
C++
Notes for ProfessionalsC++

Notes for Professionals

GoalKicker.com
Free Programming Books

Disclaimer
This is an unocial free book created for educational purposes and is

not aliated with ocial C++ group(s) or company(s).
All trademarks and registered trademarks are

the property of their respective owners

600+ pages
of professional hints and tricks

http://goalkicker.com
http://goalkicker.com

Contents
About 1 ...

Chapter 1: Getting started with C++ 2 ..
Section 1.1: Hello World 2 ...
Section 1.2: Comments 3 ..
Section 1.3: The standard C++ compilation process 5 ..
Section 1.4: Function 5 ..
Section 1.5: Visibility of function prototypes and declarations 8 ...
Section 1.6: Preprocessor 9 ..

Chapter 2: Literals 11 ..
Section 2.1: this 11 ...
Section 2.2: Integer literal 11 ...
Section 2.3: true 12 ...
Section 2.4: false 13 ..
Section 2.5: nullptr 13 ...

Chapter 3: Inline variables 14 ...
Section 3.1: Defining a static data member in the class definition 14 ...

Chapter 4: operator precedence 15 ...
Section 4.1: Logical && and || operators: short-circuit 15 ...
Section 4.2: Unary Operators 16 ..
Section 4.3: Arithmetic operators 16 ..
Section 4.4: Logical AND and OR operators 17 ..

Chapter 5: Floating Point Arithmetic 18 ..
Section 5.1: Floating Point Numbers are Weird 18 ..

Chapter 6: Bit Operators 19 ..
Section 6.1: | - bitwise OR 19 ..
Section 6.2: ^ - bitwise XOR (exclusive OR) 19 ..
Section 6.3: & - bitwise AND 21 ...
Section 6.4: << - left shift 21 ...
Section 6.5: >> - right shift 22 ..

Chapter 7: Bit Manipulation 24 ...
Section 7.1: Remove rightmost set bit 24 ...
Section 7.2: Set all bits 24 ..
Section 7.3: Toggling a bit 24 ..
Section 7.4: Checking a bit 24 ...
Section 7.5: Counting bits set 25 ...
Section 7.6: Check if an integer is a power of 2 26 ...
Section 7.7: Setting a bit 26 ...
Section 7.8: Clearing a bit 26 ...
Section 7.9: Changing the nth bit to x 26 ...
Section 7.10: Bit Manipulation Application: Small to Capital Letter 27 ..

Chapter 8: Bit fields 28 ...
Section 8.1: Declaration and Usage 28 ...

Chapter 9: Arrays 29 ...
Section 9.1: Array initialization 29 ..
Section 9.2: A fixed size raw array matrix (that is, a 2D raw array) 30 ..
Section 9.3: Dynamically sized raw array 30 ...

Section 9.4: Array size: type safe at compile time 31 ...
Section 9.5: Expanding dynamic size array by using std::vector 32 ...
Section 9.6: A dynamic size matrix using std::vector for storage 33 ...

Chapter 10: Iterators 36 ...
Section 10.1: Overview 36 ...
Section 10.2: Vector Iterator 39 ...
Section 10.3: Map Iterator 39 ...
Section 10.4: Reverse Iterators 40 ...
Section 10.5: Stream Iterators 41 ..
Section 10.6: C Iterators (Pointers) 41 ..
Section 10.7: Write your own generator-backed iterator 42 ..

Chapter 11: Basic input/output in c++ 44 ..
Section 11.1: user input and standard output 44 ..

Chapter 12: Loops 45 ...
Section 12.1: Range-Based For 45 ...
Section 12.2: For loop 47 ..
Section 12.3: While loop 49 ...
Section 12.4: Do-while loop 50 ...
Section 12.5: Loop Control statements : Break and Continue 51 ...
Section 12.6: Declaration of variables in conditions 52 ...
Section 12.7: Range-for over a sub-range 53 ..

Chapter 13: File I/O 55 ..
Section 13.1: Writing to a file 55 ...
Section 13.2: Opening a file 55 ...
Section 13.3: Reading from a file 56 ..
Section 13.4: Opening modes 58 ...
Section 13.5: Reading an ASCII file into a std::string 59 ...
Section 13.6: Writing files with non-standard locale settings 60 ..
Section 13.7: Checking end of file inside a loop condition, bad practice? 61 ..
Section 13.8: Flushing a stream 62 ..
Section 13.9: Reading a file into a container 62 ...
Section 13.10: Copying a file 63 ..
Section 13.11: Closing a file 63 ..
Section 13.12: Reading a `struct` from a formatted text file 64 ..

Chapter 14: C++ Streams 66 ..
Section 14.1: String streams 66 ..
Section 14.2: Printing collections with iostream 67 ..

Chapter 15: Stream manipulators 69 ..
Section 15.1: Stream manipulators 69 ...
Section 15.2: Output stream manipulators 74 ...
Section 15.3: Input stream manipulators 76 ...

Chapter 16: Flow Control 78 ...
Section 16.1: case 78 ...
Section 16.2: switch 78 ..
Section 16.3: catch 78 ...
Section 16.4: throw 79 ...
Section 16.5: default 80 ...
Section 16.6: try 80 ..
Section 16.7: if 80 ...

Section 16.8: else 81 ..
Section 16.9: Conditional Structures: if, if..else 81 ...
Section 16.10: goto 82 ...
Section 16.11: Jump statements : break, continue, goto, exit 82 ...
Section 16.12: return 85 ...

Chapter 17: Metaprogramming 87 ...
Section 17.1: Calculating Factorials 87 ..
Section 17.2: Iterating over a parameter pack 89 ...
Section 17.3: Iterating with std::integer_sequence 90 ...
Section 17.4: Tag Dispatching 91 ..
Section 17.5: Detect Whether Expression is Valid 91 ...
Section 17.6: If-then-else 93 ...
Section 17.7: Manual distinction of types when given any type T 93 ..
Section 17.8: Calculating power with C++11 (and higher) 94 ...
Section 17.9: Generic Min/Max with variable argument count 95 ...

Chapter 18: const keyword 96 ..
Section 18.1: Avoiding duplication of code in const and non-const getter methods 96 ..
Section 18.2: Const member functions 97 ..
Section 18.3: Const local variables 98 ...
Section 18.4: Const pointers 98 ..

Chapter 19: mutable keyword 100 ..
Section 19.1: mutable lambdas 100 ...
Section 19.2: non-static class member modifier 100 ..

Chapter 20: Friend keyword 102 ...
Section 20.1: Friend function 102 ..
Section 20.2: Friend method 103 ..
Section 20.3: Friend class 103 ...

Chapter 21: Type Keywords 105 ...
Section 21.1: class 105 ...
Section 21.2: enum 106 ...
Section 21.3: struct 107 ...
Section 21.4: union 107 ...

Chapter 22: Basic Type Keywords 109 ...
Section 22.1: char 109 ...
Section 22.2: char16_t 109 ...
Section 22.3: char32_t 109 ..
Section 22.4: int 109 ...
Section 22.5: void 109 ..
Section 22.6: wchar_t 110 ...
Section 22.7: float 110 ..
Section 22.8: double 110 ..
Section 22.9: long 110 ..
Section 22.10: short 111 ...
Section 22.11: bool 111 ..

Chapter 23: Variable Declaration Keywords 112 ..
Section 23.1: decltype 112 ..
Section 23.2: const 112 ..
Section 23.3: volatile 113 ...
Section 23.4: signed 113 ..

Section 23.5: unsigned 113 ..

Chapter 24: Keywords 115 ...
Section 24.1: asm 115 ...
Section 24.2: Dierent keywords 115 ...
Section 24.3: typename 119 ..
Section 24.4: explicit 120 ..
Section 24.5: sizeof 120 ..
Section 24.6: noexcept 121 ..

Chapter 25: Returning several values from a function 123 ..
Section 25.1: Using std::tuple 123 ..
Section 25.2: Structured Bindings 124 ..
Section 25.3: Using struct 125 ...
Section 25.4: Using Output Parameters 126 ..
Section 25.5: Using a Function Object Consumer 127 ..
Section 25.6: Using std::pair 128 ...
Section 25.7: Using std::array 128 ...
Section 25.8: Using Output Iterator 128 ...
Section 25.9: Using std::vector 129 ...

Chapter 26: Polymorphism 130 ..
Section 26.1: Define polymorphic classes 130 ...
Section 26.2: Safe downcasting 131 ...
Section 26.3: Polymorphism & Destructors 132 ..

Chapter 27: References 134 ...
Section 27.1: Defining a reference 134 ...

Chapter 28: Value and Reference Semantics 135 ..
Section 28.1: Definitions 135 ..
Section 28.2: Deep copying and move support 135 ...

Chapter 29: C++ function "call by value" vs. "call by reference" 139 ...
Section 29.1: Call by value 139 ..

Chapter 30: Copying vs Assignment 141 ...
Section 30.1: Assignment Operator 141 ...
Section 30.2: Copy Constructor 141 ...
Section 30.3: Copy Constructor Vs Assignment Constructor 142 ...

Chapter 31: Pointers 144 ..
Section 31.1: Pointer Operations 144 ...
Section 31.2: Pointer basics 144 ..
Section 31.3: Pointer Arithmetic 146 ..

Chapter 32: Pointers to members 148 ..
Section 32.1: Pointers to static member functions 148 ...
Section 32.2: Pointers to member functions 148 ..
Section 32.3: Pointers to member variables 149 ...
Section 32.4: Pointers to static member variables 149 ..

Chapter 33: The This Pointer 151 ...
Section 33.1: this Pointer 151 ...
Section 33.2: Using the this Pointer to Access Member Data 153 ...
Section 33.3: Using the this Pointer to Dierentiate Between Member Data and Parameters 153
Section 33.4: this Pointer CV-Qualifiers 154 ...
Section 33.5: this Pointer Ref-Qualifiers 157 ..

Chapter 34: Smart Pointers 159 ..

Section 34.1: Unique ownership (std::unique_ptr) 159 ..
Section 34.2: Sharing ownership (std::shared_ptr) 160 ..
Section 34.3: Sharing with temporary ownership (std::weak_ptr) 162 ...
Section 34.4: Using custom deleters to create a wrapper to a C interface 164 ..
Section 34.5: Unique ownership without move semantics (auto_ptr) 165 ...
Section 34.6: Casting std::shared_ptr pointers 167 ...
Section 34.7: Writing a smart pointer: value_ptr 167 ...
Section 34.8: Getting a shared_ptr referring to this 169 ..

Chapter 35: Classes/Structures 171 ..
Section 35.1: Class basics 171 ..
Section 35.2: Final classes and structs 171 ..
Section 35.3: Access specifiers 172 ...
Section 35.4: Inheritance 173 ..
Section 35.5: Friendship 175 ..
Section 35.6: Virtual Inheritance 176 ..
Section 35.7: Private inheritance: restricting base class interface 177 ...
Section 35.8: Accessing class members 178 ...
Section 35.9: Member Types and Aliases 179 ...
Section 35.10: Nested Classes/Structures 182 ...
Section 35.11: Unnamed struct/class 187 ...
Section 35.12: Static class members 188 ..
Section 35.13: Multiple Inheritance 192 ...
Section 35.14: Non-static member functions 193 ..

Chapter 36: Function Overloading 196 ...
Section 36.1: What is Function Overloading? 196 ..
Section 36.2: Return Type in Function Overloading 197 ..
Section 36.3: Member Function cv-qualifier Overloading 197 ...

Chapter 37: Operator Overloading 200 ...
Section 37.1: Arithmetic operators 200 ...
Section 37.2: Array subscript operator 201 ...
Section 37.3: Conversion operators 202 ...
Section 37.4: Complex Numbers Revisited 203 ...
Section 37.5: Named operators 207 ...
Section 37.6: Unary operators 209 ...
Section 37.7: Comparison operators 210 ...
Section 37.8: Assignment operator 211 ...
Section 37.9: Function call operator 211 ..
Section 37.10: Bitwise NOT operator 212 ...
Section 37.11: Bit shift operators for I/O 212 ..

Chapter 38: Function Template Overloading 214 ..
Section 38.1: What is a valid function template overloading? 214 ..

Chapter 39: Virtual Member Functions 215 ..
Section 39.1: Final virtual functions 215 ..
Section 39.2: Using override with virtual in C++11 and later 215 ..
Section 39.3: Virtual vs non-virtual member functions 216 ...
Section 39.4: Behaviour of virtual functions in constructors and destructors 217 ..
Section 39.5: Pure virtual functions 218 ...

Chapter 40: Inline functions 221 ...
Section 40.1: Non-member inline function definition 221 ...
Section 40.2: Member inline functions 221 ..

Section 40.3: What is function inlining? 221 ...
Section 40.4: Non-member inline function declaration 222 ..

Chapter 41: Special Member Functions 223 ...
Section 41.1: Default Constructor 223 ...
Section 41.2: Destructor 225 ..
Section 41.3: Copy and swap 226 ..
Section 41.4: Implicit Move and Copy 228 ..

Chapter 42: Non-Static Member Functions 229 ..
Section 42.1: Non-static Member Functions 229 ...
Section 42.2: Encapsulation 230 ...
Section 42.3: Name Hiding & Importing 230 ..
Section 42.4: Virtual Member Functions 232 ...
Section 42.5: Const Correctness 234 ..

Chapter 43: Constant class member functions 236 ..
Section 43.1: constant member function 236 ...

Chapter 44: C++ Containers 237 ...
Section 44.1: C++ Containers Flowchart 237 ..

Chapter 45: Namespaces 238 ...
Section 45.1: What are namespaces? 238 ...
Section 45.2: Argument Dependent Lookup 239 ..
Section 45.3: Extending namespaces 240 ..
Section 45.4: Using directive 240 ..
Section 45.5: Making namespaces 241 ..
Section 45.6: Unnamed/anonymous namespaces 242 ...
Section 45.7: Compact nested namespaces 242 ..
Section 45.8: Namespace alias 242 ..
Section 45.9: Inline namespace 243 ...
Section 45.10: Aliasing a long namespace 245 ..
Section 45.11: Alias Declaration scope 245 ...

Chapter 46: Header Files 247 ..
Section 46.1: Basic Example 247 ...
Section 46.2: Templates in Header Files 248 ...

Chapter 47: Using declaration 249 ..
Section 47.1: Importing names individually from a namespace 249 ...
Section 47.2: Redeclaring members from a base class to avoid name hiding 249 ..
Section 47.3: Inheriting constructors 249 ...

Chapter 48: std::string 251 ..
Section 48.1: Tokenize 251 ...
Section 48.2: Conversion to (const) char* 252 ..
Section 48.3: Using the std::string_view class 252 ..
Section 48.4: Conversion to std::wstring 253 ...
Section 48.5: Lexicographical comparison 254 ...
Section 48.6: Trimming characters at start/end 255 ...
Section 48.7: String replacement 256 ...
Section 48.8: Converting to std::string 257 ...
Section 48.9: Splitting 258 ..
Section 48.10: Accessing a character 259 ..
Section 48.11: Checking if a string is a prefix of another 259 ...
Section 48.12: Looping through each character 260 ..

Section 48.13: Conversion to integers/floating point types 260 ..
Section 48.14: Concatenation 261 ...
Section 48.15: Converting between character encodings 262 ...
Section 48.16: Finding character(s) in a string 263 ...

Chapter 49: std::array 264 ...
Section 49.1: Initializing an std::array 264 ...
Section 49.2: Element access 265 ...
Section 49.3: Iterating through the Array 267 ...
Section 49.4: Checking size of the Array 267 ..
Section 49.5: Changing all array elements at once 267 ...

Chapter 50: std::vector 268 ...
Section 50.1: Accessing Elements 268 ..
Section 50.2: Initializing a std::vector 270 ..
Section 50.3: Deleting Elements 271 ..
Section 50.4: Iterating Over std::vector 273 ...
Section 50.5: vector<bool>: The Exception To So Many, So Many Rules 275 ..
Section 50.6: Inserting Elements 276 ..
Section 50.7: Using std::vector as a C array 277 ...
Section 50.8: Finding an Element in std::vector 278 ..
Section 50.9: Concatenating Vectors 279 ..
Section 50.10: Matrices Using Vectors 280 ..
Section 50.11: Using a Sorted Vector for Fast Element Lookup 281 ..
Section 50.12: Reducing the Capacity of a Vector 282 ...
Section 50.13: Vector size and capacity 282 ..
Section 50.14: Iterator/Pointer Invalidation 284 ..
Section 50.15: Find max and min Element and Respective Index in a Vector 285 ..
Section 50.16: Converting an array to std::vector 285 ..
Section 50.17: Functions Returning Large Vectors 286 ..

Chapter 51: std::map 288 ...
Section 51.1: Accessing elements 288 ...
Section 51.2: Inserting elements 289 ...
Section 51.3: Searching in std::map or in std::multimap 290 ...
Section 51.4: Initializing a std::map or std::multimap 291 ..
Section 51.5: Checking number of elements 292 ...
Section 51.6: Types of Maps 292 ...
Section 51.7: Deleting elements 293 ..
Section 51.8: Iterating over std::map or std::multimap 294 ..
Section 51.9: Creating std::map with user-defined types as key 294 ..

Chapter 52: std::optional 296 ..
Section 52.1: Using optionals to represent the absence of a value 296 ...
Section 52.2: optional as return value 296 ..
Section 52.3: value_or 297 ..
Section 52.4: Introduction 297 ...
Section 52.5: Using optionals to represent the failure of a function 298 ...

Chapter 53: std::function: To wrap any element that is callable 300 ..
Section 53.1: Simple usage 300 ...
Section 53.2: std::function used with std::bind 300 ..
Section 53.3: Binding std::function to a dierent callable types 301 ...
Section 53.4: Storing function arguments in std::tuple 303 ..
Section 53.5: std::function with lambda and std::bind 304 ..

Section 53.6: `function` overhead 305 ...

Chapter 54: std::forward_list 306 ..
Section 54.1: Example 306 ..
Section 54.2: Methods 306 ...

Chapter 55: std::pair 308 ...
Section 55.1: Compare operators 308 ..
Section 55.2: Creating a Pair and accessing the elements 308 ...

Chapter 56: std::atomics 310 ...
Section 56.1: atomic types 310 ..

Chapter 57: std::variant 312 ..
Section 57.1: Create pseudo-method pointers 312 ...
Section 57.2: Basic std::variant use 313 ..
Section 57.3: Constructing a `std::variant` 314 ...

Chapter 58: std::iomanip 315 ..
Section 58.1: std::setprecision 315 ...
Section 58.2: std::setfill 315 ..
Section 58.3: std::setiosflags 315 ...
Section 58.4: std::setw 317 ...

Chapter 59: std::any 318 ..
Section 59.1: Basic usage 318 ..

Chapter 60: std::set and std::multiset 319 ...
Section 60.1: Changing the default sort of a set 319 ..
Section 60.2: Deleting values from a set 321 ..
Section 60.3: Inserting values in a set 322 ...
Section 60.4: Inserting values in a multiset 324 ..
Section 60.5: Searching values in set and multiset 324 ..

Chapter 61: std::integer_sequence 326 ...
Section 61.1: Turn a std::tuple<T...> into function parameters 326 ...
Section 61.2: Create a parameter pack consisting of integers 327 ...
Section 61.3: Turn a sequence of indices into copies of an element 327 ..

Chapter 62: Using std::unordered_map 329 ...
Section 62.1: Declaration and Usage 329 ...
Section 62.2: Some Basic Functions 329 ..

Chapter 63: Standard Library Algorithms 330 ...
Section 63.1: std::next_permutation 330 ...
Section 63.2: std::for_each 330 ...
Section 63.3: std::accumulate 331 ...
Section 63.4: std::find 332 ...
Section 63.5: std::min_element 334 ..
Section 63.6: std::find_if 335 ..
Section 63.7: Using std::nth_element To Find The Median (Or Other Quantiles) 336 ...
Section 63.8: std::count 337 ...
Section 63.9: std::count_if 338 ...

Chapter 64: The ISO C++ Standard 340 ...
Section 64.1: Current Working Drafts 340 ..
Section 64.2: C++17 340 ..
Section 64.3: C++11 341 ...
Section 64.4: C++14 342 ..
Section 64.5: C++98 343 ...

Section 64.6: C++03 343 ...
Section 64.7: C++20 344 ...

Chapter 65: Random number generation 345 ...
Section 65.1: True random value generator 345 ...
Section 65.2: Generating a pseudo-random number 345 ..
Section 65.3: Using the generator for multiple distributions 346 ..

Chapter 66: Date and time using <chrono> header 347 ..
Section 66.1: Measuring time using <chrono> 347 ..
Section 66.2: Find number of days between two dates 347 ..

Chapter 67: Sorting 349 ...
Section 67.1: Sorting and sequence containers 349 ..
Section 67.2: sorting with std::map (ascending and descending) 349 ..
Section 67.3: Sorting sequence containers by overloaded less operator 351 ...
Section 67.4: Sorting sequence containers using compare function 352 ...
Section 67.5: Sorting sequence containers using lambda expressions (C++11) 353 ..
Section 67.6: Sorting built-in arrays 354 ..
Section 67.7: Sorting sequence containers with specifed ordering 354 ...

Chapter 68: Enumeration 355 ...
Section 68.1: Iteration over an enum 355 ...
Section 68.2: Scoped enums 356 ..
Section 68.3: Enum forward declaration in C++11 357 ..
Section 68.4: Basic Enumeration Declaration 357 ..
Section 68.5: Enumeration in switch statements 358 ...

Chapter 69: Iteration 359 ..
Section 69.1: break 359 ..
Section 69.2: continue 359 ...
Section 69.3: do 359 ...
Section 69.4: while 359 ...
Section 69.5: range-based for loop 360 ...
Section 69.6: for 360 ...

Chapter 70: Regular expressions 361 ...
Section 70.1: Basic regex_match and regex_search Examples 361 ...
Section 70.2: regex_iterator Example 361 ...
Section 70.3: Anchors 362 ..
Section 70.4: regex_replace Example 363 ...
Section 70.5: regex_token_iterator Example 363 ..
Section 70.6: Quantifiers 363 ...
Section 70.7: Splitting a string 365 ..

Chapter 71: Implementation-defined behavior 366 ...
Section 71.1: Size of integral types 366 ...
Section 71.2: Char might be unsigned or signed 368 ..
Section 71.3: Ranges of numeric types 368 ...
Section 71.4: Value representation of floating point types 369 ...
Section 71.5: Overflow when converting from integer to signed integer 369 ..
Section 71.6: Underlying type (and hence size) of an enum 370 ...
Section 71.7: Numeric value of a pointer 370 ...
Section 71.8: Number of bits in a byte 371 ...

Chapter 72: Exceptions 372 ..
Section 72.1: Catching exceptions 372 ..

Section 72.2: Rethrow (propagate) exception 373 ...
Section 72.3: Best practice: throw by value, catch by const reference 374 ...
Section 72.4: Custom exception 375 ...
Section 72.5: std::uncaught_exceptions 377 ..
Section 72.6: Function Try Block for regular function 378 ...
Section 72.7: Nested exception 378 ..
Section 72.8: Function Try Blocks In constructor 380 ...
Section 72.9: Function Try Blocks In destructor 381 ...

Chapter 73: Lambdas 382 ...
Section 73.1: What is a lambda expression? 382 ...
Section 73.2: Specifying the return type 384 ...
Section 73.3: Capture by value 385 ..
Section 73.4: Recursive lambdas 386 ...
Section 73.5: Default capture 388 ...
Section 73.6: Class lambdas and capture of this 388 ...
Section 73.7: Capture by reference 390 ...
Section 73.8: Generic lambdas 390 ...
Section 73.9: Using lambdas for inline parameter pack unpacking 391 ..
Section 73.10: Generalized capture 393 ..
Section 73.11: Conversion to function pointer 394 ...
Section 73.12: Porting lambda functions to C++03 using functors 394 ...

Chapter 74: Value Categories 396 ...
Section 74.1: Value Category Meanings 396 ..
Section 74.2: rvalue 396 ...
Section 74.3: xvalue 397 ...
Section 74.4: prvalue 397 ...
Section 74.5: lvalue 398 ..
Section 74.6: glvalue 398 ...

Chapter 75: Preprocessor 399 ..
Section 75.1: Include Guards 399 ...
Section 75.2: Conditional logic and cross-platform handling 400 ...
Section 75.3: X-macros 401 ...
Section 75.4: Macros 403 ...
Section 75.5: Predefined macros 406 ...
Section 75.6: Preprocessor Operators 408 ..
Section 75.7: #pragma once 408 ..
Section 75.8: Preprocessor error messages 409 ...

Chapter 76: Data Structures in C++ 410 ..
Section 76.1: Linked List implementation in C++ 410 ...

Chapter 77: Templates 413 ..
Section 77.1: Basic Class Template 413 ..
Section 77.2: Function Templates 413 ..
Section 77.3: Variadic template data structures 415 ..
Section 77.4: Argument forwarding 417 ..
Section 77.5: Partial template specialization 418 ..
Section 77.6: Template Specialization 420 ...
Section 77.7: Alias template 420 ...
Section 77.8: Explicit instantiation 420 ..
Section 77.9: Non-type template parameter 421 ...
Section 77.10: Declaring non-type template arguments with auto 422 ..

Section 77.11: Template template parameters 423 ...
Section 77.12: Default template parameter value 424 ...

Chapter 78: Expression templates 425 ...
Section 78.1: A basic example illustrating expression templates 425 ...

Chapter 79: Curiously Recurring Template Pattern (CRTP) 429 ...
Section 79.1: The Curiously Recurring Template Pattern (CRTP) 429 ...
Section 79.2: CRTP to avoid code duplication 430 ..

Chapter 80: Threading 432 ...
Section 80.1: Creating a std::thread 432 ...
Section 80.2: Passing a reference to a thread 434 ...
Section 80.3: Using std::async instead of std::thread 434 ..
Section 80.4: Basic Synchronization 435 ..
Section 80.5: Create a simple thread pool 435 ...
Section 80.6: Ensuring a thread is always joined 437 ...
Section 80.7: Operations on the current thread 438 ..
Section 80.8: Using Condition Variables 439 ...
Section 80.9: Thread operations 441 ...
Section 80.10: Thread-local storage 441 ..
Section 80.11: Reassigning thread objects 441 ..

Chapter 81: Thread synchronization structures 443 ...
Section 81.1: std::condition_variable_any, std::cv_status 443 ..
Section 81.2: std::shared_lock 443 ..
Section 81.3: std::call_once, std::once_flag 443 ...
Section 81.4: Object locking for ecient access 444 ..

Chapter 82: The Rule of Three, Five, And Zero 446 ...
Section 82.1: Rule of Zero 446 ...
Section 82.2: Rule of Five 447 ...
Section 82.3: Rule of Three 448 ..
Section 82.4: Self-assignment Protection 449 ...

Chapter 83: RAII: Resource Acquisition Is Initialization 451 ...
Section 83.1: Locking 451 ...
Section 83.2: ScopeSuccess (c++17) 452 ..
Section 83.3: ScopeFail (c++17) 453 ..
Section 83.4: Finally/ScopeExit 454 ..

Chapter 84: RTTI: Run-Time Type Information 455 ..
Section 84.1: dynamic_cast 455 ..
Section 84.2: The typeid keyword 455 ...
Section 84.3: Name of a type 456 ...
Section 84.4: When to use which cast in c++ 456 ..

Chapter 85: Mutexes 457 ...
Section 85.1: Mutex Types 457 ..
Section 85.2: std::lock 457 ..
Section 85.3: std::unique_lock, std::shared_lock, std::lock_guard 457 ...
Section 85.4: Strategies for lock classes: std::try_to_lock, std::adopt_lock, std::defer_lock 458
Section 85.5: std::mutex 459 ..
Section 85.6: std::scoped_lock (C++ 17) 459 ..

Chapter 86: Recursive Mutex 460 ..
Section 86.1: std::recursive_mutex 460 ...

Chapter 87: Semaphore 461 ..

Section 87.1: Semaphore C++ 11 461 ...
Section 87.2: Semaphore class in action 461 ..

Chapter 88: Futures and Promises 463 ..
Section 88.1: Async operation classes 463 ...
Section 88.2: std::future and std::promise 463 ...
Section 88.3: Deferred async example 463 ...
Section 88.4: std::packaged_task and std::future 464 ..
Section 88.5: std::future_error and std::future_errc 464 ..
Section 88.6: std::future and std::async 465 ...

Chapter 89: Atomic Types 468 ..
Section 89.1: Multi-threaded Access 468 ..

Chapter 90: Type Erasure 470 ..
Section 90.1: A move-only `std::function` 470 ...
Section 90.2: Erasing down to a Regular type with manual vtable 472 ...
Section 90.3: Basic mechanism 475 ...
Section 90.4: Erasing down to a contiguous buer of T 476 ...
Section 90.5: Type erasing type erasure with std::any 477 ...

Chapter 91: Explicit type conversions 482 ...
Section 91.1: C-style casting 482 ..
Section 91.2: Casting away constness 482 ...
Section 91.3: Base to derived conversion 482 ..
Section 91.4: Conversion between pointer and integer 483 ...
Section 91.5: Conversion by explicit constructor or explicit conversion function 484 ...
Section 91.6: Implicit conversion 484 ..
Section 91.7: Enum conversions 484 ...
Section 91.8: Derived to base conversion for pointers to members 486 ..
Section 91.9: void* to T* 486 ...
Section 91.10: Type punning conversion 487 ...

Chapter 92: Unnamed types 488 ...
Section 92.1: Unnamed classes 488 ..
Section 92.2: As a type alias 488 ..
Section 92.3: Anonymous members 488 ...
Section 92.4: Anonymous Union 489 ..

Chapter 93: Type Traits 490 ...
Section 93.1: Type Properties 490 ...
Section 93.2: Standard type traits 491 ...
Section 93.3: Type relations with std::is_same<T, T> 492 ..
Section 93.4: Fundamental type traits 493 ..

Chapter 94: Return Type Covariance 494 ..
Section 94.1: Covariant result version of the base example, static type checking 494 ...
Section 94.2: Covariant smart pointer result (automated cleanup) 494 ..

Chapter 95: Layout of object types 496 ..
Section 95.1: Class types 496 ...
Section 95.2: Arithmetic types 498 ...
Section 95.3: Arrays 499 ..

Chapter 96: Type Inference 500 ..
Section 96.1: Data Type: Auto 500 ..
Section 96.2: Lambda auto 500 ..
Section 96.3: Loops and auto 500 ...

Chapter 97: Typedef and type aliases 502 ..
Section 97.1: Basic typedef syntax 502 ..
Section 97.2: More complex uses of typedef 502 ...
Section 97.3: Declaring multiple types with typedef 503 ...
Section 97.4: Alias declaration with "using" 503 ..

Chapter 98: type deduction 504 ..
Section 98.1: Template parameter deduction for constructors 504 ...
Section 98.2: Auto Type Deduction 504 ...
Section 98.3: Template Type Deduction 505 ...

Chapter 99: Trailing return type 507 ...
Section 99.1: Avoid qualifying a nested type name 507 ...
Section 99.2: Lambda expressions 507 ..

Chapter 100: Alignment 508 ...
Section 100.1: Controlling alignment 508 ..
Section 100.2: Querying the alignment of a type 508 ..

Chapter 101: Perfect Forwarding 510 ..
Section 101.1: Factory functions 510 ..

Chapter 102: decltype 511 ..
Section 102.1: Basic Example 511 ..
Section 102.2: Another example 511 ...

Chapter 103: SFINAE (Substitution Failure Is Not An Error) 512 ..
Section 103.1: What is SFINAE 512 ...
Section 103.2: void_t 512 ...
Section 103.3: enable_if 514 ..
Section 103.4: is_detected 515 ..
Section 103.5: Overload resolution with a large number of options 517 ..
Section 103.6: trailing decltype in function templates 518 ...
Section 103.7: enable_if_all / enable_if_any 519 ..

Chapter 104: Undefined Behavior 521 ..
Section 104.1: Reading or writing through a null pointer 521 ...
Section 104.2: Using an uninitialized local variable 521 ...
Section 104.3: Accessing an out-of-bounds index 522 ..
Section 104.4: Deleting a derived object via a pointer to a base class that doesn't have a virtual destructor

522 ...
Section 104.5: Extending the `std` or `posix` Namespace 522 ..
Section 104.6: Invalid pointer arithmetic 523 ...
Section 104.7: No return statement for a function with a non-void return type 524 ...
Section 104.8: Accessing a dangling reference 524 ..
Section 104.9: Integer division by zero 525 ..
Section 104.10: Shifting by an invalid number of positions 525 ...
Section 104.11: Incorrect pairing of memory allocation and deallocation 525 ...
Section 104.12: Signed Integer Overflow 526 ...
Section 104.13: Multiple non-identical definitions (the One Definition Rule) 526 ..
Section 104.14: Modifying a const object 527 ..
Section 104.15: Returning from a [[noreturn]] function 528 ..
Section 104.16: Infinite template recursion 528 ..
Section 104.17: Overflow during conversion to or from floating point type 529 ..
Section 104.18: Modifying a string literal 529 ...
Section 104.19: Accessing an object as the wrong type 529 ..

Section 104.20: Invalid derived-to-base conversion for pointers to members 530 ...
Section 104.21: Destroying an object that has already been destroyed 530 ...
Section 104.22: Access to nonexistent member through pointer to member 531 ...
Section 104.23: Invalid base-to-derived static cast 531 ..
Section 104.24: Floating point overflow 531 ..
Section 104.25: Calling (Pure) Virtual Members From Constructor Or Destructor 531 ...
Section 104.26: Function call through mismatched function pointer type 532 ..

Chapter 105: Overload resolution 533 ..
Section 105.1: Categorization of argument to parameter cost 533 ...
Section 105.2: Arithmetic promotions and conversions 533 ..
Section 105.3: Overloading on Forwarding Reference 534 ..
Section 105.4: Exact match 535 ...
Section 105.5: Overloading on constness and volatility 535 ..
Section 105.6: Name lookup and access checking 536 ..
Section 105.7: Overloading within a class hierarchy 537 ..
Section 105.8: Steps of Overload Resolution 538 ..

Chapter 106: Move Semantics 540 ..
Section 106.1: Move semantics 540 ...
Section 106.2: Using std::move to reduce complexity from O(n²) to O(n) 540 ...
Section 106.3: Move constructor 543 ..
Section 106.4: Re-use a moved object 545 ..
Section 106.5: Move assignment 545 ..
Section 106.6: Using move semantics on containers 546 ...

Chapter 107: Pimpl Idiom 547 ..
Section 107.1: Basic Pimpl idiom 547 ...

Chapter 108: auto 549 ...
Section 108.1: Basic auto sample 549 ...
Section 108.2: Generic lambda (C++14) 549 ...
Section 108.3: auto and proxy objects 550 ..
Section 108.4: auto and Expression Templates 550 ..
Section 108.5: auto, const, and references 551 ...
Section 108.6: Trailing return type 551 ...

Chapter 109: Copy Elision 553 ...
Section 109.1: Purpose of copy elision 553 ...
Section 109.2: Guaranteed copy elision 554 ..
Section 109.3: Parameter elision 555 ..
Section 109.4: Return value elision 555 ..
Section 109.5: Named return value elision 555 ..
Section 109.6: Copy initialization elision 556 ..

Chapter 110: Fold Expressions 557 ..
Section 110.1: Unary Folds 557 ...
Section 110.2: Binary Folds 557 ...
Section 110.3: Folding over a comma 558 ..

Chapter 111: Unions 559 ...
Section 111.1: Undefined Behavior 559 ...
Section 111.2: Basic Union Features 559 ...
Section 111.3: Typical Use 559 ..

Chapter 112: Design pattern implementation in C++ 561 ..
Section 112.1: Adapter Pattern 561 ..

Section 112.2: Observer pattern 563 ...
Section 112.3: Factory Pattern 566 ..
Section 112.4: Builder Pattern with Fluent API 566 ...

Chapter 113: Singleton Design Pattern 570 ..
Section 113.1: Lazy Initialization 570 ..
Section 113.2: Static deinitialization-safe singleton 571 ..
Section 113.3: Thread-safe Singeton 571 ..
Section 113.4: Subclasses 571 ..

Chapter 114: User-Defined Literals 573 ..
Section 114.1: Self-made user-defined literal for binary 573 ..
Section 114.2: Standard user-defined literals for duration 573 ..
Section 114.3: User-defined literals with long double values 574 ...
Section 114.4: Standard user-defined literals for strings 574 ...
Section 114.5: Standard user-defined literals for complex 575 ..

Chapter 115: Memory management 576 ..
Section 115.1: Free Storage (Heap, Dynamic Allocation ...) 576 ..
Section 115.2: Placement new 577 ...
Section 115.3: Stack 578 ..

Chapter 116: C++11 Memory Model 579 ..
Section 116.1: Need for Memory Model 579 ..
Section 116.2: Fence example 580 ...

Chapter 117: Scopes 582 ...
Section 117.1: Global variables 582 ..
Section 117.2: Simple block scope 582 ..

Chapter 118: static_assert 584 ...
Section 118.1: static_assert 584 ..

Chapter 119: constexpr 585 ...
Section 119.1: constexpr variables 585 ..
Section 119.2: Static if statement 586 ..
Section 119.3: constexpr functions 587 ..

Chapter 120: One Definition Rule (ODR) 589 ...
Section 120.1: ODR violation via overload resolution 589 ...
Section 120.2: Multiply defined function 589 ..
Section 120.3: Inline functions 590 ..

Chapter 121: Unspecified behavior 592 ...
Section 121.1: Value of an out-of-range enum 592 ..
Section 121.2: Evaluation order of function arguments 592 ...
Section 121.3: Result of some reinterpret_cast conversions 593 ...
Section 121.4: Space occupied by a reference 594 ...
Section 121.5: Moved-from state of most standard library classes 594 ...
Section 121.6: Result of some pointer comparisons 595 ...
Section 121.7: Static cast from bogus void* value 595 ..
Section 121.8: Order of initialization of globals across TU 595 ..

Chapter 122: Argument Dependent Name Lookup 597 ...
Section 122.1: What functions are found 597 ...

Chapter 123: Attributes 598 ..
Section 123.1: [[fallthrough]] 598 ..
Section 123.2: [[nodiscard]] 598 ...
Section 123.3: [[deprecated]] and [[deprecated("reason")]] 599 ..

Section 123.4: [[maybe_unused]] 599 ...
Section 123.5: [[noreturn]] 600 ..

Chapter 124: Recursion in C++ 602 ...
Section 124.1: Using tail recursion and Fibonnaci-style recursion to solve the Fibonnaci sequence 602
Section 124.2: Recursion with memoization 602 ..

Chapter 125: Arithmitic Metaprogramming 604 ..
Section 125.1: Calculating power in O(log n) 604 ...

Chapter 126: Callable Objects 606 ..
Section 126.1: Function Pointers 606 ...
Section 126.2: Classes with operator() (Functors) 606 ...

Chapter 127: Client server examples 608 ..
Section 127.1: Hello TCP Client 608 ..
Section 127.2: Hello TCP Server 609 ...

Chapter 128: Const Correctness 613 ..
Section 128.1: The Basics 613 ...
Section 128.2: Const Correct Class Design 613 ...
Section 128.3: Const Correct Function Parameters 615 ...
Section 128.4: Const Correctness as Documentation 617 ..

Chapter 129: Parameter packs 621 ..
Section 129.1: A template with a parameter pack 621 ..
Section 129.2: Expansion of a parameter pack 621 ..

Chapter 130: Build Systems 622 ...
Section 130.1: Generating Build Environment with CMake 622 ..
Section 130.2: Compiling with GNU make 623 ...
Section 130.3: Building with SCons 625 ...
Section 130.4: Autotools (GNU) 625 ..
Section 130.5: Ninja 626 ..
Section 130.6: NMAKE (Microsoft Program Maintenance Utility) 626 ...

Chapter 131: Concurrency With OpenMP 627 ...
Section 131.1: OpenMP: Parallel Sections 627 ...
Section 131.2: OpenMP: Parallel Sections 627 ...
Section 131.3: OpenMP: Parallel For Loop 628 ..
Section 131.4: OpenMP: Parallel Gathering / Reduction 628 ..

Chapter 132: Resource Management 630 ..
Section 132.1: Resource Acquisition Is Initialization 630 ..
Section 132.2: Mutexes & Thread Safety 631 ...

Chapter 133: Storage class specifiers 633 ..
Section 133.1: extern 633 ...
Section 133.2: register 634 ...
Section 133.3: static 634 ...
Section 133.4: auto 635 ...
Section 133.5: mutable 635 ..

Chapter 134: Linkage specifications 637 ...
Section 134.1: Signal handler for Unix-like operating system 637 ...
Section 134.2: Making a C library header compatible with C++ 637 ...

Chapter 135: Digit separators 639 ..
Section 135.1: Digit Separator 639 ...

Chapter 136: C incompatibilities 640 ..

Section 136.1: Reserved Keywords 640 ...
Section 136.2: Weakly typed pointers 640 ...
Section 136.3: goto or switch 640 ..

Chapter 137: Side by Side Comparisons of classic C++ examples solved via C++ vs C++11
vs C++14 vs C++17 641 ...

Section 137.1: Looping through a container 641 ..

Chapter 138: Compiling and Building 642 ..
Section 138.1: Compiling with GCC 642 ...
Section 138.2: Compiling with Visual Studio (Graphical Interface) - Hello World 643 ...
Section 138.3: Online Compilers 648 ...
Section 138.4: Compiling with Visual C++ (Command Line) 650 ..
Section 138.5: Compiling with Clang 653 ..
Section 138.6: The C++ compilation process 653 ...
Section 138.7: Compiling with Code::Blocks (Graphical interface) 655 ..

Chapter 139: Common compile/linker errors (GCC) 658 ...
Section 139.1: undefined reference to `***' 658 ..
Section 139.2: error: '***' was not declared in this scope 658 ..
Section 139.3: fatal error: ***: No such file or directory 660 ...

Chapter 140: More undefined behaviors in C++ 661 ..
Section 140.1: Referring to non-static members in initializer lists 661 ...

Chapter 141: Unit Testing in C++ 662 ...
Section 141.1: Google Test 662 ...
Section 141.2: Catch 662 ...

Chapter 142: C++ Debugging and Debug-prevention Tools & Techniques 664
Section 142.1: Static analysis 664 ..
Section 142.2: Segfault analysis with GDB 665 ..
Section 142.3: Clean code 666 ...

Chapter 143: Optimization in C++ 668 ...
Section 143.1: Introduction to performance 668 ..
Section 143.2: Empty Base Class Optimization 668 ..
Section 143.3: Optimizing by executing less code 669 ..
Section 143.4: Using ecient containers 670 ...
Section 143.5: Small Object Optimization 671 ..

Chapter 144: Optimization 673 ..
Section 144.1: Inline Expansion/Inlining 673 ...
Section 144.2: Empty base optimization 673 ...

Chapter 145: Profiling 675 ...
Section 145.1: Profiling with gcc and gprof 675 ...
Section 145.2: Generating callgraph diagrams with gperf2dot 675 ..
Section 145.3: Profiling CPU Usage with gcc and Google Perf Tools 676 ...

Chapter 146: Refactoring Techniques 678 ...
Section 146.1: Goto Cleanup 678 ..

Credits 679 ..

You may also like 686 ..

C++ Notes for Professionals 1

About

Please feel free to share this PDF with anyone for free,
latest version of this book can be downloaded from:

http://GoalKicker.com/CPlusPlusBook

This C++ Notes for Professionals book is compiled from Stack Overflow
Documentation, the content is written by the beautiful people at Stack Overflow.
Text content is released under Creative Commons BY-SA, see credits at the end

of this book whom contributed to the various chapters. Images may be copyright
of their respective owners unless otherwise specified

This is an unofficial free book created for educational purposes and is not
affiliated with official C++ group(s) or company(s) nor Stack Overflow. All

trademarks and registered trademarks are the property of their respective
company owners

The information presented in this book is not guaranteed to be correct nor
accurate, use at your own risk

Please send feedback and corrections to web@petercv.com

http://goalkicker.com/CPlusPlusBook
https://archive.org/details/documentation-dump.7z
https://archive.org/details/documentation-dump.7z
mailto:web@petercv.com

C++ Notes for Professionals 2

Chapter 1: Getting started with C++
Version Standard Release Date
C++98 ISO/IEC 14882:1998 1998-09-01
C++03 ISO/IEC 14882:2003 2003-10-16
C++11 ISO/IEC 14882:2011 2011-09-01
C++14 ISO/IEC 14882:2014 2014-12-15
C++17 TBD 2017-01-01
C++20 TBD 2020-01-01

Section 1.1: Hello World
This program prints Hello World! to the standard output stream:

#include <iostream>

int main()
{
 std::cout << "Hello World!" << std::endl;
}

See it live on Coliru.

Analysis

Let's examine each part of this code in detail:

#include <iostream> is a preprocessor directive that includes the content of the standard C++ header file
iostream.

iostream is a standard library header file that contains definitions of the standard input and output
streams. These definitions are included in the std namespace, explained below.

The standard input/output (I/O) streams provide ways for programs to get input from and output to an
external system -- usually the terminal.

int main() { ... } defines a new function named main. By convention, the main function is called upon
execution of the program. There must be only one main function in a C++ program, and it must always return
a number of the int type.

Here, the int is what is called the function's return type. The value returned by the main function is an exit
code.

By convention, a program exit code of 0 or EXIT_SUCCESS is interpreted as success by a system that executes
the program. Any other return code is associated with an error.

If no return statement is present, the main function (and thus, the program itself) returns 0 by default. In this
example, we don't need to explicitly write return 0;.

All other functions, except those that return the void type, must explicitly return a value according to their
return type, or else must not return at all.

http://coliru.stacked-crooked.com/a/ba766ad8ca2fae56

C++ Notes for Professionals 3

std::cout << "Hello World!" << std::endl; prints "Hello World!" to the standard output stream:

std is a namespace, and :: is the scope resolution operator that allows look-ups for objects by name
within a namespace.

There are many namespaces. Here, we use :: to show we want to use cout from the std namespace.
For more information refer to Scope Resolution Operator - Microsoft Documentation.

std::cout is the standard output stream object, defined in iostream, and it prints to the standard
output (stdout).

<< is, in this context, the stream insertion operator, so called because it inserts an object into the
stream object.

The standard library defines the << operator to perform data insertion for certain data types into
output streams. stream << content inserts content into the stream and returns the same, but
updated stream. This allows stream insertions to be chained: std::cout << "Foo" << " Bar"; prints
"FooBar" to the console.

"Hello World!" is a character string literal, or a "text literal." The stream insertion operator for
character string literals is defined in file iostream.

std::endl is a special I/O stream manipulator object, also defined in file iostream. Inserting a
manipulator into a stream changes the state of the stream.

The stream manipulator std::endl does two things: first it inserts the end-of-line character and then it
flushes the stream buffer to force the text to show up on the console. This ensures that the data
inserted into the stream actually appear on your console. (Stream data is usually stored in a buffer and
then "flushed" in batches unless you force a flush immediately.)

An alternate method that avoids the flush is:

std::cout << "Hello World!\n";

where \n is the character escape sequence for the newline character.

The semicolon (;) notifies the compiler that a statement has ended. All C++ statements and class
definitions require an ending/terminating semicolon.

Section 1.2: Comments
A comment is a way to put arbitrary text inside source code without having the C++ compiler interpret it with any
functional meaning. Comments are used to give insight into the design or method of a program.

There are two types of comments in C++:

Single-Line Comments

The double forward-slash sequence // will mark all text until a newline as a comment:

int main()
{

https://msdn.microsoft.com/en-us/library/b451xz31.aspx/
http://en.cppreference.com/w/cpp/io/manip/endl
http://en.cppreference.com/w/cpp/io/manip/endl
http://en.cppreference.com/w/cpp/io/manip/endl

C++ Notes for Professionals 4

 // This is a single-line comment.
 int a; // this also is a single-line comment
 int i; // this is another single-line comment
}

C-Style/Block Comments

The sequence /* is used to declare the start of the comment block and the sequence */ is used to declare the end
of comment. All text between the start and end sequences is interpreted as a comment, even if the text is
otherwise valid C++ syntax. These are sometimes called "C-style" comments, as this comment syntax is inherited
from C++'s predecessor language, C:

int main()
{
 /*
 * This is a block comment.
 */
 int a;
}

In any block comment, you can write anything you want. When the compiler encounters the symbol */, it
terminates the block comment:

int main()
{
 /* A block comment with the symbol /*
 Note that the compiler is not affected by the second /*
 however, once the end-block-comment symbol is reached,
 the comment ends.
 */
 int a;
}

The above example is valid C++ (and C) code. However, having additional /* inside a block comment might result in
a warning on some compilers.

Block comments can also start and end within a single line. For example:

void SomeFunction(/* argument 1 */ int a, /* argument 2 */ int b);

Importance of Comments

As with all programming languages, comments provide several benefits:

Explicit documentation of code to make it easier to read/maintain
Explanation of the purpose and functionality of code
Details on the history or reasoning behind the code
Placement of copyright/licenses, project notes, special thanks, contributor credits, etc. directly in the source
code.

However, comments also have their downsides:

They must be maintained to reflect any changes in the code
Excessive comments tend to make the code less readable

The need for comments can be reduced by writing clear, self-documenting code. A simple example is the use of
explanatory names for variables, functions, and types. Factoring out logically related tasks into discrete functions
goes hand-in-hand with this.

C++ Notes for Professionals 5

Comment markers used to disable code

During development, comments can also be used to quickly disable portions of code without deleting it. This is
often useful for testing or debugging purposes, but is not good style for anything other than temporary edits. This
is often referred to as “commenting out”.

Similarly, keeping old versions of a piece of code in a comment for reference purposes is frowned upon, as it
clutters files while offering little value compared to exploring the code's history via a versioning system.

Section 1.3: The standard C++ compilation process
Executable C++ program code is usually produced by a compiler.

A compiler is a program that translates code from a programming language into another form which is (more)
directly executable for a computer. Using a compiler to translate code is called compilation.

C++ inherits the form of its compilation process from its "parent" language, C. Below is a list showing the four major
steps of compilation in C++:

The C++ preprocessor copies the contents of any included header files into the source code file, generates1.
macro code, and replaces symbolic constants defined using #define with their values.
The expanded source code file produced by the C++ preprocessor is compiled into assembly language2.
appropriate for the platform.
The assembler code generated by the compiler is assembled into appropriate object code for the platform.3.
The object code file generated by the assembler is linked together with the object code files for any library4.
functions used to produce an executable file.

Note: some compiled code is linked together, but not to create a final program. Usually, this "linked" code
can also be packaged into a format that can be used by other programs. This "bundle of packaged, usable
code" is what C++ programmers refer to as a library.

Many C++ compilers may also merge or un-merge certain parts of the compilation process for ease or for additional
analysis. Many C++ programmers will use different tools, but all of the tools will generally follow this generalized
process when they are involved in the production of a program.

The link below extends this discussion and provides a nice graphic to help. [1]:
http://faculty.cs.niu.edu/~mcmahon/CS241/Notes/compile.html

Section 1.4: Function
A function is a unit of code that represents a sequence of statements.

Functions can accept arguments or values and return a single value (or not). To use a function, a function call is
used on argument values and the use of the function call itself is replaced with its return value.

Every function has a type signature -- the types of its arguments and the type of its return type.

Functions are inspired by the concepts of the procedure and the mathematical function.

Note: C++ functions are essentially procedures and do not follow the exact definition or rules of
mathematical functions.

Functions are often meant to perform a specific task. and can be called from other parts of a program. A function
must be declared and defined before it is called elsewhere in a program.

http://faculty.cs.niu.edu/%7Emcmahon/CS241/Notes/compile.html

C++ Notes for Professionals 6

Note: popular function definitions may be hidden in other included files (often for convenience and reuse
across many files). This is a common use of header files.

Function Declaration

A function declaration is declares the existence of a function with its name and type signature to the compiler.
The syntax is as the following:

int add2(int i); // The function is of the type (int) -> (int)

In the example above, the int add2(int i) function declares the following to the compiler:

The return type is int.
The name of the function is add2.
The number of arguments to the function is 1:

The first argument is of the type int.
The first argument will be referred to in the function's contents by the name i.

The argument name is optional; the declaration for the function could also be the following:

int add2(int); // Omitting the function arguments' name is also permitted.

Per the one-definition rule, a function with a certain type signature can only be declared or defined once in an
entire C++ code base visible to the C++ compiler. In other words, functions with a specific type signature cannot be
re-defined -- they must only be defined once. Thus, the following is not valid C++:

int add2(int i); // The compiler will note that add2 is a function (int) -> int
int add2(int j); // As add2 already has a definition of (int) -> int, the compiler
 // will regard this as an error.

If a function returns nothing, its return type is written as void. If it takes no parameters, the parameter list should
be empty.

void do_something(); // The function takes no parameters, and does not return anything.
 // Note that it can still affect variables it has access to.

Function Call

A function can be called after it has been declared. For example, the following program calls add2 with the value of
2 within the function of main:

#include <iostream>

int add2(int i); // Declaration of add2

// Note: add2 is still missing a DEFINITION.
// Even though it doesn't appear directly in code,
// add2's definition may be LINKED in from another object file.

int main()
{
 std::cout << add2(2) << "\n"; // add2(2) will be evaluated at this point,
 // and the result is printed.
 return 0;
}

Here, add2(2) is the syntax for a function call.

C++ Notes for Professionals 7

Function Definition

A function definition* is similar to a declaration, except it also contains the code that is executed when the function
is called within its body.

An example of a function definition for add2 might be:

int add2(int i) // Data that is passed into (int i) will be referred to by the name i
{ // while in the function's curly brackets or "scope."

 int j = i + 2; // Definition of a variable j as the value of i+2.
 return j; // Returning or, in essence, substitution of j for a function call to
 // add2.
}

Function Overloading

You can create multiple functions with the same name but different parameters.

int add2(int i) // Code contained in this definition will be evaluated
{ // when add2() is called with one parameter.
 int j = i + 2;
 return j;
}

int add2(int i, int j) // However, when add2() is called with two parameters, the
{ // code from the initial declaration will be overloaded,
 int k = i + j + 2 ; // and the code in this declaration will be evaluated
 return k; // instead.
}

Both functions are called by the same name add2, but the actual function that is called depends directly on the
amount and type of the parameters in the call. In most cases, the C++ compiler can compute which function to call.
In some cases, the type must be explicitly stated.

Default Parameters

Default values for function parameters can only be specified in function declarations.

int multiply(int a, int b = 7); // b has default value of 7.
int multiply(int a, int b)
{
 return a * b; // If multiply() is called with one parameter, the
} // value will be multiplied by the default, 7.

In this example, multiply() can be called with one or two parameters. If only one parameter is given, b will have
default value of 7. Default arguments must be placed in the latter arguments of the function. For example:

int multiply(int a = 10, int b = 20); // This is legal
int multiply(int a = 10, int b); // This is illegal since int a is in the former

Special Function Calls - Operators

There exist special function calls in C++ which have different syntax than name_of_function(value1, value2,
value3). The most common example is that of operators.

Certain special character sequences that will be reduced to function calls by the compiler, such as !, +, -, *, %, and
<< and many more. These special characters are normally associated with non-programming usage or are used for

C++ Notes for Professionals 8

aesthetics (e.g. the + character is commonly recognized as the addition symbol both within C++ programming as
well as in elementary math).

C++ handles these character sequences with a special syntax; but, in essence, each occurrence of an operator is
reduced to a function call. For example, the following C++ expression:

3+3

is equivalent to the following function call:

operator+(3, 3)

All operator function names start with operator.

While in C++'s immediate predecessor, C, operator function names cannot be assigned different meanings by
providing additional definitions with different type signatures, in C++, this is valid. "Hiding" additional function
definitions under one unique function name is referred to as operator overloading in C++, and is a relatively
common, but not universal, convention in C++.

Section 1.5: Visibility of function prototypes and declarations
In C++, code must be declared or defined before usage. For example, the following produces a compile time error:

int main()
{
 foo(2); // error: foo is called, but has not yet been declared
}

void foo(int x) // this later definition is not known in main
{
}

There are two ways to resolve this: putting either the definition or declaration of foo() before its usage in main().
Here is one example:

void foo(int x) {} //Declare the foo function and body first

int main()
{
 foo(2); // OK: foo is completely defined beforehand, so it can be called here.
}

However it is also possible to "forward-declare" the function by putting only a "prototype" declaration before its
usage and then defining the function body later:

void foo(int); // Prototype declaration of foo, seen by main
 // Must specify return type, name, and argument list types
int main()
{
 foo(2); // OK: foo is known, called even though its body is not yet defined
}

void foo(int x) //Must match the prototype
{
 // Define body of foo here
}

C++ Notes for Professionals 9

The prototype must specify the return type (void), the name of the function (foo), and the argument list variable
types (int), but the names of the arguments are NOT required.

One common way to integrate this into the organization of source files is to make a header file containing all of the
prototype declarations:

// foo.h
void foo(int); // prototype declaration

and then provide the full definition elsewhere:

// foo.cpp --> foo.o
#include "foo.h" // foo's prototype declaration is "hidden" in here
void foo(int x) { } // foo's body definition

and then, once compiled, link the corresponding object file foo.o into the compiled object file where it is used in
the linking phase, main.o:

// main.cpp --> main.o
#include "foo.h" // foo's prototype declaration is "hidden" in here
int main() { foo(2); } // foo is valid to call because its prototype declaration was beforehand.
// the prototype and body definitions of foo are linked through the object files

An “unresolved external symbol” error occurs when the function prototype and call exist, but the function body is
not defined. These can be trickier to resolve as the compiler won't report the error until the final linking stage, and
it doesn't know which line to jump to in the code to show the error.

Section 1.6: Preprocessor
The preprocessor is an important part of the compiler.

It edits the source code, cutting some bits out, changing others, and adding other things.

In source files, we can include preprocessor directives. These directives tells the preprocessor to perform specific
actions. A directive starts with a # on a new line. Example:

#define ZERO 0

The first preprocessor directive you will meet is probably the

#include <something>

directive. What it does is takes all of something and inserts it in your file where the directive was. The hello world
program starts with the line

#include <iostream>

This line adds the functions and objects that let you use the standard input and output.

The C language, which also uses the preprocessor, does not have as many header files as the C++ language, but in
C++ you can use all the C header files.

The next important directive is probably the

https://stackoverflow.com/questions/5234169/why-do-function-prototypes-include-parameter-names-when-theyre-not-required

C++ Notes for Professionals 10

#define something something_else

directive. This tells the preprocessor that as it goes along the file, it should replace every occurrence of something
with something_else. It can also make things similar to functions, but that probably counts as advanced C++.

The something_else is not needed, but if you define something as nothing, then outside preprocessor directives, all
occurrences of something will vanish.

This actually is useful, because of the #if,#else and #ifdef directives. The format for these would be the following:

#if something==true
//code
#else
//more code
#endif

#ifdef thing_that_you_want_to_know_if_is_defined
//code
#endif

These directives insert the code that is in the true bit, and deletes the false bits. this can be used to have bits of
code that are only included on certain operating systems, without having to rewrite the whole code.

C++ Notes for Professionals 11

Chapter 2: Literals
Traditionally, a literal is an expression denoting a constant whose type and value are evident from its spelling. For
example, 42 is a literal, while x is not since one must see its declaration to know its type and read previous lines of
code to know its value.

However, C++11 also added user-defined literals, which are not literals in the traditional sense but can be used as a
shorthand for function calls.

Section 2.1: this
Within a member function of a class, the keyword this is a pointer to the instance of the class on which the
function was called. this cannot be used in a static member function.

struct S {
 int x;
 S& operator=(const S& other) {
 x = other.x;
 // return a reference to the object being assigned to
 return *this;
 }
};

The type of this depends on the cv-qualification of the member function: if X::f is const, then the type of this
within f is const X*, so this cannot be used to modify non-static data members from within a const member
function. Likewise, this inherits volatile qualification from the function it appears in.

Version ≥ C++11

this can also be used in a brace-or-equal-initializer for a non-static data member.

struct S;
struct T {
 T(const S* s);
 // ...
};
struct S {
 // ...
 T t{this};
};

this is an rvalue, so it cannot be assigned to.

Section 2.2: Integer literal
An integer literal is a primary expression of the form

decimal-literal

It is a non-zero decimal digit (1, 2, 3, 4, 5, 6, 7, 8, 9), followed by zero or more decimal digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

int d = 42;

octal-literal

It is the digit zero (0) followed by zero or more octal digits (0, 1, 2, 3, 4, 5, 6, 7)

C++ Notes for Professionals 12

int o = 052

hex-literal

It is the character sequence 0x or the character sequence 0X followed by one or more hexadecimal digits (0, 1, 2, 3,
4, 5, 6, 7, 8, 9, a, A, b, B, c, C, d, D, e, E, f, F)

int x = 0x2a; int X = 0X2A;

binary-literal (since C++14)

It is the character sequence 0b or the character sequence 0B followed by one or more binary digits (0, 1)

int b = 0b101010; // C++14

Integer-suffix, if provided, may contain one or both of the following (if both are provided, they may appear in any
order:

unsigned-suffix (the character u or the character U)

unsigned int u_1 = 42u;

long-suffix (the character l or the character L) or the long-long-suffix (the character sequence ll or the
character sequence LL) (since C++11)

The following variables are also initialized to the same value:

unsigned long long l1 = 18446744073709550592ull; // C++11
unsigned long long l2 = 18'446'744'073'709'550'592llu; // C++14
unsigned long long l3 = 1844'6744'0737'0955'0592uLL; // C++14
unsigned long long l4 = 184467'440737'0'95505'92LLU; // C++14

Notes

Letters in the integer literals are case-insensitive: 0xDeAdBaBeU and 0XdeadBABEu represent the same number
(one exception is the long-long-suffix, which is either ll or LL, never lL or Ll)

There are no negative integer literals. Expressions such as -1 apply the unary minus operator to the value
represented by the literal, which may involve implicit type conversions.

In C prior to C99 (but not in C++), unsuffixed decimal values that do not fit in long int are allowed to have the type
unsigned long int.

When used in a controlling expression of #if or #elif, all signed integer constants act as if they have type
std::intmax_t and all unsigned integer constants act as if they have type std::uintmax_t.

Section 2.3: true
A keyword denoting one of the two possible values of type bool.

bool ok = true;
if (!f()) {
 ok = false;
 goto end;
}

C++ Notes for Professionals 13

Section 2.4: false
A keyword denoting one of the two possible values of type bool.

bool ok = true;
if (!f()) {
 ok = false;
 goto end;
}

Section 2.5: nullptr
Version ≥ C++11

A keyword denoting a null pointer constant. It can be converted to any pointer or pointer-to-member type, yielding
a null pointer of the resulting type.

Widget* p = new Widget();
delete p;
p = nullptr; // set the pointer to null after deletion

Note that nullptr is not itself a pointer. The type of nullptr is a fundamental type known as std::nullptr_t.

void f(int* p);

template <class T>
void g(T* p);

void h(std::nullptr_t p);

int main() {
 f(nullptr); // ok
 g(nullptr); // error
 h(nullptr); // ok
}

C++ Notes for Professionals 14

Chapter 3: Inline variables
An inline variable is allowed to be defined in multiple translation units without violating the One Definition Rule. If it
is multiply defined, the linker will merge all definitions into a single object in the final program.

Section 3.1: Defining a static data member in the class
definition
A static data member of the class may be fully defined within the class definition if it is declared inline. For
example, the following class may be defined in a header. Prior to C++17, it would have been necessary to provide a
.cpp file to contain the definition of Foo::num_instances so that it would be defined only once, but in C++17 the
multiple definitions of the inline variable Foo::num_instances all refer to the same int object.

// warning: not thread-safe...
class Foo {
 public:
 Foo() { ++num_instances; }
 ~Foo() { --num_instances; }
 inline static int num_instances = 0;
};

As a special case, a constexpr static data member is implicitly inline.

class MyString {
 public:
 MyString() { /* ... */ }
 // ...
 static constexpr int max_size = INT_MAX / 2;
};
// in C++14, this definition was required in a single translation unit:
// constexpr int MyString::max_size;

C++ Notes for Professionals 15

Chapter 4: operator precedence
Section 4.1: Logical && and || operators: short-circuit
&& has precedence over ||, this means that parentheses are placed to evaluate what would be evaluated together.

c++ uses short-circuit evaluation in && and || to not do unnecessary executions.
If the left hand side of || returns true the right hand side does not need to be evaluated anymore.

#include <iostream>
#include <string>

using namespace std;

bool True(string id){
 cout << "True" << id << endl;
 return true;
}

bool False(string id){
 cout << "False" << id << endl;
 return false;
}

int main(){
 bool result;
 //let's evaluate 3 booleans with || and && to illustrate operator precedence
 //precedence does not mean that && will be evaluated first but rather where
 //parentheses would be added
 //example 1
 result =
 False("A") || False("B") && False("C");
 // eq. False("A") || (False("B") && False("C"))
 //FalseA
 //FalseB
 //"Short-circuit evaluation skip of C"
 //A is false so we have to evaluate the right of ||,
 //B being false we do not have to evaluate C to know that the result is false

 result =
 True("A") || False("B") && False("C");
 // eq. True("A") || (False("B") && False("C"))
 cout << result << " :=====================" << endl;
 //TrueA
 //"Short-circuit evaluation skip of B"
 //"Short-circuit evaluation skip of C"
 //A is true so we do not have to evaluate
 // the right of || to know that the result is true
 //If || had precedence over && the equivalent evaluation would be:
 // (True("A") || False("B")) && False("C")
 //What would print
 //TrueA
 //"Short-circuit evaluation skip of B"
 //FalseC
 //Because the parentheses are placed differently
 //the parts that get evaluated are differently
 //which makes that the end result in this case would be False because C is false

C++ Notes for Professionals 16

}

Section 4.2: Unary Operators
Unary operators act on the object upon which they are called and have high precedence. (See Remarks)

When used postfix, the action occurs only after the entire operation is evaluated, leading to some interesting
arithmetics:

int a = 1;
++a; // result: 2
a--; // result: 1
int minusa=-a; // result: -1

bool b = true;
!b; // result: true

a=4;
int c = a++/2; // equal to: (a==4) 4 / 2 result: 2 ('a' incremented postfix)
cout << a << endl; // prints 5!
int d = ++a/2; // equal to: (a+1) == 6 / 2 result: 3

int arr[4] = {1,2,3,4};

int *ptr1 = &arr[0]; // points to arr[0] which is 1
int *ptr2 = ptr1++; // ptr2 points to arr[0] which is still 1; ptr1 incremented
std::cout << *ptr1++ << std::endl; // prints 2

int e = arr[0]++; // receives the value of arr[0] before it is incremented
std::cout << e << std::endl; // prints 1
std::cout << *ptr2 << std::endl; // prints arr[0] which is now 2

Section 4.3: Arithmetic operators
Arithmetic operators in C++ have the same precedence as they do in mathematics:

Multiplication and division have left associativity(meaning that they will be evaluated from left to right) and they
have higher precedence than addition and subtraction, which also have left associativity.

We can also force the precedence of expression using parentheses (). Just the same way as you would do that in
normal mathematics.

// volume of a spherical shell = 4 pi R^3 - 4 pi r^3
double vol = 4.0*pi*R*R*R/3.0 - 4.0*pi*r*r*r/3.0;

//Addition:

int a = 2+4/2; // equal to: 2+(4/2) result: 4
int b = (3+3)/2; // equal to: (3+3)/2 result: 3

//With Multiplication

int c = 3+4/2*6; // equal to: 3+((4/2)*6) result: 15
int d = 3*(3+6)/9; // equal to: (3*(3+6))/9 result: 3

//Division and Modulo

int g = 3-3%1; // equal to: 3 % 1 = 0 3 - 0 = 3
int h = 3-(3%1); // equal to: 3 % 1 = 0 3 - 0 = 3

C++ Notes for Professionals 17

int i = 3-3/1%3; // equal to: 3 / 1 = 3 3 % 3 = 0 3 - 0 = 3
int l = 3-(3/1)%3; // equal to: 3 / 1 = 3 3 % 3 = 0 3 - 0 = 3
int m = 3-(3/(1%3)); // equal to: 1 % 3 = 1 3 / 1 = 3 3 - 3 = 0

Section 4.4: Logical AND and OR operators
These operators have the usual precedence in C++: AND before OR.

// You can drive with a foreign license for up to 60 days
bool can_drive = has_domestic_license || has_foreign_license && num_days <= 60;

This code is equivalent to the following:

// You can drive with a foreign license for up to 60 days
bool can_drive = has_domestic_license || (has_foreign_license && num_days <= 60);

Adding the parenthesis does not change the behavior, though, it does make it easier to read. By adding these
parentheses, no confusion exist about the intent of the writer.

C++ Notes for Professionals 18

Chapter 5: Floating Point Arithmetic
Section 5.1: Floating Point Numbers are Weird
The first mistake that nearly every single programmer makes is presuming that this code will work as intended:

float total = 0;
for(float a = 0; a != 2; a += 0.01f) {
 total += a;
}

The novice programmer assumes that this will sum up every single number in the range 0, 0.01, 0.02, 0.03,
..., 1.97, 1.98, 1.99, to yield the result 199—the mathematically correct answer.

Two things happen that make this untrue:

The program as written never concludes. a never becomes equal to 2, and the loop never terminates.1.
If we rewrite the loop logic to check a < 2 instead, the loop terminates, but the total ends up being2.
something different from 199. On IEEE754-compliant machines, it will often sum up to about 201 instead.

The reason that this happens is that Floating Point Numbers represent Approximations of their assigned
values.

The classical example is the following computation:

double a = 0.1;
double b = 0.2;
double c = 0.3;
if(a + b == c)
 //This never prints on IEEE754-compliant machines
 std::cout << "This Computer is Magic!" << std::endl;
else
 std::cout << "This Computer is pretty normal, all things considered." << std::endl;

Though what we the programmer see is three numbers written in base10, what the compiler (and the underlying
hardware) see are binary numbers. Because 0.1, 0.2, and 0.3 require perfect division by 10—which is quite easy in
a base-10 system, but impossible in a base-2 system—these numbers have to be stored in imprecise formats,
similar to how the number 1/3 has to be stored in the imprecise form 0.333333333333333... in base-10.

//64-bit floats have 53 digits of precision, including the whole-number-part.
double a = 0011111110111001100110011001100110011001100110011001100110011010; //imperfect
representation of 0.1
double b = 0011111111001001100110011001100110011001100110011001100110011010; //imperfect
representation of 0.2
double c = 0011111111010011001100110011001100110011001100110011001100110011; //imperfect
representation of 0.3
double a + b = 0011111111010011001100110011001100110011001100110011001100110100; //Note that this
is not quite equal to the "canonical" 0.3!

