. This we have done by introducing another keyword into the language, STACKDUMP,
which can appear as a simple statement, and whose code generation is handled by dump. 

The reader will recall that the production for Factor would be better expressed in a way that
would introduce an LL(1) conflict into the grammar. This conflict is resolved within the
production for Designator in the above Cocol grammar; it can be (and is) resolved within the
production for Factor in the hand-crafted compiler on the source diskette. In other respects
the semantic actions found in the hand-crafted code will be found to match those in the Cocol
grammar very closely indeed. 



Exercises 

Many of the previous suggestions for extending Clang or Topsy will act as useful sources of
inspiration for projects. Some of these may call for extra code generator interface routines, but
many will be found to require no more than we have already discussed. Decide which of the
following problems can be solved immediately, and for those that cannot, suggest the minimal
extensions to the code generator that you can foresee might be necessary. 

15.1 How do you generate code for the REPEAT ... UNTIL  statement in Clang (or the do statement
in Topsy)? 

15.2 How do you generate code for an IF ... THEN ... ELSE  statement, with the "dangling else"
ambiguity resolved as in Pascal or C++? Bear in mind that the ELSE part may or may not be present,
and ensure that your solution can handle both situations. 

15.3 What sort of code generation is needed for the Pascal or Modula-2 style FOR loop that we have
suggested adding to Clang? Make sure you understand the semantics of the FOR loop before you
begin - they may be more subtle than you think! 

15.4 What sort of code generation is needed for the C++ style for  loop that we have suggested
adding to Topsy? 

15.5 Why do you suppose languages allow a FOR loop to terminate with its control variable
"undefined"? 

15.6 At present the WRITE statement of Clang is rather like Pascal’s WriteLn . What changes would
be needed to provide an explicit WRITELN statement, and, similarly, an explicit READLN statement,
with semantics as used in Pascal. 

15.7 If you add a "character" data type to your language, as suggested in Exercise 14.30, how do
you generate code to handle READ and WRITE operations? 

15.8 Code generation for the LOOP ... EXIT ... END  construction suggested in Exercise 14.28
provides quite an interesting exercise. Since we may have several EXIT  statements in a loop, we
seem to have a severe forward reference problem. This may be avoided in several ways. For
example, we could generate code of the form 

                           GOTO STARTLOOP
                EXITPOINT  GOTO LOOPEXIT
                STARTLOOP  code for loop body
                           . . .
                           GOTO EXITPOINT     (from an EXIT statement)
                           . . .
                           GOTO STARTLOOP
                LOOPEXIT   code which follows loop

With this idea, all EXIT  statements can branch back to EXITPOINT , and we have only to backpatch
the one instruction at EXITPOINT  when we reach the END of the LOOP. This is marginally inefficient,
but the execution of one extra GOTO statement adds very little to the overall execution time. 

Another idea is to generate code like 

                STARTLOOP  code for loop body
                           . . .
                           GOTO EXIT1    (from an EXIT statement)
                           . . .
                EXIT1      GOTO EXIT2    (from an EXIT statement)



                           . . .
                EXIT2      GOTO LOOPEXIT (from an EXIT statement)
                           . . .
                           GOTO STARTLOOP
                LOOPEXIT   code which follows END

In this case, each time another EXIT  is encountered the previously incomplete one is backpatched to
branch to the incomplete instruction which is just about to be generated. When the END is
encountered, the last one is backpatched to leave the loop. (A LOOP ... END  structure may,
unusually, have no EXIT  statements, but this is easily handled.) This solution is even less efficient
than the last. An ingenious modification can lead to much better code. Suppose we generate code
which at first appears quite incorrect, on the lines of 

                 STARTLOOP  code for loop body
                            . . .
                 EXIT0      GOTO 0        (incomplete - from an EXIT statement)
                            . . .
                 EXIT1      GOTO EXIT0    (from an EXIT statement)
                            . . .
                 EXIT2      GOTO EXIT1    (from an EXIT statement)
                            . . .

with an auxiliary variable Exit  which contains the address of the most recent of the GOTO

instructions so generated. (In the above example this would contain the address of the instruction
labelled EXIT2 ). We have used only backward references so far, so no real problems arise. When
we encounter the END, we refer to the instruction at Exit , alter its address field to the now known
forward address, and use the old backward address to find the address of the next instruction to
modify, repeating this process until the "GOTO 0" is encountered, which stops the chaining process -
we are, of course, doing nothing other than constructing a linked list temporarily within the
generated code. 

Try out one or other approach, or come up with your own ideas. All of these schemes need careful
thought when the possibility exists for having nested LOOP ... END  structures, which you should
allow. 

15.9 What sort of code generation is needed for the translation of structured statements like the
following? 

              IfStatement        =  "IF" Condition "THEN" StatementSequence
                                      { "ELSIF" Condition "THEN" StatementSequence }
                                      [ "ELSE" StatementSequence  ]
                                    "END" .
              WhileStatement     =  "WHILE" Condition "DO" StatementSequence  "END" .
              StatementSequence  =  Statement { ";" Statement } .

15.10 Brinch Hansen (1983) introduced an extended form of the WHILE loop into the language
Edison: 

              WhileStatement     =  "WHILE" Condition "DO" StatementSequence
                                      { "ELSE" Condition "DO" StatementSequence }
                                    "END" .

The Conditions are evaluated one at a time in the order written until one is found to be true, when
the corresponding StatementSequence is executed, after which the process is repeated. If no
Condition is true, the loop terminates. How could this be implemented? Can you think of any
algorithms where this statement would be useful? 

15.11 Add a HALT statement, as a variation on the WRITE statement, which first prints the values of
its parameters and then aborts execution. 

15.12 How would you handle the GOTO statement, assuming you were to add it to the language?



What restrictions or precautions should you take when combining it with structured loops (and, in
particular, FOR loops)? 

15.13 How would you implement a CASE statement in Clang, or a switch  statement in Topsy?
What should be done to handle an OTHERWISE or default , and what action should be taken to be
taken when the selector does not match any of the labelled "arms"? Is it preferable to regard this as
an error, or as an implicit "do nothing"? 

15.14 Add the MOD or % operator for use in finding remainders in expressions, and the AND, OR and
NOT operations for use in forming more complex Conditions. 

15.15 Add INC(x)  and DEC(x)  statements to Clang, or equivalently add x++  and x--  statements to
Topsy - thereby turning it, at last, into Topsy++! The Topsy version will introduce an LL(1) conflict
into the grammar, for now there will be three distinct alternatives for Statement that commence with
an identifier. However, this conflict is not hard to resolve. 

Further reading 

The hypothetical stack machine has been widely used in the development of Pascal compilers. In
the book by Welsh and McKeag (1980) can be found a treatment on which our own is partly based,
as is the excellent treatment by Elder (1994). The discussion in the book by Wirth (1976b) is also
relevant, although, as is typical in several systems like this, no real attempt is made to specify an
interface to the code generation, which is simply overlaid directly onto the analyser in a machine
dependent way. The discussion of the Pascal-P compiler in the book by Pemberton and Daniels
(1982) is, as usual, extensive. However, code generation for a language supporting a variety of data
types (something we have so far assiduously avoided introducing except in the exercises) tends to
obscure many principles when it is simply layered onto an already large system. 

Various approaches can be taken to compiling the CASE statement. The reader might like to consult
the early papers by Sale (1981) and Hennessy and Mendelsohn (1982), as well as the descriptions in
the book by Pemberton and Daniels (1982). 

15.2 Code generation for a simple stack machine

The problem of code generation for a real machine is, in general, complex, and very specialized. In
this section we shall content ourselves with completing our first level Clang compiler on the
assumption that we wish to generate code for the stack machine described in section 4.4. Such a
machine does not exist, but, as we saw, it may readily be emulated by a simple interpreter. Indeed,
if the interpret  routine from that section is invoked from the driver program after completing a
successful parse, an implementation of Clang quite suitable for experimental work is readily
produced. 

An implementation of an "on-the-fly" code generator for this machine is almost trivially easy, and
can be found on the source diskette. In studying this code the reader should note that: 

An external instance of the STKMC class is made directly visible to the code generator; as the
code is generated it is stored directly in the code array Machine->mem . 



The constructor of the code generator class initializes two private members - a location
counter (codetop ) needed for storing instructions, and a top of memory pointer (stktop )
needed for storing string literals. 

The stackaddress  routine is passed a simple symbol table address value, and converts this
into an offset that will later be computed relative to the cpu.bp  register when the program is
executed. 

The main part of the code generation is done in terms of calls to a routine emit , which does
some error checking that the "memory" has not overflowed. Storing a string in the literal pool
in high memory is done by routine stackstring , which is also responsible for overflow
checking. As usual, errors are reported through the error reporting class discussed in section
14.3; the code generator suppresses further attempts to generate code if memory overflow
occurs, while still allowing syntactic parsing to proceed. 

Since many of the routines in the code generator class are very elementary interfaces to emit ,
the reader might feel that we have taken modular decomposition too far - code generation as
simple as this could surely be made more efficient if the parser simply evoked emit  directly.
This is certainly true, and many recursive descent compilers do this. 

Code generation is very easy for a stack-oriented language. It is much more difficult for a
machine with no stack, and only a few registers and addressing modes. However, as the
discussion in later sections will reveal, the interface we have developed is, in fact, capable of
being used with only minor modification for code generation for more conventional
machines. Developing the system in a highly modular way has many advantages if one is
striving for portability, and for the ability to construct improved back ends easily. 

It may be of interest to show the code generated for a simple program that incorporates several
features of the language. 

     Clang 1.0 on 19/05/96 at 22:17:12

       0 : PROGRAM Debug;
       0 :   CONST
       0 :     VotingAge = 18;
       0 :   VAR
       0 :     Eligible, Voters[100], Age, Total;
       0 :   BEGIN
       2 :     Total := 0;
       7 :     Eligible := 0;
      12 :     READ(Age);
      15 :     WHILE Age > 0 DO
      23 :       BEGIN
      23 :         IF Age > VotingAge THEN
      29 :           BEGIN
      31 :             Voters[Eligible] := Age;
      43 :             Eligible := Eligible + 1;
      52 :             Total := Total + Voters[Eligible -1];
      67 :           END;
      71 :         READ(Age);
      74 :       END;
      76 :     WRITE(Eligible, ’ voters. Average age = ’, Total / Eligible);
      91 :   END.

The symbol table has entries 

      1 DEBUG          Program
      2 VOTINGAGE      Constant      18
      3 ELIGIBLE       Variable       1
      4 VOTERS         Variable       2
      5 AGE            Variable     103
      6 TOTAL          Variable     104



and the generated code is as follows: 

  0 DSP   104    Reserve variable space
  2 ADR  -104      address of Total
  4 LIT     0      push 0
  6 STO          Total := 0
  7 ADR    -1      address of Eligible
  9 LIT     0      push 0
 11 STO          Eligible := 0
 12 ADR  -103      address of Age
 14 INN          READ(Age)
 15 ADR  -103      address of Age
 17 VAL            value of Age
 18 LIT     0      push 0
 20 GTR            compare
 21 BZE    74    WHILE Age > 0 DO
 23 ADR  -103      address of Age
 25 VAL            value of Age
 26 LIT    18      push VotingAge
 28 GTR            compare
 29 BZE    69      IF Age > VotingAge THEN
 31 ADR    -2        address of Voters[0]
 33 ADR    -1        address of Eligible
 35 VAL              value of Eligible
 36 LIT   101        array size 101
 38 IND              address of Voters[Eligible]
 39 ADR  -103        address of Age
 41 VAL              value of Age
 42 STO              Voters[Eligible] := Age
 43 ADR    -1          address of Eligible
 45 ADR    -1          address of Eligible
 47 VAL                value of Eligible
 48 LIT     1          push 1
 50 ADD                value of Eligible + 1
 51 STO              Eligible := Eligible + 1
 52 ADR  -104          address of Total
 54 ADR  -104          address of Total
 56 VAL                value of Total
 57 ADR    -2          address of Voters[0]
 59 ADR    -1          address of Eligible
 61 VAL                value of Eligible
 62 LIT     1          push 1
 64 SUB                value of Eligible - 1
 65 LIT   101          array size 101
 67 IND                address of Voters[Eligible-1]
 68 VAL                value of Voters[Eligible - 1]
 69 ADD                value of Total + Voters[Eligible - 1]
 70 STO              Total := Total + Voters[Eligible - 1]
 71 ADR  -103           address of Age
 73 INN              READ(Age)
 74 BRN    15        to start of WHILE loop
 76 ADR    -1      address of Eligible
 78 VAL            value of Eligible
 79 PRN          WRITE(Eligible,
 80 PRS  ’ voters. Average age = ’
 82 ADR  -104      address of Total
 84 VAL            value of Total
 85 ADR    -1      address of Eligible
 87 VAL            value of Eligible
 88 DVD            value of Total / Eligible
 89 PRN          WRITE(Total / Eligible)
 90 NLN          output new line
 91 HLT          END.

Exercises 

15.16 If you study the code generated by the compiler you should be struck by the fact that the
sequence ADR x; VAL  occurs frequently. Investigate the possibilities for peephole optimization.
Assume that the stack machine is extended to provide a new operation PSH x  that will perform this
sequence in one operation as follows: 

              case STKMC_psh:
                cpu.sp--;
                int ear = cpu.bp + mem[cpu.pc];



                if (inbounds(cpu.sp) && inbounds(ear))
                  { mem[cpu.sp] = mem[ear]; cpu.pc++; }
                break;

Go on to modify the code generator so that it will replace any sequence ADR x; VAL  with PSH x  (be
careful: not all VAL operations follow immediately on an ADR operation). 

15.17 Augment the system so that you can declare constants to be literal strings and print these, for
example 

                PROGRAM Debug;
                  CONST
                    Planet = ’World’;
                  BEGIN
                    WRITE(’Hello ’, Planet)
                  END.

How would you need to modify the parser, code generator, and run-time system? 

15.18 Suppose that we wished to use relative branch instructions, rather than absolute branch
instructions. How would code generation be affected? 

15.19 (Harder) Once you have introduced a Boolean type into Clang or Topsy, along with AND and
OR operations, try to generate code based on short-circuit semantics, rather than the easier Boolean
operator approach. In the short-circuit approach the operators AND and OR are defined to have
semantic meanings such that 

               A AND B       means      IF A THEN B ELSE FALSE END
               A OR  B       means      IF A THEN TRUE ELSE B END

In the language Ada this has been made explicit: AND and OR alone have Boolean operator
semantics, but AND THEN and OR ELSE have short-circuit semantics. Thus, in Ada 

               A AND THEN B       means      IF A THEN B ELSE FALSE END
               A OR ELSE  B       means      IF A THEN TRUE ELSE B END

Can you make your system accept both forms? 

15.20 Consider an extension where we allow a one-dimensional array with fixed bounds, but with
the lower bound set by the user. For example, a way to declare such arrays might be along the lines
of 

                    CONST
                      BC = -44;
                      AD = 300;
                    VAR
                      WWII[1939 : 1945], RomanBritain[BC : AD];

Modify the language, compiler, and interpreter to handle this idea, performing bounds checks on
the subscript. Addressing an element is quite easy. If we declare an array 

                     VAR Array[Min : Max];

then the offset of the I th element in the array is computed as 

                     I - Min + offset of first element of array

which may give some hints about the checking problem too, if you think of it as 

                     (offset of first element of array - Min)  +  I

15.21 A little more ingenuity is called for if one is to allow two-dimensional arrays. Again, if these



are of fixed size, addressing is quite easy. Suppose we declare a matrix 

                     VAR Matrix[MinX : MaxX , MinY : MaxY];

Then we shall have to reserve (MaxX-MinX+1) * (MaxY-MinY+1)  consecutive locations for the
whole array. If we store the elements by rows (as in most languages, other than Fortran), then the
offset of the I,J th element in the matrix will be found as 

        (I - MinX) * (MaxY - MinY + 1) + (J - MinY) + offset of first element

You will need a new version of the STK_ind  opcode (incorporating bounds checking). 

15.22 Extend your system to allow whole arrays (of the same length) to be assigned one to another. 

15.23 Some users like to live dangerously. How could you arrange for the compiler to have an
option whereby generation of subscript range checks could be suppressed? 

15.24 Complete level 1 of your extended Clang or Topsy compiler by generating code for all the
extra statement forms that you have introduced while assiduously exploring the exercises suggested
earlier in this chapter. How many of these can only be completed if the instruction set of the
machine is extended? 

15.3 Other aspects of code generation

As the reader may have realized, the approach taken to code generation up until now has been
rather idealistic. A hypothetical stack machine is, in many ways, ideal for our language - as witness
the simplicity of the code generator - but it may differ rather markedly from a real machine. In this
section we wish to look at other aspects of this large and intricate subject. 

15.3.1 Machine tyranny 

It is rather awkward to describe code generation for a real machine in a general text. It inevitably
becomes machine specific, and the principles may become obscured behind a lot of detail for an
architecture with which the reader may be completely unfamiliar. To illustrate a few of these
difficulties, we shall consider some features of code generation for a relatively simple processor. 

The Zilog Z80 processor that we shall use as a model is typical of several 8-bit microprocessors that
were very popular in the early 1980’s, and which helped to spur on the microcomputer revolution.
It had a single 8-bit accumulator (denoted by A), several internal 8-bit registers (denoted by B, C,

D, E, H  and L), a 16-bit program counter (PC), two 16-bit index registers (IX  and IY ), a 16-bit
stack pointer (SP), an 8-bit data bus, and a 16-bit address bus to allow access to 64KB of memory.
With the exception of the BRN opcode (and, perhaps, the HLT opcode), our hypothetical machine
instructions do not map one-for-one onto Z80 opcodes. Indeed, at first sight the Z80 would appear
to be ill suited to supporting a high-level language at all, since operations on a single 8-bit
accumulator only provide for handling numbers between -128 and +127, scarcely of much use in
arithmetic calculations. For many years, however - even after the introduction of processors like the
Intel 80x86 and Motorola 680x0 - 16-bit arithmetic was deemed adequate for quite a number of
operations, as it allows for numbers in the range -32768 to +32767. In the Z80 a limited number of
operations were allowed on 16-bit register pairs. These were denoted BC, DE  and HL, and were
formed by simply concatenating the 8-bit registers mentioned earlier. For example, 16-bit constants
could be loaded immediately into a register pair, and such pairs could be pushed and popped from



the stack, and transferred directly to and from memory. In addition, the HL pair could be used as a
16-bit accumulator into which could be added and subtracted the other pairs, and could also be used
to perform register-indirect addressing of bytes. On the Z80 the 16-bit operations stopped short of
multiplication, division, logical operations and even comparison against zero, all of which are
found on more modern 16 and 32-bit processors. We do not propose to describe the instruction set
in any detail; hopefully the reader will be able to understand the code fragments below from the
commentary given alongside. 

As an example, let us consider Z80 code for the simple assignment statement 

      I := 4 + J - K

where I, J  and K are integers, each stored in two bytes. A fairly optimal translation of this, making
use of the HL register pair as a 16 bit accumulator, but not using a stack in any way, might be as
follows: 

      LD    HL,4       ; HL := 4
      LD    DE,(J)     ; DE := Mem[J]
      ADD   HL,DE      ; HL := HL + DE          (4 + J)
      LD    DE,(K)     ; DE := Mem[K]
      OR    A          ; just to clear Carry
      SBC   HL,DE      ; HL := HL - DE - Carry  (4 + J - K)
      LD    (I),HL     ; Mem[I] := HL

On the Z80 this amounted to some 18 bytes of code. The only point worth noting is that, unlike
addition, there was no simple 16-bit subtraction operation, only one which involved a carry bit,
which consequently required unsetting before SBC could be executed. By contrast, the same
statement coded for our hypothetical machine would have produced 13 words of code 

      ADR   I          ; push address of I
      LIT   4          ; push constant 4
      ADR   J          ; push address of J
      VAL              ; replace with value of J
      ADD              ; 4 + J
      ADR   K          ; push address of K
      VAL              ; replace with value of K
      SUB              ; 4 + J - K
      STO              ; store on I

and for a simple single-accumulator machine like that discussed in Chapter 4 we should probably
think of coding this statement on the lines of 

      LDI   4          ; A := 4
      ADD   J          ; A := 4 + J
      SUB   K          ; A := 4 + J - K
      STA   I          ; I := 4 + J - K

How do we begin to map stack machine code to these other forms? One approach might be to
consider the effect of the opcodes, as defined in the interpreter in Chapter 4, and to arrange that
code generating routines like stackaddress , stackconstant  and assign  generate code equivalent
to that which would be obeyed by the interpreter. For convenience we quote the relevant
equivalences again. (We use T to denote the virtual machine top of stack pointer, to avoid confusion
with the SP register of the Z80 real machine.) 

      ADR address : T := T - 1; Mem[T] := address           (push an address)
      LIT value   : T := T - 1; Mem[T] := value             (push a constant)
      VAL         : Mem[T] := Mem[Mem[T]]                   (dereference)
      ADD         : T := T + 1; Mem[T] := Mem[T] + Mem[T-1] (addition)
      SUB         : T := T + 1; Mem[T] := Mem[T] - Mem[T-1] (subtraction)
      STO         : Mem[Mem[T+1]] := Mem[T]; T := T + 2     (store top-of-stack)

It does not take much imagination to see that this would produce a great deal more code than we
should like. For example, the equivalent Z80 code for an LIT  opcode, obtained from a translation of



the sequence above, and generated by stackconstant(Num)  might be 

      T := T - 1       :  LD    HL,(T)     ; HL := T
                          DEC   HL         ; HL := HL - 1
                          DEC   HL         ; HL := HL - 1
                          LD    (T),HL     ; T := HL
      Mem[T] := Num    :  LD    DE,Num     ; DE := Num
                          LD    (HL),E     ; store low order byte
                          INC   HL         ; HL := HL + 1
                          LD    (HL),D     ; store high order byte

which amounts to some 14 bytes. We should comment that HL must be decremented twice to allow
for the fact that memory is addressed in bytes, not words, and that we have to store the two halves
of the register pair DE in two operations, "bumping" the HL pair (used for register indirect
addressing) between these. 

If the machine for which we are generating code does not have some sort of hardware stack we
might be forced or tempted into taking this approach, but fortunately most modern processors do
incorporate a stack. Although the Z80 did not support operations like ADD and SUB on elements of
its stack, the pushing which is implicit in LIT  and ADR is easily handled, and the popping and
pushing implied by ADD and SUB are nearly as simple. Consequently, it would be quite simple to
write code generating routines which, for the same assignment statement as before, would have the
effects shown below. 

      ADR  I   :    LD    HL,I       ;     HL := address of I
                    PUSH  HL         ; push address of I
      LIT  4   :    LD    DE,4       ;     DE := 4
                    PUSH  DE         ; push value of 4
      ADR  J   :    LD    HL,J       ;     HL := address of J
                    PUSH  HL         ; push address of J                  *
      VAL      :    POP   HL         ;     HL := address of variable      *
                    LD    E,(HL)     ;     E := Mem[HL]  low order byte
                    INC   HL         ;     HL := HL + 1
                    LD    D,(HL)     ;     D := Mem[HL]  high order byte
                    PUSH  DE         ; replace with value of J            *
      ADD      :    POP   DE         ;     DE := second operand           *
                    POP   HL         ;     HL := first operand
                    ADD   HL,DE      ;     HL := HL + DE
                    PUSH  HL         ; 4 + J
      ADR  K   :    LD    HL,K       ;     HL := address of K
                    PUSH  HL         ; push address of K                  *
      VAL      :    POP   HL         ;     HL := address of variable      *
                    LD    E,(HL)     ;     E := low order byte
                    INC   HL         ;     HL := HL + 1
                    LD    D,(HL)     ;     D := high order byte
                    PUSH  DE         ; replace with value of K            *
      SUB      :    POP   DE         ;     DE := second operand           *
                    POP   HL         ;     HL := first operand
                    OR    A          ;     unset carry
                    SBC   HL,DE      ;     HL := HL - DE - carry
                    PUSH  HL         ; 4 + J - K                          **
      STO      :    POP   DE         ;     DE := value to be stored       **
                    POP   HL         ;     HL := address to be stored at
                    LD    (HL),E     ;     Mem[HL] := E  store low order byte
                    INC   HL         ;     HL := HL + 1
                    LD    (HL),D     ;     Mem[HL] := D  store high order byte
                                     ; store on I

We need not present code generator routines based on these ideas in any detail. Their intent should
be fairly clear - the code generated by each follows distinct patterns, with obvious differences being
handled by the parameters which have already been introduced. 

For the example under discussion we have generated 41 bytes, which is still quite a long way from
the optimal 18 given before. However, little effort would be required to reduce this to 32 bytes. It is
easy to see that 8 bytes could simply be removed (the ones marked with a single asterisk), since the
operations of pushing a register pair at the end of one code generating sequence and of popping the
same pair at the start of the next are clearly redundant. Another byte could be removed by replacing



the two marked with a double asterisk by a one-byte opcode for exchanging the DE and HL pairs (the
Z80 code EX DE,HL  does this). These are examples of so-called "peephole" optimization, and are
quite easily included into the code generating routines we are contemplating. For example, the
algorithm for assign  could be 

   PROCEDURE Assign;
   (* Generate code to store top-of-stack on address stored next-to-top *)
     BEGIN
       IF last code generated was PUSH HL
         THEN replace this PUSH HL with EX DE,HL
         ELSIF last code generated was PUSH DE
           THEN delete PUSH DE
           ELSE generate code for POP DE
       END;
       generate code for POP HL; generate code for LD (HL),E
       generate code for INC HL; generate code for LD (HL),D
     END;

(The reader might like to reflect on the kinds of assignment statements which would give rise to the
three possible paths through this routine.) 

By now, hopefully, it will have dawned on the reader that generation of native code is probably
strongly influenced by the desire to make this compact and efficient, and that achieving this
objective will require the compiler writer to be highly conversant with details of the target machine,
and with the possibilities afforded by its instruction set. We could pursue the ideas we have just
introduced, but will refrain from doing so, concentrating instead on how one might come up with a
better structure from which to generate code. 

15.3.2 Abstract syntax trees as intermediate representations 

In section 13.3 the reader was introduced to the idea of deriving an abstract syntax tree from an
expression, by attributing the grammar that describes such expressions so as to add semantic actions
that construct the nodes in these trees and then link them together as the parsing process is carried
out. After such a tree has been completely constructed by the syntactic/semantic analysis phase (or
even during its construction) it is often possible to carry out various transformations on it before
embarking on the code generation phase that consists of walking it in some convenient way,
generating code apposite to each node as it is visited. 

In principle we can construct a single tree to represent an entire program. Initially we shall prefer
simply to demonstrate the use of trees to represent the expressions that appear on both sides of
Assignments, as components of ReadStatements and WriteStatements and as components of the
Condition in IfStatements and WhileStatements. Later we shall extend the use of trees to handle the
compilation of parameterized subroutine calls as well. 

A tree is usually implemented as a structure in which the various nodes are linked by pointers, and
so we declare an AST type to be a pointer to a NODE type. The nodes are inhomogeneous. When we
declare them in traditional implementations we resort to using variant records or unions, but in a
C++ implementation we can take advantage of inheritance to derive various node classes from a
base class, declared as 

  struct NODE {
    int value;                     // value to be associated with this node
    bool defined;                  // true if value is predictable at compile time
    NODE()                         { defined = 0; }
    virtual void emit1(void) = 0;
    virtual void emit2(void) = 0;
    // ... further members as appropriate
  };

where the emit  member functions will be responsible for code generation as the nodes are visited



during the code generation phase. It makes sense to think of a value associated with each node -
either a value that can be predicted at compile-time, or a value that will require code to be generated
to compute it at run-time (where it will then be stored in a register, or on a machine stack, perhaps). 

When constants form operands of expressions they give rise to nodes of a simple CONSTNODE class: 

  struct CONSTNODE : public NODE {
    CONSTNODE(int V)               { value = V; defined = true; }
    virtual void emit1(void);      // generate code to retrieve value of constant
    virtual void emit2(void)       {;}
  };

Operands in expressions that are known to be associated with variables are handled by introducing
a derived VARNODE class. Such nodes need to store the variable’s offset address, and to provide at
least two code generating member functions. These will handle the generation of code when the
variable is associated with a ValueDesignator (as it is in a Factor) and when it is associated with a
VariableDesignator (as it is on the left side of an Assignment, or in a ReadStatement). 

  struct VARNODE : public NODE {
    int offset;                    // offset of variable assigned by compiler
    VARNODE() {;}                  // default constructor
    VARNODE(int O)                 { offset = O; }
    virtual void emit1(void);      // generate code to retrieve value of variable
    virtual void emit2(void);      // generate code to retrieve address of variable
  };

To handle access to the elements of an array we derive an INDEXNODE class from the VARNODE class.
The member function responsible for retrieving the address of an array element has the
responsibility of generating code to perform run-time checks that the index remains in bounds, so
we need further pointers to the subtrees that represent the index expression and the size of the array.

  struct INDEXNODE : public VARNODE {
    AST size;                      // for range checking
    AST index;                     // subscripting expression
    INDEXNODE(int O, AST S, AST I) { offset = O; size = S; index = I; }
    //      void emit1(void)          is inherited from VARNODE
    virtual void emit2(void);      // code to retrieve address of array element
  };

Finally, we derive two node classes associated with unary (prefix) and binary (infix) arithmetic
operations 

  struct MONOPNODE : public NODE {
    CGEN_operators op;
    AST operand;
    MONOPNODE(CGEN_operators O, AST E) { op = O; operand = E }
    virtual void emit1(void);      // generate code to evaluate "op operand"
    virtual void emit2(void)       {;}
  };

  struct BINOPNODE : public NODE {
    CGEN_operators op;
    AST left, right;
    BINOPNODE(CGEN_operators O, AST L, AST R) { op = O; left = L; right = R; }
    virtual void emit1(void);      // generate code to evaluate "left op right"
    virtual void emit2(void)       {;}
  };

The structures we hope to set up are exemplified by considering an assignment statement 

    A[X + 4] := (A[3] + Z) * (5 - 4 * 1) - Y

We use one tree to represent the address used for the destination (left side), and one for the value of
the expression (right side), as shown in Figure 15.1, where for illustration the array A is assumed to
have been declared with an size of 8. 



Tree-building operations may be understood by referring to the attributes with which a Cocol
grammar would be decorated: 

   Assignment
   =                          (. AST dest, exp; .)
      Variable<dest> ":="
      Expression<exp> SYNC    (. CGen->assign(dest, exp); .) .

   Variable<AST &V>
   =                          (. TABLE_entries entry; .)
      Designator<V, classset(TABLE_vars), entry>.

   Designator<AST &D, classset allowed, TABLE_entries &entry>
   =                          (. TABLE_alfa name;
                                 AST index, size;
                                 bool found;
                                 D = CGen->emptyast(); .)
      Ident<name>             (. Table->search(name, entry, found);
                                 if (!found) SemError(202);
                                 if (!allowed.memb(entry.idclass)) SemError(206);
                                 if (entry.idclass != TABLE_vars) return;
                                 CGen->stackaddress(D, entry.v.offset); .)
      ( "["                   (. if (entry.v.scalar) SemError(204); .)
        Expression<index>     (. if (!entry.v.scalar)
                                 /* determine size for bounds check */
                                 { CGen->stackconstant(size, entry.v.size);
                                   CGen->subscript(D, entry.v.offset,
                                                   size, index); } .)
        "]"
        |                     (. if (!entry.v.scalar) SemError(205); .)
      ) .

   Expression<AST &E>
   =                          (. AST T;
                                 CGEN_operators op;
                                 E = CGen->emptyast(); .)
      (   "+" Term<E>
        | "-" Term<E>         (. CGen->negateinteger(E); .)
        | Term<E>
      )
      { AddOp<op> Term<T>     (. CGen->binaryintegerop(op, E, T); .)
      } .

   Term<AST &T>
   =                          (. AST F;
                                 CGEN_operators op; .)
      Factor<T>
      { (  MulOp<op>
         | /* missing op */   (. SynError(92); op = CGEN_opmul; .)
        ) Factor<F>           (. CGen->binaryintegerop(CGEN_op, T, F); .)
      } .

   Factor<AST &F>
   =                          (. TABLE_entries entry;
                                 int value;
                                 F = CGen->emptyast(); .)
        Designator<F, classset(TABLE_consts, TABLE_vars), entry>



                              (. switch (entry.idclass)
                                 { case TABLE_consts :
                                     CGen->stackconstant(F, entry.c.value);
                                     break;
                                   default : break;
                                 } .)
      | Number<value>         (. CGen->stackconstant(F, value); .)
      | "(" Expression<F> ")" .

The reader should note that: 

This grammar is very close to that presented earlier. The code generator interface is changed
only in that the various routines need extra parameters specifying the subtrees that they
manipulate. 

The productions for Designator, Expression and Factor take the precaution of initializing
their formal parameter to point to an "empty" node, so that if a syntax error is detected, the
nodes of a tree will still be well defined. 

In a simple system, the various routines like stackconstant, stackaddress  and
binaryintegerop  do little more than call upon the appropriate class constructors. As an example,
the routine for binaryintegerop  is merely 

  void binaryintegerop(CGEN_operators op, AST &left, AST &right)
  { left = new BINOPNODE(op, left, right); }

where we note that the left  parameter is used both for input and output (this is done to keep the
code generation interface as close as possible to that used in the previous system). These routines
simply build the tree, and do not actually generate code. 

Code generation is left in the charge of routines like assign , jumponfalse  and readvalue , which
take new parameters denoting the tree structures that they are required to walk. This may be
exemplified by code for the assign  routine, as it would be developed to generate code for our
simple stack machine 

  void CGEN::assign(AST dest, AST expr)
  { if (dest)                // beware of corrupt trees
    { dest->emit2();         // generate code to push address of destination
      delete dest;           // recovery memory used for tree
    }
    if (expr)                // beware of corrupt trees
    { expr->emit1();         // generate code to push value of expression
      delete expr;           // recovery memory used for tree
      emit(int(STKMC_sto));  // generate the store instruction
    }
  }

In typical OOP fashion, each subtree "knows" how to generate its own code! For a VARNODE, for
example, and for our stack machine, we would define the emit  members as follows: 

  void VARNODE::emit1(void)   // load variable value onto stack
  { emit2(); CGen->emit(int(STKMC_val)); }

  void VARNODE::emit2(void)   // load variable address onto stack
  { CGen->emit(int(STKMC_adr)); CGen->emit(-offset); }

15.3.3 Simple optimizations - constant folding 

The reader may need to be convinced that the construction of a tree is of any real value, especially
when used to generate code for a simple stack machine. To back up the assertion that
transformations on a tree are easily effected and can lead to the generation of better code, let us
reconsider the statement 



    A[X + 4] := (A[3] + Z) * (5 - 4 * 1) - Y

It is easy to identify opportunities for code improvement: 

A[3]  represents an array access with a constant index. There is no real need to compute the
additional offset for A[3]  at run-time. It can be done at compile-time, along with a
compile-time (rather than run-time) check that the subscript expression is "in bounds". 

Similarly, the subexpression (5 - 4 * 1) only has constant operands, and can also be evaluated
at compile-time. 

Before any code is generated, the trees for the above assignment could be reduced to those shown
in Figure 15.2. 

These sorts of manipulations fall into the category known as constant folding. They are easily
added to the tree- building process, but are rather harder to do if code is generated on the fly.
Constant folding is implemented by writing tree-building routines modelled on the following: 

  void CGEN::subscript(AST &base, int offset, AST &size, AST &index)
  { if (!index || !index->defined           // check for well defined
        || !size || !size->defined)         // trees and constant index
    { base = new INDEXNODE(offset, size, index); return; }
    if (unsigned(index->value) >= size->value)
      Report->error(223);                   // report range error immediately
    else                                    // simple variable designator
      base = new VARNODE(offset + index->value);
    delete index; delete size;              // and delete the unused debris
  }

  void CGEN::binaryop(CGEN_operators op, AST &left, AST &right)
  { if (left && right)                      // beware of corrupt trees
    { if (left->defined && right->defined)  // both operands are constant
      { switch (op)                         // so do compile-time evaluation
        { case CGEN_opadd: left->value += right->value; break;
          case CGEN_opsub: left->value -= right->value; break;
                                            // ... others like this
        }
        delete right; return;               // discard one operand
      }
    }
    left = new BINOPNODE(op, left, right);  // construct proper bin op node
  }

The reader should notice that such constant folding is essentially machine independent (assuming
that the arithmetic can be done at compile-time to the required precision). Tree construction
represents the last phase of a machine-independent front end to a compiler; the routines that walk
the tree become machine dependent. 

Recognition and evaluation of expressions in which every operand is constant is useful if one



wishes to extend the language in other ways. For example, we may now easily extend our Clang
language to allow for constant expressions within ConstDeclarations: 

     ConstDeclarations =  "CONST" OneConst { OneConst } .
     OneConst          =  identifier "=" ConstExpression ";" .
     ConstExpression   =  Expression .

We can make use of the existing parsing routines to handle a ConstExpression. The attributes in a
Cocol specification would simply incorporate a constraint check that the expression was, indeed,
"defined", and if so, store the "value" in the symbol table. 

15.3.4 Simple optimizations - removal of redundant code 

Production quality compilers often expend considerable effort in the detection of structures for
which no code need be generated at all. For example, a source statement of the form 

             WHILE TRUE DO Something

does not require the generation of code like 

             LAB  IF NOT TRUE GOTO EXIT END
                  Something
                  GOTO LAB
             EXIT

but can be reduced to 

             LAB  Something
                  GOTO LAB

and, to take a more extreme case, if it were ever written, source code like 

             WHILE 15 < 6 DO Something

could be disregarded completely. Once again, optimizations of this sort are most easily attempted
after an internal representation of the source program has been created in the form of a tree or
graph. A full discussion of this fascinating subject is beyond the scope of this text, and it will
suffice merely to mention a few improvements that might be incorporated into a simple
tree-walking code generator for expressions. For example, the remaining multiplication by 1 in the
expression we have used for illustration is redundant, and is easily eliminated. Similarly,
multiplications by small powers of 2 could be converted into shift operations if the machine
supports these, and multiplication by zero could be recognized as a golden opportunity to load a
constant of 0 rather than perform any multiplications at all. To exemplify this, consider an extract
from an improved routine that generates code to load the value resulting from a binary operation
onto the run-time stack of our simple machine: 

      void BINOPNODE::emit1(void)
      // load value onto stack resulting from binary operation
      { bool folded = false;
        if (left && right)                        // beware of corrupt trees
        { switch (op)                             // redundant operations?
          { case CGEN_opadd:
              if (right->defined && right->value == 0) // x + 0 = x
                { left->emit1(); folded = true; }
                                                  // ... other special cases
              break;
            case CGEN_opsub:
                                                  // ... other special cases
            case CGEN_opmul:
              if (right->defined && right->value == 1) // x * 1 = x
                { left->emit1(); folded = true; }
              else if (right->defined && right->value == 0) // x * 0 = 0
                { right->emit1(); folded = true; }
                                                  // ... other special cases



              break;
            case CGEN_opdvd:
                                                  // ... other special cases
          }
        }
        if (!folded)                              // still have to generate code
        { if (left)  left->emit1();               // beware of corrupt trees
          if (right) right->emit1();
          CGen->emit(int(STKMC_add) + int(op));   // careful - ordering used
        }
        delete left; delete right;                // remove debris
      }

These sorts of optimizations can have a remarkable effect on the volume of code that is generated -
assuming, of course, that the expressions are littered with constants. 

So far we have assumed that the structures set up as we parse expressions are all binary trees - each
node has subtrees that are disjoint. Other structures are possible, although creating these calls for
routines more complex than we have considered up till now. If we relax the restriction that subtrees
must be disjoint, we introduce the possibility of using a so-called directed acyclic graph (DAG).
This finds application in optimizations in which common subexpressions are identified, so that code
for them is generated as few times as possible. For example, the expression
(a * a + b * b) / (a * a - b * b) could be optimized so as to compute each of a * a and b * b only
once. A binary tree structure and a DAG for this expression are depicted in Figure 15.3, but further
treatment of this topic is beyond the scope of this text. 

15.3.5 Generation of assembler code 

We should also mention another approach often taken in providing native code compilers,
especially on small machines. This is to generate output in the form of assembler code that can then
be processed in a second pass using a macro assembler. Although carrying an overhead in terms of
compilation speed, this approach has some strong points - it relieves the compiler writer of
developing intensely machine dependent bit manipulating code (very tiresome in some languages,
like the original Pascal), handling awkward forward referencing problems, dealing with operating
system and linkage conventions, and so forth. It is widely used on Unix systems, for example. 

On the source diskette can be found such a code generator. This can be used to construct a compiler
that will translate Clang programs into the ASSEMBLER language for the tiny single-accumulator
machine discussed in Chapter 4, and for which assemblers were developed in Chapter 6. Clearly
there is a very real restriction on the size of source program that can be handled by this system, but
the code generator employs several optimizations of the sort discussed earlier, and is an entertaining
example of code that the reader is encouraged to study. Space does not permit of a full description,
but the following points are worth emphasizing: 

An on-the-fly code generator for this machine would be very difficult to write, but the Cocol
description of the phrase structure grammar can remain exactly the same as that used for the



stack machine. Naturally, the internal definitions of some members of the node classes are
different, as are the implementations of the tree- walking member functions. 

The single-accumulator machine has conditional branching instructions that are very different
from those used in the stack machine; it also has a rather non-orthogonal set of these. This
calls for some ingenuity in the generation of code for Conditions, IfStatements and
WhileStatements. 

The problem of handling the forward references needed in conditional statements is left to the
later assembler stage. However, the code generator still has to solve the problem of generating
a self-consistent set of labels for those instructions that need them. 

The input/output facilities of the two machines are rather disparate. In particular the
single-accumulator machine does not have an special operation for writing strings. This is
handled by arranging for the code generator to create and call a standard output subroutine for
this purpose when it is required. The approach of generating calls to standardized library
routines is, of course, very widespread in real compilers. 

Although capable of handling access to array elements, the code generator does not generate
any run-time subscript checks, as these would be prohibitively expensive on such a tiny
machine. 

The machine described in Chapter 4 does not have any operations for handling multiplication
and division. A compiler error is reported if it appears that such operations are needed. 

Exercises 

Implementations of tree-based code generators for our simple stack machine can be found on the
source diskette, as can the parsers and Cocol grammars that match these. The Modula-2 and Pascal
implementations make use of variant records for discriminating between the various classes of
nodes; C++ versions of these are also available. 

15.25 If you program in Modula-2 or Pascal and have access to an implementation that supports
OOP extensions to these languages, derive a tree-walking code generator based on the C++ model. 

15.26 The constant folding operations perform little in the way of range checks. Improve them. 

15.27 Adapt the tree-walking code generator for the stack machine to support the extensions you
have made to Clang or Topsy. 

15.28 Adapt the tree-walking code generator for the single-accumulator machine to support the
extensions you have made to Clang or Topsy. 

15.29 Extend the single-accumulator machine to support multiplication and division, and extend the
code generator for Clang or Topsy to permit these operations (one cannot do much multiplication
and division in an 8-bit machine, but it is the principle that matters here). 

15.30 Follow up the suggestion made earlier, and extend Clang or Topsy to allow constant
expressions to appear in constant declarations, for example 



                 CONST
                   Max = 100;
                   Limit = 2 * Max + 1;
                   NegMax = - Max;

15.31 Perusal of our example assignment should suggest the possibility of producing a still smaller
tree for the right-hand side expression (Figure 15.4(a)). And, were the assignment to have been 

              A[X + 4] := (A[3] + Z) * (4 - 4 * 1) - Y

perhaps we could do better still (see Figure 15.4(b)). How would you modify the tree-building
routines to achieve this sort of improvement? Can you do this in a way that still allows your
compiler to support the notion of a constant expression as part of a constant declaration? 

15.32 (More extensive) Modify the attributed grammar and tree-building code generator so that
node classes are introduced for the various categories of Statement. Then develop code generator
routines that can effect the sorts of optimizations hinted at earlier for removing redundant code for
unreachable components of IfStatements and WhileStatements. Sophisticated compilers often issue
warnings when they discover code that can never be executed. Can you incorporate such a feature
into your compiler? 

15.33 (Harder) Use a tree-based representation to generate code for Boolean expressions that
require short- circuit semantics (see Exercises 13.10 and 15.19). 

15.34 (More extensive) Develop a code generator for a register-based machine such as that
suggested in section 13.3. Can you do this without altering the Cocol specification, as we claim is
possible for the single-accumulator machine of Chapter 4? 

15.35 Many development environments incorporate "debuggers" - sophisticated tools that will trace
the execution of a compiled program in conjunction with the source code, referring run-time errors
to source code statements, allowing the user to interrogate (and even alter) the values of variables
by using the identifiers of the source code, and so on. Development of such a system could be a
very open- ended project. As a less ambitious project, extend the interpretive compiler for Clang or
Topsy that, in the event of a run-time error, will relate this to the corresponding line in the source,
and then print a post-mortem dump showing the values of the variables at the time the error
occurred. A system of this sort was described for the well-known subset of Pascal known as
Pascal-S (Wirth, 1981; Rees and Robson, 1987), and is also used in the implementation of the
simple teaching language Umbriel (Terry, 1995). 

15.36 Develop a code generator that produces correct C or C++ code from Clang or Topsy source. 



Further reading 

Our treatment of code generation has been dangerously superficial. "Real" code generation tends to
become highly machine dependent, and the literature reflects this. Although all of the standard texts
have a lot to say on the subject, those texts which do not confine themselves to generalities (by
stopping short of showing how it is actually done) inevitably relate their material to one or other
real machine, which can become confusing for a beginner who has little if any experience of that
machine. Watson (1989) has a very readable discussion of the use of tree structures. Considerably
more detail is given in the comprehensive books by Aho, Sethi and Ullman (1986) and Fischer and
LeBlanc (1988, 1991). Various texts discuss code generation for familiar microprocessors. For
example, the book by Mak (1991) develops a Pascal compiler that generates assembler code for the
Intel 80x86 range of machines, and the book by Ullman (1994) develops a subset Modula-2
compiler that generates a variant of Intel assembler. The recent book by Holmes (1995) uses object
orientation to develop a Pascal compiler, discussing the generation of assembler code for a SUN
SPARC workstation. Wirth (1996) presents a tightly written account of developing a compiler for a
subset of Oberon that generates code for a slightly idealized processor, modelled on the
hypothetical RISC processor named DLX by Hennessy and Patterson (1990) to resemble the MIPS
processor. Elder (1994) gives a thorough description of many aspects of code generation for a more
advanced stack-based machine than the one described here. 
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16 SIMPLE BLOCK STRUCTURE 

Our simple language has so far not provided for the procedure concept in any way. It is the aim of
the next two chapters to show how Clang and its compiler can be extended to provide procedures
and functions, using a model based on those found in block-structured languages like Modula-2 and
Pascal, which allow the use of local variables, local procedures and recursion. This involves a much
deeper treatment of the concepts of storage allocation and management than we have needed
previously. 

As in the last two chapters, we shall develop our arguments by a process of slow refinement. On the
source diskette will be found Cocol grammars, hand-crafted parsers and code generators covering
each stage of this refinement, and the reader is encouraged to study this code in detail as he or she
reads the text. 

16.1 Parameterless procedures 

In this chapter we shall confine discussion to parameterless regular procedures (or void functions
in C++ terminology), and discuss parameters and value-returning functions in the following chapter.

16.1.1 Source handling, lexical analysis and error reporting 

The extensions to be discussed in this chapter require no changes to the source handler, scanner or
error reporter classes that were not pre-empted in the discussion in Chapter 14. 

16.1.2 Syntax 

Regular procedure declaration is inspired by the way it is done in Modula-2, described in EBNF by 

    Block             =   { ConstDeclarations | VarDeclarations | ProcDeclaration }
                          CompoundStatement .
    ProcDeclaration   =  "PROCEDURE" ProcIdentifier ";" Block ";" .

It might be thought that the same effect could be achieved with 

    ProcDeclaration   =  "PROCEDURE" ProcIdentifier ";" CompoundStatement ";" .

but the syntax first suggested allows for nested procedures, and for named constants and variables
to be declared local to procedures, in a manner familiar to all Modula-2 and Pascal programmers. 

The declaration of a procedure is most easily understood as a process whereby a
CompoundStatement is given a name. Quoting this name at later places in the program then implies
execution of that CompoundStatement. By analogy with most modern languages we should like to
extend our definition of Statement as follows: 

    Statement         =   [  CompoundStatement | Assignment | ProcedureCall
                            | IfStatement | WhileStatement
                            | WriteStatement | ReadStatement ] .
    ProcedureCall     =  ProcIdentifier .

However, this introduces a non-LL(1) feature into the grammar, for now we have two alternatives
for Statement (namely Assignment and ProcedureCall) that begin with lexically indistinguishable



symbols. There are various ways of handling this problem: 

A purely syntactic solution for this simple language is possible if we re-factor the grammar as

      Statement         =   [  CompoundStatement | AssignmentOrCall
                              | IfStatement | WhileStatement
                              | WriteStatement | ReadStatement ] .
      AssignmentOrCall  =  Designator [ ":=" Expression ] .

so that a ProcedureCall can be distinguished from an Assignment by simply looking at the
first symbol after the Designator. This is, of course, the approach that has to be followed
when using Coco/R. 

A simple solution would be to add the keyword CALL before a procedure identifier, as in
Fortran, but this rather detracts from readability of the source program. 

Probably because the semantics of procedure calls and of assignments are so different, the
solution usually adopted in a hand-crafted compiler is a static semantic one. To the list of
allowed classes of identifier we add one that distinguishes procedure names uniquely. When
the symbol starting a Statement is an identifier we can then determine from its symbol table
attributes whether an Assignment or ProcedureCall is to be parsed (assuming all identifiers to
have been declared before use, as we have been doing). 

