GNU Octave Manual Version 3 by John W. Eaton, David Bateman, Søren Hauberg Paperback (6"x9"), 568 pages ISBN 095461206X RRP £24.95 ($39.95) |
21.2 Orthogonal Collocation
- Loadable Function: [r, amat, bmat, q] = colloc (n, "left", "right")
- Compute derivative and integral weight matrices for orthogonal collocation using the subroutines given in J. Villadsen and M. L. Michelsen, Solution of Differential Equation Models by Polynomial Approximation.
Here is an example of using colloc
to generate weight matrices
for solving the second order differential equation
u' - alpha * u” = 0 with the boundary conditions
u(0) = 0 and u(1) = 1.
First, we can generate the weight matrices for n points (including the endpoints of the interval), and incorporate the boundary conditions in the right hand side (for a specific value of alpha).
n = 7; alpha = 0.1; [r, a, b] = colloc (n-2, "left", "right"); at = a(2:n-1,2:n-1); bt = b(2:n-1,2:n-1); rhs = alpha * b(2:n-1,n) - a(2:n-1,n);
Then the solution at the roots r is
u = [ 0; (at - alpha * bt) \ rhs; 1] => [ 0.00; 0.004; 0.01 0.00; 0.12; 0.62; 1.00 ]
ISBN 095461206X | GNU Octave Manual Version 3 | See the print edition |