C++ Notes for Professionals 19

Chapter 6: Bit Operators
Section 6.1: | - bitwise OR
int a = 5; // 0101b (0x05)
int b = 12; // 1100b (0x0C)
int c = a | b; // 1101b (0x0D)

std::cout << "a = " << a << ", b = " << b << ", c = " << c << std::endl;

Output

a = 5, b = 12, c = 13

Why

A bit wise OR operates on the bit level and uses the following Boolean truth table:

true OR true = true
true OR false = true
false OR false = false

When the binary value for a (0101) and the binary value for b (1100) are OR'ed together we get the binary value of
1101:

int a = 0 1 0 1
int b = 1 1 0 0 |

int c = 1 1 0 1

The bit wise OR does not change the value of the original values unless specifically assigned to using the bit wise
assignment compound operator |=:

int a = 5; // 0101b (0x05)
a |= 12; // a = 0101b | 1101b

Section 6.2: ^ - bitwise XOR (exclusive OR)
int a = 5; // 0101b (0x05)
int b = 9; // 1001b (0x09)
int c = a ^ b; // 1100b (0x0C)

std::cout << "a = " << a << ", b = " << b << ", c = " << c << std::endl;

Output

a = 5, b = 9, c = 12

Why

A bit wise XOR (exclusive or) operates on the bit level and uses the following Boolean truth table:

true OR true = false
true OR false = true
false OR false = false

C++ Notes for Professionals 20

Notice that with an XOR operation true OR true = false where as with operations true AND/OR true = true,
hence the exclusive nature of the XOR operation.

Using this, when the binary value for a (0101) and the binary value for b (1001) are XOR'ed together we get the binary
value of 1100:

int a = 0 1 0 1
int b = 1 0 0 1 ^

int c = 1 1 0 0

The bit wise XOR does not change the value of the original values unless specifically assigned to using the bit wise
assignment compound operator ^=:

int a = 5; // 0101b (0x05)
a ^= 9; // a = 0101b ^ 1001b

The bit wise XOR can be utilized in many ways and is often utilized in bit mask operations for encryption and
compression.

Note: The following example is often shown as an example of a nice trick. But should not be used in production
code (there are better ways std::swap() to achieve the same result).

You can also utilize an XOR operation to swap two variables without a temporary:

int a = 42;
int b = 64;

// XOR swap
a ^= b;
b ^= a;
a ^= b;

std::cout << "a = " << a << ", b = " << b << "\n";

To productionalize this you need to add a check to make sure it can be used.

void doXORSwap(int& a, int& b)
{
 // Need to add a check to make sure you are not swapping the same
 // variable with itself. Otherwise it will zero the value.
 if (&a != &b)
 {
 // XOR swap
 a ^= b;
 b ^= a;
 a ^= b;
 }
}

So though it looks like a nice trick in isolation it is not useful in real code. xor is not a base logical operation,but a
combination of others: a^c=~(a&c)&(a|c)

also in 2015+ compilers variables may be assigned as binary:

int cn=0b0111;

C++ Notes for Professionals 21

Section 6.3: & - bitwise AND
int a = 6; // 0110b (0x06)
int b = 10; // 1010b (0x0A)
int c = a & b; // 0010b (0x02)

std::cout << "a = " << a << ", b = " << b << ", c = " << c << std::endl;

Output

a = 6, b = 10, c = 2

Why

A bit wise AND operates on the bit level and uses the following Boolean truth table:

TRUE AND TRUE = TRUE
TRUE AND FALSE = FALSE
FALSE AND FALSE = FALSE

When the binary value for a (0110) and the binary value for b (1010) are AND'ed together we get the binary value of
0010:

int a = 0 1 1 0
int b = 1 0 1 0 &

int c = 0 0 1 0

The bit wise AND does not change the value of the original values unless specifically assigned to using the bit wise
assignment compound operator &=:

int a = 5; // 0101b (0x05)
a &= 10; // a = 0101b & 1010b

Section 6.4: << - left shift
int a = 1; // 0001b
int b = a << 1; // 0010b

std::cout << "a = " << a << ", b = " << b << std::endl;

Output

a = 1, b = 2

Why

The left bit wise shift will shift the bits of the left hand value (a) the number specified on the right (1), essentially
padding the least significant bits with 0's, so shifting the value of 5 (binary 0000 0101) to the left 4 times (e.g. 5 <<
4) will yield the value of 80 (binary 0101 0000). You might note that shifting a value to the left 1 time is also the same
as multiplying the value by 2, example:

int a = 7;
while (a < 200) {
 std::cout << "a = " << a << std::endl;
 a <<= 1;

C++ Notes for Professionals 22

}

a = 7;
while (a < 200) {
 std::cout << "a = " << a << std::endl;
 a *= 2;
}

But it should be noted that the left shift operation will shift all bits to the left, including the sign bit, example:

int a = 2147483647; // 0111 1111 1111 1111 1111 1111 1111 1111
int b = a << 1; // 1111 1111 1111 1111 1111 1111 1111 1110

std::cout << "a = " << a << ", b = " << b << std::endl;

Possible output: a = 2147483647, b = -2

While some compilers will yield results that seem expected, it should be noted that if you left shift a signed number
so that the sign bit is affected, the result is undefined. It is also undefined if the number of bits you wish to shift by
is a negative number or is larger than the number of bits the type on the left can hold, example:

int a = 1;
int b = a << -1; // undefined behavior
char c = a << 20; // undefined behavior

The bit wise left shift does not change the value of the original values unless specifically assigned to using the bit
wise assignment compound operator <<=:

int a = 5; // 0101b
a <<= 1; // a = a << 1;

Section 6.5: >> - right shift
int a = 2; // 0010b
int b = a >> 1; // 0001b

std::cout << "a = " << a << ", b = " << b << std::endl;

Output

a = 2, b = 1

Why

The right bit wise shift will shift the bits of the left hand value (a) the number specified on the right (1); it should be
noted that while the operation of a right shift is standard, what happens to the bits of a right shift on a signed
negative number is implementation defined and thus cannot be guaranteed to be portable, example:

int a = -2;
int b = a >> 1; // the value of b will be depend on the compiler

It is also undefined if the number of bits you wish to shift by is a negative number, example:

int a = 1;
int b = a >> -1; // undefined behavior

C++ Notes for Professionals 23

The bit wise right shift does not change the value of the original values unless specifically assigned to using the bit
wise assignment compound operator >>=:

int a = 2; // 0010b
a >>= 1; // a = a >> 1;

C++ Notes for Professionals 24

Chapter 7: Bit Manipulation
Section 7.1: Remove rightmost set bit
C-style bit-manipulation
template <typename T>
T rightmostSetBitRemoved(T n)
{
 // static_assert(std::is_integral<T>::value && !std::is_signed<T>::value, "type should be
unsigned"); // For c++11 and later
 return n & (n - 1);
}

Explanation

if n is zero, we have 0 & 0xFF..FF which is zero
else n can be written 0bxxxxxx10..00 and n - 1 is 0bxxxxxx011..11, so n & (n - 1) is 0bxxxxxx000..00.

Section 7.2: Set all bits
C-style bit-manipulation
x = -1; // -1 == 1111 1111 ... 1111b

(See here for an explanation of why this works and is actually the best approach.)

Using std::bitset
std::bitset<10> x;
x.set(); // Sets all bits to '1'

Section 7.3: Toggling a bit
C-style bit-manipulation

A bit can be toggled using the XOR operator (^).

// Bit x will be the opposite value of what it is currently
number ^= 1LL << x;

Using std::bitset
std::bitset<4> num(std::string("0100"));
num.flip(2); // num is now 0000
num.flip(0); // num is now 0001
num.flip(); // num is now 1110 (flips all bits)

Section 7.4: Checking a bit
C-style bit-manipulation

The value of the bit can be obtained by shifting the number to the right x times and then performing bitwise AND
(&) on it:

(number >> x) & 1LL; // 1 if the 'x'th bit of 'number' is set, 0 otherwise

The right-shift operation may be implemented as either an arithmetic (signed) shift or a logical (unsigned) shift. If

http://stackoverflow.com/a/809341/

C++ Notes for Professionals 25

number in the expression number >> x has a signed type and a negative value, the resulting value is
implementation-defined.

If we need the value of that bit directly in-place, we could instead left shift the mask:

(number & (1LL << x)); // (1 << x) if the 'x'th bit of 'number' is set, 0 otherwise

Either can be used as a conditional, since all non-zero values are considered true.

Using std::bitset
std::bitset<4> num(std::string("0010"));
bool bit_val = num.test(1); // bit_val value is set to true;

Section 7.5: Counting bits set
The population count of a bitstring is often needed in cryptography and other applications and the problem has
been widely studied.

The naive way requires one iteration per bit:

unsigned value = 1234;
unsigned bits = 0; // accumulates the total number of bits set in `n`

for (bits = 0; value; value >>= 1)
 bits += value & 1;

A nice trick (based on Remove rightmost set bit) is:

unsigned bits = 0; // accumulates the total number of bits set in `n`

for (; value; ++bits)
 value &= value - 1;

It goes through as many iterations as there are set bits, so it's good when value is expected to have few nonzero
bits.

The method was first proposed by Peter Wegner (in CACM 3 / 322 - 1960) and it's well known since it appears in C
Programming Language by Brian W. Kernighan and Dennis M. Ritchie.

This requires 12 arithmetic operations, one of which is a multication:

unsigned popcount(std::uint64_t x)
{
 const std::uint64_t m1 = 0x5555555555555555; // binary: 0101...
 const std::uint64_t m2 = 0x3333333333333333; // binary: 00110011..
 const std::uint64_t m4 = 0x0f0f0f0f0f0f0f0f; // binary: 0000111100001111

 x -= (x >> 1) & m1; // put count of each 2 bits into those 2 bits
 x = (x & m2) + ((x >> 2) & m2); // put count of each 4 bits into those 4 bits
 x = (x + (x >> 4)) & m4; // put count of each 8 bits into those 8 bits
 return (x * h01) >> 56; // left 8 bits of x + (x<<8) + (x<<16) + (x<<24) + ...
}

This kind of implementation has the best worst-case behavior (see Hamming weight for further details).

Many CPUs have a specific instruction (like x86's popcnt) and the compiler could offer a specific (non standard)

http://cacm.acm.org/
https://en.wikipedia.org/wiki/Hamming_weight

C++ Notes for Professionals 26

built in function. E.g. with g++ there is:

int __builtin_popcount (unsigned x);

Section 7.6: Check if an integer is a power of 2
The n & (n - 1) trick (see Remove rightmost set bit) is also useful to determine if an integer is a power of 2:

bool power_of_2 = n && !(n & (n - 1));

Note that without the first part of the check (n &&), 0 is incorrectly considered a power of 2.

Section 7.7: Setting a bit
C-style bit manipulation

A bit can be set using the bitwise OR operator (|).

// Bit x will be set
number |= 1LL << x;

Using std::bitset

set(x) or set(x,true) - sets bit at position x to 1.

std::bitset<5> num(std::string("01100"));
num.set(0); // num is now 01101
num.set(2); // num is still 01101
num.set(4,true); // num is now 11110

Section 7.8: Clearing a bit
C-style bit-manipulation

A bit can be cleared using the bitwise AND operator (&).

// Bit x will be cleared
number &= ~(1LL << x);

Using std::bitset

reset(x) or set(x,false) - clears the bit at position x.

std::bitset<5> num(std::string("01100"));
num.reset(2); // num is now 01000
num.reset(0); // num is still 01000
num.set(3,false); // num is now 00000

Section 7.9: Changing the nth bit to x
C-style bit-manipulation
// Bit n will be set if x is 1 and cleared if x is 0.
number ^= (-x ^ number) & (1LL << n);

Using std::bitset

set(n,val) - sets bit n to the value val.

C++ Notes for Professionals 27

std::bitset<5> num(std::string("00100"));
num.set(0,true); // num is now 00101
num.set(2,false); // num is now 00001

Section 7.10: Bit Manipulation Application: Small to Capital
Letter
One of several applications of bit manipulation is converting a letter from small to capital or vice versa by choosing
a mask and a proper bit operation. For example, the a letter has this binary representation 01(1)00001 while its
capital counterpart has 01(0)00001. They differ solely in the bit in parenthesis. In this case, converting the a letter
from small to capital is basically setting the bit in parenthesis to one. To do so, we do the following:

/**
convert small letter to captial letter.
==
 a: 01100001
 mask: 11011111 <-- (0xDF) 11(0)11111
 :---------
a&mask: 01000001 <-- A letter
***/

The code for converting a letter to A letter is

#include <cstdio>

int main()
{
 char op1 = 'a'; // "a" letter (i.e. small case)
 int mask = 0xDF; // choosing a proper mask

 printf("a (AND) mask = A\n");
 printf("%c & 0xDF = %c\n", op1, op1 & mask);

 return 0;
}

The result is

$ g++ main.cpp -o test1
$./test1
a (AND) mask = A
a & 0xDF = A

C++ Notes for Professionals 28

Chapter 8: Bit fields
Bit fields tightly pack C and C++ structures to reduce size. This appears painless: specify the number of bits for
members, and compiler does the work of co-mingling bits. The restriction is inability to take the address of a bit
field member, since it is stored co-mingled. sizeof() is also disallowed.

The cost of bit fields is slower access, as memory must be retrieved and bitwise operations applied to extract or
modify member values. These operations also add to executable size.

Section 8.1: Declaration and Usage
struct FileAttributes
{
 unsigned int ReadOnly: 1;
 unsigned int Hidden: 1;
};

Here, each of these two fields will occupy 1 bit in memory. It is specified by : 1 expression after the variable names.
Base type of bit field could be any integral type (8-bit int to 64-bit int). Using unsigned type is recommended,
otherwise surprises may come.

If more bits are required, replace "1" with number of bits required. For example:

struct Date
{
 unsigned int Year : 13; // 2^13 = 8192, enough for "year" representation for long time
 unsigned int Month: 4; // 2^4 = 16, enough to represent 1-12 month values.
 unsigned int Day: 5; // 32
};

The whole structure is using just 22 bits, and with normal compiler settings, sizeof this structure would be 4 bytes.

Usage is pretty simple. Just declare the variable, and use it like ordinary structure.

Date d;

d.Year = 2016;
d.Month = 7;
d.Day = 22;

std::cout << "Year:" << d.Year << std::endl <<
 "Month:" << d.Month << std::endl <<
 "Day:" << d.Day << std::endl;

C++ Notes for Professionals 29

Chapter 9: Arrays
Arrays are elements of the same type placed in adjoining memory locations. The elements can be individually
referenced by a unique identifier with an added index.

This allows you to declare multiple variable values of a specific type and access them individually without needing
to declare a variable for each value.

Section 9.1: Array initialization
An array is just a block of sequential memory locations for a specific type of variable. Arrays are allocated the same
way as normal variables, but with square brackets appended to its name [] that contain the number of elements
that fit into the array memory.

The following example of an array uses the typ int, the variable name arrayOfInts, and the number of elements
[5] that the array has space for:

int arrayOfInts[5];

An array can be declared and initialized at the same time like this

int arrayOfInts[5] = {10, 20, 30, 40, 50};

When initializing an array by listing all of its members, it is not necessary to include the number of elements inside
the square brackets. It will be automatically calculated by the compiler. In the following example, it's 5:

int arrayOfInts[] = {10, 20, 30, 40, 50};

It is also possible to initialize only the first elements while allocating more space. In this case, defining the length in
brackets is mandatory. The following will allocate an array of length 5 with partial initialization, the compiler
initializes all remaining elements with the standard value of the element type, in this case zero.

int arrayOfInts[5] = {10,20}; // means 10, 20, 0, 0, 0

Arrays of other basic data types may be initialized in the same way.

char arrayOfChars[5]; // declare the array and allocate the memory, don't initialize

char arrayOfChars[5] = { 'a', 'b', 'c', 'd', 'e' } ; //declare and initialize

double arrayOfDoubles[5] = {1.14159, 2.14159, 3.14159, 4.14159, 5.14159};

string arrayOfStrings[5] = { "C++", "is", "super", "duper", "great!"};

It is also important to take note that when accessing array elements, the array's element index(or position) starts
from 0.

int array[5] = { 10/*Element no.0*/, 20/*Element no.1*/, 30, 40, 50/*Element no.4*/};
std::cout << array[4]; //outputs 50
std::cout << array[0]; //outputs 10

C++ Notes for Professionals 30

Section 9.2: A fixed size raw array matrix (that is, a 2D raw
array)
// A fixed size raw array matrix (that is, a 2D raw array).
#include <iostream>
#include <iomanip>
using namespace std;

auto main() -> int
{
 int const n_rows = 3;
 int const n_cols = 7;
 int const m[n_rows][n_cols] = // A raw array matrix.
 {
 { 1, 2, 3, 4, 5, 6, 7 },
 { 8, 9, 10, 11, 12, 13, 14 },
 { 15, 16, 17, 18, 19, 20, 21 }
 };

 for(int y = 0; y < n_rows; ++y)
 {
 for(int x = 0; x < n_cols; ++x)
 {
 cout << setw(4) << m[y][x]; // Note: do NOT use m[y,x]!
 }
 cout << '\n';
 }
}

Output:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

C++ doesn't support special syntax for indexing a multi-dimensional array. Instead such an array is viewed as an
array of arrays (possibly of arrays, and so on), and the ordinary single index notation [i] is used for each level. In
the example above m[y] refers to row y of m, where y is a zero-based index. Then this row can be indexed in turn,
e.g. m[y][x], which refers to the xth item – or column – of row y.

I.e. the last index varies fastest, and in the declaration the range of this index, which here is the number of columns
per row, is the last and “innermost” size specified.

Since C++ doesn't provide built-in support for dynamic size arrays, other than dynamic allocation, a dynamic size
matrix is often implemented as a class. Then the raw array matrix indexing notation m[y][x] has some cost, either
by exposing the implementation (so that e.g. a view of a transposed matrix becomes practically impossible) or by
adding some overhead and slight inconvenience when it's done by returning a proxy object from operator[]. And
so the indexing notation for such an abstraction can and will usually be different, both in look-and-feel and in the
order of indices, e.g. m(x,y) or m.at(x,y) or m.item(x,y).

Section 9.3: Dynamically sized raw array
// Example of raw dynamic size array. It's generally better to use std::vector.
#include <algorithm> // std::sort
#include <iostream>
using namespace std;

auto int_from(istream& in) -> int { int x; in >> x; return x; }

C++ Notes for Professionals 31

auto main()
 -> int
{
 cout << "Sorting n integers provided by you.\\n";
 cout << "n? ";
 int const n = int_from(cin);
 int* a = new int[n]; // ← Allocation of array of n items.

 for(int i = 1; i <= n; ++i)
 {
 cout << "The #" << i << " number, please: ";
 a[i-1] = int_from(cin);
 }

 sort(a, a + n);
 for(int i = 0; i < n; ++i) { cout << a[i] << ' '; }
 cout << '\\n';

 delete[] a;
}

A program that declares an array T a[n]; where n is determined a run-time, can compile with certain compilers
that support C99 variadic length arrays (VLAs) as a language extension. But VLAs are not supported by standard C++.
This example shows how to manually allocate a dynamic size array via a new[]-expression,

int* a = new int[n]; // ← Allocation of array of n items.

… then use it, and finally deallocate it via a delete[]-expression:

delete[] a;

The array allocated here has indeterminate values, but it can be zero-initialized by just adding an empty
parenthesis (), like this: new int[n](). More generally, for arbitrary item type, this performs a value-initialization.

As part of a function down in a call hierarchy this code would not be exception safe, since an exception before the
delete[] expression (and after the new[]) would cause a memory leak. One way to address that issue is to
automate the cleanup via e.g. a std::unique_ptr smart pointer. But a generally better way to address it is to just
use a std::vector: that's what std::vector is there for.

Section 9.4: Array size: type safe at compile time

#include // size_t, ptrdiff_t

//----------------------------------- Machinery:

using Size = ptrdiff_t;

template< class Item, size_t n >
constexpr auto n_items(Item (&)[n]) noexcept
-> Size
{ return n; }

//----------------------------------- Usage:

#include
using namespace std;
auto main()

C++ Notes for Professionals 32

-> int
{
int const a[] = {3, 1, 4, 1, 5, 9, 2, 6, 5, 4};
Size const n = n_items(a);
int b[n] = {}; // An array of the same size as a.

(void) b;
cout <}

The C idiom for array size, sizeof(a)/sizeof(a[0]), will accept a pointer as argument and will then generally yield
an incorrect result.

For C++11

using C++11 you can do:

std::extent<decltype(MyArray)>::value;

Example:

char MyArray[] = { 'X','o','c','e' };
const auto n = std::extent<decltype(MyArray)>::value;
std::cout << n << "\n"; // Prints 4

Up till C++17 (forthcoming as of this writing) C++ had no built-in core language or standard library utility to obtain
the size of an array, but this can be implemented by passing the array by reference to a function template, as shown
above. Fine but important point: the template size parameter is a size_t, somewhat inconsistent with the signed
Size function result type, in order to accommodate the g++ compiler which sometimes insists on size_t for
template matching.

With C++17 and later one may instead use std::size, which is specialized for arrays.

Section 9.5: Expanding dynamic size array by using
std::vector
// Example of std::vector as an expanding dynamic size array.
#include <algorithm> // std::sort
#include <iostream>
#include <vector> // std::vector
using namespace std;

int int_from(std::istream& in) { int x = 0; in >> x; return x; }

int main()
{
 cout << "Sorting integers provided by you.\n";
 cout << "You can indicate EOF via F6 in Windows or Ctrl+D in Unix-land.\n";
 vector<int> a; // ? Zero size by default.

 while(cin)
 {
 cout << "One number, please, or indicate EOF: ";
 int const x = int_from(cin);
 if(!cin.fail()) { a.push_back(x); } // Expands as necessary.
 }

 sort(a.begin(), a.end());

http://en.cppreference.com/w/cpp/iterator/size
http://en.cppreference.com/w/cpp/iterator/size
http://en.cppreference.com/w/cpp/iterator/size

C++ Notes for Professionals 33

 int const n = a.size();
 for(int i = 0; i < n; ++i) { cout << a[i] << ' '; }
 cout << '\n';
}

std::vector is a standard library class template that provides the notion of a variable size array. It takes care of all
the memory management, and the buffer is contiguous so a pointer to the buffer (e.g. &v[0] or v.data()) can be
passed to API functions requiring a raw array. A vector can even be expanded at run time, via e.g. the push_back
member function that appends an item.

The complexity of the sequence of n push_back operations, including the copying or moving involved in the vector
expansions, is amortized O(n). “Amortized”: on average.

Internally this is usually achieved by the vector doubling its buffer size, its capacity, when a larger buffer is needed.
E.g. for a buffer starting out as size 1, and being repeatedly doubled as needed for n=17 push_back calls, this
involves 1 + 2 + 4 + 8 + 16 = 31 copy operations, which is less than 2×n = 34. And more generally the sum of this
sequence can't exceed 2×n.

Compared to the dynamic size raw array example, this vector-based code does not require the user to supply (and
know) the number of items up front. Instead the vector is just expanded as necessary, for each new item value
specified by the user.

Section 9.6: A dynamic size matrix using std::vector for
storage
Unfortunately as of C++14 there's no dynamic size matrix class in the C++ standard library. Matrix classes that
support dynamic size are however available from a number of 3rd party libraries, including the Boost Matrix library
(a sub-library within the Boost library).

If you don't want a dependency on Boost or some other library, then one poor man's dynamic size matrix in C++ is
just like

vector<vector<int>> m(3, vector<int>(7));

… where vector is std::vector. The matrix is here created by copying a row vector n times where n is the number
of rows, here 3. It has the advantage of providing the same m[y][x] indexing notation as for a fixed size raw array
matrix, but it's a bit inefficient because it involves a dynamic allocation for each row, and it's a bit unsafe because
it's possible to inadvertently resize a row.

A more safe and efficient approach is to use a single vector as storage for the matrix, and map the client code's (x, y)
to a corresponding index in that vector:

// A dynamic size matrix using std::vector for storage.

#include <algorithm> // std::copy
#include <assert.h> // assert
#include <initializer_list> // std::initializer_list
#include <vector> // std::vector
#include <stddef.h> // ptrdiff_t

namespace my {
 using Size = ptrdiff_t;
 using std::initializer_list;
 using std::vector;

 template< class Item >

C++ Notes for Professionals 34

 class Matrix
 {
 private:
 vector<Item> items_;
 Size n_cols_;

 auto index_for(Size const x, Size const y) const
 -> Size
 { return y*n_cols_ + x; }

 public:
 auto n_rows() const -> Size { return items_.size()/n_cols_; }
 auto n_cols() const -> Size { return n_cols_; }

 auto item(Size const x, Size const y)
 -> Item&
 { return items_[index_for(x, y)]; }

 auto item(Size const x, Size const y) const
 -> Item const&
 { return items_[index_for(x, y)]; }

 Matrix(): n_cols_(0) {}

 Matrix(Size const n_cols, Size const n_rows)
 : items_(n_cols*n_rows)
 , n_cols_(n_cols)
 {}

 Matrix(initializer_list< initializer_list<Item> > const& values)
 : items_()
 , n_cols_(values.size() == 0? 0 : values.begin()->size())
 {
 for(auto const& row : values)
 {
 assert(Size(row.size()) == n_cols_);
 items_.insert(items_.end(), row.begin(), row.end());
 }
 }
 };
} // namespace my

//--- Usage:
using my::Matrix;

auto some_matrix()
 -> Matrix<int>
{
 return
 {
 { 1, 2, 3, 4, 5, 6, 7 },
 { 8, 9, 10, 11, 12, 13, 14 },
 { 15, 16, 17, 18, 19, 20, 21 }
 };
}

#include <iostream>
#include <iomanip>
using namespace std;
auto main() -> int
{
 Matrix<int> const m = some_matrix();

C++ Notes for Professionals 35

 assert(m.n_cols() == 7);
 assert(m.n_rows() == 3);
 for(int y = 0, y_end = m.n_rows(); y < y_end; ++y)
 {
 for(int x = 0, x_end = m.n_cols(); x < x_end; ++x)
 {
 cout << setw(4) << m.item(x, y); // ? Note: not `m[y][x]`!
 }
 cout << '\n';
 }
}

Output:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

The above code is not industrial grade: it's designed to show the basic principles, and serve the needs of students
learning C++.

For example, one may define operator() overloads to simplify the indexing notation.

C++ Notes for Professionals 36

Chapter 10: Iterators
Section 10.1: Overview
Iterators are Positions

Iterators are a means of navigating and operating on a sequence of elements and are a generalized extension of
pointers. Conceptually it is important to remember that iterators are positions, not elements. For example, take the
following sequence:

A B C

The sequence contains three elements and four positions

+---+---+---+---+
| A | B | C | |
+---+---+---+---+

Elements are things within a sequence. Positions are places where meaningful operations can happen to the
sequence. For example, one inserts into a position, before or after element A, not into an element. Even deletion of
an element (erase(A)) is done by first finding its position, then deleting it.

From Iterators to Values

To convert from a position to a value, an iterator is dereferenced:

auto my_iterator = my_vector.begin(); // position
auto my_value = *my_iterator; // value

One can think of an iterator as dereferencing to the value it refers to in the sequence. This is especially useful in
understanding why you should never dereference the end() iterator in a sequence:

+---+---+---+---+
| A | B | C | |
+---+---+---+---+
↑ ↑
| +-- An iterator here has no value. Do not dereference it!
+-------------- An iterator here dereferences to the value A.

In all the sequences and containers found in the C++ standard library, begin() will return an iterator to the first
position, and end() will return an iterator to one past the last position (not the last position!). Consequently, the
names of these iterators in algorithms are oftentimes labelled first and last:

+---+---+---+---+
| A | B | C | |
+---+---+---+---+
↑ ↑
| |
+- first +- last

It is also possible to obtain an iterator to any sequence, because even an empty sequence contains at least one

C++ Notes for Professionals 37

position:

+---+
| |
+---+

In an empty sequence, begin() and end() will be the same position, and neither can be dereferenced:

+---+
| |
+---+
 ↑
 |
 +- empty_sequence.begin()
 |
 +- empty_sequence.end()

The alternative visualization of iterators is that they mark the positions between elements:

+---+---+---+
| A | B | C |
+---+---+---+
↑ ^ ^ ↑
| |
+- first +- last

and dereferencing an iterator returns a reference to the element coming after the iterator. Some situations where
this view is particularly useful are:

insert operations will insert elements into the position indicated by the iterator,
erase operations will return an iterator corresponding to the same position as the one passed in,
an iterator and its corresponding reverse iterator are located in the same .position between elements

Invalid Iterators

An iterator becomes invalidated if (say, in the course of an operation) its position is no longer a part of a sequence.
An invalidated iterator cannot be dereferenced until it has been reassigned to a valid position. For example:

std::vector<int>::iterator first;
{
 std::vector<int> foo;
 first = foo.begin(); // first is now valid
} // foo falls out of scope and is destroyed
// At this point first is now invalid

The many algorithms and sequence member functions in the C++ standard library have rules governing when
iterators are invalidated. Each algorithm is different in the way they treat (and invalidate) iterators.

Navigating with Iterators

As we know, iterators are for navigating sequences. In order to do that an iterator must migrate its position
throughout the sequence. Iterators can advance forward in the sequence and some can advance backwards:

auto first = my_vector.begin();
++first; // advance the iterator 1 position

C++ Notes for Professionals 38

std::advance(first, 1); // advance the iterator 1 position
first = std::next(first); // returns iterator to the next element
std::advance(first, -1); // advance the iterator 1 position backwards
first = std::next(first, 20); // returns iterator to the element 20 position
forward
first = std::prev(first, 5); // returns iterator to the element 5 position
backward
auto dist = std::distance(my_vector.begin(), first); // returns distance between two iterators.

Note, second argument of std::distance should be reachable from the first one(or, in other words first should be
less or equal than second).

Even though you can perform arithmetic operators with iterators, not all operations are defined for all types of
iterators. a = b + 3; would work for Random Access Iterators, but wouldn't work for Forward or Bidirectional
Iterators, which still can be advanced by 3 position with something like b = a; ++b; ++b; ++b;. So it is
recommended to use special functions in case you are not sure what is iterator type (for example, in a template
function accepting iterator).

Iterator Concepts

The C++ standard describes several different iterator concepts. These are grouped according to how they behave in
the sequences they refer to. If you know the concept an iterator models (behaves like), you can be assured of the
behavior of that iterator regardless of the sequence to which it belongs. They are often described in order from the
most to least restrictive (because the next iterator concept is a step better than its predecessor):

Input Iterators : Can be dereferenced only once per position. Can only advance, and only one position at a
time.
Forward Iterators : An input iterator that can be dereferenced any number of times.
Bidirectional Iterators : A forward iterator that can also advance backwards one position at a time.
Random Access Iterators : A bidirectional iterator that can advance forwards or backwards any number of
positions at a time.
Contiguous Iterators (since C++17) : A random access iterator that guaranties that underlying data is
contiguous in memory.

Algorithms can vary depending on the concept modeled by the iterators they are given. For example, although
random_shuffle can be implemented for forward iterators, a more efficient variant that requires random access
iterators could be provided.

Iterator traits

Iterator traits provide uniform interface to the properties of iterators. They allow you to retrieve value, difference,
pointer, reference types and also category of iterator:

template<class Iter>
Iter find(Iter first, Iter last, typename std::iterator_traits<Iter>::value_type val) {
 while (first != last) {
 if (*first == val)
 return first;
 ++first;
 }
 return last;
}

Category of iterator can be used to specialize algorithms:

template<class BidirIt>

C++ Notes for Professionals 39

void test(BidirIt a, std::bidirectional_iterator_tag) {
 std::cout << "Bidirectional iterator is used" << std::endl;
}

template<class ForwIt>
void test(ForwIt a, std::forward_iterator_tag) {
 std::cout << "Forward iterator is used" << std::endl;
}

template<class Iter>
void test(Iter a) {
 test(a, typename std::iterator_traits<Iter>::iterator_category());
}

Categories of iterators are basically iterators concepts, except Contiguous Iterators don't have their own tag, since it
was found to break code.

Section 10.2: Vector Iterator
begin returns an iterator to the first element in the sequence container.

end returns an iterator to the first element past the end.

If the vector object is const, both begin and end return a const_iterator. If you want a const_iterator to be
returned even if your vector is not const, you can use cbegin and cend.

Example:

#include <vector>
#include <iostream>

int main() {
 std::vector<int> v = { 1, 2, 3, 4, 5 }; //intialize vector using an initializer_list

 for (std::vector<int>::iterator it = v.begin(); it != v.end(); ++it) {
 std::cout << *it << " ";
 }

 return 0;
}

Output:

1 2 3 4 5

Section 10.3: Map Iterator
An iterator to the first element in the container.

If a map object is const-qualified, the function returns a const_iterator. Otherwise, it returns an iterator.

// Create a map and insert some values
std::map<char,int> mymap;
mymap['b'] = 100;
mymap['a'] = 200;
mymap['c'] = 300;

C++ Notes for Professionals 40

// Iterate over all tuples
for (std::map<char,int>::iterator it = mymap.begin(); it != mymap.end(); ++it)
 std::cout << it->first << " => " << it->second << '\n';

Output:

a => 200
b => 100
c => 300

Section 10.4: Reverse Iterators
If we want to iterate backwards through a list or vector we can use a reverse_iterator. A reverse iterator is made
from a bidirectional, or random access iterator which it keeps as a member which can be accessed through base().

To iterate backwards use rbegin() and rend() as the iterators for the end of the collection, and the start of the
collection respectively.

For instance, to iterate backwards use:

std::vector<int> v{1, 2, 3, 4, 5};
for (std::vector<int>::reverse_iterator it = v.rbegin(); it != v.rend(); ++it)
{
 cout << *it;
} // prints 54321

A reverse iterator can be converted to a forward iterator via the base() member function. The relationship is that
the reverse iterator references one element past the base() iterator:

std::vector<int>::reverse_iterator r = v.rbegin();
std::vector<int>::iterator i = r.base();
assert(&*r == &*(i-1)); // always true if r, (i-1) are dereferenceable
 // and are not proxy iterators

 +---+---+---+---+---+---+---+
 | | 1 | 2 | 3 | 4 | 5 | |
 +---+---+---+---+---+---+---+
 ↑ ↑ ↑ ↑
 | | | |
rend() | rbegin() end()
 | rbegin().base()
 begin()
 rend().base()

In the visualization where iterators mark positions between elements, the relationship is simpler:

 +---+---+---+---+---+
| 1 | 2 | 3 | 4 | 5 |
+---+---+---+---+---+
↑ ↑
| |
| end()
| rbegin()
begin() rbegin().base()
rend()
rend().base()

C++ Notes for Professionals 41

Section 10.5: Stream Iterators
Stream iterators are useful when we need to read a sequence or print formatted data from a container:

// Data stream. Any number of various whitespace characters will be OK.
std::istringstream istr("1\t 2 3 4");
std::vector<int> v;

// Constructing stream iterators and copying data from stream into vector.
std::copy(
 // Iterator which will read stream data as integers.
 std::istream_iterator<int>(istr),
 // Default constructor produces end-of-stream iterator.
 std::istream_iterator<int>(),
 std::back_inserter(v));

// Print vector contents.
std::copy(v.begin(), v.end(),
 //Will print values to standard output as integers delimeted by " -- ".
 std::ostream_iterator<int>(std::cout, " -- "));

The example program will print 1 -- 2 -- 3 -- 4 -- to standard output.

Section 10.6: C Iterators (Pointers)
// This creates an array with 5 values.
const int array[] = { 1, 2, 3, 4, 5 };

#ifdef BEFORE_CPP11

// You can use `sizeof` to determine how many elements are in an array.
const int* first = array;
const int* afterLast = first + sizeof(array) / sizeof(array[0]);

// Then you can iterate over the array by incrementing a pointer until
// it reaches past the end of our array.
for (const int* i = first; i < afterLast; ++i) {
 std::cout << *i << std::endl;
}

#else

// With C++11, you can let the STL compute the start and end iterators:
for (auto i = std::begin(array); i != std::end(array); ++i) {
 std::cout << *i << std::endl;
}

#endif

This code would output the numbers 1 through 5, one on each line like this:

1
2
3
4

C++ Notes for Professionals 42

5

Breaking It Down
const int array[] = { 1, 2, 3, 4, 5 };

This line creates a new integer array with 5 values. C arrays are just pointers to memory where each value is stored
together in a contiguous block.

const int* first = array;
const int* afterLast = first + sizeof(array) / sizeof(array[0]);

These lines create two pointers. The first pointer is given the value of the array pointer, which is the address of the
first element in the array. The sizeof operator when used on a C array returns the size of the array in bytes.
Divided by the size of an element this gives the number of elements in the array. We can use this to find the
address of the block after the array.

for (const int* i = first; i < afterLast; ++i) {

Here we create a pointer which we will use as an iterator. It is initialized with the address of the first element we
want to iterate over, and we'll continue to iterate as long as i is less than afterLast, which means as long as i is
pointing to an address within array.

 std::cout << *i << std::endl;

Finally, within the loop we can access the value our iterator i is pointing to by dereferencing it. Here the
dereference operator * returns the value at the address in i.

Section 10.7: Write your own generator-backed iterator
A common pattern in other languages is having a function that produces a "stream" of objects, and being able to
use loop-code to loop over it.

We can model this in C++ as

template<class T>
struct generator_iterator {
 using difference_type=std::ptrdiff_t;
 using value_type=T;
 using pointer=T*;
 using reference=T;
 using iterator_category=std::input_iterator_tag;
 std::optional<T> state;
 std::function< std::optional<T>() > operation;
 // we store the current element in "state" if we have one:
 T operator*() const {
 return *state;
 }
 // to advance, we invoke our operation. If it returns a nullopt
 // we have reached the end:
 generator_iterator& operator++() {
 state = operation();
 return *this;
 }
 generator_iterator operator++(int) {
 auto r = *this;

C++ Notes for Professionals 43

 ++(*this);
 return r;
 }
 // generator iterators are only equal if they are both in the "end" state:
 friend bool operator==(generator_iterator const& lhs, generator_iterator const& rhs) {
 if (!lhs.state && !rhs.state) return true;
 return false;
 }
 friend bool operator!=(generator_iterator const& lhs, generator_iterator const& rhs) {
 return !(lhs==rhs);
 }
 // We implicitly construct from a std::function with the right signature:
 generator_iterator(std::function< std::optional<T>() > f):operation(std::move(f))
 {
 if (operation)
 state = operation();
 }
 // default all special member functions:
 generator_iterator(generator_iterator &&) =default;
 generator_iterator(generator_iterator const&) =default;
 generator_iterator& operator=(generator_iterator &&) =default;
 generator_iterator& operator=(generator_iterator const&) =default;
 generator_iterator() =default;
};

live example.

We store the generated element early so we can more easily detect if we are already at the end.

As the function of an end generator iterator is never used, we can create a range of generator iterators by only
copying the std::function once. A default constructed generator iterator compares equal to itself, and to all other
end-generator-iterators.

http://coliru.stacked-crooked.com/a/cbb93f9ff193cdba

C++ Notes for Professionals 44

Chapter 11: Basic input/output in c++
Section 11.1: user input and standard output
#include <iostream>

int main()
{
 int value;
 std::cout << "Enter a value: " << std::endl;
 std::cin >> value;
 std::cout << "The square of entered value is: " << value * value << std::endl;
 return 0;
}

C++ Notes for Professionals 45

Chapter 12: Loops
A loop statement executes a group of statements repeatedly until a condition is met. There are 3 types of primitive
loops in C++: for, while, and do...while.

Section 12.1: Range-Based For
Version ≥ C++11

for loops can be used to iterate over the elements of a iterator-based range, without using a numeric index or
directly accessing the iterators:

vector<float> v = {0.4f, 12.5f, 16.234f};

for(auto val: v)
{
 std::cout << val << " ";
}

std::cout << std::endl;

This will iterate over every element in v, with val getting the value of the current element. The following statement:

for (for-range-declaration : for-range-initializer) statement

is equivalent to:

{
 auto&& __range = for-range-initializer;
 auto __begin = begin-expr, __end = end-expr;
 for (; __begin != __end; ++__begin) {
 for-range-declaration = *__begin;
 statement
 }
}
Version ≥ C++17

{
 auto&& __range = for-range-initializer;
 auto __begin = begin-expr;
 auto __end = end-expr; // end is allowed to be a different type than begin in C++17
 for (; __begin != __end; ++__begin) {
 for-range-declaration = *__begin;
 statement
 }
}

This change was introduced for the planned support of Ranges TS in C++20.

In this case, our loop is equivalent to:

{
 auto&& __range = v;
 auto __begin = v.begin(), __end = v.end();
 for (; __begin != __end; ++__begin) {
 auto val = *__begin;
 std::cout << val << " ";

C++ Notes for Professionals 46

 }
}

Note that auto val declares a value type, which will be a copy of a value stored in the range (we are copy-initializing
it from the iterator as we go). If the values stored in the range are expensive to copy, you may want to use const
auto &val. You are also not required to use auto; you can use an appropriate typename, so long as it is implicitly
convertible from the range's value type.

If you need access to the iterator, range-based for cannot help you (not without some effort, at least).

If you wish to reference it, you may do so:

vector<float> v = {0.4f, 12.5f, 16.234f};

for(float &val: v)
{
 std::cout << val << " ";
}

You could iterate on const reference if you have const container:

const vector<float> v = {0.4f, 12.5f, 16.234f};

for(const float &val: v)
{
 std::cout << val << " ";
}

One would use forwarding references when the sequence iterator returns a proxy object and you need to operate
on that object in a non-const way. Note: it will most likely confuse readers of your code.

vector<bool> v(10);

for(auto&& val: v)
{
 val = true;
}

The "range" type provided to range-based for can be one of the following:

Language arrays:

float arr[] = {0.4f, 12.5f, 16.234f};

for(auto val: arr)
{
 std::cout << val << " ";
}

Note that allocating a dynamic array does not count:

float *arr = new float[3]{0.4f, 12.5f, 16.234f};

for(auto val: arr) //Compile error.
{
 std::cout << val << " ";
}

C++ Notes for Professionals 47

Any type which has member functions begin() and end(), which return iterators to the elements of the type.
The standard library containers qualify, but user-defined types can be used as well:

struct Rng
{
 float arr[3];

 // pointers are iterators
 const float* begin() const {return &arr[0];}
 const float* end() const {return &arr[3];}
 float* begin() {return &arr[0];}
 float* end() {return &arr[3];}
};

int main()
{
 Rng rng = {{0.4f, 12.5f, 16.234f}};

 for(auto val: rng)
 {
 std::cout << val << " ";
 }
}

Any type which has non-member begin(type) and end(type) functions which can found via argument
dependent lookup, based on type. This is useful for creating a range type without having to modify class type
itself:

namespace Mine
{
 struct Rng {float arr[3];};

 // pointers are iterators
 const float* begin(const Rng &rng) {return &rng.arr[0];}
 const float* end(const Rng &rng) {return &rng.arr[3];}
 float* begin(Rng &rng) {return &rng.arr[0];}
 float* end(Rng &rng) {return &rng.arr[3];}
}

int main()
{
 Mine::Rng rng = {{0.4f, 12.5f, 16.234f}};

 for(auto val: rng)
 {
 std::cout << val << " ";
 }
}

Section 12.2: For loop
A for loop executes statements in the loop body, while the loop condition is true. Before the loop initialization
statement is executed exactly once. After each cycle, the iteration execution part is executed.

A for loop is defined as follows:

for (/*initialization statement*/; /*condition*/; /*iteration execution*/)

C++ Notes for Professionals 48

{
 // body of the loop
}

Explanation of the placeholder statements:

initialization statement: This statement gets executed only once, at the beginning of the for loop. You
can enter a declaration of multiple variables of one type, such as int i = 0, a = 2, b = 3. These variables
are only valid in the scope of the loop. Variables defined before the loop with the same name are hidden
during execution of the loop.
condition: This statement gets evaluated ahead of each loop body execution, and aborts the loop if it
evaluates to false.
iteration execution: This statement gets executed after the loop body, ahead of the next condition
evaluation, unless the for loop is aborted in the body (by break, goto, return or an exception being thrown).
You can enter multiple statements in the iteration execution part, such as a++, b+=10, c=b+a.

The rough equivalent of a for loop, rewritten as a while loop is:

/*initialization*/
while (/*condition*/)
{
 // body of the loop; using 'continue' will skip to increment part below
 /*iteration execution*/
}

The most common case for using a for loop is to execute statements a specific number of times. For example,
consider the following:

for(int i = 0; i < 10; i++) {
 std::cout << i << std::endl;
}

A valid loop is also:

for(int a = 0, b = 10, c = 20; (a+b+c < 100); c--, b++, a+=c) {
 std::cout << a << " " << b << " " << c << std::endl;
}

An example of hiding declared variables before a loop is:

int i = 99; //i = 99
for(int i = 0; i < 10; i++) { //we declare a new variable i
 //some operations, the value of i ranges from 0 to 9 during loop execution
}
//after the loop is executed, we can access i with value of 99

But if you want to use the already declared variable and not hide it, then omit the declaration part:

int i = 99; //i = 99
for(i = 0; i < 10; i++) { //we are using already declared variable i
 //some operations, the value of i ranges from 0 to 9 during loop execution
}
//after the loop is executed, we can access i with value of 10

Notes:

C++ Notes for Professionals 49

The initialization and increment statements can perform operations unrelated to the condition statement, or
nothing at all - if you wish to do so. But for readability reasons, it is best practice to only perform operations
directly relevant to the loop.
A variable declared in the initialization statement is visible only inside the scope of the for loop and is
released upon termination of the loop.
Don't forget that the variable which was declared in the initialization statement can be modified during
the loop, as well as the variable checked in the condition.

Example of a loop which counts from 0 to 10:

for (int counter = 0; counter <= 10; ++counter)
{
 std::cout << counter << '\n';
}
// counter is not accessible here (had value 11 at the end)

Explanation of the code fragments:

int counter = 0 initializes the variable counter to 0. (This variable can only be used inside of the for loop.)
counter <= 10 is a Boolean condition that checks whether counter is less than or equal to 10. If it is true,
the loop executes. If it is false, the loop ends.
++counter is an increment operation that increments the value of counter by 1 ahead of the next condition
check.

By leaving all statements empty, you can create an infinite loop:

// infinite loop
for (;;)
 std::cout << "Never ending!\n";

The while loop equivalent of the above is:

// infinite loop
while (true)
 std::cout << "Never ending!\n";

However, an infinite loop can still be left by using the statements break, goto, or return or by throwing an
exception.

The next common example of iterating over all elements from an STL collection (e.g., a vector) without using the
<algorithm> header is:

std::vector<std::string> names = {"Albert Einstein", "Stephen Hawking", "Michael Ellis"};
for(std::vector<std::string>::iterator it = names.begin(); it != names.end(); ++it) {
 std::cout << *it << std::endl;
}

Section 12.3: While loop
A while loop executes statements repeatedly until the given condition evaluates to false. This control statement is
used when it is not known, in advance, how many times a block of code is to be executed.

For example, to print all the numbers from 0 up to 9, the following code can be used:

int i = 0;

C++ Notes for Professionals 50

while (i < 10)
{
 std::cout << i << " ";
 ++i; // Increment counter
}
std::cout << std::endl; // End of line; "0 1 2 3 4 5 6 7 8 9" is printed to the console
Version ≥ C++17

Note that since C++17, the first 2 statements can be combined

while (int i = 0; i < 10)
//... The rest is the same

To create an infinite loop, the following construct can be used:

while (true)
{
 // Do something forever (however, you can exit the loop by calling 'break'
}

There is another variant of while loops, namely the do...while construct. See the do-while loop example for more
information.

Section 12.4: Do-while loop
A do-while loop is very similar to a while loop, except that the condition is checked at the end of each cycle, not at
the start. The loop is therefore guaranteed to execute at least once.

The following code will print 0, as the condition will evaluate to false at the end of the first iteration:

int i =0;
do
{
 std::cout << i;
 ++i; // Increment counter
}
while (i < 0);
std::cout << std::endl; // End of line; 0 is printed to the console

Note: Do not forget the semicolon at the end of while(condition);, which is needed in the do-while construct.

In contrast to the do-while loop, the following will not print anything, because the condition evaluates to false at
the beginning of the first iteration:

int i =0;
while (i < 0)
{
 std::cout << i;
 ++i; // Increment counter
}
std::cout << std::endl; // End of line; nothing is printed to the console

Note: A while loop can be exited without the condition becoming false by using a break, goto, or return statement.

int i = 0;
do
{

C++ Notes for Professionals 51

 std::cout << i;
 ++i; // Increment counter
 if (i > 5)
 {
 break;
 }
}
while (true);
std::cout << std::endl; // End of line; 0 1 2 3 4 5 is printed to the console

A trivial do-while loop is also occasionally used to write macros that require their own scope (in which case the
trailing semicolon is omitted from the macro definition and required to be provided by the user):

#define BAD_MACRO(x) f1(x); f2(x); f3(x);

// Only the call to f1 is protected by the condition here
if (cond) BAD_MACRO(var);

#define GOOD_MACRO(x) do { f1(x); f2(x); f3(x); } while(0)

// All calls are protected here
if (cond) GOOD_MACRO(var);

Section 12.5: Loop Control statements : Break and Continue
Loop control statements are used to change the flow of execution from its normal sequence. When execution
leaves a scope, all automatic objects that were created in that scope are destroyed. The break and continue are
loop control statements.

The break statement terminates a loop without any further consideration.

for (int i = 0; i < 10; i++)
{
 if (i == 4)
 break; // this will immediately exit our loop
 std::cout << i << '\n';
}

The above code will print out:

1
2
3

The continue statement does not immediately exit the loop, but rather skips the rest of the loop body and goes to
the top of the loop (including checking the condition).

for (int i = 0; i < 6; i++)
{
 if (i % 2 == 0) // evaluates to true if i is even
 continue; // this will immediately go back to the start of the loop
 /* the next line will only be reached if the above "continue" statement
 does not execute */
 std::cout << i << " is an odd number\n";
}

The above code will print out:

C++ Notes for Professionals 52

1 is an odd number
3 is an odd number
5 is an odd number

Because such control flow changes are sometimes difficult for humans to easily understand, break and continue
are used sparingly. More straightforward implementation are usually easier to read and understand. For example,
the first for loop with the break above might be rewritten as:

for (int i = 0; i < 4; i++)
{
 std::cout << i << '\n';
}

The second example with continue might be rewritten as:

for (int i = 0; i < 6; i++)
{
 if (i % 2 != 0) {
 std::cout << i << " is an odd number\n";
 }
}

Section 12.6: Declaration of variables in conditions
In the condition of the for and while loops, it's also permitted to declare an object. This object will be considered to
be in scope until the end of the loop, and will persist through each iteration of the loop:

for (int i = 0; i < 5; ++i) {
 do_something(i);
}
// i is no longer in scope.

for (auto& a : some_container) {
 a.do_something();
}
// a is no longer in scope.

while(std::shared_ptr<Object> p = get_object()) {
 p->do_something();
}
// p is no longer in scope.

However, it is not permitted to do the same with a do...while loop; instead, declare the variable before the loop,
and (optionally) enclose both the variable and the loop within a local scope if you want the variable to go out of
scope after the loop ends:

//This doesn't compile
do {
 s = do_something();
} while (short s > 0);

// Good
short s;
do {
 s = do_something();
} while (s > 0);

C++ Notes for Professionals 53

This is because the statement portion of a do...while loop (the loop's body) is evaluated before the expression
portion (the while) is reached, and thus, any declaration in the expression will not be visible during the first iteration
of the loop.

Section 12.7: Range-for over a sub-range
Using range-base loops, you can loop over a sub-part of a given container or other range by generating a proxy
object that qualifies for range-based for loops.

template<class Iterator, class Sentinel=Iterator>
struct range_t {
 Iterator b;
 Sentinel e;
 Iterator begin() const { return b; }
 Sentinel end() const { return e; }
 bool empty() const { return begin()==end(); }
 range_t without_front(std::size_t count=1) const {
 if (std::is_same< std::random_access_iterator_tag, typename
std::iterator_traits<Iterator>::iterator_category >{}) {
 count = (std::min)(std::size_t(std::distance(b,e)), count);
 }
 return {std::next(b, count), e};
 }
 range_t without_back(std::size_t count=1) const {
 if (std::is_same< std::random_access_iterator_tag, typename
std::iterator_traits<Iterator>::iterator_category >{}) {
 count = (std::min)(std::size_t(std::distance(b,e)), count);
 }
 return {b, std::prev(e, count)};
 }
};

template<class Iterator, class Sentinel>
range_t<Iterator, Sentinel> range(Iterator b, Sentinal e) {
 return {b,e};
}
template<class Iterable>
auto range(Iterable& r) {
 using std::begin; using std::end;
 return range(begin(r),end(r));
}

template<class C>
auto except_first(C& c) {
 auto r = range(c);
 if (r.empty()) return r;
 return r.without_front();
}

now we can do:

std::vector<int> v = {1,2,3,4};

for (auto i : except_first(v))
 std::cout << i << '\n';

and print out

2

C++ Notes for Professionals 54

3
4

Be aware that intermediate objects generated in the for(:range_expression) part of the for loop will have
expired by the time the for loop starts.

C++ Notes for Professionals 55

Chapter 13: File I/O
C++ file I/O is done via streams. The key abstractions are:

std::istream for reading text.

std::ostream for writing text.

std::streambuf for reading or writing characters.

Formatted input uses operator>>.

Formatted output uses operator<<.

Streams use std::locale, e.g., for details of the formatting and for translation between external encodings and the
internal encoding.

More on streams: <iostream> Library

Section 13.1: Writing to a file
There are several ways to write to a file. The easiest way is to use an output file stream (ofstream) together with the
stream insertion operator (<<):

std::ofstream os("foo.txt");
if(os.is_open()){
 os << "Hello World!";
}

Instead of <<, you can also use the output file stream's member function write():

std::ofstream os("foo.txt");
if(os.is_open()){
 char data[] = "Foo";

 // Writes 3 characters from data -> "Foo".
 os.write(data, 3);
}

After writing to a stream, you should always check if error state flag badbit has been set, as it indicates whether the
operation failed or not. This can be done by calling the output file stream's member function bad():

os << "Hello Badbit!"; // This operation might fail for any reason.
if (os.bad())
 // Failed to write!

Section 13.2: Opening a file
Opening a file is done in the same way for all 3 file streams (ifstream, ofstream, and fstream).

You can open the file directly in the constructor:

std::ifstream ifs("foo.txt"); // ifstream: Opens file "foo.txt" for reading only.

std::ofstream ofs("foo.txt"); // ofstream: Opens file "foo.txt" for writing only.

C++ Notes for Professionals 56

std::fstream iofs("foo.txt"); // fstream: Opens file "foo.txt" for reading and writing.

Alternatively, you can use the file stream's member function open():

std::ifstream ifs;
ifs.open("bar.txt"); // ifstream: Opens file "bar.txt" for reading only.

std::ofstream ofs;
ofs.open("bar.txt"); // ofstream: Opens file "bar.txt" for writing only.

std::fstream iofs;
iofs.open("bar.txt"); // fstream: Opens file "bar.txt" for reading and writing.

You should always check if a file has been opened successfully (even when writing). Failures can include: the file
doesn't exist, file hasn't the right access rights, file is already in use, disk errors occurred, drive disconnected ...
Checking can be done as follows:

// Try to read the file 'foo.txt'.
std::ifstream ifs("fooo.txt"); // Note the typo; the file can't be opened.

// Check if the file has been opened successfully.
if (!ifs.is_open()) {
 // The file hasn't been opened; take appropriate actions here.
 throw CustomException(ifs, "File could not be opened");
}

When file path contains backslashes (for example, on Windows system) you should properly escape them:

// Open the file 'c:\\folder\\foo.txt' on Windows.
std::ifstream ifs("c:\\\\folder\\\\foo.txt"); // using escaped backslashes
Version ≥ C++11

or use raw literal:

// Open the file 'c:\\folder\\foo.txt' on Windows.
std::ifstream ifs(R"(c:\\folder\\foo.txt)"); // using raw literal

or use forward slashes instead:

// Open the file 'c:\\folder\\foo.txt' on Windows.
std::ifstream ifs("c:/folder/foo.txt");
Version ≥ C++11

If you want to open file with non-ASCII characters in path on Windows currently you can use non-standard wide
character path argument:

// Open the file 'пример\\foo.txt' on Windows.
std::ifstream ifs(LR"(пример\\foo.txt)"); // using wide characters with raw literal

Section 13.3: Reading from a file
There are several ways to read data from a file.

If you know how the data is formatted, you can use the stream extraction operator (>>). Let's assume you have a file
named foo.txt which contains the following data:

C++ Notes for Professionals 57

John Doe 25 4 6 1987
Jane Doe 15 5 24 1976

Then you can use the following code to read that data from the file:

// Define variables.
std::ifstream is("foo.txt");
std::string firstname, lastname;
int age, bmonth, bday, byear;

// Extract firstname, lastname, age, bday month, bday day, and bday year in that order.
// Note: '>>' returns false if it reached EOF (end of file) or if the input data doesn't
// correspond to the type of the input variable (for example, the string "foo" can't be
// extracted into an 'int' variable).
while (is >> firstname >> lastname >> age >> bmonth >> bday >> byear)
 // Process the data that has been read.

The stream extraction operator >> extracts every character and stops if it finds a character that can't be stored or if
it is a special character:

For string types, the operator stops at a whitespace () or at a newline (\n).
For numbers, the operator stops at a non-number character.

This means that the following version of the file foo.txt will also be successfully read by the previous code:

John
Doe 25
4 6 1987

Jane
Doe
15 5
24
1976

The stream extraction operator >> always returns the stream given to it. Therefore, multiple operators can be
chained together in order to read data consecutively. However, a stream can also be used as a Boolean expression
(as shown in the while loop in the previous code). This is because the stream classes have a conversion operator
for the type bool. This bool() operator will return true as long as the stream has no errors. If a stream goes into an
error state (for example, because no more data can be extracted), then the bool() operator will return false.
Therefore, the while loop in the previous code will be exited after the input file has been read to its end.

If you wish to read an entire file as a string, you may use the following code:

// Opens 'foo.txt'.
std::ifstream is("foo.txt");
std::string whole_file;

// Sets position to the end of the file.
is.seekg(0, std::ios::end);

// Reserves memory for the file.
whole_file.reserve(is.tellg());

// Sets position to the start of the file.
is.seekg(0, std::ios::beg);

C++ Notes for Professionals 58

// Sets contents of 'whole_file' to all characters in the file.
whole_file.assign(std::istreambuf_iterator<char>(is),
 std::istreambuf_iterator<char>());

This code reserves space for the string in order to cut down on unneeded memory allocations.

If you want to read a file line by line, you can use the function getline():

std::ifstream is("foo.txt");

// The function getline returns false if there are no more lines.
for (std::string str; std::getline(is, str);) {
 // Process the line that has been read.
}

If you want to read a fixed number of characters, you can use the stream's member function read():

std::ifstream is("foo.txt");
char str[4];

// Read 4 characters from the file.
is.read(str, 4);

After executing a read command, you should always check if the error state flag failbit has been set, as it
indicates whether the operation failed or not. This can be done by calling the file stream's member function fail():

is.read(str, 4); // This operation might fail for any reason.

if (is.fail())
 // Failed to read!

Section 13.4: Opening modes
When creating a file stream, you can specify an opening mode. An opening mode is basically a setting to control
how the stream opens the file.

(All modes can be found in the std::ios namespace.)

An opening mode can be provided as second parameter to the constructor of a file stream or to its open() member
function:

std::ofstream os("foo.txt", std::ios::out | std::ios::trunc);

std::ifstream is;
is.open("foo.txt", std::ios::in | std::ios::binary);

It is to be noted that you have to set ios::in or ios::out if you want to set other flags as they are not implicitly set
by the iostream members although they have a correct default value.

If you don't specify an opening mode, then the following default modes are used:

ifstream - in
ofstream - out
fstream - in and out

The file opening modes that you may specify by design are:

http://en.cppreference.com/w/cpp/string/basic_string/getline
http://en.cppreference.com/w/cpp/string/basic_string/getline
http://en.cppreference.com/w/cpp/string/basic_string/getline

C++ Notes for Professionals 59

Mode Meaning For Description
app append Output Appends data at the end of the file.
binary binary Input/Output Input and output is done in binary.
in input Input Opens the file for reading.
out output Output Opens the file for writing.
trunc truncate Input/Output Removes contents of the file when opening.
ate at end Input Goes to the end of the file when opening.

Note: Setting the binary mode lets the data be read/written exactly as-is; not setting it enables the translation of
the newline '\n' character to/from a platform specific end of line sequence.

For example on Windows the end of line sequence is CRLF ("\r\n").
Write: "\n" => "\r\n"
Read: "\r\n" => "\n"

Section 13.5: Reading an ASCII file into a std::string
std::ifstream f("file.txt");

if (f)
{
 std::stringstream buffer;
 buffer << f.rdbuf();
 f.close();

 // The content of "file.txt" is available in the string `buffer.str()`
}

The rdbuf() method returns a pointer to a streambuf that can be pushed into buffer via the
stringstream::operator<< member function.

Another possibility (popularized in Effective STL by Scott Meyers) is:

std::ifstream f("file.txt");

if (f)
{
 std::string str((std::istreambuf_iterator<char>(f)),
 std::istreambuf_iterator<char>());

 // Operations on `str`...
}

This is nice because requires little code (and allows reading a file directly into any STL container, not only strings)
but can be slow for big files.

NOTE: the extra parentheses around the first argument to the string constructor are essential to prevent the most
vexing parse problem.

Last but not least:

std::ifstream f("file.txt");

if (f)
{
 f.seekg(0, std::ios::end);
 const auto size = f.tellg();

http://en.cppreference.com/w/cpp/io/basic_ios/rdbuf
http://en.cppreference.com/w/cpp/io/basic_ios/rdbuf
http://en.cppreference.com/w/cpp/io/basic_ios/rdbuf
http://en.cppreference.com/w/cpp/io/basic_streambuf
http://en.cppreference.com/w/cpp/io/basic_ostream/operator_ltlt
http://en.cppreference.com/w/cpp/io/basic_ostream/operator_ltlt
http://en.cppreference.com/w/cpp/io/basic_ostream/operator_ltlt
http://en.cppreference.com/w/cpp/io/basic_ostream/operator_ltlt
http://rads.stackoverflow.com/amzn/click/0201749629
http://www.aristeia.com/

C++ Notes for Professionals 60

 std::string str(size, ' ');
 f.seekg(0);
 f.read(&str[0], size);
 f.close();

 // Operations on `str`...
}

which is probably the fastest option (among the three proposed).

Section 13.6: Writing files with non-standard locale settings
If you need to write a file using different locale settings to the default, you can use std::locale and
std::basic_ios::imbue() to do that for a specific file stream:

Guidance for use:

You should always apply a local to a stream before opening the file.
Once the stream has been imbued you should not change the locale.

Reasons for Restrictions: Imbuing a file stream with a locale has undefined behavior if the current locale is not
state independent or not pointing at the beginning of the file.

UTF-8 streams (and others) are not state independent. Also a file stream with a UTF-8 locale may try and read the
BOM marker from the file when it is opened; so just opening the file may read characters from the file and it will
not be at the beginning.

#include <iostream>
#include <fstream>
#include <locale>

int main()
{
 std::cout << "User-preferred locale setting is "
 << std::locale("").name().c_str() << std::endl;

 // Write a floating-point value using the user's preferred locale.
 std::ofstream ofs1;
 ofs1.imbue(std::locale(""));
 ofs1.open("file1.txt");
 ofs1 << 78123.456 << std::endl;

 // Use a specific locale (names are system-dependent)
 std::ofstream ofs2;
 ofs2.imbue(std::locale("en_US.UTF-8"));
 ofs2.open("file2.txt");
 ofs2 << 78123.456 << std::endl;

 // Switch to the classic "C" locale
 std::ofstream ofs3;
 ofs3.imbue(std::locale::classic());
 ofs3.open("file3.txt");
 ofs3 << 78123.456 << std::endl;
}

Explicitly switching to the classic "C" locale is useful if your program uses a different default locale and you want to
ensure a fixed standard for reading and writing files. With a "C" preferred locale, the example writes

http://en.cppreference.com/w/cpp/locale/locale
http://en.cppreference.com/w/cpp/locale/locale
http://en.cppreference.com/w/cpp/locale/locale
http://en.cppreference.com/w/cpp/io/basic_ios/imbue
http://en.cppreference.com/w/cpp/io/basic_ios/imbue
http://en.cppreference.com/w/cpp/io/basic_ios/imbue
http://en.cppreference.com/w/cpp/io/basic_ios/imbue
http://en.cppreference.com/w/cpp/io/basic_ios/imbue
http://en.cppreference.com/w/cpp/io/basic_ios/imbue
http://en.cppreference.com/w/cpp/io/basic_ios/imbue

C++ Notes for Professionals 61

78,123.456
78,123.456
78123.456

If, for example, the preferred locale is German and hence uses a different number format, the example writes

78 123,456
78,123.456
78123.456

(note the decimal comma in the first line).

Section 13.7: Checking end of file inside a loop condition, bad
practice?
eof returns true only after reading the end of file. It does NOT indicate that the next read will be the end of
stream.

while (!f.eof())
{
 // Everything is OK

 f >> buffer;

 // What if *only* now the eof / fail bit is set?

 /* Use `buffer` */
}

You could correctly write:

while (!f.eof())
{
 f >> buffer >> std::ws;

 if (f.fail())
 break;

 /* Use `buffer` */
}

but

while (f >> buffer)
{
 /* Use `buffer` */
}

is simpler and less error prone.

Further references:

std::ws: discards leading whitespace from an input stream
std::basic_ios::fail: returns true if an error has occurred on the associated stream

http://en.cppreference.com/w/cpp/io/basic_ios/eof
http://en.cppreference.com/w/cpp/io/manip/ws
http://en.cppreference.com/w/cpp/io/manip/ws
http://en.cppreference.com/w/cpp/io/manip/ws
http://en.cppreference.com/w/cpp/io/basic_ios/fail
http://en.cppreference.com/w/cpp/io/basic_ios/fail
http://en.cppreference.com/w/cpp/io/basic_ios/fail
http://en.cppreference.com/w/cpp/io/basic_ios/fail
http://en.cppreference.com/w/cpp/io/basic_ios/fail

C++ Notes for Professionals 62

Section 13.8: Flushing a stream
File streams are buffered by default, as are many other types of streams. This means that writes to the stream may
not cause the underlying file to change immediately. In oder to force all buffered writes to take place immediately,
you can flush the stream. You can do this either directly by invoking the flush() method or through the std::flush
stream manipulator:

std::ofstream os("foo.txt");
os << "Hello World!" << std::flush;

char data[3] = "Foo";
os.write(data, 3);
os.flush();

There is a stream manipulator std::endl that combines writing a newline with flushing the stream:

// Both following lines do the same thing
os << "Hello World!\n" << std::flush;
os << "Hello world!" << std::endl;

Buffering can improve the performance of writing to a stream. Therefore, applications that do a lot of writing
should avoid flushing unnecessarily. Contrary, if I/O is done infrequently, applications should consider flushing
frequently in order to avoid data getting stuck in the stream object.

Section 13.9: Reading a file into a container
In the example below we use std::string and operator>> to read items from the file.

 std::ifstream file("file3.txt");

 std::vector<std::string> v;

 std::string s;
 while(file >> s) // keep reading until we run out
 {
 v.push_back(s);
 }

In the above example we are simply iterating through the file reading one "item" at a time using operator>>. This
same affect can be achieved using the std::istream_iterator which is an input iterator that reads one "item" at a
time from the stream. Also most containers can be constructed using two iterators so we can simplify the above
code to:

 std::ifstream file("file3.txt");

 std::vector<std::string> v(std::istream_iterator<std::string>{file},
 std::istream_iterator<std::string>{});

We can extend this to read any object types we like by simply specifying the object we want to read as the template
parameter to the std::istream_iterator. Thus we can simply extend the above to read lines (rather than words)
like this:

// Unfortunately there is no built in type that reads line using >>
// So here we build a simple helper class to do it. That will convert
// back to a string when used in string context.
struct Line

C++ Notes for Professionals 63

{
 // Store data here
 std::string data;
 // Convert object to string
 operator std::string const&() const {return data;}
 // Read a line from a stream.
 friend std::istream& operator>>(std::istream& stream, Line& line)
 {
 return std::getline(stream, line.data);
 }
};

 std::ifstream file("file3.txt");

 // Read the lines of a file into a container.
 std::vector<std::string> v(std::istream_iterator<Line>{file},
 std::istream_iterator<Line>{});

Section 13.10: Copying a file
std::ifstream src("source_filename", std::ios::binary);
std::ofstream dst("dest_filename", std::ios::binary);
dst << src.rdbuf();
Version ≥ C++17

With C++17 the standard way to copy a file is including the <filesystem> header and using copy_file:

std::fileystem::copy_file("source_filename", "dest_filename");

The filesystem library was originally developed as boost.filesystem and finally merged to ISO C++ as of C++17.

Section 13.11: Closing a file
Explicitly closing a file is rarely necessary in C++, as a file stream will automatically close its associated file in its
destructor. However, you should try to limit the lifetime of a file stream object, so that it does not keep the file
handle open longer than necessary. For example, this can be done by putting all file operations into an own scope
({}):

std::string const prepared_data = prepare_data();
{
 // Open a file for writing.
 std::ofstream output("foo.txt");

 // Write data.
 output << prepared_data;
} // The ofstream will go out of scope here.
 // Its destructor will take care of closing the file properly.