16.1.3 The scope and extent of identifiers 

Allowing nested procedures - or even local variables on their own - introduces the concept of
scope, which should be familiar to readers used to block-structured languages, although it often
causes confusion to many beginners. In such languages, the "visibility" or "accessibility" of an
identifier declared in a Block is limited to that block, and to blocks themselves declared local to that
block, with the exception that when an identifier is redeclared in one or more nested blocks, the
innermost accessible declaration applies to each particular use of that identifier. 

Perhaps any confusion which arises in beginners’ minds is exacerbated by the fact that the rather
fine distinction between compile-time and run-time aspects of scope is not always made clear. At
compile-time, only those names that are currently "in scope" will be recognized when translating
statements and expressions. At run-time, each variable has an extent or lifetime. Other than the
"global variables" (declared within the main program in Modula-2 or Pascal, or outside of all
functions in C++), the only variables that "exist" at any one instant (that is, have storage allocated to
them, with associated values) are those that were declared local to the blocks that are "active" (that
is, are associated with procedures that have been called, but which have not yet returned). 

One consequence of this, which a few readers may have fallen foul of at some stage, is that
variables declared local to a procedure cannot be expected to retain their values between calls on
the procedure. This leads to a programming style where many variables are declared globally, when
they should, ideally, be "out of scope" to many of the procedures in the program. (Of course, the
use of modules (in languages like Modula-2) or classes (in C++) allows many of these to be hidden
safely away.) 

Exercises 

16.1 Extend the grammar for Topsy so as to support a program model more like that in C and C++,



in which routines may not be nested, although both global and local variables (and constants) may
be declared. 

16.1.4 Symbol table support for the scope rules

Scope rules like those suggested in the last section may be easily handled in a number of ways, all
of which rely on some sort of stack structure. The simplest approach is to build the entire symbol
table as a stack, pushing a node onto this stack each time an identifier is declared, and popping
several nodes off again whenever we complete parsing a Block, thereby ensuring that the names
declared local to that block then go out of scope. The stack structure also ensures that if two
identifiers with the same names are declared in nested blocks, the first to be found when searching
the table will be the most recently declared. The stack of identifier entries must be augmented in
some way to keep track of the divisions between procedures, either by introducing an extra variant
into the possibilities for the TABLE_entries  structure, or by constructing an ancillary stack of
special purpose nodes. 

The discussion will be clarified by considering the shell of a simple program: 

      PROGRAM Main;
        VAR G1;                   (* global *)

        PROCEDURE One;
          VAR L1, L2;             (* local to One *)
          BEGIN
            (* body of One *)
          END;

        BEGIN
          (* body of Main *)
        END.

For this program, either of the approaches suggested by Figure 16.1(a) or (b) would appear to be
suitable for constructing a symbol table. In these structures, an extra "sentinel" node has been
inserted at the bottom of the stack. This allows a search of the table to be implemented as simply as
possible, by inserting a copy of the identifier that is being sought into this node before the (linear)
search begins. 

As it happens, this sort of structure becomes rather more difficult to adapt when one extends the
language to allow procedures to handle parameters, and so we shall promote the idea of having a
stack of scope nodes, each of which contains a pointer to the scope node corresponding to an outer
scope, as well as a pointer to a structure of identifier nodes pertinent to its own scope. This latter
structure could be held as a stack, queue, tree, or even hash table. Figure 16.2 shows a situation
where queues have been used, each of which is terminated by a common sentinel node. 



Although it may not immediately be seen as necessary, it turns out that to handle the addressing
aspects needed for code generation we shall need to associate with each identifier the static level at
which it was declared. The revised public interface to the symbol table class requires declarations
like 

  enum TABLE_idclasses { TABLE_consts, TABLE_vars, TABLE_progs, TABLE_procs };

  struct TABLE_entries {
    TABLE_alfa name;             // identifier
    int level;                   // static level
    TABLE_idclasses idclass;     // class
    union {
      struct {
        int value;
      } c;                       // constants
      struct {
        int size, offset;
        bool scalar;
      } v;                       // variables
      struct {
        CGEN_labels entrypoint;
      } p;                       // procedures
    };
  };

  class TABLE {
    public:
      void openscope(void);
      // Opens new scope before parsing a block

      void closescope(void);
      // Closes scope after parsing a block

      // rest as before (see section 14.6.3)
  };

On the source diskette can be found implementations of this symbol table handler, while a version
extended to meet the requirements of Chapter 17 can be found in Appendix B. As usual, a few
comments on implementation techniques may be helpful to the reader: 

The symbol table handler manages the computation of level  internally. 

An entry  is passed by reference to the enter  routine, so that, when required, the caller is
able to retrieve this value after an entry has been made. 

The outermost program block can be defined as level 1 (some authors take it as level 0, others
reserve this level for standard "pervasive" identifiers - like INTEGER, BOOLEAN, TRUE and
FALSE). 

It is possible to have more than one entry in the table with the same name, although not within
a single scope. The routine for adding an entry to the table checks that this constraint is



obeyed. However, a second occurrence of an identifier in a single scope will result in a further
entry in the table. 

The routine for searching the symbol table works its way through the various scope levels
from innermost to outermost, and is thus more complex than before. A call to search  will,
however, always return with a value for entry  which matches the name, even if this had not
been correctly declared previously. Such undeclared identifiers will seem to have an effective
idclass = TABLE_progs , which will always be semantically unacceptable when the
identifier is analysed further. 

Exercises 

16.2 Follow up the suggestion that the symbol table can be stored in a stack, using one or other of
the methods suggested in Figure 16.1. 

16.3 Rather than use a separate SCOPE_nodes structure, develop a version of the symbol table class
that simply introduces another variant into the existing TABLE_entries  structure, that is, extend the
enumeration to 

enum TABLE_idclasses { TABLE_consts, TABLE_vars, TABLE_progs, TABLE_procs,
TABLE_scopes }; 

16.4 How, if at all, does the symbol table interface require modification if you wish to develop the
Topsy language to support void  functions? 

16.5 In our implementation of the table class, scope nodes are deleted by the closescope  routine.
Is it possible or advisable also to delete identifier nodes when identifiers go out of scope? 

16.6 Some compilers make use of the idea of a forest of binary search trees. Develop a table
handler to make use of this approach. How do you adapt the idea that a call to search  will always
return a well-defined entry ? 

For example, given source code like 

                    PROGRAM Silly;
                      VAR B, A, C;

                      PROCEDURE One;
                        VAR X, Y, Z;

                        PROCEDURE Two;
                          VAR Y, D;

the symbol table might look like that shown in Figure 16.3 immediately after declaring D. 



Further reading 

More sophisticated approach to symbol table construction are discussed in many texts on compiler
construction. A very readable treatment may be found in the book by Elder (1994), who also
discusses the problems of using a hash table approach for block-structured languages. 

16.1.5 Parsing declarations and procedure calls 

The extensions needed to the attributed grammar to describe the process of parsing procedure
declarations and calls can be understood with reference to the Cocol extract below, where, for
temporary clarity, we have omitted the actions needed for code generation, while retaining those
needed for constraint analysis: 

  PRODUCTIONS
    Clang
    =                         (. TABLE_entries entry; .)
       "PROGRAM"
       Ident<entry.name>      (. entry.idclass = TABLE_progs;
                                 Table->enter(entry); Table->openscope(); .)
       WEAK ";" Block "." .

    Block
    =  SYNC
       { ( ConstDeclarations | VarDeclarations | ProcDeclaration ) SYNC }
       CompoundStatement      (. Table->closescope(); .) .

    ProcDeclaration
    =                         (. TABLE_entries entry; .)
       "PROCEDURE"
       Ident<entry.name>      (. entry.idclass = TABLE_procs;
                                 Table->enter(entry); Table->openscope(); .)
       WEAK ";"  Block ";" .

    Statement
    =  SYNC [  CompoundStatement | AssignmentOrCall | IfStatement
              | WhileStatement | ReadStatement | WriteStatement ] .

    AssignmentOrCall
    =                         (. TABLE_entries entry; .)
       Designator<classset(TABLE_vars, TABLE_procs), entry>
       (                      (. if (entry.idclass != TABLE_vars) SemError(210); .)
          ":=" Expression SYNC
         |                    (. if (entry.idclass != TABLE_procs) SemError(210); .)
       ) .

The reader should note that: 

Variables declared local to a Block will be associated with a level one higher than the block
identifier itself. 

In a hand-crafted parser we can resolve the LL(1) conflict between the assignments and
procedure calls within the parser for Statement, on the lines of 



      void Statement(symset followers)
      { TABLE_entries entry; bool found;
        if (FirstStatement.memb(SYM.sym))             // allow for empty statements
        { switch (SYM.sym)
          { case SCAN_identifier:                     // must resolve LL(1) conflict
              Table->search(SYM.name, entry, found);  // look it up
              if (!found) Report->error(202);         // undeclared identifier
              if (entry.idclass == TABLE_procs) ProcedureCall(followers, entry);
              else Assignment(followers, entry);
              break;
            case SCAN_ifsym:                          // other statement forms
              IfStatement(followers); break;          // as needed
        }
        test(followers, EmptySet, 32);                // synchronize if necessary
      }

Exercises 

16.7 In Exercise 14.50 we suggested that undeclared identifiers might be entered into the symbol
table (and assumed to be variables) at the point where they were first encountered. Investigate
whether one can do better than this by examining the symbol which appears after the offending
identifier. 

16.8 In a hand-crafted parser, when calling Block from within ProcDeclaration the semicolon
symbol has to be added to Followers, as it becomes the legal follower of Block. Is it a good idea to
do this, since the semicolon (a widely used and abused token) will then be an element of all
Followers used in parsing parts of that block? If not, what does one do about it? 

16.2 Storage management 

If we wish procedures to be able to call one another recursively, we shall have to think carefully
about code generation and storage management. At run-time there may at some stage be several
instances of a recursive procedure in existence, pending completion. For each of these the
corresponding instances of any local variables must be distinct. This has a rather complicating
effect at compile-time, for a compiler can no longer associate a simple address with each variable as
it is declared (except, perhaps, for the global variables in the main program block). Other aspects of
code generation are not quite such a problem, although we must be on our guard always to generate
so-called re-entrant code, which executes without ever modifying itself. 

16.2.1 The stack frame concept 

Just as the stack concept turns out to be useful for dealing with the compile-time accessibility
aspects of scope in block-structured languages, so too do stack structures provide a solution for
dealing with the run-time aspects of extent or existence. Each time a procedure is called, it acquires
a region of free store for its local variables - an area which can later be freed when control returns
to the caller. On a stack machine this becomes almost trivially easy to arrange, although it may be
more obtuse on other architectures. Since procedure activations strictly obey a first-in-last-out
scheme, the areas needed for their local working store can be carved out of a single large stack.
Such areas are usually called activation records or stack frames, and do not themselves contain
any code. In each of them is usually stored some standard information. This includes the return
address through which control will eventually pass back to the calling procedure, as well as
information that can later be used to reclaim the frame storage when it is no longer required. This



housekeeping section of the frame is called the frame header or linkage area. Besides the storage
needed for the frame header, space must be also be allocated for local variables (and, possibly,
parameters, as we shall see in a later section). 

This may be made clearer by a simple example. Suppose we come up with the following variation
on code for satisfying the irresistible urge to read a list of numbers and write it down in reverse
order: 

        PROGRAM Backwards;
          VAR Terminator;

          PROCEDURE Start;
            VAR Local1, Local2;

            PROCEDURE Reverse;
              VAR Number;
              BEGIN
                Read(Number);
                IF Terminator <> Number THEN Start;  10: Write(Number)
              END;

            BEGIN (* Start *)
              Reverse;  20:
            END;

          BEGIN (* Backwards *)
            Terminator := 9;
            Start; 30:
          END (* Backwards *).

(Our language does not provide for labels; these have simply been added to make the descriptions
easier.) 

We note that a stack is also the obvious structure to use in a non-recursive solution to the problem,
so the example also highlights the connection between the use of stacks to implement recursive
ideas in non-recursive languages. 

If this program were to be given exciting data like 56 65 9 , then its dynamic execution would
result in a stack frame history something like the following, where each line represents the relative
layout of the stack frames as the procedures are entered and left. 

                             Stack grows ---->
   start main program        Backwards
   call Start                Backwards   Start
   call Reverse              Backwards   Start   Reverse
   read 56 and recurse       Backwards   Start   Reverse   Start
      and again              Backwards   Start   Reverse   Start   Reverse
   read 65 and recurse       Backwards   Start   Reverse   Start   Reverse   Start
      and again              Backwards   Start   Reverse   Start   Reverse   Start   Reverse
   read 9, write 9, return   Backwards   Start   Reverse   Start   Reverse   Start
      and again              Backwards   Start   Reverse   Start   Reverse
   write 65 and return       Backwards   Start   Reverse   Start
      and again              Backwards   Start   Reverse
   write 56 and return       Backwards   Start
      and again              Backwards

At run-time the actual address of a variable somewhere in memory will have to be found by
subtracting an offset (which, fortunately, can be determined at compile-time) from the address of
the appropriate stack frame (a value which, naturally but unfortunately, cannot be predicted at
compile-time). The code generated at compile-time must contain enough information for the
run-time system to be able to find (or calculate) the base of the appropriate stack frame when it is
needed. This calls for considerable thought. 

The run-time stack frames are conveniently maintained as a linked list. As a procedure is called, it
can set up (in its frame header) a pointer to the base of the stack frame of the procedure that called



it. This pointer is usually called the dynamic link. A pointer to the top of this linked structure - that
is, to the base of the most recently activated stack frame - is usually given special status, and is
called the base pointer. Many modern architectures provide a special machine register especially
suited for use in this role; we shall assume that our target machine has such a register (BP), and that
on procedure entry it will be set to the current value of the stack pointer SP, while on procedure exit
it will be reset to assume the value of the dynamic link emanating from the frame header. 

If a variable is local to the procedure currently being executed, its run-time address will then be
given by BP -  Offset , where Offset  can be predicted at compile-time. The run-time address of a
non-local variable must be obtained by subtracting its Offset  from an address found by descending
a chain of stack frame links. The problem is to know how far to traverse this chain, and at first
seems easily solved, since at declaration time we have already made provision to associate a static
declaration level with each entry in the symbol table. When faced with the need to generate code to
address an identifier, we can surely generate code (at compile-time) which will use this information
to determine (at run-time) how far down the chain to go. This distance at first appears to be easily
predictable - nothing other than the difference in levels between the level we have reached in
compilation, and the level at which the identifier (to which we want to refer) was declared. 

This is nearly true, but in fact we cannot simply traverse the dynamic link chain by that number of
steps. This chain, as its name suggests, reflects the dynamic way in which procedures are called and
their frames stacked, while the level information in the symbol table is related to the static depth of
nesting of procedures as they were declared. Consider the case when the program above has just
read the second data number 65. At that stage the stack memory would have the appearance
depicted in Figure 16.4, where the following should be noted: 

The number (511 ) used as the highest address is simply for illustrative purposes. 

Since we are assuming that the stack pointer SP is decremented before an item is pushed onto
the stack, the base register BP will actually point to an address just above the current top stack
frame. Similarly, immediately after control has been transferred to a procedure the stack
pointer SP will actually point to the last local variable. 

The compiler would know (at compile-time) that Terminator  was declared at static level 1, and
could have allocated it an offset address of 1 (relative to the base pointer that is used for the main
program). Similarly, when parsing the reference to Terminator  within Reverse , the compiler
would be aware that it was currently compiling at a static level 3 - a level difference of 2. However,
generation of code for descending two steps along the dynamic link chain would result (at run-time)
in a memory access to a dynamic link masquerading as a "variable" at location 505, rather than to
the variable Terminator  at location 510. 



16.2.2 The static link chain 

One way of handling the problem just raised is to provide a second chain for linking data segments,
one which will be maintained at run-time using only information that has been embedded in the
code generated at compile- time. This second chain is called the static link chain, and is set up
when a procedure is invoked. By now it should not take much imagination to see that calling a
procedure is not handled by simply executing a machine level JSR instruction, but rather by the
execution of a complex activation and calling sequence. 

Procedure activation is that part of the sequence that reserves storage for the frame header and
evaluates the actual parameters needed for the call. Parameter handling is to be discussed later, but
in anticipation we shall postulate that the calling routine initiates activation by executing code that 

saves the current stack pointer SP in a special register known as the mark stack pointer MP,
and then 

decrements SP so as to reserve storage for the frame header, before 

dealing with the arrangements for transferring any actual parameters. 

When a procedure is called, code is first executed that stores in the first three elements of its
activation record 

a static link - a pointer to the base of the stack frame for the most recently active instance of
the procedure within which its source code was nested; 

a dynamic link - a pointer to the base of the stack frame of the calling routine; 

a return address - the code address to which control must finally return in the calling routine; 

whereafter the BP register can be reset to value that was previously saved in MP, and control
transferred to the main body of the procedure code. 

This calling sequence can, in principle, be associated with either the caller or the called routine.
Since a routine is defined once, but possibly called from many places, it is usual to associate most
of the actions with the called routine. When this code is generated, it incorporates (a) the (known)
level difference between the static level from which the procedure is to be called and the static level
at which it was declared, and (b) the (known) starting address of the executable code. We
emphasize that the static link is only set up at run-time, when code is executed that follows the
extant static chain from the stack frame of the calling routine for as many steps as the level
difference between the calling and called routine dictates. 

Activating and calling procedures is one part of the story. We also need to make provision for
accessing variables. To achieve this, the compiler embeds address information into the generated
code. This takes the form of pairs of numbers indicating (a) the (known) level difference between
the static level from which the variable is being accessed and the static level where it was declared,
and (b) the (known) offset displacement that is to be subtracted from the base pointer of the
run-time stack frame. When this code is later executed, the level difference information is used to
traverse the static link chain when variable address computations are required. In sharp contrast, the
dynamic link chain is used, as suggested earlier, only to discard a stack frame at procedure exit. 



With this idea, and for the same program as before, the stack would take on the appearance shown
in Figure 16.5. 

16.2.3 Hypothetical machine support for the static link model 

We postulate some extensions to the instruction set of the hypothetical stack machine introduced in
section 4.4 so as to support the execution of programs that have simple procedures. We assume the
existence of another machine register, the 16-bit MP, that points to the frame header at the base of
the activation record of the procedure that is about to be called. 

One instruction is redefined, and three more are introduced: 

ADR  L  A   Push a run-time address onto the stack, for a variable stored at an offset A within the stack
            frame that is L steps down the static link chain that begins at the current base register BP.

MST         Prepare to activate a procedure, saving stack pointer SP in MP, and then reserving
            storage for frame header.

CAL  L  A   Call and enter a procedure whose code commences at address A, and which was declared
            at a static difference L from the procedure making the call.

RET         Return from procedure, resetting SP, BP  and PC.

The extensions to the interpreter of section 4.4 show the detailed operational semantics of these
instructions: 

   case STKMC_adr:                        // push run time address
     cpu.sp--;                            // decrement stack pointer
     if (inbounds(cpu.sp))
     { mem[cpu.sp] = base(mem[cpu.pc])    // chain down static links
                     + mem[cpu.pc + 1];   // and then add offset
       cpu.pc += 2; }                     // bump program count
     break;
   case STKMC_mst:                        // procedure activation
     cpu.mp = cpu.sp;                     // set mark stack pointer
     cpu.sp -= STKMC_headersize;          // bump stack pointer
     inbounds(cpu.sp);                    // check space available
     break;
   case STKMC_cal:                        // procedure entry
     mem[cpu.mp - 1] = base(mem[cpu.pc]); // set up static link
     mem[cpu.mp - 2] = cpu.bp;            // save dynamic link
     mem[cpu.mp - 3] = cpu.pc + 2;        // save return address
     cpu.bp = cpu.mp;                     // reset base pointer
     cpu.pc = mem[cpu.pc + 1];            // jump to start of procedure
     break;
   case STKMC_ret:                        // procedure exit
     cpu.sp = cpu.bp;                     // discard stack frame



     cpu.pc = mem[cpu.bp - 3];            // get return address
     cpu.bp = mem[cpu.bp - 2];            // reset base pointer
     break;

The routines for calling a procedure and computing the run-time address of a variable make use of
the small auxiliary routine base : 

  int STKMC::base(int l)
  // Returns base of l-th stack frame down the static link chain
  { int current = cpu.bp;                 // start from base pointer
    while (l > 0) { current = mem[current - 1]; l--; }
    return (current);
  }

16.2.4 Code generation for the static link model 

The discussion in the last sections will be made clearer if we examine the refinements to the
compiler in more detail. 

The routines for parsing the main program and for parsing nested procedures make appropriate
entries into the symbol table, and then call upon Block to handle the rest of the source code for the
routine. 

  Clang
  =                           (. TABLE_entries entry; .)
     "PROGRAM"
     Ident<entry.name>        (. entry.idclass = TABLE_progs;
                                 Table->enter(entry); Table->openscope(); .)
     WEAK ";"
     Block<entry.level+1, TABLE_progs, 0>
     "." .

  ProcDeclaration
  =                           (. TABLE_entries entry; .)
     "PROCEDURE"
     Ident<entry.name>        (. entry.idclass = TABLE_procs;
                                 CGen->storelabel(entry.p.entrypoint);
                                 Table->enter(entry); Table->openscope(); .)
     WEAK ";"
     Block<entry.level+1, entry.idclass, CGEN_headersize>
     ";" .

We note that: 

The address of the first instruction in any procedure will be stored in the symbol table in the
entrypoint  field of the entry for the procedure name, and retrieved from there whenever the
procedure is to be called. 

The parser for a Block is passed a parameter denoting its static level, a parameter denoting its
class, and a parameter denoting the offset to be assigned to its first local variable. Offset
addresses for variables in the stack frame for a procedure start at 4 (allowing for the size of
the frame header), as opposed to 1 (for the main program). 

Parsing a Block involves several extensions over what was needed when there was only a single
main program, and can be understood with reference to the attributed production: 

  Block<int blklevel, TABLE_idclasses blkclass, int initialframesize>
  =                           (. int framesize = initialframesize;
                                 CGEN_labels entrypoint;
                                 CGen->jump(entrypoint, CGen->undefined); .)
     SYNC
     { (   ConstDeclarations
         | VarDeclarations<framesize>
         | ProcDeclaration
       ) SYNC }               (. blockclass = blkclass; blocklevel = blklevel;
                                 // global for efficiency
                                 CGen->backpatch(entrypoint);



                                 CGen->openstackframe(framesize - initialframesize); .)
     CompoundStatement        (. switch (blockclass)
                                 { case TABLE_progs :
                                     CGen->leaveprogram(); break;
                                   case TABLE_procs :
                                     CGen->leaveprocedure(); break;
                                 }
                                 Table->closescope(); .) .

in which the following points are worthy of comment: 

Since blocks can be nested, the compiler cannot predict, when a procedure name is declared,
exactly when the code for that procedure will be defined, still less where it will be located in
memory. To save a great deal of trouble such as might arise from apparent forward
references, we can arrange that the code for each procedure starts with an instruction which
may have to branch (over the code for any nested blocks) to the actual code for the procedure
body. This initial forward branch is generated by a call to the code generating routine jump ,
and is backpatched when we finally come to generate the code for the procedure body. With a
little thought we can see that a simple optimization will allow for the elimination of the
forward jump in the common situation where a procedure has no further procedure nested
within it. Of course, calls to procedures within which other procedures are nested will
immediately result in the execution of a further branch instruction, but the loss in efficiency
will usually be very small. 

The call to the openstackframe  routine takes into account the fact that storage will have been
allocated for the frame header when a procedure is activated just before it is called. 

The formal parameters blkclass  and blklevel  are copied into global variables in the parser
to cut down on the number of attributes needed for every other production, and thus improve
on parsing efficiency. This rather nasty approach is not needed in Modula-2 and Pascal
hand-crafted parsers, where the various routines of the parser can themselves be nested. 

After the CompoundStatement has been parsed, code is generated either to halt the program
(in the case of a program block), or to effect a procedure return (by calling on
leaveprocedure  to emit a RET instruction). 

Code for parsing assignments and procedure calls is generated after the LL(1) conflict has been
resolved by the call to Designator : 

  AssignmentOrCall
  =                           (. TABLE_entries entry; .)
     Designator<classset(TABLE_vars, TABLE_procs), entry>
     (   /* assignment */     (. if (entry.idclass != TABLE_vars) SemError(210); .)
         ":=" Expression SYNC (. CGen->assign(); .)
       | /* procedure call */ (. if (entry.idclass == TABLE_procs)
                                 { CGen->markstack();
                                   CGen->call(blocklevel - entry.level, entry.p.entrypoint);
                                 }
                                 else SemError(210); .)
     ) .

This makes use of two routines, markstack  and call  that are responsible for generating code for
initiating the activation and calling sequences (for our interpretive system these routines simply
emit the MST and CAL instructions). The routine for processing a Designator is much as before, save
that it must call upon an extended version of the stackaddress  code generation routine to emit the
new form of the ADR instruction: 

  Designator<classset allowed, TABLE_entries &entry>
  =                           (. TABLE_alfa name;
                                 bool found; .)
     Ident<name>              (. Table->search(name, entry, found);



                                 if (!found) SemError(202);
                                 if (!allowed.memb(entry.idclass)) SemError(206);
                                 if (entry.idclass != TABLE_vars) return;
                                 CGen->stackaddress(blocklevel - entry.level,
                                                    entry.v.offset); .)
     (   "["                  (. if (entry.v.scalar) SemError(204); .)
         Expression           (. /* determine size for bounds check */
                                 CGen->stackconstant(entry.v.size);
                                 CGen->subscript(); .)
         "]"
       |                      (. if (!entry.v.scalar) SemError(205); .)
     ) .

We observe that an improved code generator could be written to make use of a tree representation
for expressions and conditions, similar to the one discussed in section 15.3.2. A detailed Cocol
grammar and hand-crafted parsers using this can be found on the source diskette; it suffices to note
that virtually no changes have to be made to those parts of the grammar that we have discussed in
this section, other than for those responsible for assignment statements. 

16.2.5 The use of a "Display" 

Another widely used method for handling variable addressing involves the use of a so-called
display. Since at most one instance of a procedure can be active at one time, only the latest instance
of each local variable can be accessible. The tedious business of following a static chain for each
variable access at execution time can be eliminated by storing the base pointers for the most
recently activated stack frames at each level - the addresses we would otherwise have found after
following the static chain - in a small set of dedicated registers. These conceptually form the
elements of an array indexed by static level values. Run-time addressing is then performed by
subtracting the predicted stack frame offset from the appropriate entry in this array. 

When code for a procedure call is required, the interface takes into account the (known) absolute
level at which the called procedure was declared, and also the (known) starting address of the
executable code. The code to be executed is, however, rather different from that used by the static
link method. When a procedure is called it still needs to store the dynamic link, and the return
address (in its frame header). In place of setting up the start of the static link chain, the calling
sequence updates the display. This turns out to be very easy, as only one element is involved, which
can be predicted at compile-time to be the one that corresponds to a static level one higher than that
at which the name of the called procedure was declared. (Recall that a ProcIdentifier is attributed
with the level of the Block in which it is declared, and not with the level of the Block which defines
its local variables and code.) 

Similarly, when we leave a procedure, we must not only reset the program counter and base pointer,
we may also need to restore a single element of the display. This is strictly only necessary if we
have called the procedure from one declared statically at a higher level, but it is simplest to update
one element on all returns. 

Consequently, when a procedure is called, we arrange for it to store in its frame header: 

a display copy - a copy of the current value of the display element for the level one higher
than the level of the called routine. This will allow the display to be reset later if necessary. 

a dynamic link - a pointer to the base of the stack frame of the calling routine. 

a return address - the code address to which control must finally return in the calling routine. 

When a procedure relinquishes control, the base pointer is reset from the dynamic link, the program



counter is reset from the return address, and one element of the display is restored from the display
copy. The element in question is that for a level one higher than the level at which the name of the
called routine was declared, that is, the level at which the block for the routine was compiled, and
this level information must be incorporated in the code generated to handle a procedure exit. 

Information pertinent to variable addresses is still passed to the code generator by the analyser as
pairs of numbers, the first giving the (known) level at which the identifier was declared (an absolute
level, not the difference between two levels), and the second giving the (known) offset from the
run-time base of the stack frame. This involves only minor changes to the code generation interface
so far developed. 

This should be clarified by tracing the sequence of procedure calls for the same program as before.
When only the main program is active, the situation is as depicted in Figure 16.6(a). 

After Start  is activated and called, the situation changes to that depicted in Figure 16.6(b). 

After Reverse  is called for the first time it changes again to that depicted in Figure 16.6(c). 

After the next (recursive) call to Start  the changes become rather more significant, as the display
copy is now relevant for the first time (Figure 16.6(d)). 



After the next (recursive) call to Reverse  we get the situation in Figure 16.6(e). 

When the recursion unwinds, Reverse  relinquishes control, the stack frame in 495-492  is
discarded, and Display[3]  is reset to 505 . When Reverse  relinquishes control yet again, the frame
in 504-501  is discarded and there is actually no need to alter Display[3] , as it is no longer needed.
Similarly, after leaving Start  and discarding the frame in 509-505  there is no need to alter
Display[2] . However, it is easiest simply to reset the display every time control returns from a
procedure. 

16.2.6 Hypothetical machine support for the display model 

Besides the mark stack register MP, our machine is assumed to have a set of display registers, which
we can model in an interpreter as a small array, display . Conceptually this is indexed from 1,
which calls for care in a C++ implementation where arrays are indexed from 0. The MST instruction
provides support for procedure activation as before, but the ADR, CAL and RET instructions are subtly
different: 

ADR  L  A   Push a run-time address onto the stack for a variable that was declared at static level
            L and predicted to be stored at an offset A from the base of a stack frame.

CAL  L  A   Call and enter a procedure whose ProcIdentifier was declared at static level L, and
            whose code commences at address A.

RET  L      Return from a procedure whose Block was compiled at level L.

The extensions to the interpreter of section 4.4 show the detailed operational semantics of these
instructions: 



   case STKMC_adr:                               // push run time address
     cpu.sp--;                                   // decrement stack pointer
     if (inbounds(cpu.sp))
     { mem[cpu.sp] = display[mem[cpu.pc] - 1]    // extract display element
                     + mem[cpu.pc + 1];          // and then add offset
       cpu.pc += 2; }                            // bump program count
     break;
   case STKMC_cal:                               // procedure entry
     mem[cpu.mp - 1] = display[mem[cpu.pc]];     // save display element
     mem[cpu.mp - 2] = cpu.bp;                   // save dynamic link
     mem[cpu.mp - 3] = cpu.pc + 2;               // save return address
     display[mem[cpu.pc]] = cpu.mp;              // update display
     cpu.bp = cpu.mp;                            // reset base pointer
     cpu.pc = mem[cpu.pc + 1];                   // enter procedure
     break;
   case STKMC_ret:                               // procedure exit
     display[mem[cpu.pc] - 1] = mem[cpu.bp - 1]; // restore display
     cpu.sp = cpu.bp;                            // discard stack frame
     cpu.pc = mem[cpu.bp - 3];                   // get return address
     cpu.bp = mem[cpu.bp - 2];                   // reset base pointer
     break;

16.2.7 Code generation for the display model 

The attributed productions in a Cocol description of our compiler are very similar to those used in a
static link model. The production for Block takes into account the new form of the RET instruction,
and also checks that the limit on the depth of nesting imposed by a finite display  will not be
exceeded: 

  Block<int blklevel, TABLE_idclasses blkclass, int initialframesize>
  =                           (. int framesize = initialframesize;
                                 CGEN_labels entrypoint;
                                 CGen->jump(entrypoint, CGen->undefined);
                                 if (blklevel > CGEN_levmax) SemError(213); .)
     SYNC
     { (   ConstDeclarations
         | VarDeclarations<framesize>
         | ProcDeclaration
       ) SYNC }               (. blockclass = blkclass; blocklevel = blklevel;
                                 CGen->backpatch(entrypoint);
                                 CGen->openstackframe(framesize
                                                      - initialframesize); .)
     CompoundStatement        (. switch (blockclass)
                                 { case TABLE_progs :
                                     CGen->leaveprogram(); break;
                                   case TABLE_procs :
                                     CGen->leaveprocedure(blocklevel); break;
                                 }
                                 Table->closescope(); .) .

The productions for AssignmentOrCall and for Designator require trivial alteration to allow for the
fact that the code generator is passed absolute static levels, and not level differences: 

  AssignmentOrCall
  =                           (. TABLE_entries entry; .)
     Designator<classset(TABLE_vars, TABLE_procs), entry>
     (  /* assignment */      (. if (entry.idclass != TABLE_vars) SemError(210); .)
        ":=" Expression SYNC  (. CGen->assign(); .)
      | /* procedure call */  (. if (entry.idclass == TABLE_procs)
                                 { CGen->markstack();
                                   CGen->call(entry.level, entry.p.entrypoint);
                                 }
                                 else SemError(210); .)
     ) .

  Designator<classset allowed, TABLE_entries &entry>
  =                           (. TABLE_alfa name;
                                 bool found; .)
     Ident<name>              (. Table->search(name, entry, found);
                                 if (!found) SemError(202);
                                 if (!allowed.memb(entry.idclass)) SemError(206);
                                 if (entry.idclass != TABLE_vars) return;
                                 CGen->stackaddress(entry.level, entry.v.offset); .)
     (   "["                  (. if (entry.v.scalar) SemError(204); .)
         Expression           (. /* determine size for bounds check */
                                 CGen->stackconstant(entry.v.size);



                                 CGen->subscript(); .)
         "]"
       |                      (. if (!entry.v.scalar) SemError(205); .)
     ) .

It may be of interest to show the code generated for the program given earlier. The correct Clang
source 

            PROGRAM Debug;
              VAR Terminator;

              PROCEDURE Start;
                VAR Local1, Local2;

                PROCEDURE Reverse;
                  VAR Number;
                  BEGIN
                    READ(Number);
                    IF Terminator <> Number THEN Start;
                    WRITE(Number)
                  END;

                BEGIN
                  Reverse
                END;

              BEGIN
                Terminator := 9;
                Start
              END.

produces the following stack machine code, where for comparison we have shown both models: 

    Static link       Display 

    0 BRN     39        0 BRN     41   jump to start of main program 
    2 BRN     32        2 BRN     33   jump to start of Start 
    4 DSP      1        4 DSP      1   start of code for Reverse (declared at level 3) 
    6 ADR  0  -4        6 ADR  3  -4   address of Number (declared at level 3) 
    9 INN               9 INN          read (Number) 
   10 ADR  2  -1       10 ADR  1  -1   address of Terminator is two levels down 
   13 VAL              13 VAL          dereference - value of Terminator on stack 
   14 ADR  0  -4       14 ADR  3  -4   address of Number is on this level 
   17 VAL              17 VAL          dereference - value of Number now on stack 
   18 NEQ              18 NEQ          compare for inequality 
   19 BZE     25       19 BZE     25
   21 MST              21 MST          prepare to activate Start 
   22 CAL  2   2       22 CAL  1   2   recursive call to Start 
   25 ADR  0  -4       25 ADR  3  -4   address of Number 
   28 VAL              28 VAL
   29 PRN              29 PRN          write(Number) 
   30 NLN              30 NLN
   31 RET              31 RET      3   exit Reverse 
   32 DSP      2       33 DSP      2   start of code for Start (declared at level 2) 
   34 MST              35 MST          prepare to activate Reverse 
   35 CAL  0   4       36 CAL  2   4   call on Reverse, which is declared at this level 
   38 RET              39 RET      2   exit Start 
   39 DSP      1       41 DSP      1   start of code for main program (level now 1) 
   41 ADR  0  -1       43 ADR  1  -1   address of Terminator on stack 
   44 LIT      9       46 LIT      9   push constant 9 onto stack 
   46 STO              48 STO          Terminator := 9
   47 MST              49 MST          prepare to activate Start 
   48 CAL  0   2       50 CAL  1   2   call Start, which is declared at this level 
   51 HLT              53 HLT          stop execution 

16.2.8 Relative merits of the static link and display models 

The display method is potentially more efficient at run-time than the static link method. In some
real machines special purpose fast CPU registers may be used to store the display, leading to even
greater efficiency. It suffers from the drawback that it seems necessary to place an arbitrary limit on
the depth to which procedures may be statically nested. The limit on the size of the display is the
same as the maximum static depth of nesting allowed by the compiler at compile-time. Murphy’s
Law will ensure that this depth will be inadequate for the program you were going to write to
ensure you a niche in the Halls of Fame! Ingenious methods can be found to overcome these



problems, but we leave investigation of these to the exercises that follow. 

Exercises 

16.9 Since Topsy allows only a non-nested program structure for routines like that found in C and
C++, its run-time support system need not be nearly as complex as the one described in this section,
although use will still need to be made of the stack frame concept. Discuss the implementation of
void functions in Topsy in some detail, paying particular attention to the information that would be
needed in the frame header of each routine, and extend your Topsy compiler and the hypothetical
machine interpreter to allow you to handle multi-function programs. 

16.10 Follow up the suggestion that the display does not have to be restored after every return from
a procedure. When should the compiler generate code to handle this operation, and what form
should the code take? Are the savings worth worrying about? (The Pascal-S system takes this
approach (Wirth, 1981; Rees and Robson, 1987).) 

16.11 If you use the display method, is there any real need to use the base register BP as well? 

16.12 If one studies block-structured programs, one finds that many of the references to variables in
a block are either to the local variables of that block, or to the global variables of the main program
block. Study the source code for the Modula-2 and Pascal implementation of the hand-crafted
parsers and satisfy yourself of the truth of this. If this is indeed so, perhaps special forms of
addressing should be used for these variables, so as to avoid the inefficient use of the static link
search or display reference at run-time. Explore this idea for the simple compiler-interpreter system
we are developing. 

16.13 In our emulated machine the computation of every run-time address by invoking a function
call to traverse the static link chain might prove to be excessively slow if the idea were extended to
a native- code generator. Since references to "intermediate" variables are likely to be less frequent
than references to "local" or "global" variables, some compilers (for example, Turbo Pascal)
generate code that unrolls the loop implicit in the base  function for such accesses - that is, they
generate an explicit sequence of N assignments, rather than a loop that is performed N times -
thereby sacrificing a marginal amount of space to obtain speed. Explore the implications and
implementation of this idea. 

16.14 One possible approach to the problem of running out of display elements is to store as large a
display as will be needed in the frame header for the procedure itself. Explore the implementation
of this idea, and comment on its advantages and disadvantages. 

16.15 Are there any dangers lurking behind the peephole optimization suggested earlier for
eliminating redundant branch instructions? Consider carefully the code that needs to be generated
for an IF ... THEN ... ELSE  statement. 

16.16 Can you think of a way of avoiding the unconditional branch instructions with which nearly
every enveloping procedure starts, without using all the machinery of a separate forward reference
table? 

16.17 Single-pass compilers have difficulty in handling some combinations of mutually recursive
procedures. It is not always possible to nest such procedures in such a way that they are always



"declared" before they are "invoked" in the source code - indeed, in C++ it is not possible to nest
procedures (functions) at all. The solution usually adopted is to support the forward declaration of
procedures. In Pascal, and in some Modula-2 compilers this is done by substituting the keyword
FORWARD for the body of the procedure when it is first declared. In C++ the same effect is achieved
through the use of function prototypes. 

Extend the Clang and Topsy compilers as so far developed so as to allow mutually recursive
routines to be declared and elaborated properly. Bear in mind that all procedures declared FORWARD

must later be defined in full, and at the same level as that where the forward declaration was
originally made. 

16.18 The poor old GOTO statement is not only hated by protagonists of structured programming. It
is also surprisingly awkward to compile. If you wish to add it to Clang, why should you prevent
users from jumping into procedure or function blocks, and if you let them jump out of them, what
special action must be taken to maintain the integrity of the stack frame structures? 

Further reading 

Most texts on compiling block-structured languages give a treatment of the material discussed here,
but this will make more sense after the reader has studied the next chapter. 

The problems with handling the GOTO statement are discussed in the books by Aho, Sethi and
Ullman (1986) and Fischer and LeBlanc (1988, 1991). 
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17 PARAMETERS AND FUNCTIONS 

It is the aim of this chapter to show how we can extend our language and its compiler to allow for
value-returning functions in addition to regular procedures, and to support the use of parameters.
Once again, the syntactic and semantic extensions we shall make are kept as simple as possible, and
should be familiar to the reader from a study of other imperative languages. 

17.1 Syntax and semantics 

The subject of parameter passing is fairly extensive, as the reader may have realized. In the
development of programming languages several models of parameter passing have been proposed,
and the ones actually implemented vary semantically from language to language, while
syntactically often appearing deceptively similar. In most cases, declaration of a subprogram
segment is accompanied by the declaration of a list of formal parameters, which appear to have a
status within the subprogram rather like that of local variables. Invocation of the subprogram is
accompanied by a corresponding list of actual parameters (sometimes called arguments), and it is
invariably the case that the relationship between formal and actual parameters is achieved by
positional correspondence, rather than by lexical correspondence in the source text. Thus it would
be quite legal, if a little confusing to another reader, to declare 

                    PROCEDURE AnyName ( A , B )

and then to invoke it with a statement of the form 

                    AnyName ( B , A )

when the A in the procedure would be associated with the B in the calling routine, and the B in the
procedure would be associated with the A in the calling routine. It may be the lack of name
correspondence that is at the root of a great deal of confusion in parameter handling amongst
beginners. 

The correspondence of formal and actual parameters goes deeper than mere position in a parameter
list. Of the various ways in which it might be established, the two most widely used and familiar
parameter passing mechanisms are those known as call-by-reference and call-by-value. In
developing the case studies in this text we have, of course, made frequent use of both of methods;
we turn now to a discussion of how they are implemented. 

The semantics and the implementation of the two mechanisms are quite different: 

In call-by-reference an actual parameter usually takes the form of a VariableDesignator.
Within the subprogram, a reference to the formal parameter results, at run-time, in a direct
reference to the variable designated by the actual parameter, and any change to that formal
parameter results in an immediate change to the corresponding actual parameter. In a very
real sense, a formal parameter name may be regarded as an alias for the actual parameter
name. The alias lasts as long as the procedure is active, and may be transmitted to other
subprograms with parameters passed in the same way. Call-by-reference is usually
accomplished by passing the address associated with the actual parameter to the subprogram
for processing. 



In call-by-value, an actual parameter takes the form of an Expression. Formal parameters in a
subprogram (when declared in this way) are effectively variables local to that subprogram,
which start their lives initialized to the values of the corresponding actual parameter
expressions. However, any changes made to the values of the formal parameter variables are
confined to the subprogram, and cannot be transmitted back via the formal parameters to the
calling routine. Fairly obviously, it is the run-time value of the expression which is handed
over to the subprogram for processing, rather than an explicit address of a variable. 

Call-by-value is preferred for many applications - for example it is useful to be able to pass
expressions to procedures like WRITE without having to store their values in otherwise redundant
variables. However, if an array is passed by value, a complete copy of the array must be passed to
the subprogram. This is expensive, both in terms of space and time, and thus many programmers
pass all array parameters by reference, even if there is no need for the contents of the array to be
modified. In C++, arrays may only be passed as reference parameters, although C++ permits the use
of the qualifier const  to prevent an array from being modified in a subprogram. Some languages
permit call-by-reference to take place with actual parameters that are expressions in the general
sense; in this case the value of the expression is stored in a temporary variable, and the address of
that variable is passed to the subprogram. 

In what follows we shall partially illustrate both methods, using syntax suggested by C. Simple
scalar parameters will be passed by value, and array parameters will be passed by reference in a
way that almost models the open array mechanism in Modula-2. 

We describe the introduction of function and parameter declarations to our language more formally
by the following EBNF. The productions are highly non-LL(1), and it should not take much
imagination to appreciate that there is now a large amount of context-sensitive information that a
practical parser will need to handle (through the usual device of the symbol table). Our productions
attempt to depict where such context-sensitivity occurs. 

    ProcDeclaration    =   ( "PROCEDURE" ProcIdentifier | "FUNCTION" FuncIdentifier )
                           [ FormalParameters ] ";"
                           Block  ";" .
    FormalParameters   =   "("  OneFormal  { ","  OneFormal }  ")" .
    OneFormal          =   ScalarFormal | ArrayFormal .
    ScalarFormal       =   ParIdentifier .
    ArrayFormal        =   ParIdentifier "[" "]" .

We extend the syntax for ProcedureCall to allow procedures to be invoked with parameters: 

    ProcedureCall      =   ProcIdentifier ActualParameters .
    ActualParameters   =   [ "(" OneActual { "," OneActual } ")" ] .
    OneActual          =   ValueParameter | ReferenceParameter .
    ValueParameter     =   Expression .
    ReferenceParameter =   Variable .

We also extend the definition of Factor to allow function references to be included in expressions
with the appropriate precedence: 

    Factor             =   Variable | ConstIdentifier | number
                          | "(" Expression ")"
                          | FuncIdentifier ActualParameters .

and we introduce the ReturnStatement in an obvious way: 

    ReturnStatement    =   "RETURN" [ Expression ] .

where the Expression is only needed within functions, which will be limited (as in traditional C and
Pascal) to returning scalar values only. Within a regular procedure the effect of a ReturnStatement



is simply to transfer control to the calling routine immediately; within a main program a
ReturnStatement simply terminates execution. 

A simple example of a Clang program that illustrates these extensions is as follows: 

   PROGRAM Debug;

     FUNCTION Last (List[], Limit);
       BEGIN
         RETURN List[Limit];
       END;

     PROCEDURE Analyze (Data[], N);
       VAR
         LocalData[2];
       BEGIN
         WRITE(Last(Data, N+2), Last(LocalData, 1));
       END;

     VAR
       GlobalData[3];

     BEGIN
       Analyze(GlobalData, 1);
     END.

The WRITE statement in procedure Analyze  would print out the value of GlobalData[3]  followed
by the value of LocalData[1] . GlobalData  is passed to Analyze , which refers to it under the alias
of Data , and then passes it on to Last , which, in turn, refers to it under the alias of List . 

17.2 Symbol table support for context-sensitive features 

It is possible to write a simple context-free set of productions that do satisfy the LL(1) constraints,
and a Coco/R generated system will require this to be done. We have remarked earlier that it is not
possible to specify the requirement that the number of formal and actual parameters must match;
this will have to be done by context conditions. So too will the requirement that each actual
parameter is passed in a way compatible with the corresponding formal parameter - for example,
where a formal parameter is an open array we must not be allowed to pass a scalar variable
identifier or an expression as the actual parameter. As usual, a compiler must rely on information
stored in the symbol table to check these conditions, and we may indicate the support that must be
provided by considering the shell of a simple program: 

  PROGRAM Main;
    VAR G1;                   (* global *)

    PROCEDURE One (P1, P2);   (* two formal scalar parameters *)
      BEGIN                   (* body of One *)
      END;

    PROCEDURE Two;            (* no formal parameters *)
      BEGIN                   (* body of Two *)
      END;

    PROCEDURE Three (P1[]);   (* one formal open array parameter *)
      VAR L1, L2;             (* local to Three *)
      BEGIN                   (* body of Three *)
      END;

    BEGIN                     (* body of Main *)
    END.

At the instant where the body of procedure Three  is being parsed our symbol table might have a
structure like that in Figure 17.1. 



Although all three of the procedure identifiers One, Two  and Three  are in scope, procedures One

and Two will already have been compiled in a one-pass system. So as to retain information about
their formal parameters, internal links are set up from the symbol table nodes for the procedure
identifiers to the nodes set up for these parameters. To provide this support it is convenient to
extend the definition of the TABLE_entries  structure: 

  enum TABLE_idclasses
  { TABLE_consts, TABLE_vars, TABLE_progs, TABLE_procs, TABLE_funcs };

  struct TABLE_nodes;
  typedef TABLE_nodes *TABLE_index;

  struct TABLE_entries {
    TABLE_alfa name;             // identifier
    int level;                   // static level
    TABLE_idclasses idclass;     // class
    union {
      struct {
        int value;
      } c;                       // constants
      struct {
        int size, offset;
        bool ref, scalar;
      } v;                       // variables
      struct {
        int params, paramsize;
        TABLE_index firstparam;
        CGEN_labels entrypoint;
      } p;                       // procedures, functions
    };
  };

Source for an implementation of the TABLE class can be found in Appendix B, and it may be helpful
to draw attention to the following features: 

Formal parameters are treated within the Block of a function or procedure in most cases as
though they were variables. So it will be convenient to enter them into the symbol table as
such. However, it now becomes necessary to tag the entry for each variable with the extra
field ref . This denotes whether the identifier denotes a true variable, or is merely an alias for
a variable that has been passed to a procedure by reference. Global and local variables and
scalar formals will all have this field defined to be false . 

Passing an array to a subprogram by reference is not simply a matter of passing the address of
the first element, even though the subprogram appears to handle open arrays. We shall also
need to supply the length of the array (unless we are content to omit array bound checking).
This suggests that the value of the size  field for an array formal parameter can always be 2.
We observe that passing open arrays by value, as is possible in Modula-2, is likely to be
considerably more complicated. 



Formal parameter names, like local variable names, will be entered at a higher level than the
procedure or function name, so as to reserve them local status. 

For procedures and functions the params  field is used to record the number of formal
parameters, and the firstparam  field is used to point to the linked queue of entries for the
identifiers that denote the formal parameters. Details of the formal parameters, when needed
for context-sensitive checks, can be extracted by further member functions in the TABLE class.
As it happens, for our simplified system we need only to know whether an actual parameter
must be passed by value or by reference, so a simple Boolean function isrefparam  is all that
is required. 