Calling close() explicitly is only necessary if you want to reuse the same fstream object later, but don't want to
keep the file open in between:

// Open the file "foo.txt" for the first time.
std::ofstream output("foo.txt");

// Get some data to write from somewhere.
std::string const prepared_data = prepare_data();

http://en.cppreference.com/w/cpp/filesystem
http://en.cppreference.com/w/cpp/filesystem
http://en.cppreference.com/w/cpp/filesystem/copy_file

C++ Notes for Professionals 64

// Write data to the file "foo.txt".
output << prepared_data;

// Close the file "foo.txt".
output.close();

// Preparing data might take a long time. Therefore, we don't open the output file stream
// before we actually can write some data to it.
std::string const more_prepared_data = prepare_complex_data();

// Open the file "foo.txt" for the second time once we are ready for writing.
output.open("foo.txt");

// Write the data to the file "foo.txt".
output << more_prepared_data;

// Close the file "foo.txt" once again.
output.close();

Section 13.12: Reading a `struct` from a formatted text file
Version ≥ C++11

struct info_type
{
 std::string name;
 int age;
 float height;

 // we define an overload of operator>> as a friend function which
 // gives in privileged access to private data members
 friend std::istream& operator>>(std::istream& is, info_type& info)
 {
 // skip whitespace
 is >> std::ws;
 std::getline(is, info.name);
 is >> info.age;
 is >> info.height;
 return is;
 }
};

void func4()
{
 auto file = std::ifstream("file4.txt");

 std::vector<info_type> v;

 for(info_type info; file >> info;) // keep reading until we run out
 {
 // we only get here if the read succeeded
 v.push_back(info);
 }

 for(auto const& info: v)
 {
 std::cout << " name: " << info.name << '\n';
 std::cout << " age: " << info.age << " years" << '\n';
 std::cout << "height: " << info.height << "lbs" << '\n';
 std::cout << '\n';
 }
}

C++ Notes for Professionals 65

file4.txt

Wogger Wabbit
2
6.2
Bilbo Baggins
111
81.3
Mary Poppins
29
154.8

Output:

name: Wogger Wabbit
 age: 2 years
height: 6.2lbs

name: Bilbo Baggins
 age: 111 years
height: 81.3lbs

name: Mary Poppins
 age: 29 years
height: 154.8lbs

C++ Notes for Professionals 66

Chapter 14: C++ Streams
Section 14.1: String streams
std::ostringstream is a class whose objects look like an output stream (that is, you can write to them via
operator<<), but actually store the writing results, and provide them in the form of a stream.

Consider the following short code:

#include <sstream>
#include <string>

using namespace std;

int main()
{
 ostringstream ss;
 ss << "the answer to everything is " << 42;
 const string result = ss.str();
}

The line

ostringstream ss;

creates such an object. This object is first manipulated like a regular stream:

ss << "the answer to everything is " << 42;

Following that, though, the resulting stream can be obtained like this:

const string result = ss.str();

(the string result will be equal to "the answer to everything is 42").

This is mainly useful when we have a class for which stream serialization has been defined, and for which we want a
string form. For example, suppose we have some class

class foo
{
 // All sort of stuff here.
};

ostream &operator<<(ostream &os, const foo &f);

To get the string representation of a foo object,

foo f;

we could use

ostringstream ss;
ss << f;
const string result = ss.str();

http://www.cplusplus.com/reference/sstream/ostringstream/
http://www.cplusplus.com/reference/sstream/ostringstream/
http://www.cplusplus.com/reference/sstream/ostringstream/

C++ Notes for Professionals 67

Then result contains the string representation of the foo object.

Section 14.2: Printing collections with iostream
Basic printing

std::ostream_iterator allows to print contents of an STL container to any output stream without explicit loops.
The second argument of std::ostream_iterator constructor sets the delimiter. For example, the following code:

std::vector<int> v = {1,2,3,4};
std::copy(v.begin(), v.end(), std::ostream_iterator<int>(std::cout, " ! "));

will print

1 ! 2 ! 3 ! 4 !

Implicit type cast

std::ostream_iterator allows to cast container's content type implicitly. For example, let's tune std::cout to print
floating-point values with 3 digits after decimal point:

std::cout << std::setprecision(3);
std::fixed(std::cout);

and instantiate std::ostream_iterator with float, while the contained values remain int:

std::vector<int> v = {1,2,3,4};
std::copy(v.begin(), v.end(), std::ostream_iterator<float>(std::cout, " ! "));

so the code above yields

1.000 ! 2.000 ! 3.000 ! 4.000 !

despite std::vector holds ints.

Generation and transformation

std::generate, std::generate_n and std::transform functions provide a very powerful tool for on-the-fly data
manipulation. For example, having a vector:

std::vector<int> v = {1,2,3,4,8,16};

we can easily print boolean value of "x is even" statement for each element:

std::boolalpha(std::cout); // print booleans alphabetically
std::transform(v.begin(), v.end(), std::ostream_iterator<bool>(std::cout, " "),
[](int val) {
 return (val % 2) == 0;
});

or print the squared element:

std::transform(v.begin(), v.end(), std::ostream_iterator<int>(std::cout, " "),
[](int val) {
 return val * val;

C++ Notes for Professionals 68

});

Printing N space-delimited random numbers:

const int N = 10;
std::generate_n(std::ostream_iterator<int>(std::cout, " "), N, std::rand);

Arrays

As in the section about reading text files, almost all these considerations may be applied to native arrays. For
example, let's print squared values from a native array:

int v[] = {1,2,3,4,8,16};
std::transform(v, std::end(v), std::ostream_iterator<int>(std::cout, " "),
[](int val) {
 return val * val;
});

C++ Notes for Professionals 69

Chapter 15: Stream manipulators
Manipulators are special helper functions that help controlling input and output streams using operator >> or
operator <<.

They all can be included by #include <iomanip>.

Section 15.1: Stream manipulators
std::boolalpha and std::noboolalpha - switch between textual and numeric representation of booleans.

std::cout << std::boolalpha << 1;
// Output: true

std::cout << std::noboolalpha << false;
// Output: 0

bool boolValue;
std::cin >> std::boolalpha >> boolValue;
std::cout << "Value \"" << std::boolalpha << boolValue
 << "\" was parsed as " << std::noboolalpha << boolValue;
// Input: true
// Output: Value "true" was parsed as 0

std::showbase and std::noshowbase - control whether prefix indicating numeric base is used.

std::dec (decimal), std::hex (hexadecimal) and std::oct (octal) - are used for changing base for integers.

#include <sstream>

std::cout << std::dec << 29 << ' - '
 << std::hex << 29 << ' - '
 << std::showbase << std::oct << 29 << ' - '
 << std::noshowbase << 29 '\n';
int number;
std::istringstream("3B") >> std::hex >> number;
std::cout << std::dec << 10;
// Output: 22 - 1D - 35 - 035
// 59

Default values are std::ios_base::noshowbase and std::ios_base::dec.

If you want to see more about std::istringstream check out the <sstream> header.

std::uppercase and std::nouppercase - control whether uppercase characters are used in floating-point and
hexadecimal integer output. Have no effect on input streams.

std::cout << std::hex << std::showbase
 << "0x2a with nouppercase: " << std::nouppercase << 0x2a << '\n'
 << "1e-10 with uppercase: " << std::uppercase << 1e-10 << '\n'
}
// Output: 0x2a with nouppercase: 0x2a
// 1e-10 with uppercase: 1E-10

http://en.cppreference.com/w/cpp/io/manip/booalpha
http://en.cppreference.com/w/cpp/io/manip/booalpha
http://en.cppreference.com/w/cpp/io/manip/booalpha
http://en.cppreference.com/w/cpp/io/manip/booalpha
http://en.cppreference.com/w/cpp/io/manip/booalpha
http://en.cppreference.com/w/cpp/io/manip/booalpha
http://en.cppreference.com/w/cpp/io/manip/showbase
http://en.cppreference.com/w/cpp/io/manip/showbase
http://en.cppreference.com/w/cpp/io/manip/showbase
http://en.cppreference.com/w/cpp/io/manip/showbase
http://en.cppreference.com/w/cpp/io/manip/showbase
http://en.cppreference.com/w/cpp/io/manip/showbase
http://en.cppreference.com/w/cpp/io/manip/hex
http://en.cppreference.com/w/cpp/io/manip/hex
http://en.cppreference.com/w/cpp/io/manip/hex
http://en.cppreference.com/w/cpp/io/manip/hex
http://en.cppreference.com/w/cpp/io/manip/hex
http://en.cppreference.com/w/cpp/io/manip/hex
http://en.cppreference.com/w/cpp/io/manip/hex
http://en.cppreference.com/w/cpp/io/manip/hex
http://en.cppreference.com/w/cpp/io/manip/hex
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/header/sstream
http://en.cppreference.com/w/cpp/io/manip/uppercase
http://en.cppreference.com/w/cpp/io/manip/uppercase
http://en.cppreference.com/w/cpp/io/manip/uppercase
http://en.cppreference.com/w/cpp/io/manip/uppercase
http://en.cppreference.com/w/cpp/io/manip/uppercase
http://en.cppreference.com/w/cpp/io/manip/uppercase

C++ Notes for Professionals 70

Default is std::nouppercase.

std::setw(n) - changes the width of the next input/output field to exactly n.

The width property n is resetting to 0 when some functions are called (full list is here).

std::cout << "no setw:" << 51 << '\n'
 << "setw(7): " << std::setw(7) << 51 << '\n'
 << "setw(7), more output: " << 13
 << std::setw(7) << std::setfill('*') << 67 << ' ' << 94 << '\n';

char* input = "Hello, world!";
char arr[10];
std::cin >> std::setw(6) >> arr;
std::cout << "Input from \"Hello, world!\" with setw(6) gave \"" << arr << "\"\n";

// Output: 51
// setw(7): 51
// setw(7), more output: 13*****67 94

// Input: Hello, world!
// Output: Input from "Hello, world!" with setw(6) gave "Hello"

Default is std::setw(0).

std::left, std::right and std::internal - modify the default position of the fill characters by setting
std::ios_base::adjustfield to std::ios_base::left, std::ios_base::right and std::ios_base::internal
correspondingly. std::left and std::right apply to any output, std::internal - for integer, floating-point and
monetary output. Have no effect on input streams.

#include <locale>
...

std::cout.imbue(std::locale("en_US.utf8"));

std::cout << std::left << std::showbase << std::setfill('*')
 << "flt: " << std::setw(15) << -9.87 << '\n'
 << "hex: " << std::setw(15) << 41 << '\n'
 << " $: " << std::setw(15) << std::put_money(367, false) << '\n'
 << "usd: " << std::setw(15) << std::put_money(367, true) << '\n'
 << "usd: " << std::setw(15)
 << std::setfill(' ') << std::put_money(367, false) << '\n';
// Output:
// flt: -9.87**********
// hex: 41*************
// $: $3.67**********
// usd: USD *3.67******
// usd: $3.67

std::cout << std::internal << std::showbase << std::setfill('*')
 << "flt: " << std::setw(15) << -9.87 << '\n'
 << "hex: " << std::setw(15) << 41 << '\n'
 << " $: " << std::setw(15) << std::put_money(367, false) << '\n'
 << "usd: " << std::setw(15) << std::put_money(367, true) << '\n'
 << "usd: " << std::setw(15)
 << std::setfill(' ') << std::put_money(367, true) << '\n';

http://en.cppreference.com/w/cpp/io/manip/setw
http://en.cppreference.com/w/cpp/io/manip/setw
http://en.cppreference.com/w/cpp/io/manip/setw
http://en.cppreference.com/w/cpp/io/manip/setw
http://en.cppreference.com/w/cpp/io/manip/setw
http://en.cppreference.com/w/cpp/io/manip/setw
http://en.cppreference.com/w/cpp/io/manip/setw
http://en.cppreference.com/w/cpp/io/manip/left
http://en.cppreference.com/w/cpp/io/manip/left
http://en.cppreference.com/w/cpp/io/manip/left
http://en.cppreference.com/w/cpp/io/manip/left
http://en.cppreference.com/w/cpp/io/manip/left
http://en.cppreference.com/w/cpp/io/manip/left
http://en.cppreference.com/w/cpp/io/manip/left
http://en.cppreference.com/w/cpp/io/manip/left
http://en.cppreference.com/w/cpp/io/manip/left
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags

C++ Notes for Professionals 71

// Output:
// flt: -**********9.87
// hex: *************41
// $: $3.67**********
// usd: USD *******3.67
// usd: USD 3.67

std::cout << std::right << std::showbase << std::setfill('*')
 << "flt: " << std::setw(15) << -9.87 << '\n'
 << "hex: " << std::setw(15) << 41 << '\n'
 << " $: " << std::setw(15) << std::put_money(367, false) << '\n'
 << "usd: " << std::setw(15) << std::put_money(367, true) << '\n'
 << "usd: " << std::setw(15)
 << std::setfill(' ') << std::put_money(367, true) << '\n';
// Output:
// flt: **********-9.87
// hex: *************41
// $: **********$3.67
// usd: ******USD *3.67
// usd: USD 3.67

Default is std::left.

std::fixed, std::scientific, std::hexfloat [C++11] and std::defaultfloat [C++11] - change formatting for
floating-point input/output.

std::fixed sets the std::ios_base::floatfield to std::ios_base::fixed,
std::scientific - to std::ios_base::scientific,
std::hexfloat - to std::ios_base::fixed | std::ios_base::scientific and
std::defaultfloat - to std::ios_base::fmtflags(0).

fmtflags

#include <sstream>
...

std::cout << '\n'
 << "The number 0.07 in fixed: " << std::fixed << 0.01 << '\n'
 << "The number 0.07 in scientific: " << std::scientific << 0.01 << '\n'
 << "The number 0.07 in hexfloat: " << std::hexfloat << 0.01 << '\n'
 << "The number 0.07 in default: " << std::defaultfloat << 0.01 << '\n';

double f;
std::istringstream is("0x1P-1022");
double f = std::strtod(is.str().c_str(), NULL);
std::cout << "Parsing 0x1P-1022 as hex gives " << f << '\n';

// Output:
// The number 0.01 in fixed: 0.070000
// The number 0.01 in scientific: 7.000000e-02
// The number 0.01 in hexfloat: 0x1.1eb851eb851ecp-4
// The number 0.01 in default: 0.07
// Parsing 0x1P-1022 as hex gives 2.22507e-308

Default is std::ios_base::fmtflags(0).

There is a bug on some compilers which causes

http://en.cppreference.com/w/cpp/io/manip/fixed
http://en.cppreference.com/w/cpp/io/manip/fixed
http://en.cppreference.com/w/cpp/io/manip/fixed
http://en.cppreference.com/w/cpp/io/manip/fixed
http://en.cppreference.com/w/cpp/io/manip/fixed
http://en.cppreference.com/w/cpp/io/manip/fixed
http://en.cppreference.com/w/cpp/io/manip/fixed
http://en.cppreference.com/w/cpp/io/manip/fixed
http://en.cppreference.com/w/cpp/io/manip/fixed
http://en.cppreference.com/w/cpp/io/manip/fixed
http://en.cppreference.com/w/cpp/io/manip/fixed
http://en.cppreference.com/w/cpp/io/manip/fixed
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags

C++ Notes for Professionals 72

double f;
std::istringstream("0x1P-1022") >> std::hexfloat >> f;
std::cout << "Parsing 0x1P-1022 as hex gives " << f << '\n';
// Output: Parsing 0x1P-1022 as hex gives 0

std::showpoint and std::noshowpoint - control whether decimal point is always included in floating-point
representation. Have no effect on input streams.

std::cout << "7.0 with showpoint: " << std::showpoint << 7.0 << '\n'
 << "7.0 with noshowpoint: " << std::noshowpoint << 7.0 << '\n';
// Output: 1.0 with showpoint: 7.00000
// 1.0 with noshowpoint: 7

Default is std::showpoint.

std::showpos and std::noshowpos - control displaying of the + sign in non-negative output. Have no effect on input
streams.

std::cout << "With showpos: " << std::showpos
 << 0 << ' ' << -2.718 << ' ' << 17 << '\n'
 << "Without showpos: " << std::noshowpos
 << 0 << ' ' << -2.718 << ' ' << 17 << '\n';
// Output: With showpos: +0 -2.718 +17
// Without showpos: 0 -2.718 17

Default if std::noshowpos.

std::unitbuf, std::nounitbuf - control flushing output stream after every operation. Have no effect on input
stream. std::unitbuf causes flushing.

std::setbase(base) - sets the numeric base of the stream.

std::setbase(8) equals to setting std::ios_base::basefield to std::ios_base::oct,
std::setbase(16) - to std::ios_base::hex,
std::setbase(10) - to std::ios_base::dec.

If base is other then 8, 10 or 16 then std::ios_base::basefield is setting to std::ios_base::fmtflags(0). It
means decimal output and prefix-dependent input.

As default std::ios_base::basefield is std::ios_base::dec then by default std::setbase(10).

std::setprecision(n) - changes floating-point precision.

#include <cmath>
#include <limits>
...

typedef std::numeric_limits<long double> ld;

http://en.cppreference.com/w/cpp/io/manip/showpoint
http://en.cppreference.com/w/cpp/io/manip/showpoint
http://en.cppreference.com/w/cpp/io/manip/showpoint
http://en.cppreference.com/w/cpp/io/manip/showpoint
http://en.cppreference.com/w/cpp/io/manip/showpoint
http://en.cppreference.com/w/cpp/io/manip/showpoint
http://en.cppreference.com/w/cpp/io/manip/showpos
http://en.cppreference.com/w/cpp/io/manip/showpos
http://en.cppreference.com/w/cpp/io/manip/showpos
http://en.cppreference.com/w/cpp/io/manip/showpos
http://en.cppreference.com/w/cpp/io/manip/showpos
http://en.cppreference.com/w/cpp/io/manip/showpos
http://en.cppreference.com/w/cpp/io/manip/unitbuf
http://en.cppreference.com/w/cpp/io/manip/unitbuf
http://en.cppreference.com/w/cpp/io/manip/unitbuf
http://en.cppreference.com/w/cpp/io/manip/unitbuf
http://en.cppreference.com/w/cpp/io/manip/unitbuf
http://en.cppreference.com/w/cpp/io/manip/unitbuf
http://en.cppreference.com/w/cpp/io/manip/setbase
http://en.cppreference.com/w/cpp/io/manip/setbase
http://en.cppreference.com/w/cpp/io/manip/setbase
http://en.cppreference.com/w/cpp/io/manip/setbase
http://en.cppreference.com/w/cpp/io/manip/setbase
http://en.cppreference.com/w/cpp/io/manip/setbase
http://en.cppreference.com/w/cpp/io/manip/setprecision
http://en.cppreference.com/w/cpp/io/manip/setprecision
http://en.cppreference.com/w/cpp/io/manip/setprecision
http://en.cppreference.com/w/cpp/io/manip/setprecision
http://en.cppreference.com/w/cpp/io/manip/setprecision
http://en.cppreference.com/w/cpp/io/manip/setprecision

C++ Notes for Professionals 73

const long double pi = std::acos(-1.L);

std::cout << '\n'
 << "default precision (6): pi: " << pi << '\n'
 << " 10pi: " << 10 * pi << '\n'
 << "std::setprecision(4): 10pi: " << std::setprecision(4) << 10 * pi << '\n'
 << " 10000pi: " << 10000 * pi << '\n'
 << "std::fixed: 10000pi: " << std::fixed << 10000 * pi << std::defaultfloat <<
'\n'
 << "std::setprecision(10): pi: " << std::setprecision(10) << pi << '\n'
 << "max-1 radix precicion: pi: " << std::setprecision(ld::digits - 1) << pi << '\n'
 << "max+1 radix precision: pi: " << std::setprecision(ld::digits + 1) << pi << '\n'
 << "significant digits prec: pi: " << std::setprecision(ld::digits10) << pi << '\n';

// Output:
// default precision (6): pi: 3.14159
// 10pi: 31.4159
// std::setprecision(4): 10pi: 31.42
// 10000pi: 3.142e+04
// std::fixed: 10000pi: 31415.9265
// std::setprecision(10): pi: 3.141592654
// max-1 radix precicion: pi: 3.14159265358979323851280895940618620443274267017841339111328125
// max+1 radix precision: pi: 3.14159265358979323851280895940618620443274267017841339111328125
// significant digits prec: pi: 3.14159265358979324

Default is std::setprecision(6).

std::setiosflags(mask) and std::resetiosflags(mask) - set and clear flags specified in mask of
std::ios_base::fmtflags type.

#include <sstream>
...

std::istringstream in("10 010 10 010 10 010");
int num1, num2;

in >> std::oct >> num1 >> num2;
std::cout << "Parsing \"10 010\" with std::oct gives: " << num1 << ' ' << num2 << '\n';
// Output: Parsing "10 010" with std::oct gives: 8 8

in >> std::dec >> num1 >> num2;
std::cout << "Parsing \"10 010\" with std::dec gives: " << num1 << ' ' << num2 << '\n';
// Output: Parsing "10 010" with std::oct gives: 10 10

in >> std::resetiosflags(std::ios_base::basefield) >> num1 >> num2;
std::cout << "Parsing \"10 010\" with autodetect gives: " << num1 << ' ' << num2 << '\n';
// Parsing "10 010" with autodetect gives: 10 8

std::cout << std::setiosflags(std::ios_base::hex |
 std::ios_base::uppercase |
 std::ios_base::showbase) << 42 << '\n';
// Output: OX2A

std::skipws and std::noskipws - control skipping of leading whitespace by the formatted input functions. Have no
effect on output streams.

#include <sstream>

http://en.cppreference.com/w/cpp/io/manip/setiosflags
http://en.cppreference.com/w/cpp/io/manip/setiosflags
http://en.cppreference.com/w/cpp/io/manip/setiosflags
http://en.cppreference.com/w/cpp/io/manip/setiosflags
http://en.cppreference.com/w/cpp/io/manip/setiosflags
http://en.cppreference.com/w/cpp/io/manip/setiosflags
http://en.cppreference.com/w/cpp/io/manip/resetiosflags
http://en.cppreference.com/w/cpp/io/manip/resetiosflags
http://en.cppreference.com/w/cpp/io/manip/resetiosflags
http://en.cppreference.com/w/cpp/io/manip/resetiosflags
http://en.cppreference.com/w/cpp/io/manip/resetiosflags
http://en.cppreference.com/w/cpp/io/manip/resetiosflags
http://en.cppreference.com/w/cpp/io/manip/skipws
http://en.cppreference.com/w/cpp/io/manip/skipws
http://en.cppreference.com/w/cpp/io/manip/skipws
http://en.cppreference.com/w/cpp/io/manip/skipws
http://en.cppreference.com/w/cpp/io/manip/skipws
http://en.cppreference.com/w/cpp/io/manip/skipws

C++ Notes for Professionals 74

...

char c1, c2, c3;
std::istringstream("a b c") >> c1 >> c2 >> c3;
std::cout << "Default behavior: c1 = " << c1 << " c2 = " << c2 << " c3 = " << c3 << '\n';

std::istringstream("a b c") >> std::noskipws >> c1 >> c2 >> c3;
std::cout << "noskipws behavior: c1 = " << c1 << " c2 = " << c2 << " c3 = " << c3 << '\n';
// Output: Default behavior: c1 = a c2 = b c3 = c
// noskipws behavior: c1 = a c2 = c3 = b

Default is std::ios_base::skipws.

std::quoted(s[, delim[, escape]]) [C++14] - inserts or extracts quoted strings with embedded spaces.

s - the string to insert or extract.
delim - the character to use as the delimiter, " by default.
escape - the character to use as the escape character, \ by default.

#include <sstream>
...

std::stringstream ss;
std::string in = "String with spaces, and embedded \"quotes\" too";
std::string out;

ss << std::quoted(in);
std::cout << "read in [" << in << "]\n"
 << "stored as [" << ss.str() << "]\n";

ss >> std::quoted(out);
std::cout << "written out [" << out << "]\n";
// Output:
// read in [String with spaces, and embedded "quotes" too]
// stored as ["String with spaces, and embedded \"quotes\" too"]
// written out [String with spaces, and embedded "quotes" too]

For more information see the link above.

Section 15.2: Output stream manipulators
std::ends - inserts a null character '\0' to output stream. More formally this manipulator's declaration looks like

template <class charT, class traits>
std::basic_ostream<charT, traits>& ends(std::basic_ostream<charT, traits>& os);

and this manipulator places character by calling os.put(charT()) when used in an expression
os << std::ends;

std::endl and std::flush both flush output stream out by calling out.flush(). It causes immediately producing
output. But std::endl inserts end of line '\n' symbol before flushing.

std::cout << "First line." << std::endl << "Second line. " << std::flush
 << "Still second line.";

http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/manip/quoted
http://en.cppreference.com/w/cpp/io/manip/quoted
http://en.cppreference.com/w/cpp/io/manip/quoted
http://en.cppreference.com/w/cpp/io/manip/quoted
http://en.cppreference.com/w/cpp/io/manip/quoted
http://en.cppreference.com/w/cpp/io/manip/quoted
http://en.cppreference.com/w/cpp/io/manip/quoted
http://en.cppreference.com/w/cpp/io/manip/quoted
http://en.cppreference.com/w/cpp/io/manip/quoted
http://en.cppreference.com/w/cpp/io/manip/quoted
http://en.cppreference.com/w/cpp/io/manip/quoted
http://en.cppreference.com/w/cpp/io/manip/quoted
http://en.cppreference.com/w/cpp/io/manip/ends
http://en.cppreference.com/w/cpp/io/manip/ends
http://en.cppreference.com/w/cpp/io/manip/ends
http://en.cppreference.com/w/cpp/io/manip/endl
http://en.cppreference.com/w/cpp/io/manip/endl
http://en.cppreference.com/w/cpp/io/manip/endl
http://en.cppreference.com/w/cpp/io/manip/flush
http://en.cppreference.com/w/cpp/io/manip/flush
http://en.cppreference.com/w/cpp/io/manip/flush

C++ Notes for Professionals 75

// Output: First line.
// Second line. Still second line.

std::setfill(c) - changes the fill character to c. Often used with std::setw.

std::cout << "\nDefault fill: " << std::setw(10) << 79 << '\n'
 << "setfill('#'): " << std::setfill('#')
 << std::setw(10) << 42 << '\n';
// Output:
// Default fill: 79
// setfill('#'): ########79

std::put_money(mon[, intl]) [C++11]. In an expression out << std::put_money(mon, intl), converts the
monetary value mon (of long double or std::basic_string type) to its character representation as specified by the
std::money_put facet of the locale currently imbued in out. Use international currency strings if intl is true, use
currency symbols otherwise.

long double money = 123.45;
// or std::string money = "123.45";

std::cout.imbue(std::locale("en_US.utf8"));
std::cout << std::showbase << "en_US: " << std::put_money(money)
 << " or " << std::put_money(money, true) << '\n';
// Output: en_US: $1.23 or USD 1.23

std::cout.imbue(std::locale("ru_RU.utf8"));
std::cout << "ru_RU: " << std::put_money(money)
 << " or " << std::put_money(money, true) << '\n';
// Output: ru_RU: 1.23 ??? or 1.23 RUB

std::cout.imbue(std::locale("ja_JP.utf8"));
std::cout << "ja_JP: " << std::put_money(money)
 << " or " << std::put_money(money, true) << '\n';
// Output: ja_JP: ?123 or JPY 123

std::put_time(tmb, fmt) [C++11] - formats and outputs a date/time value to std::tm according to the specified
format fmt.

tmb - pointer to the calendar time structure const std::tm* as obtained from localtime() or gmtime().
fmt - pointer to a null-terminated string const CharT* specifying the format of conversion.

#include <ctime>
...

std::time_t t = std::time(nullptr);
std::tm tm = *std::localtime(&t);

std::cout.imbue(std::locale("ru_RU.utf8"));
std::cout << "\nru_RU: " << std::put_time(&tm, "%c %Z") << '\n';
// Possible output:
// ru_RU: ?? 04 ??? 2017 15:08:35 UTC

For more information see the link above.

http://en.cppreference.com/w/cpp/io/manip/setfill
http://en.cppreference.com/w/cpp/io/manip/setfill
http://en.cppreference.com/w/cpp/io/manip/setfill
http://en.cppreference.com/w/cpp/io/manip/setfill
http://en.cppreference.com/w/cpp/io/manip/setfill
http://en.cppreference.com/w/cpp/io/manip/setfill
http://en.cppreference.com/w/cpp/io/manip/put_money
http://en.cppreference.com/w/cpp/io/manip/put_money
http://en.cppreference.com/w/cpp/io/manip/put_money
http://en.cppreference.com/w/cpp/io/manip/put_money
http://en.cppreference.com/w/cpp/io/manip/put_money
http://en.cppreference.com/w/cpp/io/manip/put_money
http://en.cppreference.com/w/cpp/io/manip/put_money
http://en.cppreference.com/w/cpp/io/manip/put_money
http://en.cppreference.com/w/cpp/io/manip/put_money
http://en.cppreference.com/w/cpp/locale/money_put
http://en.cppreference.com/w/cpp/locale/money_put
http://en.cppreference.com/w/cpp/locale/money_put
http://en.cppreference.com/w/cpp/io/manip/put_time
http://en.cppreference.com/w/cpp/io/manip/put_time
http://en.cppreference.com/w/cpp/io/manip/put_time
http://en.cppreference.com/w/cpp/io/manip/put_time
http://en.cppreference.com/w/cpp/io/manip/put_time
http://en.cppreference.com/w/cpp/io/manip/put_time

C++ Notes for Professionals 76

Section 15.3: Input stream manipulators
std::ws - consumes leading whitespaces in input stream. It different from std::skipws.

#include <sstream>
...

std::string str;
std::istringstream(" \v\n\r\t Wow!There is no whitespaces!") >> std::ws >> str;
std::cout << str;
// Output: Wow!There is no whitespaces!

std::get_money(mon[, intl]) [C++11]. In an expression in >> std::get_money(mon, intl) parses the character
input as a monetary value, as specified by the std::money_get facet of the locale currently imbued in in, and stores
the value in mon (of long double or std::basic_string type). Manipulator expects required international currency
strings if intl is true, expects optional currency symbols otherwise.

#include <sstream>
#include <locale>
...

std::istringstream in("$1,234.56 2.22 USD 3.33");
long double v1, v2;
std::string v3;

in.imbue(std::locale("en_US.UTF-8"));
in >> std::get_money(v1) >> std::get_money(v2) >> std::get_money(v3, true);
if (in) {
 std::cout << std::quoted(in.str()) << " parsed as: "
 << v1 << ", " << v2 << ", " << v3 << '\n';
}
// Output:
// "$1,234.56 2.22 USD 3.33" parsed as: 123456, 222, 333

std::get_time(tmb, fmt) [C++11] - parses a date/time value stored in tmb of specified format fmt.

tmb - valid pointer to the const std::tm* object where the result will be stored.
fmt - pointer to a null-terminated string const CharT* specifying the conversion format.

#include <sstream>
#include <locale>
...

std::tm t = {};
std::istringstream ss("2011-Februar-18 23:12:34");

ss.imbue(std::locale("de_DE.utf-8"));
ss >> std::get_time(&t, "%Y-%b-%d %H:%M:%S");
if (ss.fail()) {
 std::cout << "Parse failed\n";
}
else {
 std::cout << std::put_time(&t, "%c") << '\n';
}
// Possible output:
// Sun Feb 18 23:12:34 2011

http://en.cppreference.com/w/cpp/io/manip/ws
http://en.cppreference.com/w/cpp/io/manip/ws
http://en.cppreference.com/w/cpp/io/manip/ws
http://en.cppreference.com/w/cpp/io/manip/get_money
http://en.cppreference.com/w/cpp/io/manip/get_money
http://en.cppreference.com/w/cpp/io/manip/get_money
http://en.cppreference.com/w/cpp/io/manip/get_money
http://en.cppreference.com/w/cpp/io/manip/get_money
http://en.cppreference.com/w/cpp/io/manip/get_money
http://en.cppreference.com/w/cpp/io/manip/get_money
http://en.cppreference.com/w/cpp/io/manip/get_money
http://en.cppreference.com/w/cpp/io/manip/get_money
http://en.cppreference.com/w/cpp/locale/money_get
http://en.cppreference.com/w/cpp/locale/money_get
http://en.cppreference.com/w/cpp/locale/money_get
http://en.cppreference.com/w/cpp/io/manip/get_time
http://en.cppreference.com/w/cpp/io/manip/get_time
http://en.cppreference.com/w/cpp/io/manip/get_time
http://en.cppreference.com/w/cpp/io/manip/get_time
http://en.cppreference.com/w/cpp/io/manip/get_time
http://en.cppreference.com/w/cpp/io/manip/get_time

C++ Notes for Professionals 77

For more information see the link above.

C++ Notes for Professionals 78

Chapter 16: Flow Control
Section 16.1: case
Introduces a case label of a switch statement. The operand must be a constant expression and match the switch
condition in type. When the switch statement is executed, it will jump to the case label with operand equal to the
condition, if any.

char c = getchar();
bool confirmed;
switch (c) {
 case 'y':
 confirmed = true;
 break;
 case 'n':
 confirmed = false;
 break;
 default:
 std::cout << "invalid response!\n";
 abort();
}

Section 16.2: switch
According to the C++ standard,

The switch statement causes control to be transferred to one of several statements depending on the
value of a condition.

The keyword switch is followed by a parenthesized condition and a block, which may contain case labels and an
optional default label. When the switch statement is executed, control will be transferred either to a case label
with a value matching that of the condition, if any, or to the default label, if any.

The condition must be an expression or a declaration, which has either integer or enumeration type, or a class type
with a conversion function to integer or enumeration type.

char c = getchar();
bool confirmed;
switch (c) {
 case 'y':
 confirmed = true;
 break;
 case 'n':
 confirmed = false;
 break;
 default:
 std::cout << "invalid response!\n";
 abort();
}

Section 16.3: catch
The catch keyword introduces an exception handler, that is, a block into which control will be transferred when an
exception of compatible type is thrown. The catch keyword is followed by a parenthesized exception declaration,

C++ Notes for Professionals 79

which is similar in form to a function parameter declaration: the parameter name may be omitted, and the ellipsis
... is allowed, which matches any type. The exception handler will only handle the exception if its declaration is
compatible with the type of the exception. For more details, see catching exceptions.

try {
 std::vector<int> v(N);
 // do something
} catch (const std::bad_alloc&) {
 std::cout << "failed to allocate memory for vector!" << std::endl;
} catch (const std::runtime_error& e) {
 std::cout << "runtime error: " << e.what() << std::endl;
} catch (...) {
 std::cout << "unexpected exception!" << std::endl;
 throw;
}

Section 16.4: throw
When throw occurs in an expression with an operand, its effect is to throw an exception, which is a copy of1.
the operand.

void print_asterisks(int count) {
 if (count < 0) {
 throw std::invalid_argument("count cannot be negative!");
 }
 while (count--) { putchar('*'); }
}

When throw occurs in an expression without an operand, its effect is to rethrow the current exception. If2.
there is no current exception, std::terminate is called.

try {
 // something risky
} catch (const std::bad_alloc&) {
 std::cerr << "out of memory" << std::endl;
} catch (...) {
 std::cerr << "unexpected exception" << std::endl;
 // hope the caller knows how to handle this exception
 throw;
}

When throw occurs in a function declarator, it introduces a dynamic exception specification, which lists the3.
types of exceptions that the function is allowed to propagate.

// this function might propagate a std::runtime_error,
// but not, say, a std::logic_error
void risky() throw(std::runtime_error);
// this function can't propagate any exceptions
void safe() throw();

Dynamic exception specifications are deprecated as of C++11.

Note that the first two uses of throw listed above constitute expressions rather than statements. (The type of a
throw expression is void.) This makes it possible to nest them within expressions, like so:

C++ Notes for Professionals 80

unsigned int predecessor(unsigned int x) {
 return (x > 0) ? (x - 1) : (throw std::invalid_argument("0 has no predecessor"));
}

Section 16.5: default
In a switch statement, introduces a label that will be jumped to if the condition's value is not equal to any of the
case labels' values.

char c = getchar();
bool confirmed;
switch (c) {
 case 'y':
 confirmed = true;
 break;
 case 'n':
 confirmed = false;
 break;
 default:
 std::cout << "invalid response!\n";
 abort();
}
Version ≥ C++11

Defines a default constructor, copy constructor, move constructor, destructor, copy assignment operator, or move
assignment operator to have its default behaviour.

class Base {
 // ...
 // we want to be able to delete derived classes through Base*,
 // but have the usual behaviour for Base's destructor.
 virtual ~Base() = default;
};

Section 16.6: try
The keyword try is followed by a block, or by a constructor initializer list and then a block (see here). The try block is
followed by one or more catch blocks. If an exception propagates out of the try block, each of the corresponding
catch blocks after the try block has the opportunity to handle the exception, if the types match.

std::vector<int> v(N); // if an exception is thrown here,
 // it will not be caught by the following catch block
try {
 std::vector<int> v(N); // if an exception is thrown here,
 // it will be caught by the following catch block
 // do something with v
} catch (const std::bad_alloc&) {
 // handle bad_alloc exceptions from the try block
}

Section 16.7: if
Introduces an if statement. The keyword if must be followed by a parenthesized condition, which can be either an
expression or a declaration. If the condition is truthy, the substatement after the condition will be executed.

int x;

C++ Notes for Professionals 81

std::cout << "Please enter a positive number." << std::endl;
std::cin >> x;
if (x <= 0) {
 std::cout << "You didn't enter a positive number!" << std::endl;
 abort();
}

Section 16.8: else
The first substatement of an if statement may be followed by the keyword else. The substatement after the else
keyword will be executed when the condition is falsey (that is, when the first substatement is not executed).

int x;
std::cin >> x;
if (x%2 == 0) {
 std::cout << "The number is even\n";
} else {
 std::cout << "The number is odd\n";
}

Section 16.9: Conditional Structures: if, if..else
if and else:

it used to check whether the given expression returns true or false and acts as such:

if (condition) statement

the condition can be any valid C++ expression that returns something that be checked against truth/falsehood for
example:

if (true) { /* code here */ } // evaluate that true is true and execute the code in the brackets
if (false) { /* code here */ } // always skip the code since false is always false

the condition can be anything, a function, a variable, or a comparison for example

if(istrue()) { } // evaluate the function, if it returns true, the if will execute the code
if(isTrue(var)) { } //evaluate the return of the function after passing the argument var
if(a == b) { } // this will evaluate the return of the experssion (a==b) which will be true if
equal and false if unequal
if(a) { } //if a is a boolean type, it will evaluate for its value, if it's an integer, any non
zero value will be true,

if we want to check for a multiple expressions we can do it in two ways :

using binary operators :

if (a && b) { } // will be true only if both a and b are true (binary operators are outside the
scope here
if (a || b) { } //true if a or b is true

using if/ifelse/else:

for a simple switch either if or else

if (a== "test") {

C++ Notes for Professionals 82

 //will execute if a is a string "test"
} else {
 // only if the first failed, will execute
}

for multiple choices :

if (a=='a') {
// if a is a char valued 'a'
} else if (a=='b') {
// if a is a char valued 'b'
} else if (a=='c') {
// if a is a char valued 'c'
} else {
//if a is none of the above
}

however it must be noted that you should use 'switch' instead if your code checks for the same variable's value

Section 16.10: goto
Jumps to a labelled statement, which must be located in the current function.

bool f(int arg) {
 bool result = false;
 hWidget widget = get_widget(arg);
 if (!g()) {
 // we can't continue, but must do cleanup still
 goto end;
 }
 // ...
 result = true;
 end:
 release_widget(widget);
 return result;
}

Section 16.11: Jump statements : break, continue, goto, exit
The break instruction:

Using break we can leave a loop even if the condition for its end is not fulfilled. It can be used to end an infinite
loop, or to force it to end before its natural end

The syntax is

break;

Example: we often use break in switch cases,ie once a case i switch is satisfied then the code block of that
condition is executed .

switch(conditon){
case 1: block1;
case 2: block2;
case 3: block3;
default: blockdefault;
}

C++ Notes for Professionals 83

in this case if case 1 is satisfied then block 1 is executed , what we really want is only the block1 to be processed but
instead once the block1 is processed remaining blocks,block2,block3 and blockdefault are also processed even
though only case 1 was satified.To avoid this we use break at the end of each block like :

switch(condition){
case 1: block1;
 break;
case 2: block2;
 break;
case 3: block3;
 break;
default: blockdefault;
 break;
}

so only one block is processed and the control moves out of the switch loop.

break can also be used in other conditional and non conditional loops like if,while,for etc;

example:

if(condition1){

 if(condition2){

 break;
 }
 ...
}

The continue instruction:

The continue instruction causes the program to skip the rest of the loop in the present iteration as if the end of the
statement block would have been reached, causing it to jump to the following iteration.

The syntax is

continue;

Example consider the following :

for(int i=0;i<10;i++){
if(i%2==0)
continue;
cout<<"\n @"<<i;
}

which produces the output:

 @1
 @3
 @5
 @7
 @9

i this code whenever the condition i%2==0 is satisfied continue is processed,this causes the compiler to skip all the
remaining code(printing @ and i) and increment/decrement statement of the loop gets executed.

C++ Notes for Professionals 84

The goto instruction:

It allows making an absolute jump to another point in the program. You should use this feature carefully since its
execution ignores any type of nesting limitation. The destination point is identified by a label, which is then used as
an argument for the goto instruction. A label is made of a valid identifier followed by a colon (:)

The syntax is

goto label;
..
.
label: statement;

Note: Use of goto statement is highly discouraged because it makes difficult to trace the control flow of a program,
making the program hard to understand and hard to modify.

Example :

int num = 1;
STEP:
do{

 if(num%2==0)
 {
 num = num + 1;

https://i.stack.imgur.com/Fbuep.jpg
https://i.stack.imgur.com/Li8ZR.jpg

C++ Notes for Professionals 85

 goto STEP;
 }

 cout << "value of num : " << num << endl;
 num = num + 1;
 }while(num < 10);

output :

value of num : 1
value of num : 3
value of num : 5
value of num : 7
value of num : 9

whenever the condition num%2==0 is satisfied the goto sends the execution control to the beginning of the do-while
loop.

The exit function:

exit is a function defined in cstdlib. The purpose of exit is to terminate the running program with an specific exit
code. Its prototype is:

void exit (int exit code);

cstdlib defines the standard exit codes EXIT_SUCCESS and EXIT_FAILURE.

Section 16.12: return
Returns control from a function to its caller.

If return has an operand, the operand is converted to the function's return type, and the converted value is
returned to the caller.

int f() {
 return 42;
}
int x = f(); // x is 42
int g() {
 return 3.14;
}
int y = g(); // y is 3

If return does not have an operand, the function must have void return type. As a special case, a void-returning
function can also return an expression if the expression has type void.

void f(int x) {
 if (x < 0) return;
 std::cout << sqrt(x);
}
int g() { return 42; }
void h() {
 return f(); // calls f, then returns
 return g(); // ill-formed
}

When main returns, std::exit is implicitly called with the return value, and the value is thus returned to the

C++ Notes for Professionals 86

execution environment. (However, returning from main destroys automatic local variables, while calling std::exit
directly does not.)

int main(int argc, char** argv) {
 if (argc < 2) {
 std::cout << "Missing argument\n";
 return EXIT_FAILURE; // equivalent to: exit(EXIT_FAILURE);
 }
}

C++ Notes for Professionals 87

Chapter 17: Metaprogramming
In C++ Metaprogramming refers to the use of macros or templates to generate code at compile-time.

In general, macros are frowned upon in this role and templates are preferred, although they are not as generic.

Template metaprogramming often makes use of compile-time computations, whether via templates or constexpr
functions, to achieve its goals of generating code, however compile-time computations are not metaprogramming
per se.

Section 17.1: Calculating Factorials
Factorials can be computed at compile-time using template metaprogramming techniques.

#include <iostream>

template<unsigned int n>
struct factorial
{
 enum
 {
 value = n * factorial<n - 1>::value
 };
};

template<>
struct factorial<0>
{
 enum { value = 1 };
};

int main()
{
 std::cout << factorial<7>::value << std::endl; // prints "5040"
}

factorial is a struct, but in template metaprogramming it is treated as a template metafunction. By convention,
template metafunctions are evaluated by checking a particular member, either ::type for metafunctions that result
in types, or ::value for metafunctions that generate values.

In the above code, we evaluate the factorial metafunction by instantiating the template with the parameters we
want to pass, and using ::value to get the result of the evaluation.

The metafunction itself relies on recursively instantiating the same metafunction with smaller values. The
factorial<0> specialization represents the terminating condition. Template metaprogramming has most of the
restrictions of a functional programming language, so recursion is the primary "looping" construct.

Since template metafunctions execute at compile time, their results can be used in contexts that require compile-
time values. For example:

int my_array[factorial<5>::value];

Automatic arrays must have a compile-time defined size. And the result of a metafunction is a compile-time
constant, so it can be used here.

Limitation: Most of the compilers won't allow recursion depth beyond a limit. For example, g++ compiler by default

https://en.wikipedia.org/wiki/Functional_programming

C++ Notes for Professionals 88

limits recursion depeth to 256 levels. In case of g++, programmer can set recursion depth using -ftemplate-depth-
X option.

Version ≥ C++11

Since C++11, the std::integral_constant template can be used for this kind of template computation:

#include <iostream>
#include <type_traits>

template<long long n>
struct factorial :
 std::integral_constant<long long, n * factorial<n - 1>::value> {};

template<>
struct factorial<0> :
 std::integral_constant<long long, 1> {};

int main()
{
 std::cout << factorial<7>::value << std::endl; // prints "5040"
}

Additionally, constexpr functions become a cleaner alternative.

#include <iostream>

constexpr long long factorial(long long n)
{
 return (n == 0) ? 1 : n * factorial(n - 1);
}

int main()
{
 char test[factorial(3)];
 std::cout << factorial(7) << '\n';
}

The body of factorial() is written as a single statement because in C++11 constexpr functions can only use a
quite limited subset of the language.

Version ≥ C++14

Since C++14, many restrictions for constexpr functions have been dropped and they can now be written much
more conveniently:

constexpr long long factorial(long long n)
{
 if (n == 0)
 return 1;
 else
 return n * factorial(n - 1);
}

Or even:

constexpr long long factorial(int n)
{
 long long result = 1;

C++ Notes for Professionals 89

 for (int i = 1; i <= n; ++i) {
 result *= i;
 }
 return result;
}
Version ≥ C++17

Since c++17 one can use fold expression to calculate factorial:

#include <iostream>
#include <utility>

template <class T, T N, class I = std::make_integer_sequence<T, N>>
struct factorial;

template <class T, T N, T... Is>
struct factorial<T,N,std::index_sequence<T, Is...>> {
 static constexpr T value = (static_cast<T>(1) * ... * (Is + 1));
};

int main() {
 std::cout << factorial<int, 5>::value << std::endl;
}

Section 17.2: Iterating over a parameter pack
Often, we need to perform an operation over every element in a variadic template parameter pack. There are many
ways to do this, and the solutions get easier to read and write with C++17. Suppose we simply want to print every
element in a pack. The simplest solution is to recurse:

Version ≥ C++11

void print_all(std::ostream& os) {
 // base case
}

template <class T, class... Ts>
void print_all(std::ostream& os, T const& first, Ts const&... rest) {
 os << first;

 print_all(os, rest...);
}

We could instead use the expander trick, to perform all the streaming in a single function. This has the advantage of
not needing a second overload, but has the disadvantage of less than stellar readability:

Version ≥ C++11

template <class... Ts>
void print_all(std::ostream& os, Ts const&... args) {
 using expander = int[];
 (void)expander{0,
 (void(os << args), 0)...
 };
}

For an explanation of how this works, see T.C's excellent answer.

Version ≥ C++17

With C++17, we get two powerful new tools in our arsenal for solving this problem. The first is a fold-expression:

http://stackoverflow.com/a/25683817/2069064

C++ Notes for Professionals 90

template <class... Ts>
void print_all(std::ostream& os, Ts const&... args) {
 ((os << args), ...);
}

And the second is if constexpr, which allows us to write our original recursive solution in a single function:

template <class T, class... Ts>
void print_all(std::ostream& os, T const& first, Ts const&... rest) {
 os << first;

 if constexpr (sizeof...(rest) > 0) {
 // this line will only be instantiated if there are further
 // arguments. if rest... is empty, there will be no call to
 // print_all(os).
 print_all(os, rest...);
 }
}

Section 17.3: Iterating with std::integer_sequence
Since C++14, the standard provides the class template

template <class T, T... Ints>
class integer_sequence;

template <std::size_t... Ints>
using index_sequence = std::integer_sequence<std::size_t, Ints...>;

and a generating metafunction for it:

template <class T, T N>
using make_integer_sequence = std::integer_sequence<T, /* a sequence 0, 1, 2, ..., N-1 */ >;

template<std::size_t N>
using make_index_sequence = make_integer_sequence<std::size_t, N>;

While this comes standard in C++14, this can be implemented using C++11 tools.

We can use this tool to call a function with a std::tuple of arguments (standardized in C++17 as std::apply):

namespace detail {
 template <class F, class Tuple, std::size_t... Is>
 decltype(auto) apply_impl(F&& f, Tuple&& tpl, std::index_sequence<Is...>) {
 return std::forward<F>(f)(std::get<Is>(std::forward<Tuple>(tpl))...);
 }
}

template <class F, class Tuple>
decltype(auto) apply(F&& f, Tuple&& tpl) {
 return detail::apply_impl(std::forward<F>(f),
 std::forward<Tuple>(tpl),
 std::make_index_sequence<std::tuple_size<std::decay_t<Tuple>>::value>{});
}

// this will print 3
int f(int, char, double);

C++ Notes for Professionals 91

auto some_args = std::make_tuple(42, 'x', 3.14);
int r = apply(f, some_args); // calls f(42, 'x', 3.14)

Section 17.4: Tag Dispatching
A simple way of selecting between functions at compile time is to dispatch a function to an overloaded pair of
functions that take a tag as one (usually the last) argument. For example, to implement std::advance(), we can
dispatch on the iterator category:

namespace details {
 template <class RAIter, class Distance>
 void advance(RAIter& it, Distance n, std::random_access_iterator_tag) {
 it += n;
 }

 template <class BidirIter, class Distance>
 void advance(BidirIter& it, Distance n, std::bidirectional_iterator_tag) {
 if (n > 0) {
 while (n--) ++it;
 }
 else {
 while (n++) --it;
 }
 }

 template <class InputIter, class Distance>
 void advance(InputIter& it, Distance n, std::input_iterator_tag) {
 while (n--) {
 ++it;
 }
 }
}

template <class Iter, class Distance>
void advance(Iter& it, Distance n) {
 details::advance(it, n,
 typename std::iterator_traits<Iter>::iterator_category{});
}

The std::XY_iterator_tag arguments of the overloaded details::advance functions are unused function
parameters. The actual implementation does not matter (actually it is completely empty). Their only purpose is to
allow the compiler to select an overload based on which tag class details::advance is called with.

In this example, advance uses the iterator_traits<T>::iterator_category metafunction which returns one of
the iterator_tag classes, depending on the actual type of Iter. A default-constructed object of the
iterator_category<Iter>::type then lets the compiler select one of the different overloads of details::advance.
(This function parameter is likely to be completely optimized away, as it is a default-constructed object of an empty
struct and never used.)

Tag dispatching can give you code that's much easier to read than the equivalents using SFINAE and enable_if.

Note: while C++17's if constexpr may simplify the implementation of advance in particular, it is not suitable for open
implementations unlike tag dispatching.

Section 17.5: Detect Whether Expression is Valid
It is possible to detect whether an operator or function can be called on a type. To test if a class has an overload of

C++ Notes for Professionals 92

std::hash, one can do this:

#include <functional> // for std::hash
#include <type_traits> // for std::false_type and std::true_type
#include <utility> // for std::declval

template<class, class = void>
struct has_hash
 : std::false_type
{};

template<class T>
struct has_hash<T, decltype(std::hash<T>()(std::declval<T>()), void())>
 : std::true_type
{};
Version ≥ C++17

Since C++17, std::void_t can be used to simplify this type of construct

#include <functional> // for std::hash
#include <type_traits> // for std::false_type, std::true_type, std::void_t
#include <utility> // for std::declval

template<class, class = std::void_t<> >
struct has_hash
 : std::false_type
{};

template<class T>
struct has_hash<T, std::void_t< decltype(std::hash<T>()(std::declval<T>())) > >
 : std::true_type
{};

where std::void_t is defined as:

template< class... > using void_t = void;

For detecting if an operator, such as operator< is defined, the syntax is almost the same:

template<class, class = void>
struct has_less_than
 : std::false_type
{};

template<class T>
struct has_less_than<T, decltype(std::declval<T>() < std::declval<T>(), void())>
 : std::true_type
{};

These can be used to use a std::unordered_map<T> if T has an overload for std::hash, but otherwise attempt to
use a std::map<T>:

template <class K, class V>
using hash_invariant_map = std::conditional_t<
 has_hash<K>::value,
 std::unordered_map<K, V>,
 std::map<K,V>>;

C++ Notes for Professionals 93

Section 17.6: If-then-else
Version ≥ C++11

The type std::conditional in the standard library header <type_traits> can select one type or the other, based
on a compile-time boolean value:

template<typename T>
struct ValueOrPointer
{
 typename std::conditional<(sizeof(T) > sizeof(void*)), T*, T>::type vop;
};

This struct contains a pointer to T if T is larger than the size of a pointer, or T itself if it is smaller or equal to a
pointer's size. Therefore sizeof(ValueOrPointer) will always be <= sizeof(void*).

Section 17.7: Manual distinction of types when given any type
T
When implementing SFINAE using std::enable_if, it is often useful to have access to helper templates that
determines if a given type T matches a set of criteria.

To help us with that, the standard already provides two types analog to true and false which are std::true_type
and std::false_type.

The following example show how to detect if a type T is a pointer or not, the is_pointer template mimic the
behavior of the standard std::is_pointer helper:

template <typename T>
struct is_pointer_: std::false_type {};

template <typename T>
struct is_pointer_<T*>: std::true_type {};

template <typename T>
struct is_pointer: is_pointer_<typename std::remove_cv<T>::type> { }

There are three steps in the above code (sometimes you only need two):

The first declaration of is_pointer_ is the default case, and inherits from std::false_type. The default case1.
should always inherit from std::false_type since it is analogous to a "false condition".

The second declaration specialize the is_pointer_ template for pointer T* without caring about what T is2.
really. This version inherits from std::true_type.

The third declaration (the real one) simply remove any unnecessary information from T (in this case we3.
remove const and volatile qualifiers) and then fall backs to one of the two previous declarations.

Since is_pointer<T> is a class, to access its value you need to either:

Use ::value, e.g. is_pointer<int>::value – value is a static class member of type bool inherited from
std::true_type or std::false_type;
Construct an object of this type, e.g. is_pointer<int>{} – This works because std::is_pointer inherits its
default constructor from std::true_type or std::false_type (which have constexpr constructors) and both
std::true_type and std::false_type have constexpr conversion operators to bool.

C++ Notes for Professionals 94

It is a good habit to provides "helper helper templates" that let you directly access the value:

template <typename T>
constexpr bool is_pointer_v = is_pointer<T>::value;
Version ≥ C++17

In C++17 and above, most helper templates already provide a _v version, e.g.:

template< class T > constexpr bool is_pointer_v = is_pointer<T>::value;
template< class T > constexpr bool is_reference_v = is_reference<T>::value;

Section 17.8: Calculating power with C++11 (and higher)
With C++11 and higher calculations at compile time can be much easier. For example calculating the power of a
given number at compile time will be following:

template <typename T>
constexpr T calculatePower(T value, unsigned power) {
 return power == 0 ? 1 : value * calculatePower(value, power-1);
}

Keyword constexpr is responsible for calculating function in compilation time, then and only then, when all the
requirements for this will be met (see more at constexpr keyword reference) for example all the arguments must
be known at compile time.

Note: In C++11 constexpr function must compose only from one return statement.

Advantages: Comparing this to the standard way of compile time calculation, this method is also useful for runtime
calculations. It means, that if the arguments of the function are not known at the compilation time (e.g. value and
power are given as input via user), then function is run in a compilation time, so there's no need to duplicate a code
(as we would be forced in older standards of C++).

E.g.

void useExample() {
 constexpr int compileTimeCalculated = calculatePower(3, 3); // computes at compile time,
 // as both arguments are known at compilation time
 // and used for a constant expression.
 int value;
 std::cin >> value;
 int runtimeCalculated = calculatePower(value, 3); // runtime calculated,
 // because value is known only at runtime.
}
Version ≥ C++17

Another way to calculate power at compile time can make use of fold expression as follows:

#include <iostream>
#include <utility>

template <class T, T V, T N, class I = std::make_integer_sequence<T, N>>
struct power;

template <class T, T V, T N, T... Is>
struct power<T, V, N, std::integer_sequence<T, Is...>> {
 static constexpr T value = (static_cast<T>(1) * ... * (V * static_cast<bool>(Is + 1)));
};

C++ Notes for Professionals 95

int main() {
 std::cout << power<int, 4, 2>::value << std::endl;
}

Section 17.9: Generic Min/Max with variable argument count
Version > C++11

It's possible to write a generic function (for example min) which accepts various numerical types and arbitrary
argument count by template meta-programming. This function declares a min for two arguments and recursively
for more.

template <typename T1, typename T2>
auto min(const T1 &a, const T2 &b)
-> typename std::common_type<const T1&, const T2&>::type
{
 return a < b ? a : b;
}

template <typename T1, typename T2, typename ... Args>
auto min(const T1 &a, const T2 &b, const Args& ... args)
-> typename std::common_type<const T1&, const T2&, const Args& ...>::type
{
 return min(min(a, b), args...);
}

auto minimum = min(4, 5.8f, 3, 1.8, 3, 1.1, 9);

C++ Notes for Professionals 96

Chapter 18: const keyword
Section 18.1: Avoiding duplication of code in const and non-
const getter methods
In C++ methods that differs only by const qualifier can be overloaded. Sometimes there may be a need of two
versions of getter that return a reference to some member.

Let Foo be a class, that has two methods that perform identical operations and returns a reference to an object of
type Bar:

class Foo
{
public:
 Bar& GetBar(/* some arguments */)
 {
 /* some calculations */
 return bar;
 }

 const Bar& GetBar(/* some arguments */) const
 {
 /* some calculations */
 return bar;
 }

 // ...
};

The only difference between them is that one method is non-const and return a non-const reference (that can be
use to modify object) and the second is const and returns const reference.

To avoid the code duplication, there is a temptation to call one method from another. However, we can not call
non-const method from the const one. But we can call const method from non-const one. That will require as to
use 'const_cast' to remove the const qualifier.

The solution is:

struct Foo
{
 Bar& GetBar(/*arguments*/)
 {
 return const_cast<Bar&>(const_cast<const Foo*>(this)->GetBar(/*arguments*/));
 }

 const Bar& GetBar(/*arguments*/) const
 {
 /* some calculations */
 return foo;
 }
};

In code above, we call const version of GetBar from the non-const GetBar by casting this to const type:
const_cast<const Foo*>(this). Since we call const method from non-const, the object itself is non-const, and
casting away the const is allowed.

C++ Notes for Professionals 97

Examine the following more complete example:

#include <iostream>

class Student
{
public:
 char& GetScore(bool midterm)
 {
 return const_cast<char&>(const_cast<const Student*>(this)->GetScore(midterm));
 }

 const char& GetScore(bool midterm) const
 {
 if (midterm)
 {
 return midtermScore;
 }
 else
 {
 return finalScore;
 }
 }

private:
 char midtermScore;
 char finalScore;
};

int main()
{
 // non-const object
 Student a;
 // We can assign to the reference. Non-const version of GetScore is called
 a.GetScore(true) = 'B';
 a.GetScore(false) = 'A';

 // const object
 const Student b(a);
 // We still can call GetScore method of const object,
 // because we have overloaded const version of GetScore
 std::cout << b.GetScore(true) << b.GetScore(false) << '\n';
}

Section 18.2: Const member functions
Member functions of a class can be declared const, which tells the compiler and future readers that this function
will not modify the object:

class MyClass
{
private:
 int myInt_;
public:
 int myInt() const { return myInt_; }
 void setMyInt(int myInt) { myInt_ = myInt; }
};

In a const member function, the this pointer is effectively a const MyClass * instead of a MyClass *. This means
that you cannot change any member variables within the function; the compiler will emit a warning. So setMyInt

C++ Notes for Professionals 98

could not be declared const.

You should almost always mark member functions as const when possible. Only const member functions can be
called on a const MyClass.

static methods cannot be declared as const. This is because a static method belongs to a class and is not called
on object; therefore it can never modify object's internal variables. So declaring static methods as const would be
redundant.

Section 18.3: Const local variables
Declaration and usage.

// a is const int, so it can't be changed
const int a = 15;
a = 12; // Error: can't assign new value to const variable
a += 1; // Error: can't assign new value to const variable

Binding of references and pointers

int &b = a; // Error: can't bind non-const reference to const variable
const int &c = a; // OK; c is a const reference

int *d = &a; // Error: can't bind pointer-to-non-const to const variable
const int *e = &a // OK; e is a pointer-to-const

int f = 0;
e = &f; // OK; e is a non-const pointer-to-const,
 // which means that it can be rebound to new int* or const int*

*e = 1 // Error: e is a pointer-to-const which means that
 // the value it points to can't be changed through dereferencing e

int *g = &f;
*g = 1; // OK; this value still can be changed through dereferencing
 // a pointer-not-to-const

Section 18.4: Const pointers
int a = 0, b = 2;

const int* pA = &a; // pointer-to-const. `a` can't be changed through this
int* const pB = &a; // const pointer. `a` can be changed, but this pointer can't.
const int* const pC = &a; // const pointer-to-const.

//Error: Cannot assign to a const reference
*pA = b;

pA = &b;

*pB = b;

//Error: Cannot assign to const pointer
pB = &b;

//Error: Cannot assign to a const reference
*pC = b;

C++ Notes for Professionals 99

//Error: Cannot assign to const pointer
pC = &b;

C++ Notes for Professionals 100

Chapter 19: mutable keyword
Section 19.1: mutable lambdas
By default, the implicit operator() of a lambda is const. This disallows performing non-const operations on the
lambda. In order to allow modifying members, a lambda may be marked mutable, which makes the implicit
operator() non-const:

int a = 0;

auto bad_counter = [a] {
 return a++; // error: operator() is const
 // cannot modify members
};

auto good_counter = [a]() mutable {
 return a++; // OK
}

good_counter(); // 0
good_counter(); // 1
good_counter(); // 2

Section 19.2: non-static class member modifier
mutable modifier in this context is used to indicate that a data field of a const object may be modified without
affecting the externally-visible state of the object.

If you are thinking about caching a result of expensive computation, you should probably use this keyword.

If you have a lock (for example, std::unique_lock) data field which is locked and unlocked inside a const method,
this keyword is also what you could use.

You should not use this keyword to break logical const-ness of an object.

Example with caching:

class pi_calculator {
 public:
 double get_pi() const {
 if (pi_calculated) {
 return pi;
 } else {
 double new_pi = 0;
 for (int i = 0; i < 1000000000; ++i) {
 // some calculation to refine new_pi
 }
 // note: if pi and pi_calculated were not mutable, we would get an error from a
compiler
 // because in a const method we can not change a non-mutable field
 pi = new_pi;
 pi_calculated = true;
 return pi;
 }
 }
 private:
 mutable bool pi_calculated = false;

C++ Notes for Professionals 101

 mutable double pi = 0;
};

C++ Notes for Professionals 102

Chapter 20: Friend keyword
Well-designed classes encapsulate their functionality, hiding their implementation while providing a clean,
documented interface. This allows redesign or change so long as the interface is unchanged.

In a more complex scenario, multiple classes that rely on each others' implementation details may be required.
Friend classes and functions allow these peers access to each others' details, without compromising the
encapsulation and information hiding of the documented interface.

Section 20.1: Friend function
A class or a structure may declare any function it's friend. If a function is a friend of a class, it may access all it's
protected and private members:

// Forward declaration of functions.
void friend_function();
void non_friend_function();

class PrivateHolder {
public:
 PrivateHolder(int val) : private_value(val) {}
private:
 int private_value;
 // Declare one of the function as a friend.
 friend void friend_function();
};

void non_friend_function() {
 PrivateHolder ph(10);
 // Compilation error: private_value is private.
 std::cout << ph.private_value << std::endl;
}

void friend_function() {
 // OK: friends may access private values.
 PrivateHolder ph(10);
 std::cout << ph.private_value << std::endl;
}

Access modifiers do not alter friend semantics. Public, protected and private declarations of a friend are equivalent.

Friend declarations are not inherited. For example, if we subclass PrivateHolder:

class PrivateHolderDerived : public PrivateHolder {
public:
 PrivateHolderDerived(int val) : PrivateHolder(val) {}
private:
 int derived_private_value = 0;
};

and try to access it's members, we'll get the following:

void friend_function() {
 PrivateHolderDerived pd(20);
 // OK.
 std::cout << pd.private_value << std::endl;
 // Compilation error: derived_private_value is private.

C++ Notes for Professionals 103

 std::cout << pd.derived_private_value << std::endl;
}

Note that PrivateHolderDerived member function cannot access PrivateHolder::private_value, while friend
function can do it.

Section 20.2: Friend method
Methods may declared as friends as well as functions:

class Accesser {
public:
 void private_accesser();
};

class PrivateHolder {
public:
 PrivateHolder(int val) : private_value(val) {}
 friend void Accesser::private_accesser();
private:
 int private_value;
};

void Accesser::private_accesser() {
 PrivateHolder ph(10);
 // OK: this method is declares as friend.
 std::cout << ph.private_value << std::endl;
}

Section 20.3: Friend class
A whole class may be declared as friend. Friend class declaration means that any member of the friend may access
private and protected members of the declaring class:

class Accesser {
public:
 void private_accesser1();
 void private_accesser2();
};

class PrivateHolder {
public:
 PrivateHolder(int val) : private_value(val) {}
 friend class Accesser;
private:
 int private_value;
};

void Accesser::private_accesser1() {
 PrivateHolder ph(10);
 // OK.
 std::cout << ph.private_value << std::endl;
}

void Accesser::private_accesser2() {
 PrivateHolder ph(10);
 // OK.
 std::cout << ph.private_value + 1 << std::endl;

C++ Notes for Professionals 104

}

Friend class declaration is not reflexive. If classes need private access in both directions, both of them need friend
declarations.

class Accesser {
public:
 void private_accesser1();
 void private_accesser2();
private:
 int private_value = 0;
};

class PrivateHolder {
public:
 PrivateHolder(int val) : private_value(val) {}
 // Accesser is a friend of PrivateHolder
 friend class Accesser;
 void reverse_accesse() {
 // but PrivateHolder cannot access Accesser's members.
 Accesser a;
 std::cout << a.private_value;
 }
private:
 int private_value;
};

C++ Notes for Professionals 105

Chapter 21: Type Keywords
Section 21.1: class

Introduces the definition of a class type.1.

class foo {
 int x;
 public:
 int get_x();
 void set_x(int new_x);
};

Introduces an elaborated type specifier, which specifies that the following name is the name of a class type. If2.
the class name has been declared already, it can be found even if hidden by another name. If the class name
has not been declared already, it is forward-declared.

class foo; // elaborated type specifier -> forward declaration
class bar {
 public:
 bar(foo& f);
};
void baz();
class baz; // another elaborated type specifer; another forward declaration
 // note: the class has the same name as the function void baz()
class foo {
 bar b;
 friend class baz; // elaborated type specifier refers to the class,
 // not the function of the same name
 public:
 foo();
};

Introduces a type parameter in the declaration of a template.3.

template <class T>
const T& min(const T& x, const T& y) {
 return b < a ? b : a;
}

In the declaration of a template template parameter, the keyword class precedes the name of the4.
parameter. Since the argument for a template template parameter can only be a class template, the use of
class here is redundant. However, the grammar of C++ requires it.

template <template <class T> class U>
// ^^^^^ "class" used in this sense here;
// U is a template template parameter
void f() {
 U<int>::do_it();
 U<double>::do_it();
}

Note that sense 2 and sense 3 may be combined in the same declaration. For example:5.

template <class T>
class foo {

C++ Notes for Professionals 106

};

foo<class bar> x; // <- bar does not have to have previously appeared.

Version ≥ C++11

In the declaration or definition of an enum, declares the enum to be a scoped enum.6.

enum class Format {
 TEXT,
 PDF,
 OTHER,
};
Format f = F::TEXT;

Section 21.2: enum
Introduces the definition of an enumeration type.1.

enum Direction {
 UP,
 LEFT,
 DOWN,
 RIGHT
};
Direction d = UP;

Version ≥ C++11

In C++11, enum may optionally be followed by class or struct to define a scoped enum. Furthermore, both scoped
and unscoped enums can have their underlying type explicitly specified by : T following the enum name, where T
refers to an integer type.

 enum class Format : char {
 TEXT,
 PDF,
 OTHER
 };
 Format f = Format::TEXT;

 enum Language : int {
 ENGLISH,
 FRENCH,
 OTHER
 };

Enumerators in normal enums may also be preceded by the scope operator, although they are still considered to be
in the scope the enum was defined in.

 Language l1, l2;

 l1 = ENGLISH;
 l2 = Language::OTHER;

Introduces an elaborated type specifier, which specifies that the following name is the name of a previously2.
declared enum type. (An elaborated type specifier cannot be used to forward-declare an enum type.) An

C++ Notes for Professionals 107

enum can be named in this way even if hidden by another name.

enum Foo { FOO };
void Foo() {}
Foo foo = FOO; // ill-formed; Foo refers to the function
enum Foo foo = FOO; // ok; Foo refers to the enum type

Version ≥ C++11

Introduces an opaque enum declaration, which declares an enum without defining it. It can either redeclare a3.
previously declared enum, or forward-declare an enum that has not been previously declared.

An enum first declared as scoped cannot later be declared as unscoped, or vice versa. All declarations of an
enum must agree in underlying type.

When forward-declaring an unscoped enum, the underlying type must be explicitly specified, since it cannot
be inferred until the values of the enumerators are known.

enum class Format; // underlying type is implicitly int
void f(Format f);
enum class Format {
 TEXT,
 PDF,
 OTHER,
};

enum Direction; // ill-formed; must specify underlying type

Section 21.3: struct
Interchangeable with class, except for the following differences:

If a class type is defined using the keyword struct, then the default accessibility of bases and members is
public rather than private.
struct cannot be used to declare a template type parameter or template template parameter; only class
can.

Section 21.4: union
Introduces the definition of a union type.1.