When a subprogram identifier is first encountered, the compiler will not immediately know
how many formal parameters will be associated with it. The table handler must make
provision for backpatching an entry, and so we need a revised interface to the enter  routine,
as well as an update  routine: 

       class TABLE {
         public:
           void enter(TABLE_entries &entry, TABLE_index &position);
           // Adds entry to symbol table, and returns its position

           void update(TABLE_entries &entry, TABLE_index position);
           // Updates entry at known position

           bool isrefparam(TABLE_entries &procentry, int n);
           // Returns true if nth parameter for procentry is passed by reference

           // rest as before
       };

The way in which the declaration of functions and parameters is accomplished may now be
understood with reference to the following extract from a Cocol specification: 

   ProcDeclaration
   =                          (. TABLE_entries entry; TABLE_index index; .)
      (   "PROCEDURE"         (. entry.idclass = TABLE_procs; .)
        | "FUNCTION"          (. entry.idclass = TABLE_funcs; .)
      ) Ident<entry.name>     (. entry.p.params = 0; entry.p.paramsize = 0;
                                 entry.p.firstparam = NULL;
                                 CGen->storelabel(entry.p.entrypoint);
                                 Table->enter(entry, index);
                                 Table->openscope(); .)
      [
      FormalParameters<entry> (. Table->update(entry, index); .)
      ] WEAK ";"
      Block<entry.level+1, entry.idclass, entry.p.paramsize + CGEN_headersize>
      ";" .

   FormalParameters<TABLE_entries &proc>
   =                          (. TABLE_index p; .)
      "(" OneFormal<proc, proc.p.firstparam>
          { WEAK "," OneFormal<proc, p> } ")" .

   OneFormal<TABLE_entries &proc, TABLE_index &index>
   =                          (. TABLE_entries formal;
                                 formal.idclass = TABLE_vars; formal.v.ref = false;
                                 formal.v.size = 1; formal.v.scalar = true;
                                 formal.v.offset = proc.p.paramsize
                                                   + CGEN_headersize + 1; .)
      Ident<formal.name>
      [ "[" "]"               (. formal.v.size = 2; formal.v.scalar = false;
                                 formal.v.ref = true; .)
      ]                       (. Table->enter(formal, index);
                                 proc.p.paramsize += formal.v.size;
                                 proc.p.params++; .) .

Address offsets have to be associated with formal parameters, as with other variables. These are
allocated as the parameters are declared. This topic is considered in more detail in the next section;
for the moment notice that parameter offsets start at CGEN_HeaderSize + 1 . 



17.3 Actual parameters and stack frames 

There are several ways in which actual parameter values may be transmitted to a subprogram.
Typically they are pushed onto a stack as part of the activation sequence that is executed before
transferring control to the procedure or function which is to use them. Similarly, to allow a function
value to be returned, it is convenient to reserve a stack item for this just before the actual
parameters are set up, and for the function subprogram to access this reserved location using a
suitable offset. The actual parameters might be stored after the frame header - that is, within the
activation record - or they might be stored before the frame header. We shall discuss this latter
possibility no further here, but leave the details as an exercise for the curious reader (see Terry
(1986) or Brinch Hansen (1985)). 

If the actual parameters are to be stored within the activation record, the corresponding formal
parameter offsets are easily determined by the procedures specified by the Cocol grammar given
earlier. These also keep track of the total space that will be needed for all parameters, and the final
offset reached is then passed on to the parser for Block, which can continue to assign offsets for
local variables beyond this. 

To handle function returns it is simplest to have a slightly larger frame header than before. We
reserve the first location in a stack frame (that is, at an invariant offset of 1 from the base pointer
BP) for a function’s return value, thereby making code generation for the ReturnStatement
straightforward. This location is strictly not needed for regular procedures, but it makes for easier
code generation to keep all frame headers a constant size. We also need to reserve an element for
saving the old mark stack pointer at procedure activation so that it can be restored once a procedure
has been completed. We also need to reserve an element for saving the old mark stack pointer at
procedure activation so that it can be restored once a procedure has been completed. 

If we use the display model, the arrangement of the stack after a procedure has been activated and
called will typically be as shown in Figure 17.2. The frame header and actual parameters are set up
by the activation sequence, and storage for the local variables is reserved immediately after the
procedure obtains control. 

This may be made clearer by considering some examples. Figure 17.3 shows the layout in memory
for the array processing program given in section 17.1, at the instant where function Last  has just
started execution. 



Note that there are three values in the parameter area of the stack frame for Analyze . The first two
are the actual address of the first element of the array bound to the formal parameter Data , and the
actual size to be associated with this formal parameter. The third is the initial value assigned to
formal parameter N. When Analyze  activates function Last  it stacks the actual address of the array
that was bound to Data , as well as the actual size of this array, so as to allow Last  to bind its
formal parameter List  to the formal parameter Data , and hence, ultimately, to the same array (that
is, to the global array GlobalData ). 

The second example shows a traditional, if hackneyed, approach to computing factorials: 

  PROGRAM Debug;

    FUNCTION Factorial (M);
      BEGIN
        IF M <= 1 THEN RETURN 1;
        RETURN M * Factorial(M-1);
      END;

    VAR N;

    BEGIN
      READ(N);
      WHILE N > 0 DO
        BEGIN WRITE(Factorial(N)); READ(N) END;
    END.

If this program were to be supplied with a data value of N = 3 , then the arrangement of stack
frames would be as depicted in Figure 17.4 immediately after the function has been called for the
second time. 



Factorial  can pick up its parameter M by using an offset of 5 from BP, and can assign the value to
be returned to the stack element whose offset is 1 from BP. (In practice the addressing might be
done via Display[2] , rather than via BP). 

Note that this way of returning function values is entirely consistent with the use of the stack for
expression evaluation. In practice, however, many compilers return the value of a scalar function in
a machine register. 

17.4 Hypothetical stack machine support for parameter passing 

Little has to be added to our stack machine to support parameter passing and function handling.
Leaving a Block is slightly different: after completing a regular procedure we can cut the stack back
so as to throw away the entire stack frame, but after completing a function procedure we must leave
the return value on the top of stack so that it will be available for incorporation into the expression
from which the call was instigated. This means that the STKMC_ret  instruction requires a second
operand. It also turns out to be useful to introduce a STKMC_nfn instruction that can be generated at
the end of each function block to detect those situations where the flow of control through a
function never reaches a ReturnStatement (this is very hard to detect at compile-time). Taking into
account the increased size of the frame header, the operational semantics of the affected instructions
become: 

  case STKMC_cal:                               // procedure entry
    mem[cpu.mp - 2] = display[mem[cpu.pc]];     // save display element
    mem[cpu.mp - 3] = cpu.bp;                   // save dynamic link
    mem[cpu.mp - 4] = cpu.pc + 2;               // save return address
    display[mem[cpu.pc]] = cpu.mp;              // update display
    cpu.bp = cpu.mp;                            // reset base pointer
    cpu.pc = mem[cpu.pc + 1];                   // enter procedure
    break;

  case STKMC_ret:                               // procedure exit
    display[mem[cpu.pc] - 1] = mem[cpu.bp - 2]; // restore display
    cpu.mp = mem[cpu.bp - 5];                   // restore mark pointer
    cpu.sp = cpu.bp - mem[cpu.pc + 1];          // discard stack frame
    cpu.pc = mem[cpu.bp - 4];                   // get return address
    cpu.bp = mem[cpu.bp - 3];                   // reset base pointer
    break;

  case STKMC_mst:
    if (inbounds(cpu.sp-STKMC_headersize))      // check space available
    { mem[cpu.sp-5] = cpu.mp;                   // save mark pointer
      cpu.mp = cpu.sp;                          // set mark stack pointer
      cpu.sp -= STKMC_headersize;               // bump stack pointer
    }
    break;

  case STKMC_nfn:                               // bad function (no return)
    ps = badfun; break;                         // change status from running

17.5 Context sensitivity and LL(1) conflict resolution 

We have already remarked that our language now contains several features that are
context-sensitive, and several that make an LL(1) description difficult. These are worth
summarizing: 

      Statement          =   Assignment | ProcedureCall | ...
      Assignment         =   Variable ":="  Expression .
      ProcedureCall      =   ProcIdentifier ActualParameters .



Both Assignment and ProcedureCall start with an identifier. Parameters cause similar difficulties: 

      ActualParameters   =   [ "(" OneActual { "," OneActual } ")" ] .
      OneActual          =   ValueParameter | ReferenceParameter .
      ValueParameter     =   Expression .
      ReferenceParameter =   Variable .

OneActual is non-LL(1), as Expression might start with an identifier, and Variable certainly does.
An Expression ultimately contains at least one Factor: 

      Factor             =    Variable | ConstIdentifier | number
                            | "(" Expression ")"
                            | FuncIdentifier ActualParameters .

and three alternatives in Factor start with an identifier. A Variable is problematic: 

      Variable           =   VarIdentifier [ "[" Expression "]" ] .

In the context of a ReferenceParameter the optional index expression is not allowed, but in the
context of all other Factors it must be present. Finally, even the ReturnStatement becomes
context-sensitive: 

      ReturnStatement    =   "RETURN" [ Expression ] .

In the context of a function Block the Expression must be present, while in the context of a regular
procedure or main program Block it must be absent. 

17.6 Semantic analysis and code generation 

We now turn to a consideration of how the context-sensitive issues can be handled by our parser,
and code generated for programs that include parameter passing and value returning functions. It is
convenient to consider hand-crafted and automatically generated compilers separately. 

17.6.1 Semantic analysis and code generation in a hand-crafted compiler 

As it happens, each of the LL(1) conflicts and context-sensitive constraints is easily handled when
one writes a hand-crafted parser. Each time an identifier is recognized it is immediately checked
against the symbol table, after which the appropriate path to follow becomes clear. We consider the
hypothetical stack machine interface once more, and in terms of simplified on-the-fly code
generation, making the assumption that the source will be free of syntactic errors. Full source code
is, of course, available on the source diskette. 

Drawing a distinction between assignments and procedure calls has already been discussed in
section 16.1.5, and is handled from within the parser for Statement. The parser for ProcedureCall is
passed the symbol table entry apposite to the procedure being called, and makes use of this in
calling on the parser to handle that part of the activation sequence that causes the actual parameters
to be stacked before the call is made: 

  void PARSER::ProcedureCall(TABLE_entries entry)
  // ProcedureCall = ProcIdentifier ActualParameters .
  { GetSym();
    CGen->markstack();                             // code for activation
    ActualParameters(entry);                       // code to evaluate arguments
    CGen->call(entry.level, entry.p.entrypoint);   // code to transfer control
  }

A similar extension is needed to the routine that parses a Factor: 



  void PARSER::Factor(void)
  // Factor = Variable | ConstIdentifier | FuncIdentifier ActualParameters ..
  // Variable = Designator .
  { TABLE_entries entry;
    switch (SYM.sym)
    { case SCAN_identifier:                        // several cases arise...
        Table->search(SYM.name, entry);            // look it up
        switch (entry.idclass)                     // resolve LL(1) conflict
        { case TABLE_consts:
            GetSym();
            CGen->stackconstant(entry.c.value);    // code to load named constant
            break;
          case TABLE_funcs:
            GetSym();
            CGen->markstack();                     // code for activation
            ActualParameters(entry);               // code to evaluate arguments
            CGen->call(entry.level,
                       entry.p.entrypoint);        // code to transfer control
            break;
          case TABLE_vars:
            Designator(entry);                     // code to load address
            CGen->dereference(); break;            // code to load value
        }
        break;
                                                   // ... other cases
    }
  }

The parsers that handle ActualParameters and OneActual are straightforward, and make use of the
extended features in the symbol table handler to distinguish between reference and value
parameters: 

  void PARSER::ActualParameters(TABLE_entries procentry)
  // ActualParameters = [ "(" OneActual { "," OneActual } ")" ] .
  { int actual = 0;
    if (SYM.sym == SCAN_lparen)                    // check for any arguments
    { GetSym(); OneActual(procentry, actual);
      while (SYM.sym == SCAN_comma)
      { GetSym(); OneActual(followers, procentry, actual); }
      accept(SCAN_rparen);
    }
    if (actual != procentry.p.params)
      Report->error(209);                          // wrong number of arguments
  }

  void PARSER::OneActual(TABLE_entries procentry, int &actual)
  // OneActual = ArrayIdentifier | Expression .  (depends on context)
  { actual++;                                      // one more argument
    if (Table->isrefparam(procentry, actual))      // check symbol table
      ReferenceParameter();
    else
      Expression();
  }

The several situations where it is necessary to generate code that will push the run-time address of a
variable or parameter onto the stack all depend ultimately on the stackaddress  routine in the code
generator interface. This has to be more complex than before, because in the situations where a
variable is really an alias for a parameter that has been passed by reference, the offset recorded in
the symbol table is really the offset where one will find yet another address. To push the true
address onto the stack requires that we load the address of the offset, and then dereference this to
find the address that we really want. Hence the code generation interface takes the form 

      stackaddress(int level, int offset, bool byref);

which, for our stack machine will emit a LDA level offset  instruction, followed by a VAL

instruction if byref  is true . This has an immediate effect on the parser for a Designator, which
now becomes: 

  void PARSER::Designator(TABLE_entries entry)
  // Designator = VarIdentifier [ "[" Expression "]" ] .
  { CGen->stackaddress(entry.level, entry.v.offset, entry.v.ref); // base address
    GetSym();



    if (SYM.sym == SCAN_lbracket)                  // array reference
    { GetSym();
      Expression();                                // code to evaluate index
      if (entry.v.ref)                             // get size from hidden parameter
        CGen->stackaddress(entry.level, entry.v.offset + 1, entry.v.ref);
      else                                         // size known from symbol table
        CGen->stackconstant(entry.v.size);
      CGen->subscript();
      accept(SCAN_rbracket);
    }
  }

The first call to stackaddress  is responsible for generating code to push the address of a scalar
variable onto the stack, or the address of the first element of an array. If this array has been passed
by reference it is necessary to dereference that address to find the true address of the first element
of the array, and to determine the true size of the array by retrieving the next (hidden) actual
parameter. Another situation in which we wish to push such addresses onto the stack arises when
we wish to pass a formal array parameter on to another routine as an actual parameter. In this case
we have to push not only the address of the base of the array, but also a second hidden argument
that specifies its size. This is handled by the parser that deals with a ReferenceParameter: 

  void PARSER::ReferenceParameter(void)
  // ReferenceParameter = ArrayIdentifier .  (unsubscripted)
  { TABLE_entries entry;
    Table->search(SYM.name, entry);                // assert : SYM.sym = identifier
    CGen->stackaddress(entry.level, entry.v.offset, entry.v.ref);  // base
                                                   // pass size as next parameter
    if (entry.v.ref)                               // get size from formal parameter
      CGen->stackaddress(entry.level, entry.v.offset + 1, entry.v.ref);
    else                                           // size known from symbol table
      CGen->stackconstant(entry.v.size);
    GetSym();                                      // should be comma or rparen
  }

The variations on the ReturnStatement are easily checked, since we have already made provision
for each Block to be aware of its category. Within a function a ReturnStatement is really an
assignment statement, with a destination whose address is always at an offset of 1 from the base of
the stack frame. 

  void PARSER::ReturnStatement(void)
  // ReturnStatement = "RETURN" [ Expression ] .
  { GetSym();                                      // accept RETURN
    switch (blockclass)                            // semantics depend on context
    { case TABLE_funcs:
        CGen->stackaddress(blocklevel, 1, false);  // address of return value
        Expression(followers); CGen->assign();     // code to compute and assign
        CGen->leavefunction(blocklevel); break;    // code to exit function
      case TABLE_procs:
        CGen->leaveprocedure(blocklevel); break;   // direct exit from procedure
      case TABLE_progs:
        CGen->leaveprogram(); break;               // direct halt from main program
    }
  }

As illustrative examples we give the code for the programs discussed previously: 

    0 : PROGRAM Debug;
    0 :
    0 :   FUNCTION Factorial (M);
    2 :     BEGIN
    2 :       IF M <= 1 THEN RETURN 1;
   20 :       RETURN M * Factorial(M-1);
   43 :     END;
   44 :
   44 :   VAR N;
   44 :
   44 :   BEGIN
   46 :     READ(N);
   50 :     WHILE N > 0 DO
   59 :       BEGIN WRITE(Factorial(N)); READ(N) END;
   75 :   END.

   0 BRN   44  Jump to start of program       40 RET 2  1    Exit function



   2 ADR 2 -5  BEGIN Factorial                43 NFN       END Factorial
   5 VAL         Value of M                   44 DSP    1  BEGIN main program
   6 LIT    1                                 46 ADR 1 -1      Address of N
   8 LEQ         M <= 1 ?                     49 INN         READ(N)
   9 BZE   20    IF M <= 1 THEN               50 ADR 1 -1      Address of N
  11 ADR 2 -1      Address of return val      53 VAL           Value of N
  14 LIT    1      Value of 1                 54 LIT    0    WHILE N > 0 DO
  16 STO           Store as return value      56 GTR
  17 RET 2  1      Exit function              57 BZE   75
  20 ADR 2 -1    Address of return value      59 MST           Mark stack
  23 ADR 2 -5    Address of M                 60 ADR 1 -1      Address of N
  26 VAL         Value of M                   63 VAL           Value of N (argument)
  27 MST         Mark stack                   64 CAL 1  2      Call Factorial
  28 ADR 2 -5    Address of M                 67 PRN           WRITE(result)
  31 VAL         Value of M                   68 NLN
  32 LIT    1                                 69 ADR 1 -1
  34 SUB         Value of M-1 (argument)      72 INN           READ(N)
  35 CAL 1  2    Recursive call               73 BRN   50    END
  38 MUL         Value M*Factorial(M-1)       75 HLT       END
  39 STO         Store as return value

    0 : PROGRAM Debug;
    2 :
    2 :   FUNCTION Last (List[], Limit);
    2 :     BEGIN
    2 :       RETURN List[Limit];
   23 :     END;
   24 :
   24 :   PROCEDURE Analyze (Data[], N);
   24 :     VAR
   26 :       LocalData[2];
   26 :     BEGIN
   26 :       Write(Last(Data, N+2), Last(LocalData, 1));
   59 :     END;
   62 :
   62 :   VAR
   62 :     GlobalData[3];
   62 :
   62 :   BEGIN
   64 :     Analyze(GlobalData, 1);
   75 :   END.

   0 BRN   62  Jump to start of program        38 VAL         Value of N
   2 ADR 2 -1      Address of return value     39 LIT    2
   5 ADR 2 -5                                  41 ADD         Value of N+2 (argument)
   8 VAL           Address of List[0]          42 CAL 1  2    Last(Data, N+2)
   9 ADR 2 -7      Address of Limit            45 PRN         Write result
  12 VAL           Value of Limit              46 MST         Mark Stack
  13 ADR 2 -6                                  47 ADR 2 -8    Address of LocalData[0]
  16 VAL           Size of List                50 LIT    3    Size of LocalData
  17 IND           Subscript                   52 LIT    1    Value 1 (parameter)
  18 VAL           Value of List[Limit]        54 CAL 1  2    Last(LocalData, 1)
  19 STO         Store as return value         57 PRN         Write result
  20 RET 2  1    and exit function             58 NLN         WriteLn
  23 NFN       END Last                        59 RET 2  0  END Analyze
  24 DSP    3  BEGIN Analyze                   62 DSP    4  BEGIN Debug
  26 MST           Mark Stack                  64 MST         Mark stack
  27 ADR 2 -5      First argument is           65 ADR 1 -1    Address of GlobalData[0]
  30 VAL           Address of Data[0]          68 LIT    4    Size of GlobalData
  31 ADR 2 -6      Hidden argument is          70 LIT    1    Value 1 (argument)
  34 VAL           Size of Data                72 CAL 1 24    Analyze(GlobalData, 1)
  35 ADR 2 -7      Compute last argument       75 HLT       END

17.6.2 Semantic analysis and code generation in a Coco/R generated compiler 

If we wish to write an LL(1) grammar as input for Coco/R, things become somewhat more
complex. We are obliged to write our productions as 

      Statement          =   AssignmentOrCall | ...
      AssignmentOrCall   =   Designator ( ":=" Expression | ActualParameters ) .
      ActualParameters   =   [ "(" OneActual { "," OneActual } ")" ] .
      OneActual          =   Expression .
      Factor             =      Designator ActualParameters | number
                             | "(" Expression ")" .
      Designator         =   identifier [ "[" Expression "]" ] .
      ReturnStatement    =   "RETURN" [ Expression ] .

This implies that Designator and Expression have to be attributed rather cleverly to allow all the



conflicts to be resolved. This can be done in several ways. We have chosen to illustrate a method
where the routines responsible for parsing these productions are passed a Boolean parameter
stipulating whether they are being called in a context that requires that the appearance of an array
name must be followed by a subscript (this is always the case except where an actual parameter is
syntactically an expression, but must semantically be an unsubscripted array name). On its own this
system is still inadequate for constraint analysis, and we must also provide some method for
checking whether an expression used as an actual reference parameter is comprised only of an
unsubscripted array name. 

At the same time we may take the opportunity to discuss the use of an AST as an intermediate
representation of the semantic structure of a program, by extending the treatment found in section
15.3.2. The various node classes introduced in that section are extended and enhanced to support
the idea of a node to represent a procedure or function call, linked to a set of nodes each of which
represents an actual parameter, and each of which, in turn, is linked to the tree structure that
represents the expression associated with that actual parameter. The sort of structures we set up are
exemplified in Figure 17.5, which depicts an AST corresponding to the procedure call in the
program outlined below 

    PROGRAM Debug;

      FUNCTION F (X);
        BEGIN END;              (* body of F *)

      PROCEDURE P (U, V[], W);
        BEGIN END;              (* body of P *)

      VAR
        X, Y, A[7];
      BEGIN
        P(F(X+5), A, Y)
      END.

Our base NODE class is extended slightly from the one introduced earlier, and now incorporates a
member for linking nodes together when they are elements of argument lists: 

  struct NODE {
    int value;                     // value to be associated with this node
    bool defined;                  // true if value predictable at compile time
    bool refnode;                  // true if node corresponds to a ref parameter
    NODE()                         { defined = false; refnode = false; }
    virtual void emit1(void)    = 0;
    virtual void emit2(void)    = 0;
    virtual void link(AST next) = 0;
  };



Similarly, the VARNODE class has members to record the static level, and whether the corresponding
variable is a variable in its own right, or is simply an alias for an array passed by reference: 

  struct VARNODE : public NODE {
    bool ref;                      // direct or indirectly accessed
    int level;                     // static level of declaration
    int offset;                    // offset of variable assigned by compiler
    VARNODE() {;}                  // default constructor
    VARNODE(bool R, int L, int O) { ref = R; level = L; offset = O; }
    virtual void emit1(void);      // generate code to retrieve value of variable
    virtual void emit2(void);      // generate code to retrieve address of variable
    virtual void link(AST next)    {;}
  };

Procedure and function calls give rise to instances of a PROCNODE class. Such nodes need to record
the static level and entry point of the routine, and have further links to the nodes that are set up to
represent the queue of actual parameters or arguments. It is convenient to introduce two such
pointers so as to simplify the link  member function that is responsible for building this queue. 

  struct PROCNODE : public NODE {
    int level, entrypoint;         // static level, address of first instruction
    AST firstparam, lastparam;     // pointers to argument list
    PROCNODE(int L, int E)
      { level = L; entrypoint = E; firstparam = NULL; lastparam = NULL; }
    virtual void emit1(void);      // generate code for procedure/function call
    virtual void emit2(void)       {;}
    virtual void link(AST next);   // link next actual parameter
  };

The actual arguments give rise to nodes of a new PARAMNODE class. As can be seen from Figure
17.5, these require pointer members: one to allow the argument to be linked to another argument,
and one to point to the expression tree for the argument itself: 

  struct PARAMNODE : public NODE {
    AST par, next;                 // pointers to argument and to next argument
    PARAMNODE(AST P)               { par = P; next = NULL; }
    virtual void emit1(void);      // push actual parameter onto stack
    virtual void emit2(void)       {;}
    virtual void link(AST param)   { next = param; }
  };

Actual parameters are syntactically expressions, but we need a further REFNODE class to handle the
passing of arrays as actual parameters: 

  struct REFNODE : public VARNODE {
    AST size;                      // real size of array argument
    REFNODE(bool R, int L, int O, AST S)
      { ref = R; level = L; offset = O; size = S; refnode = true; }
    virtual void emit1(void);      // generate code to push array address, size
    virtual void emit2(void)       {;}
    virtual void link(AST next)    {;}
  };

Tree building operations may be understood by referring to the attributes with which a Cocol
specification would be decorated: 

  AssignmentOrCall
  =                           (. TABLE_entries entry; AST des, exp;.)
     Designator<des, classset(TABLE_vars, TABLE_procs), entry, true>
     (   /* assignment */     (. if (entry.idclass != TABLE_vars) SemError(210); .)
         ":=" Expression<exp, true>
         SYNC                 (. CGen->assign(des, exp); .)
       | /* procedure call */ (. if (entry.idclass < TABLE_procs)
                                 { SemError(210); return; }
                                 CGen->markstack(des, entry.level,
                                                 entry.p.entrypoint); .)
         ActualParameters<des, entry>
                              (. CGen->call(des); .)
     ) .

  Designator<AST &D, classset allowed, TABLE_entries &entry, bool entire>



  =                           (. TABLE_alfa name; AST index, size;
                                 bool found;
                                 D = CGen->emptyast(); .)
     Ident<name>              (. Table->search(name, entry, found);
                                 if (!found) SemError(202);
                                 if (!allowed.memb(entry.idclass)) SemError(206);
                                 if (entry.idclass != TABLE_vars) return;
                                 CGen->stackaddress(D, entry.level,
                                                    entry.v.offset, entry.v.ref); .)
     (   "["                  (. if (entry.v.scalar) SemError(204); .)
         Expression<index, true>
                              (. if (!entry.v.scalar)
                                 /* determine size for bounds check */
                                 { if (entry.v.ref)
                                     CGen->stackaddress(size, entry.level,
                                                        entry.v.offset + 1, false);
                                   else
                                     CGen->stackconstant(size, entry.v.size);
                                   CGen->subscript(D, entry.v.ref, entry.level,
                                                   entry.v.offset, size, index);
                                 } .)
         "]"
       |                      (. if (!entry.v.scalar)
                                 { if (entire) SemError(205);
                                   if (entry.v.ref)
                                     CGen->stackaddress(size, entry.level,
                                                        entry.v.offset + 1, false);
                                   else
                                     CGen->stackconstant(size, entry.v.size);
                                   CGen->stackreference(D, entry.v.ref, entry.level,
                                                        entry.v.offset, size);
                                 } .)
     ) .

  ActualParameters<AST &p, TABLE_entries proc>
  =                           (. int actual = 0; .)
     [  "("                   (. actual++; .)
        OneActual<p, (*Table).isrefparam(proc, actual)>
        { WEAK ","            (. actual++; .)
        OneActual<p, (*Table).isrefparam(proc, actual)> } ")"
     ]                        (. if (actual != proc.p.params) SemError(209); .) .

  OneActual<AST &p, bool byref>
  =                           (. AST par; .)
     Expression<par, !byref>  (. if (byref && !CGen->isrefast(par)) SemError(214);
                                 CGen->linkparameter(p, par); .) .

  ReturnStatement
  =                           (. AST dest, exp; .)
     "RETURN"
     (                        (. if (blockclass != TABLE_funcs) SemError(219);
                                 CGen->stackaddress(dest, blocklevel, 1, false); .)
         Expression<exp, true>
                              (. CGen->assign(dest, exp);
                                 CGen->leavefunction(blocklevel); .)
       | /* empty */          (. switch (blockclass)
                                 { case TABLE_procs :
                                     CGen->leaveprocedure(blocklevel); break;
                                   case TABLE_progs :
                                     CGen->leaveprogram(); break;
                                   case TABLE_funcs :
                                     SemError(220); break;
                                 } .)
     ) .

  Expression<AST &E, bool entire>
  =                           (. AST T; CGEN_operators op;
                                 E = CGen->emptyast(); .)
     (   "+" Term<E, true>
       | "-" Term<E, true>    (. CGen->negateinteger(E); .)
       | Term<E, entire>
     )
     { AddOp<op> Term<T, true>(. CGen->binaryintegerop(op, E, T); .)
     } .

  Term<AST &T, bool entire>
  =                           (. AST F; CGEN_operators op; .)
     Factor<T, entire>
     { (  MulOp<op>
        | /* missing op */    (. SynError(92); op = CGEN_opmul; .)
       ) Factor<F, true>      (. CGen->binaryintegerop(op, T, F); .)



     } .

  Factor<AST &F, bool entire>
  =                           (. TABLE_entries entry;
                                 int value;
                                 F = CGen->emptyast(); .)
       Designator<F, classset(TABLE_consts, TABLE_vars, TABLE_funcs), entry, entire>
                              (. switch (entry.idclass)
                                 { case TABLE_consts :
                                     CGen->stackconstant(F, entry.c.value); return;
                                   case TABLE_procs :
                                   case TABLE_funcs :
                                     CGen->markstack(F, entry.level,
                                                     entry.p.entrypoint); break;
                                   case TABLE_vars :
                                   case TABLE_progs :
                                     return;
                                  } .)
       ActualParameters<F, entry>
     | Number<value>          (. CGen->stackconstant(F, value); .)
     | "(" Expression<F, true> ")" .

The reader should compare this with the simpler attributed grammar presented in section 15.3.2,
and take note of the following points: 

All productions that have to deal with identifiers call upon Designator. So far as code
generation is concerned, this production is responsible for creating nodes that represent the
addresses of variables. Where other identifiers are recognized, execution of a return

bypasses code generation, and leaves the routine after retrieving the symbol table entry for
that identifier. 

Designator must now permit the appearance of an unsubscripted array name, creating an
instance of a REFNODE in this case. Note the use of the entire  parameter passed to
Designator, Expression, Term and Factor to enable checking of the context in which the
subscript may be omitted. 

Parsing of OneActual is simply effected by a call to Expression. After this parsing is
completed, a check must be carried out to see whether a reference parameter does, in fact,
consist only of an unsubscripted array name. Notice that OneActual also incorporates a call to
a new code generating routine that will link the node just created for the actual parameter to
the parameter list emanating from the node for the procedure itself, a node that was created by
the markstack  routine. 

Productions like AssignmentOrCall and Factor follow the call to Designator with tests on the
class of the identifier that has been recognized, and use this information to drive the parse
further (in Factor) or to check constraints (in AssignmentOrCall). 

As before, once a AST structure has been built, it can be traversed and the corresponding code
generated by virtue of each node "knowing" how to generate its own code. It will suffice to
demonstrate two examples. To generate code for a procedure call for our hypothetical stack
machine we define the emit1  member function to be 

  void PROCNODE::emit1(void)
  // generate procedure/function activation and call
  { CGen->emit(int(STKMC_mst));
    if (firstparam) { firstparam->emit1(); delete firstparam; }
    CGen->emit(int(STKMC_cal));
    CGen->emit(level);
    CGen->emit(entrypoint);
  }

which, naturally, calls on the emit1  member of its first parameter to initiate the stacking of the
actual parameters as part of the activation sequence. This member, in turn, calls on the emit1



member of its successor to handle subsequent arguments: 

  void PARAMNODE::emit1(void)
  // push actual parameter onto stack during activation
  { if (par) { par->emit1(); delete par; }     // push this argument
    if (next) { next->emit1(); delete next; }  // follow link to next argument
  }

Source code for the complete implementation of the code generator class can be found in Appendix
C and also on the source diskette, along with implementations for hand-crafted compilers that make
use of tree structures, and implementations that make use of the traditional variant records or unions
to handle the inhomogeneity of the tree nodes. 

Exercises 

17.1 Some authors suggest that value-returning function subprograms are not really necessary; one
can simply use procedures with call-by-reference parameter passing instead. On the other hand, in
C++ all subprograms are potentially functions. Examine the relative merits of providing both in a
language, from the compiler writer’s and the user’s viewpoints. 

17.2 Extend Topsy and its compiler to allow functions and procedures to have parameters. Can you
do this in such a way a function can be called either as an operand in an expression, or as a
stand-alone statement, as in C++? 

17.3 The usual explanation of call-by-value leaves one with the impression that this mode of
passing is very safe, in that changes within a subprogram can be confined to that subprogram.
However, if the value of a pointer variable is passed by value this is not quite the whole story. C
does not provide call-by- reference, because the same effect can be obtained by writing code like 

                void swap (int *x, int *y)
                { int z; z = *x; *x = *y; *y = z; }

Extend Topsy to provide explicit operators for computing an address, and dereferencing an address
(as exemplified by &variable  and *variable  in C), and use these features to provide a reference
passing mechanism for scalar variables. Is it possible to make these operations secure (that is, so
that they cannot be abused)? Are any difficulties caused by overloading the asterisk to mean
multiplication in one context and dereferencing an address in another context? 

17.4 The array passing mechanisms we have devised effectively provide the equivalent of
Modula-2’s "open" array mechanism for arrays passed by reference. Extend Clang and its
implementation to provide the equivalent of the HIGH function to complete the analogy. 

17.5 Implement parameter passing in Clang in another way - use the Pascal/Modula convention of
preceding formal parameters by the keyword VAR if the call-by-reference mechanism is to be used.
Pay particular attention to the problems of array parameters. 

17.6 In Modula-2 and Pascal, the keyword VAR is used to denote call-by-reference, but no keyword
is used for the (default) call-by-value. Why does this come in for criticism? Is the word VAR a good
choice? 

17.7 How do you cater for forward declaration of functions and procedures when you have to take
formal parameters into account (see Exercise 16.17)? 



17.8 (Longer) If you extend Clang or Topsy to introduce a Boolean type as well as an integer one
(see Exercise 14.30), how do you solve the host of interesting problems that arise when you wish to
introduce Boolean functions and Boolean parameters? 

17.9 Follow up the suggestion that parameters can be evaluated before the frame header is
allocated, and are then accessed through positive offsets from the base register BP. 

17.10 Exercise 15.16 suggested the possibility of peephole optimization for replacing the common
code sequence for loading an address and then dereferencing this, assuming the existence of a more
powerful STKMC_psh operation. How would this be implemented when procedures, functions,
arrays and parameters are involved? 

17.11 In previous exercises we have suggested that undeclared identifiers could be entered into the
symbol table at the point of first declaration, so as to help with suppressing further spurious errors.
What is the best way of doing this if we might have undeclared variables, arrays, functions, or
procedures? 

17.12 (Harder) Many languages allow formal parameters to be of a procedure type, so that
procedures or functions may be passed as actual parameters to other routines. C++ allows the same
effect to be achieved by declaring formal parameters as pointers to functions. Can you extend Clang
or Topsy to support this feature? Be careful, for the problem might be more difficult than it looks,
except for some special simple cases. 

17.13 Introduce a few standard functions and procedures into your languages, such as the ABS, ODD

and CHR of Modula-2. Although it is easier to define these names to be reserved keywords,
introduce them as pervasive (predeclared) identifiers, thus allowing them to be redeclared at the
user’s whim. 

17.14 It might be thought that the constraint analysis on actual parameters in the Cocol grammar
could be simplified so as to depend only on the entire  parameter passed to the various parsing
routines, without the need for a check to be carried out after an Expression had been parsed. Why is
this check needed? 

17.15 If you study the interpreter that we have been developing, you should be struck by the fact
that this does a great deal of checking that the stack pointer stays within bounds. This check is
strictly necessary, although unlikely to fail if the memory is large enough. It would probably suffice
to check only for opcodes that push a value or address onto the stack. Even this would severely
degrade the efficiency of the interpreter. Suggest how the compiler and run-time system could be
modified so that at compile-time a prediction is made of the extra depth needed by the run-time
stack by each procedure. This will enable the run-time system to do a single check that this limit
will not be exceeded, as the procedure or program begins execution. (A system on these lines is
suggested by Brinch Hansen (1985)). 

17.16 Explore the possibility of providing a fairly sophisticated post-mortem dump in the extended
interpreter. For example, provide a trace of the subprogram calls up to the point where an error was
detected, and give the values of the local variables in each stack frame. To be really user-friendly
the run-time system will need to refer to the user names for such entities. How would this alter the
whole implementation of the symbol table? 

17.17 Now that you have a better understanding of how recursion is implemented, study the
compiler you are writing with new interest. It uses recursion a great deal. How deeply do you



suppose this recursion goes when the compiler executes? Is recursive descent "efficient" for all
aspects of the compiling process? Do you suppose a compiler would ever run out of space in which
to allocate new stack frames for itself when it was compiling large programs? 

Further reading 

As already mentioned, most texts on recursive descent compilers for block-structured languages
treat the material of the last few sections in fair detail, discussing one or other approach to stack
frame allocation and management. You might like to consult the texts by Fischer and LeBlanc
(1988, 1991), Watson (1989), Elder (1994) or Wirth (1996). The special problem of procedural
parameters is discussed in the texts by Aho, Sethi and Ullman (1986) and Fischer and LeBlanc
(1988, 1991). Gough and Mohay (1988) discuss the related problem of procedure variables as
found in Modula-2. 

17.7 Language design issues 

In this section we wish to explore a few of the many language design issues that arise when one
introduces the procedure and function concepts. 

17.7.1 Scope rules 

Although the scope rules we have discussed probably seem sensible enough, it may be of interest to
record that the scope rules in Pascal originally came in for extensive criticism, as they were
incompletely formulated, and led to misconceptions and misinterpretation, especially when handled
by one-pass systems. Most of the examples cited in the literature have to do with the problems
associated with types, but we can give an example more in keeping with our own language to
illustrate a typical difficulty. Suppose a compiler were to be presented with the following: 

  PROGRAM One;

    PROCEDURE Two (* first declared here *);
      BEGIN
        WRITE(’First Two’)
      END (* Two *);

    PROCEDURE Three;

      PROCEDURE Four;
        BEGIN
          Two
        END (* Four *);

      PROCEDURE Two (* then redeclared here *);
        BEGIN
          WRITE(’Second Two’)
        END (* Two *);

      BEGIN
        Four; Two
      END (* Three *);

    BEGIN
      Three
    END (* One *).

At the instant where procedure Four  is being parsed, and where the call to Two is encountered, the
first procedure Two (in the symbol table at level 1) seems to be in scope, and code will presumably



be generated for a call to this. However, perhaps the second procedure Two should be the one that is
in scope for procedure Four ; one interpretation of the scope rules would require code to be
generated for a call to this. In a one-pass system this would be a little tricky, as this second
procedure Two would not yet have been encountered by the compiler - but note that it would have
been by the time the calls to Four  and Two were made from procedure Three . 

This problem can be resolved to the satisfaction of a compiler writer if the scope rules are
formulated so that the scope of an identifier extends from the point of its declaration to the end of
the block in which it is declared, and not over the whole block in which it is declared. This makes
for easy one-pass compilation, but it is doubtful whether this solution would please a programmer
who writes code such as the above, and falls foul of the rules without the compiler reporting the
fact. 

An ingenious way for a single-pass compiler to check that the scope of an identifier extends over
the whole of the block in which it has been declared was suggested by Sale (1979). The basic
algorithm requires that every block be numbered sequentially as it compiled (notice that these
numbers do not represent nesting levels). Each identifier node inserted into the symbol table has an
extra numeric attribute. This is originally defined to be the unique number of the block making the
insertion, but each time that the identifier is referenced thereafter, this attribute is reset to the
number of the block making the reference. Each time an identifier is declared, and needs to be
entered into the table, a search is made of all the identifiers that are in scope to see if a duplicate
identifier entry can be found that is already attributed with a number equal to or greater than that of
the block making the declaration. If this search succeeds, it implies that the scope rules are about to
be violated. This simple scheme has to be modified, of course, if the language allows for legitimate
forward declarations and function prototypes. 

17.7.2 Function return mechanisms 

Although the use of an explicit ReturnStatement will seem natural to a programmer familiar with
Modula-2 or C++, it is not the only device that has been explored by language designers. In Pascal,
for example, the value to be returned must be defined by means of what appears to be an
assignment to a variable that has the same name as the function. Taken in conjunction with the fact
that in Pascal a parameterless function call also looks like a variable access, this presents numerous
small difficulties to a compiler writer, as a study of the following example will reveal 

  PROGRAM Debug;
    VAR B, C;

    FUNCTION One (W);
      VAR X, Y;

      FUNCTION Two (Z);

        FUNCTION Three;
          BEGIN
            Two := B + X;    (* should this be allowed ? *)
            Three := Three;  (* syntactically correct, although useless *)
          END;

        BEGIN
          Two := B + Two(4); (* must be allowed *)
          Two := B + X;      (* must be allowed *)
          Two := Three;      (* must be allowed *)
          Three := 4;        (* Three is in scope, but cannot be used like this *)
        END;

      BEGIN
        Two := B + X;        (* Two is in scope, but cannot be used like this *)
        X := Two(Y);         (* must be allowed *)
      END;



    BEGIN
      One(B)
    END.

Small wonder that in his later language designs Wirth adopted the explicit return  statement. Of
course, even this does not find favour with some structured language purists, who preach that each
routine should have exactly one entry point and exactly one exit point. 

Exercises

17.18 Submit a program similar to the example in section 17.7.1 to any compilers you may be
using, and detect which interpretation they place on the code. 

17.19 Implement the Sale algorithm in your extended Clang compiler. Can the same sort of scope
conflicts arise in C++, and if so, can you find a way to ensure that the scope of an identifier extends
over the whole of the block in which it is declared, rather than just from the point of declaration
onwards? 

17.20 The following program highlights some further problems with interpreting the scope rules of
languages when function return values are defined by assignment statements. 

             PROGRAM Silly;

               FUNCTION F;

                 FUNCTION F (F) (* nested, and same parameter name as function *);
                   BEGIN
                     F := 1
                   END (* inner F *);

                 BEGIN (* outer F *)
                   F := 2
                 END (* outer F *);

               BEGIN
                 WRITE(F)
               END (* Silly *).

What would cause problems in one-pass (or any) compilation, and what could a compiler writer do
about solving these? 

17.21 Notwithstanding our comments on the difficulties of using an assignment statement to
specify the value to be returned from a function, develop a version of the Clang compiler that
incorporates this idea. 

17.22 In Modula-2, a procedure declaration requires the name of the procedure to be quoted again
after the terminating END. Of what practical benefit is this? 

17.23 In classic Pascal the ordering of the components in a program or procedure block is very
restrictive. It may be summarized in EBNF on the lines of 

        Block  =  [ ConstDeclarations ]
                  [ TypeDeclarations ]
                  [ VarDeclarations ]
                  { ProcDeclaration }
                  CompoundStatement .

In Modula-2, however, this ordering is highly permissive: 

        Block  =  { ConstDeclarations | TypeDeclarations | VarDeclarations | ProcDeclaration }



                  CompoundStatement .

Oberon (Wirth, 1988b) introduced an interesting restriction: 

        Block  =  { ConstDeclarations | TypeDeclarations | VarDeclarations }
                  { ProcDeclaration }
                  CompoundStatement .

Umbriel (Terry, 1995) imposes a different restriction: 

        Block  =  { ConstDeclarations | TypeDeclarations | ProcDeclaration }
                  { VarDeclarations }
                  CompoundStatement .

Although allowing declarations to appear in any order makes for the simplest grammar, languages
that insist on a specific order presumably do so for good reasons. Can you think what these might
be? 

17.24 How would you write a Cocol grammar or a hand-crafted parser to insist on a particular
declaration order, and yet recover satisfactorily if declarations were presented in any order? 

17.25 Originally, in Pascal a function could only return a scalar value, and not, for example, an
ARRAY, RECORD or SET. Why do you suppose this annoying restriction was introduced? Is there any
easy (legal) way around the problem? 

17.26 Several language designers decry function subprograms for the reason that most languages do
not prevent a programmer from writing functions that have side-effects. The program below
illustrates several esoteric side-effects. Given that one really wishes to prevent these, to what extent
can a compiler detect them? 

         PROGRAM Debug;
           VAR
             A, B[12];

           PROCEDURE P1 (X[]);
             BEGIN
               X[3] := 1 (* X is passed by reference *)
             END;

           PROCEDURE P2;
             BEGIN
               A := 1 (* modifies global variable *)
             END;

           PROCEDURE P3;
             BEGIN
               P2 (* indirect attack on a global variable *)
             END;

           PROCEDURE P4;
             VAR C;

             FUNCTION F (Y[]);
               BEGIN
                 A := 3     (* side-effect *);
                 C := 4     (* side-effect *);
                 READ(A)    (* side-effect *);
                 Y[4] := 4  (* side-effect *);
                 P1(B)      (* side-effect *);
                 P2         (* side-effect *);
                 P3         (* side-effect *);
                 P4         (* side-effect *);
                 RETURN 51
               END;

             BEGIN
               A := F(B);
             END;

           BEGIN



             P4
           END.

17.27 If you introduce a FOR loop into Clang (see Exercise 14.46), how could you prevent a
malevolent program from altering the value of the loop control variable within the loop? Some
attempts are easily detected, but those involving procedure calls are a little trickier, as study of the
following might reveal: 

         PROGRAM Threaten;
           VAR i;

           PROCEDURE Nasty (VAR x);
             BEGIN
               x := 10
             END;

           PROCEDURE Nastier;
             BEGIN
               i := 10
             END;

           BEGIN
             FOR i := 0 TO 10 DO
               FOR i := 0 TO 5 DO (* Corrupt by using as inner control variable *)
                 BEGIN
                   READ(i)        (* Corrupt by reading a new value *);
                   i := 6         (* Corrupt by direct assignment *);
                   Nasty(i)       (* Corrupt by passing i by reference *);
                   Nastier        (* Corrupt by calling a procedure having i in scope *)
                 END
           END.

Further reading 

Criticisms of well established languages like Pascal, Modula-2 and C are worth following up. The
reader is directed to the classic papers by Welsh, Sneeringer and Hoare (1977) (reprinted in Barron
(1981)), Kernighan (1981), Cailliau (1982), Cornelius (1988), Mody (1991), and Sakkinen (1992)
for evidence that language design is something that does not always please users. 
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18 CONCURRENT PROGRAMMING 

It is the objective of this chapter to extend the Clang language and its implementation to do what its
name suggests - handle simple problems in concurrent programming. It is quite likely that this is a
field which is new to the reader, and so we shall begin by discussing some rudimentary concepts in
concurrent programming. Our treatment of this is necessarily brief, and the reader would be well
advised to consult one of the excellent specialist textbooks for more detail. 

18.1 Fundamental concepts 

A common way of introducing programming to novices is by the preparation of a recipe or
algorithm for some simple human activity, such as making a cup of tea, or running a bath. In such
introductions the aim is usually to stress the idea of sequential algorithms, where "one thing gets
done at a time". Although this approach is probably familiar by now to most readers, on reflection it
may be seen as a little perverse to try to twist all problem solving into this mould - indeed, that may
be the very reason why some beginners find the sequential algorithm a difficult concept to grasp.
Many human activities are better represented as a set of interacting processes, which are carried out
in parallel. To take a simple example, a sequential algorithm for changing a flat tyre might be
written 

                  begin
                    open boot
                    take jack from boot
                    take tools from boot
                    remove hubcap
                    loosen wheel nuts
                    jack up car
                    take spare from boot
                    take off flat tyre
                    put spare on
                    lower jack
                    tighten wheel nuts
                    replace hubcap
                    place flat tyre in boot
                    place jack in boot
                    place tools in boot
                    close boot
                  end

but it might be difficult to convince a beginner that the order here was correct, especially if he or
she were used to changing tyres with the aid of a friend, when the algorithm might be better
expressed 

                  begin
                                       open boot
                     take tools from boot and     take jack from boot
                                     remove hubcap
                                   loosen wheel nuts
                     jack up car          and     take spare from boot
                                   take off flat tyre
                                      put spare on
                     lower jack           and     place flat tyre in boot
                     tighten wheel nuts   and     place jack in boot
                     replace hubcap       and     place tools in boot
                                       close boot
                  end

Here we have several examples of concurrent processes, which could in theory be undertaken by
two almost autonomous processors - provided that they co-operate at crucial instants so as to keep



in step (for example, taking off the flat tyre and getting the spare wheel from the boot are both
processes which must be completed before the next process can start, but it does not matter which is
completed first). 

We shall define a sequential process as a sequence of operations carried out one at a time. The
precise definition of an operation will depend on the level of detail at which the process is
described. A concurrent program contains a set of such processes executing in parallel. 

There are two motivations for the study of concurrency in programming languages. Firstly,
concurrent facilities may be directly exploited in systems where one has genuine multiple
processors, and such systems are becoming ever more common as technology improves. Secondly,
concurrent programming facilities may allow some kinds of programs to be designed and structured
more naturally in terms of autonomous (but almost invariably interacting) processes, even if these
are executed on a single processing device, where their execution will, at best, be interleaved in
real time. 

Concurrent multiprocessing of peripheral devices has been common for many years, as part of
highly specialized operating system design. Because this usually has to be ultra efficient, it has
tended to be the domain of the highly skilled assembly-level programmer. It is only comparatively
recently that high-level languages have approached the problem of providing reliable, easily
understood constructs for concurrent programming. The modern programmer should have at least
some elementary knowledge of the constructs, and of the main problem areas which arise in
concurrent programming. 

18.2 Parallel processes, exclusion and synchronization 

We shall introduce the notation 

COBEGIN S1 ; S2 ; S3 ; . . . Sn COEND

to denote that the statements or procedure calls Sk can be executed concurrently. At an abstract

level the programmer need not be concerned with how concurrency might be implemented at the
hardware level on a computer - all that need be assumed is that processes execute in a non-negative,
finite (as opposed to infinite) time. Whether this execution truly takes place in parallel, or whether
it is interleaved in time (as it would have to be if only one processor was available) is irrelevant. 

To define the effect of a concurrent statement we must take into account the statements S0 and Sn+1
which precede and follow it in a given program. The piece of code 

S0 ; COBEGIN S1 ; S2 ; S3 ; . . . Sn COEND; Sn+1

can be represented by the precedence graph of Figure 18.1. 



Only after all the statements S1 . . . Sn have been executed will Sn+1 be executed. Similarly, the

construction 

                      S0;
                      COBEGIN
                        S1;
                        BEGIN
                          S2; COBEGIN S3; S4 COEND; S5
                        END;
                        S6
                      COEND;
                      S7

can be represented by the precedence graph of Figure 18.2. 

Although it is easy enough to depict code using the COBEGIN ... COEND  construct in this way, we
should observe that precedence graphs can be constructed which cannot be translated into this
highly structured notation. An example of this appears in Figure 18.3. 

As an example of the use of the COBEGIN ... COEND  construct, we show a small program that will
compute three simple summations simultaneously 



  PROGRAM Concurrent;
    VAR
      s1, s2, s3, i1, i2, i3;

    BEGIN
      COBEGIN
        BEGIN s1 := 0; FOR i1 := 1 TO 10 DO s1 := s1 + i1 END;
        BEGIN s2 := 0; FOR i2 := 1 TO 10 DO s2 := s2 + i2 END;
        BEGIN s3 := 0; FOR i3 := 1 TO 10 DO s3 := s3 + i3 END;
      COEND;
      WRITE(s1, s2, s3)
    END.

We may use this example to introduce two problem areas in concurrent programming that simply
do not arise in sequential programming (at least, not that the high-level user can ever perceive). We
have already intimated that we build concurrent programs out of sequential processes that must be
regarded as executing simultaneously. A sequential process must be thought of as a sequential
algorithm that operates on a data structure; the whole has the important property that it always gives
the same result, regardless of how long it takes to execute. When sequential processes start to
execute in parallel their time independence remains invariant only if their data structures remain
truly private. If a process uses variables which other processes may simultaneously be changing, it
is easy to see that the behaviour of the program as a whole may depend crucially on the relative
speeds of each of its parts, and may become totally unpredictable. 

In our example the three processes access totally private variables, so their concurrent composition
is equivalent to any of the six possible ways in which they could have been arranged sequentially.
As concurrent processes, however, the total execution time might be reduced. However, for the
similar program below 

  PROGRAM Concurrent;
    VAR
      s1, s2, s3, i1, i2, i3;

    BEGIN
      COBEGIN
        BEGIN s2 := 0; FOR i1 := 1 TO 10 DO s1 := s1 + i2 END;
        BEGIN s3 := 0; FOR i2 := 1 TO 10 DO s2 := s2 + i3 END;
        BEGIN s1 := 0; FOR i3 := 1 TO 10 DO s3 := s3 + i1 END;
      COEND;
      Write(s1, s2, s3)
    END.

chaos would result, because we could never predict with certainty what was in any of the shared
variables. At the same time the reader should appreciate that it must be possible to allow processes
to access non-private data structures, otherwise concurrent processes could never exchange data and
co-operate on tasks of mutual interest. 

If one wishes to succeed in building large, reliable, concurrent programs, one will ideally want to
use programming languages that cater specially for such problems, and are so designed that time
dependent errors can be detected at compile-time, before they cause chaos - in effect the compiler
must protect programmers from themselves. The simple COBEGIN ... COEND  structure is
inadequate as a reliable programming tool: it must be augmented with some restrictions on the
forms of the statements which can be executed in parallel, and some method must be found of
handling the following problems: 

Communication - processes must somehow be able to pass information from one to another. 

Mutual exclusion - processes must be guaranteed that they can access a critical region of
code and/or a data structure in real-time without simultaneous interference from competing
processes. 



Synchronization - two otherwise autonomous processes may have to be forced to wait in
real-time for one another, or for some other event, and to signal one another when it is safe to
proceed. 

How best to handle these issues has been a matter for extensive research; suffice it to say that
various models have been proposed and incorporated into modern languages such as Concurrent
Pascal, Pascal-FC, Pascal-Plus, Modula, Edison, Concurrent Euclid, occam and Ada. Alarums and
excursions: we propose to study a simple method, and to add it to Clang in this chapter. 

We shall restrict the discussion to the use of shared memory for communication between processes
(that is, processes communicate information through being able to access common areas of the
same memory space, rather than by transmitting data down channels or other links). 

The exclusion and synchronization problems, although fundamentally distinct, have a lot in
common. A simple way of handling them is to use the concept of the semaphore, introduced by
Dijkstra in 1968. Although there is a simple integer value associated with a semaphore S, it should
really be thought of as a new type of variable, on which the only valid operations, beside the
assignment of an initial associated integer value, are P(S)  (from the Dutch passeren, meaning to
pass) and V(S)  (from the Dutch vrijgeven, meaning to release). In English these are often called
wait and signal. The operations allow a process to cause itself to wait for a certain event, and then
to be resumed when signalled by another process that the event has occurred. The simplest
semantics of these operations are usually defined as follows: 

P(S)  or WAIT(S)  Wait until the value associated with S is positive, then subtract 1 from S and
continue execution

V(S)  or SIGNAL(S)  Add 1 to the value associated with S. This may allow a process that is waiting
because it executed P(S)  to continue.

Both WAIT(S)  and SIGNAL(S)  must be performed "indivisibly" - there can be no partial completion
of the operation while something else is going on. 

As an example of the use of semaphores to provide mutual exclusion (that is, protect a critical
region), we give the following program, which also illustrates having two instances of the same
process active at once. 

  PROGRAM Exclusion;
    VAR Shared, Semaphore;

    PROCEDURE Process (Limit);
      VAR Loop;
      BEGIN
        Loop := 1;
        WHILE Loop <= Limit DO
          BEGIN
            WAIT(Semaphore);
              Shared := Shared + 1;
            SIGNAL(Semaphore);
            Loop := Loop + 1;
          END
      END;

    BEGIN
      Semaphore := 1; Shared := 0;
      COBEGIN
        Process(4); Process(5+3)
      COEND;
      WRITE(Shared);
    END.

Each of the processes has its own private local loop counter Loop , but both increment the same



global variable Shared , access to which is controlled by the (shared) Semaphore . Notice that we are
assuming that we can use a simple assignment to set an initial value for a semaphore, even though
we have implied that it is not really a simple integer variable. 

As an example of the use of semaphores to effect synchronization, we present a solution to a simple
producer - consumer problem. The idea here is that one process produces items, and another
consumes them, asynchronously. The items are passed through a distributor, who can only hold one
item in stock at one time. This means that the producer may have to wait until the distributor is
ready to accept an item, and the consumer may have to wait for the distributor to receive a
consignment before an item can be supplied. An algorithm for doing this follows: 

   PROGRAM ProducerConsumer;
     VAR
       CanStore, CanTake;

     PROCEDURE Producer;
       BEGIN
         REPEAT
           ProduceItem;
           WAIT(CanStore); GiveToDistributor; SIGNAL(CanTake)
         FOREVER
       END;

     PROCEDURE Consumer;
       BEGIN
         REPEAT
           WAIT(CanTake); TakeFromDistributor; SIGNAL(CanStore);
           ConsumeItem
         FOREVER
       END;

     BEGIN
       CanStore := 1;  CanTake := 0;
       COBEGIN
         Producer; Consumer
       COEND
     END.

A problem which may not be immediately apparent is that communicating processes which have to
synchronize, or ensure that they have exclusive access to a critical region, may become deadlocked
when they all - perhaps erroneously - end up waiting on the same semaphore (or even different
ones), with no process still active which can signal others. In the following variation on the above
example this is quite obvious, but it is not always so simple to detect deadlock, even in quite simple
programs. 

  PROGRAM ProducerConsumer;
    VAR
      CanStore, CanTake;

    PROCEDURE Producer (Quota);
      VAR I;
      BEGIN
        I := 1;
        WHILE I <= Quota DO
          BEGIN
            ProduceItem; I := I + 1;
            WAIT(CanStore); GiveToDistributor; SIGNAL(CanTake);
          END
      END;

    PROCEDURE Consumer (Demand);
      VAR I;
      BEGIN
        I := 1;
        WHILE I <= Demand DO
          BEGIN
            WAIT(CanTake); TakeFromDistributor; SIGNAL(CanStore);
            ConsumeItem; I := I + 1;
          END
      END;

    BEGIN



      CanStore := 1;  CanTake := 0;
      COBEGIN
        Producer(12); Consumer(5)
      COEND
    END.

Here the obvious outcome is that only the first five of the objects produced can be consumed -
when Consumer  finishes, Producer  will find itself waiting forever for the Distributor  to dispose
of the sixth item. 

In the next section we shall show how we might implement concurrency using
COBEGIN ... COEND , and the WAIT and SIGNAL primitives, by making additions to our simple
language like those suggested above. This is remarkably easy to do, so far as compilation is
concerned. Concurrent execution of the programs so compiled is another matter, of course, but we
shall suggest how an interpretive system can give the effect of simulating concurrent execution,
using run-time support rather like that found in some real-time systems. 

Exercises 

18.1 One of the classic problems used to illustrate the use of semaphores is the so-called "bounded
buffer" problem. This is an enhancement of the example used before, but where the distributor can
store up to Max items at one time. In computer terms these are usually held in a circular buffer,
stored in a linear array, and managed by using two indices, say Head and Tail . In terms of our
simple language we should have something like 

                      CONST
                        Max = Size of Buffer;
                      VAR
                        Buffer[Max-1], Head, Tail;

with Head and Tail  both initially set to 1. Adding to the buffer is always done at the tail, and
removing from the buffer is done from the head, along the lines of 

                      add to buffer:
                          Buffer[Tail] := Item;
                          Tail := (Tail + 1) MOD Max;

                      remove from buffer:
                          Item := Buffer[Head];
                          Head := (Head + 1) MOD Max;

Devise a system where one process continually adds to the buffer, at the same time that a parallel
process tries to empty it, with the restrictions that (a) the first process cannot add to the buffer if it is
full (b) the second process cannot draw from the buffer if it is empty (c) the first process cannot add
to the buffer while the second process draws from the buffer at exactly the same instant in
real-time. 

18.2 Another classic problem has become known as Conway’s problem, after the person who first
proposed it. Write a program to read the data from 10 column cards, and rewrite it in 15 column
lines, with the following changes: after every card image an extra space character is appended, and
every adjacent pair of asterisks is replaced by a single up-arrow . 

This is easily solved by a single sequential program, but may be solved (more naturally?) by three
concurrent processes. One of these, Input , reads the cards and simply passes the characters (with
the additional trailing space) through a finite buffer, say InBuffer , to a process Squash  which
simply looks for double asterisks and passes a stream of modified characters through a second finite



buffer, say OutBuffer , to a process Output , which extracts the characters from the second buffer
and prints them in 15 column lines. 

18.3 A semaphore-based system - syntax, semantics, and code generation 

So as to provide a system with which the reader can experiment in concurrent programming, we
shall add a few more permissible statements to our language, as described by the following EBNF: 

    Statement            =   [ CompoundStatement | Assignment | ProcedureCall
                              | IfStatement | WhileStatement
                              | WriteStatement | ReadStatement
                              | CobeginStatement | SemaphoreStatement ] .
    CobeginStatement     =   "COBEGIN" ProcessCall { ";" ProcessCall } "COEND" .
    ProcessCall          =   ProcIdentifier ActualParameters .
    SemaphoreStatement   =   ( "WAIT" | "SIGNAL" ) "(" Variable ")" .

There is no real restriction in limiting the statements which may be processed concurrently to
procedure calls, as any other statement may be packaged into a trivial procedure. However, for our
simple implementation we shall limit the number of processes which can execute in parallel, and
restrict the COBEGIN ... COEND  construction to appearing in the main program block. These
restrictions are really imposed by our pseudo-machine, which we shall augment as simply as
possible by incorporating five new instructions, CBG, FRK, CND, WGT  and SIG, with the following
semantics: 

CBG  N   Prepare to instantiate a set of N concurrent processes

FRK  A   Set up a suspended call to a level 1 procedure whose code commences at address A

CND      Suspend parent process and transfer control to one of the processes previously instantiated by
FRK

WGT      Wait on the semaphore whose address is at top-of-stack

SIG      Signal the semaphore whose address is at top-of-stack.

The way in which parsing and code generation are accomplished can be understood with reference
to the Cocol extract that follows: 

   CobeginStatement
   =                          (. int processes = 0;
                                 CGEN_labels start; .)
      "COBEGIN"               (. if (blockclass != TABLE_progs) SemError(215);
                                 CGen->cobegin(start); .)
      ProcessCall             (. processes++; .)
      { WEAK ";" ProcessCall  (. processes++; .)
      }
      "COEND"                 (. CGen->coend(start, processes); .) .

   ProcessCall
   =                          (. TABLE_entries entry; TABLE_alfa name;
                                 bool found; .)
      Ident<name>             (. Table->search(name, entry, found);
                                 if (!found) SemError(202);
                                 if (entry.idclass == TABLE_procs)
                                   CGen->markstack();
                                 else { SemError(217); return; } .)
      ActualParameters<entry> (. CGen->forkprocess(entry.p.entrypoint); .) .

   SemaphoreStatement
   =                          (. bool wait; .)
      (  "WAIT"               (. wait = true; .)
       | "SIGNAL"             (. wait = false; .)
      )
      "(" Variable            (. if (wait) CGen->waitop(); else CGen->signalop(); .)



      ")" .

The reader should note that: 

Code associated with COBEGIN and COEND must be generated so that the run-time system can
prepare to schedule the correct number of processes. A count of the processes is maintained in
the parser for CobeginStatement, and later patched into the code generated by the call to the
cobegin  code generating routine when the call to coend  is made. 

The forkprocess  routine generates code that resembles a procedure call, but when this code
is later executed it stops short of making the calls. In a more sophisticated code generator
employing the use of an AST, as was discussed in section 17.6.2, the PROCNODE class would
need to incorporate two code generating members, one for normal calls, and one for such
suspended calls. 

The code generated by the coend  routine signals to the run-time system that all the processes
that have been initiated by the code generated by forkprocess  may actually commence
concurrent execution, and at the same time suspends operation of the main program. This will
become clearer in the next section, where we discuss run-time support. 

As before, the discussion will be clarified by presenting the code for an earlier example, which
shows the use of semaphores to protect a critical region of code accessing a shared variable, the use
of processes that use simple value parameters, and the invocation of more than one instance of the
same process. 

   Clang 4.0 on 28/12/95 at 15:27:13

     0 PROGRAM Exclusion;
     0   VAR Shared, Semaphore;
     2
     2   PROCEDURE Process (Limit);
     2     VAR Loop;
     4     BEGIN
     4       Loop := 1;
    10       WHILE Loop <= Limit DO
    21         BEGIN
    21           WAIT(Semaphore);
    25             Shared := Shared + 1;
    36           SIGNAL(Semaphore);
    40           Loop := Loop + 1;
    51         END
    51     END;
    56
    56   BEGIN
    58     Semaphore := 1; Shared := 0;
    70     COBEGIN
    70       Process(4); Process(5+3)
    83     COEND;
    86     WRITE(Shared);
    92   END.

The code produced in the compilation of this program would read 

      0 BRN       56    to start of main program
      2 DSP        1  BEGIN Process
      4 ADR  2    -6      address of Loop
      7 LIT        1      Constant 1
      9 STO             Loop := 1
     10 ADR  2    -6      address of Loop
     13 VAL               value of Loop
     14 ADR  2    -5      address of Limit
     17 VAL               value of Limit
     18 LEQ               Loop <= Limit ?
     19 BZE       53    WHILE Loop <= Limit DO
     21 ADR  1    -2        Address of Semaphore
     24 WGT               WAIT(Semaphore)
     25 ADR  1    -1        Address of Shared



     28 ADR  1    -1        Address of Shared
     31 VAL                 Value of Shared
     32 LIT        1        Constant 1
     34 ADD                 Value of Shared + 1
     35 STO               Shared := Shared + 1
     36 ADR  1    -2        Address of Semaphore
     39 SIG               SIGNAL(Semaphore)
     40 ADR  2    -6        Address of Loop
     43 ADR  2    -6        Address of Loop
     46 VAL                 Value of Loop
     47 LIT        1        Constant 1
     49 ADD                 Value of Loop + 1
     50 STO               Loop := Loop + 1
     51 BRN       10    END
     53 RET  2     0  END Process
     56 DSP        2  BEGIN Exclusion
     58 ADR  1    -2      Address of Semaphore
     61 LIT        1      Constant 1
     63 STO             Semaphore := 1
     64 ADR  1    -1      Address of Shared
     67 LIT        0      Constant 0
     69 STO             Shared := 0
     70 CBG        2    COBEGIN (2 processes)
     72 MST                 Mark stack
     73 LIT        4        Argument 4
     75 FRK        2      Process(4)
     77 MST                 Mark Stack
     78 LIT        5        Constant 5
     80 LIT        3        Constant 3
     82 ADD                 Argument 5 + 3
     83 FRK        2      Process(5+3)
     85 CND             COEND
     86 ADR  1    -1      Address of Shared
     89 VAL               Value of Shared
     90 PRN             WRITE(Shared)
     91 NLN             WriteLn
     92 HLT           END Exclusion

Exercises 

18.3 If you study the above code carefully you might come up with the idea that it could be
optimized by adding "level" and "offset" components to the WGT and SIG instructions. Is this a
feasible proposition? 

18.4 What possible outputs would you expect from the example program given here? What outputs
could you expect if the semaphore were not used? 

18.5 Is it not a better idea to introduce PROCESS as a reserved keyword, rather than just specifying a
process as a PROCEDURE? Discuss arguments for and against this proposal, and try to implement it
anyway. 

18.4 Run-time implementation 

We must now give some consideration to the problem of how one might execute a set of parallel
processes or, in our case, interpret the stack machine code generated by the compiler. Perhaps this
is a good point to comment that any sequential process forming part of a (generally) concurrent
program may be in one of four states: 

- running - instructions are being executed 

- ready - suspended, waiting to be assigned to a processor 



- blocked - suspended, waiting for some event to occur (such as I/O to be completed, or
a signal on a semaphore) 

- deadlocked - suspended, waiting for an event that will never occur (perhaps because of
a failure in some other part of the system). 

These states may conveniently be represented on a state diagram like that of Figure 18.4. 

In practical implementations, concurrent behaviour is achieved in one of several ways. For
example, processes can either 

share execution time on a single real processor (pseudo-concurrency); 

execute on a true multiprocessor system with shared memory, perhaps with each processor
handling at most one process; 

execute on a true multiprocessor system without shared memory (distributed processing). 

The implementation usually depends critically on a run-time support system or kernel, which may
take one of a number of forms: 

a software structure, programmed as part of the application (as must be done in Modula-2); 

a standard software system, linked in with the object code (as usually done in Ada); 

a microcoded hardware structure (as typified by the Transputer). 

Although the logical behaviour of a correct concurrent program will not - or should not - be
dependent on the kernel, the performance of a real-time system may depend critically on the
characteristics of the scheduling algorithms used in the kernel. 

The shared memory, semaphore-based implementation upon which we have been focusing attention
lends itself to the idea of multiplexing the processes on a single processor, or distributing them
among a set of processors. Our interpreter, of course, really runs on one processor, although there is
no reason why it should not emulate several real processors - with an interpretive approach any
architecture can be modelled if one is prepared to sacrifice efficiency. What we shall do here is to
emulate a system in which one controlling processor shares its time between several processes,
allowing each process to execute for a few simulated fetch-execute cycles, before moving on to the
next. This idea of time-slicing is very close to what occurs in some time-sharing systems in real
life, with one major difference. Real systems are usually interrupt-driven by clock and peripheral
controller devices, with hardware mechanisms controlling when some process switches occur, and
software mechanisms controlling when others happen as a result of WAIT and SIGNAL operations on
semaphores. On our toy system we shall simulate time-slicing by letting each active process



execute for a small random number of steps before control is passed to another one. 

The simulated shared memory of the complete system will be divided up between the parallel
processes while they are executing. This is not the place to enter into a study of sophisticated
memory management techniques. Instead, what we shall do is to divide the memory which remains
after the allocation to the main program stack frame, the program code, and the string pool, equally
among each of the processes which have been initiated. 

The processes are started by the main program; while they are executing, the main program is
effectively dormant. When all the processes have run to completion, the main program is activated
once more. While they are running, one can think of each as a separate program, each requiring its
own stack memory, and each managing it in the way discussed previously. Each process
conceptually has its own processor - or, more honestly, keeps track of its own set of processor
registers, its own display, and so on. To accomplish this, we extend the data structures used by the
interpreter, and in particular introduce a linked ring structure of so-called process descriptors, as
follows: 

  const int STKMC_procmax = 10;          // Limit on concurrent processes
  typedef int STKMC_procindex;           // Really 0 .. procmax

  struct processrec {                    // Process descriptor records
    STKMC_address bp, mp, sp, pc;        // Shadow registers
    STKMC_procindex next;                // Ring pointer
    STKMC_procindex queue;               // Linked, waiting on semaphore
    bool ready;                          // Process ready flag
    STKMC_address stackmax, stackmin;    // Memory limits
    int display[STKMC_levmax];           // Display registers
  };

  processrec process[STKMC_procmax + 1]; // Ring of process descriptors
  STKMC_procindex current, nexttorun;    // Process pointers
  const int maxslice = 8;                // Maximum time slice
  int slice;                             // Current time slice

The reader should note the following: 

The important ready  field indicates whether the process is still active (ready = true ), or has
run to completion or been suspended on a semaphore (ready = false ). 

Each process descriptor needs to maintain copies of the processor registers, so that when a
context switch is done to allow another process to take charge of the single processor, the
real CPU registers can be restored to the values they had when that process last executed. 

Similarly, each process descriptor maintains its own set of display registers, and its own limits
on the memory that it is allowed to access for storing local variables and performing stack
manipulations. 

The zeroth entry in the process  array is used for the main program. As already mentioned,
the other process descriptors are linked to form a circular ring, and the next  and queue  fields
are used to connect these descriptors together. 

As an example, consider the case where the main program has just launched four concurrent
processes. The process descriptors would be linked as shown in Figure 18.5(a). 



If process 2 is then forced to wait on a semaphore, the descriptor ring would change to the situation
depicted in Figure 18.5(b). 

If process 3 runs to completion in the next time slice, the ring will then change to the situation
depicted in Figure 18.5(c). 

Finally, if process 4 then waits on the same semaphore, the ring changes to the situation depicted in
Figure 18.5(d). 

When a group of processes are all waiting on a common semaphore, their ready  fields will all have
been set to false , and their queue  fields will have been used to link them in a FIFO queue, set up
in real time as the WAIT operations were handled. We return to this point a little later on. 

Initialization and emulation of the machine proceeds much as before, save that we now initialize a
parent process (main program) process descriptor as well as the virtual processor: 

    process[0].queue = 0;           // Initialize parent process descriptor
    process[0].ready = true;        // (memory limits and display)
    process[0].stackmax = initsp;
    process[0].stackmin = codelen;
    for (int l = 0; l < STKMC_levmax; l++) process[0].display[l] = initsp;
    cpu.sp = initsp;                // Initialize stack pointer
    cpu.bp = initsp;                // Initialize registers
    cpu.pc = initpc;                // Initialize program counter
    nexttorun = 0; nprocs = 0;      // Initialize emulator variables
    slice = 0; ps = running;
    do



    { current = nexttorun;          // Set active process descriptor pointer
      pcnow = cpu.pc;               // Save for tracing purposes
      if (unsigned(mem[cpu.pc]) > int(STKMC_nul)) ps = badop;
      else
      { cpu.ir = STKMC_opcodes(mem[cpu.pc]); cpu.pc++;  // Fetch
        if (tracing) trace(results, pcnow);
        switch (cpu.ir) {                               // Execute
                                                        // various cases
        }
      }
      if (nexttorun != 0) chooseprocess();
    } while (ps == running);

As we shall see later, display[0]  is set to initsp  for all processes, and will not change, for all
processes are able to access the global variables of the main program. This is the most effective
means we have of sharing data between processes. 

Two pointers are used to index the array of process descriptors. nexttorun  indicates the process
that has most recently been assigned to the processor, and current  indicates the process that is
currently running. Each iteration of the fetch-execute cycle begins by copying nexttorun  to
current ; some operations will alter the value of nexttorun  to indicate that the real processor
should be assigned to a new process. In particular, once the concurrent processes begin execution,
nexttorun  will no longer have the value of zero. The last part of the processing loop detects this as
an indication that it may have to choose another process. 

The algorithm for chooseprocess  makes use of the variable slice . This is set to a small random
number at the start of concurrent processing, and thereafter is decremented after each
pseudo-machine instruction, or set to zero when a process is forced to wait, or terminates normally.
When slice  reaches zero, the process descriptor ring is searched cyclically (using the next

pointer) so as to find a suitable process with which to continue for a further small (random) number
of steps. Once found, a context switch is performed - the current CPU registers must be saved in
the process descriptor, and must then be replaced by the values apposite to the process that is about
to continue. The search and context switch are easily programmed: 

  void STKMC::swapregisters(void)
  // Save current machine registers; restore from next process
  { process[current].bp = cpu.bp;   cpu.bp = process[nexttorun].bp;
    process[current].mp = cpu.mp;   cpu.mp = process[nexttorun].mp;
    process[current].sp = cpu.sp;   cpu.sp = process[nexttorun].sp;
    process[current].pc = cpu.pc;   cpu.pc = process[nexttorun].pc;
  }

  void STKMC::chooseprocess(void)
  // From current process, traverse ring of descriptors to next ready process
  { if (slice != 0) { slice--; return; }
    do { nexttorun = process[nexttorun].next; }
    while (!process[nexttorun].ready);
    if (nexttorun != current) swapregisters();
    slice = random(maxslice) + 3;
  }

We are here presuming that we have a suitable library function random(limit)  for generating a
sequence of random numbers, suitably scaled to lie in the range 0 <= random < Limit . 

There is a point of some subtlety here. If the search is instigated by virtue of one process being
forced to wait on a semaphore or terminating normally, it must find another process to execute.
There may be no such process, in which case a state of deadlock can be detected. However, if the
search is instigated simply by virtue of a process reaching the end of its allotted time slice, then
control can legitimately return to the same process if no other ready process can be found. 

The mechanism of the COBEGIN ... COEND  system is next to be discussed. As we have extended
the language, processes are syntactically indistinguishable from procedures, and the code
generation between the COBEGIN and COEND very nearly, but not quite, generates a set of procedure



calls. There is a fundamental difference, of course, in the way in which such procedure "calls"
execute. After the COBEGIN, transfer of control must not pass immediately to the process
procedures, but must remain with the main parent program until all child processes can be started
together - the reason being that parameters may have to be set up, and this will have to be done in
the environment of the parent. 

For our stack machine, the code generated by the cobegin  routine (in our simple machine, the
CBG N sequence) is used by the kernel to decide on how to divide the remaining memory up among
the imminent processes. This is achieved by the following code in the emulator: 

  case STKMC_cbg:
    if (mem[cpu.pc] > 0)                             // any processes?
    { partition = (cpu.sp - codelen) / mem[cpu.pc];  // divide rest of memory
      parentsp = cpu.sp;                             // for restoration by cnd
    }
    cpu.pc++;
    break;

The necessity of remembering the current value of cpu.sp  will immediately become apparent after
studying the interpretation of the FRK A instruction which is executed in place of the rather similar
CAL L A  so as to set up a process. Essentially what has to be achieved is the setting up of a
complete activation record and process descriptor for a procedure, but without transferring control
to this: 

  case STKMC_frk:
    nprocs++;                                       // one more process
    // first initialize the shadow CPU registers and display
    process[nprocs].bp = cpu.mp;                    // base pointer
    process[nprocs].mp = cpu.mp;                    // mark stack pointer
    process[nprocs].sp = cpu.sp;                    // stack pointer
    process[nprocs].pc = mem[cpu.pc];               // process entry point
    process[nprocs].display[0] =
      process[0].display[0];                        // for global access
    process[nprocs].display[1] = cpu.mp;            // for local access
    // now initialize frame header
    mem[process[nprocs].bp - 2] =
      process[0].display[1];                        // display copy
    mem[process[nprocs].bp - 3] = cpu.bp;           // dynamic link
    mem[process[nprocs].bp - 4] = processreturn;    // return address
    // descriptor house keeping
    process[nprocs].stackmax = cpu.mp;              // memory limits
    process[nprocs].stackmin = cpu.mp - partition;
    process[nprocs].ready = true;                   // ready to run
    process[nprocs].queue = 0;                      // clear semaphore queue
    process[nprocs].next = nprocs + 1;              // link to next descriptor
    cpu.sp = cpu.mp - partition;                    // bump parent sp below
    cpu.pc++;                                       // memory reserved for process
    break;

where the reader should note that: 

The return address for a process procedure is set to an artificial value (this might be zero, but
any other "impossible" value would suffice). This can later be detected at procedure exit as an
indication that the process is complete, and may be deactivated. 

The penultimate step involves resetting the stack pointer for the parent process so as to skip
over the area in memory that is being reserved for the process workspace. 

The mechanics of COEND are now easy: we merely deactivate the main program, close the descriptor
ring, and choose one of the processes (at random) to continue execution. When all processes have
run to completion their workspaces can, of course, all be reclaimed. Provision for doing this was
made when we saved the value of cpu.sp  as part of the action of the CBG N instruction; the saved
value is restored to the process descriptor for the main program as part of the interpretation of the
CND instruction: 



  case STKMC_cnd:
    if (nprocs > 0)                        // check for pathological case
    { process[nprocs].next = 1;            // close ring of descriptors
      nexttorun = random(nprocs) + 1;      // choose first process at random
      cpu.sp = parentsp;                   // restore parent stack pointer
    }
    break;

Processes, like procedures, terminate when they encounter a RET instruction. The interpretation
requires slight modification from what we have seen previously, and may be understood with
reference to the code below: 

  case STKMC_ret:
    process[current].display[mem[cpu.pc] - 1] = mem[cpu.bp - 2];
                                           // restore display
    cpu.sp = cpu.bp - mem[cpu.pc + 1];     // discard stack frame
    cpu.mp = mem[cpu.bp - 5];              // restore mark pointer
    cpu.pc = mem[cpu.bp - 4];              // get return address
    cpu.bp = mem[cpu.bp - 3];              // reset base pointer
    if (cpu.pc == processreturn)           // kill a concurrent process
    { nprocs--; slice = 0;                 // force choice of new process
      if (nprocs == 0)                     // must reactivate main program
      { nexttorun = 0; swapregisters(); }
      else                                 // complete this process only
      { chooseprocess();                   // may fail
        process[current].ready = false;
        if (current == nexttorun) ps = deadlock;
      }
    }
    break;

Much of this is as before, except that we must check for the artificial return address mentioned
above. If this is detected, but uncompleted processes are known to exist, we reset the time slice,
attempt to choose another process, switch context, deactivate the completed process, and only then
check for deadlock. On the other hand, when all processes have been completed, we simply do a
context switch back to the main program (process[0] ). 

The last point to be considered is that of implementing semaphore operations. This is a little subtle.
The simplest semantic meaning for the WAIT and SIGNAL operations is probably 

             WAIT(S)       WHILE S < 0 DO (* nothing *) END; S := S - 1;

             SIGNAL(S)     S := S + 1;

where, as we have remarked, the testing and incrementing must be be done as indivisible
operations. The interpreter allows easy implementation of this otherwise rather awkward property,
because the entire operation can be handled by one pseudo-operation (a WGT or SIG instruction). 

However, the simple semantic interpretation above is probably never implemented, for it implies
what is known as a busy-wait operation, where a processor is tied up cycling around wasting effort
doing nothing. Implementations of semaphores prefer to deactivate the waiting process completely,
possibly adding it to a queue of such processes, which may later be examined efficiently when a
signal operation gives the all-clear for a process to continue. Although the semantics of SIGNAL do
not require a queue to be formed, we have chosen to employ one here. 

The WAIT and SIGNAL primitives can then be implemented in several ways. For example,
WAIT(Semaphore)  can be realized with an algorithm like 

         IF Semaphore.Count > 0
           THEN DEC(Semaphore.Count)
           ELSE set Slice to 0 and ChooseProcess
                Process[Current].Ready := FALSE
                add Process[Current] to Semaphore.Queue
                Process[Current].Queue := 0
         END



provided that the matching SIGNAL(Semaphore)  is realized by an algorithm like 

         IF Semaphore.Queue is empty
           THEN INC(Semaphore.Count)
           ELSE find which process should be Woken
                Process[Woken].Ready := TRUE
                set start of Semaphore.Queue to point to Process[Woken].Queue
         END

The problem then arises of how to represent a semaphore variable. The first idea that might come to
mind is to use something on the lines of a structure or record with two fields, but this would be
awkward, as we should have to introduce further complications into the parser to treat variables of
different sizes. We can retain simplicity by noting that we can use an integer to represent a
semaphore if we allow negative values to act as Queue values and non-negative values to act as
Count  values. With this idea we simply modify the interpreter to read 

  case STKMC_wgt:
    if (current == 0) ps = badsem;
    else { cpu.sp++; wait(mem[cpu.sp - 1]); }
    break;
  case STKMC_sig:
    if (current == 0) ps = badsem;
    else { cpu.sp++; signal(mem[cpu.sp - 1]); }
    break;

with wait  and signal  as routines private to the interpreter, defined as follows: 

  void STKMC::signal(STKMC_address semaddress)
  { if (mem[semaddress] >= 0)                 // do we need to waken a process?
    { mem[semaddress]++; return; }            // no - simply increment semaphore
    STKMC_procindex woken = -mem[semaddress]; // negate to find index
    mem[semaddress] = -process[woken].queue;  // bump queue pointer
    process[woken].queue = 0;                 // remove from queue
    process[woken].ready = true;              // and allow to be reactivated
  }

  void STKMC::wait(STKMC_address semaddress)
  { STKMC_procindex last, now;
    if (mem[semaddress] > 0)                  // do we need to suspend?
    { mem[semaddress]--; return; }            // no - simply decrement semaphore
    slice = 0; chooseprocess();               // choose the next process
    process[current].ready = false;           // and suspend this one
    if (current == nexttorun) { ps = deadlock; return; }
    now = -mem[semaddress];                   // look for end of semaphore queue
    while (now != 0) { last = now; now = process[now].queue; }
    if (mem[semaddress] == 0)
      mem[semaddress] = -current;             // first in queue
    else
      process[last].queue = current;          // place at end of existing queue
    process[current].queue = 0;               // and mark as the new end of queue
  }

There are, as always, some subtleties to draw to the reader’s attention: 

A check should be made to see that WAIT and SIGNAL are only attempted from within a
concurrent process. Because of the way in which we have extended the language, with
processes being lexically indistinguishable from other procedures, this cannot readily be
detected at compile-time, but has to be done at run-time. (See also Exercise 18.5.) 

Although the semantic definition above also seems to imply that the value of a semaphore is
always increased by a SIGNAL operation, we have chosen not to do this if a process is found
waiting on that semaphore. This process, when awoken from its implied busy-wait loop,
would simply decrement the semaphore anyway; there is no need to alter it twice. 

The semantics of SIGNAL do not require that a process which is allowed to proceed actually
gain control of the processor immediately, and we have not implemented signal  in this way. 



Exercises 

18.6 Add concurrent processing facilities to Topsy on the lines of those described here. 

18.7 Introduce a call to a random number generator as part of Clang or Topsy (as a possibility for a
Factor), which will allow you to write simple simulation programs. 

18.8 Ben-Ari (1982) and Burns and Davies (1993) make use of a REPEAT - FOREVER construct.
How easy is it to add this to our language? How useful is it on its own? 

18.9 A multi-tasking system can easily devote a considerable part of its resources to process
switching and housekeeping. Try to identify potential sources of inefficiency in our system, and
eradicate as many as possible. 

18.10 One problem with running programs on this system is that in general the sequence of
interleaving the processes is unpredictable. While this makes for a useful simulation in many cases,
it can be awkward to debug programs which behave in this way, especially with respect to I/O
(where individual elements in a read or write list may be separated by elements from another list in
another process). It is easy to use a programmer-defined semaphore to prevent this; can you also
find a way of ensuring that process switching is suspended during I/O, perhaps requested by a
compiler directive, such as (*$S-*) ? 

18.11 Is it difficult to allow concurrent processes to be initiated from within procedures and/or
other processes, rather than from the main program only? How does this relate to Exercise 18.5? 

18.12 Develop an emulation of a multiprocessor system. Rather than have only one processor,
consider having an (emulated) processor for each process. 

18.13 Remove the restriction on a fixed upper limit to the number of processes that can be
accommodated, by making use of process descriptors that are allocated dynamically. 

18.14 Our round-robin scheduler attempts to be fair by allocating processor time to each ready
process in rotation. Develop a version that is unfair, in that a process will only relinquish control of
the processor when it is forced to wait on a semaphore, or when it completes execution. Is this
behaviour typical of any real-time systems in practice? 

18.15 As an extension to Exercise 18.14, implement a means whereby a process can voluntarily
suspend its own action and allow another process of the same or higher priority to assume charge of
the processor, perhaps by means of a routine SUSPEND. 

18.16 Do you suppose that when a process is signalled it should be given immediate access to the
processor? What are the implications of allowing or disallowing this strategy? How could it be
implemented in our system? 

18.17 Replace the kernel with one in which semaphores do not have an associated queue. That is,
when a SIGNAL(S)  operation finds one or more processes waiting on S, simply choose one of these
processes at random to make ready  again. 

18.18 Our idea of simply letting a programmer treat a semaphore as though it were an integer is



scarcely in the best traditions of strongly typed languages. How would you introduce a special
semaphore type into Clang or Topsy (allow for arrays of semaphores), and how would you prevent
programmers from tampering with them, while still allowing them to assign initial values to their
Count  fields? You might like to consider other restrictions on the use of semaphores, such as
allowing initial assignment only within the parent process (main program), forbidding assignment
of negative values, and restricting the way in which they can be used as parameters to procedures,
functions or processes (you will need to think very carefully about this). 

18.19 In our system, if one process executes a READ operation, the whole system will wait for this to
be completed. Can you think of a way in which you can prevent this, for example by checking to
see whether a key has been pressed, or by making use of real-time interrupts? As a rather
challenging exercise, see if you can incorporate a mechanism into the interpreter to provide for
so-called asynchronous input. 

18.20 The idea of simulating time-slicing by allowing processes to execute for a small random
number of steps has been found to be an excellent teaching tool (primarily because subtly wrong
programs often show up faults very quickly, since the scheduler is essentially non-deterministic).
However, real-time systems usually implement time-slicing by relying on interrupts from a
real-time clock to force context switches at regular intervals. A Modula-2 implementation of an
interpreter can readily be modified to work in this way, by making use of coroutines and the
IOTRANSFER procedure. As a rather challenging exercise, implement such an interpreter. It is
inexpedient to implement true time-slicing - pseudo-code operations (like WGT and SIG) should
remain indivisible. A suggested strategy to adopt is one where a real clock interrupt sets a flag that
the repetitive fetch-execute cycle of the emulator can acknowledge; furthermore, it might be
advantageous to slow the real rate of interrupts down to compensate for the fact that an interpreter
is far slower than a "real" computer would be. 

Many kernels employ, not a ring of process descriptors, but one or more prioritized queues. One of
these is the ready queue, whose nodes correspond to processes that are ready to execute. The
process at the front of this queue is activated; when a context switch occurs the descriptor is either
moved to another queue (when the process is forced to wait on a semaphore), is deallocated (when
the process has finished executing), or is re- queued in the ready queue behind other processes of
equal priority (if fair scheduling is employed on a round- robin basis). This is a method that allows
for the concept of processes to be assigned relative priorities rather more easily than if one uses a
ring structure. It also gives rise to a host of possibilities for redesigning the kernel and the language.

18.21 Develop a kernel in which the process descriptors for ready processes (all of the same
priority) are linked in a simple ready queue. When the active process is forced to wait on a
semaphore, transfer its descriptor to the appropriate semaphore queue; when the active process
reaches the end of its time slice, transfer its descriptor to the end of the ready queue. Does this
system have any advantages over the ring structure we have demonstrated in this section? 

18.22 Extend the language and the implementation so that processes may be prioritized. When a
context switch occurs, the scheduler always chooses the ready process with the highest priority (that
is, the one at the front of the queue) as the one to execute next. There are various ways in which
process priority might be set or changed. For example: 

Develop a system where process priorities are determined at the time the processes are
spawned, and remain constant thereafter. This could be done by changing the syntax of the
COBEGIN ... COEND  structure: 

        CobeginStatement =  "COBEGIN" ProcessCall { ";" ProcessCall } "COEND" .



        ProcessCall      = ProcIdentifier ActualParameters [ Priority ] .
        Priority         = "[" Expression "]" .

Take care to ensure that the Expression is evaluated and stored in the correct context. 

Develop a system where processes may alter their priorities as they execute, say by calling on
a routine SETPRIORITY(Priority) . 

Pay particular attention to the way in which semaphore queues are manipulated. Should these be
prioritized in the same way, or should they remain FIFO queues? 

Further reading 

Several texts provide descriptions of run-time mechanisms rather similar to the one discussed in
this chapter. 

In Ben-Ari’s influential book Principles of Concurrent Programming (1982) may be found an
interpreter for a language based on Pascal-S (Wirth, 1981). This implementation has inspired
several others (including our own), and also formed the starting point for the Pascal-FC
implementation described by Burns and Davies in their excellent and comprehensive book (1993).
Burns and Davies also outline the implementation of the support for several other concurrent
paradigms allowed by their language. 

We should warn the reader that our treatment of concurrent programming, like that of so much else,
has been rather dangerously superficial. He or she might do well to consult one or more of the
excellent texts which have appeared on this subject in recent years. Besides those just mentioned,
we can recommend the books by Burns and Welling (1989), and Bustard, Elder and Welsh (1988)
and the survey paper by Andrews and Schneider (1983). 
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Appendix A 

Software resources for this book 

(This appendix is the one that appeared in the printed book. A considerably enhanced one can be
found in the file appa.ps.) 

A.1 Source code for the programs 

The software that accompanies this text was originally developed in Modula-2, based to some
extent on the Pascal code used in Terry (1986). It was subsequently converted to Turbo Pascal, and
to C++. Although C++ code is used for most of the illustrations in the text, highly self-consistent
source code in all three languages is to be found on the IBM-PC compatible diskette that
accompanies the book, along with language-specific implementation notes. The software is also
available in other formats - see section A.4. 

The C++ source code was mainly developed under MS-DOS using Borland C++ 3.1. It has also
been successfully compiled and tested under Linux, using G++, the GNU compiler. 

The Turbo Pascal source code was developed to run on any version of Turbo Pascal from 5.5
onwards. However, it makes little use of OOP extensions. 

The Modula-2 source code should be immediately usable on PC-based systems using the shareware
compiler marketed by Fitted Software Tools (FST), the Stony Brook Modula-2 compiler marketed
by Gogesch Micro Systems, Inc., or the TopSpeed Modula-2 compiler developed by Jensen and
Partners International (JPI) and now marketed by Clarion Software. It will also compile unchanged
under Gardens Point Modula-2 on a wide range of systems. 

A.2 Unpacking the software 

The software on the diskette is supplied in the form of compressed, self-extracting MS-DOS
executable files. There are eight of these files 

COMMON.EXE - language independent files
CSOURCES.EXE - sources written in C++ 

PSOURCES.EXE - sources written in Turbo Pascal
MSOURCES.EXE - sources written in Modula-2
FILEIO.EXE - support library for Modula-2 sources
COCORC.EXE - Coco/R for C/C++ 

COCORP.EXE - Coco/R for Turbo Pascal
COCORM.EXE - Coco/R for Modula-2

To unpack the software, simply follow the following steps. Example MS-DOS commands are
shown; these may need slight alteration depending on the configuration of your computer.



Windows users may follow an equivalent sequence of operations from within the File Manager. 

Make a backup copy of the diskette and keep the original in a safe place. 

Create a directory to act as the root directory for your chosen sources, for example: 

MKDIR C:\SRCES 

Log onto this as the working directory: 

CD C:\SRCES 

Copy the chosen source file to this directory: 

COPY A:\CSOURCES.EXE C:\SRCES 

Unpack the sources: 

CSOURCES.EXE 

Also unpack the language independent files to the same directory 

COPY A:\COMMON.EXE C:\SRCES 
CSOURCES.EXE 

This will create a small directory hierarchy under the C:\SRCES directory, in which various
subdirectories will appear, usually one for each chapter. For example, you will the find the
source code for the programs in Chapter 10 in the directory C:\SRCES\CHAP10\CPP  (for the
C++ versions) or the directory C:\SRCES\CHAP10\MODULA (for the Modula-2 versions). Once
you have unpacked the system, read the file C:\SRCES\README.1ST for further details on how
the directories are laid out. 

You may unpack all three of the language specific sources into the same directory tree if you
wish - the C++, Modula-2 and Pascal sources are stored in separate directories under the
directory for each chapter. 

Create a directory to act as the root directory for your chosen version of Coco/R, for example:

MKDIR C:\COCO 

Log onto this as the working directory: 

CD C:\COCO 

Copy the chosen version of the Coco/R package to this directory: 

COPY A:\COCORC.EXE C:\COCO 

Unpack the Coco/R system: 

COCORC.EXE 

This will create a small directory hierarchy under the C:\COCO directory, in which various



subdirectories will appear, containing the various components of Coco/R. Once you have
unpacked the system, read the file C:\COCO\README.1ST for further details on how the
directories are laid out, and how to complete the installation of Coco/R so that it can be
executed easily. 

The self-extracting files on the diskette were compressed and packed using the freely available
program LHA.EXE developed by Haruyasu Yoshizaki. In terms of the distribution agreement for
this program, the complete package for LHA.EXE is itself supplied as a self-extracting executable,
LHA213.EXE. You are quite welcome to unpack this file as well, although it is not needed for the
operations described above. Further to comply with the distribution agreement, the copyright notice
for this package is printed below 

  4. Our distribution Policy

     This software, this document and LHA.EXE, is a copyright-reserved free program.  You may use, copy
     and distribute this software free of charge under the following conditions.

  1. Never change Copyright statement.

  2. The enclosed documents must be distributed with as a package.

  3. When you have changed the program, or implemented the program for other OS or environment, then you
     must specify the part you have changed.  Also make a clear statement as to your name and MAIL
     address or phone number.

  4. The author is not liable for any damage on your side caused by the use of this program.

  5. The author has no duty to remedy for the deficiencies of the program.

  6. When you are to distribute this software with publications or with your product, you have to print
     the copyright statement somewhere on the disk or on the package.  You cannot distribute this
     software with copyprotected products.

A.3 The compiler generator Coco/R 

The compiler generator Coco/R used in this book was originally developed in Oberon by Hanspeter
Mössenböck, who also did a port to Modula-2 for the Apple MacMeth system. A further port was
done to TopSpeed Modula-2 by Marc Brandis and Christof Brass. This was refined and extended
by the author in conjunction with John Gough and Hanspeter Mössenböck, to the point where a
single version runs on most Modula-2 compilers available under MS-DOS, as well as the Mocka
and Gardens Point compilers available for Unix (and other) systems, including Linux and Free
BSD. 

A port of Coco/R to Turbo Pascal was done by the author in conjunction with Volker Pohlers. 

Coco/R was ported to C by Francisco Arzu, yielding a version that can generate either C or C++

compilers. 

The Modula-2 version of Coco/R is supplied as shareware, and is free to academic sites. Other
users should contact Professor Mössenböck at the address below to make licensing arrangements. 

Prof. Hanspeter Mössenböck
Institute of Computer Science
University of Linz



Alternbergerstr 69,
A-4040 Linz, Austria
Tel: +43-732-2468-9700
e-mail: moessenboeck@ssw.uni-linz.ac.at

A.4 Obtaining the software with ftp 

Source code for the programs in this book, and various related other files of interest are available by
anonymous ftp from the author’s server site 

ftp://cs.ru.ac.za/pub/languages .

Look for the file READ.ME for details of what to get, how to unpack the files, and for differences
from the software on the diskette. 

The latest versions of Coco/R for a variety of languages and operating systems should be available
from the following servers 

Europe: ftp://ftp.ssw.uni-linz.ac.at/pub/Coco 

USA: ftp://ftp.psg.com/pub/modula-2/coco 

Central America: ftp://uvg.edu.gt/pub/coco 

Australia: ftp://ftp.fit.qut.edu.au/pub/coco 

South Africa: ftp://cs.ru.ac.za/pub/coco 

Look for the files README.1st  and READ.ME for details of what to get and how to unpack the kits. 

The original report on Coco/R (Mössenböck, 1990a) can be obtained from 

ftp://ftp.ssw.uni-linz.ac.at/pub/Papers/Coco.Report.ps.z 
ftp://cs.ru.ac.za/pub/coco/Coco.Report.ps.z 

The PCCTS compiler construction kit mentioned in Chapter 10 is available from 

ftp://ftp.parr-research.com:/pub/pccts 

mtc , the Modula-2 to C translator program mentioned in Chapter 2 is available by anonymous ftp
from 

ftp://ftp.psg.com:/pub/modula-2/grosch/mtc.tar.Z 
ftp://ftp.ira.uka.de:/pub/programming/cocktail/mtc.tar.Z 

p2c , the Pascal to C translator program mentioned in Chapter 2, and cperf , the perfect hash
function generator mentioned in Chapter 14, are available by anonymous ftp from any of the sites
that mirror the Free Software Foundation GNU archives. The primary server for these archives is at
prep.ai.mit.edu . Among many others, the Linux sites, such as those at tsx-11.mit.edu ,
sunsite.unc.edu  and src.doc.ic.ac.uk  also carry copies of the GNU archives. 