// Example is from POSIX
union sigval {
 int sival_int;
 void *sival_ptr;
};

Introduces an elaborated type specifier, which specifies that the following name is the name of a union type. If2.
the union name has been declared already, it can be found even if hidden by another name. If the union
name has not been declared already, it is forward-declared.

union foo; // elaborated type specifier -> forward declaration
class bar {

C++ Notes for Professionals 108

 public:
 bar(foo& f);
};
void baz();
union baz; // another elaborated type specifer; another forward declaration
 // note: the class has the same name as the function void baz()
union foo {
 long l;
 union baz* b; // elaborated type specifier refers to the class,
 // not the function of the same name
};

C++ Notes for Professionals 109

Chapter 22: Basic Type Keywords
Section 22.1: char
An integer type which is "large enough to store any member of the implementation’s basic character set". It is
implementation-defined whether char is signed (and has a range of at least -127 to +127, inclusive) or unsigned
(and has a range of at least 0 to 255, inclusive).

const char zero = '0';
const char one = zero + 1;
const char newline = '\n';
std::cout << one << newline; // prints 1 followed by a newline

Section 22.2: char16_t
Version ≥ C++11

An unsigned integer type with the same size and alignment as uint_least16_t, which is therefore large enough to
hold a UTF-16 code unit.

const char16_t message[] = u"你好，世界\\n"; // Chinese for "hello, world\\n"
std::cout << sizeof(message)/sizeof(char16_t) << "\\n"; // prints 7

Section 22.3: char32_t
Version ≥ C++11

An unsigned integer type with the same size and alignment as uint_least32_t, which is therefore large enough to
hold a UTF-32 code unit.

const char32_t full_house[] = U"?????"; // non-BMP characters
std::cout << sizeof(full_house)/sizeof(char32_t) << "\\n"; // prints 6

Section 22.4: int
Denotes a signed integer type with "the natural size suggested by the architecture of the execution environment",
whose range includes at least -32767 to +32767, inclusive.

int x = 2;
int y = 3;
int z = x + y;

Can be combined with unsigned, short, long, and long long (q.v.) in order to yield other integer types.

Section 22.5: void
An incomplete type; it is not possible for an object to have type void, nor are there arrays of void or references to
void. It is used as the return type of functions that do not return anything.

Moreover, a function may redundantly be declared with a single parameter of type void; this is equivalent to
declaring a function with no parameters (e.g. int main() and int main(void) declare the same function). This
syntax is allowed for compatibility with C (where function declarations have a different meaning than in C++).

C++ Notes for Professionals 110

The type void* ("pointer to void") has the property that any object pointer can be converted to it and back and
result in the same pointer. This feature makes the type void* suitable for certain kinds of (type-unsafe) type-erasing
interfaces, for example for generic contexts in C-style APIs (e.g. qsort, pthread_create).

Any expression may be converted to an expression of type void; this is called a discarded-value expression:

static_cast<void>(std::printf("Hello, %s!\n", name)); // discard return value

This may be useful to signal explicitly that the value of an expression is not of interest and that the expression is to
be evaluated for its side effects only.

Section 22.6: wchar_t
An integer type large enough to represent all characters of the largest supported extended character set, also
known as the wide-character set. (It is not portable to make the assumption that wchar_t uses any particular
encoding, such as UTF-16.)

It is normally used when you need to store characters over ASCII 255 , as it has a greater size than the character
type char.

const wchar_t message_ahmaric[] = L"ሰላም ልዑል\\n"; //Ahmaric for "hello, world\\n"
const wchar_t message_chinese[] = L"你好，世界\\n";// Chinese for "hello, world\\n"
const wchar_t message_hebrew[] = L"שלום עולם\\n"; //Hebrew for "hello, world\\n"
const wchar_t message_russian[] = L"Привет мир\\n"; //Russian for "hello, world\\n"
const wchar_t message_tamil[] = L"ஹலே◌◌ா உலகம்\\n"; //Tamil for "hello, world\\n"

Section 22.7: float
A floating point type. Has the narrowest range out of the three floating point types in C++.

float area(float radius) {
 const float pi = 3.14159f;
 return pi*radius*radius;
}

Section 22.8: double
A floating point type. Its range includes that of float. When combined with long, denotes the long double floating
point type, whose range includes that of double.

double area(double radius) {
 const double pi = 3.141592653589793;
 return pi*radius*radius;
}

Section 22.9: long
Denotes a signed integer type that is at least as long as int, and whose range includes at least -2147483647 to
+2147483647, inclusive (that is, -(2^31 - 1) to +(2^31 - 1)). This type can also be written as long int.

const long approx_seconds_per_year = 60L*60L*24L*365L;

The combination long double denotes a floating point type, which has the widest range out of the three floating
point types.

C++ Notes for Professionals 111

long double area(long double radius) {
 const long double pi = 3.1415926535897932385L;
 return pi*radius*radius;
}
Version ≥ C++11

When the long specifier occurs twice, as in long long, it denotes a signed integer type that is at least as long as
long, and whose range includes at least -9223372036854775807 to +9223372036854775807, inclusive (that is, -
(2^63 - 1) to +(2^63 - 1)).

// support files up to 2 TiB
const long long max_file_size = 2LL << 40;

Section 22.10: short
Denotes a signed integer type that is at least as long as char, and whose range includes at least -32767 to +32767,
inclusive. This type can also be written as short int.

// (during the last year)
short hours_worked(short days_worked) {
 return 8*days_worked;
}

Section 22.11: bool
An integer type whose value can be either true or false.

bool is_even(int x) {
 return x%2 == 0;
}
const bool b = is_even(47); // false

C++ Notes for Professionals 112

Chapter 23: Variable Declaration
Keywords
Section 23.1: decltype
Version ≥ C++11

Yields the type of its operand, which is not evaluated.

If the operand e is a name without any additional parentheses, then decltype(e) is the declared type of e.

int x = 42;
std::vector<decltype(x)> v(100, x); // v is a vector<int>

If the operand e is a class member access without any additional parentheses, then decltype(e) is the
declared type of the member accessed.

struct S {
 int x = 42;
};
const S s;
decltype(s.x) y; // y has type int, even though s.x is const

In all other cases, decltype(e) yields both the type and the value category of the expression e, as follows:

If e is an lvalue of type T, then decltype(e) is T&.
If e is an xvalue of type T, then decltype(e) is T&&.
If e is a prvalue of type T, then decltype(e) is T.

This includes the case with extraneous parentheses.

int f() { return 42; }
int& g() { static int x = 42; return x; }
int x = 42;
decltype(f()) a = f(); // a has type int
decltype(g()) b = g(); // b has type int&
decltype((x)) c = x; // c has type int&, since x is an lvalue

Version ≥ C++14

The special form decltype(auto) deduces the type of a variable from its initializer or the return type of a function
from the return statements in its definition, using the type deduction rules of decltype rather than those of auto.

const int x = 123;
auto y = x; // y has type int
decltype(auto) z = x; // z has type const int, the declared type of x

Section 23.2: const
A type specifier; when applied to a type, produces the const-qualified version of the type. See const keyword for
details on the meaning of const.

const int x = 123;
x = 456; // error

C++ Notes for Professionals 113

int& r = x; // error

struct S {
 void f();
 void g() const;
};
const S s;
s.f(); // error
s.g(); // OK

Section 23.3: volatile
A type qualifier; when applied to a type, produces the volatile-qualified version of the type. Volatile qualification
plays the same role as const qualification in the type system, but volatile does not prevent objects from being
modified; instead, it forces the compiler to treat all accesses to such objects as side effects.

In the example below, if memory_mapped_port were not volatile, the compiler could optimize the function so that it
performs only the final write, which would be incorrect if sizeof(int) is greater than 1. The volatile qualification
forces it to treat all sizeof(int) writes as different side effects and hence perform all of them (in order).

extern volatile char memory_mapped_port;
void write_to_device(int x) {
 const char* p = reinterpret_cast<const char*>(&x);
 for (int i = 0; i < sizeof(int); i++) {
 memory_mapped_port = p[i];
 }
}

Section 23.4: signed
A keyword that is part of certain integer type names.

When used alone, int is implied, so that signed, signed int, and int are the same type.
When combined with char, yields the type signed char, which is a different type from char, even if char is
also signed. signed char has a range that includes at least -127 to +127, inclusive.
When combined with short, long, or long long, it is redundant, since those types are already signed.
signed cannot be combined with bool, wchar_t, char16_t, or char32_t.

Example:

signed char celsius_temperature;
std::cin >> celsius_temperature;
if (celsius_temperature < -35) {
 std::cout << "cold day, eh?\n";
}

Section 23.5: unsigned
A type specifier that requests the unsigned version of an integer type.

When used alone, int is implied, so unsigned is the same type as unsigned int.
The type unsigned char is different from the type char, even if char is unsigned. It can hold integers up to at
least 255.
unsigned can also be combined with short, long, or long long. It cannot be combined with bool, wchar_t,
char16_t, or char32_t.

C++ Notes for Professionals 114

Example:

char invert_case_table[256] = { ..., 'a', 'b', 'c', ..., 'A', 'B', 'C', ... };
char invert_case(char c) {
 unsigned char index = c;
 return invert_case_table[index];
 // note: returning invert_case_table[c] directly does the
 // wrong thing on implementations where char is a signed type
}

C++ Notes for Professionals 115

Chapter 24: Keywords
Keywords have fixed meaning defined by the C++ standard and cannot be used as identifiers. It is illegal to redefine
keywords using the preprocessor in any translation unit that includes a standard library header. However,
keywords lose their special meaning inside attributes.

Section 24.1: asm
The asm keyword takes a single operand, which must be a string literal. It has an implementation-defined meaning,
but is typically passed to the implementation's assembler, with the assembler's output being incorporated into the
translation unit.

The asm statement is a definition, not an expression, so it may appear either at block scope or namespace scope
(including global scope). However, since inline assembly cannot be constrained by the rules of the C++ language,
asm may not appear inside a constexpr function.

Example:

[[noreturn]] void halt_system() {
 asm("hlt");
}

Section 24.2: Dierent keywords

void C++

When used as a function return type, the void keyword specifies that the function does not return a value.1.
When used for a function's parameter list, void specifies that the function takes no parameters. When used
in the declaration of a pointer, void specifies that the pointer is "universal."

If a pointer's type is void *, the pointer can point to any variable that is not declared with the const or volatile2.
keyword. A void pointer cannot be dereferenced unless it is cast to another type. A void pointer can be
converted into any other type of data pointer.

A void pointer can point to a function, but not to a class member in C++.3.

void vobject; // C2182
void *pv; // okay
int *pint; int i;
int main() {
pv = &i;
 // Cast optional in C required in C++
pint = (int *)pv;

Volatile C++

A type qualifier that you can use to declare that an object can be modified in the program by the hardware.1.

volatile declarator ;

C++ Notes for Professionals 116

virtual C++

The virtual keyword declares a virtual function or a virtual base class.1.

virtual [type-specifiers] member-function-declarator
virtual [access-specifier] base-class-name

Parameters

type-specifiers Specifies the return type of the virtual member function.1.

member-function-declarator Declares a member function.2.

access-specifier Defines the level of access to the base class, public, protected or private. Can appear before3.
or after the virtual keyword.

base-class-name Identifies a previously declared class type4.

this pointer

The this pointer is a pointer accessible only within the nonstatic member functions of a class, struct, or union1.
type. It points to the object for which the member function is called. Static member functions do not have a
this pointer.

this->member-identifier

An object's this pointer is not part of the object itself; it is not reflected in the result of a sizeof statement on the
object. Instead, when a nonstatic member function is called for an object, the address of the object is passed by the
compiler as a hidden argument to the function. For example, the following function call:

myDate.setMonth(3);

can be interpreted this way:

setMonth(&myDate, 3);

The object's address is available from within the member function as the this pointer. Most uses of this are implicit.
It is legal, though unnecessary, to explicitly use this when referring to members of the class. For example:

void Date::setMonth(int mn)
{
 month = mn; // These three statements
 this->month = mn; // are equivalent
 (*this).month = mn;
}

The expression *this is commonly used to return the current object from a member function: return *this; The this
pointer is also used to guard against self-reference:

if (&Object != this) {
// do not execute in cases of self-reference

try, throw, and catch Statements (C++)

C++ Notes for Professionals 117

To implement exception handling in C++, you use try, throw, and catch expressions.1.
First, use a try block to enclose one or more statements that might throw an exception.2.
A throw expression signals that an exceptional condition—often, an error—has occurred in a try block. You3.
can use an object of any type as the operand of a throw expression. Typically, this object is used to
communicate information about the error. In most cases, we recommend that you use the std::exception
class or one of the derived classes that are defined in the standard library. If one of those is not appropriate,
we recommend that you derive your own exception class from std::exception.
To handle exceptions that may be thrown, implement one or more catch blocks immediately following a try4.
block. Each catch block specifies the type of exception it can handle.

 MyData md;
try {
 // Code that could throw an exception
 md = GetNetworkResource();
}
catch (const networkIOException& e) {
 // Code that executes when an exception of type
 // networkIOException is thrown in the try block
 // ...
 // Log error message in the exception object
 cerr << e.what();
}
catch (const myDataFormatException& e) {
 // Code that handles another exception type
 // ...
 cerr << e.what();
}

// The following syntax shows a throw expression
MyData GetNetworkResource()
{
 // ...
 if (IOSuccess == false)
 throw networkIOException("Unable to connect");
 // ...
 if (readError)
 throw myDataFormatException("Format error");
 // ...
}

The code after the try clause is the guarded section of code. The throw expression throws—that is,
raises—an exception. The code block after the catch clause is the exception handler. This is the handler
that catches the exception that's thrown if the types in the throw and catch expressions are compatible.

 try {
 throw CSomeOtherException();
}
catch(...) {
 // Catch all exceptions – dangerous!!!
 // Respond (perhaps only partially) to the exception, then
 // re-throw to pass the exception to some other handler
 // ...
 throw;
}

friend (C++)

C++ Notes for Professionals 118

In some circumstances, it is more convenient to grant member-level access to functions that are not1.
members of a class or to all members in a separate class. Only the class implementer can declare who its
friends are. A function or class cannot declare itself as a friend of any class. In a class definition, use the
friend keyword and the name of a non-member function or other class to grant it access to the private and
protected members of your class. In a template definition, a type parameter can be declared as a friend.

If you declare a friend function that was not previously declared, that function is exported to the enclosing2.
nonclass scope.

class friend F
friend F;
class ForwardDeclared;// Class name is known.
class HasFriends
{
 friend int ForwardDeclared::IsAFriend();// C2039 error expected
};

friend functions

A friend function is a function that is not a member of a class but has access to the class's private and1.
protected members.Friend functions are not considered class members; they are normal external functions
that are given special access privileges.

Friends are not in the class's scope, and they are not called using the member-selection operators (. and –>)2.
unless they are members of another class.

A friend function is declared by the class that is granting access. The friend declaration can be placed3.
anywhere in the class declaration. It is not affected by the access control keywords.

#include <iostream>

using namespace std;
class Point
{
 friend void ChangePrivate(Point &);
public:
 Point(void) : m_i(0) {}
 void PrintPrivate(void){cout << m_i << endl; }

private:
int m_i;
};

void ChangePrivate (Point &i) { i.m_i++; }

int main()
{
 Point sPoint;
 sPoint.PrintPrivate();
 ChangePrivate(sPoint);
 sPoint.PrintPrivate();
 // Output: 0
 1
}

C++ Notes for Professionals 119

Class members as friends

class B;

class A {
public:
 int Func1(B& b);

private:
 int Func2(B& b);
};

class B {
private:
int _b;

 // A::Func1 is a friend function to class B
 // so A::Func1 has access to all members of B
 friend int A::Func1(B&);
};

int A::Func1(B& b) { return b._b; } // OK
int A::Func2(B& b) { return b._b; } // C2248

Section 24.3: typename
When followed by a qualified name, typename specifies that it is the name of a type. This is often required in1.
templates, in particular, when the nested name specifier is a dependent type other than the current
instantiation. In this example, std::decay<T> depends on the template parameter T, so in order to name the
nested type type, we need to prefix the entire qualified name with typename. For more deatils, see Where
and why do I have to put the "template" and "typename" keywords?

template <class T>
auto decay_copy(T&& r) -> typename std::decay<T>::type;

Introduces a type parameter in the declaration of a template. In this context, it is interchangeable with class.2.

template <typename T>
const T& min(const T& x, const T& y) {
 return b < a ? b : a;
}

Version ≥ C++17

typename can also be used when declaring a template template parameter, preceding the name of the3.
parameter, just like class.

template <template <class T> typename U>
void f() {
 U<int>::do_it();
 U<double>::do_it();
}

http://stackoverflow.com/questions/610245/where-and-why-do-i-have-to-put-the-template-and-typename-keywords
http://stackoverflow.com/questions/610245/where-and-why-do-i-have-to-put-the-template-and-typename-keywords

C++ Notes for Professionals 120

Section 24.4: explicit
When applied to a single-argument constructor, prevents that constructor from being used to perform1.
implicit conversions.

class MyVector {
 public:
 explicit MyVector(uint64_t size);
};
MyVector v1(100); // ok
uint64_t len1 = 100;
MyVector v2{len1}; // ok, len1 is uint64_t
int len2 = 100;
MyVector v3{len2}; // ill-formed, implicit conversion from int to uint64_t

Since C++11 introduced initializer lists, in C++11 and later, explicit can be applied to a constructor with any
number of arguments, with the same meaning as in the single-argument case.

struct S {
 explicit S(int x, int y);
};
S f() {
 return {12, 34}; // ill-formed
 return S{12, 34}; // ok
}

Version ≥ C++11

When applied to a conversion function, prevents that conversion function from being used to perform2.
implicit conversions.

class C {
 const int x;
 public:
 C(int x) : x(x) {}
 explicit operator int() { return x; }
};
C c(42);
int x = c; // ill-formed
int y = static_cast<int>(c); // ok; explicit conversion

Section 24.5: sizeof
A unary operator that yields the size in bytes of its operand, which may be either an expression or a type. If the
operand is an expression, it is not evaluated. The size is a constant expression of type std::size_t.

If the operand is a type, it must be parenthesized.

It is illegal to apply sizeof to a function type.
It is illegal to apply sizeof to an incomplete type, including void.
If sizeof is applied to a reference type T& or T&&, it is equivalent to sizeof(T).
When sizeof is applied to a class type, it yields the number of bytes in a complete object of that type,
including any padding bytes in the middle or at the end. Therefore, a sizeof expression can never have a
value of 0. See layout of object types for more details.

C++ Notes for Professionals 121

The char, signed char, and unsigned char types have a size of 1. Conversely, a byte is defined to be the
amount of memory required to store a char object. It does not necessarily mean 8 bits, as some systems
have char objects longer than 8 bits.

If expr is an expression, sizeof(expr) is equivalent to sizeof(T) where T is the type of expr.

int a[100];
std::cout << "The number of bytes in `a` is: " << sizeof a;
memset(a, 0, sizeof a); // zeroes out the array
Version ≥ C++11

The sizeof... operator yields the number of elements in a parameter pack.

template <class... T>
void f(T&&...) {
 std::cout << "f was called with " << sizeof...(T) << " arguments\n";
}

Section 24.6: noexcept
Version ≥ C++11

A unary operator that determines whether the evaluation of its operand can propagate an exception. Note1.
that the bodies of called functions are not examined, so noexcept can yield false negatives. The operand is
not evaluated.

#include <iostream>
#include <stdexcept>
void foo() { throw std::runtime_error("oops"); }
void bar() {}
struct S {};
int main() {
 std::cout << noexcept(foo()) << '\n'; // prints 0
 std::cout << noexcept(bar()) << '\n'; // prints 0
 std::cout << noexcept(1 + 1) << '\n'; // prints 1
 std::cout << noexcept(S()) << '\n'; // prints 1
}

In this example, even though bar() can never throw an exception, noexcept(bar()) is still false because the
fact that bar() cannot propagate an exception has not been explicitly specified.

When declaring a function, specifies whether or not the function can propagate an exception. Alone, it2.
declares that the function cannot propagate an exception. With a parenthesized argument, it declares that
the function can or cannot propagate an exception depending on the truth value of the argument.

void f1() { throw std::runtime_error("oops"); }
void f2() noexcept(false) { throw std::runtime_error("oops"); }
void f3() {}
void f4() noexcept {}
void f5() noexcept(true) {}
void f6() noexcept {
 try {
 f1();
 } catch (const std::runtime_error&) {}
}

C++ Notes for Professionals 122

In this example, we have declared that f4, f5, and f6 cannot propagate exceptions. (Although an exception
can be thrown during execution of f6, it is caught and not allowed to propagate out of the function.) We have
declared that f2 may propagate an exception. When the noexcept specifier is omitted, it is equivalent to
noexcept(false), so we have implicitly declared that f1 and f3 may propagate exceptions, even though
exceptions cannot actually be thrown during the execution of f3.

Version ≥ C++17

Whether or not a function is noexcept is part of the function's type: that is, in the example above, f1, f2, and f3
have different types from f4, f5, and f6. Therefore, noexcept is also significant in function pointers, template
arguments, and so on.

void g1() {}
void g2() noexcept {}
void (*p1)() noexcept = &g1; // ill-formed, since g1 is not noexcept
void (*p2)() noexcept = &g2; // ok; types match
void (*p3)() = &g1; // ok; types match
void (*p4)() = &g2; // ok; implicit conversion

C++ Notes for Professionals 123

Chapter 25: Returning several values from
a function
There are many situations where it is useful to return several values from a function: for example, if you want to
input an item and return the price and number in stock, this functionality could be useful. There are many ways to
do this in C++, and most involve the STL. However, if you wish to avoid the STL for some reason, there are still
several ways to do this, including structs/classes and arrays.

Section 25.1: Using std::tuple
Version ≥ C++11

The type std::tuple can bundle any number of values, potentially including values of different types, into a single
return object:

std::tuple<int, int, int, int> foo(int a, int b) { // or auto (C++14)
 return std::make_tuple(a + b, a - b, a * b, a / b);
}

In C++17, a braced initializer list can be used:

Version ≥ C++17

std::tuple<int, int, int, int> foo(int a, int b) {
 return {a + b, a - b, a * b, a / b};
}

Retrieving values from the returned tuple can be cumbersome, requiring the use of the std::get template
function:

auto mrvs = foo(5, 12);
auto add = std::get<0>(mrvs);
auto sub = std::get<1>(mrvs);
auto mul = std::get<2>(mrvs);
auto div = std::get<3>(mrvs);

If the types can be declared before the function returns, then std::tie can be employed to unpack a tuple into
existing variables:

int add, sub, mul, div;
std::tie(add, sub, mul, div) = foo(5, 12);

If one of the returned values is not needed, std::ignore can be used:

std::tie(add, sub, std::ignore, div) = foo(5, 12);
Version ≥ C++17

Structured bindings can be used to avoid std::tie:

auto [add, sub, mul, div] = foo(5,12);

If you want to return a tuple of lvalue references instead of a tuple of values, use std::tie in place of
std::make_tuple.

std::tuple<int&, int&> minmax(int& a, int& b) {

http://en.cppreference.com/w/cpp/utility/tuple
http://en.cppreference.com/w/cpp/utility/tuple
http://en.cppreference.com/w/cpp/utility/tuple
http://en.cppreference.com/w/cpp/utility/tuple/get
http://en.cppreference.com/w/cpp/utility/tuple/get
http://en.cppreference.com/w/cpp/utility/tuple/get
http://en.cppreference.com/w/cpp/utility/tuple/tie
http://en.cppreference.com/w/cpp/utility/tuple/tie
http://en.cppreference.com/w/cpp/utility/tuple/tie
http://en.cppreference.com/w/cpp/utility/tuple/ignore
http://en.cppreference.com/w/cpp/utility/tuple/ignore
http://en.cppreference.com/w/cpp/utility/tuple/ignore
http://en.cppreference.com/w/cpp/utility/tuple/make_tuple
http://en.cppreference.com/w/cpp/utility/tuple/make_tuple
http://en.cppreference.com/w/cpp/utility/tuple/make_tuple

C++ Notes for Professionals 124

 if (b<a)
 return std::tie(b,a);
 else
 return std::tie(a,b);
}

which permits

void increase_least(int& a, int& b) {
 std::get<0>(minmax(a,b))++;
}

In some rare cases you'll use std::forward_as_tuple instead of std::tie; be careful if you do so, as temporaries
may not last long enough to be consumed.

Section 25.2: Structured Bindings
Version ≥ C++17

C++17 introduces structured bindings, which makes it even easier to deal with multiple return types, as you do not
need to rely upon std::tie() or do any manual tuple unpacking:

std::map<std::string, int> m;

// insert an element into the map and check if insertion succeeded
auto [iterator, success] = m.insert({"Hello", 42});

if (success) {
 // your code goes here
}

// iterate over all elements without having to use the cryptic 'first' and 'second' names
for (auto const& [key, value] : m) {
 std::cout << "The value for " << key << " is " << value << '\n';
}

Structured bindings can be used by default with std::pair, std::tuple, and any type whose non-static data
members are all either public direct members or members of an unambiguous base class:

struct A { int x; };
struct B : A { int y; };
B foo();

// with structured bindings
const auto [x, y] = foo();

// equivalent code without structured bindings
const auto result = foo();
auto& x = result.x;
auto& y = result.y;

If you make your type "tuple-like" it will also automatically work with your type. A tuple-like is a type with
appropriate tuple_size, tuple_element and get written:

namespace my_ns {
 struct my_type {
 int x;

http://en.cppreference.com/w/cpp/utility/tuple/forward_as_tuple
http://en.cppreference.com/w/cpp/utility/tuple/forward_as_tuple
http://en.cppreference.com/w/cpp/utility/tuple/forward_as_tuple
http://en.cppreference.com/w/cpp/utility/tuple/tie
http://en.cppreference.com/w/cpp/utility/tuple/tie
http://en.cppreference.com/w/cpp/utility/tuple/tie
http://en.cppreference.com/w/cpp/utility/tuple/tie
http://en.cppreference.com/w/cpp/utility/tuple/tie

C++ Notes for Professionals 125

 double d;
 std::string s;
 };
 struct my_type_view {
 my_type* ptr;
 };
}

namespace std {
 template<>
 struct tuple_size<my_ns::my_type_view> : std::integral_constant<std::size_t, 3>
 {};

 template<> struct tuple_element<my_ns::my_type_view, 0>{ using type = int; };
 template<> struct tuple_element<my_ns::my_type_view, 1>{ using type = double; };
 template<> struct tuple_element<my_ns::my_type_view, 2>{ using type = std::string; };
}

namespace my_ns {
 template<std::size_t I>
 decltype(auto) get(my_type_view const& v) {
 if constexpr (I == 0)
 return v.ptr->x;
 else if constexpr (I == 1)
 return v.ptr->d;
 else if constexpr (I == 2)
 return v.ptr->s;
 static_assert(I < 3, "Only 3 elements");
 }
}

now this works:

my_ns::my_type t{1, 3.14, "hello world"};

my_ns::my_type_view foo() {
 return {&t};
}

int main() {
 auto[x, d, s] = foo();
 std::cout << x << ',' << d << ',' << s << '\n';
}

Section 25.3: Using struct
A struct can be used to bundle multiple return values:

Version ≥ C++11

struct foo_return_type {
 int add;
 int sub;
 int mul;
 int div;
};

foo_return_type foo(int a, int b) {
 return {a + b, a - b, a * b, a / b};
}

http://en.cppreference.com/w/cpp/language/class

C++ Notes for Professionals 126

auto calc = foo(5, 12);
Version < C++11

Instead of assignment to individual fields, a constructor can be used to simplify the constructing of returned values:

struct foo_return_type {
 int add;
 int sub;
 int mul;
 int div;
 foo_return_type(int add, int sub, int mul, int div)
 : add(add), sub(sub), mul(mul), div(div) {}
};

foo_return_type foo(int a, int b) {
 return foo_return_type(a + b, a - b, a * b, a / b);
}

foo_return_type calc = foo(5, 12);

The individual results returned by the function foo() can be retrieved by accessing the member variables of the
struct calc:

std::cout << calc.add << ' ' << calc.sub << ' ' << calc.mul << ' ' << calc.div << '\n';

Output:

17 -7 60 0

Note: When using a struct, the returned values are grouped together in a single object and accessible using
meaningful names. This also helps to reduce the number of extraneous variables created in the scope of the
returned values.

Version ≥ C++17

In order to unpack a struct returned from a function, structured bindings can be used. This places the out-
parameters on an even footing with the in-parameters:

int a=5, b=12;
auto[add, sub, mul, div] = foo(a, b);
std::cout << add << ' ' << sub << ' ' << mul << ' ' << div << '\n';

The output of this code is identical to that above. The struct is still used to return the values from the function.
This permits you do deal with the fields individually.

Section 25.4: Using Output Parameters
Parameters can be used for returning one or more values; those parameters are required to be non-const pointers
or references.

References:

void calculate(int a, int b, int& c, int& d, int& e, int& f) {
 c = a + b;
 d = a - b;

C++ Notes for Professionals 127

 e = a * b;
 f = a / b;
}

Pointers:

void calculate(int a, int b, int* c, int* d, int* e, int* f) {
 *c = a + b;
 *d = a - b;
 *e = a * b;
 *f = a / b;
}

Some libraries or frameworks use an empty 'OUT' #define to make it abundantly obvious which parameters are
output parameters in the function signature. This has no functional impact, and will be compiled out, but makes the
function signature a bit clearer;

#define OUT

void calculate(int a, int b, OUT int& c) {
 c = a + b;
}

Section 25.5: Using a Function Object Consumer
We can provide a consumer that will be called with the multiple relevant values:

Version ≥ C++11

template <class F>
void foo(int a, int b, F consumer) {
 consumer(a + b, a - b, a * b, a / b);
}

// use is simple... ignoring some results is possible as well
foo(5, 12, [](int sum, int , int , int){
 std::cout << "sum is " << sum << '\n';
});

This is known as "continuation passing style".

You can adapt a function returning a tuple into a continuation passing style function via:

Version ≥ C++17

template<class Tuple>
struct continuation {
 Tuple t;
 template<class F>
 decltype(auto) operator->*(F&& f)&&{
 return std::apply(std::forward<F>(f), std::move(t));
 }
};
std::tuple<int,int,int,int> foo(int a, int b);

continuation(foo(5,12))->*[](int sum, auto&&...) {
 std::cout << "sum is " << sum << '\n';
};

with more complex versions being writable in C++14 or C++11.

https://en.wikipedia.org/wiki/Continuation-passing_style

C++ Notes for Professionals 128

Section 25.6: Using std::pair
The struct template std::pair can bundle together exactly two return values, of any two types:

#include <utility>
std::pair<int, int> foo(int a, int b) {
 return std::make_pair(a+b, a-b);
}

With C++11 or later, an initializer list can be used instead of std::make_pair:

Version ≥ C++11

#include <utility>
std::pair<int, int> foo(int a, int b) {
 return {a+b, a-b};
}

The individual values of the returned std::pair can be retrieved by using the pair's first and second member
objects:

std::pair<int, int> mrvs = foo(5, 12);
std::cout << mrvs.first + mrvs.second << std::endl;

Output:

10

Section 25.7: Using std::array
Version ≥ C++11

The container std::array can bundle together a fixed number of return values. This number has to be known at
compile-time and all return values have to be of the same type:

std::array<int, 4> bar(int a, int b) {
 return { a + b, a - b, a * b, a / b };
}

This replaces c style arrays of the form int bar[4]. The advantage being that various c++ std functions can now be
used on it. It also provides useful member functions like at which is a safe member access function with bound
checking, and size which allows you to return the size of the array without calculation.

Section 25.8: Using Output Iterator
Several values of the same type can be returned by passing an output iterator to the function. This is particularly
common for generic functions (like the algorithms of the standard library).

Example:

template<typename Incrementable, typename OutputIterator>
void generate_sequence(Incrementable from, Incrementable to, OutputIterator output) {
 for (Incrementable k = from; k != to; ++k)
 *output++ = k;

http://en.cppreference.com/w/cpp/utility/pair
http://en.cppreference.com/w/cpp/utility/pair
http://en.cppreference.com/w/cpp/utility/pair

C++ Notes for Professionals 129

}

Example usage:

std::vector<int> digits;
generate_sequence(0, 10, std::back_inserter(digits));
// digits now contains {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Section 25.9: Using std::vector
A std::vector can be useful for returning a dynamic number of variables of the same type. The following example
uses int as data type, but a std::vector can hold any type that is trivially copyable:

#include <vector>
#include <iostream>

// the following function returns all integers between and including 'a' and 'b' in a vector
// (the function can return up to std::vector::max_size elements with the vector, given that
// the system's main memory can hold that many items)
std::vector<int> fillVectorFrom(int a, int b) {
 std::vector<int> temp;
 for (int i = a; i <= b; i++) {
 temp.push_back(i);
 }
 return temp;
}

int main() {
 // assigns the filled vector created inside the function to the new vector 'v'
 std::vector<int> v = fillVectorFrom(1, 10);

 // prints "1 2 3 4 5 6 7 8 9 10 "
 for (int i = 0; i < v.size(); i++) {
 std::cout << v[i] << " ";
 }
 std::cout << std::endl;
 return 0;
}

C++ Notes for Professionals 130

Chapter 26: Polymorphism
Section 26.1: Define polymorphic classes
The typical example is an abstract shape class, that can then be derived into squares, circles, and other concrete
shapes.

The parent class:

Let's start with the polymorphic class:

class Shape {
public:
 virtual ~Shape() = default;
 virtual double get_surface() const = 0;
 virtual void describe_object() const { std::cout << "this is a shape" << std::endl; }

 double get_doubled_surface() const { return 2 * get_surface(); }
};

How to read this definition:

You can define polymorphic behavior by introduced member functions with the keyword virtual. Here
get_surface() and describe_object() will obviously be implemented differently for a square than for a
circle. When the function is invoked on an object, function corresponding to the real class of the object will be
determined at runtime.

It makes no sense to define get_surface() for an abstract shape. This is why the function is followed by = 0.
This means that the function is pure virtual function.

A polymorphic class should always define a virtual destructor.

You may define non virtual member functions. When these function will be invoked for an object, the
function will be chosen depending on the class used at compile-time. Here get_double_surface() is defined
in this way.

A class that contains at least one pure virtual function is an abstract class. Abstract classes cannot be
instantiated. You may only have pointers or references of an abstract class type.

Derived classes

Once a polymorphic base class is defined you can derive it. For example:

class Square : public Shape {
 Point top_left;
 double side_length;
public:
 Square (const Point& top_left, double side)
 : top_left(top_left), side_length(side_length) {}

 double get_surface() override { return side_length * side_length; }
 void describe_object() override {
 std::cout << "this is a square starting at " << top_left.x << ", " << top_left.y
 << " with a length of " << side_length << std::endl;
 }
};

C++ Notes for Professionals 131

Some explanations:

You can define or override any of the virtual functions of the parent class. The fact that a function was virtual
in the parent class makes it virtual in the derived class. No need to tell the compiler the keyword virtual
again. But it's recommended to add the keyword override at the end of the function declaration, in order to
prevent subtle bugs caused by unnoticed variations in the function signature.
If all the pure virtual functions of the parent class are defined you can instantiate objects for this class, else it
will also become an abstract class.
You are not obliged to override all the virtual functions. You can keep the version of the parent if it suits your
need.

Example of instantiation

int main() {

 Square square(Point(10.0, 0.0), 6); // we know it's a square, the compiler also
 square.describe_object();
 std::cout << "Surface: " << square.get_surface() << std::endl;

 Circle circle(Point(0.0, 0.0), 5);

 Shape *ps = nullptr; // we don't know yet the real type of the object
 ps = &circle; // it's a circle, but it could as well be a square
 ps->describe_object();
 std::cout << "Surface: " << ps->get_surface() << std::endl;
}

Section 26.2: Safe downcasting
Suppose that you have a pointer to an object of a polymorphic class:

Shape *ps; // see example on defining a polymorphic class
ps = get_a_new_random_shape(); // if you don't have such a function yet, you
 // could just write ps = new Square(0.0,0.0, 5);

a downcast would be to cast from a general polymorphic Shape down to one of its derived and more specific shape
like Square or Circle.

Why to downcast ?

Most of the time, you would not need to know which is the real type of the object, as the virtual functions allow you
to manipulate your object independently of its type:

std::cout << "Surface: " << ps->get_surface() << std::endl;

If you don't need any downcast, your design would be perfect.

However, you may need sometimes to downcast. A typical example is when you want to invoke a non virtual
function that exist only for the child class.

Consider for example circles. Only circles have a diameter. So the class would be defined as :

class Circle: public Shape { // for Shape, see example on defining a polymorphic class
 Point center;
 double radius;
public:

C++ Notes for Professionals 132

 Circle (const Point& center, double radius)
 : center(center), radius(radius) {}

 double get_surface() const override { return r * r * M_PI; }

 // this is only for circles. Makes no sense for other shapes
 double get_diameter() const { return 2 * r; }
};

The get_diameter() member function only exist for circles. It was not defined for a Shape object:

Shape* ps = get_any_shape();
ps->get_diameter(); // OUCH !!! Compilation error

How to downcast ?

If you'd know for sure that ps points to a circle you could opt for a static_cast:

std::cout << "Diameter: " << static_cast<Circle*>(ps)->get_diameter() << std::endl;

This will do the trick. But it's very risky: if ps appears to by anything else than a Circle the behavior of your code
will be undefined.

So rather than playing Russian roulette, you should safely use a dynamic_cast. This is specifically for polymorphic
classes :

int main() {
 Circle circle(Point(0.0, 0.0), 10);
 Shape &shape = circle;

 std::cout << "The shape has a surface of " << shape.get_surface() << std::endl;

 //shape.get_diameter(); // OUCH !!! Compilation error

 Circle *pc = dynamic_cast<Circle*>(&shape); // will be nullptr if ps wasn't a circle
 if (pc)
 std::cout << "The shape is a circle of diameter " << pc->get_diameter() << std::endl;
 else
 std::cout << "The shape isn't a circle !" << std::endl;
}

Note that dynamic_cast is not possible on a class that is not polymorphic. You'd need at least one virtual function in
the class or its parents to be able to use it.

Section 26.3: Polymorphism & Destructors
If a class is intended to be used polymorphically, with derived instances being stored as base pointers/references,
its base class' destructor should be either virtual or protected. In the former case, this will cause object
destruction to check the vtable, automatically calling the correct destructor based on the dynamic type. In the
latter case, destroying the object through a base class pointer/reference is disabled, and the object can only be
deleted when explicitly treated as its actual type.

struct VirtualDestructor {
 virtual ~VirtualDestructor() = default;
};

struct VirtualDerived : VirtualDestructor {};

C++ Notes for Professionals 133

struct ProtectedDestructor {
 protected:
 ~ProtectedDestructor() = default;
};

struct ProtectedDerived : ProtectedDestructor {
 ~ProtectedDerived() = default;
};

// ...

VirtualDestructor* vd = new VirtualDerived;
delete vd; // Looks up VirtualDestructor::~VirtualDestructor() in vtable, sees it's
 // VirtualDerived::~VirtualDerived(), calls that.

ProtectedDestructor* pd = new ProtectedDerived;
delete pd; // Error: ProtectedDestructor::~ProtectedDestructor() is protected.
delete static_cast<ProtectedDerived*>(pd); // Good.

Both of these practices guarantee that the derived class' destructor will always be called on derived class instances,
preventing memory leaks.

C++ Notes for Professionals 134

Chapter 27: References
Section 27.1: Defining a reference
References behaves similarly, but not entirely like const pointers. A reference is defined by suffixing an ampersand
& to a type name.

int i = 10;
int &refi = i;

Here, refi is a reference bound to i.
References abstracts the semantics of pointers, acting like an alias to the underlying object:

refi = 20; // i = 20;

You can also define multiple references in a single definition:

int i = 10, j = 20;
int &refi = i, &refj = j;

// Common pitfall :
// int& refi = i, k = j;
// refi will be of type int&.
// though, k will be of type int, not int&!

References must be initialized correctly at the time of definition, and cannot be modified afterwards. The following
piece of codes causes a compile error:

int &i; // error: declaration of reference variable 'i' requires an initializer

You also cannot bind directly a reference to nullptr, unlike pointers:

int *const ptri = nullptr;
int &refi = nullptr; // error: non-const lvalue reference to type 'int' cannot bind to a temporary
of type 'nullptr_t'

C++ Notes for Professionals 135

Chapter 28: Value and Reference
Semantics
Section 28.1: Definitions
A type has value semantics if the object's observable state is functionally distinct from all other objects of that type.
This means that if you copy an object, you have a new object, and modifications of the new object will not be in any
way visible from the old object.

Most basic C++ types have value semantics:

int i = 5;
int j = i; //Copied
j += 20;
std::cout << i; //Prints 5; i is unaffected by changes to j.

Most standard-library defined types have value semantics too:

std::vector<int> v1(5, 12); //array of 5 values, 12 in each.
std::vector<int> v2 = v1; //Copies the vector.
v2[3] = 6; v2[4] = 9;
std::cout << v1[3] << " " << v1[4]; //Writes "12 12", since v1 is unchanged.

A type is said to have reference semantics if an instance of that type can share its observable state with another
object (external to it), such that manipulating one object will cause the state to change within another object.

C++ pointers have value semantics with regard to which object they point to, but they have reference semantics
with regard to the state of the object they point to:

int *pi = new int(4);
int *pi2 = pi;
pi = new int(16);
assert(pi2 != pi); //Will always pass.

int *pj = pi;
*pj += 5;
std::cout << *pi; //Writes 9, since `pi` and `pj` reference the same object.

C++ references have reference semantics as well.

Section 28.2: Deep copying and move support
If a type wishes to have value semantics, and it needs to store objects that are dynamically allocated, then on copy
operations, the type will need to allocate new copies of those objects. It must also do this for copy assignment.

This kind of copying is called a "deep copy". It effectively takes what would have otherwise been reference
semantics and turns it into value semantics:

struct Inner {int i;};

const int NUM_INNER = 5;
class Value
{
private:
 Inner *array_; //Normally has reference semantics.

C++ Notes for Professionals 136

public:
 Value() : array_(new Inner[NUM_INNER]){}

 ~Value() {delete[] array_;}

 Value(const Value &val) : array_(new Inner[NUM_INNER])
 {
 for(int i = 0; i < NUM_INNER; ++i)
 array_[i] = val.array_[i];
 }

 Value &operator=(const Value &val)
 {
 for(int i = 0; i < NUM_INNER; ++i)
 array_[i] = val.array_[i];
 return *this;
 }
};
Version ≥ C++11

Move semantics allow a type like Value to avoid truly copying its referenced data. If the user uses the value in a way
that provokes a move, the "copied" from object can be left empty of the data it referenced:

struct Inner {int i;};

constexpr auto NUM_INNER = 5;
class Value
{
private:
 Inner *array_; //Normally has reference semantics.

public:
 Value() : array_(new Inner[NUM_INNER]){}

 //OK to delete even if nullptr
 ~Value() {delete[] array_;}

 Value(const Value &val) : array_(new Inner[NUM_INNER])
 {
 for(int i = 0; i < NUM_INNER; ++i)
 array_[i] = val.array_[i];
 }

 Value &operator=(const Value &val)
 {
 for(int i = 0; i < NUM_INNER; ++i)
 array_[i] = val.array_[i];
 return *this;
 }

 //Movement means no memory allocation.
 //Cannot throw exceptions.
 Value(Value &&val) noexcept : array_(val.array_)
 {
 //We've stolen the old value.
 val.array_ = nullptr;
 }

 //Cannot throw exceptions.
 Value &operator=(Value &&val) noexcept
 {

C++ Notes for Professionals 137

 //Clever trick. Since `val` is going to be destroyed soon anyway,
 //we swap his data with ours. His destructor will destroy our data.
 std::swap(array_, val.array_);
 }
};

Indeed, we can even make such a type non-copyable, if we want to forbid deep copies while still allowing the object
to be moved around.

struct Inner {int i;};

constexpr auto NUM_INNER = 5;
class Value
{
private:
 Inner *array_; //Normally has reference semantics.

public:
 Value() : array_(new Inner[NUM_INNER]){}

 //OK to delete even if nullptr
 ~Value() {delete[] array_;}

 Value(const Value &val) = delete;
 Value &operator=(const Value &val) = delete;

 //Movement means no memory allocation.
 //Cannot throw exceptions.
 Value(Value &&val) noexcept : array_(val.array_)
 {
 //We've stolen the old value.
 val.array_ = nullptr;
 }

 //Cannot throw exceptions.
 Value &operator=(Value &&val) noexcept
 {
 //Clever trick. Since `val` is going to be destroyed soon anyway,
 //we swap his data with ours. His destructor will destroy our data.
 std::swap(array_, val.array_);
 }
};

We can even apply the Rule of Zero, through the use of unique_ptr:

struct Inner {int i;};

constexpr auto NUM_INNER = 5;
class Value
{
private:
 unique_ptr<Inner []>array_; //Move-only type.

public:
 Value() : array_(new Inner[NUM_INNER]){}

 //No need to explicitly delete. Or even declare.
 ~Value() = default; {delete[] array_;}

 //No need to explicitly delete. Or even declare.
 Value(const Value &val) = default;

C++ Notes for Professionals 138

 Value &operator=(const Value &val) = default;

 //Will perform an element-wise move.
 Value(Value &&val) noexcept = default;

 //Will perform an element-wise move.
 Value &operator=(Value &&val) noexcept = default;
};

C++ Notes for Professionals 139

Chapter 29: C++ function "call by value" vs.
"call by reference"
The scope of this section is to explain the differences in theory and implementation for what happens with the
parameters of a function upon calling.

In detail the parameters can be seen as variables before the function call and inside the function, where the visible
behaviour and accessibility to these variables differs with the method used to hand them over.

Additionally, the reusability of variables and their respective values after the function call also is explained by this
topic.

Section 29.1: Call by value
Upon calling a function there are new elements created on the program stack. These include some information
about the function and also space (memory locations) for the parameters and the return value.

When handing over a parameter to a function the value of the used variable (or literal) is copied into the memory
location of the function parameter. This implies that now there a two memory locations with the same value. Inside
of the function we only work on the parameter memory location.

After leaving the function the memory on the program stack is popped (removed) which erases all data of the
function call, including the memory location of the parameters we used inside. Thus, the values changed inside the
function do not affect the outside variables values.

int func(int f, int b) {
 //new variables are created and values from the outside copied
 //f has a value of 0
 //inner_b has a value of 1
 f = 1;
 //f has a value of 1
 b = 2;
 //inner_b has a value of 2
 return f+b;
}

int main(void) {
 int a = 0;
 int b = 1; //outer_b
 int c;

 c = func(a,b);
 //the return value is copied to c

 //a has a value of 0
 //outer_b has a value of 1 <--- outer_b and inner_b are different variables
 //c has a value of 3
}

In this code we create variables inside the main function. These get assigned values. Upon calling the functions
there are two new variables created: f and inner_b where b shares the name with the outer variable it does not
share the memory location. The behaviour of a<->f and b<->b is identical.

The following graphic symbolizes what is happening on the stack and why there is no change in varibale b. The
graphic is not fully accurate but emphazises the example.

C++ Notes for Professionals 140

It is called "call by value" because we do not hand over the variables but only the values of these variables.

https://i.stack.imgur.com/TgZM0.png

C++ Notes for Professionals 141

Chapter 30: Copying vs Assignment
rhs Right Hand Side of the equality for both copy and assignment constructors. For example the

assignment constructor : MyClass operator=(MyClass& rhs);
Placeholder Placeholder

Section 30.1: Assignment Operator
The Assignment Operator is when you replace the data with an already existing(previously initialized) object with
some other object's data. Lets take this as an example:

// Assignment Operator
#include <iostream>
#include <string>

using std::cout;
using std::endl;

class Foo
{
 public:
 Foo(int data)
 {
 this->data = data;
 }
 ~Foo(){};
 Foo& operator=(const Foo& rhs)
 {
 data = rhs.data;
 return *this;
 }

 int data;
};

int main()
{
 Foo foo(2); //Foo(int data) called
 Foo foo2(42);
 foo = foo2; // Assignment Operator Called
 cout << foo.data << endl; //Prints 42
}

You can see here I call the assignment operator when I already initialized the foo object. Then later I assign foo2 to
foo . All the changes to appear when you call that equal sign operator is defined in your operator= function. You
can see a runnable output here: http://cpp.sh/3qtbm

Section 30.2: Copy Constructor
Copy constructor on the other hand , is the complete opposite of the Assignment Constructor. This time, it is used
to initialize an already nonexistent(or non-previously initialized) object. This means it copies all the data from the
object you are assigning it to , without actually initializing the object that is being copied onto. Now Let's take a look
at the same code as before but modify the assignment constructor to be a copy constructor :

// Copy Constructor
#include <iostream>
#include <string>

http://cpp.sh/3qtbm

C++ Notes for Professionals 142

using std::cout;
using std::endl;

class Foo
{
 public:
 Foo(int data)
 {
 this->data = data;
 }
 ~Foo(){};
 Foo(const Foo& rhs)
 {
 data = rhs.data;
 }

 int data;
};

int main()
{
 Foo foo(2); //Foo(int data) called
 Foo foo2 = foo; // Copy Constructor called
 cout << foo2.data << endl;
}

You can see here Foo foo2 = foo; in the main function I immediately assign the object before actually initializing it,
which as said before means it's a copy constructor. And notice that I didn't need to pass the parameter int for the
foo2 object since I automatically pulled the previous data from the object foo. Here is an example output :
http://cpp.sh/5iu7

Section 30.3: Copy Constructor Vs Assignment Constructor
Ok we have briefly looked over what the copy constructor and assignment constructor are above and gave
examples of each now let's see both of them in the same code. This code will be similar as above two. Let's take this
:

// Copy vs Assignment Constructor
#include <iostream>
#include <string>

using std::cout;
using std::endl;

class Foo
{
 public:
 Foo(int data)
 {
 this->data = data;
 }
 ~Foo(){};
 Foo(const Foo& rhs)
 {
 data = rhs.data;
 }

 Foo& operator=(const Foo& rhs)
 {
 data = rhs.data;

http://cpp.sh/5iu7

C++ Notes for Professionals 143

 return *this;
 }

 int data;
};

int main()
{
 Foo foo(2); //Foo(int data) / Normal Constructor called
 Foo foo2 = foo; //Copy Constructor Called
 cout << foo2.data << endl;

 Foo foo3(42);
 foo3=foo; //Assignment Constructor Called
 cout << foo3.data << endl;
}

Output:

2
2

Here you can see we first call the copy constructor by executing the line Foo foo2 = foo; . Since we didn't initialize
it previously. And then next we call the assignment operator on foo3 since it was already initialized foo3=foo;

C++ Notes for Professionals 144

Chapter 31: Pointers
A pointer is an address that refers to a location in memory. They're commonly used to allow functions or data
structures to know of and modify memory without having to copy the memory referred to. Pointers are usable with
both primitive (built-in) or user-defined types.

Pointers make use of the "dereference" * , "address of" & , and "arrow" -> operators. The '*' and '->' operators are
used to access the memory being pointed at, and the & operator is used to get an address in memory.

Section 31.1: Pointer Operations
There are two operators for pointers: Address-of operator (&): Returns the memory address of its operand.
Contents-of (Dereference) operator(*): Returns the value of the variable located at the address specified by its
operator.

int var = 20;
int *ptr;
ptr = &var;

cout << var << endl;
//Outputs 20 (The value of var)

cout << ptr << endl;
//Outputs 0x234f119 (var's memory location)

cout << *ptr << endl;
//Outputs 20(The value of the variable stored in the pointer ptr

The asterisk (*) is used in declaring a pointer for simple purpose of indicating that it is a pointer. Don't confuse this
with the dereference operator, which is used to obtain the value located at the specified address. They are simply
two different things represented with the same sign.

Section 31.2: Pointer basics
Version < C++11

Note: in all the following, the existence of the C++11 constant nullptr is assumed. For earlier versions, replace
nullptr with NULL, the constant that used to play a similar role.

Creating a pointer variable

A pointer variable can be created using the specific * syntax, e.g. int *pointer_to_int;.
When a variable is of a pointer type (int *), it just contains a memory address. The memory address is the location
at which data of the underlying type (int) is stored.

The difference is clear when comparing the size of a variable with the size of a pointer to the same type:

// Declare a struct type `big_struct` that contains
// three long long ints.
typedef struct {
 long long int foo1;
 long long int foo2;
 long long int foo3;
} big_struct;

// Create a variable `bar` of type `big_struct`

C++ Notes for Professionals 145

big_struct bar;
// Create a variable `p_bar` of type `pointer to big_struct`.
// Initialize it to `nullptr` (a null pointer).
big_struct *p_bar0 = nullptr;

// Print the size of `bar`
std::cout << "sizeof(bar) = " << sizeof(bar) << std::endl;
// Print the size of `p_bar`.
std::cout << "sizeof(p_bar0) = " << sizeof(p_bar0) << std::endl;

/* Produces:
 sizeof(bar) = 24
 sizeof(p_bar0) = 8
*/

Taking the address of another variable

Pointers can be assigned between each other just as normal variables; in this case, it is the memory address that is
copied from one pointer to another, not the actual data that a pointer points to.
Moreover, they can take the value nullptr which represents a null memory location. A pointer equal to nullptr
contains an invalid memory location and hence it does not refer to valid data.

You can get the memory address of a variable of a given type by prefixing the variable with the address of operator
&. The value returned by & is a pointer to the underlying type which contains the memory address of the variable
(which is valid data as long as the variable does not go out of scope).

// Copy `p_bar0` into `p_bar_1`.
big_struct *p_bar1 = p_bar0;

// Take the address of `bar` into `p_bar_2`
big_struct *p_bar2 = &bar;

// p_bar1 is now nullptr, p_bar2 is &bar.

p_bar0 = p_bar2;

// p_bar0 is now &bar.

p_bar2 = nullptr;

// p_bar0 == &bar
// p_bar1 == nullptr
// p_bar2 == nullptr

In contrast with references:

assigning two pointers does not overwrite the memory that the assigned pointer refers to;
pointers can be null.
the address of operator is required explicitly.

Accessing the content of a pointer

As taking an address requires &, as well accessing the content requires the usage of the dereference operator *, as a
prefix. When a pointer is dereferenced, it becomes a variable of the underlying type (actually, a reference to it). It
can then be read and modified, if not const.

(*p_bar0).foo1 = 5;

// `p_bar0` points to `bar`. This prints 5.

C++ Notes for Professionals 146

std::cout << "bar.foo1 = " << bar.foo1 << std::endl;

// Assign the value pointed to by `p_bar0` to `baz`.
big_struct baz;
baz = *p_bar0;

// Now `baz` contains a copy of the data pointed to by `p_bar0`.
// Indeed, it contains a copy of `bar`.

// Prints 5 as well
std::cout << "baz.foo1 = " << baz.foo1 << std::endl;

The combination of * and the operator . is abbreviated by ->:

std::cout << "bar.foo1 = " << (*p_bar0).foo1 << std::endl; // Prints 5
std::cout << "bar.foo1 = " << p_bar0->foo1 << std::endl; // Prints 5

Dereferencing invalid pointers

When dereferencing a pointer, you should make sure it points to valid data. Dereferencing an invalid pointer (or a
null pointer) can lead to memory access violation, or to read or write garbage data.

big_struct *never_do_this() {
 // This is a local variable. Outside `never_do_this` it doesn't exist.
 big_struct retval;
 retval.foo1 = 11;
 // This returns the address of `retval`.
 return &retval;
 // `retval` is destroyed and any code using the value returned
 // by `never_do_this` has a pointer to a memory location that
 // contains garbage data (or is inaccessible).
}

In such scenario, g++ and clang++ correctly issue the warnings:

(Clang) warning: address of stack memory associated with local variable 'retval' returned [-
Wreturn-stack-address]
(Gcc) warning: address of local variable ‘retval’ returned [-Wreturn-local-addr]

Hence, care must be taken when pointers are arguments of functions, as they could be null:

void naive_code(big_struct *ptr_big_struct) {
 // ... some code which doesn't check if `ptr_big_struct` is valid.
 ptr_big_struct->foo1 = 12;
}

// Segmentation fault.
naive_code(nullptr);

Section 31.3: Pointer Arithmetic
Increment / Decrement

A pointer can be incremented or decremented (prefix and postfix). Incrementing a pointer advances the pointer
value to the element in the array one element past the currently pointed to element. Decrementing a pointer
moves it to the previous element in the array.

Pointer arithmetic is not permitted if the type that the pointer points to is not complete. void is always an

C++ Notes for Professionals 147

incomplete type.

char* str = new char[10]; // str = 0x010
++str; // str = 0x011 in this case sizeof(char) = 1 byte

int* arr = new int[10]; // arr = 0x00100
++arr; // arr = 0x00104 if sizeof(int) = 4 bytes

void* ptr = (void*)new char[10];
++ptr; // void is incomplete.

If a pointer to the end element is incremented, then the pointer points to one element past the end of the array.
Such a pointer cannot be dereferenced, but it can be decremented.

Incrementing a pointer to the one-past-the-end element in the array, or decrementing a pointer to the first element
in an array yields undefined behavior.

A pointer to a non-array object can be treated, for the purposes of pointer arithmetic, as though it were an array of
size 1.

Addition / Subtraction

Integer values can be added to pointers; they act as incrementing, but by a specific number rather than by 1.
Integer values can be subtracted from pointers as well, acting as pointer decrementing. As with
incrementing/decrementing, the pointer must point to a complete type.

char* str = new char[10]; // str = 0x010
str += 2; // str = 0x010 + 2 * sizeof(char) = 0x012

int* arr = new int[10]; // arr = 0x100
arr += 2; // arr = 0x100 + 2 * sizeof(int) = 0x108, assuming sizeof(int) == 4.

Pointer Differencing

The difference between two pointers to the same type can be computed. The two pointers must be within the same
array object; otherwise undefined behavior results.

Given two pointers P and Q in the same array, if P is the ith element in the array, and Q is the jth element, then P -
Q shall be i - j. The type of the result is std::ptrdiff_t, from <cstddef>.

char* start = new char[10]; // str = 0x010
char* test = &start[5];
std::ptrdiff_t diff = test - start; //Equal to 5.
std::ptrdiff_t diff = start - test; //Equal to -5; ptrdiff_t is signed.

C++ Notes for Professionals 148

Chapter 32: Pointers to members
Section 32.1: Pointers to static member functions
A static member function is just like an ordinary C/C++ function, except with scope:

It is inside a class, so it needs its name decorated with the class name;
It has accessibility, with public, protected or private.

So, if you have access to the static member function and decorate it correctly, then you can point to the function
like any normal function outside a class:

typedef int Fn(int); // Fn is a type-of function that accepts an int and returns an int

// Note that MyFn() is of type 'Fn'
int MyFn(int i) { return 2*i; }

class Class {
public:
 // Note that Static() is of type 'Fn'
 static int Static(int i) { return 3*i; }
}; // Class

int main() {
 Fn *fn; // fn is a pointer to a type-of Fn

 fn = &MyFn; // Point to one function
 fn(3); // Call it
 fn = &Class::Static; // Point to the other function
 fn(4); // Call it
 } // main()

Section 32.2: Pointers to member functions
To access a member function of a class, you need to have a "handle" to the particular instance, as either the
instance itself, or a pointer or reference to it. Given a class instance, you can point to various of its members with a
pointer-to-member, IF you get the syntax correct! Of course, the pointer has to be declared to be of the same type
as what you are pointing to...

typedef int Fn(int); // Fn is a type-of function that accepts an int and returns an int

class Class {
public:
 // Note that A() is of type 'Fn'
 int A(int a) { return 2*a; }
 // Note that B() is of type 'Fn'
 int B(int b) { return 3*b; }
}; // Class

int main() {
 Class c; // Need a Class instance to play with
 Class *p = &c; // Need a Class pointer to play with

 Fn Class::*fn; // fn is a pointer to a type-of Fn within Class

 fn = &Class::A; // fn now points to A within any Class
 (c.*fn)(5); // Pass 5 to c's function A (via fn)

C++ Notes for Professionals 149

 fn = &Class::B; // fn now points to B within any Class
 (p->*fn)(6); // Pass 6 to c's (via p) function B (via fn)
} // main()

Unlike pointers to member variables (in the previous example), the association between the class instance and the
member pointer need to be bound tightly together with parentheses, which looks a little strange (as though the .*
and ->* aren't strange enough!)

Section 32.3: Pointers to member variables
To access a member of a class, you need to have a "handle" to the particular instance, as either the instance itself,
or a pointer or reference to it. Given a class instance, you can point to various of its members with a pointer-to-
member, IF you get the syntax correct! Of course, the pointer has to be declared to be of the same type as what you
are pointing to...

class Class {
public:
 int x, y, z;
 char m, n, o;
}; // Class

int x; // Global variable

int main() {
 Class c; // Need a Class instance to play with
 Class *p = &c; // Need a Class pointer to play with

 int *p_i; // Pointer to an int

 p_i = &x; // Now pointing to x
 p_i = &c.x; // Now pointing to c's x

 int Class::*p_C_i; // Pointer to an int within Class

 p_C_i = &Class::x; // Point to x within any Class
 int i = c.*p_C_i; // Use p_c_i to fetch x from c's instance
 p_C_i = &Class::y; // Point to y within any Class
 i = c.*p_C_i; // Use p_c_i to fetch y from c's instance

 p_C_i = &Class::m; // ERROR! m is a char, not an int!

 char Class::*p_C_c = &Class::m; // That's better...
} // main()

The syntax of pointer-to-member requires some extra syntactic elements:

To define the type of the pointer, you need to mention the base type, as well as the fact that it is inside a
class: int Class::*ptr;.
If you have a class or reference and want to use it with a pointer-to-member, you need to use the .* operator
(akin to the . operator).
If you have a pointer to a class and want to use it with a pointer-to-member, you need to use the ->*
operator (akin to the -> operator).

Section 32.4: Pointers to static member variables
A static member variable is just like an ordinary C/C++ variable, except with scope:

C++ Notes for Professionals 150

It is inside a class, so it needs its name decorated with the class name;
It has accessibility, with public, protected or private.

So, if you have access to the static member variable and decorate it correctly, then you can point to the variable
like any normal variable outside a class:

class Class {
public:
 static int i;
}; // Class

int Class::i = 1; // Define the value of i (and where it's stored!)

int j = 2; // Just another global variable

int main() {
 int k = 3; // Local variable

 int *p;

 p = &k; // Point to k
 *p = 2; // Modify it
 p = &j; // Point to j
 *p = 3; // Modify it
 p = &Class::i; // Point to Class::i
 *p = 4; // Modify it
} // main()

C++ Notes for Professionals 151

Chapter 33: The This Pointer
Section 33.1: this Pointer
All non-static member functions have a hidden parameter, a pointer to an instance of the class, named this; this
parameter is silently inserted at the beginning of the parameter list, and handled entirely by the compiler. When a
member of the class is accessed inside a member function, it is silently accessed through this; this allows the
compiler to use a single non-static member function for all instances, and allows a member function to call other
member functions polymorphically.

struct ThisPointer {
 int i;

 ThisPointer(int ii);

 virtual void func();

 int get_i() const;
 void set_i(int ii);
};
ThisPointer::ThisPointer(int ii) : i(ii) {}
// Compiler rewrites as:
ThisPointer::ThisPointer(int ii) : this->i(ii) {}
// Constructor is responsible for turning allocated memory into 'this'.
// As the constructor is responsible for creating the object, 'this' will not be "fully"
// valid until the instance is fully constructed.

/* virtual */ void ThisPointer::func() {
 if (some_external_condition) {
 set_i(182);
 } else {
 i = 218;
 }
}
// Compiler rewrites as:
/* virtual */ void ThisPointer::func(ThisPointer* this) {
 if (some_external_condition) {
 this->set_i(182);
 } else {
 this->i = 218;
 }
}

int ThisPointer::get_i() const { return i; }
// Compiler rewrites as:
int ThisPointer::get_i(const ThisPointer* this) { return this->i; }

void ThisPointer::set_i(int ii) { i = ii; }
// Compiler rewrites as:
void ThisPointer::set_i(ThisPointer* this, int ii) { this->i = ii; }

In a constructor, this can safely be used to (implicitly or explicitly) access any field that has already been initialised,
or any field in a parent class; conversely, (implicitly or explicitly) accessing any fields that haven't yet been initialised,
or any fields in a derived class, is unsafe (due to the derived class not yet being constructed, and thus its fields
neither being initialised nor existing). It is also unsafe to call virtual member functions through this in the
constructor, as any derived class functions will not be considered (due to the derived class not yet being
constructed, and thus its constructor not yet updating the vtable).

C++ Notes for Professionals 152

Also note that while in a constructor, the type of the object is the type which that constructor constructs. This holds
true even if the object is declared as a derived type. For example, in the below example, ctd_good and ctd_bad are
type CtorThisBase inside CtorThisBase(), and type CtorThis inside CtorThis(), even though their canonical type
is CtorThisDerived. As the more-derived classes are constructed around the base class, the instance gradually
goes through the class hierarchy until it is a fully-constructed instance of its intended type.

class CtorThisBase {
 short s;

 public:
 CtorThisBase() : s(516) {}
};

class CtorThis : public CtorThisBase {
 int i, j, k;

 public:
 // Good constructor.
 CtorThis() : i(s + 42), j(this->i), k(j) {}

 // Bad constructor.
 CtorThis(int ii) : i(ii), j(this->k), k(b ? 51 : -51) {
 virt_func();
 }

 virtual void virt_func() { i += 2; }
};

class CtorThisDerived : public CtorThis {
 bool b;

 public:
 CtorThisDerived() : b(true) {}
 CtorThisDerived(int ii) : CtorThis(ii), b(false) {}

 void virt_func() override { k += (2 * i); }
};

// ...

CtorThisDerived ctd_good;
CtorThisDerived ctd_bad(3);

With these classes and member functions:

In the good constructor, for ctd_good:
CtorThisBase is fully constructed by the time the CtorThis constructor is entered. Therefore, s is in a
valid state while initialising i, and can thus be accessed.
i is initialised before j(this->i) is reached. Therefore, i is in a valid state while initialising j, and can
thus be accessed.
j is initialised before k(j) is reached. Therefore, j is in a valid state while initialising k, and can thus be
accessed.

In the bad constructor, for ctd_bad:
k is initialised after j(this->k) is reached. Therefore, k is in an invalid state while initialising j, and
accessing it causes undefined behaviour.
CtorThisDerived is not constructed until after CtorThis is constructed. Therefore, b is in an invalid
state while initialising k, and accessing it causes undefined behaviour.
The object ctd_bad is still a CtorThis until it leaves CtorThis(), and will not be updated to use

C++ Notes for Professionals 153

CtorThisDerived's vtable until CtorThisDerived(). Therefore, virt_func() will call
CtorThis::virt_func(), regardless of whether it is intended to call that or
CtorThisDerived::virt_func().

Section 33.2: Using the this Pointer to Access Member Data
In this context, using the this pointer isn't entirely necessary, but it will make your code clearer to the reader, by
indicating that a given function or variable is a member of the class. An example in this situation:

// Example for this pointer
#include <iostream>
#include <string>

using std::cout;
using std::endl;

class Class
{
 public:
 Class();
 ~Class();
 int getPrivateNumber () const;
 private:
 int private_number = 42;
};

Class::Class(){}
Class::~Class(){}

int Class::getPrivateNumber() const
{
 return this->private_number;
}

int main()
{
 Class class_example;
 cout << class_example.getPrivateNumber() << endl;
}

See it in action here.

Section 33.3: Using the this Pointer to Dierentiate Between
Member Data and Parameters
This is an actual useful strategy to differentiate member data from parameters... Lets take this example :

// Dog Class Example
#include <iostream>
#include <string>

using std::cout;
using std::endl;

/*
* @class Dog
* @member name
* Dog's name
* @function bark

http://cpp.sh/9flka

C++ Notes for Professionals 154

* Dog Barks!
* @function getName
* To Get Private
* Name Variable
*/
class Dog
{
 public:
 Dog(std::string name);
 ~Dog();
 void bark() const;
 std::string getName() const;
 private:
 std::string name;
};

Dog::Dog(std::string name)
{
 /*
 * this->name is the
 * name variable from
 * the class dog . and
 * name is from the
 * parameter of the function
 */
 this->name = name;
}

Dog::~Dog(){}

void Dog::bark() const
{
 cout << "BARK" << endl;
}

std::string Dog::getName() const
{
 return this->name;
}

int main()
{
 Dog dog("Max");
 cout << dog.getName() << endl;
 dog.bark();
}

You can see here in the constructor we execute the following:

this->name = name;

Here , you can see we are assinging the parameter name to the name of the private variable from the class
Dog(this->name) .

To see the output of above code : http://cpp.sh/75r7

Section 33.4: this Pointer CV-Qualifiers
this can also be cv-qualified, the same as any other pointer. However, due to the this parameter not being listed

http://cpp.sh/75r7

C++ Notes for Professionals 155

in the parameter list, special syntax is required for this; the cv-qualifiers are listed after the parameter list, but
before the function's body.

struct ThisCVQ {
 void no_qualifier() {} // "this" is: ThisCVQ*
 void c_qualifier() const {} // "this" is: const ThisCVQ*
 void v_qualifier() volatile {} // "this" is: volatile ThisCVQ*
 void cv_qualifier() const volatile {} // "this" is: const volatile ThisCVQ*
};

As this is a parameter, a function can be overloaded based on its this cv-qualifier(s).

struct CVOverload {
 int func() { return 3; }
 int func() const { return 33; }
 int func() volatile { return 333; }
 int func() const volatile { return 3333; }
};

When this is const (including const volatile), the function is unable to write to member variables through it,
whether implicitly or explicitly. The sole exception to this is mutable member variables, which can be written
regardless of const-ness. Due to this, const is used to indicate that the member function doesn't change the
object's logical state (the way the object appears to the outside world), even if it does modify the physical state (the
way the object looks under the hood).

Logical state is the way the object appears to outside observers. It isn't directly tied to physical state, and
indeed, might not even be stored as physical state. As long as outside observers can't see any changes,
the logical state is constant, even if you flip every single bit in the object.

Physical state, also known as bitwise state, is how the object is stored in memory. This is the object's nitty-
gritty, the raw 1s and 0s that make up its data. An object is only physically constant if its representation in
memory never changes.

Note that C++ bases constness on logical state, not physical state.

class DoSomethingComplexAndOrExpensive {
 mutable ResultType cached_result;
 mutable bool state_changed;

 ResultType calculate_result();
 void modify_somehow(const Param& p);

 // ...

 public:
 DoSomethingComplexAndOrExpensive(Param p) : state_changed(true) {
 modify_somehow(p);
 }

 void change_state(Param p) {
 modify_somehow(p);
 state_changed = true;
 }

C++ Notes for Professionals 156

 // Return some complex and/or expensive-to-calculate result.
 // As this has no reason to modify logical state, it is marked as "const".
 ResultType get_result() const;
};
ResultType DoSomethingComplexAndOrExpensive::get_result() const {
 // cached_result and state_changed can be modified, even with a const "this" pointer.
 // Even though the function doesn't modify logical state, it does modify physical state
 // by caching the result, so it doesn't need to be recalculated every time the function
 // is called. This is indicated by cached_result and state_changed being mutable.

 if (state_changed) {
 cached_result = calculate_result();
 state_changed = false;
 }

 return cached_result;
}

Note that while you technically could use const_cast on this to make it non-cv-qualified, you really, REALLY
shouldn't, and should use mutable instead. A const_cast is liable to invoke undefined behaviour when used on an
object that actually is const, while mutable is designed to be safe to use. It is, however, possible that you may run
into this in extremely old code.