Freely available early versions of the Cocktail compiler construction tools mentioned in Chapter 10
may be obtained by anonymous ftp from 



ftp://ftp.ira.uka.de/pub/programming/cocktail 
ftp://144ftp.info.uni-karlsruhe.de/pub/cocktail 

For the commercial version and support, contact Josef Grosch by email at grosch@cocolab.sub.com

Versions of the Gardens Point Modula-2 compiler for DOS, Linux and FreeBSD are available from 

ftp://ftp.fit.qut.edu.au/pub/gpm_modula2 
ftp://ftp.psg.com/pub/modula-2/gpm 

Versions of the Mocka Modula-2 compiler for Linux and FreeBSD are available from 

ftp://144ftp.info.uni-karlsruhe.de/pub/mocka 

The shareware FST Modula-2 compiler for MS-DOS systems is available by anonymous ftp from 

ftp://ftp.psg.com/pub/modula-2/fst/fst-40s.lzh 
ftp://cs.ru.ac.za/pub/languages/fst-40s.lzh 

In case of difficulty, consult the author at the address given below. 

Pat Terry
Computer Science Department,
Rhodes University
GRAHAMSTOWN 6140, South Africa
Tel: +27-46-6038292
e-mail: cspt@cs.ru.ac.za

A.5 The input/output module FileIO 

When this book was first published, standardized I/O for Modula-2 was not yet widely available
(and was incompatible with extant Modula-2 compilers). The Modula-2 source code on the diskette
attempts to get around this problem by providing (another!) I/O module, called FileIO . The
definition module for FileIO  is acceptable to all the compilers mentioned above; implementations
have been supplied for each that differ internally only in a few places. 

On the diskette you will find a self-extracting file FILEIO.EXE  that contains the sources of FileIO

for a variety of MS-DOS compilers. You will need to install the version of FileIO that matches your
compiler. 

Make a directory to contain these sources: 

MD C:\FILEIO 

Log onto this as the working directory: 

CD C:\FILEIO 

Place the source diskette in the A: drive and unpack FILEIO.EXE. 

A:\FILEIO.EXE 



This will create a small directory hierarchy under the C:\FILEIO directory, in which various
subdirectories will appear, one for each compiler. 

In the C:\FILEIO  directory you will find the definition module FILEIO.DEF , and in a subdirectory
of C:\FILEIO  you will find the implementation module FILEIO.MOD . You will need to proceed as
follows, on the assumption that you have a "working" directory C:\WORK in which you normally
develop programs (or, preferably, install FileIO  in the library directory or directories for your
Modula-2 compiler). 

CD C:\WORK 
COPY C:\FILEIO\FILEIO.DEF 
COPY C:\FILEIO\xxx 

where xxx = 

JPI (TopSpeed compilers)
FST (Fitted Systems Tools compilers)
LOG (Logitech compilers)
STO (StonyBrook compilers)
GPMPC (Gardens Point PC compiler)

Follow this by compiling FILEIO.DEF  and FILEIO.MOD . 

FileIO  provides the usual services for opening and closing text files, and for reading and writing
strings, words, whole numbers and line marks to such files. It can also handle random access binary
files, as block read and write operations are provided. In addition there are some utility procedures,
for obtaining command line parameters and environment strings, and for the output of dates and
times. The module is of fairly widespread applicability beyond the confines of this text, and is
compatible with the modules generated by Coco/R (which assumes the module to be available). As
an example of a library module it is really rather too large, but has been developed in this way to
minimize the number of non-portable sections and modules needed for implementing the programs
in the book. The sources supplied will act as models of implementations for compilers not
mentioned above. In case of difficulty in this regard, please contact the author. 
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Appendix B 

Source code for the Clang compiler/interpreter 

This appendix gives the complete source code for a hand-crafted compiler for the Clang language
as developed by the end of Chapter 18. 

cln.cpp | misc.h | set.h | srce.h | srce.cpp | report.h | report.cpp | scan.h | scan.cpp | parser.h |
parser.cpp | table.h | table.cpp | cgen.h | cgen.cpp | stkmc.h | stkmc.cpp 

----- cln.cpp -----------------------------------------------------------------

// Clang Compiler/Interpreter
// P.D. Terry, Rhodes University, 1996

#include "misc.h"
#include "srce.h"
#include "scan.h"
#include "parser.h"
#include "table.h"
#include "report.h"
#include "stkmc.h"
#include "cgen.h"

#define usage "USAGE: CLN source [listing]\n"

static char SourceName[256], ListName[256], CodeName[256];

TABLE  *Table;
CGEN   *CGen;
STKMC  *Machine;
REPORT *Report;

class clangReport : public REPORT {
  public:
    clangReport(SRCE *S)   { Srce = S; }
    virtual void error(int errorcode)
      { Srce->reporterror(errorcode); errors = true; }
  private:
    SRCE *Srce;
};

class clangSource : public SRCE {
  public:
    clangSource(char *sname, char *lname, char *ver, bool lw)
      : SRCE(sname, lname, ver, lw) {};
    virtual void startnewline() { fprintf(lst, "%4d : ", CGen->gettop()); }
};

void main(int argc, char *argv[])
{ char reply;
  int codelength, initsp;

  // check on correct parameter usage
  if (argc == 1) { printf(usage); exit(1); }
  strcpy(SourceName, argv[1]);
  if (argc > 2) strcpy(ListName, argv[2]);
  else appendextension(SourceName, ".lst", ListName);

  clangSource *Source = new clangSource(SourceName, ListName, STKMC_version, true);
  Report         = new clangReport(Source);
  CGen           = new CGEN(Report);
  SCAN *Scanner  = new SCAN(Source, Report);
  Table          = new TABLE(Report);
  PARSER *Parser = new PARSER(CGen, Scanner, Table, Source, Report);
  Machine        = new STKMC();

  Parser->parse();
  CGen->getsize(codelength, initsp);

  appendextension(SourceName, ".cod", CodeName);



  Machine->listcode(CodeName, codelength);

  if (Report->anyerrors())
    printf("Compilation failed\n");
  else
  { printf("Compilation successful\n");
    while (true)
    { printf("\nInterpret? (y/n) ");
      do
      { scanf("%c", &reply);
      } while (toupper(reply) != ’N’ && toupper(reply) != ’Y’);
      if (toupper(reply) == ’N’) break;
      scanf("%*[^\n]"); getchar();
      Machine->interpret(codelength, initsp);
    }
  }
  delete Source;
  delete Scanner;
  delete Parser;
  delete Table;
  delete Report;
  delete CGen;
  delete Machine;
}

----- misc.h ------------------------------------------------------------------

// Various common items

#ifndef MISC_H
#define MISC_H

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include <ctype.h>
#include <limits.h>

#define  boolean  int
#define  bool     int
#define  true     1
#define  false    0
#define  TRUE     1
#define  FALSE    0
#define  maxint   INT_MAX

#if __MSDOS__ || MSDOS || WIN32 || __WIN32__
#  define  pathsep ’\\’
#else
#  define  pathsep ’/’
#endif

static void appendextension (char *oldstr, char *ext, char *newstr)
// Changes filename in oldstr from PRIMARY.xxx to PRIMARY.ext in newstr
{ int i;
  char old[256];
  strcpy(old, oldstr);
  i = strlen(old);
  while ((i > 0) && (old[i-1] != ’.’) && (old[i-1] != pathsep)) i--;
  if ((i > 0) && (old[i-1] == ’.’)) old[i-1] = 0;
  if (ext[0] == ’.’) sprintf(newstr,"%s%s", old, ext);
    else sprintf(newstr, "%s.%s", old, ext);
}

#endif /* MISC_H */

----- set.h -------------------------------------------------------------------

// simple set operations
// Thanks to E.P. Wentworth for useful ideas!

#ifndef SET_H
#define SET_H

template <int maxElem>
class Set {                         // { 0 .. maxElem }
  public:
    Set()                           // Construct { }
    { clear(); }



    Set(int e1)                     // Construct { e1 }
    { clear(); incl(e1); }

    Set(int e1, int e2)             // Construct { e1, e2 }
    { clear(); incl(e1); incl(e2); }

    Set(int e1, int e2, int e3)     // Construct { e1, e2, e3 }
    { clear(); incl(e1); incl(e2); incl(e3); }

    Set(int n, int e1[])            // Construct { e[0] .. e[n-1] }
    { clear(); for (int i = 0; i < n; i++) incl(e1[i]); }

    void incl(int e)                // Include e
    { if (e >= 0 && e <= maxElem) bits[wrd(e)] |= bitmask(e); }

    void excl(int e)                // Exclude e
    { if (e >= 0 && e <= maxElem) bits[wrd(e)] &= ~bitmask(e); }

    int memb(int e)                 // Test membership for e
    { if (e >= 0 && e <= maxElem) return((bits[wrd(e)] & bitmask(e)) != 0);
      else return 0;
    }

    int isempty(void)               // Test for empty set
    { for (int i = 0; i < length; i++) if (bits[i]) return 0;
      return 1;
    }

    Set operator + (const Set &s)   // Union with s
    { Set<maxElem> r;
      for (int i = 0; i < length; i++) r.bits[i] = bits[i] | s.bits[i];
      return r;
    }

    Set operator * (const Set &s)   // Intersection with s
    { Set<maxElem> r;
      for (int i = 0; i < length; i++) r.bits[i] = bits[i] & s.bits[i];
      return r;
    }

    Set operator - (const Set &s)   // Difference with s
    { Set<maxElem> r;
      for (int i = 0; i < length; i++) r.bits[i] = bits[i] & ~s.bits[i];
      return r;
    }

    Set operator / (const Set &s)   // Symmetric difference with s
    { Set<maxElem> r;
      for (int i = 0; i < length; i++) r.bits[i] = bits[i] ^ s.bits[i];
      return r;
    }

  private:
    unsigned char       bits[(maxElem + 8) / 8];
    int                 length;
    int wrd(int i)      { return(i / 8); }
    int bitmask(int i)  { return(1 << (i % 8)); }
    void clear()        { length = (maxElem + 8) / 8;
                          for (int i = 0; i < length; i++) bits[i] = 0;
                        }
};

#endif /* SET_H */

----- srce.h ------------------------------------------------------------------

// Source handler for various parsers/compilers
// P.D. Terry, Rhodes University, 1996

#ifndef SRCE_H
#define SRCE_H

#include "misc.h"

const int linemax = 129;        // limit on source line length

class SRCE {
  public:
    FILE *lst;                  // listing file
    char ch;                    // latest character read



    void nextch(void);
    // Returns ch as the next character on this source line, reading a new
    // line where necessary.  ch is returned as NUL if src is exhausted.

    bool endline(void)        { return (charpos == linelength); }
    // Returns true when end of current line has been reached

    void listingon(void)         { listing = true; }
    // Requests source to be listed as it is read

    void listingoff(void)        { listing = false; }
    // Requests source not to be listed as it is read

    void reporterror(int errorcode);
    // Points out error identified by errorcode with suitable message

    virtual void startnewline()  {;}
    // called at start of each line

    int getline(void)            { return linenumber; }
    // returns current line number

    SRCE(char *sourcename, char *listname, char *version, bool listwanted);
    // Open src and lst files using given names.
    // Resets internal state in readiness for starting to scan.
    // Notes whether listwanted.  Displays version information on lst file.

    ~SRCE();
    // close src and lst files

  private:
    FILE *src;                  // Source file
    int linenumber;             // Current line number
    int charpos;                // Character pointer
    int minerrpos;              // Last error position
    int linelength;             // Line length
    char line[linemax + 1];     // Last line read
    bool listing;               // true if listing required
};

#endif /*SRCE_H*/

----- srce.cpp ----------------------------------------------------------------

// Source handler for various parsers/compilers
// P.D. Terry, Rhodes University, 1996

#include "srce.h"

void SRCE::nextch(void)
{ if (ch == ’\0’) return;        // input exhausted
  if (charpos == linelength)     // new line needed
  { linelength = 0; charpos = 0; minerrpos = 0; linenumber++;
    startnewline();
    do
    { ch = getc(src);
      if (ch != ’\n’ && !feof(src))
      { if (listing) putc(ch, lst);
        if (linelength < linemax) { line[linelength] = ch; linelength++; }
      }
    } while (!(ch == ’\n’ || feof(src)));
    if (listing) putc(’\n’, lst);
    if (feof(src))
      line[linelength] = ’\0’;   // mark end with a nul character
    else
      line[linelength] = ’ ’;    // mark end with an explicit space
    linelength++;
  }
  ch = line[charpos]; charpos++; // pass back unique character
}

// reporterror has been coded like this (rather than use a static array of
// strings initialized by the array declarator) to allow for easy extension
// in exercises

void SRCE::reporterror(int errorcode)
{ if (charpos > minerrpos) // suppress cascading messages
  { startnewline(); fprintf(lst, "%*c", charpos, ’^’);
    switch (errorcode)
    { case 1:   fprintf(lst, "Incomplete string\n"); break;
      case 2:   fprintf(lst, "; expected\n"); break;
      case 3:   fprintf(lst, "Invalid start to block\n"); break;



      case 4:   fprintf(lst, "Invalid declaration sequence\n"); break;
      case 5:   fprintf(lst, "Invalid procedure header\n"); break;
      case 6:   fprintf(lst, "Identifier expected\n"); break;
      case 7:   fprintf(lst, ":= in wrong context\n"); break;
      case 8:   fprintf(lst, "Number expected\n"); break;
      case 9:   fprintf(lst, "= expected\n"); break;
      case 10:  fprintf(lst, "] expected\n"); break;
      case 13:  fprintf(lst, ", or ) expected\n"); break;
      case 14:  fprintf(lst, "Invalid factor\n"); break;
      case 15:  fprintf(lst, "Invalid start to statement\n"); break;
      case 17:  fprintf(lst, ") expected\n"); break;
      case 18:  fprintf(lst, "( expected\n"); break;
      case 19:  fprintf(lst, "Relational operator expected\n"); break;
      case 20:  fprintf(lst, "Operator expected\n"); break;
      case 21:  fprintf(lst, ":= expected\n"); break;
      case 23:  fprintf(lst, "THEN expected\n"); break;
      case 24:  fprintf(lst, "END expected\n"); break;
      case 25:  fprintf(lst, "DO expected\n"); break;
      case 31:  fprintf(lst, ", or ; expected\n"); break;
      case 32:  fprintf(lst, "Invalid symbol after a statement\n"); break;
      case 34:  fprintf(lst, "BEGIN expected\n"); break;
      case 35:  fprintf(lst, "Invalid symbol after block\n"); break;
      case 36:  fprintf(lst, "PROGRAM expected\n"); break;
      case 37:  fprintf(lst, ". expected\n"); break;
      case 38:  fprintf(lst, "COEND expected\n"); break;
      case 200: fprintf(lst, "Constant out of range\n"); break;
      case 201: fprintf(lst, "Identifier redeclared\n"); break;
      case 202: fprintf(lst, "Undeclared identifier\n"); break;
      case 203: fprintf(lst, "Unexpected parameters\n"); break;
      case 204: fprintf(lst, "Unexpected subscript\n"); break;
      case 205: fprintf(lst, "Subscript required\n"); break;
      case 206: fprintf(lst, "Invalid class of identifier\n"); break;
      case 207: fprintf(lst, "Variable expected\n"); break;
      case 208: fprintf(lst, "Too many formal parameters\n"); break;
      case 209: fprintf(lst, "Wrong number of parameters\n"); break;
      case 210: fprintf(lst, "Invalid assignment\n"); break;
      case 211: fprintf(lst, "Cannot read this type of variable\n"); break;
      case 212: fprintf(lst, "Program too long\n"); break;
      case 213: fprintf(lst, "Too deeply nested\n"); break;
      case 214: fprintf(lst, "Invalid parameter\n"); break;
      case 215: fprintf(lst, "COBEGIN only allowed in main program\n"); break;
      case 216: fprintf(lst, "Too many concurrent processes\n"); break;
      case 217: fprintf(lst, "Only global procedure calls allowed here\n"); break;
      case 218: fprintf(lst, "Type mismatch\n"); break;
      case 219: fprintf(lst, "Unexpected expression\n"); break;
      case 220: fprintf(lst, "Missing expression\n"); break;
      case 221: fprintf(lst, "Boolean expression required\n"); break;
      case 222: fprintf(lst, "Invalid expression\n"); break;
      case 223: fprintf(lst, "Index out of range\n"); break;
      case 224: fprintf(lst, "Division by zero\n"); break;
      default:
        fprintf(lst, "Compiler error\n"); printf("Compiler error\n");
        if (lst != stdout) fclose(lst); exit(1);
    }
  }
  minerrpos = charpos + 1;
}

SRCE::~SRCE()
{ if (src != NULL)   { fclose(src); src = NULL; }
  if (lst != stdout) { fclose(lst); lst = NULL; }
}

SRCE::SRCE(char *sourcename, char *listname, char *version, bool listwanted)
{ src = fopen(sourcename, "r");
  if (src == NULL) { printf("Could not open input file\n"); exit(1); }
  lst = fopen(listname, "w");
  if (lst == NULL) { printf("Could not open listing file\n"); lst = stdout; }
  listing = listwanted;
  if (listing) fprintf(lst, "%s\n\n", version);
  charpos = 0; linelength = 0; linenumber = 0; ch = ’ ’;
}

----- report.h ----------------------------------------------------------------

// Handle reporting of errors when parsing or compiling Clang programs
// P.D. Terry, Rhodes University, 1996

#ifndef REPORT_H
#define REPORT_H

#include "misc.h"



class REPORT {
  public:
    REPORT ()                { errors = false; }
    // Initialize error reporter

    virtual void error(int errorcode);
    // Reports on error designated by suitable errorcode number

    bool anyerrors(void)  { return errors; }
    // Returns true if any errors have been reported

  protected:
    bool errors;
};

#endif /*REPORT_H*/

----- report.cpp --------------------------------------------------------------

// Handle reporting of errors when parsing or compiling Clang programs
// P.D. Terry, Rhodes University, 1996

#include "report.h"

void REPORT::error(int errorcode)
{ printf("Error %d\n", errorcode); errors = true; exit(1); }

------ scan.h -----------------------------------------------------------------

// Lexical analyzer for Clang parsers/compilers
// P.D. Terry, Rhodes University, 1996

#ifndef SCAN_H
#define SCAN_H

#include "misc.h"
#include "report.h"
#include "srce.h"

const int lexlength = 128;
typedef char lexeme[lexlength + 1];

const int alfalength = 10;
typedef char alfa[alfalength + 1];

enum SCAN_symtypes {
  SCAN_unknown, SCAN_becomes, SCAN_lbracket, SCAN_times, SCAN_slash, SCAN_plus,
  SCAN_minus, SCAN_eqlsym, SCAN_neqsym, SCAN_lsssym, SCAN_leqsym, SCAN_gtrsym,
  SCAN_geqsym, SCAN_thensym, SCAN_dosym, SCAN_rbracket, SCAN_rparen, SCAN_comma,
  SCAN_lparen, SCAN_number, SCAN_stringsym, SCAN_identifier, SCAN_coendsym,
  SCAN_endsym, SCAN_ifsym, SCAN_whilesym, SCAN_stacksym, SCAN_readsym,
  SCAN_writesym, SCAN_returnsym, SCAN_cobegsym, SCAN_waitsym, SCAN_signalsym,
  SCAN_semicolon, SCAN_beginsym, SCAN_constsym, SCAN_varsym, SCAN_procsym,
  SCAN_funcsym, SCAN_period, SCAN_progsym, SCAN_eofsym
};

struct SCAN_symbols {
  SCAN_symtypes sym;    // symbol type
  int num;              // value
  lexeme name;          // lexeme
};

class SCAN {
  public:
    void getsym(SCAN_symbols &SYM);
    // Obtains the next symbol in the source text

    SCAN(SRCE *S, REPORT *R);
    // Initializes scanner

  protected:
    REPORT *Report;               // Associated error reporter
    SRCE *Srce;                   // Associated source handler
    static struct keyword {
      alfa resword;
      SCAN_symtypes ressym;
    } table[];                    // Look up table words/symbols
    int keywords;                 // Actual number of them
    SCAN_symtypes singlesym[256]; // One character symbols
};



#endif /*SCAN_H*/

----- scan.cpp ----------------------------------------------------------------

// Lexical analyzer for Clang parsers/compilers
// P.D. Terry, Rhodes University, 1996

#include "scan.h"

SCAN::keyword SCAN::table[] = {  // this must be in alphabetic order
  { "BEGIN",     SCAN_beginsym },
  { "COBEGIN",   SCAN_cobegsym },
  { "COEND",     SCAN_coendsym },
  { "CONST",     SCAN_constsym },
  { "DO",        SCAN_dosym },
  { "END",       SCAN_endsym },
  { "FUNCTION",  SCAN_funcsym },
  { "IF",        SCAN_ifsym },
  { "PROCEDURE", SCAN_procsym },
  { "PROGRAM",   SCAN_progsym },
  { "READ",      SCAN_readsym },
  { "RETURN",    SCAN_returnsym },
  { "SIGNAL",    SCAN_signalsym },
  { "STACKDUMP", SCAN_stacksym },
  { "THEN",      SCAN_thensym },
  { "VAR",       SCAN_varsym },
  { "WAIT",      SCAN_waitsym },
  { "WHILE",     SCAN_whilesym },
  { "WRITE",     SCAN_writesym },
};

void SCAN::getsym(SCAN_symbols &SYM)
{ int length;       // index into SYM.Name
  int digit;        // value of digit character
  int l, r, look;   // for binary search
  bool overflow;    // in numeric conversion
  bool endstring;   // in string analysis

  while (Srce->ch == ’ ’) Srce->nextch();  // Ignore spaces between tokens
  SYM.name[0] = Srce->ch; SYM.name[1] = ’\0’; SYM.num = 0; length = 0;
  SYM.sym = singlesym[Srce->ch];   // Initial assumption
  if (isalpha(Srce->ch))           // Identifier or reserved word
  { while (isalnum(Srce->ch))
    { if (length < lexlength) { SYM.name[length] = toupper(Srce->ch); length++; }
      Srce->nextch();
    }
    SYM.name[length] = ’\0’;       // Terminate string properly
    l = 0; r = keywords - 1;
    do                             // Binary search
    { look = (l + r) / 2;
      if (strcmp(SYM.name, table[look].resword) <= 0) r = look - 1;
      if (strcmp(SYM.name, table[look].resword) >= 0) l = look + 1;
    } while (l <= r);
    if (l - 1 > r)
      SYM.sym = table[look].ressym;
    else
      SYM.sym = SCAN_identifier;
  }
  else if (isdigit(Srce->ch))      // Numeric literal
  { SYM.sym = SCAN_number;
    overflow = false;
    while (isdigit(Srce->ch))
    { digit = Srce->ch - ’0’;
      // Check imminent overflow
      if (SYM.num <= (maxint - digit) / 10)
        SYM.num = SYM.num * 10 + digit;
      else
        overflow = true;
      if (length < lexlength) { SYM.name[length] = toupper(Srce->ch); length++; }
      Srce->nextch();
    }
    if (overflow) Report->error(200);
    SYM.name[length] = ’\0’;       // Terminate string properly
  }
  else switch (Srce->ch)
  { case ’:’:
      Srce->nextch();
      if (Srce->ch == ’=’)
      { SYM.sym = SCAN_becomes; strcpy(SYM.name, ":="); Srce->nextch(); }
      // else SYM.sym := SCAN_unknown; SYM.name := ":"
      break;



    case ’<’:
      Srce->nextch();
      if (Srce->ch == ’=’)
        { SYM.sym = SCAN_leqsym; strcpy(SYM.name, "<="); Srce->nextch(); }
      else if (Srce->ch == ’>’)
        { SYM.sym = SCAN_neqsym; strcpy(SYM.name, "<>"); Srce->nextch(); }
      // else SYM.sym := SCAN_lsssym; SYM.name := "<"
      break;

    case ’>’:
      Srce->nextch();
      if (Srce->ch == ’=’)
      { SYM.sym = SCAN_geqsym; strcpy(SYM.name, ">="); Srce->nextch(); }
      // else SYM.sym := SCAN_gtrsym; SYM.name := ">"
      break;

    case ’\’’:   // String literal
      Srce->nextch();
      SYM.sym = SCAN_stringsym;
      endstring = false;
      do
      { if (Srce->ch == ’\’’)
        { Srce->nextch(); endstring = (Srce->ch != ’\’’); }
        if (!endstring)
        { if (length < lexlength) { SYM.name[length] = Srce->ch; length++; }
          Srce->nextch();
        }
      } while (!(endstring || Srce->endline()));
      if (!endstring) Report->error(1);
      SYM.name[length] = ’\0’;     // Terminate string properly
      break;

    case ’\0’:
      SYM.sym = SCAN_eofsym; break;

    default:
      // implementation defined symbols - SYM.sym := singlesym[Srce->ch]
      Srce->nextch(); break;
  }
}

SCAN::SCAN(SRCE *S, REPORT *R)
{ Srce = S; Report = R;
  // Define one char symbols
  for (int i = 0; i <= 255; i++) singlesym[i] = SCAN_unknown;
  singlesym[’+’] = SCAN_plus;      singlesym[’-’] = SCAN_minus;
  singlesym[’*’] = SCAN_times;     singlesym[’/’] = SCAN_slash;
  singlesym[’(’] = SCAN_lparen;    singlesym[’)’] = SCAN_rparen;
  singlesym[’[’] = SCAN_lbracket;  singlesym[’]’] = SCAN_rbracket;
  singlesym[’=’] = SCAN_eqlsym;    singlesym[’;’] = SCAN_semicolon;
  singlesym[’,’] = SCAN_comma;     singlesym[’.’] = SCAN_period;
  singlesym[’<’] = SCAN_lsssym;    singlesym[’>’] = SCAN_gtrsym;
  keywords = sizeof(table) / sizeof(keyword);
  Srce->nextch();
}

----- parser.h ----------------------------------------------------------------

// Parser for Clang source
// P.D. Terry, Rhodes University, 1996

#ifndef PARSER_H
#define PARSER_H

#include "scan.h"
#include "report.h"
#include "table.h"
#include "srce.h"
#include "set.h"
#include "cgen.h"

typedef Set<SCAN_eofsym> symset;

class PARSER {
  public:
    PARSER(CGEN *C, SCAN *L, TABLE *T, SRCE *S, REPORT *R);
    // Initializes parser

    void parse(void);
    // Parses and compiles the source code



  private:
    symset RelOpSyms, FirstDeclaration, FirstBlock, FirstFactor,
           FirstExpression, FirstStatement, EmptySet;
    SCAN_symbols SYM;
    REPORT *Report;
    SCAN *Scanner;
    TABLE *Table;
    SRCE *Srce;
    CGEN *CGen;
    bool debugging;
    int blocklevel;
    TABLE_idclasses blockclass;
    void GetSym(void);
    void accept(SCAN_symtypes expected, int errorcode);
    void test(symset allowed, symset beacons, int errorcode);
    CGEN_operators op(SCAN_symtypes s);
    void OneConst(void);
    void ConstDeclarations(void);
    void OneVar(int &framesize);
    void VarDeclarations(int &framesize);
    void OneFormal(TABLE_entries &procentry, TABLE_index &parindex);
    void FormalParameters(TABLE_entries &procentry);
    void ProcDeclaration(symset followers);
    void Designator(TABLE_entries entry, symset followers, int errorcode);
    void ReferenceParameter(void);
    void OneActual(symset followers, TABLE_entries procentry, int &actual);
    void ActualParameters(TABLE_entries procentry, symset followers);
    void Variable(symset followers, int errorcode);
    void Factor(symset followers);
    void Term(symset followers);
    void Expression(symset followers);
    void Condition(symset followers);
    void CompoundStatement(symset followers);
    void Assignment(symset followers, TABLE_entries entry);
    void ProcedureCall(symset followers, TABLE_entries entry);
    void IfStatement(symset followers);
    void WhileStatement(symset followers);
    void ReturnStatement(symset followers);
    void WriteElement(symset followers);
    void WriteStatement(symset followers);
    void ReadStatement(symset followers);
    void ProcessCall(symset followers, int &processes);
    void CobeginStatement(symset followers);
    void SemaphoreStatement(symset followers);
    void Statement(symset followers);
    void Block(symset followers, int blklevel, TABLE_idclasses blkclass,
               int initialframesize);
    void ClangProgram(void);
};

#endif /*PARSER_H*/

----- parser.cpp --------------------------------------------------------------

// Parser for Clang level 4 - incorporates error recovery and code generation
// Includes procedures, functions, parameters, arrays, concurrency.
// Display machine.
// P.D. Terry, Rhodes University, 1996

#include "misc.h"
#include "parser.h"
#include "report.h"
#include "table.h"
#include "scan.h"
#include "srce.h"
#include "set.h"

static int relopsyms [] = {SCAN_eqlsym, SCAN_neqsym, SCAN_gtrsym,
                           SCAN_geqsym, SCAN_lsssym, SCAN_leqsym};

static int firstDeclaration [] = {SCAN_constsym, SCAN_varsym, SCAN_procsym,
                                  SCAN_funcsym};

static int firstBlock [] = {SCAN_constsym, SCAN_varsym, SCAN_procsym,
                            SCAN_funcsym, SCAN_beginsym};

static int firstFactor [] = {SCAN_identifier, SCAN_number, SCAN_lparen,
                             SCAN_stringsym};

static int firstExpression [] = {SCAN_identifier, SCAN_number, SCAN_lparen,
                                 SCAN_plus, SCAN_minus};



static int firstStatement [] = {SCAN_identifier, SCAN_beginsym, SCAN_ifsym,
                                SCAN_whilesym, SCAN_returnsym,
                                SCAN_writesym, SCAN_readsym, SCAN_stacksym,
                                SCAN_cobegsym, SCAN_waitsym, SCAN_signalsym};

PARSER::PARSER(CGEN *C, SCAN *L, TABLE *T, SRCE *S, REPORT *R) :
  RelOpSyms(sizeof(relopsyms)/sizeof(int), relopsyms),
  FirstDeclaration(sizeof(firstDeclaration)/sizeof(int), firstDeclaration),
  FirstBlock(sizeof(firstBlock)/sizeof(int), firstBlock),
  FirstFactor(sizeof(firstFactor)/sizeof(int), firstFactor),
  FirstExpression(sizeof(firstExpression)/sizeof(int), firstExpression),
  FirstStatement(sizeof(firstStatement)/sizeof(int), firstStatement),
  EmptySet()
{ CGen = C, Scanner = L; Report = R; Table = T; Srce = S; }

void PARSER::GetSym(void)
{ Scanner->getsym(SYM); }

void PARSER::accept(SCAN_symtypes expected, int errorcode)
{ if (SYM.sym == expected) GetSym(); else Report->error(errorcode); }

void PARSER::test(symset allowed, symset beacons, int errorcode)
// Test whether current Sym is Allowed, and recover if not
{ if (allowed.memb(SYM.sym)) return;
  Report->error(errorcode);
  symset stopset = allowed + beacons;
  while (!stopset.memb(SYM.sym)) GetSym();
}

CGEN_operators PARSER::op(SCAN_symtypes s)
// Map symbol to corresponding code operator
{ switch (s)
  { case SCAN_plus:   return CGEN_opadd;
    case SCAN_minus:  return CGEN_opsub;
    case SCAN_times:  return CGEN_opmul;
    case SCAN_slash:  return CGEN_opdvd;
    case SCAN_eqlsym: return CGEN_opeql;
    case SCAN_neqsym: return CGEN_opneq;
    case SCAN_gtrsym: return CGEN_opgtr;
    case SCAN_geqsym: return CGEN_opgeq;
    case SCAN_lsssym: return CGEN_oplss;
    case SCAN_leqsym: return CGEN_opleq;
  }
}

// ++++++++++++++++++++++++ Declaration Part ++++++++++++++++++++++++++

void PARSER::OneConst(void)
// OneConst = ConstIdentifier "=" Number ";"  .
{ TABLE_entries constentry;
  TABLE_index constindex;
  if (SYM.sym != SCAN_identifier) { Report->error(6); return; }
  sprintf(constentry.name, "%.*s", TABLE_alfalength, SYM.name);
  constentry.idclass = TABLE_consts;
  GetSym();
  if (SYM.sym == SCAN_becomes || SYM.sym == SCAN_eqlsym)
  { if (SYM.sym == SCAN_becomes) Report->error(7);
    GetSym();
    if (SYM.sym != SCAN_number)
      { constentry.c.value = 0; Report->error(8); }
    else
      { constentry.c.value = SYM.num; GetSym(); }
  }
  else Report->error(9);
  Table->enter(constentry, constindex);
  accept(SCAN_semicolon, 2);
}

void PARSER::ConstDeclarations(void)
// ConstDeclarations = "CONST" OneConst { OneConst } .
{ GetSym();
  OneConst();
  while (SYM.sym == SCAN_identifier) OneConst();
}

void PARSER::OneVar(int &framesize)
// OneVar = VarIdentifier [ UpperBound ] .
// UpperBound = "[" Number "]" .
{ TABLE_entries varentry;
  TABLE_index varindex;
  if (SYM.sym != SCAN_identifier) { Report->error(6); return; }
  varentry.idclass = TABLE_vars;
  varentry.v.size = 1;



  varentry.v.scalar = true;
  varentry.v.ref = false;
  varentry.v.offset = framesize + 1;
  sprintf(varentry.name, "%.*s", TABLE_alfalength, SYM.name);
  GetSym();
  if (SYM.sym == SCAN_lbracket)
  { // array declaration
    GetSym();
    varentry.v.scalar = false;
    if (SYM.sym == SCAN_identifier || SYM.sym == SCAN_number)
    { if (SYM.sym == SCAN_identifier)
        Report->error(8);
      else
        varentry.v.size = SYM.num + 1;
      GetSym();
    }
    else
      Report->error(8);
    accept(SCAN_rbracket, 10);
  }
  Table->enter(varentry, varindex);
  framesize += varentry.v.size;
}

void PARSER::VarDeclarations(int &framesize)
// VarDeclarations = "VAR" OneVar { "," OneVar } ";" .
{ GetSym();
  OneVar(framesize);
  while (SYM.sym == SCAN_comma || SYM.sym == SCAN_identifier)
    { accept(SCAN_comma, 31); OneVar(framesize); }
  accept(SCAN_semicolon, 2);
}

void PARSER::OneFormal(TABLE_entries &procentry, TABLE_index &parindex)
// OneFormal := ParIdentifier [ "[" "]" ] .
{ TABLE_entries parentry;
  if (SYM.sym != SCAN_identifier) { Report->error(6); return; }
  parentry.idclass = TABLE_vars;
  parentry.v.size = 1;
  parentry.v.scalar = true;
  parentry.v.ref = false;
  parentry.v.offset = procentry.p.paramsize + CGEN_headersize + 1;
  sprintf(parentry.name, "%.*s", TABLE_alfalength, SYM.name);
  GetSym();
  if (SYM.sym == SCAN_lbracket)
  { parentry.v.size = 2;
    parentry.v.scalar = false;
    parentry.v.ref = true;
    GetSym();
    accept(SCAN_rbracket, 10);
  }
  Table->enter(parentry, parindex);
  procentry.p.paramsize += parentry.v.size;
  procentry.p.params++;
}

void PARSER::FormalParameters(TABLE_entries &procentry)
// FormalParameters = "(" OneFormal { "," OneFormal } ")" .
{ TABLE_index p;
  GetSym();
  OneFormal(procentry, procentry.p.firstparam);
  while (SYM.sym == SCAN_comma || SYM.sym == SCAN_identifier)
    { accept(SCAN_comma, 13); OneFormal(procentry, p); }
  accept(SCAN_rparen, 17);
}

void PARSER::ProcDeclaration(symset followers)
// ProcDeclaration = ( "PROCEDURE" ProcIdentifier | "FUNCTION" FuncIdentifier )
//                   [ FormalParameters ] ";"
//                   Block ";" .
{ TABLE_entries procentry;
  TABLE_index procindex;
  if (SYM.sym == SCAN_funcsym)
    procentry.idclass = TABLE_funcs;
  else
    procentry.idclass = TABLE_procs;
  GetSym();
  if (SYM.sym != SCAN_identifier)
  { Report->error(6); *procentry.name = ’\0’; }
  else
  { sprintf(procentry.name, "%.*s", TABLE_alfalength, SYM.name);
    GetSym();
  }



  procentry.p.params = 0;
  procentry.p.paramsize = 0;
  procentry.p.firstparam = NULL;
  CGen->storelabel(procentry.p.entrypoint);
  Table->enter(procentry, procindex);
  Table->openscope();
  if (SYM.sym == SCAN_lparen)
  { FormalParameters(procentry);
    Table->update(procentry, procindex);
  }
  test(symset(SCAN_semicolon), followers, 5);
  accept(SCAN_semicolon, 2);
  Block(symset(SCAN_semicolon) + followers, procentry.level + 1,
        procentry.idclass, procentry.p.paramsize + CGEN_headersize);
  accept(SCAN_semicolon, 2);
}

// ++++++++++++++++++++++++ Expressions and Designators+++++++++++++++++++

void PARSER::Designator(TABLE_entries entry, symset followers, int errorcode)
// Designator = VarIdentifier [ "[" Expression "]" ] .
{ bool isVariable = (entry.idclass == TABLE_vars);
  if (isVariable)
    CGen->stackaddress(entry.level, entry.v.offset, entry.v.ref);
  else
    Report->error(errorcode);
  GetSym();
  if (SYM.sym == SCAN_lbracket)
  { // subscript
    if (isVariable && entry.v.scalar) Report->error(204);
    GetSym();
    Expression(symset(SCAN_rbracket) + followers);
    if (isVariable)
    { if (entry.v.ref)
        CGen->stackaddress(entry.level, entry.v.offset + 1, entry.v.ref);
      else
        CGen->stackconstant(entry.v.size);
      CGen->subscript();
    }
    accept(SCAN_rbracket, 10);
  }
  else if (isVariable && !entry.v.scalar) Report->error(205);
}

void PARSER::Variable(symset followers, int errorcode)
// Variable = VarDesignator .
// VarDesignator = Designator .
{ TABLE_entries entry;
  bool found;
  if (SYM.sym != SCAN_identifier) { Report->error(6); return; }
  Table->search(SYM.name, entry, found);
  if (!found) Report->error(202);
  Designator(entry, followers, errorcode);
}

void PARSER::ReferenceParameter(void)
{ TABLE_entries entry;
  bool found;
  if (SYM.sym != SCAN_identifier)
    Report->error(214);
  else
  { Table->search(SYM.name, entry, found);
    if (!found)
      Report->error(202);
    else if (entry.idclass != TABLE_vars || entry.v.scalar)
      Report->error(214);
    else
    { CGen->stackaddress(entry.level, entry.v.offset, entry.v.ref);
      // now pass size of array as next parameter
      if (entry.v.ref)
        CGen->stackaddress(entry.level, entry.v.offset + 1, entry.v.ref);
      else
        CGen->stackconstant(entry.v.size);
    }
    GetSym();
  }
}

void PARSER::OneActual(symset followers, TABLE_entries procentry, int &actual)
{ actual++;
  if (Table->isrefparam(procentry, actual))
    ReferenceParameter();
  else



    Expression(symset(SCAN_comma, SCAN_rparen) + followers);
  test(symset(SCAN_comma, SCAN_rparen), followers - symset(SCAN_identifier), 13);
}

void PARSER::ActualParameters(TABLE_entries procentry, symset followers)
// ActualParameters = [ "(" Expression { "," Expression } ")" ] .
{ int actual = 0;
  if (SYM.sym == SCAN_lparen)
  { GetSym();
    OneActual(followers, procentry, actual);
    while ((SYM.sym == SCAN_comma) || FirstExpression.memb(SYM.sym))
      { accept(SCAN_comma, 13); OneActual(followers, procentry, actual); }
    accept(SCAN_rparen, 17);
  }
  if (actual != procentry.p.params) Report->error(209);
}

void PARSER::Factor(symset followers)
// Factor =   ValDesignator | ConstIdentifier | Number
//          | FuncIdentifier ActualParameters | "(" Expression ")" .
// ValDesignator = Designator .
{ TABLE_entries entry;
  bool found;
  test(FirstFactor, followers, 14);
  switch (SYM.sym)
  { case SCAN_identifier:
      Table->search(SYM.name, entry, found);
      if (!found) Report->error(202);
      switch (entry.idclass)
      { case TABLE_consts:
          CGen->stackconstant(entry.c.value); GetSym(); break;
        case TABLE_funcs:
          GetSym();
          CGen->markstack();
          ActualParameters(entry, followers);
          CGen->call(entry.level, entry.p.entrypoint);
          break;
        default:
          Designator(entry, followers, 206); CGen->dereference(); break;
      }
      break;

    case SCAN_number:
      CGen->stackconstant(SYM.num);
      GetSym();
      break;

    case SCAN_lparen:
      GetSym();
      Expression(symset(SCAN_rparen) + followers);
      accept(SCAN_rparen, 17);
      break;

    case SCAN_stringsym:
      Report->error(14);
      GetSym();
      break;

    default:
      Report->error(14);
      break;
  }
}

void PARSER::Term(symset followers)
// Term = Factor { ( "*" | "/" ) Factor } .
{ SCAN_symtypes opsym;
  Factor(symset(SCAN_times, SCAN_slash) + followers);
  while (SYM.sym == SCAN_times || SYM.sym == SCAN_slash || FirstFactor.memb(SYM.sym))
  { if (SYM.sym == SCAN_times || SYM.sym == SCAN_slash)
      { opsym = SYM.sym; GetSym(); }
    else
      { opsym = SCAN_times; Report->error(20); }
    Factor(symset(SCAN_times, SCAN_slash) + followers);
    CGen->binaryintegerop(op(opsym));
  }
}

void PARSER::Expression(symset followers)
// Expression = [ "+" | "-" ] Term { ( "+" | "-" ) Term } .
{ SCAN_symtypes opsym;
  if (SYM.sym == SCAN_plus)
  { GetSym();



    Term(symset(SCAN_plus, SCAN_minus) + followers);
  }
  else if (SYM.sym == SCAN_minus)
  { GetSym();
    Term(symset(SCAN_plus, SCAN_minus) + followers);
    CGen->negateinteger();
  }
  else
    Term(symset(SCAN_plus, SCAN_minus) + followers);
  while (SYM.sym == SCAN_plus || SYM.sym == SCAN_minus)
  { opsym = SYM.sym; GetSym();
    Term(symset(SCAN_plus, SCAN_minus) + followers);
    CGen->binaryintegerop(op(opsym));
  }
}

void PARSER::Condition(symset followers)
// Condition = Expression Relop Expression .
{ SCAN_symtypes opsym;
  symset stopset = RelOpSyms + followers;
  Expression(stopset);
  if (!RelOpSyms.memb(SYM.sym)) { Report->error(19); return; }
  opsym = SYM.sym; GetSym();
  Expression(followers); CGen->comparison(op(opsym));
}

// ++++++++++++++++++++++++ Statement Part ++++++++++++++++++++++++++

void PARSER::CompoundStatement(symset followers)
// CompoundStatement = "BEGIN" Statement { ";" Statement } "END" .
{ accept(SCAN_beginsym, 34);
  Statement(symset(SCAN_semicolon, SCAN_endsym) + followers);
  while (SYM.sym == SCAN_semicolon || FirstStatement.memb(SYM.sym))
    { accept(SCAN_semicolon, 2);
      Statement(symset(SCAN_semicolon, SCAN_endsym) + followers);
    }
  accept(SCAN_endsym, 24);
}

void PARSER::Assignment(symset followers, TABLE_entries entry)
// Assignment = VarDesignator ":=" Expression .
// VarDesignator = Designator .
{ Designator(entry, symset(SCAN_becomes, SCAN_eqlsym) + followers, 210);
  if (SYM.sym == SCAN_becomes)
    GetSym();
  else
    { Report->error(21); if (SYM.sym == SCAN_eqlsym) GetSym(); }
  Expression(followers);
  CGen->assign();
}

void PARSER::ProcedureCall(symset followers, TABLE_entries entry)
// ProcedureCall = ProcIdentifier ActualParameters .
{ GetSym();
  CGen->markstack();
  ActualParameters(entry, followers);
  CGen->call(entry.level, entry.p.entrypoint);
}

void PARSER::IfStatement(symset followers)
// IfStatement = "IF" Condition "THEN" Statement .
{ CGEN_labels testlabel;

  GetSym();
  Condition(symset(SCAN_thensym, SCAN_dosym) + followers);
  CGen->jumponfalse(testlabel, CGen->undefined);
  if (SYM.sym == SCAN_thensym)
    GetSym();
  else
    { Report->error(23); if (SYM.sym == SCAN_dosym) GetSym(); }
  Statement(followers);
  CGen->backpatch(testlabel);
}

void PARSER::WhileStatement(symset followers)
// WhileStatement = "WHILE" Condition "DO" Statement .
{ CGEN_labels startloop, testlabel, dummylabel;
  GetSym();
  CGen->storelabel(startloop);
  Condition(symset(SCAN_dosym) + followers);
  CGen->jumponfalse(testlabel, CGen->undefined);
  accept(SCAN_dosym, 25);
  Statement(followers);



  CGen->jump(dummylabel, startloop);
  CGen->backpatch(testlabel);
}

void PARSER::ReturnStatement(symset followers)
// ReturnStatement = "RETURN" [ Expression ]
{ GetSym();
  switch (blockclass)
  { case TABLE_funcs:
      if (!FirstExpression.memb(SYM.sym)) Report->error(220); // an Expression is mandatory
      else
      { CGen->stackaddress(blocklevel, 1, false);
        Expression(followers);
        CGen->assign();
        CGen->leavefunction(blocklevel);
      }
      break;

    case TABLE_procs:   // simple return
      CGen->leaveprocedure(blocklevel);
      if (FirstExpression.memb(SYM.sym)) // we may NOT have an Expression
        { Report->error(219); Expression(followers); }
      break;

    case TABLE_progs:   // okay in main program - just halts
      CGen->leaveprogram();
      if (FirstExpression.memb(SYM.sym)) // we may NOT have an Expression
        { Report->error(219); Expression(followers); }
      break;
  }
}

void PARSER::WriteElement(symset followers)
// WriteElement = Expression | String .
{ CGEN_labels startstring;
  if (SYM.sym != SCAN_stringsym)
  { Expression(symset(SCAN_comma, SCAN_rparen) + followers);
    CGen->writevalue();
  }
  else
  { CGen->stackstring(SYM.name, startstring);
    CGen->writestring(startstring);
    GetSym();
  }
}

void PARSER::WriteStatement(symset followers)
// WriteStatement = "WRITE" [ "(" WriteElement { "," WriteElement } ")" ] .
{ GetSym();
  if (SYM.sym == SCAN_lparen)
  { GetSym();
    WriteElement(followers);
    while (SYM.sym == SCAN_comma || FirstExpression.memb(SYM.sym))
    { accept(SCAN_comma, 13); WriteElement(followers); }
    accept(SCAN_rparen, 17);
  }
  CGen->newline();
}

void PARSER::ReadStatement(symset followers)
// ReadStatement = "READ" "(" Variable { "," Variable } ")" .
{ GetSym();
  if (SYM.sym != SCAN_lparen) { Report->error(18); return; }
  GetSym();
  Variable(symset(SCAN_comma, SCAN_rparen) + followers, 211);
  CGen->readvalue();
  while (SYM.sym == SCAN_comma || SYM.sym == SCAN_identifier)
  { accept(SCAN_comma, 13);
    Variable(symset(SCAN_comma, SCAN_rparen) + followers, 211);
    CGen->readvalue();
  }
  accept(SCAN_rparen, 17);
}

void PARSER::ProcessCall(symset followers, int &processes)
// ProcessCall = ProcIdentifier ActualParameters .
{ TABLE_entries entry;
  bool found;
  if (!FirstStatement.memb(SYM.sym)) return;
  if (SYM.sym != SCAN_identifier)
    { Report->error(217); Statement(followers); return; } // recovery
  Table->search(SYM.name, entry, found);
  if (!found) Report->error(202);



  if (entry.idclass != TABLE_procs)
    { Report->error(217); Statement(followers); return; } // recovery
  GetSym();
  CGen->markstack();
  ActualParameters(entry, followers);
  CGen->forkprocess(entry.p.entrypoint);
  processes++;
}

void PARSER::CobeginStatement(symset followers)
// CobeginStatement := "COBEGIN" ProcessCall { ";" ProcessCall } "COEND"
// count number of processes
{ int processes = 0;
  CGEN_labels start;
  if (blockclass != TABLE_progs) Report->error(215);  // only from global level
  GetSym(); CGen->cobegin(start);
  ProcessCall(symset(SCAN_semicolon, SCAN_coendsym) + followers, processes);
  while (SYM.sym == SCAN_semicolon || FirstStatement.memb(SYM.sym))
    { accept(SCAN_semicolon, 2);
      ProcessCall(symset(SCAN_semicolon, SCAN_coendsym) +  followers, processes);
    }
  CGen->coend(start, processes);
  accept(SCAN_coendsym, 38);
}

void PARSER::SemaphoreStatement(symset followers)
// SemaphoreStatement = ("WAIT" | "SIGNAL")  "(" VarDesignator ")" .
{ bool wait = (SYM.sym == SCAN_waitsym);
  GetSym();
  if (SYM.sym != SCAN_lparen) { Report->error(18); return; }
  GetSym();
  Variable(symset(SCAN_rparen) + followers, 206);
  if (wait) CGen->waitop(); else CGen->signalop();
  accept(SCAN_rparen, 17);
}

void PARSER::Statement(symset followers)
// Statement = [ CompoundStatement | Assignment | ProcedureCall
//              | IfStatement | WhileStatement | ReturnStatement
//              | WriteStatement | ReadStatement | CobeginStatement
//              | WaitStatement | SignalStatement | "STACKDUMP" ] .
{ TABLE_entries entry;
  bool found;
  if (FirstStatement.memb(SYM.sym))
  { switch (SYM.sym)
    { case SCAN_identifier:
        Table->search(SYM.name, entry, found);
        if (!found) Report->error(202);
        if (entry.idclass == TABLE_procs)
          ProcedureCall(followers, entry);
        else
          Assignment(followers, entry);
        break;
      case SCAN_ifsym:     IfStatement(followers); break;
      case SCAN_whilesym:  WhileStatement(followers); break;
      case SCAN_returnsym: ReturnStatement(followers); break;
      case SCAN_writesym:  WriteStatement(followers); break;
      case SCAN_readsym:   ReadStatement(followers); break;
      case SCAN_beginsym:  CompoundStatement(followers); break;
      case SCAN_stacksym:  CGen->dump(); GetSym(); break;
      case SCAN_cobegsym:  CobeginStatement(followers); break;
      case SCAN_waitsym:
      case SCAN_signalsym: SemaphoreStatement(followers); break;
    }
  }
  // test(Followers - symset(SCAN_identifier), EmptySet, 32) or
  test(followers, EmptySet, 32);
}

void PARSER::Block(symset followers, int blklevel, TABLE_idclasses blkclass,
                   int initialframesize)
// Block = { ConstDeclarations | VarDeclarations | ProcDeclaration }
//         CompoundStatement .
{ int framesize = initialframesize;  // activation record space
  CGEN_labels entrypoint;
  CGen->jump(entrypoint, CGen->undefined);
  test(FirstBlock, followers, 3);
  if (blklevel > CGEN_levmax) Report->error(213);
  do
  { if (SYM.sym == SCAN_constsym) ConstDeclarations();
    if (SYM.sym == SCAN_varsym) VarDeclarations(framesize);
    while (SYM.sym == SCAN_procsym || SYM.sym == SCAN_funcsym)
      ProcDeclaration(followers);



    test(FirstBlock, followers, 4);
  } while (FirstDeclaration.memb(SYM.sym));
  // blockclass, blocklevel global for efficiency
  blockclass = blkclass;
  blocklevel = blklevel;
  CGen->backpatch(entrypoint);   // reserve space for variables
  CGen->openstackframe(framesize - initialframesize);
  CompoundStatement(followers);
  switch (blockclass)
  { case TABLE_progs: CGen->leaveprogram(); break;
    case TABLE_procs: CGen->leaveprocedure(blocklevel); break;
    case TABLE_funcs: CGen->functioncheck(); break;
  }
  test(followers, EmptySet, 35);
  if (debugging) Table->printtable(Srce->lst);  // demonstration purposes
  Table->closescope();
}

void PARSER::ClangProgram(void)
// ClangProgram = "PROGRAM" ProgIdentifier ";" Block "." .
{ TABLE_entries progentry;
  TABLE_index progindex;
  accept(SCAN_progsym, 36);
  if (SYM.sym != SCAN_identifier)
    Report->error(6);
  else
  { sprintf(progentry.name, "%.*s", TABLE_alfalength, SYM.name);
    debugging = (strcmp(SYM.name, "DEBUG") == 0);
    progentry.idclass = TABLE_progs;
    Table->enter(progentry, progindex);
    GetSym();
  }
  Table->openscope();
  accept(SCAN_semicolon, 2);
  Block(symset(SCAN_period, SCAN_eofsym) + FirstBlock + FirstStatement,
               progentry.level + 1, TABLE_progs, 0);
  accept(SCAN_period, 37);
}

void PARSER::parse(void)
{ GetSym(); ClangProgram(); }

----- table.h -----------------------------------------------------------------

// Handle symbol table for Clang level 3/4 compiler/interpreter
// Includes procedures, functions, parameters, arrays, concurrency
// P.D. Terry, Rhodes University, 1996

#ifndef TABLE_H
#define TABLE_H

#include "cgen.h"
#include "report.h"

const int TABLE_alfalength = 15; // maximum length of identifiers
typedef char TABLE_alfa[TABLE_alfalength + 1];

enum TABLE_idclasses
{ TABLE_consts, TABLE_vars, TABLE_progs, TABLE_procs, TABLE_funcs };

struct TABLE_nodes;
typedef TABLE_nodes *TABLE_index;

struct TABLE_entries {
  TABLE_alfa name;             // identifier
  int level;                   // static level
  TABLE_idclasses idclass;     // class
  union {
    struct {
      int value;
    } c;                       // constants
    struct {
      int size, offset;
      bool ref, scalar;
    } v;                       // variables
    struct {
      int params, paramsize;
      TABLE_index firstparam;
      CGEN_labels entrypoint;
    } p;                       // procedures, functions
  };
};



struct TABLE_nodes {
  TABLE_entries entry;
  TABLE_index next;
};

struct SCOPE_nodes {
  SCOPE_nodes *down;
  TABLE_index first;
};

class TABLE {
  public:
    void openscope(void);
    // Opens new scope for a new block

    void closescope(void);
    // Closes scope at block exit

    void enter(TABLE_entries &entry, TABLE_index &position);
    // Adds entry to symbol table, and returns its position

    void search(char *name, TABLE_entries &entry, bool &found);
    // Searches table for presence of name.  If found then returns entry

    void update(TABLE_entries &entry, TABLE_index position);
    // Updates entry at known position

    bool isrefparam(TABLE_entries &procentry, int n);
    // Returns true if nth parameter for procentry is passed by reference

    void printtable(FILE *lst);
    // Prints symbol table for diagnostic purposes

    TABLE(REPORT *R);
    // Initializes symbol table

  private:
    TABLE_index sentinel;
    SCOPE_nodes *topscope;
    REPORT *Report;
    int currentlevel;
};

#endif /*TABLE_H*/

----- table.cpp ---------------------------------------------------------------

// Handle symbol table for Clang level 3/4 compiler/interpreter
// Includes procedures, functions, parameters, arrays, concurrency
// P.D. Terry, Rhodes University, 1996

#include "misc.h"
#include "table.h"

void TABLE::openscope(void)
{ SCOPE_nodes *newscope = new SCOPE_nodes;
  newscope->down = topscope; newscope->first = sentinel;
  topscope = newscope;
  currentlevel++;
}

void TABLE::closescope(void)
{ SCOPE_nodes *old = topscope;
  topscope = topscope->down; delete old;
  currentlevel--;
}

void TABLE::enter(TABLE_entries &entry, TABLE_index &position)
{ TABLE_index look = topscope->first;
  TABLE_index last = NULL;
  position = new TABLE_nodes;
  sprintf(sentinel->entry.name, "%.*s", TABLE_alfalength, entry.name);
  while (strcmp(look->entry.name, sentinel->entry.name))
  { last = look; look = look->next; }
  if (look != sentinel) Report->error(201);
  entry.level = currentlevel;
  position->entry = entry; position->next = look;
  if (!last) topscope->first = position; else last->next = position;
}

void TABLE::update(TABLE_entries &entry, TABLE_index position)



{ position->entry = entry; }

void TABLE::search(char *name, TABLE_entries &entry, bool &found)
{ TABLE_index look;
  SCOPE_nodes *scope = topscope;
  sprintf(sentinel->entry.name, "%.*s", TABLE_alfalength, name);
  while (scope)
  { look = scope->first;
    while (strcmp(look->entry.name, sentinel->entry.name)) look = look->next;
    if (look != sentinel) { found = true; entry = look->entry; return; }
    scope = scope->down;
  }
  found = false; entry = sentinel->entry;
}

bool TABLE::isrefparam(TABLE_entries &procentry, int n)
{ if (n > procentry.p.params) return false;
  TABLE_index look = procentry.p.firstparam;
  while (n > 1) { look = look->next; n--; }
  return look->entry.v.ref;
}

void TABLE::printtable(FILE *lst)
{ SCOPE_nodes *scope = topscope;
  TABLE_index current;
  putc(’\n’, lst);
  while (scope)
  { current = scope->first;
    while (current != sentinel)
    { fprintf(lst, "%-16s", current->entry.name);
      switch (current->entry.idclass)
      { case TABLE_consts:
          fprintf(lst, " Constant  %7d\n", current->entry.c.value);
          break;

        case TABLE_vars:
          fprintf(lst, " Variable  %3d%4d%4d\n",
                  current->entry.level, current->entry.v.offset,
                  current->entry.v.size);
          break;

        case TABLE_procs:
          fprintf(lst, " Procedure %3d%4d%4d\n",
                  current->entry.level, current->entry.p.entrypoint,
                  current->entry.p.params);
          break;

        case TABLE_funcs:
          fprintf(lst, " Function  %3d%4d%4d\n",
                  current->entry.level, current->entry.p.entrypoint,
                  current->entry.p.params);
          break;

       case TABLE_progs:
          fprintf(lst, " Program   \n");
          break;
      }
      current = current->next;
    }
    scope = scope->down;
  }
}

TABLE::TABLE(REPORT *R)
{ sentinel = new TABLE_nodes;
  sentinel->entry.name[0] = ’\0’; sentinel->entry.level = 0;
  sentinel->entry.idclass = TABLE_progs;
  currentlevel = 0; topscope = NULL;   // for level 0 identifiers
  Report = R; openscope(); currentlevel = 0;
}

----- cgen.h ------------------------------------------------------------------

// Code Generation for Clang level 4 compiler/interpreter
// Includes procedures, functions, parameters, arrays, concurrency.
// Display machine.
// P.D. Terry, Rhodes University, 1996

#ifndef CGEN_H
#define CGEN_H

#include "misc.h"



#include "stkmc.h"
#include "report.h"

#define CGEN_headersize  STKMC_headersize
#define CGEN_levmax      STKMC_levmax

enum CGEN_operators {
  CGEN_opadd, CGEN_opsub, CGEN_opmul, CGEN_opdvd, CGEN_opeql, CGEN_opneq,
  CGEN_oplss, CGEN_opgeq, CGEN_opgtr, CGEN_opleq
};

typedef short CGEN_labels;
typedef char  CGEN_levels;

class CGEN {
  public:
    CGEN_labels undefined;    // for forward references

    CGEN(REPORT *R);
    // Initializes code generator

    void negateinteger(void);
    // Generates code to negate integer value on top of evaluation stack

    void binaryintegerop(CGEN_operators op);
    // Generates code to pop two values A,B from evaluation stack
    // and push value A op B

    void comparison(CGEN_operators op);
    // Generates code to pop two integer values A,B from stack
    // and push Boolean value A OP B

    void readvalue(void);
    // Generates code to read value; store on address found on top of stack

    void writevalue(void);
    // Generates code to output value from top of stack

    void newline(void);
    // Generates code to output line mark

    void writestring(CGEN_labels location);
    // Generates code to output string stored at known location

    void stackstring(char *str, CGEN_labels &location);
    // Stores str in literal pool in memory and return its location

    void stackconstant(int number);
    // Generates code to push number onto evaluation stack

    void stackaddress(int level, int offset, bool indirect);
    // Generates code to push address for known level, offset onto evaluation stack.
    // Addresses of reference parameters are treated as indirect

    void subscript(void);
    // Generates code to index an array and check that bounds are not exceeded

    void dereference(void);
    // Generates code to replace top of evaluation stack by the value found at the
    // address currently stored on top of the stack

    void assign(void);
    // Generates code to store value currently on top-of-stack on the address
    // given by next-to-top, popping these two elements

    void openstackframe(int size);
    // Generates code to reserve space for size variables

    void leaveprogram(void);
    // Generates code needed to leave a program (halt)

    void leaveprocedure(int blocklevel);
    // Generates code needed to leave a regular procedure at given blocklevel

    void leavefunction(int blocklevel);
    // Generates code needed as we leave a function at given blocklevel

    void functioncheck(void);
    // Generate code to ensure that a function has returned a value

    void cobegin(CGEN_labels &location);
    // Generates code to initiate concurrent processing



    void coend(CGEN_labels location, int number);
    // Generates code to terminate concurrent processing

    void storelabel(CGEN_labels &location);
    // Stores address of next instruction in location for use in backpatching

    void jump(CGEN_labels &here, CGEN_labels destination);
    // Generates unconditional branch from here to destination

    void jumponfalse(CGEN_labels &here, CGEN_labels destination);
    // Generates branch from here to destination, conditional on the Boolean
    // value currently on top of the evaluation stack, popping this value

    void backpatch(CGEN_labels location);
    // Stores the current location counter as the address field of the branch
    // instruction currently held in an incomplete form at location

    void markstack(void);
    // Generates code to reserve mark stack storage before calling procedure

    void call(int level, CGEN_labels entrypoint);
    // Generates code to enter procedure at known level and entrypoint

    void forkprocess(CGEN_labels entrypoint);
    // Generates code to initiate process at known entrypoint

    void signalop(void);
    // Generates code for semaphore signalling operation

    void waitop(void);
    // Generates code for semaphore wait operation

    void dump(void);
    // Generates code to dump the current state of the evaluation stack

    void getsize(int &codelength, int &initsp);
    // Returns length of generated code and initial stack pointer

    int gettop(void);
    // Return codetop

    void emit(int word);
    // Emits single word

  private:
    REPORT *Report;
    bool generatingcode;
    STKMC_address codetop, stktop;
};

#endif /*CGEN_H*/

----- cgen.cpp ----------------------------------------------------------------

// Code Generation for Clang Level 4 compiler/interpreter
// Includes procedures, functions, parameters, arrays, concurrency.
// Display machine.
// P.D. Terry, Rhodes University, 1996

#include "cgen.h"

extern STKMC* Machine;

CGEN::CGEN(REPORT *R)
{ undefined = 0;    // for forward references (exported)
  Report = R;
  generatingcode = true;
  codetop = 0;
  stktop = STKMC_memsize - 1;
}

void CGEN::emit(int word)
// Code generator for single word
{ if (!generatingcode) return;
  if (codetop >= stktop)
    { Report->error(212); generatingcode = false; }
  else
    { Machine->mem[codetop] = word; codetop++; }
}

void CGEN::negateinteger(void)
{ emit(int(STKMC_neg)); }



void CGEN::binaryintegerop(CGEN_operators op)
{ switch (op)
  { case CGEN_opmul:  emit(int(STKMC_mul)); break;
    case CGEN_opdvd:  emit(int(STKMC_dvd)); break;
    case CGEN_opadd:  emit(int(STKMC_add)); break;
    case CGEN_opsub:  emit(int(STKMC_sub)); break;
  }
}

void CGEN::comparison(CGEN_operators op)
{ switch (op)
  { case CGEN_opeql:  emit(int(STKMC_eql)); break;
    case CGEN_opneq:  emit(int(STKMC_neq)); break;
    case CGEN_oplss:  emit(int(STKMC_lss)); break;
    case CGEN_opleq:  emit(int(STKMC_leq)); break;
    case CGEN_opgtr:  emit(int(STKMC_gtr)); break;
    case CGEN_opgeq:  emit(int(STKMC_geq)); break;
  }
}

void CGEN::readvalue(void)
{ emit(int(STKMC_inn)); }

void CGEN::writevalue(void)
{ emit(int(STKMC_prn)); }

void CGEN::newline(void)
{ emit(int(STKMC_nln)); }

void CGEN::writestring(CGEN_labels location)
{ emit(int(STKMC_prs)); emit(location); }

void CGEN::stackstring(char *str, CGEN_labels &location)
{ int l = strlen(str);
  if (stktop <= codetop + l + 1)
    { Report->error(212); generatingcode = false; return; }
  location = stktop - 1;
  for (int i = 0; i < l; i++) { stktop--; Machine->mem[stktop] = str[i]; }
  stktop--; Machine->mem[stktop] = 0;
}

void CGEN::stackconstant(int number)
{ emit(int(STKMC_lit)); emit(number); }

void CGEN::stackaddress(int level, int offset, bool indirect)
{ emit(int(STKMC_adr)); emit(level); emit(-offset);
  if (indirect) emit(int(STKMC_val));
}

void CGEN::subscript(void)
{ emit(int(STKMC_ind)); }

void CGEN::dereference(void)
{ emit(int(STKMC_val)); }

void CGEN::assign(void)
{ emit(int(STKMC_sto)); }

void CGEN::openstackframe(int size)
{ if (size > 0) { emit(int(STKMC_dsp)); emit(size); } }

void CGEN::leaveprogram(void)
{ emit(int(STKMC_hlt)); }

void CGEN::leavefunction(int blocklevel)
{ emit(int(STKMC_ret)); emit(blocklevel); emit(1); }

void CGEN::functioncheck(void)
{ emit(int(STKMC_nfn)); }

void CGEN::leaveprocedure(int blocklevel)
{ emit(int(STKMC_ret)); emit(blocklevel); emit(0); }

void CGEN::cobegin(CGEN_labels &location)
{ location = codetop; emit(int(STKMC_cbg)); emit(undefined); }

void CGEN::coend(CGEN_labels location, int number)
{ if (number >= STKMC_procmax) Report->error(216);
  else { Machine->mem[location+1] = number; emit(int(STKMC_cnd)); }
}

void CGEN::storelabel(CGEN_labels &location)



{ location = codetop; }

void CGEN::jump(CGEN_labels &here, CGEN_labels destination)
{ here = codetop; emit(int(STKMC_brn)); emit(destination); }

void CGEN::jumponfalse(CGEN_labels &here, CGEN_labels destination)
{ here = codetop; emit(int(STKMC_bze)); emit(destination); }

void CGEN::backpatch(CGEN_labels location)
{ if (codetop == location + 2 &&
      STKMC_opcodes(Machine->mem[location]) == STKMC_brn)
    codetop -= 2;
  else
    Machine->mem[location+1] = codetop;
}

void CGEN::markstack(void)
{ emit(int(STKMC_mst)); }

void CGEN::forkprocess(CGEN_labels entrypoint)
{ emit(int(STKMC_frk)); emit(entrypoint); }

void CGEN::call(int level, CGEN_labels entrypoint)
{ emit(int(STKMC_cal)); emit(level); emit(entrypoint); }

void CGEN::signalop(void)
{ emit(int(STKMC_sig)); }

void CGEN::waitop(void)
{ emit(int(STKMC_wgt)); }

void CGEN::dump(void)
{ emit(int(STKMC_stk)); }

void CGEN::getsize(int &codelength, int &initsp)
{ codelength = codetop; initsp = stktop; }

int CGEN::gettop(void)
{ return codetop; }

----- stkmc.h -----------------------------------------------------------------

// Definition of simple stack machine and simple emulator for Clang level 4
// Includes procedures, functions, parameters, arrays, concurrency.
// This version emulates one CPU time sliced between processes.
// Display machine
// P.D. Terry, Rhodes University, 1996

#ifndef STKMC_H
#define STKMC_H

#define STKMC_version     "Clang 4.0"
const int STKMC_memsize = 512;  // Limit on memory
const int STKMC_levmax = 5;     // Limit on Display
const int STKMC_headersize = 5; // Size of minimum activation record
const int STKMC_procmax = 10;   // Limit on concurrent processes

// machine instructions - order important
enum STKMC_opcodes {
  STKMC_cal, STKMC_ret, STKMC_adr, STKMC_frk, STKMC_cbg, STKMC_lit, STKMC_dsp,
  STKMC_brn, STKMC_bze, STKMC_prs, STKMC_wgt, STKMC_sig, STKMC_cnd, STKMC_nfn,
  STKMC_mst, STKMC_add, STKMC_sub, STKMC_mul, STKMC_dvd, STKMC_eql, STKMC_neq,
  STKMC_lss, STKMC_geq, STKMC_gtr, STKMC_leq, STKMC_neg, STKMC_val, STKMC_sto,
  STKMC_ind, STKMC_stk, STKMC_hlt, STKMC_inn, STKMC_prn, STKMC_nln, STKMC_nop,
  STKMC_nul
};

typedef enum {
  running, finished, badmem, baddata, nodata, divzero, badop, badind,
  badfun, badsem, deadlock
} status;
typedef int STKMC_address;
typedef int STKMC_levels;
typedef int STKMC_procindex;

class STKMC {
  public:
    int mem[STKMC_memsize];  // virtual machine memory

    void listcode(char *filename, STKMC_address codelen);
    // Lists the codelen instructions stored in mem on named output file



    void emulator(STKMC_address initpc, STKMC_address codelen,
                  STKMC_address initsp, FILE *data, FILE *results,
                  bool tracing);
    // Emulates action of the codelen instructions stored in mem, with
    // program counter initialized to initpc, stack pointer initialized to
    // initsp.  data and results are used for I/O.  Tracing at the code level
    // may be requested

    void interpret(STKMC_address codelen, STKMC_address initsp);
    // Interactively opens data and results files.  Then interprets the
    // codelen instructions stored in mem, with stack pointer initialized
    // to initsp

    STKMC_opcodes opcode(char *str);
    // Maps str to opcode, or to MC_nul if no match can be found

    STKMC();
    // Initializes stack machine

  private:
    struct processor {
      STKMC_opcodes ir;  // Instruction register
      int bp;            // Base pointer
      int sp;            // Stack pointer
      int mp;            // Mark Stack pointer
      int pc;            // Program counter
    };
    struct processrec { // Process descriptors
      STKMC_address bp, mp, sp, pc;      // Shadow registers
      STKMC_procindex next;              // Ring pointer
      STKMC_procindex queue;             // Linked, waiting on semaphore
      bool ready;                        // Process ready flag
      STKMC_address stackmax, stackmin;  // Memory limits
      int display[STKMC_levmax];         // Display registers
    };
    processor cpu;
    status ps;

    bool inbounds(int p);

    char *mnemonics[STKMC_nul+1];
    void stackdump(STKMC_address initsp, FILE *results, STKMC_address pcnow);
    void trace(FILE *results, STKMC_address pcnow);
    void postmortem(FILE *results, STKMC_address pcnow);

    int slice;
    STKMC_procindex current, nexttorun;
    processrec process[STKMC_procmax + 1];
    void swapregisters(void);
    void chooseprocess(void);
    void signal(STKMC_address semaddress);
    void wait(STKMC_address semaddress);
};

#endif /*STKMC_H*/

----- stkmc.cpp ---------------------------------------------------------------

// Definition of simple stack machine and simple emulator for Clang level 4
// Includes procedures, functions, parameters, arrays, concurrency.
// This version emulates one CPU time sliced between processes.
// Display machine.
// P.D. Terry, Rhodes University, 1996

#include "misc.h"
#include "stkmc.h"
#include <time.h>

#define random(num) (rand() % (num))
#define BLANKS "                                              "

const int maxslice      = 8;  // maximum time slice
const int processreturn = 0;  // fictitious return address

STKMC_opcodes STKMC::opcode(char *str)
{ STKMC_opcodes l = STKMC_opcodes(0);
  for (int i = 0; str[i]; i++) str[i] = toupper(str[i]);
  while (l != STKMC_nul && strcmp(str, mnemonics[l]))
    l = STKMC_opcodes(long(l) + 1);
  return l;
}



void STKMC::listcode(char *filename, STKMC_address codelen)
{ STKMC_address i, j;
  STKMC_opcodes op;
  if (*filename == ’\0’) return;
  FILE *codefile = fopen(filename, "w");
  if (codefile == NULL) return;
/* The following may be useful for debugging the interpreter
  i = 0;
  while (i < codelen)
  { fprintf(codefile, "%4d", mem[i]);
    if ((i + 1) % 16 == 0) putc(’\n’, codefile);
    i++;
  }
  putc(’\n’, codefile);
*/
  i = 0;
  while (i < codelen)
  { op = STKMC_opcodes(mem[i] % (int(STKMC_nul) + 1)); // force in range
    fprintf(codefile, "%10d %s", i, mnemonics[op]);
    switch (op)
    { case STKMC_cal:
      case STKMC_ret:
      case STKMC_adr:
        i = (i + 1) % STKMC_memsize; fprintf(codefile, "%3d", mem[i]);
        i = (i + 1) % STKMC_memsize; fprintf(codefile, "%6d", mem[i]);
        break;

      case STKMC_frk:
      case STKMC_cbg:
      case STKMC_lit:
      case STKMC_dsp:
      case STKMC_brn:
      case STKMC_bze:
        i = (i + 1) % STKMC_memsize; fprintf(codefile, "%9d", mem[i]);
        break;

      case STKMC_prs:
        i = (i + 1) % STKMC_memsize;
        j = mem[i]; fprintf(codefile, "   ’");
        while (mem[j] != 0) { putc(mem[j], codefile); j--; }
        putc(’\’’, codefile);
        break;
    }
    i = (i + 1) % STKMC_memsize;
    putc(’\n’, codefile);
  }
  fclose(codefile);
}

void STKMC::swapregisters(void)
// Save current machine registers; restore from next process
{ process[current].bp = cpu.bp;   cpu.bp = process[nexttorun].bp;
  process[current].mp = cpu.mp;   cpu.mp = process[nexttorun].mp;
  process[current].sp = cpu.sp;   cpu.sp = process[nexttorun].sp;
  process[current].pc = cpu.pc;   cpu.pc = process[nexttorun].pc;
}

void STKMC::chooseprocess(void)
// From current process, traverse ring of descriptors to next ready process
{ if (slice != 0) { slice--; return; }
  do { nexttorun = process[nexttorun].next; } while (!process[nexttorun].ready);
  if (nexttorun != current) swapregisters();
  slice = random(maxslice) + 3;
}

bool STKMC::inbounds(int p)
// Check that memory pointer P does not go out of bounds.  This should not
// happen with correct code, but it is just as well to check
{ if (p < process[current].stackmin || p >= STKMC_memsize) ps = badmem;
  return (ps == running);
}

void STKMC::stackdump(STKMC_address initsp, FILE *results, STKMC_address pcnow)
// Dump data area - useful for debugging
{ int online = 0;
  fprintf(results, "\nStack dump at %4d CPU:%4d", pcnow, current);
  fprintf(results, " SP:%4d BP:%4d", cpu.sp, cpu.bp);
  fprintf(results, " SM:%4d", process[current].stackmin);
  if (cpu.bp < initsp) fprintf(results, " Return Address:%4d", mem[cpu.bp - 4]);
  putc(’\n’, results);
  for (int l = process[current].stackmax - 1; l >= cpu.sp; l--)
  { fprintf(results, "%7d:%5d", l, mem[l]);
    online++; if (online % 6 == 0) putc(’\n’, results);



  }
  fprintf(results, "\nDisplay");
  for (l = 0; l < STKMC_levmax; l++)
    fprintf(results, "%4d", process[current].display[l]);
  putc(’\n’, results);
}

void STKMC::trace(FILE *results, STKMC_address pcnow)
// Simple trace facility for run time debugging
{ fprintf(results, "CPU:%4d PC:%4d BP:%4d", current, pcnow, cpu.bp);
  fprintf(results, " SP:%4d TOS:", cpu.sp);
  if (cpu.sp < STKMC_memsize)
    fprintf(results, "%4d", mem[cpu.sp]);
  else
    fprintf(results, "????");
  fprintf(results, " %s", mnemonics[cpu.ir]);
  switch (cpu.ir)
  { case STKMC_cal:
    case STKMC_ret:
    case STKMC_adr:
      fprintf(results, "%3d%6d", mem[cpu.pc], mem[cpu.pc + 1]);
      break;
    case STKMC_frk:
    case STKMC_cbg:
    case STKMC_lit:
    case STKMC_dsp:
    case STKMC_brn:
    case STKMC_bze:
    case STKMC_prs:
      fprintf(results, "%9d", mem[cpu.pc]); break;
    // no default needed
  }
  putc(’\n’, results);
}

void STKMC::postmortem(FILE *results, int pcnow)
// Report run time error and position
{ putc(’\n’, results);
  switch (ps)
  { case badop:    fprintf(results, "Illegal opcode"); break;
    case nodata:   fprintf(results, "No more data"); break;
    case baddata:  fprintf(results, "Invalid data"); break;
    case divzero:  fprintf(results, "Division by zero"); break;
    case badmem:   fprintf(results, "Memory violation"); break;
    case badind:   fprintf(results, "Subscript out of range"); break;
    case badfun:   fprintf(results, "Function did not return value"); break;
    case badsem:   fprintf(results, "Bad Semaphore operation"); break;
    case deadlock: fprintf(results, "Deadlock"); break;
  }
  fprintf(results, " at %4d in process %d\n", pcnow, current);
}

void STKMC::signal(STKMC_address semaddress)
{ if (mem[semaddress] >= 0)                 // do we need to waken a process?
  { mem[semaddress]++; return; }            // no - simply increment semaphore
  STKMC_procindex woken = -mem[semaddress]; // negate to find index
  mem[semaddress] = -process[woken].queue;  // bump queue pointer
  process[woken].queue = 0;                 // remove from queue
  process[woken].ready = true;              // and allow to be reactivated
}

void STKMC::wait(STKMC_address semaddress)
{ STKMC_procindex last, now;
  if (mem[semaddress] > 0)                  // do we need to suspend?
  { mem[semaddress]--; return; }            // no - simply decrement semaphore
  slice = 0; chooseprocess();               // choose the next process
  process[current].ready = false;           // and suspend this one
  if (current == nexttorun) { ps = deadlock; return; }
  now = -mem[semaddress];                   // look for end of semaphore queue
  while (now != 0) { last = now; now = process[now].queue; }
  if (mem[semaddress] == 0)
    mem[semaddress] = -current;             // first in queue
  else
    process[last].queue = current;          // place at end of existing queue
  process[current].queue = 0;               // and mark as the new end of queue
}

void STKMC::emulator(STKMC_address initpc, STKMC_address codelen,
                     STKMC_address initsp, FILE *data, FILE *results,
                     bool tracing)
{ STKMC_address pcnow;       // Current program counter
  STKMC_address parentsp;    // Original stack pointer of parent
  STKMC_procindex nprocs;    // Number of concurrent processes



  int partition;             // Memory allocated to each process
  int loop;
  srand(time(NULL));         // Initialize random number generator
  process[0].stackmax = initsp;
  process[0].stackmin = codelen;
  process[0].queue = 0;
  process[0].ready = true;
  cpu.sp = initsp;
  cpu.bp = initsp;   // initialize registers
  cpu.pc = initpc;   // initialize program counter
  for (int l = 0; l < STKMC_levmax; l++) process[0].display[l] = initsp;
  nexttorun = 0;
  nprocs = 0;
  slice = 0;
  ps = running;
  do
  { pcnow = cpu.pc; current = nexttorun;
    if (unsigned(mem[cpu.pc]) > int(STKMC_nul)) ps = badop;
    else
    { cpu.ir = STKMC_opcodes(mem[cpu.pc]); cpu.pc++;  // fetch
      if (tracing) trace(results, pcnow);
      switch (cpu.ir)                            // execute
      { case STKMC_cal:
          mem[cpu.mp - 2] = process[current].display[mem[cpu.pc]];
                                                 // save display element
          mem[cpu.mp - 3] = cpu.bp;              // save dynamic link
          mem[cpu.mp - 4] = cpu.pc + 2;          // save return address
          process[current].display[mem[cpu.pc]] = cpu.mp;
                                                 // update display
          cpu.bp = cpu.mp;                       // reset base pointer
          cpu.pc = mem[cpu.pc + 1];              // enter procedure
          break;
        case STKMC_ret:
          process[current].display[mem[cpu.pc] - 1] = mem[cpu.bp - 2];
                                                 // restore display
          cpu.sp = cpu.bp - mem[cpu.pc + 1];     // discard stack frame
          cpu.mp = mem[cpu.bp - 5];              // restore mark pointer
          cpu.pc = mem[cpu.bp - 4];              // get return address
          cpu.bp = mem[cpu.bp - 3];              // reset base pointer
          if (cpu.pc == processreturn)           // kill a concurrent process
          { nprocs--; slice = 0;                 // force choice of new process
            if (nprocs == 0)                     // reactivate main program
            { nexttorun = 0; swapregisters(); }
            else                                 // complete this process only
            { chooseprocess();                   // may fail
              process[current].ready = false;
              if (current == nexttorun) ps = deadlock;
            }
          }
          break;
        case STKMC_adr:
          cpu.sp--;
          if (inbounds(cpu.sp))
          { mem[cpu.sp] = process[current].display[mem[cpu.pc] - 1]
                          + mem[cpu.pc + 1];
            cpu.pc += 2;
          }
          break;
        case STKMC_frk:
          nprocs++;
          // first initialize the shadow CPU registers and Display
          process[nprocs].bp = cpu.mp;                    // base pointer
          process[nprocs].mp = cpu.mp;                    // mark pointer
          process[nprocs].sp = cpu.sp;                    // stack pointer
          process[nprocs].pc = mem[cpu.pc];               // process entry point
          process[nprocs].display[0] =
            process[0].display[0];                        // for global access
          process[nprocs].display[1] = cpu.mp;            // for local access
          // now initialize activation record
          mem[process[nprocs].bp - 2] =
            process[0].display[1];                        // display copy
          mem[process[nprocs].bp - 3] = cpu.bp;           // dynamic link
          mem[process[nprocs].bp - 4] = processreturn;    // return address
          // descriptor house keeping
          process[nprocs].stackmax = cpu.mp;              // memory limits
          process[nprocs].stackmin = cpu.mp - partition;
          process[nprocs].ready = true;                   // ready to run
          process[nprocs].queue = 0;                      // clear semaphore queue
          process[nprocs].next = nprocs + 1;              // link to next descriptor
          cpu.sp = cpu.mp - partition;                    // bump parent SP below
          cpu.pc++;                                       // reserved memory
          break;
        case STKMC_cbg:



          if (mem[cpu.pc] > 0)
          { partition = (cpu.sp - codelen) / mem[cpu.pc]; // divide rest of memory
            parentsp = cpu.sp;                            // for restoration by cnd
          }
          cpu.pc++;
          break;
        case STKMC_lit:
          cpu.sp--;
          if (inbounds(cpu.sp)) { mem[cpu.sp] = mem[cpu.pc]; cpu.pc++; }
          break;
        case STKMC_dsp:
          cpu.sp -= mem[cpu.pc];
          if (inbounds(cpu.sp)) cpu.pc++;
          break;
        case STKMC_brn:
          cpu.pc = mem[cpu.pc]; break;
        case STKMC_bze:
          cpu.sp++;
          if (inbounds(cpu.sp))
          { if (mem[cpu.sp - 1] == 0) cpu.pc = mem[cpu.pc]; else cpu.pc++; }
          break;
        case STKMC_prs:
          if (tracing) fputs(BLANKS, results);
          loop = mem[cpu.pc];
          cpu.pc++;
          while (inbounds(loop) && mem[loop] != 0)
            { putc(mem[loop], results); loop--; }
          if (tracing) putc(’\n’, results);
          break;
        case STKMC_wgt:
          if (current == 0) ps = badsem;
          else { cpu.sp++; wait(mem[cpu.sp - 1]); }
          break;
        case STKMC_sig:
          if (current == 0) ps = badsem;
          else { cpu.sp++; signal(mem[cpu.sp - 1]); }
          break;
        case STKMC_cnd:
          if (nprocs > 0)
          { process[nprocs].next = 1;            // close ring
            nexttorun = random(nprocs) + 1;      // choose first process at random
            cpu.sp = parentsp;                   // restore parent stack pointer
          }
          break;
        case STKMC_nfn:
          ps = badfun; break;
        case STKMC_mst:
          if (inbounds(cpu.sp-STKMC_headersize)) // check space available
          { mem[cpu.sp-5] = cpu.mp;              // save mark pointer
            cpu.mp = cpu.sp;                     // set mark stack pointer
            cpu.sp -= STKMC_headersize;          // bump stack pointer
          }
          break;
        case STKMC_add:
          cpu.sp++;
          if (inbounds(cpu.sp)) mem[cpu.sp] += mem[cpu.sp - 1];
          break;
        case STKMC_sub:
          cpu.sp++;
          if (inbounds(cpu.sp)) mem[cpu.sp] -= mem[cpu.sp - 1];
          break;
        case STKMC_mul:
          cpu.sp++;
          if (inbounds(cpu.sp)) mem[cpu.sp] *= mem[cpu.sp - 1];
          break;
        case STKMC_dvd:
          cpu.sp++;
          if (inbounds(cpu.sp))
          { if (mem[cpu.sp - 1] == 0)
              ps = divzero;
            else
              mem[cpu.sp] /= mem[cpu.sp - 1];
          }
          break;
        case STKMC_eql:
          cpu.sp++;
          if (inbounds(cpu.sp)) mem[cpu.sp] = (mem[cpu.sp] == mem[cpu.sp - 1]);
          break;
        case STKMC_neq:
          cpu.sp++;
          if (inbounds(cpu.sp)) mem[cpu.sp] = (mem[cpu.sp] != mem[cpu.sp - 1]);
          break;
        case STKMC_lss:



          cpu.sp++;
          if (inbounds(cpu.sp)) mem[cpu.sp] = (mem[cpu.sp] < mem[cpu.sp - 1]);
          break;
        case STKMC_geq:
          cpu.sp++;
          if (inbounds(cpu.sp)) mem[cpu.sp] = (mem[cpu.sp] >= mem[cpu.sp - 1]);
          break;
        case STKMC_gtr:
          cpu.sp++;
          if (inbounds(cpu.sp)) mem[cpu.sp] = (mem[cpu.sp] > mem[cpu.sp - 1]);
          break;
        case STKMC_leq:
          cpu.sp++;
          if (inbounds(cpu.sp)) mem[cpu.sp] = (mem[cpu.sp] <= mem[cpu.sp - 1]);
          break;
        case STKMC_neg:
          if (inbounds(cpu.sp)) mem[cpu.sp] = -mem[cpu.sp];
          break;
        case STKMC_val:
          if (inbounds(cpu.sp) && inbounds(mem[cpu.sp]))
            mem[cpu.sp] = mem[mem[cpu.sp]];
          break;
        case STKMC_sto:
          cpu.sp++;
          if (inbounds(cpu.sp) && inbounds(mem[cpu.sp]))
            mem[mem[cpu.sp]] = mem[cpu.sp - 1];
          cpu.sp++;
          break;
        case STKMC_ind:
          if ((mem[cpu.sp + 1] < 0) || (mem[cpu.sp + 1] >= mem[cpu.sp]))
            ps = badind;
          else
          { cpu.sp += 2;
            if (inbounds(cpu.sp)) mem[cpu.sp] -= mem[cpu.sp - 1];
          }
          break;
        case STKMC_stk:
          stackdump(initsp, results, pcnow); break;
        case STKMC_hlt:
          ps = finished; break;
        case STKMC_inn:
          if (inbounds(cpu.sp) && inbounds(mem[cpu.sp]))
          { if (fscanf(data, "%d", &mem[mem[cpu.sp]]) == 0)
              ps = baddata;
            else
              cpu.sp++;
          }
          break;
        case STKMC_prn:
          if (tracing) fputs(BLANKS, results);
          cpu.sp++;
          if (inbounds(cpu.sp)) fprintf(results, " %d", mem[cpu.sp - 1]);
          if (tracing) putc(’\n’, results);
          break;
        case STKMC_nln:
          putc(’\n’, results); break;
        case STKMC_nop:
          break;
        default:
          ps = badop; break;
      }
    }
    if (nexttorun != 0) chooseprocess();
  } while (ps == running);
  if (ps != finished) postmortem(results, pcnow);
}

void STKMC::interpret(STKMC_address codelen, STKMC_address initsp)
{ char filename[256];
  FILE *data, *results;
  bool tracing;
  char reply, dummy;
  printf("\nTrace execution (y/N/q)? ");
  reply = getc(stdin); dummy = reply;
  while (dummy != ’\n’) dummy = getc(stdin);
  if (toupper(reply) != ’Q’)
  { tracing = toupper(reply) == ’Y’;
    printf("\nData file [STDIN] ? "); gets(filename);
    if (filename[0] == ’\0’) data = NULL;
    else data = fopen(filename, "r");
    if (data == NULL)
      { printf("taking data from stdin\n"); data = stdin; }
    printf("\nResults file [STDOUT] ? "); gets(filename);



    if (filename[0] == ’\0’) results = NULL;
    else results = fopen(filename, "w");
    if (results == NULL)
      { printf("sending results to stdout\n"); results = stdout; }
    emulator(0, codelen, initsp, data, results, tracing);
    if (results != stdout) fclose(results);
    if (data != stdin) fclose(data);
  }
}

STKMC::STKMC()
{ for (int i = 0; i <= STKMC_memsize - 1; i++) mem[i] = 0;
  // Initialize mnemonic table this way for ease of modification in exercises
  mnemonics[STKMC_add] = "ADD";  mnemonics[STKMC_adr] = "ADR";
  mnemonics[STKMC_brn] = "BRN";  mnemonics[STKMC_bze] = "BZE";
  mnemonics[STKMC_cal] = "CAL";  mnemonics[STKMC_cbg] = "CBG";
  mnemonics[STKMC_cnd] = "CND";  mnemonics[STKMC_dsp] = "DSP";
  mnemonics[STKMC_dvd] = "DVD";  mnemonics[STKMC_eql] = "EQL";
  mnemonics[STKMC_frk] = "FRK";  mnemonics[STKMC_geq] = "GEQ";
  mnemonics[STKMC_gtr] = "GTR";  mnemonics[STKMC_hlt] = "HLT";
  mnemonics[STKMC_ind] = "IND";  mnemonics[STKMC_inn] = "INN";
  mnemonics[STKMC_leq] = "LEQ";  mnemonics[STKMC_lit] = "LIT";
  mnemonics[STKMC_lss] = "LSS";  mnemonics[STKMC_mst] = "MST";
  mnemonics[STKMC_mul] = "MUL";  mnemonics[STKMC_neg] = "NEG";
  mnemonics[STKMC_neq] = "NEQ";  mnemonics[STKMC_nfn] = "NFN";
  mnemonics[STKMC_nln] = "NLN";  mnemonics[STKMC_nop] = "NOP";
  mnemonics[STKMC_nul] = "NUL";  mnemonics[STKMC_prn] = "PRN";
  mnemonics[STKMC_prs] = "PRS";  mnemonics[STKMC_ret] = "RET";
  mnemonics[STKMC_sig] = "SIG";  mnemonics[STKMC_stk] = "STK";
  mnemonics[STKMC_sto] = "STO";  mnemonics[STKMC_sub] = "SUB";
  mnemonics[STKMC_val] = "VAL";  mnemonics[STKMC_wgt] = "WGT";
}



Compilers and Compiler Generators © P.D. Terry, 2000

Appendix C 

Cocol grammar for the Clang compiler/interpreter 

This appendix gives the Cocol specification and frame file for constructing a compiler for the Clang
language as developed by the end of Chapter 18, along with the source for the tree-building code
generator. 

clang.atg | cgen.h | cgen.cpp | clang.frm 

----- clang.atg ---------------------------------------------------

$CX
COMPILER Clang
/* CLANG level 4 grammar - function, procedures, parameters, concurrency
   Display model.
   Builds an AST for code generation.
   P.D. Terry, Rhodes University, 1996 */

#include "misc.h"
#include "set.h"
#include "table.h"
#include "report.h"
#include "cgen.h"

typedef Set<7> classset;

bool debug;
int blocklevel;
TABLE_idclasses blockclass;

extern TABLE *Table;
extern CGEN *CGen;

/*--------------------------------------------------------------------------*/

IGNORE CASE
IGNORE CHR(9) .. CHR(13)
COMMENTS FROM "(*" TO "*)"

CHARACTERS
  cr         = CHR(13) .
  lf         = CHR(10) .
  letter     = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" .
  digit      = "0123456789" .
  instring   = ANY - "’" - cr - lf .

TOKENS
  identifier = letter { letter | digit } .
  number     = digit { digit } .
  string     = "’" (instring | "’’") { instring | "’’" } "’" .

PRODUCTIONS
  Clang
  =                           (. TABLE_entries entry; TABLE_index index; .)
     "PROGRAM"
     Ident<entry.name>        (. debug = (strcmp(entry.name, "DEBUG") == 0);
                                 entry.idclass = TABLE_progs;
                                 Table->enter(entry, index);
                                 Table->openscope(); .)
     WEAK ";"
     Block<entry.level+1, TABLE_progs, 0>
     "." .

  Block<int blklevel, TABLE_idclasses blkclass, int initialframesize>
  =                           (. int framesize = initialframesize;
                                 CGEN_labels entrypoint;
                                 CGen->jump(entrypoint, CGen->undefined);
                                 if (blklevel > CGEN_levmax) SemError(213); .)
     SYNC
     { (   ConstDeclarations
         | VarDeclarations<framesize>



         | ProcDeclaration
       ) SYNC }               (. /* blockclass, blocklevel global for efficiency */
                                 blockclass = blkclass; blocklevel = blklevel;
                                 CGen->backpatch(entrypoint);
                                 /* reserve space for variables */
                                 CGen->openstackframe(framesize
                                                      - initialframesize); .)
     CompoundStatement        (. switch (blockclass)
                                 { case TABLE_progs :
                                     CGen->leaveprogram(); break;
                                   case TABLE_procs :
                                     CGen->leaveprocedure(blocklevel); break;
                                   case TABLE_funcs :
                                     CGen->functioncheck(); break;
                                 }
                                 if (debug) /* demonstration purposes */
                                   Table->printtable(stdout);
                                 Table->closescope(); .) .

  ConstDeclarations
  =  "CONST" OneConst { OneConst } .

  OneConst
  =                           (. TABLE_entries entry; TABLE_index index; .)
     Ident<entry.name>        (. entry.idclass = TABLE_consts; .)
     WEAK "="
     Number<entry.c.value>    (. Table->enter(entry, index) .)
     ";" .

  VarDeclarations<int &framesize>
  =  "VAR" OneVar<framesize> { WEAK "," OneVar<framesize> } ";" .

  OneVar<int &framesize>
  =                           (. TABLE_entries entry; TABLE_index index;
                                 entry.idclass = TABLE_vars; entry.v.ref = false;
                                 entry.v.size = 1; entry.v.scalar = true;
                                 entry.v.offset = framesize + 1; .)
     Ident<entry.name>
     [ UpperBound<entry.v.size> (. entry.v.scalar = false; .)
     ]                        (. Table->enter(entry, index);
                                 framesize += entry.v.size; .) .

  UpperBound<int &size>
  =  "[" Number<size> "]"     (. size++; .) .

  ProcDeclaration
  =                           (. TABLE_entries entry; TABLE_index index; .)
     (   "PROCEDURE"          (. entry.idclass = TABLE_procs; .)
       | "FUNCTION"           (. entry.idclass = TABLE_funcs; .)
     ) Ident<entry.name>      (. entry.p.params = 0; entry.p.paramsize = 0;
                                 entry.p.firstparam = NULL;
                                 CGen->storelabel(entry.p.entrypoint);
                                 Table->enter(entry, index);
                                 Table->openscope() .)
     [
     FormalParameters<entry>  (. Table->update(entry, index) .)
     ] WEAK ";"
     Block<entry.level+1, entry.idclass, entry.p.paramsize + CGEN_headersize>
     ";" .

  FormalParameters<TABLE_entries &proc>
  =                           (. TABLE_index p; .)
     "(" OneFormal<proc, proc.p.firstparam>
     { WEAK "," OneFormal<proc, p> } ")" .

  OneFormal<TABLE_entries &proc, TABLE_index &index>
  =                           (. TABLE_entries formal;
                                 formal.idclass = TABLE_vars; formal.v.ref = false;
                                 formal.v.size = 1; formal.v.scalar = true;
                                 formal.v.offset = proc.p.paramsize
                                                   + CGEN_headersize + 1 .)
     Ident<formal.name>
     [ "[" "]"                (. formal.v.size = 2; formal.v.scalar = false;
                                 formal.v.ref = true; .)
     ]                        (. Table->enter(formal, index);
                                 proc.p.paramsize += formal.v.size;
                                 proc.p.params++; .) .

  CompoundStatement
  =  "BEGIN" Statement { WEAK ";" Statement } "END" .

  Statement
  =  SYNC [  CompoundStatement | AssignmentOrCall | ReturnStatement



            | IfStatement      | WhileStatement
            | CobeginStatement | SemaphoreStatement
            | ReadStatement    | WriteStatement
            | "STACKDUMP"       (. CGen->dump(); .)
          ] .

  AssignmentOrCall
  =                           (. TABLE_entries entry;
                                 AST des, exp;.)
     Designator<des, classset(TABLE_vars, TABLE_procs), entry, true>
     (   /* assignment */     (. if (entry.idclass != TABLE_vars) SemError(210); .)
        ":=" Expression<exp, true>
        SYNC                  (. CGen->assign(des, exp); .)
       | /* procedure call */ (. if (entry.idclass < TABLE_procs)
                                 { SemError(210); return; }
                                 CGen->markstack(des, entry.level,
                                                 entry.p.entrypoint); .)
        ActualParameters<des, entry>
                              (. CGen->call(des); .)
     ) .

  Designator<AST &D, classset allowed, TABLE_entries &entry, bool entire>
  =                           (. TABLE_alfa name;
                                 AST index, size;
                                 bool found;
                                 D = CGen->emptyast(); .)
     Ident<name>              (. Table->search(name, entry, found);
                                 if (!found) SemError(202);
                                 if (!allowed.memb(entry.idclass)) SemError(206);
                                 if (entry.idclass != TABLE_vars) return;
                                 CGen->stackaddress(D, entry.level, entry.v.offset,
                                                    entry.v.ref); .)
     (   "["                  (. if (entry.v.scalar) SemError(204); .)
         Expression<index, true>
                              (. if (!entry.v.scalar)
                                 /* determine size for bounds check */
                                 { if (entry.v.ref)
                                     CGen->stackaddress(size, entry.level,
                                                        entry.v.offset + 1, false);
                                   else
                                     CGen->stackconstant(size, entry.v.size);
                                   CGen->subscript(D, entry.v.ref, entry.level,
                                                   entry.v.offset, size, index);
                                 } .)
         "]"
       |                      (. if (!entry.v.scalar)
                                 { if (entire) SemError(205);
                                   if (entry.v.ref)
                                     CGen->stackaddress(size, entry.level,
                                                        entry.v.offset + 1, false);
                                   else
                                     CGen->stackconstant(size, entry.v.size);
                                   CGen->stackreference(D, entry.v.ref, entry.level,
                                                        entry.v.offset, size);
                                 } .)
     ) .

  ActualParameters<AST &p, TABLE_entries proc>
  =                           (. int actual = 0; .)
     [  "("                   (. actual++; .)
        OneActual<p, (*Table).isrefparam(proc, actual)>
        { WEAK ","            (. actual++; .)
        OneActual<p, (*Table).isrefparam(proc, actual)> } ")"
     ]                        (. if (actual != proc.p.params) SemError(209); .) .