An exception to this rule is defining non-cv-qualified accessors in terms of const accessors; as the object is
guaranteed to not be const if the non-cv-qualified version is called, there's no risk of UB.

class CVAccessor {
 int arr[5];

 public:
 const int& get_arr_element(size_t i) const { return arr[i]; }

 int& get_arr_element(size_t i) {
 return const_cast<int&>(const_cast<const CVAccessor*>(this)->get_arr_element(i));
 }
};

This prevents unnecessary duplication of code.

As with regular pointers, if this is volatile (including const volatile), it is loaded from memory each time it is
accessed, instead of being cached. This has the same effects on optimisation as declaring any other pointer
volatile would, so care should be taken.

Note that if an instance is cv-qualified, the only member functions it is allowed to access are member functions
whose this pointer is at least as cv-qualified as the instance itself:

Non-cv instances can access any member functions.
const instances can access const and const volatile functions.
volatile instances can access volatile and const volatile functions.
const volatile instances can access const volatile functions.

This is one of the key tenets of const correctness.

struct CVAccess {
 void func() {}
 void func_c() const {}
 void func_v() volatile {}
 void func_cv() const volatile {}

C++ Notes for Professionals 157

};

CVAccess cva;
cva.func(); // Good.
cva.func_c(); // Good.
cva.func_v(); // Good.
cva.func_cv(); // Good.

const CVAccess c_cva;
c_cva.func(); // Error.
c_cva.func_c(); // Good.
c_cva.func_v(); // Error.
c_cva.func_cv(); // Good.

volatile CVAccess v_cva;
v_cva.func(); // Error.
v_cva.func_c(); // Error.
v_cva.func_v(); // Good.
v_cva.func_cv(); // Good.

const volatile CVAccess cv_cva;
cv_cva.func(); // Error.
cv_cva.func_c(); // Error.
cv_cva.func_v(); // Error.
cv_cva.func_cv(); // Good.

Section 33.5: this Pointer Ref-Qualifiers
Version ≥ C++11

Similarly to this cv-qualifiers, we can also apply ref-qualifiers to *this. Ref-qualifiers are used to choose between
normal and rvalue reference semantics, allowing the compiler to use either copy or move semantics depending on
which are more appropriate, and are applied to *this instead of this.

Note that despite ref-qualifiers using reference syntax, this itself is still a pointer. Also note that ref-qualifiers don't
actually change the type of *this; it's just easier to describe and understand their effects by looking at them as if
they did.

struct RefQualifiers {
 std::string s;

 RefQualifiers(const std::string& ss = "The nameless one.") : s(ss) {}

 // Normal version.
 void func() & { std::cout << "Accessed on normal instance " << s << std::endl; }
 // Rvalue version.
 void func() && { std::cout << "Accessed on temporary instance " << s << std::endl; }

 const std::string& still_a_pointer() & { return this->s; }
 const std::string& still_a_pointer() && { this->s = "Bob"; return this->s; }
};

// ...

RefQualifiers rf("Fred");
rf.func(); // Output: Accessed on normal instance Fred
RefQualifiers{}.func(); // Output: Accessed on temporary instance The nameless one

A member function cannot have overloads both with and without ref-qualifiers; the programmer has to choose

C++ Notes for Professionals 158

between one or the other. Thankfully, cv-qualifiers can be used in conjunction with ref-qualifiers, allowing const
correctness rules to be followed.

struct RefCV {
 void func() & {}
 void func() && {}
 void func() const& {}
 void func() const&& {}
 void func() volatile& {}
 void func() volatile&& {}
 void func() const volatile& {}
 void func() const volatile&& {}
};

C++ Notes for Professionals 159

Chapter 34: Smart Pointers
Section 34.1: Unique ownership (std::unique_ptr)
Version ≥ C++11

A std::unique_ptr is a class template that manages the lifetime of a dynamically stored object. Unlike for
std::shared_ptr, the dynamic object is owned by only one instance of a std::unique_ptr at any time,

// Creates a dynamic int with value of 20 owned by a unique pointer
std::unique_ptr<int> ptr = std::make_unique<int>(20);

(Note: std::unique_ptr is available since C++11 and std::make_unique since C++14.)

Only the variable ptr holds a pointer to a dynamically allocated int. When a unique pointer that owns an object
goes out of scope, the owned object is deleted, i.e. its destructor is called if the object is of class type, and the
memory for that object is released.

To use std::unique_ptr and std::make_unique with array-types, use their array specializations:

// Creates a unique_ptr to an int with value 59
std::unique_ptr<int> ptr = std::make_unique<int>(59);

// Creates a unique_ptr to an array of 15 ints
std::unique_ptr<int[]> ptr = std::make_unique<int[]>(15);

You can access the std::unique_ptr just like a raw pointer, because it overloads those operators.

You can transfer ownership of the contents of a smart pointer to another pointer by using std::move, which will
cause the original smart pointer to point to nullptr.

// 1. std::unique_ptr
std::unique_ptr<int> ptr = std::make_unique<int>();

// Change value to 1
*ptr = 1;

// 2. std::unique_ptr (by moving 'ptr' to 'ptr2', 'ptr' doesn't own the object anymore)
std::unique_ptr<int> ptr2 = std::move(ptr);

int a = *ptr2; // 'a' is 1
int b = *ptr; // undefined behavior! 'ptr' is 'nullptr'
 // (because of the move command above)

Passing unique_ptr to functions as parameter:

void foo(std::unique_ptr<int> ptr)
{
 // Your code goes here
}

std::unique_ptr<int> ptr = std::make_unique<int>(59);
foo(std::move(ptr))

Returning unique_ptr from functions. This is the preferred C++11 way of writing factory functions, as it clearly
conveys the ownership semantics of the return: the caller owns the resulting unique_ptr and is responsible for it.

http://en.cppreference.com/w/cpp/memory/unique_ptr
http://en.cppreference.com/w/cpp/memory/unique_ptr
http://en.cppreference.com/w/cpp/memory/unique_ptr
http://en.cppreference.com/w/cpp/memory/shared_ptr
http://en.cppreference.com/w/cpp/memory/shared_ptr
http://en.cppreference.com/w/cpp/memory/shared_ptr

C++ Notes for Professionals 160

std::unique_ptr<int> foo()
{
 std::unique_ptr<int> ptr = std::make_unique<int>(59);
 return ptr;
}

std::unique_ptr<int> ptr = foo();

Compare this to:

int* foo_cpp03();

int* p = foo_cpp03(); // do I own p? do I have to delete it at some point?
 // it's not readily apparent what the answer is.
Version < C++14

The class template make_unique is provided since C++14. It's easy to add it manually to C++11 code:

template<typename T, typename... Args>
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique(Args&&... args)
{ return std::unique_ptr<T>(new T(std::forward<Args>(args)...)); }

// Use make_unique for arrays
template<typename T>
typename std::enable_if<std::is_array<T>::value, std::unique_ptr<T>>::type
make_unique(size_t n)
{ return std::unique_ptr<T>(new typename std::remove_extent<T>::type[n]()); }
Version ≥ C++11

Unlike the dumb smart pointer (std::auto_ptr), unique_ptr can also be instantiated with vector allocation (not
std::vector). Earlier examples were for scalar allocations. For example to have a dynamically allocated integer
array for 10 elements, you would specify int[] as the template type (and not just int):

std::unique_ptr<int[]> arr_ptr = std::make_unique<int[]>(10);

Which can be simplified with:

auto arr_ptr = std::make_unique<int[]>(10);

Now, you use arr_ptr as if it is an array:

arr_ptr[2] = 10; // Modify third element

You need not to worry about de-allocation. This template specialized version calls constructors and destructors
appropriately. Using vectored version of unique_ptr or a vector itself - is a personal choice.

In versions prior to C++11, std::auto_ptr was available. Unlike unique_ptr it is allowed to copy auto_ptrs, upon
which the source ptr will lose the ownership of the contained pointer and the target receives it.

Section 34.2: Sharing ownership (std::shared_ptr)
The class template std::shared_ptr defines a shared pointer that is able to share ownership of an object with
other shared pointers. This contrasts to std::unique_ptr which represents exclusive ownership.

http://en.cppreference.com/w/cpp/memory/shared_ptr
http://en.cppreference.com/w/cpp/memory/shared_ptr
http://en.cppreference.com/w/cpp/memory/shared_ptr
http://en.cppreference.com/w/cpp/memory/unique_ptr
http://en.cppreference.com/w/cpp/memory/unique_ptr
http://en.cppreference.com/w/cpp/memory/unique_ptr

C++ Notes for Professionals 161

The sharing behavior is implemented through a technique known as reference counting, where the number of
shared pointers that point to the object is stored alongside it. When this count reaches zero, either through the
destruction or reassignment of the last std::shared_ptr instance, the object is automatically destroyed.

// Creation: 'firstShared' is a shared pointer for a new instance of 'Foo'
std::shared_ptr<Foo> firstShared = std::make_shared<Foo>(/*args*/);

To create multiple smart pointers that share the same object, we need to create another shared_ptr that aliases
the first shared pointer. Here are 2 ways of doing it:

std::shared_ptr<Foo> secondShared(firstShared); // 1st way: Copy constructing
std::shared_ptr<Foo> secondShared;
secondShared = firstShared; // 2nd way: Assigning

Either of the above ways makes secondShared a shared pointer that shares ownership of our instance of Foo with
firstShared.

The smart pointer works just like a raw pointer. This means, you can use * to dereference them. The regular ->
operator works as well:

secondShared->test(); // Calls Foo::test()

Finally, when the last aliased shared_ptr goes out of scope, the destructor of our Foo instance is called.

Warning: Constructing a shared_ptr might throw a bad_alloc exception when extra data for shared ownership
semantics needs to be allocated. If the constructor is passed a regular pointer it assumes to own the object pointed
to and calls the deleter if an exception is thrown. This means shared_ptr<T>(new T(args)) will not leak a T object if
allocation of shared_ptr<T> fails. However, it is advisable to use make_shared<T>(args) or
allocate_shared<T>(alloc, args), which enable the implementation to optimize the memory allocation.

Allocating Arrays([]) using shared_ptr

Version ≥ C++11 Version < C++17

Unfortunately, there is no direct way to allocate Arrays using make_shared<>.

It is possible to create arrays for shared_ptr<> using new and std::default_delete.

For example, to allocate an array of 10 integers, we can write the code as

shared_ptr<int> sh(new int[10], std::default_delete<int[]>());

Specifying std::default_delete is mandatory here to make sure that the allocated memory is correctly cleaned up
using delete[].

If we know the size at compile time, we can do it this way:

template<class Arr>
struct shared_array_maker {};
template<class T, std::size_t N>
struct shared_array_maker<T[N]> {
 std::shared_ptr<T> operator()const{
 auto r = std::make_shared<std::array<T,N>>();
 if (!r) return {};
 return {r.data(), r};
 }

C++ Notes for Professionals 162

};
template<class Arr>
auto make_shared_array()
-> decltype(shared_array_maker<Arr>{}())
{ return shared_array_maker<Arr>{}(); }

then make_shared_array<int[10]> returns a shared_ptr<int> pointing to 10 ints all default constructed.

Version ≥ C++17

With C++17, shared_ptr gained special support for array types. It is no longer necessary to specify the array-deleter
explicitly, and the shared pointer can be dereferenced using the [] array index operator:

std::shared_ptr<int[]> sh(new int[10]);
sh[0] = 42;

Shared pointers can point to a sub-object of the object it owns:

struct Foo { int x; };
std::shared_ptr<Foo> p1 = std::make_shared<Foo>();
std::shared_ptr<int> p2(p1, &p1->x);

Both p2 and p1 own the object of type Foo, but p2 points to its int member x. This means that if p1 goes out of
scope or is reassigned, the underlying Foo object will still be alive, ensuring that p2 does not dangle.

Important: A shared_ptr only knows about itself and all other shared_ptr that were created with the alias
constructor. It does not know about any other pointers, including all other shared_ptrs created with a reference to
the same Foo instance:

Foo *foo = new Foo;
std::shared_ptr<Foo> shared1(foo);
std::shared_ptr<Foo> shared2(foo); // don't do this

shared1.reset(); // this will delete foo, since shared1
 // was the only shared_ptr that owned it

shared2->test(); // UNDEFINED BEHAVIOR: shared2's foo has been
 // deleted already!!

Ownership Transfer of shared_ptr

By default, shared_ptr increments the reference count and doesn't transfer the ownership. However, it can be
made to transfer the ownership using std::move:

shared_ptr<int> up = make_shared<int>();
// Transferring the ownership
shared_ptr<int> up2 = move(up);
// At this point, the reference count of up = 0 and the
// ownership of the pointer is solely with up2 with reference count = 1

Section 34.3: Sharing with temporary ownership
(std::weak_ptr)
Instances of std::weak_ptr can point to objects owned by instances of std::shared_ptr while only becoming
temporary owners themselves. This means that weak pointers do not alter the object's reference count and
therefore do not prevent an object's deletion if all of the object's shared pointers are reassigned or destroyed.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0414r2.html
http://en.cppreference.com/w/cpp/memory/weak_ptr
http://en.cppreference.com/w/cpp/memory/weak_ptr
http://en.cppreference.com/w/cpp/memory/weak_ptr
http://en.cppreference.com/w/cpp/memory/shared_ptr
http://en.cppreference.com/w/cpp/memory/shared_ptr
http://en.cppreference.com/w/cpp/memory/shared_ptr

C++ Notes for Professionals 163

In the following example instances of std::weak_ptr are used so that the destruction of a tree object is not
inhibited:

#include <memory>
#include <vector>

struct TreeNode {
 std::weak_ptr<TreeNode> parent;
 std::vector< std::shared_ptr<TreeNode> > children;
};

int main() {
 // Create a TreeNode to serve as the root/parent.
 std::shared_ptr<TreeNode> root(new TreeNode);

 // Give the parent 100 child nodes.
 for (size_t i = 0; i < 100; ++i) {
 std::shared_ptr<TreeNode> child(new TreeNode);
 root->children.push_back(child);
 child->parent = root;
 }

 // Reset the root shared pointer, destroying the root object, and
 // subsequently its child nodes.
 root.reset();
}

As child nodes are added to the root node's children, their std::weak_ptr member parent is set to the root node.
The member parent is declared as a weak pointer as opposed to a shared pointer such that the root node's
reference count is not incremented. When the root node is reset at the end of main(), the root is destroyed. Since
the only remaining std::shared_ptr references to the child nodes were contained in the root's collection children,
all child nodes are subsequently destroyed as well.

Due to control block implementation details, shared_ptr allocated memory may not be released until shared_ptr
reference counter and weak_ptr reference counter both reach zero.

#include <memory>
int main()
{
 {
 std::weak_ptr<int> wk;
 {
 // std::make_shared is optimized by allocating only once
 // while std::shared_ptr<int>(new int(42)) allocates twice.
 // Drawback of std::make_shared is that control block is tied to our integer
 std::shared_ptr<int> sh = std::make_shared<int>(42);
 wk = sh;
 // sh memory should be released at this point...
 }
 // ... but wk is still alive and needs access to control block
 }
 // now memory is released (sh and wk)
}

Since std::weak_ptr does not keep its referenced object alive, direct data access through a std::weak_ptr is not
possible. Instead it provides a lock() member function that attempts to retrieve a std::shared_ptr to the
referenced object:

C++ Notes for Professionals 164

#include <cassert>
#include <memory>
int main()
{
 {
 std::weak_ptr<int> wk;
 std::shared_ptr<int> sp;
 {
 std::shared_ptr<int> sh = std::make_shared<int>(42);
 wk = sh;
 // calling lock will create a shared_ptr to the object referenced by wk
 sp = wk.lock();
 // sh will be destroyed after this point, but sp is still alive
 }
 // sp still keeps the data alive.
 // At this point we could even call lock() again
 // to retrieve another shared_ptr to the same data from wk
 assert(*sp == 42);
 assert(!wk.expired());
 // resetting sp will delete the data,
 // as it is currently the last shared_ptr with ownership
 sp.reset();
 // attempting to lock wk now will return an empty shared_ptr,
 // as the data has already been deleted
 sp = wk.lock();
 assert(!sp);
 assert(wk.expired());
 }
}

Section 34.4: Using custom deleters to create a wrapper to a
C interface
Many C interfaces such as SDL2 have their own deletion functions. This means that you cannot use smart pointers
directly:

std::unique_ptr<SDL_Surface> a; // won't work, UNSAFE!

Instead, you need to define your own deleter. The examples here use the SDL_Surface structure which should be
freed using the SDL_FreeSurface() function, but they should be adaptable to many other C interfaces.

The deleter must be callable with a pointer argument, and therefore can be e.g. a simple function pointer:

std::unique_ptr<SDL_Surface, void(*)(SDL_Surface*)> a(pointer, SDL_FreeSurface);

Any other callable object will work, too, for example a class with an operator():

struct SurfaceDeleter {
 void operator()(SDL_Surface* surf) {
 SDL_FreeSurface(surf);
 }
};

std::unique_ptr<SDL_Surface, SurfaceDeleter> a(pointer, SurfaceDeleter{}); // safe
std::unique_ptr<SDL_Surface, SurfaceDeleter> b(pointer); // equivalent to the above
 // as the deleter is value-initialized

This not only provides you with safe, zero overhead (if you use unique_ptr) automatic memory management, you

https://www.libsdl.org/
https://wiki.libsdl.org/SDL_Surface
https://wiki.libsdl.org/SDL_FreeSurface
https://wiki.libsdl.org/SDL_FreeSurface
https://wiki.libsdl.org/SDL_FreeSurface
http://en.cppreference.com/w/cpp/memory/unique_ptr

C++ Notes for Professionals 165

also get exception safety.

Note that the deleter is part of the type for unique_ptr, and the implementation can use the empty base
optimization to avoid any change in size for empty custom deleters. So while std::unique_ptr<SDL_Surface,
SurfaceDeleter> and std::unique_ptr<SDL_Surface, void(*)(SDL_Surface*)> solve the same problem in a
similar way, the former type is still only the size of a pointer while the latter type has to hold two pointers: both the
SDL_Surface* and the function pointer! When having free function custom deleters, it is preferable to wrap the
function in an empty type.

In cases where reference counting is important, one could use a shared_ptr instead of an unique_ptr. The
shared_ptr always stores a deleter, this erases the type of the deleter, which might be useful in APIs. The
disadvantages of using shared_ptr over unique_ptr include a higher memory cost for storing the deleter and a
performance cost for maintaining the reference count.

// deleter required at construction time and is part of the type
std::unique_ptr<SDL_Surface, void(*)(SDL_Surface*)> a(pointer, SDL_FreeSurface);

// deleter is only required at construction time, not part of the type
std::shared_ptr<SDL_Surface> b(pointer, SDL_FreeSurface);
Version ≥ C++17

With template auto, we can make it even easier to wrap our custom deleters:

template <auto DeleteFn>
struct FunctionDeleter {
 template <class T>
 void operator()(T* ptr) {
 DeleteFn(ptr);
 }
};

template <class T, auto DeleteFn>
using unique_ptr_deleter = std::unique_ptr<T, FunctionDeleter<DeleteFn>>;

With which the above example is simply:

unique_ptr_deleter<SDL_Surface, SDL_FreeSurface> c(pointer);

Here, the purpose of auto is to handle all free functions, whether they return void (e.g. SDL_FreeSurface) or not
(e.g. fclose).

Section 34.5: Unique ownership without move semantics
(auto_ptr)
Version < C++11

NOTE: std::auto_ptr has been deprecated in C++11 and will be removed in C++17. You should only use this if you
are forced to use C++03 or earlier and are willing to be careful. It is recommended to move to unique_ptr in
combination with std::move to replace std::auto_ptr behavior.

Before we had std::unique_ptr, before we had move semantics, we had std::auto_ptr. std::auto_ptr provides
unique ownership but transfers ownership upon copy.

As with all smart pointers, std::auto_ptr automatically cleans up resources (see RAII):

http://en.cppreference.com/w/cpp/memory/shared_ptr

C++ Notes for Professionals 166

{
 std::auto_ptr<int> p(new int(42));
 std::cout << *p;
} // p is deleted here, no memory leaked

but allows only one owner:

std::auto_ptr<X> px = ...;
std::auto_ptr<X> py = px;
 // px is now empty

This allows to use std::auto_ptr to keep ownership explicit and unique at the danger of losing ownership
unintended:

void f(std::auto_ptr<X>) {
 // assumes ownership of X
 // deletes it at end of scope
};

std::auto_ptr<X> px = ...;
f(px); // f acquires ownership of underlying X
 // px is now empty
px->foo(); // NPE!
// px.~auto_ptr() does NOT delete

The transfer of ownership happened in the "copy" constructor. auto_ptr's copy constructor and copy assignment
operator take their operands by non-const reference so that they could be modified. An example implementation
might be:

template <typename T>
class auto_ptr {
 T* ptr;
public:
 auto_ptr(auto_ptr& rhs)
 : ptr(rhs.release())
 { }

 auto_ptr& operator=(auto_ptr& rhs) {
 reset(rhs.release());
 return *this;
 }

 T* release() {
 T* tmp = ptr;
 ptr = nullptr;
 return tmp;
 }

 void reset(T* tmp = nullptr) {
 if (ptr != tmp) {
 delete ptr;
 ptr = tmp;
 }
 }

 /* other functions ... */
};

This breaks copy semantics, which require that copying an object leaves you with two equivalent versions of it. For

C++ Notes for Professionals 167

any copyable type, T, I should be able to write:

T a = ...;
T b(a);
assert(b == a);

But for auto_ptr, this is not the case. As a result, it is not safe to put auto_ptrs in containers.

Section 34.6: Casting std::shared_ptr pointers
It is not possible to directly use static_cast, const_cast, dynamic_cast and reinterpret_cast on
std::shared_ptr to retrieve a pointer sharing ownership with the pointer being passed as argument. Instead, the
functions std::static_pointer_cast, std::const_pointer_cast, std::dynamic_pointer_cast and
std::reinterpret_pointer_cast should be used:

struct Base { virtual ~Base() noexcept {}; };
struct Derived: Base {};
auto derivedPtr(std::make_shared<Derived>());
auto basePtr(std::static_pointer_cast<Base>(derivedPtr));
auto constBasePtr(std::const_pointer_cast<Base const>(basePtr));
auto constDerivedPtr(std::dynamic_pointer_cast<Derived const>(constBasePtr));

Note that std::reinterpret_pointer_cast is not available in C++11 and C++14, as it was only proposed by N3920
and adopted into Library Fundamentals TS in February 2014. However, it can be implemented as follows:

template <typename To, typename From>
inline std::shared_ptr<To> reinterpret_pointer_cast(
 std::shared_ptr<From> const & ptr) noexcept
{ return std::shared_ptr<To>(ptr, reinterpret_cast<To *>(ptr.get())); }

Section 34.7: Writing a smart pointer: value_ptr
A value_ptr is a smart pointer that behaves like a value. When copied, it copies its contents. When created, it
creates its contents.

// Like std::default_delete:
template<class T>
struct default_copier {
 // a copier must handle a null T const* in and return null:
 T* operator()(T const* tin)const {
 if (!tin) return nullptr;
 return new T(*tin);
 }
 void operator()(void* dest, T const* tin)const {
 if (!tin) return;
 return new(dest) T(*tin);
 }
};
// tag class to handle empty case:
struct empty_ptr_t {};
constexpr empty_ptr_t empty_ptr{};
// the value pointer type itself:
template<class T, class Copier=default_copier<T>, class Deleter=std::default_delete<T>,
 class Base=std::unique_ptr<T, Deleter>
>
struct value_ptr:Base, private Copier {

https://isocpp.org/files/papers/N3920.html
https://isocpp.org/blog/2014/02/trip-report

C++ Notes for Professionals 168

 using copier_type=Copier;
 // also typedefs from unique_ptr

 using Base::Base;

 value_ptr(T const& t):
 Base(std::make_unique<T>(t)),
 Copier()
 {}
 value_ptr(T && t):
 Base(std::make_unique<T>(std::move(t))),
 Copier()
 {}
 // almost-never-empty:
 value_ptr():
 Base(std::make_unique<T>()),
 Copier()
 {}
 value_ptr(empty_ptr_t) {}

 value_ptr(Base b, Copier c={}):
 Base(std::move(b)),
 Copier(std::move(c))
 {}

 Copier const& get_copier() const {
 return *this;
 }

 value_ptr clone() const {
 return {
 Base(
 get_copier()(this->get()),
 this->get_deleter()
),
 get_copier()
 };
 }
 value_ptr(value_ptr&&)=default;
 value_ptr& operator=(value_ptr&&)=default;

 value_ptr(value_ptr const& o):value_ptr(o.clone()) {}
 value_ptr& operator=(value_ptr const&o) {
 if (o && *this) {
 // if we are both non-null, assign contents:
 **this = *o;
 } else {
 // otherwise, assign a clone (which could itself be null):
 *this = o.clone();
 }
 return *this;
 }
 value_ptr& operator=(T const& t) {
 if (*this) {
 **this = t;
 } else {
 *this = value_ptr(t);
 }
 return *this;
 }
 value_ptr& operator=(T && t) {
 if (*this) {

C++ Notes for Professionals 169

 **this = std::move(t);
 } else {
 *this = value_ptr(std::move(t));
 }
 return *this;
 }
 T& get() { return **this; }
 T const& get() const { return **this; }
 T* get_pointer() {
 if (!*this) return nullptr;
 return std::addressof(get());
 }
 T const* get_pointer() const {
 if (!*this) return nullptr;
 return std::addressof(get());
 }
 // operator-> from unique_ptr
};
template<class T, class...Args>
value_ptr<T> make_value_ptr(Args&&... args) {
 return {std::make_unique<T>(std::forward<Args>(args)...)};
}

This particular value_ptr is only empty if you construct it with empty_ptr_t or if you move from it. It exposes the fact
it is a unique_ptr, so explicit operator bool() const works on it. .get() has been changed to return a
reference (as it is almost never empty), and .get_pointer() returns a pointer instead.

This smart pointer can be useful for pImpl cases, where we want value-semantics but we also don't want to expose
the contents of the pImpl outside of the implementation file.

With a non-default Copier, it can even handle virtual base classes that know how to produce instances of their
derived and turn them into value-types.

Section 34.8: Getting a shared_ptr referring to this
enable_shared_from_this enables you to get a valid shared_ptr instance to this.

By deriving your class from the class template enable_shared_from_this, you inherit a method shared_from_this
that returns a shared_ptr instance to this.

Note that the object must be created as a shared_ptr in first place:

#include <memory>
class A: public enable_shared_from_this<A> {
};
A* ap1 =new A();
shared_ptr<A> ap2(ap1); // First prepare a shared pointer to the object and hold it!
// Then get a shared pointer to the object from the object itself
shared_ptr<A> ap3 = ap1->shared_from_this();
int c3 =ap3.use_count(); // =2: pointing to the same object

Note(2) you cannot call enable_shared_from_this inside the constructor.

#include <memory> // enable_shared_from_this

class Widget : public std::enable_shared_from_this< Widget >
{
public:

C++ Notes for Professionals 170

 void DoSomething()
 {
 std::shared_ptr< Widget > self = shared_from_this();
 someEvent -> Register(self);
 }
private:
 ...
};

int main()
{
 ...
 auto w = std::make_shared< Widget >();
 w -> DoSomething();
 ...
}

If you use shared_from_this() on an object not owned by a shared_ptr, such as a local automatic object or a
global object, then the behavior is undefined. Since C++17 it throws std::bad_alloc instead.

Using shared_from_this() from a constructor is equivalent to using it on an object not owned by a shared_ptr,
because the objects is possessed by the shared_ptr after the constructor returns.

C++ Notes for Professionals 171

Chapter 35: Classes/Structures
Section 35.1: Class basics
A class is a user-defined type. A class is introduced with the class, struct or union keyword. In colloquial usage, the
term "class" usually refers only to non-union classes.

A class is a collection of class members, which can be:

member variables (also called "fields"),
member functions (also called "methods"),
member types or typedefs (e.g. "nested classes"),
member templates (of any kind: variable, function, class or alias template)

The class and struct keywords, called class keys, are largely interchangeable, except that the default access
specifier for members and bases is "private" for a class declared with the class key and "public" for a class declared
with the struct or union key (cf. Access modifiers).

For example, the following code snippets are identical:

struct Vector
{
 int x;
 int y;
 int z;
};
// are equivalent to
class Vector
{
public:
 int x;
 int y;
 int z;
};

By declaring a class` a new type is added to your program, and it is possible to instantiate objects of that class by

Vector my_vector;

Members of a class are accessed using dot-syntax.

my_vector.x = 10;
my_vector.y = my_vector.x + 1; // my_vector.y = 11;
my_vector.z = my_vector.y - 4; // my:vector.z = 7;

Section 35.2: Final classes and structs
Version ≥ C++11

Deriving a class may be forbidden with final specifier. Let's declare a final class:

class A final {
};

Now any attempt to subclass it will cause a compilation error:

C++ Notes for Professionals 172

// Compilation error: cannot derive from final class:
class B : public A {
};

Final class may appear anywhere in class hierarchy:

class A {
};

// OK.
class B final : public A {
};

// Compilation error: cannot derive from final class B.
class C : public B {
};

Section 35.3: Access specifiers
There are three keywords that act as access specifiers. These limit the access to class members following the
specifier, until another specifier changes the access level again:

Keyword Description
public Everyone has access
protectedOnly the class itself, derived classes and friends have access
private Only the class itself and friends have access

When the type is defined using the class keyword, the default access specifier is private, but if the type is defined
using the struct keyword, the default access specifier is public:

struct MyStruct { int x; };
class MyClass { int x; };

MyStruct s;
s.x = 9; // well formed, because x is public

MyClass c;
c.x = 9; // ill-formed, because x is private

Access specifiers are mostly used to limit access to internal fields and methods, and force the programmer to use a
specific interface, for example to force use of getters and setters instead of referencing a variable directly:

class MyClass {

public: /* Methods: */

 int x() const noexcept { return m_x; }
 void setX(int const x) noexcept { m_x = x; }

private: /* Fields: */

 int m_x;

};

Using protected is useful for allowing certain functionality of the type to be only accessible to the derived classes,
for example, in the following code, the method calculateValue() is only accessible to classes deriving from the

C++ Notes for Professionals 173

base class Plus2Base, such as FortyTwo:

struct Plus2Base {
 int value() noexcept { return calculateValue() + 2; }
protected: /* Methods: */
 virtual int calculateValue() noexcept = 0;
};
struct FortyTwo: Plus2Base {
protected: /* Methods: */
 int calculateValue() noexcept final override { return 40; }
};

Note that the friend keyword can be used to add access exceptions to functions or types for accessing protected
and private members.

The public, protected, and private keywords can also be used to grant or limit access to base class subobjects.
See the Inheritance example.

Section 35.4: Inheritance
Classes/structs can have inheritance relations.

If a class/struct B inherits from a class/struct A, this means that B has as a parent A. We say that B is a derived
class/struct from A, and A is the base class/struct.

struct A
{
public:
 int p1;
protected:
 int p2;
private:
 int p3;
};

//Make B inherit publicly (default) from A
struct B : A
{
};

There are 3 forms of inheritance for a class/struct:

public

private

protected

Note that the default inheritance is the same as the default visibility of members: public if you use the struct
keyword, and private for the class keyword.

It's even possible to have a class derive from a struct (or vice versa). In this case, the default inheritance is
controlled by the child, so a struct that derives from a class will default to public inheritance, and a class that
derives from a struct will have private inheritance by default.

public inheritance:

struct B : public A // or just `struct B : A`
{

C++ Notes for Professionals 174

 void foo()
 {
 p1 = 0; //well formed, p1 is public in B
 p2 = 0; //well formed, p2 is protected in B
 p3 = 0; //ill formed, p3 is private in A
 }
};

B b;
b.p1 = 1; //well formed, p1 is public
b.p2 = 1; //ill formed, p2 is protected
b.p3 = 1; //ill formed, p3 is inaccessible

private inheritance:

struct B : private A
{
 void foo()
 {
 p1 = 0; //well formed, p1 is private in B
 p2 = 0; //well formed, p2 is private in B
 p3 = 0; //ill formed, p3 is private in A
 }
};

B b;
b.p1 = 1; //ill formed, p1 is private
b.p2 = 1; //ill formed, p2 is private
b.p3 = 1; //ill formed, p3 is inaccessible

protected inheritance:

struct B : protected A
{
 void foo()
 {
 p1 = 0; //well formed, p1 is protected in B
 p2 = 0; //well formed, p2 is protected in B
 p3 = 0; //ill formed, p3 is private in A
 }
};

B b;
b.p1 = 1; //ill formed, p1 is protected
b.p2 = 1; //ill formed, p2 is protected
b.p3 = 1; //ill formed, p3 is inaccessible

Note that although protected inheritance is allowed, the actual use of it is rare. One instance of how protected
inheritance is used in application is in partial base class specialization (usually referred to as "controlled
polymorphism").

When OOP was relatively new, (public) inheritance was frequently said to model an "IS-A" relationship. That is,
public inheritance is correct only if an instance of the derived class is also an instance of the base class.

This was later refined into the Liskov Substitution Principle: public inheritance should only be used when/if an
instance of the derived class can be substituted for an instance of the base class under any possible circumstance
(and still make sense).

Private inheritance is typically said to embody a completely different relationship: "is implemented in terms of"

https://en.wikipedia.org/wiki/Liskov_substitution_principle

C++ Notes for Professionals 175

(sometimes called a "HAS-A" relationship). For example, a Stack class could inherit privately from a Vector class.
Private inheritance bears a much greater similarity to aggregation than to public inheritance.

Protected inheritance is almost never used, and there's no general agreement on what sort of relationship it
embodies.

Section 35.5: Friendship
The friend keyword is used to give other classes and functions access to private and protected members of the
class, even through they are defined outside the class`s scope.

class Animal{
private:
 double weight;
 double height;
public:
 friend void printWeight(Animal animal);
 friend class AnimalPrinter;
 // A common use for a friend function is to overload the operator<< for streaming.
 friend std::ostream& operator<<(std::ostream& os, Animal animal);
};

void printWeight(Animal animal)
{
 std::cout << animal.weight << "\n";
}

class AnimalPrinter
{
public:
 void print(const Animal& animal)
 {
 // Because of the `friend class AnimalPrinter;" declaration, we are
 // allowed to access private members here.
 std::cout << animal.weight << ", " << animal.height << std::endl;
 }
}

std::ostream& operator<<(std::ostream& os, Animal animal)
{
 os << "Animal height: " << animal.height << "\n";
 return os;
}

int main() {
 Animal animal = {10, 5};
 printWeight(animal);

 AnimalPrinter aPrinter;
 aPrinter.print(animal);

 std::cout << animal;
}

10
10, 5
Animal height: 5

C++ Notes for Professionals 176

Section 35.6: Virtual Inheritance
When using inheritance, you can specify the virtual keyword:

struct A{};
struct B: public virtual A{};

When class B has virtual base A it means that A will reside in most derived class of inheritance tree, and thus that
most derived class is also responsible for initializing that virtual base:

struct A
{
 int member;
 A(int param)
 {
 member = param;
 }
};

struct B: virtual A
{
 B(): A(5){}
};

struct C: B
{
 C(): /*A(88)*/ {}
};

void f()
{
 C object; //error since C is not initializing it's indirect virtual base `A`
}

If we un-comment /*A(88)*/ we won't get any error since C is now initializing it's indirect virtual base A.

Also note that when we're creating variable object, most derived class is C, so C is responsible for creating(calling
constructor of) A and thus value of A::member is 88, not 5 (as it would be if we were creating object of type B).

It is useful when solving the diamond problem.:

 A A A
 / \ | |
B C B C
 \ / \ /
 D D
virtual inheritance normal inheritance

B and C both inherit from A, and D inherits from B and C, so there are 2 instances of A in D! This results in ambiguity
when you're accessing member of A through D, as the compiler has no way of knowing from which class do you
want to access that member (the one which B inherits, or the one that is inherited byC?).

Virtual inheritance solves this problem: Since virtual base resides only in most derived object, there will be only one
instance of A in D.

struct A
{
 void foo() {}

https://en.wikipedia.org/wiki/Multiple_inheritance#The_diamond_problem

C++ Notes for Professionals 177

};

struct B : public /*virtual*/ A {};
struct C : public /*virtual*/ A {};

struct D : public B, public C
{
 void bar()
 {
 foo(); //Error, which foo? B::foo() or C::foo()? - Ambiguous
 }
};

Removing the comments resolves the ambiguity.

Section 35.7: Private inheritance: restricting base class
interface
Private inheritance is useful when it is required to restrict the public interface of the class:

class A {
public:
 int move();
 int turn();
};

class B : private A {
public:
 using A::turn;
};

B b;
b.move(); // compile error
b.turn(); // OK

This approach efficiently prevents an access to the A public methods by casting to the A pointer or reference:

B b;
A& a = static_cast<A&>(b); // compile error

In the case of public inheritance such casting will provide access to all the A public methods despite on alternative
ways to prevent this in derived B, like hiding:

class B : public A {
private:
 int move();
};

or private using:

class B : public A {
private:
 using A::move;
};

then for both cases it is possible:

B b;

C++ Notes for Professionals 178

A& a = static_cast<A&>(b); // OK for public inheritance
a.move(); // OK

Section 35.8: Accessing class members
To access member variables and member functions of an object of a class, the . operator is used:

struct SomeStruct {
 int a;
 int b;
 void foo() {}
};

SomeStruct var;
// Accessing member variable a in var.
std::cout << var.a << std::endl;
// Assigning member variable b in var.
var.b = 1;
// Calling a member function.
var.foo();

When accessing the members of a class via a pointer, the -> operator is commonly used. Alternatively, the instance
can be dereferenced and the . operator used, although this is less common:

struct SomeStruct {
 int a;
 int b;
 void foo() {}
};

SomeStruct var;
SomeStruct *p = &var;
// Accessing member variable a in var via pointer.
std::cout << p->a << std::endl;
std::cout << (*p).a << std::endl;
// Assigning member variable b in var via pointer.
p->b = 1;
(*p).b = 1;
// Calling a member function via a pointer.
p->foo();
(*p).foo();

When accessing static class members, the :: operator is used, but on the name of the class instead of an instance
of it. Alternatively, the static member can be accessed from an instance or a pointer to an instance using the . or ->
operator, respectively, with the same syntax as accessing non-static members.

struct SomeStruct {
 int a;
 int b;
 void foo() {}

 static int c;
 static void bar() {}
};
int SomeStruct::c;

SomeStruct var;
SomeStruct* p = &var;
// Assigning static member variable c in struct SomeStruct.

C++ Notes for Professionals 179

SomeStruct::c = 5;
// Accessing static member variable c in struct SomeStruct, through var and p.
var.a = var.c;
var.b = p->c;
// Calling a static member function.
SomeStruct::bar();
var.bar();
p->bar();

Background

The -> operator is needed because the member access operator . has precedence over the dereferencing operator
*.

One would expect that *p.a would dereference p (resulting in a reference to the object p is pointing to) and then
accessing its member a. But in fact, it tries to access the member a of p and then dereference it. I.e. *p.a is
equivalent to *(p.a). In the example above, this would result in a compiler error because of two facts: First, p is a
pointer and does not have a member a. Second, a is an integer and, thus, can't be dereferenced.

The uncommonly used solution to this problem would be to explicitly control the precedence: (*p).a

Instead, the -> operator is almost always used. It is a short-hand for first dereferencing the pointer and then
accessing it. I.e. (*p).a is exactly the same as p->a.

The :: operator is the scope operator, used in the same manner as accessing a member of a namespace. This is
because a static class member is considered to be in that class' scope, but isn't considered a member of instances
of that class. The use of normal . and -> is also allowed for static members, despite them not being instance
members, for historical reasons; this is of use for writing generic code in templates, as the caller doesn't need to be
concerned with whether a given member function is static or non-static.

Section 35.9: Member Types and Aliases
A class or struct can also define member type aliases, which are type aliases contained within, and treated as
members of, the class itself.

struct IHaveATypedef {
 typedef int MyTypedef;
};

struct IHaveATemplateTypedef {
 template<typename T>
 using MyTemplateTypedef = std::vector<T>;
};

Like static members, these typedefs are accessed using the scope operator, ::.

IHaveATypedef::MyTypedef i = 5; // i is an int.

IHaveATemplateTypedef::MyTemplateTypedef<int> v; // v is a std::vector<int>.

As with normal type aliases, each member type alias is allowed to refer to any type defined or aliased before, but
not after, its definition. Likewise, a typedef outside the class definition can refer to any accessible typedefs within
the class definition, provided it comes after the class definition.

template<typename T>
struct Helper {
 T get() const { return static_cast<T>(42); }

C++ Notes for Professionals 180

};

struct IHaveTypedefs {
// typedef MyTypedef NonLinearTypedef; // Error if uncommented.
 typedef int MyTypedef;
 typedef Helper<MyTypedef> MyTypedefHelper;
};

IHaveTypedefs::MyTypedef i; // x_i is an int.
IHaveTypedefs::MyTypedefHelper hi; // x_hi is a Helper<int>.

typedef IHaveTypedefs::MyTypedef TypedefBeFree;
TypedefBeFree ii; // ii is an int.

Member type aliases can be declared with any access level, and will respect the appropriate access modifier.

class TypedefAccessLevels {
 typedef int PrvInt;

 protected:
 typedef int ProInt;

 public:
 typedef int PubInt;
};

TypedefAccessLevels::PrvInt prv_i; // Error: TypedefAccessLevels::PrvInt is private.
TypedefAccessLevels::ProInt pro_i; // Error: TypedefAccessLevels::ProInt is protected.
TypedefAccessLevels::PubInt pub_i; // Good.

class Derived : public TypedefAccessLevels {
 PrvInt prv_i; // Error: TypedefAccessLevels::PrvInt is private.
 ProInt pro_i; // Good.
 PubInt pub_i; // Good.
};

This can be used to provide a level of abstraction, allowing a class' designer to change its internal workings without
breaking code that relies on it.

class Something {
 friend class SomeComplexType;

 short s;
 // ...

 public:
 typedef SomeComplexType MyHelper;

 MyHelper get_helper() const { return MyHelper(8, s, 19.5, "shoe", false); }

 // ...
};

// ...

Something s;
Something::MyHelper hlp = s.get_helper();

In this situation, if the helper class is changed from SomeComplexType to some other type, only the typedef and the
friend declaration would need to be modified; as long as the helper class provides the same functionality, any code

C++ Notes for Professionals 181

that uses it as Something::MyHelper instead of specifying it by name will usually still work without any
modifications. In this manner, we minimise the amount of code that needs to be modified when the underlying
implementation is changed, such that the type name only needs to be changed in one location.

This can also be combined with decltype, if one so desires.

class SomethingElse {
 AnotherComplexType<bool, int, SomeThirdClass> helper;

 public:
 typedef decltype(helper) MyHelper;

 private:
 InternalVariable<MyHelper> ivh;

 // ...

 public:
 MyHelper& get_helper() const { return helper; }

 // ...
};

In this situation, changing the implementation of SomethingElse::helper will automatically change the typedef for
us, due to decltype. This minimises the number of modifications necessary when we want to change helper, which
minimises the risk of human error.

As with everything, however, this can be taken too far. If the typename is only used once or twice internally and
zero times externally, for example, there's no need to provide an alias for it. If it's used hundreds or thousands of
times throughout a project, or if it has a long enough name, then it can be useful to provide it as a typedef instead
of always using it in absolute terms. One must balance forwards compatibility and convenience with the amount of
unnecessary noise created.

This can also be used with template classes, to provide access to the template parameters from outside the class.

template<typename T>
class SomeClass {
 // ...

 public:
 typedef T MyParam;
 MyParam getParam() { return static_cast<T>(42); }
};

template<typename T>
typename T::MyParam some_func(T& t) {
 return t.getParam();
}

SomeClass<int> si;
int i = some_func(si);

This is commonly used with containers, which will usually provide their element type, and other helper types, as
member type aliases. Most of the containers in the C++ standard library, for example, provide the following 12
helper types, along with any other special types they might need.

template<typename T>
class SomeContainer {

C++ Notes for Professionals 182

 // ...

 public:
 // Let's provide the same helper types as most standard containers.
 typedef T value_type;
 typedef std::allocator<value_type> allocator_type;
 typedef value_type& reference;
 typedef const value_type& const_reference;
 typedef value_type* pointer;
 typedef const value_type* const_pointer;
 typedef MyIterator<value_type> iterator;
 typedef MyConstIterator<value_type> const_iterator;
 typedef std::reverse_iterator<iterator> reverse_iterator;
 typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
 typedef size_t size_type;
 typedef ptrdiff_t difference_type;
};

Prior to C++11, it was also commonly used to provide a "template typedef" of sorts, as the feature wasn't yet
available; these have become a bit less common with the introduction of alias templates, but are still useful in some
situations (and are combined with alias templates in other situations, which can be very useful for obtaining
individual components of a complex type such as a function pointer). They commonly use the name type for their
type alias.

template<typename T>
struct TemplateTypedef {
 typedef T type;
}

TemplateTypedef<int>::type i; // i is an int.

This was often used with types with multiple template parameters, to provide an alias that defines one or more of
the parameters.

template<typename T, size_t SZ, size_t D>
class Array { /* ... */ };

template<typename T, size_t SZ>
struct OneDArray {
 typedef Array<T, SZ, 1> type;
};

template<typename T, size_t SZ>
struct TwoDArray {
 typedef Array<T, SZ, 2> type;
};

template<typename T>
struct MonoDisplayLine {
 typedef Array<T, 80, 1> type;
};

OneDArray<int, 3>::type arr1i; // arr1i is an Array<int, 3, 1>.
TwoDArray<short, 5>::type arr2s; // arr2s is an Array<short, 5, 2>.
MonoDisplayLine<char>::type arr3c; // arr3c is an Array<char, 80, 1>.

Section 35.10: Nested Classes/Structures
A class or struct can also contain another class/struct definition inside itself, which is called a "nested class"; in

C++ Notes for Professionals 183

this situation, the containing class is referred to as the "enclosing class". The nested class definition is considered to
be a member of the enclosing class, but is otherwise separate.

struct Outer {
 struct Inner { };
};

From outside of the enclosing class, nested classes are accessed using the scope operator. From inside the
enclosing class, however, nested classes can be used without qualifiers:

struct Outer {
 struct Inner { };

 Inner in;
};

// ...

Outer o;
Outer::Inner i = o.in;

As with a non-nested class/struct, member functions and static variables can be defined either within a nested
class, or in the enclosing namespace. However, they cannot be defined within the enclosing class, due to it being
considered to be a different class than the nested class.

// Bad.
struct Outer {
 struct Inner {
 void do_something();
 };

 void Inner::do_something() {}
};

// Good.
struct Outer {
 struct Inner {
 void do_something();
 };

};

void Outer::Inner::do_something() {}

As with non-nested classes, nested classes can be forward declared and defined later, provided they are defined
before being used directly.

class Outer {
 class Inner1;
 class Inner2;

 class Inner1 {};

 Inner1 in1;
 Inner2* in2p;

 public:
 Outer();

C++ Notes for Professionals 184

 ~Outer();
};

class Outer::Inner2 {};

Outer::Outer() : in1(Inner1()), in2p(new Inner2) {}
Outer::~Outer() {
 if (in2p) { delete in2p; }
}
Version < C++11

Prior to C++11, nested classes only had access to type names, static members, and enumerators from the
enclosing class; all other members defined in the enclosing class were off-limits.

Version ≥ C++11

As of C++11, nested classes, and members thereof, are treated as if they were friends of the enclosing class, and
can access all of its members, according to the usual access rules; if members of the nested class require the ability
to evaluate one or more non-static members of the enclosing class, they must therefore be passed an instance:

class Outer {
 struct Inner {
 int get_sizeof_x() {
 return sizeof(x); // Legal (C++11): x is unevaluated, so no instance is required.
 }

 int get_x() {
 return x; // Illegal: Can't access non-static member without an instance.
 }

 int get_x(Outer& o) {
 return o.x; // Legal (C++11): As a member of Outer, Inner can access private members.
 }
 };

 int x;
};

Conversely, the enclosing class is not treated as a friend of the nested class, and thus cannot access its private
members without explicitly being granted permission.

class Outer {
 class Inner {
 // friend class Outer;

 int x;
 };

 Inner in;

 public:
 int get_x() {
 return in.x; // Error: int Outer::Inner::x is private.
 // Uncomment "friend" line above to fix.
 }
};

Friends of a nested class are not automatically considered friends of the enclosing class; if they need to be friends
of the enclosing class as well, this must be declared separately. Conversely, as the enclosing class is not

C++ Notes for Professionals 185

automatically considered a friend of the nested class, neither will friends of the enclosing class be considered
friends of the nested class.

class Outer {
 friend void barge_out(Outer& out, Inner& in);

 class Inner {
 friend void barge_in(Outer& out, Inner& in);

 int i;
 };

 int o;
};

void barge_in(Outer& out, Outer::Inner& in) {
 int i = in.i; // Good.
 int o = out.o; // Error: int Outer::o is private.
}

void barge_out(Outer& out, Outer::Inner& in) {
 int i = in.i; // Error: int Outer::Inner::i is private.
 int o = out.o; // Good.
}

As with all other class members, nested classes can only be named from outside the class if they have public
access. However, you are allowed to access them regardless of access modifier, as long as you don't explicitly name
them.

class Outer {
 struct Inner {
 void func() { std::cout << "I have no private taboo.\n"; }
 };

 public:
 static Inner make_Inner() { return Inner(); }
};

// ...

Outer::Inner oi; // Error: Outer::Inner is private.

auto oi = Outer::make_Inner(); // Good.
oi.func(); // Good.
Outer::make_Inner().func(); // Good.

You can also create a type alias for a nested class. If a type alias is contained in the enclosing class, the nested type
and the type alias can have different access modifiers. If the type alias is outside the enclosing class, it requires that
either the nested class, or a typedef thereof, be public.

class Outer {
 class Inner_ {};

 public:
 typedef Inner_ Inner;
};

typedef Outer::Inner ImOut; // Good.
typedef Outer::Inner_ ImBad; // Error.

C++ Notes for Professionals 186

// ...

Outer::Inner oi; // Good.
Outer::Inner_ oi; // Error.
ImOut oi; // Good.

As with other classes, nested classes can both derive from or be derived from by other classes.

struct Base {};

struct Outer {
 struct Inner : Base {};
};

struct Derived : Outer::Inner {};

This can be useful in situations where the enclosing class is derived from by another class, by allowing the
programmer to update the nested class as necessary. This can be combined with a typedef to provide a consistent
name for each enclosing class' nested class:

class BaseOuter {
 struct BaseInner_ {
 virtual void do_something() {}
 virtual void do_something_else();
 } b_in;

 public:
 typedef BaseInner_ Inner;

 virtual ~BaseOuter() = default;

 virtual Inner& getInner() { return b_in; }
};

void BaseOuter::BaseInner_::do_something_else() {}

// ---

class DerivedOuter : public BaseOuter {
 // Note the use of the qualified typedef; BaseOuter::BaseInner_ is private.
 struct DerivedInner_ : BaseOuter::Inner {
 void do_something() override {}
 void do_something_else() override;
 } d_in;

 public:
 typedef DerivedInner_ Inner;

 BaseOuter::Inner& getInner() override { return d_in; }
};

void DerivedOuter::DerivedInner_::do_something_else() {}

// ...

// Calls BaseOuter::BaseInner_::do_something();
BaseOuter* b = new BaseOuter;
BaseOuter::Inner& bin = b->getInner();
bin.do_something();
b->getInner().do_something();

C++ Notes for Professionals 187

// Calls DerivedOuter::DerivedInner_::do_something();
BaseOuter* d = new DerivedOuter;
BaseOuter::Inner& din = d->getInner();
din.do_something();
d->getInner().do_something();

In the above case, both BaseOuter and DerivedOuter supply the member type Inner, as BaseInner_ and
DerivedInner_, respectively. This allows nested types to be derived without breaking the enclosing class' interface,
and allows the nested type to be used polymorphically.

Section 35.11: Unnamed struct/class
Unnamed struct is allowed (type has no name)

void foo()
{
 struct /* No name */ {
 float x;
 float y;
 } point;

 point.x = 42;
}

or

struct Circle
{
 struct /* No name */ {
 float x;
 float y;
 } center; // but a member name
 float radius;
};

and later

Circle circle;
circle.center.x = 42.f;

but NOT anonymous struct (unnamed type and unnamed object)

struct InvalidCircle
{
 struct /* No name */ {
 float centerX;
 float centerY;
 }; // No member either.
 float radius;
};

Note: Some compilers allow anonymous struct as extension.

Version ≥ C++11

lamdba can be seen as a special unnamed struct.

decltype allows to retrieve the type of unnamed struct:

C++ Notes for Professionals 188

decltype(circle.point) otherPoint;

unnamed struct instance can be parameter of template method:

void print_square_coordinates()
{
 const struct {float x; float y;} points[] = {
 {-1, -1}, {-1, 1}, {1, -1}, {1, 1}
 };

 // for range relies on `template <class T, std::size_t N> std::begin(T (&)[N])`
 for (const auto& point : points) {
 std::cout << "{" << point.x << ", " << point.y << "}\n";
 }

 decltype(points[0]) topRightCorner{1, 1};
 auto it = std::find(points, points + 4, topRightCorner);
 std::cout << "top right corner is the "
 << 1 + std::distance(points, it) << "th\n";
}

Section 35.12: Static class members
A class is also allowed to have static members, which can be either variables or functions. These are considered to
be in the class' scope, but aren't treated as normal members; they have static storage duration (they exist from the
start of the program to the end), aren't tied to a particular instance of the class, and only one copy exists for the
entire class.

class Example {
 static int num_instances; // Static data member (static member variable).
 int i; // Non-static member variable.

 public:
 static std::string static_str; // Static data member (static member variable).
 static int static_func(); // Static member function.

 // Non-static member functions can modify static member variables.
 Example() { ++num_instances; }
 void set_str(const std::string& str);
};

int Example::num_instances;
std::string Example::static_str = "Hello.";

// ...

Example one, two, three;
// Each Example has its own "i", such that:
// (&one.i != &two.i)
// (&one.i != &three.i)
// (&two.i != &three.i).
// All three Examples share "num_instances", such that:
// (&one.num_instances == &two.num_instances)
// (&one.num_instances == &three.num_instances)
// (&two.num_instances == &three.num_instances)

Static member variables are not considered to be defined inside the class, only declared, and thus have their

C++ Notes for Professionals 189

definition outside the class definition; the programmer is allowed, but not required, to initialise static variables in
their definition. When defining the member variables, the keyword static is omitted.

class Example {
 static int num_instances; // Declaration.

 public:
 static std::string static_str; // Declaration.

 // ...
};

int Example::num_instances; // Definition. Zero-initialised.
std::string Example::static_str = "Hello."; // Definition.

Due to this, static variables can be incomplete types (apart from void), as long as they're later defined as a
complete type.

struct ForwardDeclared;

class ExIncomplete {
 static ForwardDeclared fd;
 static ExIncomplete i_contain_myself;
 static int an_array[];
};

struct ForwardDeclared {};

ForwardDeclared ExIncomplete::fd;
ExIncomplete ExIncomplete::i_contain_myself;
int ExIncomplete::an_array[5];

Static member functions can be defined inside or outside the class definition, as with normal member functions. As
with static member variables, the keyword static is omitted when defining static member functions outside the
class definition.

// For Example above, either...
class Example {
 // ...

 public:
 static int static_func() { return num_instances; }

 // ...

 void set_str(const std::string& str) { static_str = str; }
};

// Or...

class Example { /* ... */ };

int Example::static_func() { return num_instances; }
void Example::set_str(const std::string& str) { static_str = str; }

If a static member variable is declared const but not volatile, and is of an integral or enumeration type, it can be
initialised at declaration, inside the class definition.

enum E { VAL = 5 };

C++ Notes for Professionals 190

struct ExConst {
 const static int ci = 5; // Good.
 static const E ce = VAL; // Good.
 const static double cd = 5; // Error.
 static const volatile int cvi = 5; // Error.

 const static double good_cd;
 static const volatile int good_cvi;
};

const double ExConst::good_cd = 5; // Good.
const volatile int ExConst::good_cvi = 5; // Good.
Version ≥ C++11

As of C++11, static member variables of LiteralType types (types that can be constructed at compile time,
according to constexpr rules) can also be declared as constexpr; if so, they must be initialised within the class
definition.

struct ExConstexpr {
 constexpr static int ci = 5; // Good.
 static constexpr double cd = 5; // Good.
 constexpr static int carr[] = { 1, 1, 2 }; // Good.
 static constexpr ConstexprConstructibleClass c{}; // Good.
 constexpr static int bad_ci; // Error.
};

constexpr int ExConstexpr::bad_ci = 5; // Still an error.

If a const or constexpr static member variable is odr-used (informally, if it has its address taken or is assigned to a
reference), then it must still have a separate definition, outside the class definition. This definition is not allowed to
contain an initialiser.

struct ExODR {
 static const int odr_used = 5;
};

// const int ExODR::odr_used;

const int* odr_user = & ExODR::odr_used; // Error; uncomment above line to resolve.

As static members aren't tied to a given instance, they can be accessed using the scope operator, ::.

std::string str = Example::static_str;

They can also be accessed as if they were normal, non-static members. This is of historical significance, but is used
less commonly than the scope operator to prevent confusion over whether a member is static or non-static.

Example ex;
std::string rts = ex.static_str;

Class members are able to access static members without qualifying their scope, as with non-static class members.

class ExTwo {
 static int num_instances;
 int my_num;

 public:
 ExTwo() : my_num(num_instances++) {}

C++ Notes for Professionals 191

 static int get_total_instances() { return num_instances; }
 int get_instance_number() const { return my_num; }
};

int ExTwo::num_instances;

They cannot be mutable, nor would they need to be; as they aren't tied to any given instance, whether an instance
is or isn't const doesn't affect static members.

struct ExDontNeedMutable {
 int immuta;
 mutable int muta;

 static int i;

 ExDontNeedMutable() : immuta(-5), muta(-5) {}
};
int ExDontNeedMutable::i;

// ...

const ExDontNeedMutable dnm;
dnm.immuta = 5; // Error: Can't modify read-only object.
dnm.muta = 5; // Good. Mutable fields of const objects can be written.
dnm.i = 5; // Good. Static members can be written regardless of an instance's const-ness.

Static members respect access modifiers, just like non-static members.

class ExAccess {
 static int prv_int;

 protected:
 static int pro_int;

 public:
 static int pub_int;
};

int ExAccess::prv_int;
int ExAccess::pro_int;
int ExAccess::pub_int;

// ...

int x1 = ExAccess::prv_int; // Error: int ExAccess::prv_int is private.
int x2 = ExAccess::pro_int; // Error: int ExAccess::pro_int is protected.
int x3 = ExAccess::pub_int; // Good.

As they aren't tied to a given instance, static member functions have no this pointer; due to this, they can't access
non-static member variables unless passed an instance.

class ExInstanceRequired {
 int i;

 public:
 ExInstanceRequired() : i(0) {}

 static void bad_mutate() { ++i *= 5; } // Error.
 static void good_mutate(ExInstanceRequired& e) { ++e.i *= 5; } // Good.

C++ Notes for Professionals 192

};

Due to not having a this pointer, their addresses can't be stored in pointers-to-member-functions, and are instead
stored in normal pointers-to-functions.

struct ExPointer {
 void nsfunc() {}
 static void sfunc() {}
};

typedef void (ExPointer::* mem_f_ptr)();
typedef void (*f_ptr)();

mem_f_ptr p_sf = &ExPointer::sfunc; // Error.
 f_ptr p_sf = &ExPointer::sfunc; // Good.

Due to not having a this pointer, they also cannot be const or volatile, nor can they have ref-qualifiers. They also
cannot be virtual.

struct ExCVQualifiersAndVirtual {
 static void func() {} // Good.
 static void cfunc() const {} // Error.
 static void vfunc() volatile {} // Error.
 static void cvfunc() const volatile {} // Error.
 static void rfunc() & {} // Error.
 static void rvfunc() && {} // Error.

 virtual static void vsfunc() {} // Error.
 static virtual void svfunc() {} // Error.
};

As they aren't tied to a given instance, static member variables are effectively treated as special global variables;
they're created when the program starts, and destroyed when it exits, regardless of whether any instances of the
class actually exist. Only a single copy of each static member variable exists (unless the variable is declared
thread_local (C++11 or later), in which case there's one copy per thread).

Static member variables have the same linkage as the class, whether the class has external or internal linkage. Local
classes and unnamed classes aren't allowed to have static members.

Section 35.13: Multiple Inheritance
Aside from single inheritance:

class A {};
class B : public A {};

You can also have multiple inheritance:

class A {};
class B {};
class C : public A, public B {};

C will now have inherit from A and B at the same time.

Note: this can lead to ambiguity if the same names are used in multiple inherited classs or structs. Be careful!

Ambiguity in Multiple Inheritance

C++ Notes for Professionals 193

Multiple inheritance may be helpful in certain cases but, sometimes odd sort of problem encounters while using
multiple inheritance.

For example: Two base classes have functions with same name which is not overridden in derived class and if you
write code to access that function using object of derived class, compiler shows error because, it cannot determine
which function to call. Here is a code for this type of ambiguity in multiple inheritance.

class base1
{
 public:
 void funtion()
 { //code for base1 function }
};
class base2
{
 void function()
 { // code for base2 function }
};

class derived : public base1, public base2
{

};

int main()
{
 derived obj;

 // Error because compiler can't figure out which function to call
 //either function() of base1 or base2 .
 obj.function()
}

But, this problem can be solved using scope resolution function to specify which function to class either base1 or
base2:

int main()
{
 obj.base1::function(); // Function of class base1 is called.
 obj.base2::function(); // Function of class base2 is called.
}

Section 35.14: Non-static member functions
A class can have non-static member functions, which operate on individual instances of the class.

class CL {
 public:
 void member_function() {}
};

These functions are called on an instance of the class, like so:

CL instance;
instance.member_function();

They can be defined either inside or outside the class definition; if defined outside, they are specified as being in

C++ Notes for Professionals 194

the class' scope.

struct ST {
 void defined_inside() {}
 void defined_outside();
};
void ST::defined_outside() {}

They can be CV-qualified and/or ref-qualified, affecting how they see the instance they're called upon; the function
will see the instance as having the specified cv-qualifier(s), if any. Which version is called will be based on the
instance's cv-qualifiers. If there is no version with the same cv-qualifiers as the instance, then a more-cv-qualified
version will be called if available.

struct CVQualifiers {
 void func() {} // 1: Instance is non-cv-qualified.
 void func() const {} // 2: Instance is const.

 void cv_only() const volatile {}
};

CVQualifiers non_cv_instance;
const CVQualifiers c_instance;

non_cv_instance.func(); // Calls #1.
c_instance.func(); // Calls #2.

non_cv_instance.cv_only(); // Calls const volatile version.
c_instance.cv_only(); // Calls const volatile version.
Version ≥ C++11

Member function ref-qualifiers indicate whether or not the function is intended to be called on rvalue instances,
and use the same syntax as function cv-qualifiers.

struct RefQualifiers {
 void func() & {} // 1: Called on normal instances.
 void func() && {} // 2: Called on rvalue (temporary) instances.
};

RefQualifiers rf;
rf.func(); // Calls #1.
RefQualifiers{}.func(); // Calls #2.

CV-qualifiers and ref-qualifiers can also be combined if necessary.

struct BothCVAndRef {
 void func() const& {} // Called on normal instances. Sees instance as const.
 void func() && {} // Called on temporary instances.
};

They can also be virtual; this is fundamental to polymorphism, and allows a child class(es) to provide the same
interface as the parent class, while supplying their own functionality.

struct Base {
 virtual void func() {}
};
struct Derived {
 virtual void func() {}
};

C++ Notes for Professionals 195

Base* bp = new Base;
Base* dp = new Derived;
bp.func(); // Calls Base::func().
dp.func(); // Calls Derived::func().

For more information, see here.

C++ Notes for Professionals 196

Chapter 36: Function Overloading
See also separate topic on Overload Resolution

Section 36.1: What is Function Overloading?
Function overloading is having multiple functions declared in the same scope with the exact same name exist in the
same place (known as scope) differing only in their signature, meaning the arguments they accept.

Suppose you are writing a series of functions for generalized printing capabilities, beginning with std::string:

void print(const std::string &str)
{
 std::cout << "This is a string: " << str << std::endl;
}

This works fine, but suppose you want a function that also accepts an int and prints that too. You could write:

void print_int(int num)
{
 std::cout << "This is an int: " << num << std::endl;
}

But because the two functions accept different parameters, you can simply write:

void print(int num)
{
 std::cout << "This is an int: " << num << std::endl;
}

Now you have 2 functions, both named print, but with different signatures. One accepts std::string, the other
one an int. Now you can call them without worrying about different names:

print("Hello world!"); //prints "This is a string: Hello world!"
print(1337); //prints "This is an int: 1337"

Instead of:

print("Hello world!");
print_int(1337);

When you have overloaded functions, the compiler infers which of the functions to call from the parameters you
provide it. Care must be taken when writing function overloads. For example, with implicit type conversions:

void print(int num)
{
 std::cout << "This is an int: " << num << std::endl;
}
void print(double num)
{
 std::cout << "This is a double: " << num << std::endl;
}

Now it's not immediately clear which overload of print is called when you write:

C++ Notes for Professionals 197

print(5);

And you might need to give your compiler some clues, like:

print(static_cast<double>(5));
print(static_cast<int>(5));
print(5.0);

Some care also needs to be taken when writing overloads that accept optional parameters:

// WRONG CODE
void print(int num1, int num2 = 0) //num2 defaults to 0 if not included
{
 std::cout << "These are ints: << num1 << " and " << num2 << std::endl;
}
void print(int num)
{
 std::cout << "This is an int: " << num << std::endl;
}

Because there's no way for the compiler to tell if a call like print(17) is meant for the first or second function
because of the optional second parameter, this will fail to compile.

Section 36.2: Return Type in Function Overloading
Note that you cannot overload a function based on its return type. For example:

// WRONG CODE
std::string getValue()
{
 return "hello";
}

int getValue()
{
 return 0;
}

int x = getValue();

This will cause a compilation error as the compiler will not be able to work out which version of getValue to call,
even though the return type is assigned to an int.

Section 36.3: Member Function cv-qualifier Overloading
Functions within a class can be overloaded for when they are accessed through a cv-qualified reference to that
class; this is most commonly used to overload for const, but can be used to overload for volatile and const
volatile, too. This is because all non-static member functions take this as a hidden parameter, which the cv-
qualifiers are applied to. This is most commonly used to overload for const, but can also be used for volatile and
const volatile.

This is necessary because a member function can only be called if it is at least as cv-qualified as the instance it's
called on. While a non-const instance can call both const and non-const members, a const instance can only call
const members. This allows a function to have different behaviour depending on the calling instance's cv-qualifiers,
and allows the programmer to disallow functions for an undesired cv-qualifier(s) by not providing a version with
that qualifier(s).

C++ Notes for Professionals 198

A class with some basic print method could be const overloaded like so:

#include <iostream>

class Integer
{
 public:
 Integer(int i_): i{i_}{}

 void print()
 {
 std::cout << "int: " << i << std::endl;
 }

 void print() const
 {
 std::cout << "const int: " << i << std::endl;
 }

 protected:
 int i;
};

int main()
{
 Integer i{5};
 const Integer &ic = i;

 i.print(); // prints "int: 5"
 ic.print(); // prints "const int: 5"
}

This is a key tenet of const correctness: By marking member functions as const, they are allowed to be called on
const instances, which in turn allows functions to take instances as const pointers/references if they don't need to
modify them. This allows code to specify whether it modifies state by taking unmodified parameters as const and
modified parameters without cv-qualifiers, making code both safer and more readable.

class ConstCorrect
{
 public:
 void good_func() const
 {
 std::cout << "I care not whether the instance is const." << std::endl;
 }

 void bad_func()
 {
 std::cout << "I can only be called on non-const, non-volatile instances." << std::endl;
 }
};

void i_change_no_state(const ConstCorrect& cc)
{
 std::cout << "I can take either a const or a non-const ConstCorrect." << std::endl;
 cc.good_func(); // Good. Can be called from const or non-const instance.
 cc.bad_func(); // Error. Can only be called from non-const instance.
}

void const_incorrect_func(ConstCorrect& cc)
{

C++ Notes for Professionals 199

 cc.good_func(); // Good. Can be called from const or non-const instance.
 cc.bad_func(); // Good. Can only be called from non-const instance.
}

A common usage of this is declaring accessors as const, and mutators as non-const.

No class members can be modified within a const member function. If there is some member that you really need
to modify, such as locking a std::mutex, you can declare it as mutable:

class Integer
{
 public:
 Integer(int i_): i{i_}{}

 int get() const
 {
 std::lock_guard<std::mutex> lock{mut};
 return i;
 }

 void set(int i_)
 {
 std::lock_guard<std::mutex> lock{mut};
 i = i_;
 }

 protected:
 int i;
 mutable std::mutex mut;
};

C++ Notes for Professionals 200

Chapter 37: Operator Overloading
In C++, it is possible to define operators such as + and -> for user-defined types. For example, the <string> header
defines a + operator to concatenate strings. This is done by defining an operator function using the operator
keyword.

Section 37.1: Arithmetic operators
You can overload all basic arithmetic operators:

+ and +=
- and -=
* and *=
/ and /=
& and &=
| and |=
^ and ^=
>> and >>=
<< and <<=

Overloading for all operators is the same. Scroll down for explanation

Overloading outside of class/struct:

//operator+ should be implemented in terms of operator+=
T operator+(T lhs, const T& rhs)
{
 lhs += rhs;
 return lhs;
}

T& operator+=(T& lhs, const T& rhs)
{
 //Perform addition
 return lhs;
}

Overloading inside of class/struct:

//operator+ should be implemented in terms of operator+=
T operator+(const T& rhs)
{
 *this += rhs;
 return *this;
}

T& operator+=(const T& rhs)
{
 //Perform addition
 return *this;
}

Note: operator+ should return by non-const value, as returning a reference wouldn't make sense (it returns a new
object) nor would returning a const value (you should generally not return by const). The first argument is passed
by value, why? Because

C++ Notes for Professionals 201

You can't modify the original object (Object foobar = foo + bar; shouldn't modify foo after all, it wouldn't1.
make sense)
You can't make it const, because you will have to be able to modify the object (because operator+ is2.
implemented in terms of operator+=, which modifies the object)

Passing by const& would be an option, but then you will have to make a temporary copy of the passed object. By
passing by value, the compiler does it for you.

operator+= returns a reference to the itself, because it is then possible to chain them (don't use the same variable
though, that would be undefined behavior due to sequence points).