  OneActual<AST &p, bool byref>
  =                           (. AST par; .)
     Expression<par, !byref>  (. if (byref && !CGen->isrefast(par)) SemError(214);
                                 CGen->linkparameter(p, par); .) .

  ReturnStatement
  =                           (. AST dest, exp; .)
     "RETURN"
     (                        (. if (blockclass != TABLE_funcs) SemError(219);
                                 CGen->stackaddress(dest, blocklevel, 1, false); .)
         Expression<exp, true>
                              (. CGen->assign(dest, exp);
                                 CGen->leavefunction(blocklevel); .)
       | /* empty */          (. switch (blockclass)
                                 { case TABLE_procs :
                                     CGen->leaveprocedure(blocklevel); break;
                                   case TABLE_progs :
                                     CGen->leaveprogram(); break;



                                   case TABLE_funcs : SemError(220); break;
                                 } .)
     ) .

  IfStatement
  =                           (. CGEN_labels testlabel;
                                 AST C; .)
     "IF" Condition<C> "THEN" (. CGen->jumponfalse(C, testlabel, CGen->undefined) .)
     Statement                (. CGen->backpatch(testlabel); .) .

  WhileStatement
  =                           (. CGEN_labels startloop, testlabel, dummylabel;
                                 AST  C; .)
     "WHILE"                  (. CGen->storelabel(startloop) .)
     Condition<C> "DO"        (. CGen->jumponfalse(C, testlabel, CGen->undefined) .)
     Statement                (. CGen->jump(dummylabel, startloop);
                                 CGen->backpatch(testlabel) .) .

  Condition<AST &C>
  =                           (. AST E;
                                 CGEN_operators op; .)
     Expression<C, true>
     (  RelOp<op>
        Expression<E, true>   (. CGen->comparison(op, C, E); .)
      | /* Missing op */      (. SynError(91) .)
     ) .

  CobeginStatement
  =                           (. int processes = 0;
                                 CGEN_labels start; .)
     "COBEGIN"                (. if (blockclass != TABLE_progs) SemError(215);
                                 CGen->cobegin(start); .)
     ProcessCall              (. processes++; .)
     { WEAK ";" ProcessCall   (. processes++; .)
     }
     "COEND"                  (. CGen->coend(start, processes); .) .

  ProcessCall
  =                           (. TABLE_entries entry;
                                 AST P; .)
     Designator<P, classset(TABLE_procs), entry, true>
                              (. if (entry.idclass < TABLE_procs) return;
                                 CGen->markstack(P, entry.level,
                                                 entry.p.entrypoint); .)
     ActualParameters<P, entry>
                              (. CGen->forkprocess(P); .) .

  SemaphoreStatement
  =                           (. bool wait;
                                 AST sem; .)
     (   "WAIT"               (. wait = true; .)
       | "SIGNAL"             (. wait = false; .)
     )
     "(" Variable<sem>        (. if (wait) CGen->waitop(sem);
                                 else CGen->signalop(sem); .)
     ")" .

  ReadStatement
  =                           (. AST V; .)
     "READ" "(" Variable<V>   (. CGen->readvalue(V); .)
     { WEAK "," Variable<V>   (. CGen->readvalue(V); .)
     } ")" .

  Variable<AST &V>
  =                           (. TABLE_entries entry; .)
     Designator<V, classset(TABLE_vars), entry, true> .

  WriteStatement
  =  "WRITE" [ "(" WriteElement { WEAK "," WriteElement }  ")" ]
                              (. CGen->newline(); .) .

  WriteElement
  =                           (. AST exp;
                                 char str[600];
                                 CGEN_labels startstring; .)
      String<str>             (. CGen->stackstring(str, startstring);
                                 CGen->writestring(startstring); .)
    | Expression<exp, true>   (. CGen->writevalue(exp) .) .

  Expression<AST &E, bool entire>
  =                           (. AST T;
                                 CGEN_operators op;
                                 E = CGen->emptyast(); .)



     (   "+" Term<E, true>
       | "-" Term<E, true>    (. CGen->negateinteger(E); .)
       | Term<E, entire>
     )
     { AddOp<op> Term<T, true>(. CGen->binaryintegerop(op, E, T); .)
     } .

  Term<AST &T, bool entire>
  =                           (. AST F;
                                 CGEN_operators op; .)
     Factor<T, entire>
     { (  MulOp<op>
        | /* missing op */    (. SynError(92); op = CGEN_opmul; .)
       ) Factor<F, true>      (. CGen->binaryintegerop(op, T, F); .)
     } .

  Factor<AST &F, bool entire>
  =                           (. TABLE_entries entry;
                                 int value;
                                 F = CGen->emptyast(); .)
     Designator<F, classset(TABLE_consts, TABLE_vars, TABLE_funcs), entry, entire>
                              (. switch (entry.idclass)
                                 { case TABLE_consts :
                                     CGen->stackconstant(F, entry.c.value);
                                     return;
                                   case TABLE_procs :
                                   case TABLE_funcs :
                                     CGen->markstack(F, entry.level,
                                                     entry.p.entrypoint); break;
                                   case TABLE_vars :
                                   case TABLE_progs :
                                     return;
                                 } .)
     ActualParameters<F, entry>
   | Number<value>            (. CGen->stackconstant(F, value) .)
   | "(" Expression<F, true> ")" .

  AddOp<CGEN_operators &op>
  =    "+"                    (. op = CGEN_opadd; .)
     | "-"                    (. op = CGEN_opsub; .) .

  MulOp<CGEN_operators &op>
  =    "*"                    (. op = CGEN_opmul; .)
     | "/"                    (. op = CGEN_opdvd; .) .

  RelOp<CGEN_operators &op>
  =    "="                    (. op = CGEN_opeql; .)
     | "<>"                   (. op = CGEN_opneq; .)
     | "<"                    (. op = CGEN_oplss; .)
     | "<="                   (. op = CGEN_opleq; .)
     | ">"                    (. op = CGEN_opgtr; .)
     | ">="                   (. op = CGEN_opgeq; .) .

  Ident<char *name>
  =  identifier               (. LexName(name, TABLE_alfalength); .) .

  String<char *str>
  =  string                   (. char local[100];
                                 LexString(local, sizeof(local) - 1);
                                 int i = 0;
                                 while (local[i]) /* strip quotes */
                                 { local[i] = local[i+1]; i++; }
                                 local[i-2] = ’\0’;
                                 i = 0;
                                 while (local[i]) /* find internal quotes */
                                 { if (local[i] == ’\’’)
                                   { int j = i;
                                     while (local[j])
                                     { local[j] = local[j+1]; j++; }
                                   }
                                   i++;
                                 }
                                 strcpy(str, local); .) .

  Number <int &num>
  =  number                   (. char str[100];
                                 int i = 0, l, digit, overflow = 0;
                                 num = 0;
                                 LexString(str, sizeof(str) - 1);
                                 l = strlen(str);
                                 while (i <= l && isdigit(str[i])) {
                                   digit = str[i] - ’0’; i++;
                                   if (num <= (maxint - digit) / 10)



                                     num = 10 * num + digit;
                                   else overflow = 1;
                                 }
                                 if (overflow) SemError(200); .) .

END Clang.

----- cgen.h ------------------------------------------------------

// Code Generation for Clang level 4 compiler/interpreter
// AST version for stack machine (OOP)
// Includes procedures, functions, parameters, arrays, concurrency.
// Display machine.
// P.D. Terry, Rhodes University, 1996

#ifndef CGEN_H
#define CGEN_H

#include "misc.h"
#include "stkmc.h"
#include "report.h"

#define CGEN_headersize  STKMC_headersize
#define CGEN_levmax      STKMC_levmax

enum CGEN_operators {
  CGEN_opadd, CGEN_opsub, CGEN_opmul, CGEN_opdvd, CGEN_opeql, CGEN_opneq,
  CGEN_oplss, CGEN_opgeq, CGEN_opgtr, CGEN_opleq
};

struct NODE;
typedef NODE *AST;
typedef short CGEN_labels;

class CGEN {
  public:
    CGEN_labels undefined;    // for forward references

    CGEN(REPORT *R);
    // Initializes code generator

    AST emptyast(void);
    // Returns an empty (undefined) AST

    bool isrefast(AST a);
    // Returns true if a corresponds to a reference AST

    void negateinteger(AST &i);
    // Generates code to negate integer i

    void binaryintegerop(CGEN_operators op, AST &l, AST &r);
    // Generates code to perform infix operation op on l, r

    void comparison(CGEN_operators op, AST &l, AST &r);
    // Generates code to perform comparison operation op on l, r

    void readvalue(AST i);
    // Generates code to read value for i

    void writevalue(AST i);
    // Generates code to output value i

    void newline(void);
    // Generates code to output line mark

    void writestring(CGEN_labels location);
    // Generates code to output string stored at known location

    void stackstring(char *str, CGEN_labels &location);
    // Stores str in literal pool in memory and return its location

    void stackconstant(AST &c, int number);
    // Creates constant AST for constant c from number

    void stackaddress(AST &v, int level, int offset, bool byref);
    // Creates address AST for variable v with known level, offset

    void dereference(AST &a);
    // Generates code to replace address a by the value stored there

    void stackreference(AST &base, bool byref,
                        int level, int offset, AST &size);



    // Creates an actual parameter node for a reference parameter corresponding
    // to an array with given base and size

    void subscript(AST &base, bool byref,
                   int level, int offset, AST &size, AST &index);
    // Prepares to apply an index to an array with given base, with checks
    // that the limit on the bounds is not exceeded

    void assign(AST dest, AST expr);
    // Generates code to store value of expr on dest

    void openstackframe(int size);
    // Generates code to reserve space for size variables

    void leaveprogram(void);
    // Generates code needed to leave a program (halt)

    void leaveprocedure(int blocklevel);
    // Generates code needed to leave a regular procedure at a given blocklevel

    void leavefunction(int blocklevel);
    // Generates code needed to leave a function at given blockLevel

    void functioncheck(void);
    // Generates code to ensure that a function has returned a value

    void storelabel(CGEN_labels &location);
    // Stores address of next instruction in location for use in backpatching

    void jump(CGEN_labels &here, CGEN_labels destination);
    // Generates unconditional branch from here to destination

    void jumponfalse(AST condition, CGEN_labels &here, CGEN_labels destination);
    // Generates branch from here to destination, dependent on condition

    void backpatch(CGEN_labels location);
    // Stores the current location counter as the address field of the branch
    // instruction currently held in an incomplete form at location

    void markstack(AST &p, int level, int entrypoint);
    // Generates code to reserve mark stack storage before calling procedure p
    // with known level and entrypoint

    void linkparameter(AST &p, AST &par);
    // Adds par to the actual parameter list for call to procedure p

    void call(AST &p);
    // Generates code to enter procedure p

    void cobegin(CGEN_labels &location);
    // Generates code to initiate concurrent processing

    void coend(CGEN_labels location, int number);
    // Generates code to terminate concurrent processing

    void forkprocess(AST &p);
    // Generates code to initiate process p

    void signalop(AST s);
    // Generates code for semaphore signalling operation on s

    void waitop(AST s);
    // Generates code for semaphore wait operation on s

    void dump(void);
    // Generates code to dump the current state of the evaluation stack

    void getsize(int &codelength, int &initsp);
    // Returns length of generated code and initial stack pointer

    int gettop(void);
    // Returns codetop

    void emit(int word);
    // Emits single word

  private:
    REPORT *Report;
    bool generatingcode;
    STKMC_address codetop, stktop;
    void binaryop(CGEN_operators op, AST &left, AST &right);
};



#endif /*CGEN_H*/

----- cgen.cpp ----------------------------------------------------

// Code Generation for Clang Level 4 compiler/interpreter
// AST version for stack machine (OOP)
// Includes procedures, functions, parameters, arrays, concurrency.
// Display machine.
// P.D. Terry, Rhodes University, 1996

#include "misc.h"
#include "cgen.h"
#include "report.h"

extern STKMC  *Machine;
extern CGEN   *CGen;
extern REPORT *Report;

// ++++++++++++++ AST node classes +++++++++++++++++++++++++++++++++++++++++

struct NODE {
  int value;       // value derived from this node
  bool defined;    // true if value is defined (for constant nodes)
  bool refnode;    // true if node corresponds to a reference
  NODE()                         { defined = false; refnode = false; }
  virtual void emit1(void)    = 0;
  virtual void emit2(void)    = 0;
  virtual void link(AST next) = 0;
};

struct BINOPNODE : public NODE {
  CGEN_operators op;
  AST left, right;
  BINOPNODE(CGEN_operators O, AST L, AST R) { op = O; left = L; right = R; }
  virtual void emit1(void);      // load value onto stack
  virtual void emit2(void)       {;}
  virtual void link(AST next)    {;}
};

void BINOPNODE::emit1(void)
// load value onto stack resulting from binary operation
{ bool folded = false;
  if (left && right)
  { // Some optimizations (others are left as an exercise).
    // These need improvement so as to perform range checking
    switch (op)
    { case CGEN_opadd:
        if (right->defined && right->value == 0) // x + 0 = x
          { left->emit1(); folded = true; }
        else if (left->defined && left->value == 0) // 0 + x = x
          { right->emit1(); folded = true; }
        break;

      case CGEN_opsub:
        if (right->defined && right->value == 0) // x - 0 = x
          { left->emit1(); folded = true; }
        else if (left->defined && left->value == 0) // 0 - x = -x
          { right->emit1(); CGen->emit(int(STKMC_neg)); folded = true; }
        break;

      case CGEN_opmul:
        if (right->defined && right->value == 1) // x * 1 = x
          { left->emit1(); folded = true; }
        else if (left->defined && left->value == 1) // 1 * x = x
          { right->emit1(); folded = true; }
        else if (right->defined && right->value == 0) // x * 0 = 0
          { right->emit1(); folded = true; }
        else if (left->defined && left->value == 0) // 0 * x = 0
          { left->emit1(); folded = true; }
        break;

      case CGEN_opdvd:
        if (right->defined && right->value == 1) // x / 1 = x
          { left->emit1(); folded = true; }
        else if (right->defined && right->value == 0) // x / 0 = error
          { Report->error(224); folded = true; }
        break;
      // no folding attempted here for relational operations
    }
  }
  if (!folded)
  { if (left) left->emit1(); if (right) right->emit1();



    CGen->emit(int(STKMC_add) + int(op));   // careful - ordering used
  }
  if (left) delete left; if (right) delete right;
}

struct MONOPNODE : public NODE {
  CGEN_operators op;  // for expansion - only negation used here
  AST operand;
  MONOPNODE(CGEN_operators O, AST E) { op = O; operand = E; }
  virtual void emit1(void);      // load value onto stack
  virtual void emit2(void)       {;}
  virtual void link(AST next)    {;}
};

void MONOPNODE::emit1(void)
// load value onto stack resulting from unary operation
{ if (operand) { operand->emit1(); delete operand; }
  CGen->emit(int(STKMC_neg));
}

struct VARNODE : public NODE {
  bool ref;       // direct or indirectly accessed
  int level;      // static level of declaration
  int offset;     // offset of variable assigned by compiler
  VARNODE() {;}   // default
  VARNODE(bool byref, int L, int O)
    { ref = byref; level = L; offset = O; }
  virtual void emit1(void);      // load variable value onto stack
  virtual void emit2(void);      // load variable address onto stack
  virtual void link(AST next)    {;}
};

void VARNODE::emit1(void)
// load variable value onto stack
{ emit2(); CGen->emit(int(STKMC_val)); }

void VARNODE::emit2(void)
// load variable address onto stack
{ CGen->emit(int(STKMC_adr)); CGen->emit(level); CGen->emit(-offset);
  if (ref) CGen->emit(int(STKMC_val));
}

struct INDEXNODE : public VARNODE {
  AST size;      // for range checking
  AST index;     // subscripting expression
  INDEXNODE(bool byref, int L, int O, AST S, AST I)
    { ref = byref; level = L; offset = O; size = S; index = I; }
  virtual void emit2(void);      // load array element address and check
  virtual void link(AST next)    {;}
};

void INDEXNODE::emit2(void)
// load array element address and check in range
{ CGen->emit(int(STKMC_adr)); CGen->emit(level); CGen->emit(-offset);
  if (ref) CGen->emit(int(STKMC_val));
  if (index) { index->emit1(); delete index; }
  if (size) { size->emit1(); delete size; }
  CGen->emit(int(STKMC_ind));
}

// void INDEXNODE::emit1(void) is inherited from VARNODE

struct REFNODE : public VARNODE {
  AST size;
  REFNODE(bool byref, int L, int O, AST S)
    { ref = byref; level = L; offset = O; size = S; refnode = 1; }
  virtual void emit1(void);       // load array argument address and size
  virtual void emit2(void)        {;}
  virtual void link(AST next)     {;}
};

void REFNODE::emit1(void)
// load array argument address and size
{ CGen->emit(int(STKMC_adr)); CGen->emit(level); CGen->emit(-offset);
  if (ref) CGen->emit(int(STKMC_val));
  if (size) { size->emit1(); delete size; }
}

struct CONSTNODE : public NODE {
  CONSTNODE(int V)               { value = V; defined = true; }
  virtual void emit1(void);      // load constant value onto stack
  virtual void emit2(void)       {;}
  virtual void link(AST next)    {;}



};

void CONSTNODE::emit1(void)
// load constant value onto stack
{ CGen->emit(int(STKMC_lit)); CGen->emit(value); }

struct PARAMNODE : public NODE {
  AST par, next;
  PARAMNODE(AST P)               { par = P; next = NULL; }
  virtual void emit1(void);      // load actual parameter onto stack
  virtual void emit2(void)       {;}
  virtual void link(AST param)   { next = param; }
};

void PARAMNODE::emit1(void)
// load actual parameter onto stack
{ if (par) { par->emit1(); delete par; }
  if (next) { next->emit1(); delete next; }  // follow link to next parameter
}

struct PROCNODE : public NODE {
  int level, entrypoint;     // static level and first instruction
  AST firstparam, lastparam; // pointers to argument list
  PROCNODE(int L, int ent)
    { level = L; entrypoint = ent; firstparam = NULL; lastparam = NULL; }
  virtual void emit1(void);      // generate procedure/function call
  virtual void emit2(void);      // generate process call
  virtual void link(AST next);   // link next actual parameter
};

void PROCNODE::emit1(void)
// generate procedure/function call
{ CGen->emit(int(STKMC_mst));
  if (firstparam) { firstparam->emit1(); delete firstparam; }
  CGen->emit(int(STKMC_cal));
  CGen->emit(level);
  CGen->emit(entrypoint);
}

void PROCNODE::emit2(void)
// generate process call
{ CGen->emit(int(STKMC_mst));
  if (firstparam) { firstparam->emit1(); delete firstparam; }
  CGen->emit(int(STKMC_frk));
  CGen->emit(entrypoint);
}

void PROCNODE::link(AST param)
// link next actual parameter
{ if (!firstparam) firstparam = param; else lastparam->link(param);
  lastparam = param;
}

// +++++++++++++++ code generator constructor +++++++++++++++++++++++++

CGEN::CGEN(REPORT *R)
{ undefined = 0;    // for forward references (exported)
  Report = R;
  generatingcode = true;
  codetop = 0;
  stktop = STKMC_memsize - 1;
}

void CGEN::emit(int word)
// Code generator for single word
{ if (!generatingcode) return;
  if (codetop >= stktop) { Report->error(212); generatingcode = false; }
  else { Machine->mem[codetop] = word; codetop++; }
}

bool CGEN::isrefast(AST a)
{ return a && a->refnode; }

// +++++++++++++++ routines that build the tree +++++++++++++++++++++++++

AST CGEN::emptyast(void)
{ return NULL; }

void CGEN::negateinteger(AST &i)
{ if (i && i->defined) { i->value = -i->value; return; }  // simple folding
  i = new MONOPNODE(CGEN_opsub, i);
}



void CGEN::binaryop(CGEN_operators op, AST &left, AST &right)
{ if (left && right && left->defined && right->defined)
  { // simple constant folding - better range checking needed
    switch (op)
    { case CGEN_opadd: left->value += right->value; break;
      case CGEN_opsub: left->value -= right->value; break;
      case CGEN_opmul: left->value *= right->value; break;
      case CGEN_opdvd:
        if (right->value == 0) Report->error(224);
        else left->value /= right->value;
        break;
      case CGEN_oplss: left->value = (left->value < right->value); break;
      case CGEN_opgtr: left->value = (left->value > right->value); break;
      case CGEN_opleq: left->value = (left->value <= right->value); break;
      case CGEN_opgeq: left->value = (left->value >= right->value); break;
      case CGEN_opeql: left->value = (left->value == right->value); break;
      case CGEN_opneq: left->value = (left->value != right->value); break;
    }
    delete right;
    return;
  }
  left = new BINOPNODE(op, left, right);
}

void CGEN::binaryintegerop(CGEN_operators op, AST &l, AST &r)
{ binaryop(op, l, r); }

void CGEN::comparison(CGEN_operators op, AST &l, AST &r)
{ binaryop(op, l, r); }

void CGEN::stackconstant(AST &c, int number)
{ c = new CONSTNODE(number); }

void CGEN::stackaddress(AST &v, int level, int offset, bool byref)
{ v = new VARNODE(byref, level, offset); }

void CGEN::linkparameter(AST &p, AST &par)
{ AST param = new PARAMNODE(par); p->link(param); }

void CGEN::stackreference(AST &base, bool byref, int level, int offset,
                          AST &size)
{ if (base) delete base; base = new REFNODE(byref, level, offset, size); }

void CGEN::subscript(AST &base, bool byref, int level, int offset,
                     AST &size, AST &index)
// Note the folding of constant indexing of arrays, and compile time
// range checking
{ if (!index || !index->defined || !size || !size->defined)
  { if (base) delete base;
    base = new INDEXNODE(byref, level, offset, size, index);
    return;
  }
  if (unsigned(index->value) >= size->value) // range check immediately
    Report->error(223);
  else
  { if (base) delete base;
    base = new VARNODE(byref, level, offset + index->value);
  }
  delete index; delete size;
}

void CGEN::markstack(AST &p, int level, int entrypoint)
{ p = new PROCNODE(level, entrypoint); }

// +++++++++++++++ code generation requiring tree walk ++++++++++++++++++

void CGEN::jumponfalse(AST condition, CGEN_labels &here,
                       CGEN_labels destination)
{ if (condition) { condition->emit1(); delete condition; }
  here = codetop; emit(int(STKMC_bze)); emit(destination);
}

void CGEN::assign(AST dest, AST expr)
{ if (dest) { dest->emit2(); delete dest; }
  if (expr) { expr->emit1(); delete expr; emit(int(STKMC_sto)); }
}

void CGEN::readvalue(AST i)
{ if (i) { i->emit2(); delete i; } emit(int(STKMC_inn)); }

void CGEN::writevalue(AST i)
{ if (i) { i->emit1(); delete i; } emit(int(STKMC_prn)); }



void CGEN::call(AST &p)
{ if (p) { p->emit1(); delete p; } }

void CGEN::signalop(AST s)
{ if (s) { s->emit2(); delete s; } emit(int(STKMC_sig)); }

void CGEN::waitop(AST s)
{ if (s) { s->emit2(); delete s; } emit(int(STKMC_wgt)); }

void CGEN::forkprocess(AST &p)
{ if (p) { p->emit2(); delete p; } }

// +++++++++++++++ code generation not requiring tree walk ++++++++++++++

void CGEN::newline(void)
{ emit(int(STKMC_nln)); }

void CGEN::writestring(CGEN_labels location)
{ emit(int(STKMC_prs)); emit(location); }

void CGEN::stackstring(char *str, CGEN_labels &location)
{ int l = strlen(str);
  if (stktop <= codetop + l + 1)
    { Report->error(212); generatingcode = false; return; }
  location = stktop - 1;
  for (int i = 0; i < l; i++) { stktop--; Machine->mem[stktop] = str[i]; }
  stktop--; Machine->mem[stktop] = 0;
}

void CGEN::dereference(AST &a)
{ /* not needed */ }

void CGEN::openstackframe(int size)
{ if (size > 0) { emit(int(STKMC_dsp)); emit(size); } }

void CGEN::leaveprogram(void)
{ emit(int(STKMC_hlt)); }

void CGEN::leavefunction(int blocklevel)
{ emit(int(STKMC_ret)); emit(blocklevel); emit(1); }

void CGEN::functioncheck(void)
{ emit(int(STKMC_nfn)); }

void CGEN::leaveprocedure(int blocklevel)
{ emit(int(STKMC_ret)); emit(blocklevel); emit(0); }

void CGEN::cobegin(CGEN_labels &location)
{ location = codetop; emit(int(STKMC_cbg)); emit(undefined); }

void CGEN::coend(CGEN_labels location, int number)
{ if (number >= STKMC_procmax) Report->error(216);
  else { Machine->mem[location+1] = number; emit(int(STKMC_cnd)); }
}

void CGEN::storelabel(CGEN_labels &location)
{ location = codetop; }

void CGEN::jump(CGEN_labels &here, CGEN_labels destination)
{ here = codetop; emit(int(STKMC_brn)); emit(destination); }

void CGEN::backpatch(CGEN_labels location)
{ if (codetop == location + 2 &&
      STKMC_opcodes(Machine->mem[location]) == STKMC_brn)
    codetop -= 2;
  else
    Machine->mem[location+1] = codetop;
}

void CGEN::dump(void)
{ emit(int(STKMC_stk)); }

void CGEN::getsize(int &codelength, int &initsp)
{ codelength = codetop; initsp = stktop; }

int CGEN::gettop(void) { return codetop; }

----- clang.frm ---------------------------------------------------

/* Clang compiler generated by Coco/R 1.06 (C++ version) */

#include  <stdio.h>



#include  <fcntl.h>
#include  <stdlib.h>
#include  <string.h>

#if __MSDOS__ || MSDOS || WIN32 || __WIN32__
#  include  <io.h>
#else
#  include <unistd.h>
#  define  O_BINARY     0
#endif

#include "misc.h"
#include "set.h"
#include "table.h"
#include "cgen.h"
#include "stkmc.h"

typedef Set<7> classset;

#include -->ScanHeader
#include -->ParserHeader
#include "cr_error.hpp"

static FILE *lst;
static char SourceName[256], ListName[256], CodeName[256];

TABLE  *Table;
CGEN   *CGen;
STKMC  *Machine;
REPORT *Report;

class clangError : public CRError {
  public:
    clangError(char *name, AbsScanner *S) : CRError(name, S, MAXERROR) {};
    virtual char *GetUserErrorMsg(int n);
    virtual char *GetErrorMsg(int n)
      { if (n <= MAXERROR) return ErrorMsg[n]; else return GetUserErrorMsg(n); }
  private:
    static char *ErrorMsg[];
};

char *clangError::ErrorMsg[] = {
#include -->ErrorHeader
"User error number clash",
""
};

char *clangError::GetUserErrorMsg(int n)
{ switch (n) {
  // first few are extra syntax errors
    case 91:  return "Relational operator expected";
    case 92:  return "Malformed expression";
    case 93:  return "Bad declaration order";
  // remainder are constraint (static semantic) errors
    case 200: return "Constant out of range";
    case 201: return "Identifier redeclared";
    case 202: return "Undeclared identifier";
    case 203: return "Unexpected parameters";
    case 204: return "Unexpected subscript";
    case 205: return "Subscript required";
    case 206: return "Invalid class of identifier";
    case 207: return "Variable expected";
    case 208: return "Too many formal parameters";
    case 209: return "Wrong number of parameters";
    case 210: return "Invalid assignment";
    case 211: return "Cannot read this type of variable";
    case 212: return "Program too long";
    case 213: return "Too deeply nested";
    case 214: return "Invalid parameter";
    case 215: return "COBEGIN only allowed in main program";
    case 216: return "Too many concurrent processes";
    case 217: return "Only global procedure calls allowed here";
    case 218: return "Type mismatch";
    case 219: return "Unexpected expression";
    case 220: return "Missing expression";
    case 221: return "Boolean expression required";
    case 222: return "Invalid expression";
    case 223: return "Index out of range";
    case 224: return "Division by zero";
    default:  return "Compiler error";
  }
}



class clangReport : public REPORT {
// interface for code generators and other auxiliaries
  public:
    clangReport(clangError *E)
      { Error = E; }
    virtual void error(int errorcode)
      { Error->ReportError(errorcode); errors = true; }
  private:
    clangError *Error;
};

void main(int argc, char *argv[])
{ int codelength, initsp;
  int S_src;
  char reply;
  lst = stderr;

  // check on correct parameter usage
  if (argc < 2) { fprintf(stderr, "No input file specified\n"); exit(1); }

  // open the source file
  strcpy(SourceName, argv[1]);
  if ((S_src = open(SourceName, O_RDONLY | O_BINARY)) == -1)
  { fprintf(stderr, "Unable to open input file %s\n", SourceName); exit(1); }

  if (argc > 2) strcpy(ListName, argv[2]);
    else appendextension(SourceName, ".lst", ListName);
  if ((lst = fopen(ListName, "w")) == NULL)
  { fprintf(stderr, "Unable to open list file %s\n", ListName); exit(1); }

  // instantiate Scanner, Parser and Error handlers

  -->ScanClass *Scanner = new -->ScanClass(S_src, -->IgnoreCase);
  clangError   *Error = new clangError(SourceName, Scanner);
  -->ParserClass  *Parser = new -->ParserClass(Scanner, Error);
  Report  = new clangReport(Error);
  CGen    = new CGEN(Report);
  Table   = new TABLE(Report);
  Machine = new STKMC();

  // parse the source
  Parser->Parse();
  close(S_src);

  // generate source listing
  Error->SetOutput(lst);
  Error->PrintListing(Scanner);
  fclose(lst);

  // list generated code for interest
  CGen->getsize(codelength, initsp);
  appendextension(SourceName, ".cod", CodeName);
  Machine->listcode(CodeName, codelength);

  if (Error->Errors)
    fprintf(stderr, "Compilation failed - see %s\n", ListName);
  else
  { fprintf(stderr, "Compilation successful\n");
    while (true)
     { printf("\nInterpret? (y/n) ");
       do
       { scanf("%c", &reply);
       } while (toupper(reply) != ’N’ && toupper(reply) != ’Y’);
       if (toupper(reply) == ’N’) break;
       scanf("%*[^\n]"); getchar();
       Machine->interpret(codelength, initsp);
     }
  }

  delete Scanner;
  delete Parser;
  delete Error;
  delete Table;
  delete Report;
  delete CGen;
  delete Machine;
}
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Appendix D 

Source code for a macro assembler 

This appendix gives the complete source code for the macro assembler for the single-accumulator
machine discussed in Chapter 7. 

assemble.cpp | misc.h | set.h | sh.s | sh.cpp | la.h | la.cpp | sa.h | sa.cpp | st.h | st.cpp | st.h | st.cpp |
mh.h | mh.cpp | asmbase.h | as.h | as.cpp | mc.h | mc.cpp 

----- assemble.cpp -------------------------------------------------------------

// Macro assembler/interpreter for the single-accumulator machine
// P.D. Terry,  Rhodes University, 1996

#include "mc.h"
#include "as.h"

#define version         "Macro Assembler 1.0"
#define usage           "Usage: ASSEMBLE source [listing]\n"

void main(int argc, char *argv[])
{ bool errors;
  char reply;
  char sourcename[256], listname[256];

  // check on correct parameter usage
  if (argc == 1) { printf(usage); exit(1); }
  strcpy(sourcename, argv[1]);
  if (argc > 2) strcpy(listname, argv[2]);
  else appendextension(sourcename, ".lst", listname);

  MC *Machine   = new(MC);
  AS *Assembler = new AS(sourcename, listname, version, Machine);
  Assembler->assemble(errors);
  if (errors)
  { printf("\nAssembly failed\n"); }
  else
  { printf("\nAssembly successful\n");
    while (true)
    { printf("\nInterpret? (y/n) ");
      do
      { scanf("%c", &reply);
      } while (toupper(reply) != ’N’ && toupper(reply) != ’Y’);
      if (toupper(reply) == ’N’) break;
      scanf("%*[^\n]"); getchar();
      Machine->interpret();
    }
  }
  delete Machine;
  delete Assembler;
}

----- misc.h ------------------------------------------------------------------

// Various common items for macro assemblers for the single-accumulator machine
// P.D. Terry, Rhodes University, 1996

#ifndef MISC_H
#define MISC_H

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include <ctype.h>
#include <limits.h>

#define  boolean  int
#define  bool     int
#define  true     1



#define  false    0
#define  TRUE     1
#define  FALSE    0
#define  maxint   INT_MAX

#if __MSDOS__ || MSDOS || WIN32 || __WIN32__
#  define  pathsep ’\\’
#else
#  define  pathsep ’/’
#endif

static void appendextension (char *oldstr, char *ext, char *newstr)
// Changes filename in oldstr from PRIMARY.xxx to PRIMARY.ext in newstr
{ int i;
  char old[256];
  strcpy(old, oldstr);
  i = strlen(old);
  while ((i > 0) && (old[i-1] != ’.’) && (old[i-1] != pathsep)) i--;
  if ((i > 0) && (old[i-1] == ’.’)) old[i-1] = 0;
  if (ext[0] == ’.’) sprintf(newstr,"%s%s", old, ext);
    else sprintf(newstr, "%s.%s", old, ext);
}

#define ASM_alength  8   // maximum length of mnemonics, labels
#define ASM_slength  35  // maximum length of comment and other strings

typedef char ASM_alfa[ASM_alength + 1];
typedef char ASM_strings[ASM_slength + 1];

#include "set.h"

enum ASM_errors {
  ASM_invalidcode, ASM_undefinedlabel, ASM_invalidaddress,
  ASM_unlabelled, ASM_hasaddress, ASM_noaddress,
  ASM_excessfields, ASM_mismatched, ASM_nonalpha,
  ASM_badlabel, ASM_invalidchar, ASM_invalidquote,
  ASM_overflow
};

typedef Set<ASM_overflow> ASM_errorset;

#endif /* MISC_H */

----- set.h -------------------------------------------------------------------

// Simple set operations

#ifndef SET_H
#define SET_H

template <int maxElem>
class Set {                         // { 0 .. maxElem }
  public:
    Set()                           // Construct { }
    { clear(); }

    Set(int e1)                     // Construct { e1 }
    { clear(); incl(e1); }

    Set(int e1, int e2)             // Construct { e1, e2 }
    { clear(); incl(e1); incl(e2); }

    Set(int e1, int e2, int e3)     // Construct { e1, e2, e3 }
    { clear(); incl(e1); incl(e2); incl(e3); }

    Set(int n, int e1[])            // Construct { e[0] .. e[n-1] }
    { clear(); for (int i = 0; i < n; i++) incl(e1[i]); }

    void incl(int e)                // Include e
    { if (e >= 0 && e <= maxElem) bits[wrd(e)] |= bitmask(e); }

    void excl(int e)                // Exclude e
    { if (e >= 0 && e <= maxElem) bits[wrd(e)] &= ~bitmask(e); }

    int memb(int e)                 // Test membership for e
    { if (e >= 0 && e <= maxElem) return((bits[wrd(e)] & bitmask(e)) != 0);
      else return 0;
    }

    int isempty(void)               // Test for empty set
    { for (int i = 0; i < length; i++) if (bits[i]) return 0;
      return 1;



    }

    Set operator + (const Set &s)   // Union with s
    { Set<maxElem> r;
      for (int i = 0; i < length; i++) r.bits[i] = bits[i] | s.bits[i];
      return r;
    }

    Set operator * (const Set &s)   // Intersection with s
    { Set<maxElem> r;
      for (int i = 0; i < length; i++) r.bits[i] = bits[i] & s.bits[i];
      return r;
    }

    Set operator - (const Set &s)   // Difference with s
    { Set<maxElem> r;
      for (int i = 0; i < length; i++) r.bits[i] = bits[i] & ~s.bits[i];
      return r;
    }

    Set operator / (const Set &s)   // Symmetric difference with s
    { Set<maxElem> r;
      for (int i = 0; i < length; i++) r.bits[i] = bits[i] ^ s.bits[i];
      return r;
    }

  private:
    unsigned char       bits[(maxElem + 8) / 8];
    int                 length;
    int wrd(int i)      { return(i / 8); }
    int bitmask(int i)  { return(1 << (i % 8)); }
    void clear()        { length = (maxElem + 8) / 8;
                          for (int i = 0; i < length; i++) bits[i] = 0;
                        }
};

#endif /* SET_H */

----- sh.s --------------------------------------------------------------------

// Source handler for assemblers for the single-accumulator machine
// P.D. Terry, Rhodes University, 1996

#ifndef SH_H
#define SH_H

#include "misc.h"

const int linemax = 129;        // limit on source line length

class SH {
  public:
    FILE *lst; // listing file
    char ch;   // latest character read

    void nextch(void);
    // Returns ch as the next character on current source line, reading a new
    // line where necessary.  ch is returned as NUL if src is exhausted

    bool endline(void)             { return (charpos == linelength); }
    // Returns true when end of current line has been reached

    bool startline(void)           { return (charpos == 1); }
    // Returns true if current ch is the first on a line

    void writehex(int i, int n)    { fprintf(lst, "%02X%*c", i, n-2, ’ ’); }
    // Writes (byte valued) i to lst file as hex pair, left-justified in n spaces

    void writetext(char *s, int n) { fprintf(lst, "%-*s", n, s); }
    // Writes s to lst file left-justified in n spaces

    SH();
    // Default constructor

    SH(char *sourcename, char *listname, char *version);
    // Initializes source handler, and displays version information on lst file.
    // Opens src and lst files using given names

    ~SH();
    // Closes src and lst files

  private:



    FILE *src;              // source file
    int charpos;            // character pointer
    int linelength;         // line length
    char line[linemax + 1]; // last line read
};

#endif /*SH_H*/

----- sh.cpp ------------------------------------------------------------------

// Source handler for assemblers for the single-accumulator machine
// P.D. Terry, Rhodes University, 1996

#include "sh.h"

void SH::nextch(void)
{ if (ch == ’\0’) return;        // input exhausted
  if (charpos == linelength)     // new line needed
  { linelength = 0; charpos = 0; ch = getc(src);
    while (ch != ’\n’ && !feof(src))
    { if (linelength < linemax) { line[linelength] = ch; linelength++; }
      ch = getc(src);
    }
    if (feof(src))
      line[linelength] = ’\0’;   // mark end with an explicit nul
    else
      line[linelength] = ’ ’;    // mark end with an explicit space
    linelength++;
  }
  ch = line[charpos]; charpos++; // pass back unique character
}

SH::SH(char *sourcename, char *listname, char *version)
{ src = fopen(sourcename, "r");
  if (src == NULL)
    { printf("Could not open input file\n"); exit(1); }
  lst = fopen(listname, "w");
  if (lst == NULL)
    { printf("Could not open listing file\n"); lst = stdout; }
  fprintf(lst, "%s\n\n", version);
  ch = ’ ’; charpos = 0; linelength = 0;
}

SH::SH()
{ src = NULL; lst = NULL; ch = ’ ’; charpos = 0; linelength = 0; }

SH::~SH()
{ if (src) fclose(src); src = NULL;
  if (lst) fclose(lst); lst = NULL;
}

----- la.h --------------------------------------------------------------------

// Lexical analyzer for macro assemblers for the single-accumulator machine
// P.D. Terry, Rhodes University, 1996

#ifndef LA_H
#define LA_H

#include "misc.h"
#include "sh.h"

enum LA_symtypes {
  LA_unknown, LA_eofsym, LA_eolsym, LA_idsym, LA_numsym, LA_comsym,
  LA_commasym, LA_plussym, LA_minussym, LA_starsym
};

struct LA_symbols {
  bool islabel;      // if in first column
  LA_symtypes sym;   // class
  ASM_strings str;   // lexeme
  int num;           // value if numeric
};

class LA {
  public:
    void getsym(LA_symbols &SYM, ASM_errorset &errors);
    // Returns the next symbol on current source line.
    // Adds to set of errors if necessary and returns SYM.sym = unknown
    // if no valid symbol can be recognized



    LA(SH *S);
    // Associates scanner with source handler S and initializes scanning

  private:
    SH *Srce;
    void getword(LA_symbols &SYM);
    void getnumber(LA_symbols &SYM, ASM_errorset &errors);
    void getcomment(LA_symbols &SYM);
    void getquotedchar(LA_symbols &SYM, char quote, ASM_errorset &errors);
};

#endif /*LA_H*/

----- la.cpp ------------------------------------------------------------------

// Lexical analyzer for assemblers for the single-accumulator machine
// P.D. Terry, Rhodes University, 1996

#include "la.h"

void LA::getword(LA_symbols &SYM)
// Assemble identifier or opcode, in UPPERCASE for consistency
{ int length = 0;
  while (isalnum(Srce->ch))
  { if (length < ASM_slength)
    { SYM.str[length] = toupper(Srce->ch); length++; }
    Srce->nextch();
  }
  SYM.str[length] = ’\0’;
}

void LA::getnumber(LA_symbols &SYM, ASM_errorset &errors)
// Assemble number and store its identifier in UPPERCASE for consistency
{ int length = 0;
  while (isdigit(Srce->ch))
  { SYM.num = SYM.num * 10 + Srce->ch - ’0’;
    if (SYM.num > 255) errors.incl(ASM_overflow);
    SYM.num %= 256;
    if (length < ASM_slength) { SYM.str[length] = toupper(Srce->ch); length++; }
    Srce->nextch();
  }
  SYM.str[length] = ’\0’;
}

void LA::getcomment(LA_symbols &SYM)
// Assemble comment
{ int length = 0;
  while (!Srce->endline())
  { if (length < ASM_slength) { SYM.str[length] = Srce->ch; length++; }
    Srce->nextch();
  }
  SYM.str[length] = ’\0’;
}

void LA::getquotedchar(LA_symbols &SYM, char quote, ASM_errorset &errors)
// Assemble single character address token
{ SYM.str[0] = quote;
  Srce->nextch(); SYM.num = Srce->ch; SYM.str[1] = Srce->ch;
  if (!Srce->endline()) Srce->nextch();
  SYM.str[2] = Srce->ch; SYM.str[3] = ’\0’;
  if (Srce->ch != quote) errors.incl(ASM_invalidquote);
  if (!Srce->endline()) Srce->nextch();
}

void LA::getsym(LA_symbols &SYM, ASM_errorset &errors)
{ SYM.num = 0; SYM.str[0] = ’\0’;   // empty string
  while (Srce->ch == ’ ’ && !Srce->endline()) Srce->nextch();
  SYM.islabel = (Srce->startline() && Srce->ch != ’ ’
                 && Srce->ch != ’;’ && Srce->ch != ’\0’);
  if (SYM.islabel && !isalpha(Srce->ch)) errors.incl(ASM_badlabel);
  if (Srce->ch == ’\0’) { SYM.sym = LA_eofsym; return; }
  if (Srce->endline()) { SYM.sym = LA_eolsym; Srce->nextch(); return; }
  if (isalpha(Srce->ch))
    { SYM.sym = LA_idsym; getword(SYM); }
  else if (isdigit(Srce->ch))
    { SYM.sym = LA_numsym; getnumber(SYM, errors); }
  else switch (Srce->ch)
    { case ’;’:
        SYM.sym = LA_comsym; getcomment(SYM); break;
      case ’,’:
        SYM.sym = LA_commasym; strcpy(SYM.str, ","); Srce->nextch(); break;
      case ’+’:



        SYM.sym = LA_plussym; strcpy(SYM.str, "+"); Srce->nextch(); break;
      case ’-’:
        SYM.sym = LA_minussym; strcpy(SYM.str, "-"); Srce->nextch(); break;
      case ’*’:
        SYM.sym = LA_starsym; strcpy(SYM.str, "*"); Srce->nextch(); break;
      case ’\’’:
      case ’"’:
        SYM.sym = LA_numsym; getquotedchar(SYM, Srce->ch, errors); break;
      default:
        SYM.sym = LA_unknown; getcomment(SYM); errors.incl(ASM_invalidchar);
        break;
    }
}

LA::LA(SH* S)
{ Srce = S; Srce->nextch(); }

----- sa.h --------------------------------------------------------------------

// Syntax analyzer for macro assemblers for the single-accumulator machine
// P.D. Terry, Rhodes University, 1996

#ifndef SA_H
#define SA_H

#include "misc.h"
#include "la.h"

const int SA_maxterms = 16;

enum SA_termkinds {
  SA_absent, SA_numeric, SA_alphameric, SA_comma, SA_plus, SA_minus, SA_star
};

struct SA_terms {
  SA_termkinds kind;
  int number;      // value if known
  ASM_alfa name;   // character representation
};

struct SA_addresses {
  char length;     // number of fields
  SA_terms term[SA_maxterms - 1];
};

struct SA_unpackedlines {
  // source text, unpacked into fields
  bool labelled;
  ASM_alfa labfield, mnemonic;
  SA_addresses address;
  ASM_strings comment;
  ASM_errorset errors;
};

class SA {
  public:
    void parse(SA_unpackedlines &srcline);
    // Analyzes the next source line into constituent fields

    SA(LA *L);
    // Associates syntax analyzer with its lexical analyzer L

  private:
    LA *Lex;
    LA_symbols SYM;
    void GetSym(ASM_errorset &errors);
    void getaddress(SA_unpackedlines &srcline);
};

#endif /*SA_H*/

----- sa.cpp ------------------------------------------------------------------

// Syntax analyzer for macro assemblers for the single-accumulator machine
// P.D. Terry, Rhodes University, 1996

#include "sa.h"
#include "set.h"

typedef Set<LA_starsym> symset;



void SA::GetSym(ASM_errorset &errors)
{ Lex->getsym(SYM, errors); }

void SA::getaddress(SA_unpackedlines &srcline)
// Unpack the addressfield of line into srcline
{ symset allowed(LA_idsym, LA_numsym, LA_starsym);
  symset possible = allowed + symset(LA_commasym, LA_plussym, LA_minussym);
  srcline.address.length = 0;
  while (possible.memb(SYM.sym))
  { if (!allowed.memb(SYM.sym))
      srcline.errors.incl(ASM_invalidaddress);
    if (srcline.address.length < SA_maxterms - 1)
      srcline.address.length++;
    else
      srcline.errors.incl(ASM_excessfields);
    sprintf(srcline.address.term[srcline.address.length - 1].name, "%.*s",
            ASM_alength, SYM.str);
    srcline.address.term[srcline.address.length - 1].number = SYM.num;
    switch (SYM.sym)
    { case LA_numsym:
        srcline.address.term[srcline.address.length - 1].kind = SA_numeric;
        break;
      case LA_idsym:
        srcline.address.term[srcline.address.length - 1].kind = SA_alphameric;
        break;
      case LA_plussym:
        srcline.address.term[srcline.address.length - 1].kind = SA_plus;
        break;
      case LA_minussym:
        srcline.address.term[srcline.address.length - 1].kind = SA_minus;
        break;
      case LA_starsym:
        srcline.address.term[srcline.address.length - 1].kind = SA_star;
        break;
      case LA_commasym:
        srcline.address.term[srcline.address.length - 1].kind = SA_comma;
        break;
    }
    allowed = possible - allowed;
    GetSym(srcline.errors); // check trailing comment, parameters
  }
  if (!(srcline.address.length & 1)) srcline.errors.incl(ASM_invalidaddress);
}

void SA::parse(SA_unpackedlines &srcline)
{ symset startaddress(LA_idsym, LA_numsym, LA_starsym);
  srcline.labfield[0] = ’\0’;
  strcpy(srcline.mnemonic, "   ");
  srcline.comment[0] = ’\0’;
  srcline.errors = ASM_errorset();
  srcline.address.term[0].kind = SA_absent;
  srcline.address.term[0].number = 0;
  srcline.address.term[0].name[0] = ’\0’;
  srcline.address.length = 0;
  GetSym(srcline.errors);       // first on line - opcode or label ?
  if (SYM.sym == LA_eofsym) { strcpy(srcline.mnemonic, "END"); return; }
  srcline.labelled = SYM.islabel;
  if (srcline.labelled)         // must look for the opcode
  { srcline.labelled = srcline.errors.isempty();
    sprintf(srcline.labfield, "%.*s", ASM_alength, SYM.str);
    GetSym(srcline.errors);     // probably an opcode
  }
  if (SYM.sym == LA_idsym)      // has a mnemonic
  { sprintf(srcline.mnemonic, "%.*s", ASM_alength, SYM.str);
    GetSym(srcline.errors);     // possibly an address
    if (startaddress.memb(SYM.sym)) getaddress(srcline);
  }
  if (SYM.sym == LA_comsym || SYM.sym == LA_unknown)
  { strcpy(srcline.comment, SYM.str); GetSym(srcline.errors); }
  if (SYM.sym != LA_eolsym)     // spurious symbol
  { strcpy(srcline.comment, SYM.str); srcline.errors.incl(ASM_excessfields); }
  while (SYM.sym != LA_eolsym && SYM.sym != LA_eofsym)
    GetSym(srcline.errors);     // consume garbage
}

SA::SA(LA * L)
{ Lex = L; }

----- st.h --------------------------------------------------------------------

// Table handler for one-pass macro assembler for single-accumulator machine
// Version using simple linked list