The first argument is a reference (we want to modify it), but not const, because then you wouldn't be able to
modify it. The second argument should not be modified, and so for performance reason is passed by const&
(passing by const reference is faster than by value).

Section 37.2: Array subscript operator
You can even overload the array subscript operator [].

You should always (99.98% of the time) implement 2 versions, a const and a not-const version, because if the
object is const, it should not be able to modify the object returned by [].

The arguments are passed by const& instead of by value because passing by reference is faster than by value, and
const so that the operator doesn't change the index accidentally.

The operators return by reference, because by design you can modify the object [] return, i.e:

std::vector<int> v{ 1 };
v[0] = 2; //Changes value of 1 to 2
 //wouldn't be possible if not returned by reference

You can only overload inside a class/struct:

//I is the index type, normally an int
T& operator[](const I& index)
{
 //Do something
 //return something
}

//I is the index type, normally an int
const T& operator[](const I& index) const
{
 //Do something
 //return something
}

Multiple subscript operators, [][]..., can be achieved via proxy objects. The following example of a simple row-
major matrix class demonstrates this:

template<class T>
class matrix {
 // class enabling [][] overload to access matrix elements
 template <class C>
 class proxy_row_vector {
 using reference = decltype(std::declval<C>()[0]);
 using const_reference = decltype(std::declval<C const>()[0]);

C++ Notes for Professionals 202

 public:
 proxy_row_vector(C& _vec, std::size_t _r_ind, std::size_t _cols)
 : vec(_vec), row_index(_r_ind), cols(_cols) {}
 const_reference operator[](std::size_t _col_index) const {
 return vec[row_index*cols + _col_index];
 }
 reference operator[](std::size_t _col_index) {
 return vec[row_index*cols + _col_index];
 }
 private:
 C& vec;
 std::size_t row_index; // row index to access
 std::size_t cols; // number of columns in matrix
 };

 using const_proxy = proxy_row_vector<const std::vector<T>>;
 using proxy = proxy_row_vector<std::vector<T>>;
public:
 matrix() : mtx(), rows(0), cols(0) {}
 matrix(std::size_t _rows, std::size_t _cols)
 : mtx(_rows*_cols), rows(_rows), cols(_cols) {}

 // call operator[] followed by another [] call to access matrix elements
 const_proxy operator[](std::size_t _row_index) const {
 return const_proxy(mtx, _row_index, cols);
 }

 proxy operator[](std::size_t _row_index) {
 return proxy(mtx, _row_index, cols);
 }
private:
 std::vector<T> mtx;
 std::size_t rows;
 std::size_t cols;
};

Section 37.3: Conversion operators
You can overload type operators, so that your type can be implicitly converted into the specified type.

The conversion operator must be defined in a class/struct:

operator T() const { /* return something */ }

Note: the operator is const to allow const objects to be converted.

Example:

struct Text
{
 std::string text;

 // Now Text can be implicitly converted into a const char*
 /*explicit*/ operator const char*() const { return text.data(); }
 // ^^^^^^^
 // to disable implicit conversion
};

Text t;
t.text = "Hello world!";

C++ Notes for Professionals 203

//Ok
const char* copyoftext = t;

Section 37.4: Complex Numbers Revisited
The code below implements a very simple complex number type for which the underlying field is automatically
promoted, following the language's type promotion rules, under application of the four basic operators (+, -, *, and
/) with a member of a different field (be it another complex<T> or some scalar type).

This is intended to be a holistic example covering operator overloading alongside basic use of templates.

#include <type_traits>

namespace not_std{

using std::decay_t;

//--
// complex< value_t >
//--

template<typename value_t>
struct complex
{
 value_t x;
 value_t y;

 complex &operator += (const value_t &x)
 {
 this->x += x;
 return *this;
 }
 complex &operator += (const complex &other)
 {
 this->x += other.x;
 this->y += other.y;
 return *this;
 }

 complex &operator -= (const value_t &x)
 {
 this->x -= x;
 return *this;
 }
 complex &operator -= (const complex &other)
 {
 this->x -= other.x;
 this->y -= other.y;
 return *this;
 }

 complex &operator *= (const value_t &s)
 {
 this->x *= s;
 this->y *= s;
 return *this;
 }
 complex &operator *= (const complex &other)
 {
 (*this) = (*this) * other;

C++ Notes for Professionals 204

 return *this;
 }

 complex &operator /= (const value_t &s)
 {
 this->x /= s;
 this->y /= s;
 return *this;
 }
 complex &operator /= (const complex &other)
 {
 (*this) = (*this) / other;
 return *this;
 }

 complex(const value_t &x, const value_t &y)
 : x{x}
 , y{y}
 {}

 template<typename other_value_t>
 explicit complex(const complex<other_value_t> &other)
 : x{static_cast<const value_t &>(other.x)}
 , y{static_cast<const value_t &>(other.y)}
 {}

 complex &operator = (const complex &) = default;
 complex &operator = (complex &&) = default;
 complex(const complex &) = default;
 complex(complex &&) = default;
 complex() = default;
};

// Absolute value squared
template<typename value_t>
value_t absqr(const complex<value_t> &z)
{ return z.x*z.x + z.y*z.y; }

//--
// operator - (negation)
//--

template<typename value_t>
complex<value_t> operator - (const complex<value_t> &z)
{ return {-z.x, -z.y}; }

//--
// operator +
//--

template<typename left_t,typename right_t>
auto operator + (const complex<left_t> &a, const complex<right_t> &b)
-> complex<decay_t<decltype(a.x + b.x)>>
{ return{a.x + b.x, a.y + b.y}; }

template<typename left_t,typename right_t>
auto operator + (const left_t &a, const complex<right_t> &b)
-> complex<decay_t<decltype(a + b.x)>>
{ return{a + b.x, b.y}; }

template<typename left_t,typename right_t>
auto operator + (const complex<left_t> &a, const right_t &b)

C++ Notes for Professionals 205

-> complex<decay_t<decltype(a.x + b)>>
{ return{a.x + b, a.y}; }

//--
// operator -
//--

template<typename left_t,typename right_t>
auto operator - (const complex<left_t> &a, const complex<right_t> &b)
-> complex<decay_t<decltype(a.x - b.x)>>
{ return{a.x - b.x, a.y - b.y}; }

template<typename left_t,typename right_t>
auto operator - (const left_t &a, const complex<right_t> &b)
-> complex<decay_t<decltype(a - b.x)>>
{ return{a - b.x, - b.y}; }

template<typename left_t,typename right_t>
auto operator - (const complex<left_t> &a, const right_t &b)
-> complex<decay_t<decltype(a.x - b)>>
{ return{a.x - b, a.y}; }

//--
// operator *
//--

template<typename left_t, typename right_t>
auto operator * (const complex<left_t> &a, const complex<right_t> &b)
-> complex<decay_t<decltype(a.x * b.x)>>
{
 return {
 a.x*b.x - a.y*b.y,
 a.x*b.y + a.y*b.x
 };
}

template<typename left_t, typename right_t>
auto operator * (const left_t &a, const complex<right_t> &b)
-> complex<decay_t<decltype(a * b.x)>>
{ return {a * b.x, a * b.y}; }

template<typename left_t, typename right_t>
auto operator * (const complex<left_t> &a, const right_t &b)
-> complex<decay_t<decltype(a.x * b)>>
{ return {a.x * b, a.y * b}; }

//--
// operator /
//--

template<typename left_t, typename right_t>
auto operator / (const complex<left_t> &a, const complex<right_t> &b)
-> complex<decay_t<decltype(a.x / b.x)>>
{
 const auto r = absqr(b);
 return {
 (a.x*b.x + a.y*b.y) / r,
 (-a.x*b.y + a.y*b.x) / r
 };
}

template<typename left_t, typename right_t>

C++ Notes for Professionals 206

auto operator / (const left_t &a, const complex<right_t> &b)
-> complex<decay_t<decltype(a / b.x)>>
{
 const auto s = a/absqr(b);
 return {
 b.x * s,
 -b.y * s
 };
}

template<typename left_t, typename right_t>
auto operator / (const complex<left_t> &a, const right_t &b)
-> complex<decay_t<decltype(a.x / b)>>
{ return {a.x / b, a.y / b}; }

}// namespace not_std

int main(int argc, char **argv)
{
 using namespace not_std;

 complex<float> fz{4.0f, 1.0f};

 // makes a complex<double>
 auto dz = fz * 1.0;

 // still a complex<double>
 auto idz = 1.0f/dz;

 // also a complex<double>
 auto one = dz * idz;

 // a complex<double> again
 auto one_again = fz * idz;

 // Operator tests, just to make sure everything compiles.

 complex<float> a{1.0f, -2.0f};
 complex<double> b{3.0, -4.0};

 // All of these are complex<double>
 auto c0 = a + b;
 auto c1 = a - b;
 auto c2 = a * b;
 auto c3 = a / b;

 // All of these are complex<float>
 auto d0 = a + 1;
 auto d1 = 1 + a;
 auto d2 = a - 1;
 auto d3 = 1 - a;
 auto d4 = a * 1;
 auto d5 = 1 * a;
 auto d6 = a / 1;
 auto d7 = 1 / a;

 // All of these are complex<double>
 auto e0 = b + 1;
 auto e1 = 1 + b;
 auto e2 = b - 1;
 auto e3 = 1 - b;

C++ Notes for Professionals 207

 auto e4 = b * 1;
 auto e5 = 1 * b;
 auto e6 = b / 1;
 auto e7 = 1 / b;

 return 0;
}

Section 37.5: Named operators
You can extend C++ with named operators that are "quoted" by standard C++ operators.

First we start with a dozen-line library:

namespace named_operator {
 template<class D>struct make_operator{constexpr make_operator(){}};

 template<class T, char, class O> struct half_apply { T&& lhs; };

 template<class Lhs, class Op>
 half_apply<Lhs, '*', Op> operator*(Lhs&& lhs, make_operator<Op>) {
 return {std::forward<Lhs>(lhs)};
 }

 template<class Lhs, class Op, class Rhs>
 auto operator*(half_apply<Lhs, '*', Op>&& lhs, Rhs&& rhs)
 -> decltype(named_invoke(std::forward<Lhs>(lhs.lhs), Op{}, std::forward<Rhs>(rhs)))
 {
 return named_invoke(std::forward<Lhs>(lhs.lhs), Op{}, std::forward<Rhs>(rhs));
 }
}

this doesn't do anything yet.

First, appending vectors

namespace my_ns {
 struct append_t : named_operator::make_operator<append_t> {};
 constexpr append_t append{};

 template<class T, class A0, class A1>
 std::vector<T, A0> named_invoke(std::vector<T, A0> lhs, append_t, std::vector<T, A1> const& rhs
) {
 lhs.insert(lhs.end(), rhs.begin(), rhs.end());
 return std::move(lhs);
 }
}
using my_ns::append;

std::vector<int> a {1,2,3};
std::vector<int> b {4,5,6};

auto c = a *append* b;

The core here is that we define an append object of type append_t:named_operator::make_operator<append_t>.

We then overload named_invoke(lhs, append_t, rhs) for the types we want on the right and left.

The library overloads lhs*append_t, returning a temporary half_apply object. It also overloads half_apply*rhs to

C++ Notes for Professionals 208

call named_invoke(lhs, append_t, rhs).

We simply have to create the proper append_t token and do an ADL-friendly named_invoke of the proper signature,
and everything hooks up and works.

For a more complex example, suppose you want to have element-wise multiplication of elements of a std::array:

template<class=void, std::size_t...Is>
auto indexer(std::index_sequence<Is...>) {
 return [](auto&& f) {
 return f(std::integral_constant<std::size_t, Is>{}...);
 };
}
template<std::size_t N>
auto indexer() { return indexer(std::make_index_sequence<N>{}); }

namespace my_ns {
 struct e_times_t : named_operator::make_operator<e_times_t> {};
 constexpr e_times_t e_times{};

 template<class L, class R, std::size_t N,
 class Out=std::decay_t<decltype(std::declval<L const&>()*std::declval<R const&>())>
 >
 std::array<Out, N> named_invoke(std::array<L, N> const& lhs, e_times_t, std::array<R, N> const&
rhs) {
 using result_type = std::array<Out, N>;
 auto index_over_N = indexer<N>();
 return index_over_N([&](auto...is)->result_type {
 return {{
 (lhs[is] * rhs[is])...
 }};
 });
 }
}

live example.

This element-wise array code can be extended to work on tuples or pairs or C-style arrays, or even variable length
containers if you decide what to do if the lengths don't match.

You could also an element-wise operator type and get lhs *element_wise<'+'>* rhs.

Writing a *dot* and *cross* product operators are also obvious uses.

The use of * can be extended to support other delimiters, like +. The delimeter precidence determines the
precidence of the named operator, which may be important when translating physics equations over to C++ with
minimal use of extra ()s.

With a slight change in the library above, we can support ->*then* operators and extend std::function prior to
the standard being updated, or write monadic ->*bind*. It could also have a stateful named operator, where we
carefully pass the Op down to the final invoke function, permitting:

named_operator<'*'> append = [](auto lhs, auto&& rhs) {
 using std::begin; using std::end;
 lhs.insert(end(lhs), begin(rhs), end(rhs));
 return std::move(lhs);
};

http://coliru.stacked-crooked.com/a/c071a0662834c838

C++ Notes for Professionals 209

generating a named container-appending operator in C++17.

Section 37.6: Unary operators
You can overload the 2 unary operators:

++foo and foo++
--foo and foo--

Overloading is the same for both types (++ and --). Scroll down for explanation

Overloading outside of class/struct:

//Prefix operator ++foo
T& operator++(T& lhs)
{
 //Perform addition
 return lhs;
}

//Postfix operator foo++ (int argument is used to separate pre- and postfix)
//Should be implemented in terms of ++foo (prefix operator)
T operator++(T& lhs, int)
{
 T t(lhs);
 ++lhs;
 return t;
}

Overloading inside of class/struct:

//Prefix operator ++foo
T& operator++()
{
 //Perform addition
 return *this;
}

//Postfix operator foo++ (int argument is used to separate pre- and postfix)
//Should be implemented in terms of ++foo (prefix operator)
T operator++(int)
{
 T t(*this);
 ++(*this);
 return t;
}

Note: The prefix operator returns a reference to itself, so that you can continue operations on it. The first argument
is a reference, as the prefix operator changes the object, that's also the reason why it isn't const (you wouldn't be
able to modify it otherwise).

The postfix operator returns by value a temporary (the previous value), and so it cannot be a reference, as it would
be a reference to a temporary, which would be garbage value at the end of the function, because the temporary
variable goes out of scope). It also cannot be const, because you should be able to modify it directly.

The first argument is a non-const reference to the "calling" object, because if it were const, you wouldn't be able to
modify it, and if it weren't a reference, you wouldn't change the original value.

C++ Notes for Professionals 210

It is because of the copying needed in postfix operator overloads that it's better to make it a habit to use prefix ++
instead of postfix ++ in for loops. From the for loop perspective, they're usually functionally equivalent, but there
might be a slight performance advantage to using prefix ++, especially with "fat" classes with a lot of members to
copy. Example of using prefix ++ in a for loop:

for (list<string>::const_iterator it = tokens.begin();
 it != tokens.end();
 ++it) { // Don't use it++
 ...
}

Section 37.7: Comparison operators
You can overload all comparison operators:

== and !=
> and <
>= and <=

The recommended way to overload all those operators is by implementing only 2 operators (== and <) and then
using those to define the rest. Scroll down for explanation

Overloading outside of class/struct:

//Only implement those 2
bool operator==(const T& lhs, const T& rhs) { /* Compare */ }
bool operator<(const T& lhs, const T& rhs) { /* Compare */ }

//Now you can define the rest
bool operator!=(const T& lhs, const T& rhs) { return !(lhs == rhs); }
bool operator>(const T& lhs, const T& rhs) { return rhs < lhs; }
bool operator<=(const T& lhs, const T& rhs) { return !(lhs > rhs); }
bool operator>=(const T& lhs, const T& rhs) { return !(lhs < rhs); }

Overloading inside of class/struct:

//Note that the functions are const, because if they are not const, you wouldn't be able
//to call them if the object is const

//Only implement those 2
bool operator==(const T& rhs) const { /* Compare */ }
bool operator<(const T& rhs) const { /* Compare */ }

//Now you can define the rest
bool operator!=(const T& rhs) const { return !(*this == rhs); }
bool operator>(const T& rhs) const { return rhs < *this; }
bool operator<=(const T& rhs) const { return !(*this > rhs); }
bool operator>=(const T& rhs) const { return !(*this < rhs); }

The operators obviously return a bool, indicating true or false for the corresponding operation.

All of the operators take their arguments by const&, because the only thing that does operators do is compare, so
they shouldn't modify the objects. Passing by & (reference) is faster than by value, and to make sure that the
operators don't modify it, it is a const-reference.

Note that the operators inside the class/struct are defined as const, the reason for this is that without the
functions being const, comparing const objects would not be possible, as the compiler doesn't know that the

C++ Notes for Professionals 211

operators don't modify anything.

Section 37.8: Assignment operator
The assignment operator is one of the most important operators because it allows you to change the status of a
variable.

If you do not overload the assignment operator for your class/struct, it is automatically generated by the
compiler: the automatically-generated assignment operator performs a "memberwise assignment", ie by invoking
assignment operators on all members, so that one object is copied to the other, a member at time. The assignment
operator should be overloaded when the simple memberwise assignment is not suitable for your class/struct, for
example if you need to perform a deep copy of an object.

Overloading the assignment operator = is easy, but you should follow some simple steps.

Test for self-assignment. This check is important for two reasons:1.
a self-assignment is a needless copy, so it does not make sense to perform it;
the next step will not work in the case of a self-assignment.

Clean the old data. The old data must be replaced with new ones. Now, you can understand the second2.
reason of the previous step: if the content of the object was destroyed, a self-assignment will fail to perform
the copy.
Copy all members. If you overload the assignment operator for your class or your struct, it is not3.
automatically generated by the compiler, so you will need to take charge of copying all members from the
other object.
Return *this. The operator returns by itself by reference, because it allows chaining (i.e. int b = (a = 6) +4.
4; //b == 10).

//T is some type
T& operator=(const T& other)
{
 //Do something (like copying values)
 return *this;
}

Note: other is passed by const&, because the object being assigned should not be changed, and passing by
reference is faster than by value, and to make sure than operator= doesn't modify it accidentally, it is const.

The assignment operator can only to be overloaded in the class/struct, because the left value of = is always the
class/struct itself. Defining it as a free function doesn't have this guarantee, and is disallowed because of that.

When you declare it in the class/struct, the left value is implicitly the class/struct itself, so there is no problem
with that.

Section 37.9: Function call operator
You can overload the function call operator ():

Overloading must be done inside of a class/struct:

//R -> Return type
//Types -> any different type
R operator()(Type name, Type2 name2, ...)
{
 //Do something
 //return something

C++ Notes for Professionals 212

}

//Use it like this (R is return type, a and b are variables)
R foo = object(a, b, ...);

For example:

struct Sum
{
 int operator()(int a, int b)
 {
 return a + b;
 }
};

//Create instance of struct
Sum sum;
int result = sum(1, 1); //result == 2

Section 37.10: Bitwise NOT operator
Overloading the bitwise NOT (~) is fairly simple. Scroll down for explanation

Overloading outside of class/struct:

T operator~(T lhs)
{
 //Do operation
 return lhs;
}

Overloading inside of class/struct:

T operator~()
{
 T t(*this);
 //Do operation
 return t;
}

Note: operator~ returns by value, because it has to return a new value (the modified value), and not a reference to
the value (it would be a reference to the temporary object, which would have garbage value in it as soon as the
operator is done). Not const either because the calling code should be able to modify it afterwards (i.e. int a = ~a
+ 1; should be possible).

Inside the class/struct you have to make a temporary object, because you can't modify this, as it would modify
the original object, which shouldn't be the case.

Section 37.11: Bit shift operators for I/O
The operators << and >> are commonly used as "write" and "read" operators:

std::ostream overloads << to write variables to the underlying stream (example: std::cout)
std::istream overloads >> to read from the underlying stream to a variable (example: std::cin)

The way they do this is similar if you wanted to overload them "normally" outside of the class/struct, except that
specifying the arguments are not of the same type:

C++ Notes for Professionals 213

Return type is the stream you want to overload from (for example, std::ostream) passed by reference, to
allow chaining (Chaining: std::cout << a << b;). Example: std::ostream&
lhs would be the same as the return type
rhs is the type you want to allow overloading from (i.e. T), passed by const& instead of value for performance
reason (rhs shouldn't be changed anyway). Example: const Vector&.

Example:

//Overload std::ostream operator<< to allow output from Vector's
std::ostream& operator<<(std::ostream& lhs, const Vector& rhs)
{
 lhs << "x: " << rhs.x << " y: " << rhs.y << " z: " << rhs.z << '\n';
 return lhs;
}

Vector v = { 1, 2, 3};

//Now you can do
std::cout << v;

C++ Notes for Professionals 214

Chapter 38: Function Template
Overloading
Section 38.1: What is a valid function template overloading?
A function template can be overloaded under the rules for non-template function overloading (same name, but
different parameter types) and in addition to that, the overloading is valid if

The return type is different, or
The template parameter list is different, except for the naming of parameters and the presence of default
arguments (they are not part of the signature)

For a normal function, comparing two parameter types is is easy for the compiler, since it has all informat. But a
type within a template may not be determined yet. Therefore, the rule for when two parameter types are equal is
approximative here and says that the non-depependend types and values need to match and the spelling of
dependent types and expressions needs to be the same (more precisely, they need to conform to the so-called
ODR-rules), except that template parameters may be renamed. However, if under such different spellings, two
values within the types are deemed different, but will always instantiate to the same values, the overloading is
invalid, but no diagnostic is required from the compiler.

template<typename T>
void f(T*) { }

template<typename T>
void f(T) { }

This is a valid overload, as "T" and "T*" are different spellings. But the following is invalid, with no diagnostic
required

template<typename T>
void f(T (*x)[sizeof(T) + sizeof(T)]) { }

template<typename T>
void f(T (*x)[2 * sizeof(T)]) { }

C++ Notes for Professionals 215

Chapter 39: Virtual Member Functions
Section 39.1: Final virtual functions
C++11 introduced final specifier which forbids method overriding if appeared in method signature:

class Base {
public:
 virtual void foo() {
 std::cout << "Base::Foo\n";
 }
};

class Derived1 : public Base {
public:
 // Overriding Base::foo
 void foo() final {
 std::cout << "Derived1::Foo\n";
 }
};

class Derived2 : public Derived1 {
public:
 // Compilation error: cannot override final method
 virtual void foo() {
 std::cout << "Derived2::Foo\n";
 }
};

The specifier final can only be used with `virtual' member function and can't be applied to non-virtual member
functions

Like final, there is also an specifier caller 'override' which prevent overriding of virtual functions in the derived
class.

The specifiers override and final may be combined together to have desired effect:

class Derived1 : public Base {
public:
 void foo() final override {
 std::cout << "Derived1::Foo\n";
 }
};

Section 39.2: Using override with virtual in C++11 and later
The specifier override has a special meaning in C++11 onwards, if appended at the end of function signature. This
signifies that a function is

Overriding the function present in base class &
The Base class function is virtual

There is no run time significance of this specifier as is mainly meant as an indication for compilers

The example below will demonstrate the change in behaviour with our without using override.

Without override:

C++ Notes for Professionals 216

#include <iostream>

struct X {
 virtual void f() { std::cout << "X::f()\n"; }
};

struct Y : X {
 // Y::f() will not override X::f() because it has a different signature,
 // but the compiler will accept the code (and silently ignore Y::f()).
 virtual void f(int a) { std::cout << a << "\n"; }
};

With override:

#include <iostream>

struct X {
 virtual void f() { std::cout << "X::f()\n"; }
};

struct Y : X {
 // The compiler will alert you to the fact that Y::f() does not
 // actually override anything.
 virtual void f(int a) override { std::cout << a << "\n"; }
};

Note that override is not a keyword, but a special identifier which only may appear in function signatures. In all
other contexts override still may be used as an identifier:

void foo() {
 int override = 1; // OK.
 int virtual = 2; // Compilation error: keywords can't be used as identifiers.
}

Section 39.3: Virtual vs non-virtual member functions
With virtual member functions:

#include <iostream>

struct X {
 virtual void f() { std::cout << "X::f()\n"; }
};

struct Y : X {
 // Specifying virtual again here is optional
 // because it can be inferred from X::f().
 virtual void f() { std::cout << "Y::f()\n"; }
};

void call(X& a) {
 a.f();
}

int main() {
 X x;
 Y y;
 call(x); // outputs "X::f()"
 call(y); // outputs "Y::f()"

C++ Notes for Professionals 217

}

Without virtual member functions:

#include <iostream>

struct X {
 void f() { std::cout << "X::f()\n"; }
};

struct Y : X {
 void f() { std::cout << "Y::f()\n"; }
};

void call(X& a) {
 a.f();
}

int main() {
 X x;
 Y y;
 call(x); // outputs "X::f()"
 call(y); // outputs "X::f()"
}

Section 39.4: Behaviour of virtual functions in constructors
and destructors
The behaviour of virtual functions in constructors and destructors is often confusing when first encountered.

#include <iostream>
using namespace std;

class base {
public:
 base() { f("base constructor"); }
 ~base() { f("base destructor"); }

 virtual const char* v() { return "base::v()"; }

 void f(const char* caller) {
 cout << "When called from " << caller << ", " << v() << " gets called.\n";
 }
};

class derived : public base {
public:
 derived() { f("derived constructor"); }
 ~derived() { f("derived destructor"); }

 const char* v() override { return "derived::v()"; }

};

int main() {
 derived d;
}

Output:

C++ Notes for Professionals 218

When called from base constructor, base::v() gets called.
When called from derived constructor, derived::v() gets called.
When called from derived destructor, derived::v() gets called.
When called from base destructor, base::v() gets called.

The reasoning behind this is that the derived class may define additional members which are not yet initialized (in
the constructor case) or already destroyed (in the destructor case), and calling its member functions would be
unsafe. Therefore during construction and destruction of C++ objects, the dynamic type of *this is considered to be
the constructor's or destructor's class and not a more-derived class.

Example:

#include <iostream>
#include <memory>

using namespace std;
class base {
public:
 base()
 {
 std::cout << "foo is " << foo() << std::endl;
 }
 virtual int foo() { return 42; }
};

class derived : public base {
 unique_ptr<int> ptr_;
public:
 derived(int i) : ptr_(new int(i*i)) { }
 // The following cannot be called before derived::derived due to how C++ behaves,
 // if it was possible... Kaboom!
 int foo() override { return *ptr_; }
};

int main() {
 derived d(4);
}

Section 39.5: Pure virtual functions
We can also specify that a virtual function is pure virtual (abstract), by appending = 0 to the declaration. Classes
with one or more pure virtual functions are considered to be abstract, and cannot be instantiated; only derived
classes which define, or inherit definitions for, all pure virtual functions can be instantiated.

struct Abstract {
 virtual void f() = 0;
};

struct Concrete {
 void f() override {}
};

Abstract a; // Error.
Concrete c; // Good.

Even if a function is specified as pure virtual, it can be given a default implementation. Despite this, the function will
still be considered abstract, and derived classes will have to define it before they can be instantiated. In this case,

C++ Notes for Professionals 219

the derived class' version of the function is even allowed to call the base class' version.

struct DefaultAbstract {
 virtual void f() = 0;
};
void DefaultAbstract::f() {}

struct WhyWouldWeDoThis : DefaultAbstract {
 void f() override { DefaultAbstract::f(); }
};

There are a couple of reasons why we might want to do this:

If we want to create a class that can't itself be instantiated, but doesn't prevent its derived classes from being
instantiated, we can declare the destructor as pure virtual. Being the destructor, it must be defined anyways,
if we want to be able to deallocate the instance. And as the destructor is most likely already virtual to prevent
memory leaks during polymorphic use, we won't incur an unnecessary performance hit from declaring
another function virtual. This can be useful when making interfaces.

 struct Interface {
 virtual ~Interface() = 0;
 };
 Interface::~Interface() = default;

 struct Implementation : Interface {};
 // ~Implementation() is automatically defined by the compiler if not explicitly
 // specified, meeting the "must be defined before instantiation" requirement.

If most or all implementations of the pure virtual function will contain duplicate code, that code can instead
be moved to the base class version, making the code easier to maintain.

 class SharedBase {
 State my_state;
 std::unique_ptr<Helper> my_helper;
 // ...

 public:
 virtual void config(const Context& cont) = 0;
 // ...
 };
 /* virtual */ void SharedBase::config(const Context& cont) {
 my_helper = new Helper(my_state, cont.relevant_field);
 do_this();
 and_that();
 }

 class OneImplementation : public SharedBase {
 int i;
 // ...

 public:
 void config(const Context& cont) override;
 // ...
 };
 void OneImplementation::config(const Context& cont) /* override */ {
 my_state = { cont.some_field, cont.another_field, i };
 SharedBase::config(cont);
 my_unique_setup();
 };

C++ Notes for Professionals 220

 // And so on, for other classes derived from SharedBase.

C++ Notes for Professionals 221

Chapter 40: Inline functions
A function defined with the inline specifier is an inline function. An inline function can be multiply defined without
violating the One Definition Rule, and can therefore be defined in a header with external linkage. Declaring a
function inline hints to the compiler that the function should be inlined during code generation, but does not
provide a guarantee.

Section 40.1: Non-member inline function definition
inline int add(int x, int y)
{
 return x + y;
}

Section 40.2: Member inline functions
// header (.hpp)
struct A
{
 void i_am_inlined()
 {
 }
};

struct B
{
 void i_am_NOT_inlined();
};

// source (.cpp)
void B::i_am_NOT_inlined()
{
}

Section 40.3: What is function inlining?
inline int add(int x, int y)
{
 return x + y;
}

int main()
{
 int a = 1, b = 2;
 int c = add(a, b);
}

In the above code, when add is inlined, the resulting code would become something like this

int main()
{
 int a = 1, b = 2;
 int c = a + b;
}

The inline function is nowhere to be seen, its body gets inlined into the caller's body. Had add not been inlined, a

C++ Notes for Professionals 222

function would be called. The overhead of calling a function -- such as creating a new stack frame, copying
arguments, making local variables, jump (losing locality of reference and there by cache misses), etc. -- has to be
incurred.

Section 40.4: Non-member inline function declaration
inline int add(int x, int y);

http://stackoverflow.com/q/10057443/183120

C++ Notes for Professionals 223

Chapter 41: Special Member Functions
Section 41.1: Default Constructor
A default constructor is a type of constructor that requires no parameters when called. It is named after the type it
constructs and is a member function of it (as all constructors are).

class C{
 int i;
public:
 // the default constructor definition
 C()
 : i(0){ // member initializer list -- initialize i to 0
 // constructor function body -- can do more complex things here
 }
};

C c1; // calls default constructor of C to create object c1
C c2 = C(); // calls default constructor explicitly
C c3(); // ERROR: this intuitive version is not possible due to "most vexing parse"
C c4{}; // but in C++11 {} CAN be used in a similar way

C c5[2]; // calls default constructor for both array elements
C* c6 = new C[2]; // calls default constructor for both array elements

Another way to satisfy the "no parameters" requirement is for the developer to provide default values for all
parameters:

class D{
 int i;
 int j;
public:
 // also a default constructor (can be called with no parameters)
 D(int i = 0, int j = 42)
 : i(i), j(j){
 }
};

D d; // calls constructor of D with the provided default values for the parameters

Under some circumstances (i.e., the developer provides no constructors and there are no other disqualifying
conditions), the compiler implicitly provides an empty default constructor:

class C{
 std::string s; // note: members need to be default constructible themselves
};

C c1; // will succeed -- C has an implicitly defined default constructor

Having some other type of constructor is one of the disqualifying conditions mentioned earlier:

class C{
 int i;
public:
 C(int i) : i(i){}
};

C++ Notes for Professionals 224

C c1; // Compile ERROR: C has no (implicitly defined) default constructor
Version < c++11

To prevent implicit default constructor creation, a common technique is to declare it as private (with no definition).
The intention is to cause a compile error when someone tries to use the constructor (this either results in an Access
to private error or a linker error, depending on the compiler).

To be sure a default constructor (functionally similar to the implicit one) is defined, a developer could write an
empty one explicitly.

Version ≥ c++11

In C++11, a developer can also use the delete keyword to prevent the compiler from providing a default
constructor.

class C{
 int i;
public:
 // default constructor is explicitly deleted
 C() = delete;
};

C c1; // Compile ERROR: C has its default constructor deleted

Furthermore, a developer may also be explicit about wanting the compiler to provide a default constructor.

class C{
 int i;
public:
 // does have automatically generated default constructor (same as implicit one)
 C() = default;

 C(int i) : i(i){}
};

C c1; // default constructed
C c2(1); // constructed with the int taking constructor
Version ≥ c++14

You can determine whether a type has a default constructor (or is a primitive type) using
std::is_default_constructible from <type_traits>:

class C1{ };
class C2{ public: C2(){} };
class C3{ public: C3(int){} };

using std::cout; using std::boolalpha; using std::endl;
using std::is_default_constructible;
cout << boolalpha << is_default_constructible<int>() << endl; // prints true
cout << boolalpha << is_default_constructible<C1>() << endl; // prints true
cout << boolalpha << is_default_constructible<C2>() << endl; // prints true
cout << boolalpha << is_default_constructible<C3>() << endl; // prints false
Version = c++11

In C++11, it is still possible to use the non-functor version of std::is_default_constructible:

cout << boolalpha << is_default_constructible<C1>::value << endl; // prints true

C++ Notes for Professionals 225

Section 41.2: Destructor
A destructor is a function without arguments that is called when a user-defined object is about to be destroyed. It is
named after the type it destructs with a ~ prefix.

class C{
 int* is;
 string s;
public:
 C()
 : is(new int[10]){
 }

 ~C(){ // destructor definition
 delete[] is;
 }
};

class C_child : public C{
 string s_ch;
public:
 C_child(){}
 ~C_child(){} // child destructor
};

void f(){
 C c1; // calls default constructor
 C c2[2]; // calls default constructor for both elements
 C* c3 = new C[2]; // calls default constructor for both array elements

 C_child c_ch; // when destructed calls destructor of s_ch and of C base (and in turn s)

 delete[] c3; // calls destructors on c3[0] and c3[1]
} // automatic variables are destroyed here -- i.e. c1, c2 and c_ch

Under most circumstances (i.e., a user provides no destructor, and there are no other disqualifying conditions), the
compiler provides a default destructor implicitly:

class C{
 int i;
 string s;
};

void f(){
 C* c1 = new C;
 delete c1; // C has a destructor
}

class C{
 int m;
private:
 ~C(){} // not public destructor!
};

class C_container{
 C c;
};

void f(){

C++ Notes for Professionals 226

 C_container* c_cont = new C_container;
 delete c_cont; // Compile ERROR: C has no accessible destructor
}
Version > c++11

In C++11, a developer can override this behavior by preventing the compiler from providing a default destructor.

class C{
 int m;
public:
 ~C() = delete; // does NOT have implicit destructor
};

void f{
 C c1;
} // Compile ERROR: C has no destructor

Furthermore, a developer may also be explicit about wanting the compiler to provide a default destructor.

class C{
 int m;
public:
 ~C() = default; // saying explicitly it does have implicit/empty destructor
};

void f(){
 C c1;
} // C has a destructor -- c1 properly destroyed
Version > c++11

You can determine whether a type has a destructor (or is a primitive type) using std::is_destructible from
<type_traits>:

class C1{ };
class C2{ public: ~C2() = delete };
class C3 : public C2{ };

using std::cout; using std::boolalpha; using std::endl;
using std::is_destructible;
cout << boolalpha << is_destructible<int>() << endl; // prints true
cout << boolalpha << is_destructible<C1>() << endl; // prints true
cout << boolalpha << is_destructible<C2>() << endl; // prints false
cout << boolalpha << is_destructible<C3>() << endl; // prints false

Section 41.3: Copy and swap
If you're writing a class that manages resources, you need to implement all the special member functions (see Rule
of Three/Five/Zero). The most direct approach to writing the copy constructor and assignment operator would be:

person(const person &other)
 : name(new char[std::strlen(other.name) + 1])
 , age(other.age)
{
 std::strcpy(name, other.name);
}

person& operator=(person const& rhs) {
 if (this != &other) {
 delete [] name;

C++ Notes for Professionals 227

 name = new char[std::strlen(other.name) + 1];
 std::strcpy(name, other.name);
 age = other.age;
 }

 return *this;
}

But this approach has some problems. It fails the strong exception guarantee - if new[] throws, we've already
cleared the resources owned by this and cannot recover. We're duplicating a lot of the logic of copy construction in
copy assignment. And we have to remember the self-assignment check, which usually just adds overhead to the
copy operation, but is still critical.

To satisfy the strong exception guarantee and avoid code duplication (double so with the subsequent move
assignment operator), we can use the copy-and-swap idiom:

class person {
 char* name;
 int age;
public:
 /* all the other functions ... */

 friend void swap(person& lhs, person& rhs) {
 using std::swap; // enable ADL

 swap(lhs.name, rhs.name);
 swap(lhs.age, rhs.age);
 }

 person& operator=(person rhs) {
 swap(*this, rhs);
 return *this;
 }
};

Why does this work? Consider what happens when we have

person p1 = ...;
person p2 = ...;
p1 = p2;

First, we copy-construct rhs from p2 (which we didn't have to duplicate here). If that operation throws, we don't do
anything in operator= and p1 remains untouched. Next, we swap the members between *this and rhs, and then
rhs goes out of scope. When operator=, that implicitly cleans the original resources of this (via the destructor,
which we didn't have to duplicate). Self-assignment works too - it's less efficient with copy-and-swap (involves an
extra allocation and deallocation), but if that's the unlikely scenario, we don't slow down the typical use case to
account for it.

Version ≥ C++11

The above formulation works as-is already for move assignment.

p1 = std::move(p2);

Here, we move-construct rhs from p2, and all the rest is just as valid. If a class is movable but not copyable, there is
no need to delete the copy-assignment, since this assignment operator will simply be ill-formed due to the deleted
copy constructor.

C++ Notes for Professionals 228

Section 41.4: Implicit Move and Copy
Bear in mind that declaring a destructor inhibits the compiler from generating implicit move constructors and move
assignment operators. If you declare a destructor, remember to also add appropriate definitions for the move
operations.

Furthermore, declaring move operations will suppress the generation of copy operations, so these should also be
added (if the objects of this class are required to have copy semantics).

class Movable {
public:
 virtual ~Movable() noexcept = default;

 // compiler won't generate these unless we tell it to
 // because we declared a destructor
 Movable(Movable&&) noexcept = default;
 Movable& operator=(Movable&&) noexcept = default;

 // declaring move operations will suppress generation
 // of copy operations unless we explicitly re-enable them
 Movable(const Movable&) = default;
 Movable& operator=(const Movable&) = default;
};

C++ Notes for Professionals 229

Chapter 42: Non-Static Member Functions
Section 42.1: Non-static Member Functions
A class or struct can have member functions as well as member variables. These functions have syntax mostly
similar to standalone functions, and can be defined either inside or outside the class definition; if defined outside
the class definition, the function's name is prefixed with the class' name and the scope (::) operator.

class CL {
 public:
 void definedInside() {}
 void definedOutside();
};
void CL::definedOutside() {}

These functions are called on an instance (or reference to an instance) of the class with the dot (.) operator, or a
pointer to an instance with the arrow (->) operator, and each call is tied to the instance the function was called on;
when a member function is called on an instance, it has access to all of that instance's fields (through the this
pointer), but can only access other instances' fields if those instances are supplied as parameters.

struct ST {
 ST(const std::string& ss = "Wolf", int ii = 359) : s(ss), i(ii) { }

 int get_i() const { return i; }
 bool compare_i(const ST& other) const { return (i == other.i); }

 private:
 std::string s;
 int i;
};
ST st1;
ST st2("Species", 8472);

int i = st1.get_i(); // Can access st1.i, but not st2.i.
bool b = st1.compare_i(st2); // Can access st1 & st2.

These functions are allowed to access member variables and/or other member functions, regardless of either the
variable or function's access modifiers. They can also be written out-of-order, accessing member variables and/or
calling member functions declared before them, as the entire class definition must be parsed before the compiler
can begin to compile a class.

class Access {
 public:
 Access(int i_ = 8088, int j_ = 8086, int k_ = 6502) : i(i_), j(j_), k(k_) {}

 int i;
 int get_k() const { return k; }
 bool private_no_more() const { return i_be_private(); }
 protected:
 int j;
 int get_i() const { return i; }
 private:
 int k;
 int get_j() const { return j; }
 bool i_be_private() const { return ((i > j) && (k < j)); }
};

C++ Notes for Professionals 230

Section 42.2: Encapsulation
A common use of member functions is for encapsulation, using an accessor (commonly known as a getter) and a
mutator (commonly known as a setter) instead of accessing fields directly.

class Encapsulator {
 int encapsulated;

 public:
 int get_encapsulated() const { return encapsulated; }
 void set_encapsulated(int e) { encapsulated = e; }

 void some_func() {
 do_something_with(encapsulated);
 }
};

Inside the class, encapsulated can be freely accessed by any non-static member function; outside the class, access
to it is regulated by member functions, using get_encapsulated() to read it and set_encapsulated() to modify it.
This prevents unintentional modifications to the variable, as separate functions are used to read and write it. [There
are many discussions on whether getters and setters provide or break encapsulation, with good arguments for
both claims; such heated debate is outside the scope of this example.]

Section 42.3: Name Hiding & Importing
When a base class provides a set of overloaded functions, and a derived class adds another overload to the set, this
hides all of the overloads provided by the base class.

struct HiddenBase {
 void f(int) { std::cout << "int" << std::endl; }
 void f(bool) { std::cout << "bool" << std::endl; }
 void f(std::string) { std::cout << "std::string" << std::endl; }
};

struct HidingDerived : HiddenBase {
 void f(float) { std::cout << "float" << std::endl; }
};

// ...

HiddenBase hb;
HidingDerived hd;
std::string s;

hb.f(1); // Output: int
hb.f(true); // Output: bool
hb.f(s); // Output: std::string;

hd.f(1.f); // Output: float
hd.f(3); // Output: float
hd.f(true); // Output: float
hd.f(s); // Error: Can't convert from std::string to float.

This is due to name resolution rules: During name lookup, once the correct name is found, we stop looking, even if
we clearly haven't found the correct version of the entity with that name (such as with hd.f(s)); due to this,
overloading the function in the derived class prevents name lookup from discovering the overloads in the base
class. To avoid this, a using-declaration can be used to "import" names from the base class into the derived class, so

C++ Notes for Professionals 231

that they will be available during name lookup.

struct HidingDerived : HiddenBase {
 // All members named HiddenBase::f shall be considered members of HidingDerived for lookup.
 using HiddenBase::f;

 void f(float) { std::cout << "float" << std::endl; }
};

// ...

HidingDerived hd;

hd.f(1.f); // Output: float
hd.f(3); // Output: int
hd.f(true); // Output: bool
hd.f(s); // Output: std::string

If a derived class imports names with a using-declaration, but also declares functions with the same signature as
functions in the base class, the base class functions will silently be overridden or hidden.

struct NamesHidden {
 virtual void hide_me() {}
 virtual void hide_me(float) {}
 void hide_me(int) {}
 void hide_me(bool) {}
};

struct NameHider : NamesHidden {
 using NamesHidden::hide_me;

 void hide_me() {} // Overrides NamesHidden::hide_me().
 void hide_me(int) {} // Hides NamesHidden::hide_me(int).
};

A using-declaration can also be used to change access modifiers, provided the imported entity was public or
protected in the base class.

struct ProMem {
 protected:
 void func() {}
};

struct BecomesPub : ProMem {
 using ProMem::func;
};

// ...

ProMem pm;
BecomesPub bp;

pm.func(); // Error: protected.
bp.func(); // Good.

Similarly, if we explicitly want to call a member function from a specific class in the inheritance hierarchy, we can
qualify the function name when calling the function, specifying that class by name.

struct One {

C++ Notes for Professionals 232

 virtual void f() { std::cout << "One." << std::endl; }
};

struct Two : One {
 void f() override {
 One::f(); // this->One::f();
 std::cout << "Two." << std::endl;
 }
};

struct Three : Two {
 void f() override {
 Two::f(); // this->Two::f();
 std::cout << "Three." << std::endl;
 }
};

// ...

Three t;

t.f(); // Normal syntax.
t.Two::f(); // Calls version of f() defined in Two.
t.One::f(); // Calls version of f() defined in One.

Section 42.4: Virtual Member Functions
Member functions can also be declared virtual. In this case, if called on a pointer or reference to an instance, they
will not be accessed directly; rather, they will look up the function in the virtual function table (a list of pointers-to-
member-functions for virtual functions, more commonly known as the vtable or vftable), and use that to call the
version appropriate for the instance's dynamic (actual) type. If the function is called directly, from a variable of a
class, no lookup is performed.

struct Base {
 virtual void func() { std::cout << "In Base." << std::endl; }
};

struct Derived : Base {
 void func() override { std::cout << "In Derived." << std::endl; }
};

void slicer(Base x) { x.func(); }

// ...

Base b;
Derived d;

Base *pb = &b, *pd = &d; // Pointers.
Base &rb = b, &rd = d; // References.

b.func(); // Output: In Base.
d.func(); // Output: In Derived.

pb->func(); // Output: In Base.
pd->func(); // Output: In Derived.

rb.func(); // Output: In Base.
rd.func(); // Output: In Derived.

C++ Notes for Professionals 233

slicer(b); // Output: In Base.
slicer(d); // Output: In Base.

Note that while pd is Base*, and rd is a Base&, calling func() on either of the two calls Derived::func() instead of
Base::func(); this is because the vtable for Derived updates the Base::func() entry to instead point to
Derived::func(). Conversely, note how passing an instance to slicer() always results in Base::func() being
called, even when the passed instance is a Derived; this is because of something known as data slicing, where
passing a Derived instance into a Base parameter by value renders the portion of the Derived instance that isn't a
Base instance inaccessible.

When a member function is defined as virtual, all derived class member functions with the same signature override
it, regardless of whether the overriding function is specified as virtual or not. This can make derived classes
harder for programmers to parse, however, as there's no indication as to which function(s) is/are virtual.

struct B {
 virtual void f() {}
};

struct D : B {
 void f() {} // Implicitly virtual, overrides B::f.
 // You'd have to check B to know that, though.
};

Note, however, that a derived function only overrides a base function if their signatures match; even if a derived
function is explicitly declared virtual, it will instead create a new virtual function if the signatures are mismatched.

struct BadB {
 virtual void f() {}
};

struct BadD : BadB {
 virtual void f(int i) {} // Does NOT override BadB::f.
};
Version ≥ C++11

As of C++11, intent to override can be made explicit with the context-sensitive keyword override. This tells the
compiler that the programmer expects it to override a base class function, which causes the compiler to omit an
error if it doesn't override anything.

struct CPP11B {
 virtual void f() {}
};

struct CPP11D : CPP11B {
 void f() override {}
 void f(int i) override {} // Error: Doesn't actually override anything.
};

This also has the benefit of telling programmers that the function is both virtual, and also declared in at least one
base class, which can make complex classes easier to parse.

When a function is declared virtual, and defined outside the class definition, the virtual specifier must be
included in the function declaration, and not repeated in the definition.

Version ≥ C++11

C++ Notes for Professionals 234

This also holds true for override.

struct VB {
 virtual void f(); // "virtual" goes here.
 void g();
};
/* virtual */ void VB::f() {} // Not here.
virtual void VB::g() {} // Error.

If a base class overloads a virtual function, only overloads that are explicitly specified as virtual will be virtual.

struct BOverload {
 virtual void func() {}
 void func(int) {}
};

struct DOverload : BOverload {
 void func() override {}
 void func(int) {}
};

// ...

BOverload* bo = new DOverload;
bo->func(); // Calls DOverload::func().
bo->func(1); // Calls BOverload::func(int).

For more information, see the relevant topic.

Section 42.5: Const Correctness
One of the primary uses for this cv-qualifiers is const correctness. This is the practice of guaranteeing that only
accesses that need to modify an object are able to modify the object, and that any (member or non-member)
function that doesn't need to modify an object doesn't have write access to that object (whether directly or
indirectly). This prevents unintentional modifications, making code less errorprone. It also allows any function that
doesn't need to modify state to be able to take either a const or non-const object, without needing to rewrite or
overload the function.

const correctness, due to its nature, starts at the bottom up: Any class member function that doesn't need to
change state is declared as const, so that it can be called on const instances. This, in turn, allows passed-by-
reference parameters to be declared const when they don't need to be modified, which allows functions to take
either const or non-const objects without complaining, and const-ness can propagate outwards in this manner.
Due to this, getters are frequently const, as are any other functions that don't need to modify logical state.

class ConstIncorrect {
 Field fld;

 public:
 ConstIncorrect(const Field& f) : fld(f) {} // Modifies.

 const Field& get_field() { return fld; } // Doesn't modify; should be const.
 void set_field(const Field& f) { fld = f; } // Modifies.

 void do_something(int i) { // Modifies.
 fld.insert_value(i);
 }
 void do_nothing() { } // Doesn't modify; should be const.
};

C++ Notes for Professionals 235

class ConstCorrect {
 Field fld;

 public:
 ConstCorrect(const Field& f) : fld(f) {} // Not const: Modifies.

 const Field& get_field() const { return fld; } // const: Doesn't modify.
 void set_field(const Field& f) { fld = f; } // Not const: Modifies.

 void do_something(int i) { // Not const: Modifies.
 fld.insert_value(i);
 }
 void do_nothing() const { } // const: Doesn't modify.
};

// ...

const ConstIncorrect i_cant_do_anything(make_me_a_field());
// Now, let's read it...
Field f = i_cant_do_anything.get_field();
 // Error: Loses cv-qualifiers, get_field() isn't const.
i_cant_do_anything.do_nothing();
 // Error: Same as above.
// Oops.

const ConstCorrect but_i_can(make_me_a_field());
// Now, let's read it...
Field f = but_i_can.get_field(); // Good.
but_i_can.do_nothing(); // Good.

As illustrated by the comments on ConstIncorrect and ConstCorrect, properly cv-qualifying functions also serves
as documentation. If a class is const correct, any function that isn't const can safely be assumed to change state,
and any function that is const can safely be assumed not to change state.

C++ Notes for Professionals 236

Chapter 43: Constant class member
functions
Section 43.1: constant member function
#include <iostream>
#include <map>
#include <string>

using namespace std;

class A {
public:
 map<string, string> * mapOfStrings;
public:
 A() {
 mapOfStrings = new map<string, string>();
 }

 void insertEntry(string const & key, string const & value) const {
 (*mapOfStrings)[key] = value; // This works? Yes it does.
 delete mapOfStrings; // This also works
 mapOfStrings = new map<string, string>(); // This * does * not work
 }

 void refresh() {
 delete mapOfStrings;
 mapOfStrings = new map<string, string>(); // Works as refresh is non const function
 }

 void getEntry(string const & key) const {
 cout << mapOfStrings->at(key);
 }
};

int main(int argc, char* argv[]) {

 A var;
 var.insertEntry("abc", "abcValue");
 var.getEntry("abc");
 getchar();
 return 0;
}

C++ Notes for Professionals 237

Chapter 44: C++ Containers
C++ containers store a collection of elements. Containers include vectors, lists, maps, etc. Using Templates, C++
containers contain collections of primitives (e.g. ints) or custom classes (e.g. MyClass).

Section 44.1: C++ Containers Flowchart
Choosing which C++ Container to use can be tricky, so here's a simple flowchart to help decide which Container is
right for the job.

This flowchart was based on Mikael Persson's post. This little graphic in the flowchart is from Megan Hopkins

https://docs.google.com/drawings/d/1c-qvy499kxaYXM70DM34rOnEBCzgQLopyNDEXdaK0eU/edit
https://stackoverflow.com/a/22671607
https://dribbble.com/shots/1673636-Pushpop

C++ Notes for Professionals 238

Chapter 45: Namespaces
Used to prevent name collisions when using multiple libraries, a namespace is a declarative prefix for functions,
classes, types, etc.

Section 45.1: What are namespaces?
A C++ namespace is a collection of C++ entities (functions, classes, variables), whose names are prefixed by the
name of the namespace. When writing code within a namespace, named entities belonging to that namespace
need not be prefixed with the namespace name, but entities outside of it must use the fully qualified name. The
fully qualified name has the format <namespace>::<entity>. Example:

namespace Example
{
 const int test = 5;

 const int test2 = test + 12; //Works within `Example` namespace
}

const int test3 = test + 3; //Fails; `test` not found outside of namespace.

const int test3 = Example::test + 3; //Works; fully qualified name used.

Namespaces are useful for grouping related definitions together. Take the analogy of a shopping mall. Generally a
shopping mall is split up into several stores, each store selling items from a specific category. One store might sell
electronics, while another store might sell shoes. These logical separations in store types help the shoppers find the
items they're looking for. Namespaces help c++ programmers, like shoppers, find the functions, classes, and
variables they're looking for by organizing them in a logical manner. Example:

namespace Electronics
{
 int TotalStock;
 class Headphones
 {
 // Description of a Headphone (color, brand, model number, etc.)
 };
 class Television
 {
 // Description of a Television (color, brand, model number, etc.)
 };
}

namespace Shoes
{
 int TotalStock;
 class Sandal
 {
 // Description of a Sandal (color, brand, model number, etc.)
 };
 class Slipper
 {
 // Description of a Slipper (color, brand, model number, etc.)
 };
}

There is a single namespace predefined, which is the global namespace that has no name, but can be denoted by
::. Example:

C++ Notes for Professionals 239

void bar() {
 // defined in global namespace
}
namespace foo {
 void bar() {
 // defined in namespace foo
 }
 void barbar() {
 bar(); // calls foo::bar()
 ::bar(); // calls bar() defined in global namespace
 }
}

Section 45.2: Argument Dependent Lookup
When calling a function without an explicit namespace qualifier, the compiler can choose to call a function within a
namespace if one of the parameter types to that function is also in that namespace. This is called "Argument
Dependent Lookup", or ADL:

namespace Test
{
 int call(int i);

 class SomeClass {...};

 int call_too(const SomeClass &data);
}

call(5); //Fails. Not a qualified function name.

Test::SomeClass data;

call_too(data); //Succeeds

call fails because none of its parameter types come from the Test namespace. call_too works because
SomeClass is a member of Test and therefore it qualifies for ADL rules.

When does ADL not occur

ADL does not occur if normal unqualified lookup finds a class member, a function that has been declared at block
scope, or something that is not of function type. For example:

void foo();
namespace N {
 struct X {};
 void foo(X) { std::cout << '1'; }
 void qux(X) { std::cout << '2'; }
}

struct C {
 void foo() {}
 void bar() {
 foo(N::X{}); // error: ADL is disabled and C::foo() takes no arguments
 }
};

void bar() {
 extern void foo(); // redeclares ::foo
 foo(N::X{}); // error: ADL is disabled and ::foo() doesn't take any arguments

C++ Notes for Professionals 240

}

int qux;

void baz() {
 qux(N::X{}); // error: variable declaration disables ADL for "qux"
}

Section 45.3: Extending namespaces
A useful feature of namespaces is that you can expand them (add members to it).

namespace Foo
{
 void bar() {}
}

//some other stuff

namespace Foo
{
 void bar2() {}
}

Section 45.4: Using directive
The keyword 'using' has three flavors. Combined with keyword 'namespace' you write a 'using directive':

If you don't want to write Foo:: in front of every stuff in the namespace Foo, you can use using namespace Foo; to
import every single thing out of Foo.

namespace Foo
{
 void bar() {}
 void baz() {}
}

//Have to use Foo::bar()
Foo::bar();

//Import Foo
using namespace Foo;
bar(); //OK
baz(); //OK

It is also possible to import selected entities in a namespace rather than the whole namespace:

using Foo::bar;
bar(); //OK, was specifically imported
baz(); // Not OK, was not imported

A word of caution: using namespaces in header files is seen as bad style in most cases. If this is done, the
namespace is imported in every file that includes the header. Since there is no way of "un-using" a namespace, this
can lead to namespace pollution (more or unexpected symbols in the global namespace) or, worse, conflicts. See
this example for an illustration of the problem:

/***** foo.h *****/

C++ Notes for Professionals 241

namespace Foo
{
 class C;
}

/***** bar.h *****/
namespace Bar
{
 class C;
}

/***** baz.h *****/
#include "foo.h"
using namespace Foo;

/***** main.cpp *****/
#include "bar.h"
#include "baz.h"

using namespace Bar;
C c; // error: Ambiguity between Bar::C and Foo::C

A using-directive cannot occur at class scope.

Section 45.5: Making namespaces
Creating a namespace is really easy:

//Creates namespace foo
namespace Foo
{
 //Declares function bar in namespace foo
 void bar() {}
}

To call bar, you have to specify the namespace first, followed by the scope resolution operator :::

Foo::bar();

It is allowed to create one namespace in another, for example:

namespace A
{
 namespace B
 {
 namespace C
 {
 void bar() {}
 }
 }
}
Version ≥ C++17

The above code could be simplified to the following:

namespace A::B::C
{
 void bar() {}

C++ Notes for Professionals 242

}

Section 45.6: Unnamed/anonymous namespaces
An unnamed namespace can be used to ensure names have internal linkage (can only be referred to by the current
translation unit). Such a namespace is defined in the same way as any other namespace, but without the name:

namespace {
 int foo = 42;
}

foo is only visible in the translation unit in which it appears.

It is recommended to never use unnamed namespaces in header files as this gives a version of the content for
every translation unit it is included in. This is especially important if you define non-const globals.

// foo.h
namespace {
 std::string globalString;
}

// 1.cpp
#include "foo.h" //< Generates unnamed_namespace{1.cpp}::globalString ...

globalString = "Initialize";

// 2.cpp
#include "foo.h" //< Generates unnamed_namespace{2.cpp}::globalString ...

std::cout << globalString; //< Will always print the empty string

Section 45.7: Compact nested namespaces
Version ≥ C++17

namespace a {
 namespace b {
 template<class T>
 struct qualifies : std::false_type {};
 }
}

namespace other {
 struct bob {};
}

namespace a::b {
 template<>
 struct qualifies<::other::bob> : std::true_type {};
}

You can enter both the a and b namespaces in one step with namespace a::b starting in C++17.

Section 45.8: Namespace alias
A namespace can be given an alias (i.e., another name for the same namespace) using the namespace identifier =
syntax. Members of the aliased namespace can be accessed by qualifying them with the name of the alias. In the

C++ Notes for Professionals 243

following example, the nested namespace AReallyLongName::AnotherReallyLongName is inconvenient to type, so
the function qux locally declares an alias N. Members of that namespace can then be accessed simply using N::.

namespace AReallyLongName {
 namespace AnotherReallyLongName {
 int foo();
 int bar();
 void baz(int x, int y);
 }
}
void qux() {
 namespace N = AReallyLongName::AnotherReallyLongName;
 N::baz(N::foo(), N::bar());
}

Section 45.9: Inline namespace
Version ≥ C++11

inline namespace includes the content of the inlined namespace in the enclosing namespace, so

namespace Outer
{
 inline namespace Inner
 {
 void foo();
 }
}

is mostly equivalent to

namespace Outer
{

 namespace Inner
 {
 void foo();
 }

 using Inner::foo;
}

but element from Outer::Inner:: and those associated into Outer:: are identical.

So following is equivalent

Outer::foo();
Outer::Inner::foo();

The alternative using namespace Inner; would not be equivalent for some tricky parts as template specialization:

For

#include <outer.h> // See below

class MyCustomType;
namespace Outer
{

C++ Notes for Professionals 244

 template <>
 void foo<MyCustomType>() { std::cout << "Specialization"; }
}

The inline namespace allows the specialization of Outer::foo

// outer.h
// include guard omitted for simplification

namespace Outer
{
 inline namespace Inner
 {
 template <typename T>
 void foo() { std::cout << "Generic"; }
 }
}

Whereas the using namespace doesn't allow the specialization of Outer::foo

// outer.h
// include guard omitted for simplification

namespace Outer
{
 namespace Inner
 {
 template <typename T>
 void foo() { std::cout << "Generic"; }
 }
 using namespace Inner;
 // Specialization of `Outer::foo` is not possible
 // it should be `Outer::Inner::foo`.
}

Inline namespace is a way to allow several version to cohabit and defaulting to the inline one

namespace MyNamespace
{
 // Inline the last version
 inline namespace Version2
 {
 void foo(); // New version
 void bar();
 }

 namespace Version1 // The old one
 {
 void foo();
 }

}

And with usage

MyNamespace::Version1::foo(); // old version
MyNamespace::Version2::foo(); // new version
MyNamespace::foo(); // default version : MyNamespace::Version1::foo();

C++ Notes for Professionals 245

Section 45.10: Aliasing a long namespace
This is usually used for renaming or shortening long namespace references such referring to components of a
library.

namespace boost
{
 namespace multiprecision
 {
 class Number ...
 }
}

namespace Name1 = boost::multiprecision;

// Both Type declarations are equivalent
boost::multiprecision::Number X // Writing the full namespace path, longer
Name1::Number Y // using the name alias, shorter

Section 45.11: Alias Declaration scope
Alias Declaration are affected by preceding using statements

namespace boost
{
 namespace multiprecision
 {
 class Number ...
 }
}

using namespace boost;

// Both Namespace are equivalent
namespace Name1 = boost::multiprecision;
namespace Name2 = multiprecision;

However, it is easier to get confused over which namespace you are aliasing when you have something like this:

namespace boost
{
 namespace multiprecision
 {
 class Number ...
 }
}

namespace numeric
{
 namespace multiprecision
 {
 class Number ...
 }
}

using namespace numeric;
using namespace boost;

C++ Notes for Professionals 246

// Not recommended as
// its not explicitly clear whether Name1 refers to
// numeric::multiprecision or boost::multiprecision
namespace Name1 = multiprecision;

// For clarity, its recommended to use absolute paths
// instead
namespace Name2 = numeric::multiprecision;
namespace Name3 = boost::multiprecision;

C++ Notes for Professionals 247

Chapter 46: Header Files
Section 46.1: Basic Example
The following example will contain a block of code that is meant to be split into several source files, as denoted by
// filename comments.

Source Files
// my_function.h

/* Note how this header contains only a declaration of a function.
 * Header functions usually do not define implementations for declarations
 * unless code must be further processed at compile time, as in templates.
 */

/* Also, usually header files include preprocessor guards so that every header
 * is never included twice.
 *
 * The guard is implemented by checking if a header-file unique preprocessor
 * token is defined, and only including the header if it hasn't been included
 * once before.
 */
#ifndef MY_FUNCTION_H
#define MY_FUNCTION_H

// global_value and my_function() will be
// recognized as the same constructs if this header is included by different files.
const int global_value = 42;
int my_function();

#endif // MY_FUNCTION_H

// my_function.cpp

/* Note how the corresponding source file for the header includes the interface
 * defined in the header so that the compiler is aware of what the source file is
 * implementing.
 *
 * In this case, the source file requires knowledge of the global constant
 * global_value only defined in my_function.h. Without inclusion of the header
 * file, this source file would not compile.
 */
#include "my_function.h" // or #include "my_function.hpp"
int my_function() {
 return global_value; // return 42;
}

Header files are then included by other source files that want to use the functionality defined by the header
interface, but don't require knowledge of its implementation (thus, reducing code coupling). The following program
makes use of the header my_function.h as defined above:

// main.cpp

#include <iostream> // A C++ Standard Library header.
#include "my_function.h" // A personal header

int main(int argc, char** argv) {
 std::cout << my_function() << std::endl;
 return 0;

C++ Notes for Professionals 248

}

The Compilation Process

Since header files are often part of a compilation process workflow, a typical compilation process making use of the
header/source file convention will usually do the following.

Assuming that the header file and source code file is already in the same directory, a programmer would execute
the following commands:

g++ -c my_function.cpp # Compiles the source file my_function.cpp
 # --> object file my_function.o

g++ main.cpp my_function.o # Links the object file containing the
 # implementation of int my_function()
 # to the compiled, object version of main.cpp
 # and then produces the final executable a.out

Alternatively, if one wishes to compile main.cpp to an object file first, and then link only object files together as the
final step:

g++ -c my_function.cpp
g++ -c main.cpp

g++ main.o my_function.o

Section 46.2: Templates in Header Files
Templates require compile-time generation of code: a templated function, for example, will be effectively turned
into multiple distinct functions once a templated function is parameterized by use in source code.

This means that template function, member function, and class definitions cannot be delegated to a separate
source code file, as any code that will use any templated construct requires knowledge of its definition to generally
generate any derivative code.

Thus, templated code, if put in headers, must also contain its definition. An example of this is below:

// templated_function.h

template <typename T>
T* null_T_pointer() {
 T* type_point = NULL; // or, alternatively, nullptr instead of NULL
 // for C++11 or later
 return type_point;
}

C++ Notes for Professionals 249

Chapter 47: Using declaration
A using declaration introduces a single name into the current scope that was previously declared elsewhere.

Section 47.1: Importing names individually from a namespace
Once using is used to introduce the name cout from the namespace std into the scope of the main function, the
std::cout object can be referred to as cout alone.

#include <iostream>
int main() {
 using std::cout;
 cout << "Hello, world!\n";
}

Section 47.2: Redeclaring members from a base class to
avoid name hiding
If a using-declaration occurs at class scope, it is only allowed to redeclare a member of a base class. For example,
using std::cout is not allowed at class scope.

Often, the name redeclared is one that would otherwise be hidden. For example, in the below code, d1.foo only
refers to Derived1::foo(const char*) and a compilation error will occur. The function Base::foo(int) is hidden
not considered at all. However, d2.foo(42) is fine because the using-declaration brings Base::foo(int) into the set
of entities named foo in Derived2. Name lookup then finds both foos and overload resolution selects Base::foo.

struct Base {
 void foo(int);
};
struct Derived1 : Base {
 void foo(const char*);
};
struct Derived2 : Base {
 using Base::foo;
 void foo(const char*);
};
int main() {
 Derived1 d1;
 d1.foo(42); // error
 Derived2 d2;
 d2.foo(42); // OK
}

Section 47.3: Inheriting constructors
Version ≥ C++11

As a special case, a using-declaration at class scope can refer to the constructors of a direct base class. Those
constructors are then inherited by the derived class and can be used to initialize the derived class.

struct Base {
 Base(int x, const char* s);
};
struct Derived1 : Base {
 Derived1(int x, const char* s) : Base(x, s) {}
};

C++ Notes for Professionals 250

struct Derived2 : Base {
 using Base::Base;
};
int main() {
 Derived1 d1(42, "Hello, world");
 Derived2 d2(42, "Hello, world");
}

In the above code, both Derived1 and Derived2 have constructors that forward the arguments directly to the
corresponding constructor of Base. Derived1 performs the forwarding explicitly, while Derived2, using the C++11
feature of inheriting constructors, does so implicitly.

C++ Notes for Professionals 251

Chapter 48: std::string
Strings are objects that represent sequences of characters. The standard string class provides a simple, safe and
versatile alternative to using explicit arrays of chars when dealing with text and other sequences of characters. The
C++ string class is part of the std namespace and was standardized in 1998.

Section 48.1: Tokenize
Listed from least expensive to most expensive at run-time:

std::strtok is the cheapest standard provided tokenization method, it also allows the delimiter to be1.
modified between tokens, but it incurs 3 difficulties with modern C++:

std::strtok cannot be used on multiple strings at the same time (though some implementations do
extend to support this, such as: strtok_s)
For the same reason std::strtok cannot be used on multiple threads simultaneously (this may
however be implementation defined, for example: Visual Studio's implementation is thread safe)
Calling std::strtok modifies the std::string it is operating on, so it cannot be used on const
strings, const char*s, or literal strings, to tokenize any of these with std::strtok or to operate on a
std::string who's contents need to be preserved, the input would have to be copied, then the copy
could be operated on

Generally any of these options cost will be hidden in the allocation cost of the tokens, but if the cheapest
algorithm is required and std::strtok's difficulties are not overcomable consider a hand-spun solution.

// String to tokenize
std::string str{ "The quick brown fox" };
// Vector to store tokens
vector<std::string> tokens;

for (auto i = strtok(&str[0], " "); i != NULL; i = strtok(NULL, " "))
 tokens.push_back(i);

Live Example

The std::istream_iterator uses the stream's extraction operator iteratively. If the input std::string is2.
white-space delimited this is able to expand on the std::strtok option by eliminating its difficulties, allowing
inline tokenization thereby supporting the generation of a const vector<string>, and by adding support for
multiple delimiting white-space character:

// String to tokenize
const std::string str("The quick \tbrown \nfox");
std::istringstream is(str);
// Vector to store tokens
const std::vector<std::string> tokens = std::vector<std::string>(
 std::istream_iterator<std::string>(is),
 std::istream_iterator<std::string>());

Live Example

The std::regex_token_iterator uses a std::regex to iteratively tokenize. It provides for a more flexible3.
delimiter definition. For example, non-delimited commas and white-space:

https://msdn.microsoft.com/en-us/library/ftsafwz3.aspx
https://msdn.microsoft.com/en-us/library/2c8d19sb.aspx#Anchor_3
http://stackoverflow.com/a/38595708/2642059
http://ideone.com/8kAGoa
http://ideone.com/gWmfV9

C++ Notes for Professionals 252

Version ≥ C++11

// String to tokenize
const std::string str{ "The ,qu\\,ick ,\tbrown, fox" };
const std::regex re{ "\\s*((?:[^\\\\,]|\\\\.)*?)\\s*(?:,|$)" };
// Vector to store tokens
const std::vector<std::string> tokens{
 std::sregex_token_iterator(str.begin(), str.end(), re, 1),
 std::sregex_token_iterator()
};

Live Example

See the regex_token_iterator Example for more details.

Section 48.2: Conversion to (const) char*
In order to get const char* access to the data of a std::string you can use the string's c_str() member function.
Keep in mind that the pointer is only valid as long as the std::string object is within scope and remains
unchanged, that means that only const methods may be called on the object.

Version ≥ C++17

The data() member function can be used to obtain a modifiable char*, which can be used to manipulate the
std::string object's data.

Version ≥ C++11

A modifiable char* can also be obtained by taking the address of the first character: &s[0]. Within C++11, this is
guaranteed to yield a well-formed, null-terminated string. Note that &s[0] is well-formed even if s is empty,
whereas &s.front() is undefined if s is empty.

Version ≥ C++11

std::string str("This is a string.");
const char* cstr = str.c_str(); // cstr points to: "This is a string.\0"
const char* data = str.data(); // data points to: "This is a string.\0"

std::string str("This is a string.");

// Copy the contents of str to untie lifetime from the std::string object
std::unique_ptr<char []> cstr = std::make_unique<char[]>(str.size() + 1);

// Alternative to the line above (no exception safety):
// char* cstr_unsafe = new char[str.size() + 1];

std::copy(str.data(), str.data() + str.size(), cstr);
cstr[str.size()] = '\0'; // A null-terminator needs to be added

// delete[] cstr_unsafe;
std::cout << cstr.get();

Section 48.3: Using the std::string_view class
Version ≥ C++17

C++17 introduces std::string_view, which is simply a non-owning range of const chars, implementable as either
a pair of pointers or a pointer and a length. It is a superior parameter type for functions that requires non-
modifiable string data. Before C++17, there were three options for this:

void foo(std::string const& s); // pre-C++17, single argument, could incur

http://ideone.com/q58zoX

C++ Notes for Professionals 253

 // allocation if caller's data was not in a string
 // (e.g. string literal or vector<char>)

void foo(const char* s, size_t len); // pre-C++17, two arguments, have to pass them
 // both everywhere

void foo(const char* s); // pre-C++17, single argument, but need to call
 // strlen()

template <class StringT>
void foo(StringT const& s); // pre-C++17, caller can pass arbitrary char data
 // provider, but now foo() has to live in a header

All of these can be replaced with:

void foo(std::string_view s); // post-C++17, single argument, tighter coupling
 // zero copies regardless of how caller is storing
 // the data

Note that std::string_view cannot modify its underlying data.

string_view is useful when you want to avoid unnecessary copies.

It offers a useful subset of the functionality that std::string does, although some of the functions behave
differently:

std::string str = "lllloooonnnngggg sssstttrrriiinnnggg"; //A really long string

//Bad way - 'string::substr' returns a new string (expensive if the string is long)
std::cout << str.substr(15, 10) << '\n';

//Good way - No copies are created!
std::string_view view = str;

// string_view::substr returns a new string_view
std::cout << view.substr(15, 10) << '\n';

Section 48.4: Conversion to std::wstring
In C++, sequences of characters are represented by specializing the std::basic_string class with a native
character type. The two major collections defined by the standard library are std::string and std::wstring:

std::string is built with elements of type char

std::wstring is built with elements of type wchar_t

To convert between the two types, use wstring_convert:

#include <string>
#include <codecvt>
#include <locale>

std::string input_str = "this is a -string-, which is a sequence based on the -char- type.";
std::wstring input_wstr = L"this is a -wide- string, which is based on the -wchar_t- type.";

// conversion
std::wstring str_turned_to_wstr =
std::wstring_convert<std::codecvt_utf8<wchar_t>>().from_bytes(input_str);

C++ Notes for Professionals 254

std::string wstr_turned_to_str =
std::wstring_convert<std::codecvt_utf8<wchar_t>>().to_bytes(input_wstr);

In order to improve usability and/or readability, you can define functions to perform the conversion:

#include <string>
#include <codecvt>
#include <locale>

using convert_t = std::codecvt_utf8<wchar_t>;
std::wstring_convert<convert_t, wchar_t> strconverter;

std::string to_string(std::wstring wstr)
{
 return strconverter.to_bytes(wstr);
}

std::wstring to_wstring(std::string str)
{
 return strconverter.from_bytes(str);
}

Sample usage:

std::wstring a_wide_string = to_wstring("Hello World!");

That's certainly more readable than std::wstring_convert<std::codecvt_utf8<wchar_t>>().from_bytes("Hello
World!").

Please note that char and wchar_t do not imply encoding, and gives no indication of size in bytes. For instance,
wchar_t is commonly implemented as a 2-bytes data type and typically contains UTF-16 encoded data under
Windows (or UCS-2 in versions prior to Windows 2000) and as a 4-bytes data type encoded using UTF-32 under
Linux. This is in contrast with the newer types char16_t and char32_t, which were introduced in C++11 and are
guaranteed to be large enough to hold any UTF16 or UTF32 "character" (or more precisely, code point) respectively.

Section 48.5: Lexicographical comparison
Two std::strings can be compared lexicographically using the operators ==, !=, <, <=, >, and >=:

std::string str1 = "Foo";
std::string str2 = "Bar";

assert(!(str1 < str2));
assert(str > str2);
assert(!(str1 <= str2));
assert(str1 >= str2);
assert(!(str1 == str2));
assert(str1 != str2);

All these functions use the underlying std::string::compare() method to perform the comparison, and return for
convenience boolean values. The operation of these functions may be interpreted as follows, regardless of the
actual implementation:

operator==:

If str1.length() == str2.length() and each character pair matches, then returns true, otherwise returns

C++ Notes for Professionals 255

false.

operator!=:

If str1.length() != str2.length() or one character pair doesn't match, returns true, otherwise it returns
false.

operator< or operator>:

Finds the first different character pair, compares them then returns the boolean result.

operator<= or operator>=:

Finds the first different character pair, compares them then returns the boolean result.

Note: The term character pair means the corresponding characters in both strings of the same positions. For
better understanding, if two example strings are str1 and str2, and their lengths are n and m respectively, then
character pairs of both strings means each str1[i] and str2[i] pairs where i = 0, 1, 2, ..., max(n,m). If for any i
where the corresponding character does not exist, that is, when i is greater than or equal to n or m, it would be
considered as the lowest value.

Here is an example of using <:

std::string str1 = "Barr";
std::string str2 = "Bar";

assert(str2 < str1);

The steps are as follows:

Compare the first characters, 'B' == 'B' - move on.1.
Compare the second characters, 'a' == 'a' - move on.2.
Compare the third characters, 'r' == 'r' - move on.3.
The str2 range is now exhausted, while the str1 range still has characters. Thus, str2 < str1.4.

Section 48.6: Trimming characters at start/end
This example requires the headers <algorithm>, <locale>, and <utility>.

Version ≥ C++11

To trim a sequence or string means to remove all leading and trailing elements (or characters) matching a certain
predicate. We first trim the trailing elements, because it doesn't involve moving any elements, and then trim the
leading elements. Note that the generalizations below work for all types of std::basic_string (e.g. std::string
and std::wstring), and accidentally also for sequence containers (e.g. std::vector and std::list).

template <typename Sequence, // any basic_string, vector, list etc.
 typename Pred> // a predicate on the element (character) type
Sequence& trim(Sequence& seq, Pred pred) {
 return trim_start(trim_end(seq, pred), pred);
}

http://en.cppreference.com/w/cpp/header/algorithm
http://en.cppreference.com/w/cpp/header/algorithm
http://en.cppreference.com/w/cpp/header/locale
http://en.cppreference.com/w/cpp/header/locale
http://en.cppreference.com/w/cpp/header/utility
http://en.cppreference.com/w/cpp/header/utility

C++ Notes for Professionals 256

Trimming the trailing elements involves finding the last element not matching the predicate, and erasing from there
on:

template <typename Sequence, typename Pred>
Sequence& trim_end(Sequence& seq, Pred pred) {
 auto last = std::find_if_not(seq.rbegin(),
 seq.rend(),
 pred);
 seq.erase(last.base(), seq.end());
 return seq;
}

Trimming the leading elements involves finding the first element not matching the predicate and erasing up to
there:

template <typename Sequence, typename Pred>
Sequence& trim_start(Sequence& seq, Pred pred) {
 auto first = std::find_if_not(seq.begin(),
 seq.end(),
 pred);
 seq.erase(seq.begin(), first);
 return seq;
}

To specialize the above for trimming whitespace in a std::string we can use the std::isspace() function as a
predicate:

std::string& trim(std::string& str, const std::locale& loc = std::locale()) {
 return trim(str, [&loc](const char c){ return std::isspace(c, loc); });
}

std::string& trim_start(std::string& str, const std::locale& loc = std::locale()) {
 return trim_start(str, [&loc](const char c){ return std::isspace(c, loc); });
}

std::string& trim_end(std::string& str, const std::locale& loc = std::locale()) {
 return trim_end(str, [&loc](const char c){ return std::isspace(c, loc); });
}

Similarly, we can use the std::iswspace() function for std::wstring etc.

If you wish to create a new sequence that is a trimmed copy, then you can use a separate function:

template <typename Sequence, typename Pred>
Sequence trim_copy(Sequence seq, Pred pred) { // NOTE: passing seq by value
 trim(seq, pred);
 return seq;
}

Section 48.7: String replacement
Replace by position

To replace a portion of a std::string you can use the method replace from std::string.

replace has a lot of useful overloads:

http://en.cppreference.com/w/cpp/locale/isspace
http://en.cppreference.com/w/cpp/locale/isspace
http://en.cppreference.com/w/cpp/locale/isspace
http://en.cppreference.com/w/cpp/locale/isspace
http://en.cppreference.com/w/cpp/locale/isspace
http://en.cppreference.com/w/cpp/string/wide/iswspace
http://en.cppreference.com/w/cpp/string/wide/iswspace
http://en.cppreference.com/w/cpp/string/wide/iswspace
http://en.cppreference.com/w/cpp/string/wide/iswspace
http://en.cppreference.com/w/cpp/string/wide/iswspace

C++ Notes for Professionals 257

//Define string
std::string str = "Hello foo, bar and world!";
std::string alternate = "Hello foobar";

//1)
str.replace(6, 3, "bar"); //"Hello bar, bar and world!"

//2)
str.replace(str.begin() + 6, str.end(), "nobody!"); //"Hello nobody!"

//3)
str.replace(19, 5, alternate, 6, 6); //"Hello foo, bar and foobar!"
Version ≥ C++14

//4)
str.replace(19, 5, alternate, 6); //"Hello foo, bar and foobar!"

//5)
str.replace(str.begin(), str.begin() + 5, str.begin() + 6, str.begin() + 9);
//"foo foo, bar and world!"

//6)
str.replace(0, 5, 3, 'z'); //"zzz foo, bar and world!"

//7)
str.replace(str.begin() + 6, str.begin() + 9, 3, 'x'); //"Hello xxx, bar and world!"
Version ≥ C++11

//8)
str.replace(str.begin(), str.begin() + 5, { 'x', 'y', 'z' }); //"xyz foo, bar and world!"

Replace occurrences of a string with another string

Replace only the first occurrence of replace with with in str:

std::string replaceString(std::string str,
 const std::string& replace,
 const std::string& with){
 std::size_t pos = str.find(replace);
 if (pos != std::string::npos)
 str.replace(pos, replace.length(), with);
 return str;
}

Replace all occurrence of replace with with in str:

std::string replaceStringAll(std::string str,
 const std::string& replace,
 const std::string& with) {
 if(!replace.empty()) {
 std::size_t pos = 0;
 while ((pos = str.find(replace, pos)) != std::string::npos) {
 str.replace(pos, replace.length(), with);
 pos += with.length();
 }
 }
 return str;
}

Section 48.8: Converting to std::string
std::ostringstream can be used to convert any streamable type to a string representation, by inserting the object

http://en.cppreference.com/w/cpp/io/basic_ostringstream
http://en.cppreference.com/w/cpp/io/basic_ostringstream
http://en.cppreference.com/w/cpp/io/basic_ostringstream

C++ Notes for Professionals 258

into a std::ostringstream object (with the stream insertion operator <<) and then converting the whole
std::ostringstream to a std::string.

For int for instance:

#include <sstream>

int main()
{
 int val = 4;
 std::ostringstream str;
 str << val;
 std::string converted = str.str();
 return 0;
}

Writing your own conversion function, the simple:

template<class T>
std::string toString(const T& x)
{
 std::ostringstream ss;
 ss << x;
 return ss.str();
}

works but isn't suitable for performance critical code.

User-defined classes may implement the stream insertion operator if desired:

std::ostream operator<<(std::ostream& out, const A& a)
{
 // write a string representation of a to out
 return out;
}
Version ≥ C++11

Aside from streams, since C++11 you can also use the std::to_string (and std::to_wstring) function which is
overloaded for all fundamental types and returns the string representation of its parameter.

std::string s = to_string(0x12f3); // after this the string s contains "4851"

Section 48.9: Splitting
Use std::string::substr to split a string. There are two variants of this member function.

The first takes a starting position from which the returned substring should begin. The starting position must be
valid in the range (0, str.length()]:

std::string str = "Hello foo, bar and world!";
std::string newstr = str.substr(11); // "bar and world!"

The second takes a starting position and a total length of the new substring. Regardless of the length, the substring
will never go past the end of the source string:

std::string str = "Hello foo, bar and world!";

http://en.cppreference.com/w/cpp/string/basic_string/to_string
http://en.cppreference.com/w/cpp/string/basic_string/to_string
http://en.cppreference.com/w/cpp/string/basic_string/to_string
http://en.cppreference.com/w/cpp/string/basic_string/to_wstring
http://en.cppreference.com/w/cpp/string/basic_string/to_wstring
http://en.cppreference.com/w/cpp/string/basic_string/to_wstring
http://en.cppreference.com/w/cpp/string/basic_string/substr
http://en.cppreference.com/w/cpp/string/basic_string/substr
http://en.cppreference.com/w/cpp/string/basic_string/substr
http://en.cppreference.com/w/cpp/string/basic_string/substr
http://en.cppreference.com/w/cpp/string/basic_string/substr

C++ Notes for Professionals 259

std::string newstr = str.substr(15, 3); // "and"

Note that you can also call substr with no arguments, in this case an exact copy of the string is returned

std::string str = "Hello foo, bar and world!";
std::string newstr = str.substr(); // "Hello foo, bar and world!"

Section 48.10: Accessing a character
There are several ways to extract characters from a std::string and each is subtly different.

std::string str("Hello world!");

operator[](n)

Returns a reference to the character at index n.

std::string::operator[] is not bounds-checked and does not throw an exception. The caller is responsible for
asserting that the index is within the range of the string:

char c = str[6]; // 'w'

at(n)

Returns a reference to the character at index n.

std::string::at is bounds checked, and will throw std::out_of_range if the index is not within the range of the
string:

char c = str.at(7); // 'o'
Version ≥ C++11

Note: Both of these examples will result in undefined behavior if the string is empty.

front()

Returns a reference to the first character:

char c = str.front(); // 'H'

back()

Returns a reference to the last character:

char c = str.back(); // '!'

Section 48.11: Checking if a string is a prefix of another
Version ≥ C++14

In C++14, this is easily done by std::mismatch which returns the first mismatching pair from two ranges:

std::string prefix = "foo";
std::string string = "foobar";

bool isPrefix = std::mismatch(prefix.begin(), prefix.end(),
 string.begin(), string.end()).first == prefix.end();

http://en.cppreference.com/w/cpp/algorithm/mismatch
http://en.cppreference.com/w/cpp/algorithm/mismatch
http://en.cppreference.com/w/cpp/algorithm/mismatch

C++ Notes for Professionals 260

Note that a range-and-a-half version of mismatch() existed prior to C++14, but this is unsafe in the case that the
second string is the shorter of the two.

Version < C++14

We can still use the range-and-a-half version of std::mismatch(), but we need to first check that the first string is at
most as big as the second:

bool isPrefix = prefix.size() <= string.size() &&
 std::mismatch(prefix.begin(), prefix.end(),
 string.begin(), string.end()).first == prefix.end();
Version ≥ C++17

With std::string_view, we can write the direct comparison we want without having to worry about allocation
overhead or making copies:

bool isPrefix(std::string_view prefix, std::string_view full)
{
 return prefix == full.substr(0, prefix.size());
}

Section 48.12: Looping through each character
Version ≥ C++11

std::string supports iterators, and so you can use a ranged based loop to iterate through each character:

std::string str = "Hello World!";
for (auto c : str)
 std::cout << c;

You can use a "traditional" for loop to loop through every character:

std::string str = "Hello World!";
for (std::size_t i = 0; i < str.length(); ++i)
 std::cout << str[i];

Section 48.13: Conversion to integers/floating point types
A std::string containing a number can be converted into an integer type, or a floating point type, using
conversion functions.

Note that all of these functions stop parsing the input string as soon as they encounter a non-numeric character, so
"123abc" will be converted into 123.

The std::ato* family of functions converts C-style strings (character arrays) to integer or floating-point types:

std::string ten = "10";

double num1 = std::atof(ten.c_str());
int num2 = std::atoi(ten.c_str());
long num3 = std::atol(ten.c_str());
Version ≥ C++11

long long num4 = std::atoll(ten.c_str());

However, use of these functions is discouraged because they return 0 if they fail to parse the string. This is bad

C++ Notes for Professionals 261

because 0 could also be a valid result, if for example the input string was "0", so it is impossible to determine if the
conversion actually failed.

The newer std::sto* family of functions convert std::strings to integer or floating-point types, and throw
exceptions if they could not parse their input. You should use these functions if possible:

Version ≥ C++11

std::string ten = "10";

int num1 = std::stoi(ten);
long num2 = std::stol(ten);
long long num3 = std::stoll(ten);

float num4 = std::stof(ten);
double num5 = std::stod(ten);
long double num6 = std::stold(ten);

Furthermore, these functions also handle octal and hex strings unlike the std::ato* family. The second parameter
is a pointer to the first unconverted character in the input string (not illustrated here), and the third parameter is
the base to use. 0 is automatic detection of octal (starting with 0) and hex (starting with 0x or 0X), and any other
value is the base to use

std::string ten = "10";
std::string ten_octal = "12";
std::string ten_hex = "0xA";

int num1 = std::stoi(ten, 0, 2); // Returns 2
int num2 = std::stoi(ten_octal, 0, 8); // Returns 10
long num3 = std::stol(ten_hex, 0, 16); // Returns 10
long num4 = std::stol(ten_hex); // Returns 0
long num5 = std::stol(ten_hex, 0, 0); // Returns 10 as it detects the leading 0x

Section 48.14: Concatenation
You can concatenate std::strings using the overloaded + and += operators. Using the + operator:

std::string hello = "Hello";
std::string world = "world";
std::string helloworld = hello + world; // "Helloworld"

Using the += operator:

std::string hello = "Hello";
std::string world = "world";
hello += world; // "Helloworld"

You can also append C strings, including string literals:

std::string hello = "Hello";
std::string world = "world";
const char *comma = ", ";
std::string newhelloworld = hello + comma + world + "!"; // "Hello, world!"

You can also use push_back() to push back individual chars:

std::string s = "a, b, ";

C++ Notes for Professionals 262

s.push_back('c'); // "a, b, c"

There is also append(), which is pretty much like +=:

std::string app = "test and ";
app.append("test"); // "test and test"

Section 48.15: Converting between character encodings
Converting between encodings is easy with C++11 and most compilers are able to deal with it in a cross-platform
manner through <codecvt> and <locale> headers.

#include <iostream>
#include <codecvt>
#include <locale>
#include <string>
using namespace std;

int main() {
 // converts between wstring and utf8 string
 wstring_convert<codecvt_utf8_utf16<wchar_t>> wchar_to_utf8;
 // converts between u16string and utf8 string
 wstring_convert<codecvt_utf8_utf16<char16_t>, char16_t> utf16_to_utf8;

 wstring wstr = L"foobar";
 string utf8str = wchar_to_utf8.to_bytes(wstr);
 wstring wstr2 = wchar_to_utf8.from_bytes(utf8str);

 wcout << wstr << endl;
 cout << utf8str << endl;
 wcout << wstr2 << endl;

 u16string u16str = u"foobar";
 string utf8str2 = utf16_to_utf8.to_bytes(u16str);
 u16string u16str2 = utf16_to_utf8.from_bytes(utf8str2);

 return 0;
}

Mind that Visual Studio 2015 provides supports for these conversion but a bug in their library implementation
requires to use a different template for wstring_convert when dealing with char16_t:

using utf16_char = unsigned short;
wstring_convert<codecvt_utf8_utf16<utf16_char>, utf16_char> conv_utf8_utf16;

void strings::utf16_to_utf8(const std::u16string& utf16, std::string& utf8)
{
 std::basic_string<utf16_char> tmp;
 tmp.resize(utf16.length());
 std::copy(utf16.begin(), utf16.end(), tmp.begin());
 utf8 = conv_utf8_utf16.to_bytes(tmp);
}
void strings::utf8_to_utf16(const std::string& utf8, std::u16string& utf16)
{
 std::basic_string<utf16_char> tmp = conv_utf8_utf16.from_bytes(utf8);
 utf16.clear();
 utf16.resize(tmp.length());
 std::copy(tmp.begin(), tmp.end(), utf16.begin());
}

https://social.msdn.microsoft.com/Forums/vstudio/en-US/8f40dcd8-c67f-4eba-9134-a19b9178e481/vs-2015-rc-linker-stdcodecvt-error?forum=vcgeneral

C++ Notes for Professionals 263

Section 48.16: Finding character(s) in a string
To find a character or another string, you can use std::string::find. It returns the position of the first character
of the first match. If no matches were found, the function returns std::string::npos

std::string str = "Curiosity killed the cat";
auto it = str.find("cat");

if (it != std::string::npos)
 std::cout << "Found at position: " << it << '\n';
else
 std::cout << "Not found!\n";

Found at position: 21

The search opportunities are further expanded by the following functions:

find_first_of // Find first occurrence of characters
find_first_not_of // Find first absence of characters
find_last_of // Find last occurrence of characters
find_last_not_of // Find last absence of characters

These functions can allow you to search for characters from the end of the string, as well as find the negative case
(ie. characters that are not in the string). Here is an example:

std::string str = "dog dog cat cat";
std::cout << "Found at position: " << str.find_last_of("gzx") << '\n';

Found at position: 6

Note: Be aware that the above functions do not search for substrings, but rather for characters contained in the
search string. In this case, the last occurrence of 'g' was found at position 6 (the other characters weren't found).

http://en.cppreference.com/w/cpp/string/basic_string/find
http://en.cppreference.com/w/cpp/string/basic_string/find
http://en.cppreference.com/w/cpp/string/basic_string/find
http://en.cppreference.com/w/cpp/string/basic_string/find
http://en.cppreference.com/w/cpp/string/basic_string/find
http://en.cppreference.com/w/cpp/string/basic_string/npos
http://en.cppreference.com/w/cpp/string/basic_string/npos
http://en.cppreference.com/w/cpp/string/basic_string/npos
http://en.cppreference.com/w/cpp/string/basic_string/npos
http://en.cppreference.com/w/cpp/string/basic_string/npos

C++ Notes for Professionals 264

Chapter 49: std::array
Parameter Definition

class T Specifies the data type of array members
std::size_t N Specifies the number of members in the array

Section 49.1: Initializing an std::array
Initializing std::array<T, N>, where T is a scalar type and N is the number of elements of type T

If T is a scalar type, std::array can be initialized in the following ways:

// 1) Using aggregate-initialization
std::array<int, 3> a{ 0, 1, 2 };
// or equivalently
std::array<int, 3> a = { 0, 1, 2 };

// 2) Using the copy constructor
std::array<int, 3> a{ 0, 1, 2 };
std::array<int, 3> a2(a);
// or equivalently
std::array<int, 3> a2 = a;

// 3) Using the move constructor
std::array<int, 3> a = std::array<int, 3>{ 0, 1, 2 };

Initializing std::array<T, N>, where T is a non-scalar type and N is the number of elements of type T

If T is a non-scalar type std::array can be initialized in the following ways:

struct A { int values[3]; }; // An aggregate type

// 1) Using aggregate initialization with brace elision
// It works only if T is an aggregate type!
std::array<A, 2> a{ 0, 1, 2, 3, 4, 5 };
// or equivalently
std::array<A, 2> a = { 0, 1, 2, 3, 4, 5 };

// 2) Using aggregate initialization with brace initialization of sub-elements
std::array<A, 2> a{ A{ 0, 1, 2 }, A{ 3, 4, 5 } };
// or equivalently
std::array<A, 2> a = { A{ 0, 1, 2 }, A{ 3, 4, 5 } };

// 3)
std::array<A, 2> a{{ { 0, 1, 2 }, { 3, 4, 5 } }};
// or equivalently
std::array<A, 2> a = {{ { 0, 1, 2 }, { 3, 4, 5 } }};

// 4) Using the copy constructor
std::array<A, 2> a{ 1, 2, 3 };
std::array<A, 2> a2(a);
// or equivalently
std::array<A, 2> a2 = a;

// 5) Using the move constructor
std::array<A, 2> a = std::array<A, 2>{ 0, 1, 2, 3, 4, 5 };

C++ Notes for Professionals 265

Section 49.2: Element access
1. at(pos)

Returns a reference to the element at position pos with bounds checking. If pos is not within the range of the
container, an exception of type std::out_of_range is thrown.

The complexity is constant O(1).

#include <array>

int main()
{
 std::array<int, 3> arr;

 // write values
 arr.at(0) = 2;
 arr.at(1) = 4;
 arr.at(2) = 6;

 // read values
 int a = arr.at(0); // a is now 2
 int b = arr.at(1); // b is now 4
 int c = arr.at(2); // c is now 6

 return 0;
}

2) operator[pos]

Returns a reference to the element at position pos without bounds checking. If pos is not within the range of the
container, a runtime segmentation violation error can occur. This method provides element access equivalent to
classic arrays and thereof more efficient than at(pos).

The complexity is constant O(1).

#include <array>

int main()
{
 std::array<int, 3> arr;

 // write values
 arr[0] = 2;
 arr[1] = 4;
 arr[2] = 6;

 // read values
 int a = arr[0]; // a is now 2
 int b = arr[1]; // b is now 4
 int c = arr[2]; // c is now 6

 return 0;
}

3) std::get<pos>

This non-member function returns a reference to the element at compile-time constant position pos without

C++ Notes for Professionals 266

bounds checking. If pos is not within the range of the container, a runtime segmentation violation error can occur.

The complexity is constant O(1).

#include <array>

int main()
{
 std::array<int, 3> arr;

 // write values
 std::get<0>(arr) = 2;
 std::get<1>(arr) = 4;
 std::get<2>(arr) = 6;

 // read values
 int a = std::get<0>(arr); // a is now 2
 int b = std::get<1>(arr); // b is now 4
 int c = std::get<2>(arr); // c is now 6

 return 0;
}

4) front()

Returns a reference to the first element in container. Calling front() on an empty container is undefined.

The complexity is constant O(1).

Note: For a container c, the expression c.front() is equivalent to *c.begin().

#include <array>

int main()
{
 std::array<int, 3> arr{ 2, 4, 6 };

 int a = arr.front(); // a is now 2

 return 0;
}

5) back()

Returns reference to the last element in the container. Calling back() on an empty container is undefined.

The complexity is constant O(1).

#include <array>

int main()
{
 std::array<int, 3> arr{ 2, 4, 6 };

 int a = arr.back(); // a is now 6

 return 0;
}

C++ Notes for Professionals 267

6) data()

Returns pointer to the underlying array serving as element storage. The pointer is such that range [data();
data() + size()) is always a valid range, even if the container is empty (data() is not dereferenceable in that
case).

The complexity is constant O(1).

#include <iostream>
#include <cstring>
#include <array>

int main ()
{
 const char* cstr = "Test string";
 std::array<char, 12> arr;

 std::memcpy(arr.data(), cstr, 12); // copy cstr to arr

 std::cout << arr.data(); // outputs: Test string

 return 0;
}

Section 49.3: Iterating through the Array
std::array being a STL container, can use range-based for loop similar to other containers like vector

int main() {
 std::array<int, 3> arr = { 1, 2, 3 };
 for (auto i : arr)
 cout << i << '\n';
}

Section 49.4: Checking size of the Array
One of the main advantage of std::array as compared to C style array is that we can check the size of the array
using size() member function

int main() {
 std::array<int, 3> arr = { 1, 2, 3 };
 cout << arr.size() << endl;
}

Section 49.5: Changing all array elements at once
The member function fill() can be used on std::array for changing the values at once post initialization

int main() {

 std::array<int, 3> arr = { 1, 2, 3 };
 // change all elements of the array to 100
 arr.fill(100);

}

C++ Notes for Professionals 268

Chapter 50: std::vector
A vector is a dynamic array with automatically handled storage. The elements in a vector can be accessed just as
efficiently as those in an array with the advantage being that vectors can dynamically change in size.

In terms of storage the vector data is (usually) placed in dynamically allocated memory thus requiring some minor
overhead; conversely C-arrays and std::array use automatic storage relative to the declared location and thus do
not have any overhead.

Section 50.1: Accessing Elements
There are two primary ways of accessing elements in a std::vector

index-based access
iterators

Index-based access:

This can be done either with the subscript operator [], or the member function at().

Both return a reference to the element at the respective position in the std::vector (unless it's a vector<bool>), so
that it can be read as well as modified (if the vector is not const).

[] and at() differ in that [] is not guaranteed to perform any bounds checking, while at() does. Accessing
elements where index < 0 or index >= size is undefined behavior for [], while at() throws a std::out_of_range
exception.

Note: The examples below use C++11-style initialization for clarity, but the operators can be used with all versions
(unless marked C++11).

Version ≥ C++11

std::vector<int> v{ 1, 2, 3 };

// using []
int a = v[1]; // a is 2
v[1] = 4; // v now contains { 1, 4, 3 }

// using at()
int b = v.at(2); // b is 3
v.at(2) = 5; // v now contains { 1, 4, 5 }
int c = v.at(3); // throws std::out_of_range exception

Because the at() method performs bounds checking and can throw exceptions, it is slower than []. This makes []
preferred code where the semantics of the operation guarantee that the index is in bounds. In any case, accesses
to elements of vectors are done in constant time. That means accessing to the first element of the vector has the
same cost (in time) of accessing the second element, the third element and so on.

For example, consider this loop

for (std::size_t i = 0; i < v.size(); ++i) {
 v[i] = 1;
}

Here we know that the index variable i is always in bounds, so it would be a waste of CPU cycles to check that i is
in bounds for every call to operator[].

http://en.cppreference.com/w/cpp/container/vector
http://en.cppreference.com/w/cpp/container/vector
http://en.cppreference.com/w/cpp/container/vector
http://en.cppreference.com/w/cpp/container/vector/operator_at
http://en.cppreference.com/w/cpp/container/vector/at
http://en.cppreference.com/w/cpp/container/vector/at
http://en.cppreference.com/w/cpp/container/vector/at
http://en.cppreference.com/w/cpp/error/out_of_range
http://en.cppreference.com/w/cpp/error/out_of_range
http://en.cppreference.com/w/cpp/error/out_of_range

C++ Notes for Professionals 269

The front() and back() member functions allow easy reference access to the first and last element of the vector,
respectively. These positions are frequently used, and the special accessors can be more readable than their
alternatives using []:

std::vector<int> v{ 4, 5, 6 }; // In pre-C++11 this is more verbose

int a = v.front(); // a is 4, v.front() is equivalent to v[0]
v.front() = 3; // v now contains {3, 5, 6}
int b = v.back(); // b is 6, v.back() is equivalent to v[v.size() - 1]
v.back() = 7; // v now contains {3, 5, 7}

Note: It is undefined behavior to invoke front() or back() on an empty vector. You need to check that the
container is not empty using the empty() member function (which checks if the container is empty) before calling
front() or back(). A simple example of the use of 'empty()' to test for an empty vector follows:

int main ()
{
 std::vector<int> v;
 int sum (0);

 for (int i=1;i<=10;i++) v.push_back(i);//create and initialize the vector

 while (!v.empty())//loop through until the vector tests to be empty
 {
 sum += v.back();//keep a running total
 v.pop_back();//pop out the element which removes it from the vector
 }

 std::cout << "total: " << sum << '\n';//output the total to the user

 return 0;
}

The example above creates a vector with a sequence of numbers from 1 to 10. Then it pops the elements of the
vector out until the vector is empty (using 'empty()') to prevent undefined behavior. Then the sum of the numbers
in the vector is calculated and displayed to the user.

Version ≥ C++11

The data() method returns a pointer to the raw memory used by the std::vector to internally store its elements.
This is most often used when passing the vector data to legacy code that expects a C-style array.

std::vector<int> v{ 1, 2, 3, 4 }; // v contains {1, 2, 3, 4}
int* p = v.data(); // p points to 1
*p = 4; // v now contains {4, 2, 3, 4}
++p; // p points to 2
*p = 3; // v now contains {4, 3, 3, 4}
p[1] = 2; // v now contains {4, 3, 2, 4}
*(p + 2) = 1; // v now contains {4, 3, 2, 1}
Version < C++11

Before C++11, the data() method can be simulated by calling front() and taking the address of the returned
value:

std::vector<int> v(4);
int* ptr = &(v.front()); // or &v[0]

This works because vectors are always guaranteed to store their elements in contiguous memory locations,

http://en.cppreference.com/w/cpp/container/vector/front
http://en.cppreference.com/w/cpp/container/vector/front
http://en.cppreference.com/w/cpp/container/vector/front
http://en.cppreference.com/w/cpp/container/vector/back
http://en.cppreference.com/w/cpp/container/vector/back
http://en.cppreference.com/w/cpp/container/vector/back
http://en.cppreference.com/w/cpp/container/vector/empty
http://en.cppreference.com/w/cpp/container/vector/empty
http://en.cppreference.com/w/cpp/container/vector/empty
http://en.cppreference.com/w/cpp/container/vector/data
http://en.cppreference.com/w/cpp/container/vector/data
http://en.cppreference.com/w/cpp/container/vector/data

C++ Notes for Professionals 270

assuming the contents of the vector doesn't override unary operator&. If it does, you'll have to re-implement
std::addressof in pre-C++11. It also assumes that the vector isn't empty.

Iterators:

Iterators are explained in more detail in the example "Iterating over std::vector" and the article Iterators. In short,
they act similarly to pointers to the elements of the vector:

Version ≥ C++11

std::vector<int> v{ 4, 5, 6 };

auto it = v.begin();
int i = *it; // i is 4
++it;
i = *it; // i is 5
*it = 6; // v contains { 4, 6, 6 }
auto e = v.end(); // e points to the element after the end of v. It can be
 // used to check whether an iterator reached the end of the vector:
++it;
it == v.end(); // false, it points to the element at position 2 (with value 6)
++it;
it == v.end(); // true

It is consistent with the standard that a std::vector<T>'s iterators actually be T*s, but most standard libraries do
not do this. Not doing this both improves error messages, catches non-portable code, and can be used to
instrument the iterators with debugging checks in non-release builds. Then, in release builds, the class wrapping
around the underlying pointer is optimized away.

You can persist a reference or a pointer to an element of a vector for indirect access. These references or pointers
to elements in the vector remain stable and access remains defined unless you add/remove elements at or before
the element in the vector, or you cause the vector capacity to change. This is the same as the rule for invalidating
iterators.

Version ≥ C++11

std::vector<int> v{ 1, 2, 3 };
int* p = v.data() + 1; // p points to 2
v.insert(v.begin(), 0); // p is now invalid, accessing *p is a undefined behavior.
p = v.data() + 1; // p points to 1
v.reserve(10); // p is now invalid, accessing *p is a undefined behavior.
p = v.data() + 1; // p points to 1
v.erase(v.begin()); // p is now invalid, accessing *p is a undefined behavior.

Section 50.2: Initializing a std::vector
A std::vector can be initialized in several ways while declaring it:

Version ≥ C++11

std::vector<int> v{ 1, 2, 3 }; // v becomes {1, 2, 3}

// Different from std::vector<int> v(3, 6)
std::vector<int> v{ 3, 6 }; // v becomes {3, 6}

// Different from std::vector<int> v{3, 6} in C++11
std::vector<int> v(3, 6); // v becomes {6, 6, 6}

std::vector<int> v(4); // v becomes {0, 0, 0, 0}

A vector can be initialized from another container in several ways:

http://en.cppreference.com/w/cpp/memory/addressof
http://en.cppreference.com/w/cpp/memory/addressof
http://en.cppreference.com/w/cpp/memory/addressof
http://en.cppreference.com/w/cpp/container/vector
http://en.cppreference.com/w/cpp/container/vector
http://en.cppreference.com/w/cpp/container/vector
http://en.cppreference.com/w/cpp/container/vector/vector

C++ Notes for Professionals 271

Copy construction (from another vector only), which copies data from v2:

std::vector<int> v(v2);
std::vector<int> v = v2;
Version ≥ C++11

Move construction (from another vector only), which moves data from v2:

std::vector<int> v(std::move(v2));
std::vector<int> v = std::move(v2);

Iterator (range) copy-construction, which copies elements into v:

// from another vector
std::vector<int> v(v2.begin(), v2.begin() + 3); // v becomes {v2[0], v2[1], v2[2]}

// from an array
int z[] = { 1, 2, 3, 4 };
std::vector<int> v(z, z + 3); // v becomes {1, 2, 3}

// from a list
std::list<int> list1{ 1, 2, 3 };
std::vector<int> v(list1.begin(), list1.end()); // v becomes {1, 2, 3}
Version ≥ C++11

Iterator move-construction, using std::make_move_iterator, which moves elements into v:

// from another vector
std::vector<int> v(std::make_move_iterator(v2.begin()),
 std::make_move_iterator(v2.end());

// from a list
std::list<int> list1{ 1, 2, 3 };
std::vector<int> v(std::make_move_iterator(list1.begin()),
 std::make_move_iterator(list1.end()));

With the help of the assign() member function, a std::vector can be reinitialized after its construction:

v.assign(4, 100); // v becomes {100, 100, 100, 100}

v.assign(v2.begin(), v2.begin() + 3); // v becomes {v2[0], v2[1], v2[2]}

int z[] = { 1, 2, 3, 4 };
v.assign(z + 1, z + 4); // v becomes {2, 3, 4}

Section 50.3: Deleting Elements
Deleting the last element:
std::vector<int> v{ 1, 2, 3 };
v.pop_back(); // v becomes {1, 2}

Deleting all elements:
std::vector<int> v{ 1, 2, 3 };
v.clear(); // v becomes an empty vector

Deleting element by index:
std::vector<int> v{ 1, 2, 3, 4, 5, 6 };
v.erase(v.begin() + 3); // v becomes {1, 2, 3, 5, 6}

http://en.cppreference.com/w/cpp/iterator/make_move_iterator
http://en.cppreference.com/w/cpp/iterator/make_move_iterator
http://en.cppreference.com/w/cpp/iterator/make_move_iterator
http://en.cppreference.com/w/cpp/container/vector/assign
http://en.cppreference.com/w/cpp/container/vector/assign
http://en.cppreference.com/w/cpp/container/vector/assign

C++ Notes for Professionals 272

Note: For a vector deleting an element which is not the last element, all elements beyond the deleted element have
to be copied or moved to fill the gap, see the note below and std::list.

Deleting all elements in a range:
std::vector<int> v{ 1, 2, 3, 4, 5, 6 };
v.erase(v.begin() + 1, v.begin() + 5); // v becomes {1, 6}

Note: The above methods do not change the capacity of the vector, only the size. See Vector Size and Capacity.

The erase method, which removes a range of elements, is often used as a part of the erase-remove idiom. That is,
first std::remove moves some elements to the end of the vector, and then erase chops them off. This is a relatively
inefficient operation for any indices less than the last index of the vector because all elements after the erased
segments must be relocated to new positions. For speed critical applications that require efficient removal of
arbitrary elements in a container, see std::list.

Deleting elements by value:
std::vector<int> v{ 1, 1, 2, 2, 3, 3 };
int value_to_remove = 2;
v.erase(std::remove(v.begin(), v.end(), value_to_remove), v.end()); // v becomes {1, 1, 3, 3}

Deleting elements by condition:
// std::remove_if needs a function, that takes a vector element as argument and returns true,
// if the element shall be removed
bool _predicate(const int& element) {
 return (element > 3); // This will cause all elements to be deleted that are larger than 3
}
...
std::vector<int> v{ 1, 2, 3, 4, 5, 6 };
v.erase(std::remove_if(v.begin(), v.end(), _predicate), v.end()); // v becomes {1, 2, 3}

Deleting elements by lambda, without creating additional predicate function
Version ≥ C++11

std::vector<int> v{ 1, 2, 3, 4, 5, 6 };
v.erase(std::remove_if(v.begin(), v.end(),
 [](auto& element){return element > 3;}), v.end()
);

Deleting elements by condition from a loop:
std::vector<int> v{ 1, 2, 3, 4, 5, 6 };
std::vector<int>::iterator it = v.begin();
while (it != v.end()) {
 if (condition)
 it = v.erase(it); // after erasing, 'it' will be set to the next element in v
 else
 ++it; // manually set 'it' to the next element in v
}

While it is important not to increment it in case of a deletion, you should consider using a different method when
then erasing repeatedly in a loop. Consider remove_if for a more efficient way.

Deleting elements by condition from a reverse loop:
std::vector<int> v{ -1, 0, 1, 2, 3, 4, 5, 6 };
typedef std::vector<int>::reverse_iterator rev_itr;
rev_itr it = v.rbegin();

while (it != v.rend()) { // after the loop only '0' will be in v
 int value = *it;
 if (value) {
 ++it;

http://en.cppreference.com/w/cpp/container/vector/erase
https://en.wikipedia.org/wiki/Erase%E2%80%93remove_idiom
http://en.cppreference.com/w/cpp/algorithm/remove
http://en.cppreference.com/w/cpp/algorithm/remove
http://en.cppreference.com/w/cpp/algorithm/remove

C++ Notes for Professionals 273

 // See explanation below for the following line.
 it = rev_itr(v.erase(it.base()));
 } else
 ++it;
}

Note some points for the preceding loop:

Given a reverse iterator it pointing to some element, the method base gives the regular (non-reverse)
iterator pointing to the same element.

vector::erase(iterator) erases the element pointed to by an iterator, and returns an iterator to the
element that followed the given element.

reverse_iterator::reverse_iterator(iterator) constructs a reverse iterator from an iterator.

Put altogether, the line it = rev_itr(v.erase(it.base())) says: take the reverse iterator it, have v erase the
element pointed by its regular iterator; take the resulting iterator, construct a reverse iterator from it, and assign it
to the reverse iterator it.

Deleting all elements using v.clear() does not free up memory (capacity() of the vector remains unchanged). To
reclaim space, use:

std::vector<int>().swap(v);
Version ≥ C++11

shrink_to_fit() frees up unused vector capacity:

v.shrink_to_fit();

The shrink_to_fit does not guarantee to really reclaim space, but most current implementations do.

Section 50.4: Iterating Over std::vector
You can iterate over a std::vector in several ways. For each of the following sections, v is defined as follows:

std::vector<int> v;

Iterating in the Forward Direction
Version ≥ C++11

// Range based for
for(const auto& value: v) {
 std::cout << value << "\n";
}

// Using a for loop with iterator
for(auto it = std::begin(v); it != std::end(v); ++it) {
 std::cout << *it << "\n";
}

// Using for_each algorithm, using a function or functor:
void fun(int const& value) {
 std::cout << value << "\n";
}

std::for_each(std::begin(v), std::end(v), fun);

// Using for_each algorithm. Using a lambda:

http://en.cppreference.com/w/cpp/iterator/reverse_iterator/base
http://en.cppreference.com/w/cpp/container/vector/capacity
http://en.cppreference.com/w/cpp/container/vector/capacity
http://en.cppreference.com/w/cpp/container/vector/capacity
http://en.cppreference.com/w/cpp/container/vector/shrink_to_fit
http://en.cppreference.com/w/cpp/container/vector/shrink_to_fit
http://en.cppreference.com/w/cpp/container/vector/shrink_to_fit
http://en.cppreference.com/w/cpp/container/vector
http://en.cppreference.com/w/cpp/container/vector
http://en.cppreference.com/w/cpp/container/vector

C++ Notes for Professionals 274

std::for_each(std::begin(v), std::end(v), [](int const& value) {
 std::cout << value << "\n";
});
Version < C++11

// Using a for loop with iterator
for(std::vector<int>::iterator it = std::begin(v); it != std::end(v); ++it) {
 std::cout << *it << "\n";
}

// Using a for loop with index
for(std::size_t i = 0; i < v.size(); ++i) {
 std::cout << v[i] << "\n";
}

Iterating in the Reverse Direction
Version ≥ C++14

// There is no standard way to use range based for for this.
// See below for alternatives.

// Using for_each algorithm
// Note: Using a lambda for clarity. But a function or functor will work
std::for_each(std::rbegin(v), std::rend(v), [](auto const& value) {
 std::cout << value << "\n";
});

// Using a for loop with iterator
for(auto rit = std::rbegin(v); rit != std::rend(v); ++rit) {
 std::cout << *rit << "\n";
}

// Using a for loop with index
for(std::size_t i = 0; i < v.size(); ++i) {
 std::cout << v[v.size() - 1 - i] << "\n";
}

Though there is no built-in way to use the range based for to reverse iterate; it is relatively simple to fix this. The
range based for uses begin() and end() to get iterators and thus simulating this with a wrapper object can achieve
the results we require.

Version ≥ C++14

template<class C>
struct ReverseRange {
 C c; // could be a reference or a copy, if the original was a temporary
 ReverseRange(C&& cin): c(std::forward<C>(cin)) {}
 ReverseRange(ReverseRange&&)=default;
 ReverseRange& operator=(ReverseRange&&)=delete;
 auto begin() const {return std::rbegin(c);}
 auto end() const {return std::rend(c);}
};
// C is meant to be deduced, and perfect forwarded into
template<class C>
ReverseRange<C> make_ReverseRange(C&& c) {return {std::forward<C>(c)};}

int main() {
 std::vector<int> v { 1,2,3,4};
 for(auto const& value: make_ReverseRange(v)) {
 std::cout << value << "\n";
 }
}

Enforcing const elements

C++ Notes for Professionals 275

Since C++11 the cbegin() and cend() methods allow you to obtain a constant iterator for a vector, even if the vector
is non-const. A constant iterator allows you to read but not modify the contents of the vector which is useful to
enforce const correctness:

Version ≥ C++11

// forward iteration
for (auto pos = v.cbegin(); pos != v.cend(); ++pos) {
 // type of pos is vector<T>::const_iterator
 // *pos = 5; // Compile error - can't write via const iterator
}

// reverse iteration
for (auto pos = v.crbegin(); pos != v.crend(); ++pos) {
 // type of pos is vector<T>::const_iterator
 // *pos = 5; // Compile error - can't write via const iterator
}

// expects Functor::operand()(T&)
for_each(v.begin(), v.end(), Functor());

// expects Functor::operand()(const T&)
for_each(v.cbegin(), v.cend(), Functor())
Version ≥ C++17

as_const extends this to range iteration:

for (auto const& e : std::as_const(v)) {
 std::cout << e << '\n';
}

This is easy to implement in earlier versions of C++:

Version ≥ C++14

template <class T>
constexpr std::add_const_t<T>& as_const(T& t) noexcept {
 return t;
}

A Note on Efficiency

Since the class std::vector is basically a class that manages a dynamically allocated contiguous array, the same
principle explained here applies to C++ vectors. Accessing the vector's content by index is much more efficient
when following the row-major order principle. Of course, each access to the vector also puts its management
content into the cache as well, but as has been debated many times (notably here and here), the difference in
performance for iterating over a std::vector compared to a raw array is negligible. So the same principle of
efficiency for raw arrays in C also applies for C++'s std::vector.

Section 50.5: vector<bool>: The Exception To So Many, So
Many Rules
The standard (section 23.3.7) specifies that a specialization of vector<bool> is provided, which optimizes space by
packing the bool values, so that each takes up only one bit. Since bits aren't addressable in C++, this means that
several requirements on vector are not placed on vector<bool>:

The data stored is not required to be contiguous, so a vector<bool> can't be passed to a C API which expects
a bool array.
at(), operator [], and dereferencing of iterators do not return a reference to bool. Rather they return a

http://en.cppreference.com/w/cpp/utility/as_const
http://stackoverflow.com/questions/381621/using-arrays-or-stdvectors-in-c-whats-the-performance-gap
http://stackoverflow.com/questions/3664272/is-stdvector-so-much-slower-than-plain-arrays

C++ Notes for Professionals 276

proxy object that (imperfectly) simulates a reference to a bool by overloading its assignment operators. As an
example, the following code may not be valid for std::vector<bool>, because dereferencing an iterator
does not return a reference:

Version ≥ C++11

std::vector<bool> v = {true, false};
for (auto &b: v) { } // error

Similarly, functions expecting a bool& argument cannot be used with the result of operator [] or at() applied to
vector<bool>, or with the result of dereferencing its iterator:

 void f(bool& b);
 f(v[0]); // error
 f(*v.begin()); // error

The implementation of std::vector<bool> is dependent on both the compiler and architecture. The specialisation
is implemented by packing n Booleans into the lowest addressable section of memory. Here, n is the size in bits of
the lowest addressable memory. In most modern systems this is 1 byte or 8 bits. This means that one byte can
store 8 Boolean values. This is an improvement over the traditional implementation where 1 Boolean value is
stored in 1 byte of memory.

Note: The below example shows possible bitwise values of individual bytes in a traditional vs. optimized
vector<bool>. This will not always hold true in all architectures. It is, however, a good way of visualising the
optimization. In the below examples a byte is represented as [x, x, x, x, x, x, x, x].

Traditional std::vector<char> storing 8 Boolean values:

Version ≥ C++11

std::vector<char> trad_vect = {true, false, false, false, true, false, true, true};

Bitwise representation:

[0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,1]

Specialized std::vector<bool> storing 8 Boolean values:

Version ≥ C++11

std::vector<bool> optimized_vect = {true, false, false, false, true, false, true, true};

Bitwise representation:

[1,0,0,0,1,0,1,1]

Notice in the above example, that in the traditional version of std::vector<bool>, 8 Boolean values take up 8 bytes
of memory, whereas in the optimized version of std::vector<bool>, they only use 1 byte of memory. This is a
significant improvement on memory usage. If you need to pass a vector<bool> to an C-style API, you may need to
copy the values to an array, or find a better way to use the API, if memory and performance are at risk.

Section 50.6: Inserting Elements
Appending an element at the end of a vector (by copying/moving):

struct Point {
 double x, y;

C++ Notes for Professionals 277

 Point(double x, double y) : x(x), y(y) {}
};
std::vector<Point> v;
Point p(10.0, 2.0);
v.push_back(p); // p is copied into the vector.
Version ≥ C++11

Appending an element at the end of a vector by constructing the element in place:

std::vector<Point> v;
v.emplace_back(10.0, 2.0); // The arguments are passed to the constructor of the
 // given type (here Point). The object is constructed
 // in the vector, avoiding a copy.

Note that std::vector does not have a push_front() member function due to performance reasons. Adding an
element at the beginning causes all existing elements in the vector to be moved. If you want to frequently insert
elements at the beginning of your container, then you might want to use std::list or std::deque instead.

Inserting an element at any position of a vector:

std::vector<int> v{ 1, 2, 3 };
v.insert(v.begin(), 9); // v now contains {9, 1, 2, 3}
Version ≥ C++11

Inserting an element at any position of a vector by constructing the element in place:

std::vector<int> v{ 1, 2, 3 };
v.emplace(v.begin()+1, 9); // v now contains {1, 9, 2, 3}

Inserting another vector at any position of the vector:

std::vector<int> v(4); // contains: 0, 0, 0, 0
std::vector<int> v2(2, 10); // contains: 10, 10
v.insert(v.begin()+2, v2.begin(), v2.end()); // contains: 0, 0, 10, 10, 0, 0

Inserting an array at any position of a vector:

std::vector<int> v(4); // contains: 0, 0, 0, 0
int a [] = {1, 2, 3}; // contains: 1, 2, 3
v.insert(v.begin()+1, a, a+sizeof(a)/sizeof(a[0])); // contains: 0, 1, 2, 3, 0, 0, 0

Use reserve() before inserting multiple elements if resulting vector size is known beforehand to avoid multiple
reallocations (see vector size and capacity):

std::vector<int> v;
v.reserve(100);
for(int i = 0; i < 100; ++i)
 v.emplace_back(i);

Be sure to not make the mistake of calling resize() in this case, or you will inadvertently create a vector with 200
elements where only the latter one hundred will have the value you intended.

Section 50.7: Using std::vector as a C array
There are several ways to use a std::vector as a C array (for example, for compatibility with C libraries). This is
possible because the elements in a vector are stored contiguously.

http://www.cplusplus.com/reference/vector/vector/reserve/
http://www.cplusplus.com/reference/vector/vector/reserve/
http://www.cplusplus.com/reference/vector/vector/reserve/
http://www.cplusplus.com/reference/vector/vector/resize/
http://www.cplusplus.com/reference/vector/vector/resize/
http://www.cplusplus.com/reference/vector/vector/resize/

C++ Notes for Professionals 278

Version ≥ C++11

std::vector<int> v{ 1, 2, 3 };
int* p = v.data();

In contrast to solutions based on previous C++ standards (see below), the member function .data() may also be
applied to empty vectors, because it doesn't cause undefined behavior in this case.

Before C++11, you would take the address of the vector's first element to get an equivalent pointer, if the vector
isn't empty, these both methods are interchangeable:

int* p = &v[0]; // combine subscript operator and 0 literal

int* p = &v.front(); // explicitly reference the first element

Note: If the vector is empty, v[0] and v.front() are undefined and cannot be used.

When storing the base address of the vector's data, note that many operations (such as push_back, resize, etc.) can
change the data memory location of the vector, thus invalidating previous data pointers. For example:

std::vector<int> v;
int* p = v.data();
v.resize(42); // internal memory location changed; value of p is now invalid

Section 50.8: Finding an Element in std::vector
The function std::find, defined in the <algorithm> header, can be used to find an element in a std::vector.

std::find uses the operator== to compare elements for equality. It returns an iterator to the first element in the
range that compares equal to the value.

If the element in question is not found, std::find returns std::vector::end (or std::vector::cend if the vector is
const).

Version < C++11

static const int arr[] = {5, 4, 3, 2, 1};
std::vector<int> v (arr, arr + sizeof(arr) / sizeof(arr[0]));

std::vector<int>::iterator it = std::find(v.begin(), v.end(), 4);
std::vector<int>::difference_type index = std::distance(v.begin(), it);
// `it` points to the second element of the vector, `index` is 1

std::vector<int>::iterator missing = std::find(v.begin(), v.end(), 10);
std::vector<int>::difference_type index_missing = std::distance(v.begin(), missing);
// `missing` is v.end(), `index_missing` is 5 (ie. size of the vector)
Version ≥ C++11

std::vector<int> v { 5, 4, 3, 2, 1 };

auto it = std::find(v.begin(), v.end(), 4);
auto index = std::distance(v.begin(), it);
// `it` points to the second element of the vector, `index` is 1

auto missing = std::find(v.begin(), v.end(), 10);
auto index_missing = std::distance(v.begin(), missing);
// `missing` is v.end(), `index_missing` is 5 (ie. size of the vector)

If you need to perform many searches in a large vector, then you may want to consider sorting the vector first,

http://en.cppreference.com/w/cpp/algorithm/find
http://en.cppreference.com/w/cpp/algorithm/find
http://en.cppreference.com/w/cpp/algorithm/find
http://en.cppreference.com/w/cpp/algorithm
http://en.cppreference.com/w/cpp/algorithm

C++ Notes for Professionals 279

before using the binary_search algorithm.

To find the first element in a vector that satisfies a condition, std::find_if can be used. In addition to the two
parameters given to std::find, std::find_if accepts a third argument which is a function object or function
pointer to a predicate function. The predicate should accept an element from the container as an argument and
return a value convertible to bool, without modifying the container:

Version < C++11

bool isEven(int val) {
 return (val % 2 == 0);
}

struct moreThan {
 moreThan(int limit) : _limit(limit) {}

 bool operator()(int val) {
 return val > _limit;
 }

 int _limit;
};

static const int arr[] = {1, 3, 7, 8};
std::vector<int> v (arr, arr + sizeof(arr) / sizeof(arr[0]));

std::vector<int>::iterator it = std::find_if(v.begin(), v.end(), isEven);
// `it` points to 8, the first even element

std::vector<int>::iterator missing = std::find_if(v.begin(), v.end(), moreThan(10));
// `missing` is v.end(), as no element is greater than 10
Version ≥ C++11

// find the first value that is even
std::vector<int> v = {1, 3, 7, 8};
auto it = std::find_if(v.begin(), v.end(), [](int val){return val % 2 == 0;});
// `it` points to 8, the first even element

auto missing = std::find_if(v.begin(), v.end(), [](int val){return val > 10;});
// `missing` is v.end(), as no element is greater than 10

Section 50.9: Concatenating Vectors
One std::vector can be append to another by using the member function insert():

std::vector<int> a = {0, 1, 2, 3, 4};
std::vector<int> b = {5, 6, 7, 8, 9};

a.insert(a.end(), b.begin(), b.end());

However, this solution fails if you try to append a vector to itself, because the standard specifies that iterators given
to insert() must not be from the same range as the receiver object's elements.

Version ≥ c++11

Instead of using the vector's member functions, the functions std::begin() and std::end() can be used:

a.insert(std::end(a), std::begin(b), std::end(b));

This is a more general solution, for example, because b can also be an array. However, also this solution doesn't

http://en.cppreference.com/w/cpp/algorithm/binary_search
http://en.cppreference.com/w/cpp/container/vector/insert
http://en.cppreference.com/w/cpp/container/vector/insert
http://en.cppreference.com/w/cpp/container/vector/insert
http://en.cppreference.com/w/cpp/iterator/begin
http://en.cppreference.com/w/cpp/iterator/begin
http://en.cppreference.com/w/cpp/iterator/begin
http://en.cppreference.com/w/cpp/iterator/begin
http://en.cppreference.com/w/cpp/iterator/begin
http://en.cppreference.com/w/cpp/iterator/end
http://en.cppreference.com/w/cpp/iterator/end
http://en.cppreference.com/w/cpp/iterator/end
http://en.cppreference.com/w/cpp/iterator/end
http://en.cppreference.com/w/cpp/iterator/end

C++ Notes for Professionals 280

allow you to append a vector to itself.

If the order of the elements in the receiving vector doesn't matter, considering the number of elements in each
vector can avoid unnecessary copy operations:

if (b.size() < a.size())
 a.insert(a.end(), b.begin(), b.end());
else
 b.insert(b.end(), a.begin(), a.end());

Section 50.10: Matrices Using Vectors
Vectors can be used as a 2D matrix by defining them as a vector of vectors.

A matrix with 3 rows and 4 columns with each cell initialised as 0 can be defined as:

std::vector<std::vector<int> > matrix(3, std::vector<int>(4));
Version ≥ C++11

The syntax for initializing them using initialiser lists or otherwise are similar to that of a normal vector.

 std::vector<std::vector<int>> matrix = { {0,1,2,3},
 {4,5,6,7},
 {8,9,10,11}
 };

Values in such a vector can be accessed similar to a 2D array

int var = matrix[0][2];

Iterating over the entire matrix is similar to that of a normal vector but with an extra dimension.

for(int i = 0; i < 3; ++i)
{
 for(int j = 0; j < 4; ++j)
 {
 std::cout << matrix[i][j] << std::endl;
 }
}
Version ≥ C++11

for(auto& row: matrix)
{
 for(auto& col : row)
 {
 std::cout << col << std::endl;
 }
}

A vector of vectors is a convenient way to represent a matrix but it's not the most efficient: individual vectors are
scattered around memory and the data structure isn't cache friendly.

Also, in a proper matrix, the length of every row must be the same (this isn't the case for a vector of vectors). The
additional flexibility can be a source of errors.

C++ Notes for Professionals 281

Section 50.11: Using a Sorted Vector for Fast Element Lookup
The <algorithm> header provides a number of useful functions for working with sorted vectors.

An important prerequisite for working with sorted vectors is that the stored values are comparable with <.

An unsorted vector can be sorted by using the function std::sort():

std::vector<int> v;
// add some code here to fill v with some elements
std::sort(v.begin(), v.end());

Sorted vectors allow efficient element lookup using the function std::lower_bound(). Unlike std::find(), this
performs an efficient binary search on the vector. The downside is that it only gives valid results for sorted input
ranges:

// search the vector for the first element with value 42
std::vector<int>::iterator it = std::lower_bound(v.begin(), v.end(), 42);
if (it != v.end() && *it == 42) {
 // we found the element!
}

Note: If the requested value is not part of the vector, std::lower_bound() will return an iterator to the first element
that is greater than the requested value. This behavior allows us to insert a new element at its right place in an
already sorted vector:

int const new_element = 33;
v.insert(std::lower_bound(v.begin(), v.end(), new_element), new_element);

If you need to insert a lot of elements at once, it might be more efficient to call push_back() for all them first and
then call std::sort() once all elements have been inserted. In this case, the increased cost of the sorting can pay
off against the reduced cost of inserting new elements at the end of the vector and not in the middle.

If your vector contains multiple elements of the same value, std::lower_bound() will try to return an iterator to the
first element of the searched value. However, if you need to insert a new element after the last element of the
searched value, you should use the function std::upper_bound() as this will cause less shifting around of
elements:

v.insert(std::upper_bound(v.begin(), v.end(), new_element), new_element);

If you need both the upper bound and the lower bound iterators, you can use the function std::equal_range() to
retrieve both of them efficiently with one call:

std::pair<std::vector<int>::iterator,
 std::vector<int>::iterator> rg = std::equal_range(v.begin(), v.end(), 42);
std::vector<int>::iterator lower_bound = rg.first;
std::vector<int>::iterator upper_bound = rg.second;

In order to test whether an element exists in a sorted vector (although not specific to vectors), you can use the
function std::binary_search():

bool exists = std::binary_search(v.begin(), v.end(), value_to_find);

http://en.cppreference.com/w/cpp/header/algorithm
http://en.cppreference.com/w/cpp/header/algorithm
http://en.cppreference.com/w/cpp/algorithm/sort
http://en.cppreference.com/w/cpp/algorithm/sort
http://en.cppreference.com/w/cpp/algorithm/sort
http://en.cppreference.com/w/cpp/algorithm/sort
http://en.cppreference.com/w/cpp/algorithm/sort
http://en.cppreference.com/w/cpp/algorithm/lower_bound
http://en.cppreference.com/w/cpp/algorithm/lower_bound
http://en.cppreference.com/w/cpp/algorithm/lower_bound
http://en.cppreference.com/w/cpp/algorithm/lower_bound
http://en.cppreference.com/w/cpp/algorithm/lower_bound
http://en.cppreference.com/w/cpp/algorithm/find
http://en.cppreference.com/w/cpp/algorithm/find
http://en.cppreference.com/w/cpp/algorithm/find
http://en.cppreference.com/w/cpp/algorithm/find
http://en.cppreference.com/w/cpp/algorithm/find
http://en.cppreference.com/w/cpp/algorithm/upper_bound
http://en.cppreference.com/w/cpp/algorithm/upper_bound
http://en.cppreference.com/w/cpp/algorithm/upper_bound
http://en.cppreference.com/w/cpp/algorithm/upper_bound
http://en.cppreference.com/w/cpp/algorithm/upper_bound
http://en.cppreference.com/w/cpp/algorithm/equal_range
http://en.cppreference.com/w/cpp/algorithm/equal_range
http://en.cppreference.com/w/cpp/algorithm/equal_range
http://en.cppreference.com/w/cpp/algorithm/equal_range
http://en.cppreference.com/w/cpp/algorithm/equal_range
http://en.cppreference.com/w/cpp/algorithm/binary_search
http://en.cppreference.com/w/cpp/algorithm/binary_search
http://en.cppreference.com/w/cpp/algorithm/binary_search
http://en.cppreference.com/w/cpp/algorithm/binary_search
http://en.cppreference.com/w/cpp/algorithm/binary_search

C++ Notes for Professionals 282

Section 50.12: Reducing the Capacity of a Vector
A std::vector automatically increases its capacity upon insertion as needed, but it never reduces its capacity after
element removal.

// Initialize a vector with 100 elements
std::vector<int> v(100);

// The vector's capacity is always at least as large as its size
auto const old_capacity = v.capacity();
// old_capacity >= 100

// Remove half of the elements
v.erase(v.begin() + 50, v.end()); // Reduces the size from 100 to 50 (v.size() == 50),
 // but not the capacity (v.capacity() == old_capacity)

To reduce its capacity, we can copy the contents of a vector to a new temporary vector. The new vector will have the
minimum capacity that is needed to store all elements of the original vector. If the size reduction of the original
vector was significant, then the capacity reduction for the new vector is likely to be significant. We can then swap
the original vector with the temporary one to retain its minimized capacity:

std::vector<int>(v).swap(v);
Version ≥ C++11

In C++11 we can use the shrink_to_fit() member function for a similar effect:

v.shrink_to_fit();

Note: The shrink_to_fit() member function is a request and doesn't guarantee to reduce capacity.

Section 50.13: Vector size and capacity
Vector size is simply the number of elements in the vector:

Current vector size is queried by size() member function. Convenience empty() function returns true if size1.
is 0:

vector<int> v = { 1, 2, 3 }; // size is 3
const vector<int>::size_type size = v.size();
cout << size << endl; // prints 3
cout << boolalpha << v.empty() << endl; // prints false

Default constructed vector starts with a size of 0:2.

vector<int> v; // size is 0
cout << v.size() << endl; // prints 0

Adding N elements to vector increases size by N (e.g. by push_back(), insert() or resize() functions).3.

Removing N elements from vector decreases size by N (e.g. by pop_back(), erase() or clear() functions).4.

Vector has an implementation-specific upper limit on its size, but you are likely to run out of RAM before5.
reaching it:

vector<int> v;

C++ Notes for Professionals 283

const vector<int>::size_type max_size = v.max_size();
cout << max_size << endl; // prints some large number
v.resize(max_size); // probably won't work
v.push_back(1); // definitely won't work

Common mistake: size is not necessarily (or even usually) int:

// !!!bad!!!evil!!!
vector<int> v_bad(N, 1); // constructs large N size vector
for(int i = 0; i < v_bad.size(); ++i) { // size is not supposed to be int!
 do_something(v_bad[i]);
}

Vector capacity differs from size. While size is simply how many elements the vector currently has, capacity is for
how many elements it allocated/reserved memory for. That is useful, because too frequent (re)allocations of too
large sizes can be expensive.

Current vector capacity is queried by capacity() member function. Capacity is always greater or equal to1.
size:

vector<int> v = { 1, 2, 3 }; // size is 3, capacity is >= 3
const vector<int>::size_type capacity = v.capacity();
cout << capacity << endl; // prints number >= 3

You can manually reserve capacity by reserve(N) function (it changes vector capacity to N):2.

// !!!bad!!!evil!!!
vector<int> v_bad;
for(int i = 0; i < 10000; ++i) {
 v_bad.push_back(i); // possibly lot of reallocations
}

// good
vector<int> v_good;
v_good.reserve(10000); // good! only one allocation
for(int i = 0; i < 10000; ++i) {
 v_good.push_back(i); // no allocations needed anymore
}

You can request for the excess capacity to be released by shrink_to_fit() (but the implementation doesn't3.
have to obey you). This is useful to conserve used memory:

vector<int> v = { 1, 2, 3, 4, 5 }; // size is 5, assume capacity is 6
v.shrink_to_fit(); // capacity is 5 (or possibly still 6)
cout << boolalpha << v.capacity() == v.size() << endl; // prints likely true (but possibly
false)

Vector partly manages capacity automatically, when you add elements it may decide to grow. Implementers like to
use 2 or 1.5 for the grow factor (golden ratio would be the ideal value - but is impractical due to being rational
number). On the other hand vector usually do not automatically shrink. For example:

vector<int> v; // capacity is possibly (but not guaranteed) to be 0
v.push_back(1); // capacity is some starter value, likely 1
v.clear(); // size is 0 but capacity is still same as before!

C++ Notes for Professionals 284

v = { 1, 2, 3, 4 }; // size is 4, and lets assume capacity is 4.
v.push_back(5); // capacity grows - let's assume it grows to 6 (1.5 factor)
v.push_back(6); // no change in capacity
v.push_back(7); // capacity grows - let's assume it grows to 9 (1.5 factor)
// and so on
v.pop_back(); v.pop_back(); v.pop_back(); v.pop_back(); // capacity stays the same

Section 50.14: Iterator/Pointer Invalidation
Iterators and pointers pointing into an std::vector can become invalid, but only when performing certain
operations. Using invalid iterators/pointers will result in undefined behavior.

Operations which invalidate iterators/pointers include:

Any insertion operation which changes the capacity of the vector will invalidate all iterators/pointers:

vector<int> v(5); // Vector has a size of 5; capacity is unknown.
int *p1 = &v[0];
v.push_back(2); // p1 may have been invalidated, since the capacity was unknown.

v.reserve(20); // Capacity is now at least 20.
int *p2 = &v[0];
v.push_back(4); // p2 is *not* invalidated, since the size of `v` is now 7.
v.insert(v.end(), 30, 9); // Inserts 30 elements at the end. The size exceeds the
 // requested capacity of 20, so `p2` is (probably) invalidated.
int *p3 = &v[0];
v.reserve(v.capacity() + 20); // Capacity exceeded, thus `p3` is invalid.

Version ≥ C++11

auto old_cap = v.capacity();
v.shrink_to_fit();
if(old_cap != v.capacity())
 // Iterators were invalidated.

Any insertion operation, which does not increase the capacity, will still invalidate iterators/pointers pointing
to elements at the insertion position and past it. This includes the end iterator:

vector<int> v(5);
v.reserve(20); // Capacity is at least 20.
int *p1 = &v[0];
int *p2 = &v[3];
v.insert(v.begin() + 2, 5, 0); // `p2` is invalidated, but since the capacity
 // did not change, `p1` remains valid.
int *p3 = &v[v.size() - 1];
v.push_back(10); // The capacity did not change, so `p3` and `p1` remain valid.

Any removal operation will invalidate iterators/pointers pointing to the removed elements and to any
elements past the removed elements. This includes the end iterator:

vector<int> v(10);
int *p1 = &v[0];
int *p2 = &v[5];
v.erase(v.begin() + 3, v.end()); // `p2` is invalid, but `p1` remains valid.

operator= (copy, move, or otherwise) and clear() will invalidate all iterators/pointers pointing into the
vector.