// P.D. Terry, Rhodes University, 1996

#ifndef ST_H
#define ST_H

#include "misc.h"
#include "mc.h"
#include "sh.h"

enum ST_actions { ST_add, ST_subtract };

typedef void (*ST_patch)(MC_bytes mem[], MC_bytes b, MC_bytes v, ST_actions a);

struct ST_forwardrefs {   // forward references for undefined labels
  MC_bytes byte;          // to be patched
  ST_actions action;      // taken when patching
  ST_forwardrefs *nlink;  // to next reference
};

struct ST_entries {
  ASM_alfa name;          // name
  MC_bytes value;         // value once defined
  bool defined;           // true after defining occurrence encountered
  ST_entries *slink;      // to next entry
  ST_forwardrefs *flink;  // to forward references
};

class ST {
  public:
    void printsymboltable(bool &errors);
    // Summarizes symbol table at end of assembly, and alters errors to true if
    // any symbols have remained undefined

    void enter(char *name, MC_bytes value);
    // Adds name to table with known value

    void valueofsymbol(char *name, MC_bytes location, MC_bytes &value,
                       ST_actions action, bool &undefined);
    // Returns value of required name, and sets undefined if not found.
    // Records action to be applied later in fixing up forward references.
    // location is the current value of the instruction location counter

    void outstandingreferences(MC_bytes *mem, ST_patch fix);
    // Walks symbol table, applying fix to outstanding references in mem

    ST(SH *S);
    // Associates table handler with source handler S (for listings)

  private:
    SH *Srce;
    ST_entries *lastsym;
    void findentry(ST_entries *&symentry, char *name, bool &found);
};

#endif /*ST_H*/

----- st.cpp ------------------------------------------------------------------

// Table handler for one-pass macro assembler for single-accumulator machine
// Version using simply linked list
// P.D. Terry, Rhodes University, 1996

#include "st.h"

void ST::printsymboltable(bool &errors)
{ fprintf(Srce->lst, "\nSymbol Table\n");
  fprintf(Srce->lst, "------------\n");
  ST_entries *symentry = lastsym;
  while (symentry)
  { Srce->writetext(symentry->name, 10);
    if (!symentry->defined)
    { fprintf(Srce->lst, " --- undefined"); errors = true; }
    else
    { Srce->writehex(symentry->value, 3);
      fprintf(Srce->lst, "%5d", symentry->value);
    }
    putc(’\n’, Srce->lst);
    symentry = symentry->slink;
  }
  putc(’\n’, Srce->lst);
}



void ST::findentry(ST_entries *&symentry, char *name, bool &found)
{ symentry = lastsym;
  found = false;
  while (!found && symentry)
  { if (!strcmp(name, symentry->name))
      found = true;
    else
      symentry = symentry->slink;
  }
  if (found) return;
  symentry = new ST_entries;  // make new forward reference entry
  sprintf(symentry->name, "%.*s", ASM_alength, name);
  symentry->value = 0;
  symentry->defined = false;
  symentry->flink = NULL;
  symentry->slink = lastsym;
  lastsym = symentry;
}

void ST::enter(char *name, MC_bytes value)
{ ST_entries *symentry;
  bool found;
  findentry(symentry, name, found);
  symentry->value = value;
  symentry->defined = true;
}

void ST::valueofsymbol(char *name, MC_bytes location, MC_bytes &value,
                       ST_actions action, bool &undefined)
{ ST_entries *symentry;
  ST_forwardrefs *forwardentry;
  bool found;
  findentry(symentry, name, found);
  value = symentry->value;
  undefined = !symentry->defined;
  if (!undefined) return;
  forwardentry = new ST_forwardrefs; // new node in reference chain
  forwardentry->byte = location; forwardentry->action = action;
  if (found)                         // it was already in the table
    forwardentry->nlink = symentry->flink;
  else                               // new entry in the table
    forwardentry->nlink = NULL;
  symentry->flink = forwardentry;
}

void ST::outstandingreferences(MC_bytes mem[], ST_patch fix)
{ ST_forwardrefs *link;
  ST_entries *symentry = lastsym;
  while (symentry)
  { link = symentry->flink;
    while (link)
    { fix(mem, link->byte, symentry->value, link->action);
      link = link->nlink;
    }
    symentry = symentry->slink;
  }
}

ST::ST(SH *S)
{ Srce = S; lastsym = NULL; }

----- st.h --------------------------------------------------------------------

// Table handler for one-pass macro assembler for single-accumulator machine
// Version using hashing technique with collision stepping
// P.D. Terry, Rhodes University, 1996

#ifndef ST_H
#define ST_H

#include "misc.h"
#include "mc.h"
#include "sh.h"

const int tablemax = 239;   // symbol table size
const int tablestep = 7;    // a prime number

enum ST_actions { ST_add, ST_subtract };

typedef void (*ST_patch)(MC_bytes mem[], MC_bytes b, MC_bytes v, ST_actions a);
typedef short tableindex;



struct ST_forwardrefs {  // forward references for undefined labels
  MC_bytes byte;         // to be patched
  ST_actions action;     // taken when patching
  ST_forwardrefs *nlink; // to next reference
};

struct ST_entries {
  ASM_alfa name;          // name
  MC_bytes value;         // value once defined
  bool used;              // true when in use already
  bool defined;           // true after defining occurrence encountered
  ST_forwardrefs *flink;  // to forward references
};

class ST {
  public:
    void printsymboltable(bool &errors);
    // Summarizes symbol table at end of assembly, and alters errors
    // to true if any symbols have remained undefined

    void enter(char *name, MC_bytes value);
    // Adds name to table with known value

    void valueofsymbol(char *name, MC_bytes location, MC_bytes &value,
                       ST_actions action, bool &undefined);
    // Returns value of required name, and sets undefined if not found.
    // Records action to be applied later in fixing up forward references.
    // location is the current value of the instruction location counter

    void outstandingreferences(MC_bytes mem[], ST_patch fix);
    // Walks symbol table, applying fix to outstanding references in mem

    ST(SH *S);
    // Associates table handler with source handler S (for listings)

  private:
    SH *Srce;
    ST_entries hashtable[tablemax + 1];
    void findentry(tableindex &symentry, char *name, bool &found);
};

#endif /*ST_H*/

----- st.cpp ------------------------------------------------------------------

// Table handler for one-pass macro assembler for single-accumulator machine
// Version using hashing technique with collision stepping
// P.D. Terry, Rhodes University, 1996

#include "st.h"

void ST::printsymboltable(bool &errors)
{ fprintf(Srce->lst, "\nSymbol Table\n");
  fprintf(Srce->lst, "------------\n");
  for (tableindex i = 0; i < tablemax; i++)
  { if (hashtable[i].used)
    { Srce->writetext(hashtable[i].name, 10);
      if (!hashtable[i].defined)
      { fprintf(Srce->lst, " --- undefined"); errors = true; }
      else
      { Srce->writehex(hashtable[i].value, 3);
        fprintf(Srce->lst, "%5d", hashtable[i].value);
      }
      putc(’\n’, Srce->lst);
    }
  }
  putc(’\n’, Srce->lst);
}

tableindex hashkey(char *ident)
{ const int large = (maxint - 256); // large number in hashing function
  int sum = 0, l = strlen(ident);
  for (int i = 0; i < l; i++) sum = (sum + ident[i]) % large;
  return (sum % tablemax);
}

void ST::findentry(tableindex &symentry, char *name, bool &found)
{ enum { looking, entered, caninsert, overflow } state;
  symentry = hashkey(name);
  state = looking;
  tableindex start = symentry;
  while (state == looking)



  { if (!hashtable[symentry].used)
      { state = caninsert; break; }
    if (!strcmp(name, hashtable[symentry].name))
      { state = entered; break; }
    symentry = (symentry + tablestep) % tablemax;
    if (symentry == start) state = overflow;
  }
  switch (state)
  { case caninsert:
      sprintf(hashtable[symentry].name, "%.*s", ASM_alength, name);
      hashtable[symentry].value = 0;
      hashtable[symentry].used = true;
      hashtable[symentry].flink = NULL;
      hashtable[symentry].defined = false;
      break;
    case overflow:
      printf("Symbol table overflow\n");
      exit(1);
      break;
    case entered:   // no further action
      break;
  }
  found = (state == entered);
}

void ST::enter(char *name, MC_bytes value)
{ tableindex symentry;
  bool found;
  findentry(symentry, name, found);
  hashtable[symentry].value = value;
  hashtable[symentry].defined = true;
}

void ST::valueofsymbol(char *name, MC_bytes location, MC_bytes &value,
                       ST_actions action, bool &undefined)
{ tableindex symentry;
  ST_forwardrefs *forwardentry;
  bool found;
  findentry(symentry, name, found);
  value = hashtable[symentry].value;
  undefined = !hashtable[symentry].defined;
  if (!undefined) return;
  forwardentry = new ST_forwardrefs; // new node in reference chain
  forwardentry->byte = location;
  forwardentry->action = action;
  if (found)                         // it was already in the table
    forwardentry->nlink = hashtable[symentry].flink;
  else                               // new entry in the table
    forwardentry->nlink = NULL;
  hashtable[symentry].flink = forwardentry;
}

void ST::outstandingreferences(MC_bytes mem[], ST_patch fix)
{ ST_forwardrefs *link;
  for (tableindex i = 0; i < tablemax; i++)
  { if (hashtable[i].used)
    { link = hashtable[i].flink;
      while (link)
      { fix(mem, link->byte, hashtable[i].value, link->action);
        link = link->nlink;
      }
    }
  }
}

ST::ST(SH *S)
{ Srce = S;
  for (tableindex i = 0; i < tablemax; i++) hashtable[i].used = false;
}

----- mh.h --------------------------------------------------------------------

// Macro analyzer for macro assemblers for the single-accumulator machine
// P.D. Terry, Rhodes University, 1996

#ifndef MH_H
#define MH_H

#include "asmbase.h"

typedef struct MH_macentries *MH_macro;



class MH {
  public:
    void newmacro(MH_macro &m, SA_unpackedlines header);
    // Creates m as a new macro, with given header line that includes the
    // formal parameters

    void storeline(MH_macro m, SA_unpackedlines line);
    // Adds line to the definition of macro m

    void checkmacro(char *name, MH_macro &m, bool &ismacro, int &params);
    // Checks to see whether name is that of a predefined macro.  Returns
    // ismacro as the result of the search.  If successful, returns m as
    // the macro, and params as the number of formal parameters

    void expand(MH_macro m, SA_addresses actualparams,
                ASMBASE *assembler, bool &errors);
    // Expands macro m by invoking assembler for each line of the macro
    // definition, and using the actualparams supplied in place of the
    // formal parameters appearing in the macro header.
    // errors is altered to true if the assembly fails for any reason

    MH();
    // Initializes macro handler

  private:
    MH_macro lastmac;
    int position(MH_macro m, char *str);
    void substituteactualparameters(MH_macro m,
                                    SA_addresses actualparams,
                                    SA_unpackedlines &nextline);
};

#endif /*MH_H*/

----- mh.cpp ------------------------------------------------------------------

// Macro analyzer for macro assemblers for the single-accumulator machine
// P.D. Terry, Rhodes University, 1996

#include "misc.h"
#include "mh.h"

struct MH_lines {
  SA_unpackedlines text;          // a single line of macro text
  MH_lines *link;                 // link to the next line in the macro
};

struct MH_macentries {
  SA_unpackedlines definition;    // header line
  MH_macro mlink;                 // link to next macro in list
  MH_lines *firstline, *lastline; // links to the text of this macro
};

void MH::newmacro(MH_macro &m, SA_unpackedlines header)
{ m = new MH_macentries;
  m->definition = header;         // store formal parameters
  m->firstline = NULL;            // no text yet
  m->mlink = lastmac;             // link to rest of macro definitions
  lastmac = m;                    // and this becomes the last macro added
}

void MH::storeline(MH_macro m, SA_unpackedlines line)
{ MH_lines *newline = new MH_lines;
  newline->text = line;           // store source line
  newline->link = NULL;           // at the end of the queue
  if (m->firstline == NULL)       // first line of macro?
    m->firstline = newline;       // form head of new queue
  else
    m->lastline->link = newline;  // add to tail of existing queue
  m->lastline = newline;
}

void MH::checkmacro(char *name, MH_macro &m, bool &ismacro, int &params)
{ m = lastmac; ismacro = false; params = 0;
  while (m && !ismacro)
  { if (!strcmp(name, m->definition.labfield))
      { ismacro = true; params = m->definition.address.length; }
    else
      m = m->mlink;
  }
}



int MH::position(MH_macro m, char *str)
// Search formals for match to str; returns 0 if no match
{ bool found = false;
  int i = m->definition.address.length - 1;
  while (i >= 0 && !found)
  { if (!strcmp(str, m->definition.address.term[i].name))
      found = true;
    else
      i--;
  }
  return i;
}

void MH::substituteactualparameters(MH_macro m,
         SA_addresses actualparams, SA_unpackedlines &nextline)
// Substitute label, mnemonic or address components into
// nextline where necessary
{ int j = 0, i = position(m, nextline.labfield); // check label
  if (i >= 0) strcpy(nextline.labfield, actualparams.term[i].name);
  i = position(m, nextline.mnemonic);            // check mnemonic
  if (i >= 0) strcpy(nextline.mnemonic, actualparams.term[i].name);
  j = 0;                                         // check address fields
  while (j < nextline.address.length)
  { i = position(m, nextline.address.term[j].name);
    if (i >= 0) nextline.address.term[j] = actualparams.term[i];
    j += 2;                                      // bypass commas
  }
}

void MH::expand(MH_macro m, SA_addresses actualparams,
                ASMBASE *assembler, bool &errors)
{ SA_unpackedlines nextline;
  if (!m) return;                                // nothing to do
  MH_lines *current = m->firstline;
  while (current)
  { nextline = current->text;                    // retrieve line of macro text
    substituteactualparameters(m, actualparams, nextline);
    assembler->assembleline(nextline, errors);   // and asssemble it
    current = current->link;
  }
}

MH::MH()
{ lastmac = NULL; }

----- asmbase.h ---------------------------------------------------------------

// Base assembler class for the single-accumulator machine
// P.D. Terry, Rhodes University, 1996

#ifndef ASMBASE_H
#define ASMBASE_H

#include "misc.h"
#include "sa.h"

class ASMBASE {
  public:
    virtual void assembleline(SA_unpackedlines &srcline, bool &failure) = 0;
    // Assemble srcline, reporting failure if it occurs
};

#endif /*A_H*/

----- as.h --------------------------------------------------------------------

// One-pass macro assembler for the single-accumulator machine
// P.D. Terry, Rhodes University, 1996

#ifndef AS_H
#define AS_H

#include "asmbase.h"
#include "mc.h"
#include "st.h"
#include "sh.h"
#include "mh.h"

class AS : ASMBASE {
  public:
    void assemble(bool &errors);



    // Assembles and lists program.
    // Assembled code is dumped to file for later interpretation, and left
    // in pseudo-machine memory for immediate interpretation if desired.
    // Returns errors = true if assembly fails

    virtual void assembleline(SA_unpackedlines &srcline, bool &failure);
    // Assemble srcline, reporting failure if it occurs

    AS(char *sourcename, char *listname, char *version, MC *M);
    // Instantiates version of the assembler to process sourcename, creating
    // listings in listname, and generating code for associated machine M

  private:
    SH *Srce;
    LA *Lex;
    SA *Parser;
    ST *Table;
    MC *Machine;
    MH *Macro;

    struct { ASM_alfa spelling; MC_bytes byte; } optable[256];
    int opcodes;         // number of opcodes actually defined
    struct objlines { MC_bytes location, opcode, address; };
    objlines objline;    // current line as assembled
    MC_bytes location;   // location counter
    bool assembling;     // monitor progress of assembly
    bool include;        // handle conditional assembly

    MC_bytes bytevalue(char *mnemonic);
    void enter(char *mnemonic, MC_bytes thiscode);
    void termvalue(SA_terms term, MC_bytes &value, ST_actions action,
                   bool &undefined, bool &badaddress);
    void evaluate(SA_addresses address, MC_bytes &value,
                  bool &undefined, bool &malformed);

    void listerrors(ASM_errorset allerrors, bool &failure);
    void listcode(void);
    void listsourceline(SA_unpackedlines &srcline, bool coderequired,
                        bool &failure);
    void definemacro(SA_unpackedlines &srcline, bool &failure);
    void firstpass(bool &errors);
};

#endif /*AS_H*/

----- as.cpp ------------------------------------------------------------------

// One-pass macro assembler for the single-accumulator machine
// P.D. Terry, Rhodes University, 1996

#include "as.h"

const bool nocodelisted = false;
const bool codelisted = true;

enum directives {
  AS_err = 61,  // erroneous opcode
  AS_nul = 62,  // blank opcode
  AS_beg = 63,  // introduce program
  AS_end = 64,  // end of source
  AS_mac = 65,  // introduce macro
  AS_ds  = 66,  // define storage
  AS_equ = 67,  // equate
  AS_org = 68,  // set location counter
  AS_if  = 69,  // conditional
  AS_dc  = 70   // define constant byte
};

MC_bytes AS::bytevalue(char *mnemonic)
{ int look, l = 1, r = opcodes;
  do                              // binary search
  { look = (l + r) / 2;
    if (strcmp(mnemonic, optable[look].spelling) <= 0) r = look - 1;
    if (strcmp(mnemonic, optable[look].spelling) >= 0) l = look + 1;
  } while (l <= r);
  if (l > r + 1)
    return (optable[look].byte);  // found it
  else
    return (optable[0].byte);     // err entry
}

void AS::enter(char *mnemonic, MC_bytes thiscode)



// Add (mnemonic, thiscode) to optable for future look up
{ strcpy(optable[opcodes].spelling, mnemonic);
  optable[opcodes].byte = thiscode;
  opcodes++;
}

void backpatch(MC_bytes mem[], MC_bytes location, MC_bytes value, ST_actions how)
{ switch (how)
  { case ST_add:
      mem[location] = (mem[location] + value) % 256; break;
    case ST_subtract:
      mem[location] = (mem[location] - value + 256) % 256; break;
  }
}

void AS::termvalue(SA_terms term, MC_bytes &value, ST_actions action,
                   bool &undefined, bool &badaddress)
// Determine value of a single term, recording outstanding action
// if undefined so far, and recording badaddress if malformed
{ undefined = false;
  switch (term.kind)
  { case SA_absent:
    case SA_numeric:
      value = term.number % 256; break;
    case SA_star:
      value = location; break;
    case SA_alphameric:
      Table->valueofsymbol(term.name, location, value, action, undefined); break;
    default:
      badaddress = true; value = 0; break;
  }
}

void AS::evaluate(SA_addresses address, MC_bytes &value, bool &undefined,
                  bool &malformed)
// Determine value of address, recording whether undefined or malformed
{ ST_actions nextaction;
  MC_bytes nextvalue;
  bool unknown;
  malformed = false;
  termvalue(address.term[0], value, ST_add, undefined, malformed);
  int i = 1;
  while (i < address.length)
  { switch (address.term[i].kind)
    { case SA_plus:  nextaction = ST_add; break;
      case SA_minus: nextaction = ST_subtract; break;
      default:       nextaction = ST_add; malformed = true; break;
    }
    i++;
    termvalue(address.term[i], nextvalue, nextaction, unknown, malformed);
    switch (nextaction)
    { case ST_add:      value = (value + nextvalue) % 256; break;
      case ST_subtract: value = (value - nextvalue + 256) % 256; break;
    }
    undefined = (undefined || unknown);
    i++;
  }
}

static char *ErrorMsg[] = {
  " - unknown opcode",
  " - address field not resolved",
  " - invalid address field",
  " - label missing",
  " - spurious address field",
  " - address field missing",
  " - address field too long",
  " - wrong number of parameters",
  " - invalid formal parameters",
  " - invalid label",
  " - unknown character",
  " - mismatched quotes",
  " - number too large",
};

void AS::listerrors(ASM_errorset allerrors, bool &failure)
{ if (allerrors.isempty()) return;
  failure = true;
  fprintf(Srce->lst, "Next line has errors");
  for (int error = ASM_invalidcode; error <= ASM_overflow; error++)
    if (allerrors.memb(error)) fprintf(Srce->lst, "%s\n", ErrorMsg[error]);
}



void AS::listcode(void)
// List generated code bytes on source listing
{ Srce->writehex(objline.location, 4);
  if (objline.opcode >= AS_err && objline.opcode <= AS_if)
    fprintf(Srce->lst, "       ");
  else if (objline.opcode <= MC_hlt)              // OneByteOps
    Srce->writehex(objline.opcode, 7);
  else if (objline.opcode == AS_dc)               // DC special case
    Srce->writehex(objline.address, 7);
  else                                            // TwoByteOps
  { Srce->writehex(objline.opcode, 3);
    Srce->writehex(objline.address, 4);
  }
}

void AS::listsourceline(SA_unpackedlines &srcline, bool coderequired,
                        bool &failure)
// List srcline, with option of listing generated code
{ listerrors(srcline.errors, failure);
  if (coderequired) listcode(); else fprintf(Srce->lst, "           ");
  Srce->writetext(srcline.labfield, 9);
  Srce->writetext(srcline.mnemonic, 9);
  int width = strlen(srcline.address.term[0].name);
  fputs(srcline.address.term[0].name, Srce->lst);
  for (int i = 1; i < srcline.address.length; i++)
  { width += strlen(srcline.address.term[i].name) + 1;
    putc(’ ’, Srce->lst);
    fputs(srcline.address.term[i].name, Srce->lst);
  }
  if (width < 30) Srce->writetext(" ", 30 - width);
  fprintf(Srce->lst, "%s\n", srcline.comment);
}

void AS::definemacro(SA_unpackedlines &srcline, bool &failure)
// Handle introduction of a macro (possibly nested)
{ MC_bytes opcode;
  MH_macro macro;
  bool declared = false;
  int i = 0;
  if (srcline.labelled)                           // name must be present
    declared = true;
  else
    srcline.errors.incl(ASM_unlabelled);
  if (!(srcline.address.length & 1))              // must be an odd number of terms
    srcline.errors.incl(ASM_invalidaddress);
  while (i < srcline.address.length)              // check that formals are names
  { if (srcline.address.term[i].kind != SA_alphameric)
      srcline.errors.incl(ASM_nonalpha);
    i += 2;                                       // bypass commas
  }
  listsourceline(srcline, nocodelisted, failure);
  if (declared) Macro->newmacro(macro, srcline);  // store header
  do
  { Parser->parse(srcline);                       // next line of macro text
    opcode = bytevalue(srcline.mnemonic);
    if (opcode == AS_mac)                         // nested macro?
      definemacro(srcline, failure);              // recursion handles it
    else
    { listsourceline(srcline, nocodelisted, failure);
      if (declared && opcode != AS_end && srcline.errors.isempty())
        Macro->storeline(macro, srcline);         // add to macro text
    }
  } while (opcode != AS_end);
}

void AS::assembleline(SA_unpackedlines &srcline, bool &failure)
// Assemble single srcline
{ if (!include) { include = true; return; }       // conditional assembly
  bool badaddress, found, undefined;
  MH_macro macro;
  int formal;
  Macro->checkmacro(srcline.mnemonic, macro, found, formal);
  if (found)                                      // expand macro and exit
  { if (srcline.labelled) Table->enter(srcline.labfield, location);
    if (formal != srcline.address.length)         // number of params okay?
      srcline.errors.incl(ASM_mismatched);
    listsourceline(srcline, nocodelisted, failure);
    if (srcline.errors.isempty())                 // okay to expand?
      Macro->expand(macro, srcline.address, this, failure);
    return;
  }
  badaddress = false;
  objline.location = location; objline.address = 0;



  objline.opcode = bytevalue(srcline.mnemonic);
  if (objline.opcode == AS_err)                   // check various constraints
    srcline.errors.incl(ASM_invalidcode);
  else if (objline.opcode > AS_mac ||
           objline.opcode > MC_hlt && objline.opcode < AS_err)
    { if (srcline.address.length == 0) srcline.errors.incl(ASM_noaddress); }
  else if (objline.opcode != AS_mac && srcline.address.length != 0)
    srcline.errors.incl(ASM_hasaddress);
  if (objline.opcode >= AS_err && objline.opcode <= AS_dc)
  { switch (objline.opcode)                       // directives
    { case AS_beg:
        location = 0;
        break;
      case AS_org:
        evaluate(srcline.address, location, undefined, badaddress);
        if (undefined) srcline.errors.incl(ASM_undefinedlabel);
        objline.location = location;
        break;
      case AS_ds:
        if (srcline.labelled) Table->enter(srcline.labfield, location);
        evaluate(srcline.address, objline.address, undefined, badaddress);
        if (undefined) srcline.errors.incl(ASM_undefinedlabel);
        location = (location + objline.address) % 256;
        break;
      case AS_nul:
      case AS_err:
        if (srcline.labelled) Table->enter(srcline.labfield, location);
        break;
      case AS_equ:
        evaluate(srcline.address, objline.address, undefined, badaddress);
        if (srcline.labelled)
          Table->enter(srcline.labfield, objline.address);
        else
          srcline.errors.incl(ASM_unlabelled);
        if (undefined) srcline.errors.incl(ASM_undefinedlabel);
        break;
      case AS_dc:
        if (srcline.labelled) Table->enter(srcline.labfield, location);
        evaluate(srcline.address, objline.address, undefined, badaddress);
        Machine->mem[location] = objline.address;
        location = (location + 1) % 256;
        break;
      case AS_if:
        evaluate(srcline.address, objline.address, undefined, badaddress);
        if (undefined) srcline.errors.incl(ASM_undefinedlabel);
        include = (objline.address != 0);
        break;
      case AS_mac:
        definemacro(srcline, failure);
        break;
      case AS_end:
        assembling = false;
        break;
    }
  }
  else                                            // machine ops
  { if (srcline.labelled) Table->enter(srcline.labfield, location);
    Machine->mem[location] = objline.opcode;
    if (objline.opcode > MC_hlt)                  // TwoByteOps
    { location = (location + 1) % 256;
      evaluate(srcline.address, objline.address, undefined, badaddress);
      Machine->mem[location] = objline.address;
    }
    location = (location + 1) % 256;              // bump location counter
  }
  if (badaddress) srcline.errors.incl(ASM_invalidaddress);
  if (objline.opcode != AS_mac) listsourceline(srcline, codelisted, failure);
}

void AS::firstpass(bool &errors)
// Make first and only pass over source code
{ SA_unpackedlines srcline;
  location = 0; assembling = true; include = true; errors = false;
  while (assembling)
    { Parser->parse(srcline); assembleline(srcline, errors); }
  Table->printsymboltable(errors);
  if (!errors) Table->outstandingreferences(Machine->mem, backpatch);
}

void AS::assemble(bool &errors)
{ printf("Assembling ...\n");
  fprintf(Srce->lst, "(One Pass Macro Assembler)\n\n");
  firstpass(errors);



  Machine->listcode();
}

AS::AS(char *sourcename, char *listname, char *version, MC *M)
{ Machine = M;
  Srce    = new SH(sourcename, listname, version);
  Lex     = new LA(Srce);
  Parser  = new SA(Lex);
  Table   = new ST(Srce);
  Macro   = new MH();
  // enter opcodes and mnemonics in ALPHABETIC order
  // done this way for ease of modification later
  opcodes = 0;   // bogus one for erroneous data
  enter("Error   ", AS_err);   // for lines with no opcode
  enter("   ", AS_nul); enter("ACI", MC_aci); enter("ACX", MC_acx);
  enter("ADC", MC_adc); enter("ADD", MC_add); enter("ADI", MC_adi);
  enter("ADX", MC_adx); enter("ANA", MC_ana); enter("ANI", MC_ani);
  enter("ANX", MC_anx); enter("BCC", MC_bcc); enter("BCS", MC_bcs);
  enter("BEG", AS_beg); enter("BNG", MC_bng); enter("BNZ", MC_bnz);
  enter("BPZ", MC_bpz); enter("BRN", MC_brn); enter("BZE", MC_bze);
  enter("CLA", MC_cla); enter("CLC", MC_clc); enter("CLX", MC_clx);
  enter("CMC", MC_cmc); enter("CMP", MC_cmp); enter("CPI", MC_cpi);
  enter("CPX", MC_cpx); enter("DC",  AS_dc);  enter("DEC", MC_dec);
  enter("DEX", MC_dex); enter("DS",  AS_ds);  enter("END", AS_end);
  enter("EQU", AS_equ); enter("HLT", MC_hlt); enter("IF",  AS_if);
  enter("INA", MC_ina); enter("INB", MC_inb); enter("INC", MC_inc);
  enter("INH", MC_inh); enter("INI", MC_ini); enter("INX", MC_inx);
  enter("JSR", MC_jsr); enter("LDA", MC_lda); enter("LDI", MC_ldi);
  enter("LDX", MC_ldx); enter("LSI", MC_lsi); enter("LSP", MC_lsp);
  enter("MAC", AS_mac); enter("NOP", MC_nop); enter("ORA", MC_ora);
  enter("ORG", AS_org); enter("ORI", MC_ori); enter("ORX", MC_orx);
  enter("OTA", MC_ota); enter("OTB", MC_otb); enter("OTC", MC_otc);
  enter("OTH", MC_oth); enter("OTI", MC_oti); enter("POP", MC_pop);
  enter("PSH", MC_psh); enter("RET", MC_ret); enter("SBC", MC_sbc);
  enter("SBI", MC_sbi); enter("SBX", MC_sbx); enter("SCI", MC_sci);
  enter("SCX", MC_scx); enter("SHL", MC_shl); enter("SHR", MC_shr);
  enter("STA", MC_sta); enter("STX", MC_stx); enter("SUB", MC_sub);
  enter("TAX", MC_tax);
}

----- mc.h --------------------------------------------------------------------

// Definition of simple single-accumulator machine and simple emulator
// P.D. Terry, Rhodes University, 1996

#ifndef MC_H
#define MC_H

#include "misc.h"

// machine instructions - order important
enum MC_opcodes {
  MC_nop, MC_cla, MC_clc, MC_clx, MC_cmc, MC_inc, MC_dec, MC_inx, MC_dex,
  MC_tax, MC_ini, MC_inh, MC_inb, MC_ina, MC_oti, MC_otc, MC_oth, MC_otb,
  MC_ota, MC_psh, MC_pop, MC_shl, MC_shr, MC_ret, MC_hlt, MC_lda, MC_ldx,
  MC_ldi, MC_lsp, MC_lsi, MC_sta, MC_stx, MC_add, MC_adx, MC_adi, MC_adc,
  MC_acx, MC_aci, MC_sub, MC_sbx, MC_sbi, MC_sbc, MC_scx, MC_sci, MC_cmp,
  MC_cpx, MC_cpi, MC_ana, MC_anx, MC_ani, MC_ora, MC_orx, MC_ori, MC_brn,
  MC_bze, MC_bnz, MC_bpz, MC_bng, MC_bcc, MC_bcs, MC_jsr, MC_bad = 255 };

typedef enum { running, finished, nodata, baddata, badop } status;
typedef unsigned char MC_bytes;

class MC {
  public:
    MC_bytes mem[256];    // virtual machine memory

    void listcode(void);
    // Lists the 256 bytes stored in mem on requested output file

    void emulator(MC_bytes initpc, FILE *data, FILE *results, bool tracing);
    // Emulates action of the instructions stored in mem, with program counter
    // initialized to initpc.  data and results are used for I/O.
    // Tracing at the code level may be requested

    void interpret(void);
    // Interactively opens data and results files, and requests entry point.
    // Then interprets instructions stored in MC_mem

    MC_bytes opcode(char *str);
    // Maps str to opcode, or to MC_bad (0FFH) if no match can be found



    MC();
    // Initializes accumulator machine

  private:
    struct processor {
      MC_bytes a;      // Accumulator
      MC_bytes sp;     // Stack pointer
      MC_bytes x;      // Index register
      MC_bytes ir;     // Instruction register
      MC_bytes pc;     // Program count
      bool z, p, c;    // Condition flags
    };
    processor cpu;
    status ps;

    char *mnemonics[256];
    void trace(FILE *results, MC_bytes pcnow);
    void postmortem(FILE *results, MC_bytes pcnow);
    void setflags(MC_bytes MC_register);
    MC_bytes index(void);
};

#endif /*MC_H*/

----- mc.cpp ------------------------------------------------------------------

// Definition of simple single-accumulator machine and simple emulator
// P.D. Terry, Rhodes University, 1996

#include "misc.h"
#include "mc.h"

// set break-in character as CTRL-A (cannot easily use \033 on MS-DOS)
const int ESC = 1;

inline void increment(MC_bytes &x)
// Increment with folding at 256
{ x = (x + 257) % 256; }

inline void decrement(MC_bytes &x)
// Decrement with folding at 256
{ x = (x + 255) % 256; }

MC_bytes MC::opcode(char *str)
// Simple linear search suffices for illustration
{ for (int i = 0; str[i]; i++) str[i] = toupper(str[i]);
  MC_bytes l = MC_nop;
  while (l <= MC_jsr && strcmp(str, mnemonics[l])) l++;
  if (l <= MC_jsr) return l; else return MC_bad;
}

void MC::listcode(void)
// Simply print all 256 bytes in 16 rows
{ MC_bytes nextbyte = 0;
  char filename[256];
  printf("Listing code ... \n");
  printf("Listing file [NUL] ? ");
  gets(filename);
  if (*filename == ’\0’) return;
  FILE *listfile = fopen(filename, "w");
  if (listfile == NULL) listfile = stdout;
  putc(’\n’, listfile);
  for (int i = 1; i <= 16; i++)
  { for (int j = 1; j <= 16; j++)
    { fprintf(listfile, "%4d", mem[nextbyte]); increment(nextbyte); }
    putc(’\n’, listfile);
  }
  if (listfile != stdout) fclose(listfile);
}

void MC::trace(FILE *results, MC_bytes pcnow)
// Simple trace facility for run time debugging
{ fprintf(results, " PC = %02X  A = %02X  ", pcnow, cpu.a);
  fprintf(results, " X = %02X  SP = %02X  ", cpu.x, cpu.sp);
  fprintf(results, " Z = %d P = %d C = %d", cpu.z, cpu.p, cpu.c);
  fprintf(results, " OPCODE = %02X  (%s)\n", cpu.ir, mnemonics[cpu.ir]);
}

void MC::postmortem(FILE *results, MC_bytes pcnow)
// Report run time error and position
{ switch (ps)
  { case badop:   fprintf(results, "Illegal opcode"); break;



    case nodata:  fprintf(results, "No more data"); break;
    case baddata: fprintf(results, "Invalid data"); break;
  }
  fprintf(results, " at %d\n", pcnow);
  trace(results, pcnow);
  printf("\nPress RETURN to continue\n");
  scanf("%*[^\n]"); getchar();
  listcode();
}

inline void MC::setflags(MC_bytes MC_register)
// Set P and Z flags according to contents of register
{ cpu.z = (MC_register == 0); cpu.p = (MC_register <= 127); }

inline MC_bytes MC::index(void)
// Get indexed address with folding at 256
{ return ((mem[cpu.pc] + cpu.x) % 256); }

void readchar(FILE *data, char &ch, status &ps)
// Read ch and check for break-in and other awkward values
{ if (feof(data)) { ps = nodata; ch = ’ ’; return; }
  ch = getc(data);
  if (ch == ESC) ps = finished;
  if (ch < ’ ’ || feof(data)) ch = ’ ’;
}

int hexdigit(char ch)
// Convert CH to equivalent value
{ if (ch >= ’a’ && ch <= ’e’) return(ch + 10 - ’a’);
  if (ch >= ’A’ && ch <= ’E’) return(ch + 10 - ’A’);
  if (isdigit(ch)) return(ch - ’0’);
  else return(0);
}

int getnumber(FILE *data, int base, status &ps)
// Read number in required base
{ bool negative = false;
  char ch;
  int num = 0;
  do
  { readchar(data, ch, ps);
  } while (!(ch > ’ ’ || feof(data) || ps != running));
  if (ps == running)
  { if (feof(data))
      ps = nodata;
    else
    { if (ch == ’-’) { negative = true; readchar(data, ch, ps); }
      else if (ch == ’+’) readchar(data, ch, ps);
      if (!isxdigit(ch))
        ps = baddata;
      else
      { while (isxdigit(ch) && ps == running)
        { if (hexdigit(ch) < base && num <= (maxint - hexdigit(ch)) / base)
            num = base * num + hexdigit(ch);
          else
            ps = baddata;
          readchar(data, ch, ps);
        }
      }
    }
    if (negative) num = -num;
    if (num > 0)
      return num % 256;
    else
      return (256 - abs(num) % 256) % 256;
  }
  return 0;
}

void MC::emulator(MC_bytes initpc, FILE *data, FILE *results, bool tracing)
{ MC_bytes pcnow;           // Old program count
  MC_bytes carry;           // Value of carry bit

  cpu.z = false; cpu.p = false; cpu.c = false; // initialize flags
  cpu.a = 0;     cpu.x = 0;     cpu.sp = 0;    // initialize registers
  cpu.pc = initpc;                             // initialize program counter
  ps = running;
  do
  { cpu.ir = mem[cpu.pc];   // fetch
    pcnow = cpu.pc;         // record for use in tracing/postmortem
    increment(cpu.pc);      // and bump in anticipation
    if (tracing) trace(results, pcnow);
    switch (cpu.ir)         // execute



    { case MC_nop:
        break;
      case MC_cla:
        cpu.a = 0; break;
      case MC_clc:
        cpu.c = false; break;
      case MC_clx:
        cpu.x = 0; break;
      case MC_cmc:
        cpu.c = !cpu.c; break;
      case MC_inc:
        increment(cpu.a); setflags(cpu.a); break;
      case MC_dec:
        decrement(cpu.a); setflags(cpu.a); break;
      case MC_inx:
        increment(cpu.x); setflags(cpu.x); break;
      case MC_dex:
        decrement(cpu.x); setflags(cpu.x); break;
      case MC_tax:
        cpu.x = cpu.a; break;
      case MC_ini:
        cpu.a = getnumber(data, 10, ps); setflags(cpu.a); break;
      case MC_inb:
        cpu.a = getnumber(data, 2, ps); setflags(cpu.a); break;
      case MC_inh:
        cpu.a = getnumber(data, 16, ps); setflags(cpu.a); break;
      case MC_ina:
        char ascii;
        readchar(data, ascii, ps);
        if (feof(data)) ps = nodata;
        else { cpu.a = ascii; setflags(cpu.a); }
        break;
      case MC_oti:
        if (cpu.a < 128)
          fprintf(results, "%d ", cpu.a);
        else
          fprintf(results, "%d ", cpu.a - 256);
        if (tracing) putc(’\n’, results);
        break;
      case MC_oth:
        fprintf(results, "%02X ", cpu.a);
        if (tracing) putc(’\n’, results);
        break;
      case MC_otc:
        fprintf(results, "%d ", cpu.a);
        if (tracing) putc(’\n’, results);
        break;
      case MC_ota:
        putc(cpu.a, results);
        if (tracing) putc(’\n’, results);
        break;
      case MC_otb:
        int bits[8];
        MC_bytes number = cpu.a;
        for (int loop = 0; loop <= 7; loop++)
          { bits[loop] = number % 2; number /= 2; }
        for (loop = 7; loop >= 0; loop--)
          fprintf(results, "%d", bits[loop]);
        putc(’ ’, results);
        if (tracing) putc(’\n’, results);
        break;
      case MC_psh:
        decrement(cpu.sp); mem[cpu.sp] = cpu.a; break;
      case MC_pop:
        cpu.a = mem[cpu.sp]; increment(cpu.sp); setflags(cpu.a); break;
      case MC_shl:
        cpu.c = (cpu.a * 2 > 255); cpu.a = cpu.a * 2 % 256;
        setflags(cpu.a); break;
      case MC_shr:
        cpu.c = cpu.a & 1; cpu.a /= 2; setflags(cpu.a); break;
      case MC_ret:
        cpu.pc = mem[cpu.sp]; increment(cpu.sp); break;
      case MC_hlt:
        ps = finished; break;
      case MC_lda:
        cpu.a = mem[mem[cpu.pc]]; increment(cpu.pc); setflags(cpu.a); break;
      case MC_ldx:
        cpu.a = mem[index()]; increment(cpu.pc); setflags(cpu.a); break;
      case MC_ldi:
        cpu.a = mem[cpu.pc]; increment(cpu.pc); setflags(cpu.a); break;
      case MC_lsp:
        cpu.sp = mem[mem[cpu.pc]]; increment(cpu.pc); break;
      case MC_lsi:



        cpu.sp = mem[cpu.pc]; increment(cpu.pc); break;
      case MC_sta:
        mem[mem[cpu.pc]] = cpu.a; increment(cpu.pc); break;
      case MC_stx:
        mem[index()] = cpu.a; increment(cpu.pc); break;
      case MC_add:
        cpu.c = (cpu.a + mem[mem[cpu.pc]] > 255);
        cpu.a = (cpu.a + mem[mem[cpu.pc]]) % 256;
        increment(cpu.pc); setflags(cpu.a); break;
      case MC_adx:
        cpu.c = (cpu.a + mem[index()] > 255);
        cpu.a = (cpu.a + mem[index()]) % 256;
        increment(cpu.pc); setflags(cpu.a); break;
      case MC_adi:
        cpu.c = (cpu.a + mem[cpu.pc] > 255);
        cpu.a = (cpu.a + mem[cpu.pc]) % 256;
        increment(cpu.pc); setflags(cpu.a); break;
      case MC_adc:
        carry = cpu.c;
        cpu.c = (cpu.a + mem[mem[cpu.pc]] + carry > 255);
        cpu.a = (cpu.a + mem[mem[cpu.pc]] + carry) % 256;
        increment(cpu.pc); setflags(cpu.a); break;
      case MC_acx:
        carry = cpu.c;
        cpu.c = (cpu.a + mem[index()] + carry > 255);
        cpu.a = (cpu.a + mem[index()] + carry) % 256;
        increment(cpu.pc); setflags(cpu.a); break;
      case MC_aci:
        carry = cpu.c;
        cpu.c = (cpu.a + mem[cpu.pc] + carry > 255);
        cpu.a = (cpu.a + mem[cpu.pc] + carry) % 256;
        increment(cpu.pc); setflags(cpu.a); break;
      case MC_sub:
        cpu.c = (cpu.a < mem[mem[cpu.pc]]);
        cpu.a = (cpu.a - mem[mem[cpu.pc]] + 256) % 256;
        increment(cpu.pc); setflags(cpu.a); break;
      case MC_sbx:
        cpu.c = (cpu.a < mem[index()]);
        cpu.a = (cpu.a - mem[index()] + 256) % 256;
        increment(cpu.pc); setflags(cpu.a); break;
      case MC_sbi:
        cpu.c = (cpu.a < mem[cpu.pc]);
        cpu.a = (cpu.a - mem[cpu.pc] + 256) % 256;
        increment(cpu.pc); setflags(cpu.a); break;
      case MC_sbc:
        carry = cpu.c;
        cpu.c = (cpu.a < mem[mem[cpu.pc]] + carry);
        cpu.a = (cpu.a - mem[mem[cpu.pc]] - carry + 256) % 256;
        increment(cpu.pc); setflags(cpu.a); break;
      case MC_scx:
        carry = cpu.c;
        cpu.c = (cpu.a < mem[index()] + carry);
        cpu.a = (cpu.a - mem[index()] - carry + 256) % 256;
        increment(cpu.pc); setflags(cpu.a); break;
      case MC_sci:
        carry = cpu.c;
        cpu.c = (cpu.a < mem[cpu.pc] + carry);
        cpu.a = (cpu.a - mem[cpu.pc] - carry + 256) % 256;
        increment(cpu.pc); setflags(cpu.a); break;
      case MC_cmp:
        cpu.c = (cpu.a < mem[mem[cpu.pc]]);
        setflags((cpu.a - mem[mem[cpu.pc]] + 256) % 256);
        increment(cpu.pc); break;
      case MC_cpx:
        cpu.c = (cpu.a < mem[index()]);
        setflags((cpu.a - mem[index()] + 256) % 256);
        increment(cpu.pc); break;
      case MC_cpi:
        cpu.c = (cpu.a < mem[cpu.pc]);
        setflags((cpu.a - mem[cpu.pc] + 256) % 256);
        increment(cpu.pc); break;
      case MC_ana:
        cpu.a &= mem[mem[cpu.pc]];
        increment(cpu.pc); setflags(cpu.a); cpu.c = false; break;
      case MC_anx:
        cpu.a &= mem[index()];
        increment(cpu.pc); setflags(cpu.a); cpu.c = false; break;
      case MC_ani:
        cpu.a &= mem[cpu.pc];
        increment(cpu.pc); setflags(cpu.a); cpu.c = false; break;
      case MC_ora:
        cpu.a |= mem[mem[cpu.pc]];
        increment(cpu.pc); setflags(cpu.a); cpu.c = false; break;



      case MC_orx:
        cpu.a |= mem[index()];
        increment(cpu.pc); setflags(cpu.a); cpu.c = false; break;
      case MC_ori:
        cpu.a |= mem[cpu.pc];
        increment(cpu.pc); setflags(cpu.a); cpu.c = false; break;
      case MC_brn:
        cpu.pc = mem[cpu.pc]; break;
      case MC_bze:
        if (cpu.z) cpu.pc = mem[cpu.pc]; else increment(cpu.pc); break;
      case MC_bnz:
        if (!cpu.z) cpu.pc = mem[cpu.pc]; else increment(cpu.pc); break;
      case MC_bpz:
        if (cpu.p) cpu.pc = mem[cpu.pc]; else increment(cpu.pc); break;
      case MC_bng:
        if (!cpu.p) cpu.pc = mem[cpu.pc]; else increment(cpu.pc); break;
      case MC_bcs:
        if (cpu.c) cpu.pc = mem[cpu.pc]; else increment(cpu.pc); break;
      case MC_bcc:
        if (!cpu.c) cpu.pc = mem[cpu.pc]; else increment(cpu.pc); break;
      case MC_jsr:
        decrement(cpu.sp);
        mem[cpu.sp] = (cpu.pc + 1) % 256; // push return address
        cpu.pc = mem[cpu.pc]; break;
      default:
        ps = badop; break;
    }
  } while (ps == running);
  if (ps != finished) postmortem(results, pcnow);
}

void MC::interpret(void)
{ char filename[256];
  FILE *data, *results;
  bool tracing;
  int entry;
  printf("\nTrace execution (y/N/q)? ");
  char reply = getchar(); scanf("%*[^\n]"); getchar();
  if (toupper(reply) != ’Q’)
  { tracing = toupper(reply) == ’Y’;
    printf("\nData file [STDIN] ? "); gets(filename);
    if (filename[0] == ’\0’) data = NULL;
    else data = fopen(filename, "r");
    if (data == NULL)
      { printf("taking data from stdin\n"); data = stdin; }
    printf("\nResults file [STDOUT] ? "); gets(filename);
    if (filename[0] == ’\0’) results = NULL;
    else results = fopen(filename, "w");
    if (results == NULL)
      { printf("sending results to stdout\n"); results = stdout; }
    printf("Entry point? ");
    if (scanf("%d%*[^\n]", &entry) != 1) entry = 0; getchar();
    emulator(entry % 256, data, results, tracing);
    if (results != stdout) fclose(results);
    if (data != stdin) fclose(data);
  }
}

MC::MC()
{ for (int i = 0; i <= 255; i++) mem[i] = MC_bad;
  // Initialize mnemonic table
  for (i = 0; i <= 255; i++) mnemonics[i] = "???";
  mnemonics[MC_aci] = "ACI";  mnemonics[MC_acx] = "ACX";
  mnemonics[MC_adc] = "ADC";  mnemonics[MC_add] = "ADD";
  mnemonics[MC_adi] = "ADI";  mnemonics[MC_adx] = "ADX";
  mnemonics[MC_ana] = "ANA";  mnemonics[MC_ani] = "ANI";
  mnemonics[MC_anx] = "ANX";  mnemonics[MC_bcc] = "BCC";
  mnemonics[MC_bcs] = "BCS";  mnemonics[MC_bng] = "BNG";
  mnemonics[MC_bnz] = "BNZ";  mnemonics[MC_bpz] = "BPZ";
  mnemonics[MC_brn] = "BRN";  mnemonics[MC_bze] = "BZE";
  mnemonics[MC_cla] = "CLA";  mnemonics[MC_clc] = "CLC";
  mnemonics[MC_clx] = "CLX";  mnemonics[MC_cmc] = "CMC";
  mnemonics[MC_cmp] = "CMP";  mnemonics[MC_cpi] = "CPI";
  mnemonics[MC_cpx] = "CPX";  mnemonics[MC_dec] = "DEC";
  mnemonics[MC_dex] = "DEX";  mnemonics[MC_hlt] = "HLT";
  mnemonics[MC_ina] = "INA";  mnemonics[MC_inb] = "INB";
  mnemonics[MC_inc] = "INC";  mnemonics[MC_inh] = "INH";
  mnemonics[MC_ini] = "INI";  mnemonics[MC_inx] = "INX";
  mnemonics[MC_jsr] = "JSR";  mnemonics[MC_lda] = "LDA";
  mnemonics[MC_ldi] = "LDI";  mnemonics[MC_ldx] = "LDX";
  mnemonics[MC_lsi] = "LSI";  mnemonics[MC_lsp] = "LSP";
  mnemonics[MC_nop] = "NOP";  mnemonics[MC_ora] = "ORA";
  mnemonics[MC_ori] = "ORI";  mnemonics[MC_orx] = "ORX";



  mnemonics[MC_ota] = "OTA";  mnemonics[MC_otb] = "OTB";
  mnemonics[MC_otc] = "OTC";  mnemonics[MC_oth] = "OTH";
  mnemonics[MC_oti] = "OTI";  mnemonics[MC_pop] = "POP";
  mnemonics[MC_psh] = "PSH";  mnemonics[MC_ret] = "RET";
  mnemonics[MC_sbc] = "SBC";  mnemonics[MC_sbi] = "SBI";
  mnemonics[MC_sbx] = "SBX";  mnemonics[MC_sci] = "SCI";
  mnemonics[MC_scx] = "SCX";  mnemonics[MC_shl] = "SHL";
  mnemonics[MC_shr] = "SHR";  mnemonics[MC_sta] = "STA";
  mnemonics[MC_stx] = "STX";  mnemonics[MC_sub] = "SUB";
  mnemonics[MC_tax] = "TAX";
}
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