C++ Notes for Professionals 285

Section 50.15: Find max and min Element and Respective
Index in a Vector
To find the largest or smallest element stored in a vector, you can use the methods std::max_element and
std::min_element, respectively. These methods are defined in <algorithm> header. If several elements are
equivalent to the greatest (smallest) element, the methods return the iterator to the first such element. Return
v.end() for empty vectors.

std::vector<int> v = {5, 2, 8, 10, 9};
int maxElementIndex = std::max_element(v.begin(),v.end()) - v.begin();
int maxElement = *std::max_element(v.begin(), v.end());

int minElementIndex = std::min_element(v.begin(),v.end()) - v.begin();
int minElement = *std::min_element(v.begin(), v.end());

std::cout << "maxElementIndex:" << maxElementIndex << ", maxElement:" << maxElement << '\n';
std::cout << "minElementIndex:" << minElementIndex << ", minElement:" << minElement << '\n';

Output:

maxElementIndex:3, maxElement:10
minElementIndex:1, minElement:2

Version ≥ C++11

The minimum and maximum element in a vector can be retrieved at the same time by using the method
std::minmax_element, which is also defined in <algorithm> header:

std::vector<int> v = {5, 2, 8, 10, 9};
auto minmax = std::minmax_element(v.begin(), v.end());

std::cout << "minimum element: " << *minmax.first << '\n';
std::cout << "maximum element: " << *minmax.second << '\n';

Output:

minimum element: 2
maximum element: 10

Section 50.16: Converting an array to std::vector
An array can easily be converted into a std::vector by using std::begin and std::end:

Version ≥ C++11

int values[5] = { 1, 2, 3, 4, 5 }; // source array

std::vector<int> v(std::begin(values), std::end(values)); // copy array to new vector

for(auto &x: v)
 std::cout << x << " ";
std::cout << std::endl;

http://en.cppreference.com/w/cpp/algorithm/max_element
http://en.cppreference.com/w/cpp/algorithm/max_element
http://en.cppreference.com/w/cpp/algorithm/max_element
http://en.cppreference.com/w/cpp/algorithm/min_element
http://en.cppreference.com/w/cpp/algorithm/min_element
http://en.cppreference.com/w/cpp/algorithm/min_element
http://en.cppreference.com/w/cpp/algorithm
http://en.cppreference.com/w/cpp/algorithm
http://en.cppreference.com/w/cpp/minmax_element
http://en.cppreference.com/w/cpp/minmax_element
http://en.cppreference.com/w/cpp/minmax_element
http://en.cppreference.com/w/cpp/algorithm
http://en.cppreference.com/w/cpp/algorithm
http://en.cppreference.com/w/cpp/iterator/begin
http://en.cppreference.com/w/cpp/iterator/begin
http://en.cppreference.com/w/cpp/iterator/begin
http://en.cppreference.com/w/cpp/iterator/end
http://en.cppreference.com/w/cpp/iterator/end
http://en.cppreference.com/w/cpp/iterator/end

C++ Notes for Professionals 286

1 2 3 4 5

int main(int argc, char* argv[]) {
 // convert main arguments into a vector of strings.
 std::vector<std::string> args(argv, argv + argc);
}

A C++11 initializer_list<> can also be used to initialize the vector at once

initializer_list<int> arr = { 1,2,3,4,5 };
vector<int> vec1 {arr};

for (auto & i : vec1)
 cout << i << endl;

Section 50.17: Functions Returning Large Vectors
Version ≥ C++11

In C++11, compilers are required to implicitly move from a local variable that is being returned. Moreover, most
compilers can perform copy elision in many cases and elide the move altogether. As a result of this, returning large
objects that can be moved cheaply no longer requires special handling:

#include <vector>
#include <iostream>

// If the compiler is unable to perform named return value optimization (NRVO)
// and elide the move altogether, it is required to move from v into the return value.
std::vector<int> fillVector(int a, int b) {
 std::vector<int> v;
 v.reserve(b-a+1);
 for (int i = a; i <= b; i++) {
 v.push_back(i);
 }
 return v; // implicit move
}

int main() { // declare and fill vector
 std::vector<int> vec = fillVector(1, 10);

 // print vector
 for (auto value : vec)
 std::cout << value << " "; // this will print "1 2 3 4 5 6 7 8 9 10 "

 std::cout << std::endl;

 return 0;
}
Version < C++11

Before C++11, copy elision was already allowed and implemented by most compilers. However, due to the absence
of move semantics, in legacy code or code that has to be compiled with older compiler versions which don't
implement this optimization, you can find vectors being passed as output arguments to prevent the unneeded
copy:

#include <vector>
#include <iostream>

C++ Notes for Professionals 287

// passing a std::vector by reference
void fillVectorFrom_By_Ref(int a, int b, std::vector<int> &v) {
 assert(v.empty());
 v.reserve(b-a+1);
 for (int i = a; i <= b; i++) {
 v.push_back(i);
 }
}

int main() {// declare vector
 std::vector<int> vec;

 // fill vector
 fillVectorFrom_By_Ref(1, 10, vec);
 // print vector
 for (std::vector<int>::const_iterator it = vec.begin(); it != vec.end(); ++it)
 std::cout << *it << " "; // this will print "1 2 3 4 5 6 7 8 9 10 "
 std::cout << std::endl;
 return 0;
}

C++ Notes for Professionals 288

Chapter 51: std::map
Section 51.1: Accessing elements
An std::map takes (key, value) pairs as input.

Consider the following example of std::map initialization:

std::map < std::string, int > ranking { std::make_pair("stackoverflow", 2),
 std::make_pair("docs-beta", 1) };

In an std::map , elements can be inserted as follows:

ranking["stackoverflow"]=2;
ranking["docs-beta"]=1;

In the above example, if the key stackoverflow is already present, its value will be updated to 2. If it isn't already
present, a new entry will be created.

In an std::map, elements can be accessed directly by giving the key as an index:

std::cout << ranking["stackoverflow"] << std::endl;

Note that using the operator[] on the map will actually insert a new value with the queried key into the map. This
means that you cannot use it on a const std::map, even if the key is already stored in the map. To prevent this
insertion, check if the element exists (for example by using find()) or use at() as described below.

Version ≥ C++11

Elements of a std::map can be accessed with at():

std::cout << ranking.at("stackoverflow") << std::endl;

Note that at() will throw an std::out_of_range exception if the container does not contain the requested
element.

In both containers std::map and std::multimap, elements can be accessed using iterators:

Version ≥ C++11

// Example using begin()
std::multimap < int, std::string > mmp { std::make_pair(2, "stackoverflow"),
 std::make_pair(1, "docs-beta"),
 std::make_pair(2, "stackexchange") };
auto it = mmp.begin();
std::cout << it->first << " : " << it->second << std::endl; // Output: "1 : docs-beta"
it++;
std::cout << it->first << " : " << it->second << std::endl; // Output: "2 : stackoverflow"
it++;
std::cout << it->first << " : " << it->second << std::endl; // Output: "2 : stackexchange"

// Example using rbegin()
std::map < int, std::string > mp { std::make_pair(2, "stackoverflow"),
 std::make_pair(1, "docs-beta"),
 std::make_pair(2, "stackexchange") };
auto it2 = mp.rbegin();

http://en.cppreference.com/w/cpp/container/map
http://en.cppreference.com/w/cpp/container/map
http://en.cppreference.com/w/cpp/container/map
http://en.cppreference.com/w/cpp/container/map
http://en.cppreference.com/w/cpp/container/map
http://en.cppreference.com/w/cpp/container/map
http://en.cppreference.com/w/cpp/container/map
http://en.cppreference.com/w/cpp/container/map
http://en.cppreference.com/w/cpp/container/map
http://en.cppreference.com/w/cpp/container/map
http://en.cppreference.com/w/cpp/container/map
http://en.cppreference.com/w/cpp/container/map
http://en.cppreference.com/w/cpp/container/multimap
http://en.cppreference.com/w/cpp/container/multimap
http://en.cppreference.com/w/cpp/container/multimap

C++ Notes for Professionals 289

std::cout << it2->first << " : " << it2->second << std::endl; // Output: "2 : stackoverflow"
it2++;
std::cout << it2->first << " : " << it2->second << std::endl; // Output: "1 : docs-beta"

Section 51.2: Inserting elements
An element can be inserted into a std::map only if its key is not already present in the map. Given for example:

std::map< std::string, size_t > fruits_count;

A key-value pair is inserted into a std::map through the insert() member function. It requires a pair as an
argument:

fruits_count.insert({"grapes", 20});
fruits_count.insert(make_pair("orange", 30));
fruits_count.insert(pair<std::string, size_t>("banana", 40));
fruits_count.insert(map<std::string, size_t>::value_type("cherry", 50));

The insert() function returns a pair consisting of an iterator and a bool value:

If the insertion was successful, the iterator points to the newly inserted element, and the bool value is
true.
If there was already an element with the same key, the insertion fails. When that happens, the iterator
points to the element causing the conflict, and the bool is value is false.

The following method can be used to combine insertion and searching operation:

auto success = fruits_count.insert({"grapes", 20});
if (!success.second) { // we already have 'grapes' in the map
 success.first->second += 20; // access the iterator to update the value
}

For convenience, the std::map container provides the subscript operator to access elements in the map and
to insert new ones if they don't exist:

fruits_count["apple"] = 10;

While simpler, it prevents the user from checking if the element already exists. If an element is missing,
std::map::operator[] implicitly creates it, initializing it with the default constructor before overwriting it
with the supplied value.

insert() can be used to add several elements at once using a braced list of pairs. This version of insert()
returns void:

fruits_count.insert({{"apricot", 1}, {"jackfruit", 1}, {"lime", 1}, {"mango", 7}});

insert() can also be used to add elements by using iterators denoting the begin and end of value_type
values:

std::map< std::string, size_t > fruit_list{ {"lemon", 0}, {"olive", 0}, {"plum", 0}};
fruits_count.insert(fruit_list.begin(), fruit_list.end());

C++ Notes for Professionals 290

Example:

std::map<std::string, size_t> fruits_count;
std::string fruit;
while(std::cin >> fruit){
 // insert an element with 'fruit' as key and '1' as value
 // (if the key is already stored in fruits_count, insert does nothing)
 auto ret = fruits_count.insert({fruit, 1});
 if(!ret.second){ // 'fruit' is already in the map
 ++ret.first->second; // increment the counter
 }
}

Time complexity for an insertion operation is O(log n) because std::map are implemented as trees.

Version ≥ C++11

A pair can be constructed explicitly using make_pair() and emplace():

std::map< std::string , int > runs;
runs.emplace("Babe Ruth", 714);
runs.insert(make_pair("Barry Bonds", 762));

If we know where the new element will be inserted, then we can use emplace_hint() to specify an iterator hint. If
the new element can be inserted just before hint, then the insertion can be done in constant time. Otherwise it
behaves in the same way as emplace():

std::map< std::string , int > runs;
auto it = runs.emplace("Barry Bonds", 762); // get iterator to the inserted element
// the next element will be before "Barry Bonds", so it is inserted before 'it'
runs.emplace_hint(it, "Babe Ruth", 714);

Section 51.3: Searching in std::map or in std::multimap
There are several ways to search a key in std::map or in std::multimap.

To get the iterator of the first occurrence of a key, the find() function can be used. It returns end() if the key
does not exist.

 std::multimap< int , int > mmp{ {1, 2}, {3, 4}, {6, 5}, {8, 9}, {3, 4}, {6, 7} };
 auto it = mmp.find(6);
 if(it!=mmp.end())
 std::cout << it->first << ", " << it->second << std::endl; //prints: 6, 5
 else
 std::cout << "Value does not exist!" << std::endl;

 it = mmp.find(66);
 if(it!=mmp.end())
 std::cout << it->first << ", " << it->second << std::endl;
 else
 std::cout << "Value does not exist!" << std::endl; // This line would be executed.

Another way to find whether an entry exists in std::map or in std::multimap is using the count() function,
which counts how many values are associated with a given key. Since std::map associates only one value
with each key, its count() function can only return 0 (if the key is not present) or 1 (if it is). For
std::multimap, count() can return values greater than 1 since there can be several values associated with

C++ Notes for Professionals 291

the same key.

 std::map< int , int > mp{ {1, 2}, {3, 4}, {6, 5}, {8, 9}, {3, 4}, {6, 7} };
 if(mp.count(3) > 0) // 3 exists as a key in map
 std::cout << "The key exists!" << std::endl; // This line would be executed.
 else
 std::cout << "The key does not exist!" << std::endl;

If you only care whether some element exists, find is strictly better: it documents your intent and, for
multimaps, it can stop once the first matching element has been found.

In the case of std::multimap, there could be several elements having the same key. To get this range, the
equal_range() function is used which returns std::pair having iterator lower bound (inclusive) and upper
bound (exclusive) respectively. If the key does not exist, both iterators would point to end().

 auto eqr = mmp.equal_range(6);
 auto st = eqr.first, en = eqr.second;
 for(auto it = st; it != en; ++it){
 std::cout << it->first << ", " << it->second << std::endl;
 }
 // prints: 6, 5
 // 6, 7

Section 51.4: Initializing a std::map or std::multimap
std::map and std::multimap both can be initialized by providing key-value pairs separated by comma. Key-value
pairs could be provided by either {key, value} or can be explicitly created by std::make_pair(key, value). As
std::map does not allow duplicate keys and comma operator performs right to left, the pair on right would be
overwritten with the pair with same key on the left.

std::multimap < int, std::string > mmp { std::make_pair(2, "stackoverflow"),
 std::make_pair(1, "docs-beta"),
 std::make_pair(2, "stackexchange") };
// 1 docs-beta
// 2 stackoverflow
// 2 stackexchange

std::map < int, std::string > mp { std::make_pair(2, "stackoverflow"),
 std::make_pair(1, "docs-beta"),
 std::make_pair(2, "stackexchange") };
// 1 docs-beta
// 2 stackoverflow

Both could be initialized with iterator.

// From std::map or std::multimap iterator
std::multimap< int , int > mmp{ {1, 2}, {3, 4}, {6, 5}, {8, 9}, {6, 8}, {3, 4},
 {6, 7} };
 // {1, 2}, {3, 4}, {3, 4}, {6, 5}, {6, 8}, {6, 7}, {8, 9}
auto it = mmp.begin();
std::advance(it,3); //moved cursor on first {6, 5}
std::map< int, int > mp(it, mmp.end()); // {6, 5}, {8, 9}

//From std::pair array
std::pair< int, int > arr[10];
arr[0] = {1, 3};

C++ Notes for Professionals 292

arr[1] = {1, 5};
arr[2] = {2, 5};
arr[3] = {0, 1};
std::map< int, int > mp(arr,arr+4); //{0 , 1}, {1, 3}, {2, 5}

//From std::vector of std::pair
std::vector< std::pair<int, int> > v{ {1, 5}, {5, 1}, {3, 6}, {3, 2} };
std::multimap< int, int > mp(v.begin(), v.end());
 // {1, 5}, {3, 6}, {3, 2}, {5, 1}

Section 51.5: Checking number of elements
The container std::map has a member function empty(), which returns true or false, depending on whether the
map is empty or not. The member function size() returns the number of element stored in a std::map container:

std::map<std::string , int> rank {{"facebook.com", 1} ,{"google.com", 2}, {"youtube.com", 3}};
if(!rank.empty()){
 std::cout << "Number of elements in the rank map: " << rank.size() << std::endl;
}
else{
 std::cout << "The rank map is empty" << std::endl;
}

Section 51.6: Types of Maps
Regular Map

A map is an associative container, containing key-value pairs.

#include <string>
#include <map>
std::map<std::string, size_t> fruits_count;

In the above example, std::string is the key type, and size_t is a value.

The key acts as an index in the map. Each key must be unique, and must be ordered.

If you need mutliple elements with the same key, consider using multimap (explained below)

If your value type does not specify any ordering, or you want to override the default ordering, you may
provide one:

#include <string>
#include <map>
#include <cstring>
struct StrLess {
 bool operator()(const std::string& a, const std::string& b) {
 return strncmp(a.c_str(), b.c_str(), 8)<0;
 //compare only up to 8 first characters
 }
}
std::map<std::string, size_t, StrLess> fruits_count2;

If StrLess comparator returns false for two keys, they are considered the same even if their actual contents
differ.

C++ Notes for Professionals 293

Multi-Map

Multimap allows multiple key-value pairs with the same key to be stored in the map. Otherwise, its interface and
creation is very similar to the regular map.

 #include <string>
 #include <map>
 std::multimap<std::string, size_t> fruits_count;
 std::multimap<std::string, size_t, StrLess> fruits_count2;

Hash-Map (Unordered Map)

A hash map stores key-value pairs similar to a regular map. It does not order the elements with respect to the key
though. Instead, a hash value for the key is used to quickly access the needed key-value pairs.

#include <string>
#include <unordered_map>
std::unordered_map<std::string, size_t> fruits_count;

Unordered maps are usually faster, but the elements are not stored in any predictable order. For example, iterating
over all elements in an unordered_map gives the elements in a seemingly random order.

Section 51.7: Deleting elements
Removing all elements:

std::multimap< int , int > mmp{ {1, 2}, {3, 4}, {6, 5}, {8, 9}, {3, 4}, {6, 7} };
mmp.clear(); //empty multimap

Removing element from somewhere with the help of iterator:

std::multimap< int , int > mmp{ {1, 2}, {3, 4}, {6, 5}, {8, 9}, {3, 4}, {6, 7} };
 // {1, 2}, {3, 4}, {3, 4}, {6, 5}, {6, 7}, {8, 9}
auto it = mmp.begin();
std::advance(it,3); // moved cursor on first {6, 5}
mmp.erase(it); // {1, 2}, {3, 4}, {3, 4}, {6, 7}, {8, 9}

Removing all elements in a range:

std::multimap< int , int > mmp{ {1, 2}, {3, 4}, {6, 5}, {8, 9}, {3, 4}, {6, 7} };
 // {1, 2}, {3, 4}, {3, 4}, {6, 5}, {6, 7}, {8, 9}
auto it = mmp.begin();
auto it2 = it;
it++; //moved first cursor on first {3, 4}
std::advance(it2,3); //moved second cursor on first {6, 5}
mmp.erase(it,it2); // {1, 2}, {6, 5}, {6, 7}, {8, 9}

Removing all elements having a provided value as key:

std::multimap< int , int > mmp{ {1, 2}, {3, 4}, {6, 5}, {8, 9}, {3, 4}, {6, 7} };
 // {1, 2}, {3, 4}, {3, 4}, {6, 5}, {6, 7}, {8, 9}
mmp.erase(6); // {1, 2}, {3, 4}, {3, 4}, {8, 9}

Removing elements that satisfy a predicate pred:

std::map<int,int> m;
auto it = m.begin();

https://en.wikipedia.org/wiki/Hash_function

C++ Notes for Professionals 294

while (it != m.end())
{
 if (pred(*it))
 it = m.erase(it);
 else
 ++it;
}

Section 51.8: Iterating over std::map or std::multimap
std::map or std::multimap could be traversed by the following ways:

std::multimap< int , int > mmp{ {1, 2}, {3, 4}, {6, 5}, {8, 9}, {3, 4}, {6, 7} };

//Range based loop - since C++11
for(const auto &x: mmp)
 std::cout<< x.first <<":"<< x.second << std::endl;

//Forward iterator for loop: it would loop through first element to last element
//it will be a std::map< int, int >::iterator
for (auto it = mmp.begin(); it != mmp.end(); ++it)
std::cout<< it->first <<":"<< it->second << std::endl; //Do something with iterator

//Backward iterator for loop: it would loop through last element to first element
//it will be a std::map< int, int >::reverse_iterator
for (auto it = mmp.rbegin(); it != mmp.rend(); ++it)
std::cout<< it->first <<" "<< it->second << std::endl; //Do something with iterator

While iterating over a std::map or a std::multimap, the use of auto is preferred to avoid useless implicit
conversions (see this SO answer for more details).

Section 51.9: Creating std::map with user-defined types as key
In order to be able to use a class as the key in a map, all that is required of the key is that it be copiable and
assignable. The ordering within the map is defined by the third argument to the template (and the argument to
the constructor, if used). This defaults to std::less<KeyType>, which defaults to the < operator, but there's no
requirement to use the defaults. Just write a comparison operator (preferably as a functional object):

struct CmpMyType
{
 bool operator()(MyType const& lhs, MyType const& rhs) const
 {
 // ...
 }
};

In C++, the "compare" predicate must be a strict weak ordering. In particular, compare(X,X) must return false for
any X. i.e. if CmpMyType()(a, b) returns true, then CmpMyType()(b, a) must return false, and if both return false,
the elements are considered equal (members of the same equivalence class).

Strict Weak Ordering

This is a mathematical term to define a relationship between two objects.
Its definition is:

Two objects x and y are equivalent if both f(x, y) and f(y, x) are false. Note that an object is always (by the

http://stackoverflow.com/questions/32510183/can-the-use-of-c11s-auto-improve-performance
http://www.sgi.com/tech/stl/StrictWeakOrdering.html

C++ Notes for Professionals 295

irreflexivity invariant) equivalent to itself.

In terms of C++ this means if you have two objects of a given type, you should return the following values when
compared with the operator <.

X a;
X b;

Condition: Test: Result
a is equivalent to b: a < b false
a is equivalent to b b < a false

a is less than b a < b true
a is less than b b < a false

b is less than a a < b false
b is less than a b < a true

How you define equivalent/less is totally dependent on the type of your object.

C++ Notes for Professionals 296

Chapter 52: std::optional
Section 52.1: Using optionals to represent the absence of a
value
Before C++17, having pointers with a value of nullptr commonly represented the absence of a value. This is a good
solution for large objects that have been dynamically allocated and are already managed by pointers. However, this
solution does not work well for small or primitive types such as int, which are rarely ever dynamically allocated or
managed by pointers. std::optional provides a viable solution to this common problem.

In this example, struct Person is defined. It is possible for a person to have a pet, but not necessary. Therefore,
the pet member of Person is declared with an std::optional wrapper.

#include <iostream>
#include <optional>
#include <string>

struct Animal {
 std::string name;
};

struct Person {
 std::string name;
 std::optional<Animal> pet;
};

int main() {
 Person person;
 person.name = "John";

 if (person.pet) {
 std::cout << person.name << "'s pet's name is " <<
 person.pet->name << std::endl;
 }
 else {
 std::cout << person.name << " is alone." << std::endl;
 }
}

Section 52.2: optional as return value
std::optional<float> divide(float a, float b) {
 if (b!=0.f) return a/b;
 return {};
}

Here we return either the fraction a/b, but if it is not defined (would be infinity) we instead return the empty
optional.

A more complex case:

template<class Range, class Pred>
auto find_if(Range&& r, Pred&& p) {
 using std::begin; using std::end;
 auto b = begin(r), e = end(r);
 auto r = std::find_if(b, e , p);
 using iterator = decltype(r);

C++ Notes for Professionals 297

 if (r==e)
 return std::optional<iterator>();
 return std::optional<iterator>(r);
}
template<class Range, class T>
auto find(Range&& r, T const& t) {
 return find_if(std::forward<Range>(r), [&t](auto&& x){return x==t;});
}

find(some_range, 7) searches the container or range some_range for something equal to the number 7.
find_if does it with a predicate.

It returns either an empty optional if it was not found, or an optional containing an iterator tothe element if it was.

This allows you to do:

if (find(vec, 7)) {
 // code
}

or even

if (auto oit = find(vec, 7)) {
 vec.erase(*oit);
}

without having to mess around with begin/end iterators and tests.

Section 52.3: value_or
void print_name(std::ostream& os, std::optional<std::string> const& name) {
 std::cout "Name is: " << name.value_or("<name missing>") << '\n';
}

value_or either returns the value stored in the optional, or the argument if there is nothing store there.

This lets you take the maybe-null optional and give a default behavior when you actually need a value. By doing it
this way, the "default behavior" decision can be pushed back to the point where it is best made and immediately
needed, instead of generating some default value deep in the guts of some engine.

Section 52.4: Introduction
Optionals (also known as Maybe types) are used to represent a type whose contents may or may not be present.
They are implemented in C++17 as the std::optional class. For example, an object of type std::optional<int>
may contain some value of type int, or it may contain no value.

Optionals are commonly used either to represent a value that may not exist or as a return type from a function that
can fail to return a meaningful result.

Other approaches to optional

There are many other approach to solving the problem that std::optional solves, but none of them are quite
complete: using a pointer, using a sentinel, or using a pair<bool, T>.

Optional vs Pointer

C++ Notes for Professionals 298

In some cases, we can provide a pointer to an existing object or nullptr to indicate failure. But this is limited to
those cases where objects already exist - optional, as a value type, can also be used to return new objects without
resorting to memory allocation.

Optional vs Sentinel

A common idiom is to use a special value to indicate that the value is meaningless. This may be 0 or -1 for integral
types, or nullptr for pointers. However, this reduces the space of valid values (you cannot differentiate between a
valid 0 and a meaningless 0) and many types do not have a natural choice for the sentinel value.

Optional vs std::pair<bool, T>

Another common idiom is to provide a pair, where one of the elements is a bool indicating whether or not the
value is meaningful.

This relies upon the value type being default-constructible in the case of error, which is not possible for some types
and possible but undesirable for others. An optional<T>, in the case of error, does not need to construct anything.

Section 52.5: Using optionals to represent the failure of a
function
Before C++17, a function typically represented failure in one of several ways:

A null pointer was returned.
e.g. Calling a function Delegate *App::get_delegate() on an App instance that did not have a
delegate would return nullptr.
This is a good solution for objects that have been dynamically allocated or are large and managed by
pointers, but isn't a good solution for small objects that are typically stack-allocated and passed by
copying.

A specific value of the return type was reserved to indicate failure.
e.g. Calling a function unsigned shortest_path_distance(Vertex a, Vertex b) on two vertices that
are not connected may return zero to indicate this fact.

The value was paired together with a bool to indicate is the returned value was meaningful.
e.g. Calling a function std::pair<int, bool> parse(const std::string &str) with a string
argument that is not an integer would return a pair with an undefined int and a bool set to false.

In this example, John is given two pets, Fluffy and Furball. The function Person::pet_with_name() is then called to
retrieve John's pet Whiskers. Since John does not have a pet named Whiskers, the function fails and std::nullopt is
returned instead.

#include <iostream>
#include <optional>
#include <string>
#include <vector>

struct Animal {
 std::string name;
};

struct Person {
 std::string name;
 std::vector<Animal> pets;

 std::optional<Animal> pet_with_name(const std::string &name) {
 for (const Animal &pet : pets) {

C++ Notes for Professionals 299

 if (pet.name == name) {
 return pet;
 }
 }
 return std::nullopt;
 }
};

int main() {
 Person john;
 john.name = "John";

 Animal fluffy;
 fluffy.name = "Fluffy";
 john.pets.push_back(fluffy);

 Animal furball;
 furball.name = "Furball";
 john.pets.push_back(furball);

 std::optional<Animal> whiskers = john.pet_with_name("Whiskers");
 if (whiskers) {
 std::cout << "John has a pet named Whiskers." << std::endl;
 }
 else {
 std::cout << "Whiskers must not belong to John." << std::endl;
 }
}

C++ Notes for Professionals 300

Chapter 53: std::function: To wrap any
element that is callable
Section 53.1: Simple usage
#include <iostream>
#include <functional>
std::function<void(int , const std::string&)> myFuncObj;
void theFunc(int i, const std::string& s)
{
 std::cout << s << ": " << i << std::endl;
}
int main(int argc, char *argv[])
{
 myFuncObj = theFunc;
 myFuncObj(10, "hello world");
}

Section 53.2: std::function used with std::bind
Think about a situation where we need to callback a function with arguments. std::function used with std::bind
gives a very powerful design construct as shown below.

class A
{
public:
 std::function<void(int, const std::string&)> m_CbFunc = nullptr;
 void foo()
 {
 if (m_CbFunc)
 {
 m_CbFunc(100, "event fired");
 }
 }

};

class B
{
public:
 B()
 {
 auto aFunc = std::bind(&B::eventHandler, this, std::placeholders::_1,
std::placeholders::_2);
 anObjA.m_CbFunc = aFunc;
 }
 void eventHandler(int i, const std::string& s)
 {
 std::cout << s << ": " << i << std::endl;
 }

 void DoSomethingOnA()
 {
 anObjA.foo();
 }

 A anObjA;
};

C++ Notes for Professionals 301

int main(int argc, char *argv[])
{
 B anObjB;
 anObjB.DoSomethingOnA();
}

Section 53.3: Binding std::function to a dierent callable
types
/*
 * This example show some ways of using std::function to call
 * a) C-like function
 * b) class-member function
 * c) operator()
 * d) lambda function
 *
 * Function call can be made:
 * a) with right arguments
 * b) argumens with different order, types and count
 */
#include <iostream>
#include <functional>
#include <iostream>
#include <vector>

using std::cout;
using std::endl;
using namespace std::placeholders;

// simple function to be called
double foo_fn(int x, float y, double z)
{
 double res = x + y + z;
 std::cout << "foo_fn called with arguments: "
 << x << ", " << y << ", " << z
 << " result is : " << res
 << std::endl;
 return res;
}

// structure with member function to call
struct foo_struct
{
 // member function to call
 double foo_fn(int x, float y, double z)
 {
 double res = x + y + z;
 std::cout << "foo_struct::foo_fn called with arguments: "
 << x << ", " << y << ", " << z
 << " result is : " << res
 << std::endl;
 return res;
 }
 // this member function has different signature - but it can be used too
 // please not that argument order is changed too
 double foo_fn_4(int x, double z, float y, long xx)
 {
 double res = x + y + z + xx;
 std::cout << "foo_struct::foo_fn_4 called with arguments: "

C++ Notes for Professionals 302

 << x << ", " << z << ", " << y << ", " << xx
 << " result is : " << res
 << std::endl;
 return res;
 }
 // overloaded operator() makes whole object to be callable
 double operator()(int x, float y, double z)
 {
 double res = x + y + z;
 std::cout << "foo_struct::operator() called with arguments: "
 << x << ", " << y << ", " << z
 << " result is : " << res
 << std::endl;
 return res;
 }
};

int main(void)
{
 // typedefs
 using function_type = std::function<double(int, float, double)>;

 // foo_struct instance
 foo_struct fs;

 // here we will store all binded functions
 std::vector<function_type> bindings;

 // var #1 - you can use simple function
 function_type var1 = foo_fn;
 bindings.push_back(var1);

 // var #2 - you can use member function
 function_type var2 = std::bind(&foo_struct::foo_fn, fs, _1, _2, _3);
 bindings.push_back(var2);

 // var #3 - you can use member function with different signature
 // foo_fn_4 has different count of arguments and types
 function_type var3 = std::bind(&foo_struct::foo_fn_4, fs, _1, _3, _2, 0l);
 bindings.push_back(var3);

 // var #4 - you can use object with overloaded operator()
 function_type var4 = fs;
 bindings.push_back(var4);

 // var #5 - you can use lambda function
 function_type var5 = [](int x, float y, double z)
 {
 double res = x + y + z;
 std::cout << "lambda called with arguments: "
 << x << ", " << y << ", " << z
 << " result is : " << res
 << std::endl;
 return res;
 };
 bindings.push_back(var5);

 std::cout << "Test stored functions with arguments: x = 1, y = 2, z = 3"
 << std::endl;

 for (auto f : bindings)

C++ Notes for Professionals 303

 f(1, 2, 3);

}

Live

Output:

Test stored functions with arguments: x = 1, y = 2, z = 3
foo_fn called with arguments: 1, 2, 3 result is : 6
foo_struct::foo_fn called with arguments: 1, 2, 3 result is : 6
foo_struct::foo_fn_4 called with arguments: 1, 3, 2, 0 result is : 6
foo_struct::operator() called with arguments: 1, 2, 3 result is : 6
lambda called with arguments: 1, 2, 3 result is : 6

Section 53.4: Storing function arguments in std::tuple
Some programs need so store arguments for future calling of some function.

This example shows how to call any function with arguments stored in std::tuple

#include <iostream>
#include <functional>
#include <tuple>
#include <iostream>

// simple function to be called
double foo_fn(int x, float y, double z)
{
 double res = x + y + z;
 std::cout << "foo_fn called. x = " << x << " y = " << y << " z = " << z
 << " res=" << res;
 return res;
}

// helpers for tuple unrolling
template<int ...> struct seq {};
template<int N, int ...S> struct gens : gens<N-1, N-1, S...> {};
template<int ...S> struct gens<0, S...>{ typedef seq<S...> type; };

// invocation helper
template<typename FN, typename P, int ...S>
double call_fn_internal(const FN& fn, const P& params, const seq<S...>)
{
 return fn(std::get<S>(params) ...);
}
// call function with arguments stored in std::tuple
template<typename Ret, typename ...Args>
Ret call_fn(const std::function<Ret(Args...)>& fn,
 const std::tuple<Args...>& params)
{
 return call_fn_internal(fn, params, typename gens<sizeof...(Args)>::type());
}

int main(void)
{
 // arguments
 std::tuple<int, float, double> t = std::make_tuple(1, 5, 10);
 // function to call

http://ideone.com/VIbkkZ

C++ Notes for Professionals 304

 std::function<double(int, float, double)> fn = foo_fn;

 // invoke a function with stored arguments
 call_fn(fn, t);
}

Live

Output:

foo_fn called. x = 1 y = 5 z = 10 res=16

Section 53.5: std::function with lambda and std::bind
#include <iostream>
#include <functional>

using std::placeholders::_1; // to be used in std::bind example

int stdf_foobar (int x, std::function<int(int)> moo)
{
 return x + moo(x); // std::function moo called
}

int foo (int x) { return 2+x; }

int foo_2 (int x, int y) { return 9*x + y; }

int main()
{
 int a = 2;

 /* Function pointers */
 std::cout << stdf_foobar(a, &foo) << std::endl; // 6 (2 + (2+2))
 // can also be: stdf_foobar(2, foo)

 /* Lambda expressions */
 /* An unnamed closure from a lambda expression can be
 * stored in a std::function object:
 */
 int capture_value = 3;
 std::cout << stdf_foobar(a,
 [capture_value](int param) -> int { return 7 + capture_value * param;
})
 << std::endl;
 // result: 15 == value + (7 * capture_value * value) == 2 + (7 + 3 * 2)

 /* std::bind expressions */
 /* The result of a std::bind expression can be passed.
 * For example by binding parameters to a function pointer call:
 */
 int b = stdf_foobar(a, std::bind(foo_2, _1, 3));
 std::cout << b << std::endl;
 // b == 23 == 2 + (9*2 + 3)
 int c = stdf_foobar(a, std::bind(foo_2, 5, _1));
 std::cout << c << std::endl;
 // c == 49 == 2 + (9*5 + 2)

 return 0;
}

http://ideone.com/FZKALn

C++ Notes for Professionals 305

Section 53.6: `function` overhead
std::function can cause significant overhead. Because std::function has [value semantics][1], it must copy or
move the given callable into itself. But since it can take callables of an arbitrary type, it will frequently have to
allocate memory dynamically to do this.

Some function implementations have so-called "small object optimization", where small types (like function
pointers, member pointers, or functors with very little state) will be stored directly in the function object. But even
this only works if the type is noexcept move constructible. Furthermore, the C++ standard does not require that all
implementations provide one.

Consider the following:

//Header file
using MyPredicate = std::function<bool(const MyValue &, const MyValue &)>;

void SortMyContainer(MyContainer &C, const MyPredicate &pred);

//Source file
void SortMyContainer(MyContainer &C, const MyPredicate &pred)
{
 std::sort(C.begin(), C.end(), pred);
}

A template parameter would be the preferred solution for SortMyContainer, but let us assume that this is not
possible or desirable for whatever reason. SortMyContainer does not need to store pred beyond its own call. And
yet, pred may well allocate memory if the functor given to it is of some non-trivial size.

function allocates memory because it needs something to copy/move into; function takes ownership of the
callable it is given. But SortMyContainer does not need to own the callable; it's just referencing it. So using function
here is overkill; it may be efficient, but it may not.

There is no standard library function type that merely references a callable. So an alternate solution will have to be
found, or you can choose to live with the overhead.

Also, function has no effective means to control where the memory allocations for the object come from. Yes, it
has constructors that take an allocator, but [many implementations do not implement them correctly... or even at
all][2].

Version ≥ C++17

The function constructors that take an allocator no longer are part of the type. Therefore, there is no way to
manage the allocation.

Calling a function is also slower than calling the contents directly. Since any function instance could hold any
callable, the call through a function must be indirect. The overhead of calling function is on the order of a virtual
function call.

C++ Notes for Professionals 306

Chapter 54: std::forward_list
std::forward_list is a container that supports fast insertion and removal of elements from anywhere in the
container. Fast random access is not supported. It is implemented as a singly-linked list and essentially does not
have any overhead compared to its implementation in C. Compared to std::list this container provides more
space efficient storage when bidirectional iteration is not needed.

Section 54.1: Example
#include <forward_list>
#include <string>
#include <iostream>

template<typename T>
std::ostream& operator<<(std::ostream& s, const std::forward_list<T>& v) {
 s.put('[');
 char comma[3] = {'\0', ' ', '\0'};
 for (const auto& e : v) {
 s << comma << e;
 comma[0] = ',';
 }
 return s << ']';
}

int main()
{
 // c++11 initializer list syntax:
 std::forward_list<std::string> words1 {"the", "frogurt", "is", "also", "cursed"};
 std::cout << "words1: " << words1 << '\n';

 // words2 == words1
 std::forward_list<std::string> words2(words1.begin(), words1.end());
 std::cout << "words2: " << words2 << '\n';

 // words3 == words1
 std::forward_list<std::string> words3(words1);
 std::cout << "words3: " << words3 << '\n';

 // words4 is {"Mo", "Mo", "Mo", "Mo", "Mo"}
 std::forward_list<std::string> words4(5, "Mo");
 std::cout << "words4: " << words4 << '\n';
}

Output:

words1: [the, frogurt, is, also, cursed]
words2: [the, frogurt, is, also, cursed]
words3: [the, frogurt, is, also, cursed]
words4: [Mo, Mo, Mo, Mo, Mo]

Section 54.2: Methods
Method name Definition
operator= assigns values to the container
assign assigns values to the container
get_allocator returns the associated allocator
------ ------

C++ Notes for Professionals 307

Element access
front access the first element
------ ------
Iterators
before_begin returns an iterator to the element before beginning
cbefore_begin returns a constant iterator to the element before beginning
begin returns an iterator to the beginning
cbegin returns a const iterator to the beginning
end returns an iterator to the end
cend returns a iterator to the end
Capacity
empty checks whether the container is empty
max_size returns the maximum possible number of elements
Modifiers
clear clears the contents
insert_after inserts elements after an element
emplace_after constructs elements in-place after an element
erase_after erases an element after an element
push_front inserts an element to the beginning
emplace_front constructs an element in-place at the beginning
pop_front removes the first element
resize changes the number of elements stored
swap swaps the contents
Operations
merge merges two sorted lists
splice_after moves elements from another forward_list
remove removes elements satisfying specific criteria
remove_if removes elements satisfying specific criteria
reverse reverses the order of the elements
unique removes consecutive duplicate elements
sort sorts the elements

C++ Notes for Professionals 308

Chapter 55: std::pair
Section 55.1: Compare operators
Parameters of these operators are lhs and rhs

operator== tests if both elements on lhs and rhs pair are equal. The return value is true if both lhs.first
== rhs.first AND lhs.second == rhs.second, otherwise false

std::pair<int, int> p1 = std::make_pair(1, 2);
std::pair<int, int> p2 = std::make_pair(2, 2);

if (p1 == p2)
 std::cout << "equals";
else
 std::cout << "not equal"//statement will show this, because they are not identical

operator!= tests if any elements on lhs and rhs pair are not equal. The return value is true if either
lhs.first != rhs.first OR lhs.second != rhs.second, otherwise return false.

operator< tests if lhs.first<rhs.first, returns true. Otherwise, if rhs.first<lhs.first returns false.
Otherwise, if lhs.second<rhs.second returns true, otherwise, returns false.

operator<= returns !(rhs<lhs)

operator> returns rhs<lhs

operator>= returns !(lhs<rhs)

Another example with containers of pairs. It uses operator< because it needs to sort container.

#include <iostream>
#include <utility>
#include <vector>
#include <algorithm>
#include <string>

int main()
{
 std::vector<std::pair<int, std::string>> v = { {2, "baz"},
 {2, "bar"},
 {1, "foo"} };
 std::sort(v.begin(), v.end());

 for(const auto& p: v) {
 std::cout << "(" << p.first << "," << p.second << ") ";
 //output: (1,foo) (2,bar) (2,baz)
 }
}

Section 55.2: Creating a Pair and accessing the elements
Pair allows us to treat two objects as one object. Pairs can be easily constructed with the help of template function
std::make_pair.

Alternative way is to create pair and assign its elements (first and second) later.

C++ Notes for Professionals 309

#include <iostream>
#include <utility>

int main()
{
 std::pair<int,int> p = std::make_pair(1,2); //Creating the pair
 std::cout << p.first << " " << p.second << std::endl; //Accessing the elements

 //We can also create a pair and assign the elements later
 std::pair<int,int> p1;
 p1.first = 3;
 p1.second = 4;
 std::cout << p1.first << " " << p1.second << std::endl;

 //We can also create a pair using a constructor
 std::pair<int,int> p2 = std::pair<int,int>(5, 6);
 std::cout << p2.first << " " << p2.second << std::endl;

 return 0;
}

C++ Notes for Professionals 310

Chapter 56: std::atomics
Section 56.1: atomic types
Each instantiation and full specialization of the std::atomic template defines an atomic type. If one thread writes
to an atomic object while another thread reads from it, the behavior is well-defined (see memory model for details
on data races)

In addition, accesses to atomic objects may establish inter-thread synchronization and order non-atomic memory
accesses as specified by std::memory_order.

std::atomic may be instantiated with any TriviallyCopyable type T. std::atomic is neither copyable nor
movable.

The standard library provides specializations of the std::atomic template for the following types:

One full specialization for the type bool and its typedef name is defined that is treated as a non-specialized1.
std::atomic<T> except that it has standard layout, trivial default constructor, trivial destructors, and
supports aggregate initialization syntax:

Typedef name Full specialization
std::atomic_bool std::atomic<bool>

2)Full specializations and typedefs for integral types, as follows:

Typedef name Full specialization
std::atomic_char std::atomic<char>
std::atomic_char std::atomic<char>
std::atomic_schar std::atomic<signed char>
std::atomic_uchar std::atomic<unsigned char>
std::atomic_short std::atomic<short>
std::atomic_ushort std::atomic<unsigned short>
std::atomic_int std::atomic<int>
std::atomic_uint std::atomic<unsigned int>
std::atomic_long std::atomic<long>
std::atomic_ulong std::atomic<unsigned long>
std::atomic_llong std::atomic<long long>
std::atomic_ullong std::atomic<unsigned long long>
std::atomic_char16_t std::atomic<char16_t>
std::atomic_char32_t std::atomic<char32_t>
std::atomic_wchar_t std::atomic<wchar_t>
std::atomic_int8_t std::atomic<std::int8_t>
std::atomic_uint8_t std::atomic<std::uint8_t>
std::atomic_int16_t std::atomic<std::int16_t>
std::atomic_uint16_t std::atomic<std::uint16_t>
std::atomic_int32_t std::atomic<std::int32_t>
std::atomic_uint32_t std::atomic<std::uint32_t>
std::atomic_int64_t std::atomic<std::int64_t>
std::atomic_uint64_t std::atomic<std::uint64_t>
std::atomic_int_least8_t std::atomic<std::int_least8_t>
std::atomic_uint_least8_t std::atomic<std::uint_least8_t>
std::atomic_int_least16_t std::atomic<std::int_least16_t>
std::atomic_uint_least16_t std::atomic<std::uint_least16_t>
std::atomic_int_least32_t std::atomic<std::int_least32_t>
std::atomic_uint_least32_t std::atomic<std::uint_least32_t>
std::atomic_int_least64_t std::atomic<std::int_least64_t>
std::atomic_uint_least64_t std::atomic<std::uint_least64_t>

C++ Notes for Professionals 311

std::atomic_int_fast8_t std::atomic<std::int_fast8_t>
std::atomic_uint_fast8_t std::atomic<std::uint_fast8_t>
std::atomic_int_fast16_t std::atomic<std::int_fast16_t>
std::atomic_uint_fast16_t std::atomic<std::uint_fast16_t>
std::atomic_int_fast32_t std::atomic<std::int_fast32_t>
std::atomic_uint_fast32_t std::atomic<std::uint_fast32_t>
std::atomic_int_fast64_t std::atomic<std::int_fast64_t>
std::atomic_uint_fast64_t std::atomic<std::uint_fast64_t>
std::atomic_intptr_t std::atomic<std::intptr_t>
std::atomic_uintptr_t std::atomic<std::uintptr_t>
std::atomic_size_t std::atomic<std::size_t>
std::atomic_ptrdiff_t std::atomic<std::ptrdiff_t>
std::atomic_intmax_t std::atomic<std::intmax_t>
std::atomic_uintmax_t std::atomic<std::uintmax_t>

Simple example of using std::atomic_int

#include <iostream> // std::cout
#include <atomic> // std::atomic, std::memory_order_relaxed
#include <thread> // std::thread

std::atomic_int foo (0);

void set_foo(int x) {
 foo.store(x,std::memory_order_relaxed); // set value atomically
}

void print_foo() {
 int x;
 do {
 x = foo.load(std::memory_order_relaxed); // get value atomically
 } while (x==0);
 std::cout << "foo: " << x << '\n';
}

int main ()
{
 std::thread first (print_foo);
 std::thread second (set_foo,10);
 first.join();
 //second.join();
 return 0;
}
//output: foo: 10

C++ Notes for Professionals 312

Chapter 57: std::variant
Section 57.1: Create pseudo-method pointers
This is an advanced example.

You can use variant for light weight type erasure.

template<class F>
struct pseudo_method {
 F f;
 // enable C++17 class type deduction:
 pseudo_method(F&& fin):f(std::move(fin)) {}

 // Koenig lookup operator->*, as this is a pseudo-method it is appropriate:
 template<class Variant> // maybe add SFINAE test that LHS is actually a variant.
 friend decltype(auto) operator->*(Variant&& var, pseudo_method const& method) {
 // var->*method returns a lambda that perfect forwards a function call,
 // behaving like a method pointer basically:
 return [&](auto&&...args)->decltype(auto) {
 // use visit to get the type of the variant:
 return std::visit(
 [&](auto&& self)->decltype(auto) {
 // decltype(x)(x) is perfect forwarding in a lambda:
 return method.f(decltype(self)(self), decltype(args)(args)...);
 },
 std::forward<Var>(var)
);
 };
 }
};

this creates a type that overloads operator->* with a Variant on the left hand side.

// C++17 class type deduction to find template argument of `print` here.
// a pseudo-method lambda should take `self` as its first argument, then
// the rest of the arguments afterwards, and invoke the action:
pseudo_method print = [](auto&& self, auto&&...args)->decltype(auto) {
 return decltype(self)(self).print(decltype(args)(args)...);
};

Now if we have 2 types each with a print method:

struct A {
 void print(std::ostream& os) const {
 os << "A";
 }
};
struct B {
 void print(std::ostream& os) const {
 os << "B";
 }
};

note that they are unrelated types. We can:

std::variant<A,B> var = A{};

C++ Notes for Professionals 313

(var->*print)(std::cout);

and it will dispatch the call directly to A::print(std::cout) for us. If we instead initialized the var with B{}, it would
dispatch to B::print(std::cout).

If we created a new type C:

struct C {};

then:

std::variant<A,B,C> var = A{};
(var->*print)(std::cout);

will fail to compile, because there is no C.print(std::cout) method.

Extending the above would permit free function prints to be detected and used, possibly with use of if constexpr
within the print pseudo-method.

live example currently using boost::variant in place of std::variant.

Section 57.2: Basic std::variant use
This creates a variant (a tagged union) that can store either an int or a string.

std::variant< int, std::string > var;

We can store one of either type in it:

var = "hello"s;

And we can access the contents via std::visit:

// Prints "hello\n":
visit([](auto&& e) {
 std::cout << e << '\n';
}, var);

by passing in a polymorphic lambda or similar function object.

If we are certain we know what type it is, we can get it:

auto str = std::get<std::string>(var);

but this will throw if we get it wrong. get_if:

auto* str = std::get_if<std::string>(&var);

returns nullptr if you guess wrong.

Variants guarantee no dynamic memory allocation (other than which is allocated by their contained types). Only
one of the types in a variant is stored there, and in rare cases (involving exceptions while assigning and no safe way
to back out) the variant can become empty.

Variants let you store multiple value types in one variable safely and efficiently. They are basically smart, type-safe

http://coliru.stacked-crooked.com/a/57f29d8406ad7b51

C++ Notes for Professionals 314

unions.

Section 57.3: Constructing a `std::variant`
This does not cover allocators.

struct A {};
struct B { B()=default; B(B const&)=default; B(int){}; };
struct C { C()=delete; C(int) {}; C(C const&)=default; };
struct D { D(std::initializer_list<int>) {}; D(D const&)=default; D()=default; };

std::variant<A,B> var_ab0; // contains a A()
std::variant<A,B> var_ab1 = 7; // contains a B(7)
std::variant<A,B> var_ab2 = var_ab1; // contains a B(7)
std::variant<A,B,C> var_abc0{ std::in_place_type<C>, 7 }; // contains a C(7)
std::variant<C> var_c0; // illegal, no default ctor for C
std::variant<A,D> var_ad0(std::in_place_type<D>, {1,3,3,4}); // contains D{1,3,3,4}
std::variant<A,D> var_ad1(std::in_place_index<0>); // contains A{}
std::variant<A,D> var_ad2(std::in_place_index<1>, {1,3,3,4}); // contains D{1,3,3,4}

C++ Notes for Professionals 315

Chapter 58: std::iomanip
Section 58.1: std::setprecision
When used in an expression out << setprecision(n) or in >> setprecision(n), sets the precision parameter of
the stream out or in to exactly n. Parameter of this function is integer, which is new value for precision.

Example:

#include <iostream>
#include <iomanip>
#include <cmath>
#include <limits>
int main()
{
 const long double pi = std::acos(-1.L);
 std::cout << "default precision (6): " << pi << '\n'
 << "std::precision(10): " << std::setprecision(10) << pi << '\n'
 << "max precision: "
 << std::setprecision(std::numeric_limits<long double>::digits10 + 1)
 << pi << '\n';
}
//Output
//default precision (6): 3.14159
//std::precision(10): 3.141592654
//max precision: 3.141592653589793239

Section 58.2: std::setfill
When used in an expression out << setfill(c) sets the fill character of the stream out to c.

Note: The current fill character may be obtained with std::ostream::fill.

Example:

#include <iostream>
#include <iomanip>
int main()
{
 std::cout << "default fill: " << std::setw(10) << 42 << '\n'
 << "setfill('*'): " << std::setfill('*')
 << std::setw(10) << 42 << '\n';
}
//output::
//default fill: 42
//setfill('*'): ********42

Section 58.3: std::setiosflags
When used in an expression out << setiosflags(mask) or in >> setiosflags(mask), sets all format flags of the
stream out or in as specified by the mask.

List of all std::ios_base::fmtflags :

dec - use decimal base for integer I/O
oct - use octal base for integer I/O

C++ Notes for Professionals 316

hex - use hexadecimal base for integer I/O
basefield - dec|oct|hex|0 useful for masking operations
left - left adjustment(add fill characters to the right)
right - right adjustment (adds fill characters to the left)
internal - internal adjustment (adds fill characters to the internal designated point)
adjustfield - left|right|internal. Useful for masking operations
scientific - generate floating point types using scientific notation, or hex notation if combined with fixed
fixed - generate floating point types using fixed notation, or hex notation if combined with scientific
floatfield - scientific|fixed|(scientific|fixed)|0. Useful for masking operations
boolalpha - insert and extract bool type in alphanumeric format
showbase - generate a prefix indicating the numeric base for integer output, require the currency indicator in
monetary I/O
showpoint - generate a decimal-point character unconditionally for floating-point number output
showpos - generate a + character for non-negative numeric output
skipws - skip leading whitespace before certain input operations
unitbuf flush the output after each output operation
uppercase - replace certain lowercase letters with their uppercase equivalents in certain output output
operations

Example of manipulators:

 #include <iostream>
 #include <string>
 #include<iomanip>
 int main()
 {
 int l_iTemp = 47;
 std::cout<< std::resetiosflags(std::ios_base::basefield);
 std::cout<<std::setiosflags(std::ios_base::oct)<<l_iTemp<<std::endl;
 //output: 57
 std::cout<< std::resetiosflags(std::ios_base::basefield);
 std::cout<<std::setiosflags(std::ios_base::hex)<<l_iTemp<<std::endl;
 //output: 2f
 std::cout<<std::setiosflags(std::ios_base::uppercase)<<l_iTemp<<std::endl;
 //output 2F
 std::cout<<std::setfill('0')<<std::setw(12);
 std::cout<<std::resetiosflags(std::ios_base::uppercase);
 std::cout<<std::setiosflags(std::ios_base::right)<<l_iTemp<<std::endl;
 //output: 00000000002f

 std::cout<<std::resetiosflags(std::ios_base::basefield|std::ios_base::adjustfield);
 std::cout<<std::setfill('.')<<std::setw(10);
 std::cout<<std::setiosflags(std::ios_base::left)<<l_iTemp<<std::endl;
 //output: 47........

 std::cout<<std::resetiosflags(std::ios_base::adjustfield)<<std::setfill('#');
 std::cout<<std::setiosflags(std::ios_base::internal|std::ios_base::showpos);
 std::cout<<std::setw(10)<<l_iTemp<<std::endl;
 //output +#######47

 double l_dTemp = -1.2;
 double pi = 3.14159265359;
 std::cout<<pi<<" "<<l_dTemp<<std::endl;
 //output +3.14159 -1.2
 std::cout<<std::setiosflags(std::ios_base::showpoint)<<l_dTemp<<std::endl;
 //output -1.20000
 std::cout<<setiosflags(std::ios_base::scientific)<<pi<<std::endl;
 //output: +3.141593e+00

C++ Notes for Professionals 317

 std::cout<<std::resetiosflags(std::ios_base::floatfield);
 std::cout<<setiosflags(std::ios_base::fixed)<<pi<<std::endl;
 //output: +3.141593
 bool b = true;
 std::cout<<std::setiosflags(std::ios_base::unitbuf|std::ios_base::boolalpha)<<b;
 //output: true
 return 0;
 }

Section 58.4: std::setw
int val = 10;
// val will be printed to the extreme left end of the output console:
std::cout << val << std::endl;
 // val will be printed in an output field of length 10 starting from right end of the field:
std::cout << std::setw(10) << val << std::endl;

This outputs:

10
 10
1234567890

(where the last line is there to aid in seeing the character offsets).

Sometimes we need to set the width of the output field, usually when we need to get the output in some structured
and proper layout. That can be done using std::setw of std::iomanip.

The syntax for std::setw is:

std::setw(int n)

where n is the length of the output field to be set

C++ Notes for Professionals 318

Chapter 59: std::any
Section 59.1: Basic usage
std::any an_object{ std::string("hello world") };
if (an_object.has_value()) {
 std::cout << std::any_cast<std::string>(an_object) << '\n';
}

try {
 std::any_cast<int>(an_object);
} catch(std::bad_any_cast&) {
 std::cout << "Wrong type\n";
}

std::any_cast<std::string&>(an_object) = "42";
std::cout << std::any_cast<std::string>(an_object) << '\n';

Output

hello world
Wrong type
42

C++ Notes for Professionals 319

Chapter 60: std::set and std::multiset
set is a type of container whose elements are sorted and unique. multiset is similar, but, in the case of multiset,
multiple elements can have the same value.

Section 60.1: Changing the default sort of a set
set and multiset have default compare methods, but in some cases you may need to overload them.

Let's imagine we are storing string values in a set, but we know those strings contain only numeric values. By
default the sort will be a lexicographical string comparison, so the order won't match the numerical sort. If you
want to apply a sort equivalent to what you would have with int values, you need a functor to overload the
compare method:

#include <iostream>
#include <set>
#include <stdlib.h>

struct custom_compare final
{
 bool operator() (const std::string& left, const std::string& right) const
 {
 int nLeft = atoi(left.c_str());
 int nRight = atoi(right.c_str());
 return nLeft < nRight;
 }
};

int main ()
{
 std::set<std::string> sut({"1", "2", "5", "23", "6", "290"});

 std::cout << "### Default sort on std::set<std::string> :" << std::endl;
 for (auto &&data: sut)
 std::cout << data << std::endl;

 std::set<std::string, custom_compare> sut_custom({"1", "2", "5", "23", "6", "290"},
 custom_compare{}); //< Compare object optional
as its default constructible.

 std::cout << std::endl << "### Custom sort on set :" << std::endl;
 for (auto &&data : sut_custom)
 std::cout << data << std::endl;

 auto compare_via_lambda = [](auto &&lhs, auto &&rhs){ return lhs > rhs; };
 using set_via_lambda = std::set<std::string, decltype(compare_via_lambda)>;
 set_via_lambda sut_reverse_via_lambda({"1", "2", "5", "23", "6", "290"},
 compare_via_lambda);

 std::cout << std::endl << "### Lambda sort on set :" << std::endl;
 for (auto &&data : sut_reverse_via_lambda)
 std::cout << data << std::endl;

 return 0;
}

Output will be:

C++ Notes for Professionals 320

Default sort on std::set<std::string> :
1
2
23
290
5
6
Custom sort on set :
1
2
5
6
23
290

Lambda sort on set :
6
5
290
23
2
1

In the example above, one can find 3 different ways of adding compare operations to the std::set, each of them is
useful in its own context.

Default sort

This will use the compare operator of the key (first template argument). Often, the key will already provide a good
default for the std::less<T> function. Unless this function is specialized, it uses the operator< of the object. This is
especially useful when other code also tries to use some ordering, as this allows consistency over the whole code
base.

Writing the code this way, will reduce the effort to update your code when the key changes is API, like: a class
containing 2 members which changes to a class containing 3 members. By updating the operator< in the class, all
occurrences will get updated.

As you might expect, using the default sort is a reasonable default.

Custom sort

Adding a custom sort via an object with a compare operator is often used when the default comparison doesn't
comply. In the example above this is because the strings are referring to integers. In other cases, it's often used
when you want to compare (smart) pointers based upon the object they refer to or because you need different
constraints for comparing (example: comparing std::pair by the value of first).

When creating a compare operator, this should be a stable sorting. If the result of the compare operator changes
after insert, you will have undefined behavior. As a good practice, your compare operator should only use the
constant data (const members, const functions ...).

As in the example above, you will often encounter classes without members as compare operators. This results in
default constructors and copy constructors. The default constructor allows you to omit the instance at construction
time and the copy constructor is required as the set takes a copy of the compare operator.

Lambda sort

Lambdas are a shorter way to write function objects. This allows writing the compare operator on less lines, making

C++ Notes for Professionals 321

the overall code more readable.

The disadvantage of the use of lambdas is that each lambda gets a specific type at compile time, so
decltype(lambda) will be different for each compilation of the same compilation unit (cpp file) as over multiple
compilation units (when included via header file). For this reason, its recommended to use function objects as
compare operator when used within header files.

This construction is often encountered when a std::set is used within the local scope of a function instead, while
the function object is preferred when used as function arguments or class members.

Other sort options

As the compare operator of std::set is a template argument, all callable objects can be used as compare operator
and the examples above are only specific cases. The only restrictions these callable objects have are:

They must be copy constructable
They must be callable with 2 arguments of the type of the key. (implicit conversions are allowed, though not
recommended as it can hurt performance)

Section 60.2: Deleting values from a set
The most obvious method, if you just want to reset your set/multiset to an empty one, is to use clear:

 std::set<int> sut;
 sut.insert(10);
 sut.insert(15);
 sut.insert(22);
 sut.insert(3);
 sut.clear(); //size of sut is 0

Then the erase method can be used. It offers some possibilities looking somewhat equivalent to the insertion:

std::set<int> sut;
std::set<int>::iterator it;

sut.insert(10);
sut.insert(15);
sut.insert(22);
sut.insert(3);
sut.insert(30);
sut.insert(33);
sut.insert(45);

// Basic deletion
sut.erase(3);

// Using iterator
it = sut.find(22);
sut.erase(it);

// Deleting a range of values
it = sut.find(33);
sut.erase(it, sut.end());

std::cout << std::endl << "Set under test contains:" << std::endl;
for (it = sut.begin(); it != sut.end(); ++it)
{
 std::cout << *it << std::endl;

C++ Notes for Professionals 322

}

Output will be:

Set under test contains:

10

15

30

All those methods also apply to multiset. Please note that if you ask to delete an element from a multiset, and it
is present multiple times, all the equivalent values will be deleted.

Section 60.3: Inserting values in a set
Three different methods of insertion can used with sets.

First, a simple insert of the value. This method returns a pair allowing the caller to check whether the insert
really occurred.
Second, an insert by giving a hint of where the value will be inserted. The objective is to optimize the
insertion time in such a case, but knowing where a value should be inserted is not the common case. Be
careful in that case; the way to give a hint differs with compiler versions.
Finally you can insert a range of values by giving a starting and an ending pointer. The starting one will be
included in the insertion, the ending one is excluded.

#include <iostream>
#include <set>

int main ()
{
 std::set<int> sut;
 std::set<int>::iterator it;
 std::pair<std::set<int>::iterator,bool> ret;

 // Basic insert
 sut.insert(7);
 sut.insert(5);
 sut.insert(12);

 ret = sut.insert(23);
 if (ret.second==true)
 std::cout << "# 23 has been inserted!" << std::endl;

 ret = sut.insert(23); // since it's a set and 23 is already present in it, this insert should
fail
 if (ret.second==false)
 std::cout << "# 23 already present in set!" << std::endl;

 // Insert with hint for optimization
 it = sut.end();
 // This case is optimized for C++11 and above

C++ Notes for Professionals 323

 // For earlier version, point to the element preceding your insertion
 sut.insert(it, 30);

 // inserting a range of values
 std::set<int> sut2;
 sut2.insert(20);
 sut2.insert(30);
 sut2.insert(45);
 std::set<int>::iterator itStart = sut2.begin();
 std::set<int>::iterator itEnd = sut2.end();

 sut.insert (itStart, itEnd); // second iterator is excluded from insertion

 std::cout << std::endl << "Set under test contains:" << std::endl;
 for (it = sut.begin(); it != sut.end(); ++it)
 {
 std::cout << *it << std::endl;
 }

 return 0;
}

Output will be:

23 has been inserted!

23 already present in set!

Set under test contains:

5

7

12

20

23

30

C++ Notes for Professionals 324

45

Section 60.4: Inserting values in a multiset
All the insertion methods from sets also apply to multisets. Nevertheless, another possibility exists, which is
providing an initializer_list:

auto il = { 7, 5, 12 };
std::multiset<int> msut;
msut.insert(il);

Section 60.5: Searching values in set and multiset
There are several ways to search a given value in std::set or in std::multiset:

To get the iterator of the first occurrence of a key, the find() function can be used. It returns end() if the key does
not exist.

 std::set<int> sut;
 sut.insert(10);
 sut.insert(15);
 sut.insert(22);
 sut.insert(3); // contains 3, 10, 15, 22

 auto itS = sut.find(10); // the value is found, so *itS == 10
 itS = sut.find(555); // the value is not found, so itS == sut.end()

 std::multiset<int> msut;
 sut.insert(10);
 sut.insert(15);
 sut.insert(22);
 sut.insert(15);
 sut.insert(3); // contains 3, 10, 15, 15, 22

 auto itMS = msut.find(10);

Another way is using the count() function, which counts how many corresponding values have been found in the
set/multiset (in case of a set, the return value can be only 0 or 1). Using the same values as above, we will have:

int result = sut.count(10); // result == 1
result = sut.count(555); // result == 0

result = msut.count(10); // result == 1
result = msut.count(15); // result == 2

In the case of std::multiset, there could be several elements having the same value. To get this range, the
equal_range() function can be used. It returns std::pair having iterator lower bound (inclusive) and upper bound
(exclusive) respectively. If the key does not exist, both iterators would point to the nearest superior value (based on
compare method used to sort the given multiset).

auto eqr = msut.equal_range(15);
auto st = eqr.first; // point to first element '15'
auto en = eqr.second; // point to element '22'

C++ Notes for Professionals 325

eqr = msut.equal_range(9); // both eqr.first and eqr.second point to element '10'

C++ Notes for Professionals 326

Chapter 61: std::integer_sequence
The class template std::integer_sequence<Type, Values...> represents a sequence of values of type Type where
Type is one of the built-in integer types. These sequences are used when implementing class or function templates
which benefit from positional access. The standard library also contains "factory" types which create ascending
sequences of integer values just from the number of elements.

Section 61.1: Turn a std::tuple<T...> into function parameters
A std::tuple<T...> can be used to pass multiple values around. For example, it could be used to store a sequence
of parameters into some form of a queue. When processing such a tuple its elements need to be turned into
function call arguments:

#include <array>
#include <iostream>
#include <string>
#include <tuple>
#include <utility>

// --
// Example functions to be called:
void f(int i, std::string const& s) {
 std::cout << "f(" << i << ", " << s << ")\n";
}
void f(int i, double d, std::string const& s) {
 std::cout << "f(" << i << ", " << d << ", " << s << ")\n";
}
void f(char c, int i, double d, std::string const& s) {
 std::cout << "f(" << c << ", " << i << ", " << d << ", " << s << ")\n";
}
void f(int i, int j, int k) {
 std::cout << "f(" << i << ", " << j << ", " << k << ")\n";
}

// --
// The actual function expanding the tuple:
template <typename Tuple, std::size_t... I>
void process(Tuple const& tuple, std::index_sequence<I...>) {
 f(std::get<I>(tuple)...);
}

// The interface to call. Sadly, it needs to dispatch to another function
// to deduce the sequence of indices created from std::make_index_sequence<N>
template <typename Tuple>
void process(Tuple const& tuple) {
 process(tuple, std::make_index_sequence<std::tuple_size<Tuple>::value>());
}

// --
int main() {
 process(std::make_tuple(1, 3.14, std::string("foo")));
 process(std::make_tuple('a', 2, 2.71, std::string("bar")));
 process(std::make_pair(3, std::string("pair")));
 process(std::array<int, 3>{ 1, 2, 3 });
}

As long as a class supports std::get<I>(object) and std::tuple_size<T>::value it can be expanded with the
above process() function. The function itself is entirely independent of the number of arguments.

C++ Notes for Professionals 327

Section 61.2: Create a parameter pack consisting of integers
std::integer_sequence itself is about holding a sequence of integers which can be turned into a parameter pack.
Its primary value is the possibility to create "factory" class templates creating these sequences:

#include <iostream>
#include <initializer_list>
#include <utility>

template <typename T, T... I>
void print_sequence(std::integer_sequence<T, I...>) {
 std::initializer_list<bool>{ bool(std::cout << I << ' ')... };
 std::cout << '\n';
}

template <int Offset, typename T, T... I>
void print_offset_sequence(std::integer_sequence<T, I...>) {
 print_sequence(std::integer_sequence<T, T(I + Offset)...>());
}

int main() {
 // explicitly specify sequences:
 print_sequence(std::integer_sequence<int, 1, 2, 3>());
 print_sequence(std::integer_sequence<char, 'f', 'o', 'o'>());

 // generate sequences:
 print_sequence(std::make_index_sequence<10>());
 print_sequence(std::make_integer_sequence<short, 10>());
 print_offset_sequence<'A'>(std::make_integer_sequence<char, 26>());
}

The print_sequence() function template uses an std::initializer_list<bool> when expanding the integer
sequence to guarantee the order of evaluation and not creating an unused [array] variable.

Section 61.3: Turn a sequence of indices into copies of an
element
Expanding the parameter pack of indices in a comma expression with a value creates a copy of the value for each of
the indices. Sadly, gcc and clang think the index has no effect and warn about it (gcc can be silenced by casting the
index to void):

#include <algorithm>
#include <array>
#include <iostream>
#include <iterator>
#include <string>
#include <utility>

template <typename T, std::size_t... I>
std::array<T, sizeof...(I)> make_array(T const& value, std::index_sequence<I...>) {
 return std::array<T, sizeof...(I)>{ (I, value)... };
}

template <int N, typename T>
std::array<T, N> make_array(T const& value) {
 return make_array(value, std::make_index_sequence<N>());
}

int main() {

http://gcc.gnu.org/
http://clang.llvm.org/
http://gcc.gnu.org/

C++ Notes for Professionals 328

 auto array = make_array<20>(std::string("value"));
 std::copy(array.begin(), array.end(),
 std::ostream_iterator<std::string>(std::cout, " "));
 std::cout << "\n";
}

C++ Notes for Professionals 329

Chapter 62: Using std::unordered_map
std::unordered_map is just an associative container. It works on keys and their maps. Key as the names goes, helps
to have uniqueness in the map. While the mapped value is just a content that is associated with the key. The data
types of this key and map can be any of the predefined data type or user-defined.

Section 62.1: Declaration and Usage
As already mentioned you can declare an unordered map of any type. Let's have a unordered map named first with
string and integer type.

unordered_map<string, int> first; //declaration of the map
first["One"] = 1; // [] operator used to insert the value
first["Two"] = 2;
first["Three"] = 3;
first["Four"] = 4;
first["Five"] = 5;

pair <string,int> bar = make_pair("Nine", 9); //make a pair of same type
first.insert(bar); //can also use insert to feed the values

Section 62.2: Some Basic Functions
unordered_map<data_type, data_type> variable_name; //declaration

variable_name[key_value] = mapped_value; //inserting values

variable_name.find(key_value); //returns iterator to the key value

variable_name.begin(); // iterator to the first element

variable_name.end(); // iterator to the last + 1 element

C++ Notes for Professionals 330

Chapter 63: Standard Library Algorithms
Section 63.1: std::next_permutation
template< class Iterator >
bool next_permutation(Iterator first, Iterator last);
template< class Iterator, class Compare >
bool next_permutation(Iterator first, Iterator last, Compare cmpFun);

Effects:
Sift the data sequence of the range [first, last) into the next lexicographically higher permutation. If cmpFun is
provided, the permutation rule is customized.

Parameters:
first- the beginning of the range to be permutated, inclusive
last - the end of the range to be permutated, exclusive

Return Value:
Returns true if such permutation exists.
Otherwise the range is swaped to the lexicographically smallest permutation and return false.

Complexity:
O(n), n is the distance from first to last.

Example:

std::vector< int > v { 1, 2, 3 };
do
{
 for(int i = 0; i < v.size(); i += 1)
 {
 std::cout << v[i];
 }
 std::cout << std::endl;
}while(std::next_permutation(v.begin(), v.end()));

print all the permutation cases of 1,2,3 in lexicographically-increasing order.
output:

123
132
213
231
312
321

Section 63.2: std::for_each
template<class InputIterator, class Function>
 Function for_each(InputIterator first, InputIterator last, Function f);

Effects:

Applies f to the result of dereferencing every iterator in the range [first, last) starting from first and

C++ Notes for Professionals 331

proceeding to last - 1.

Parameters:

first, last - the range to apply f to.

f - callable object which is applied to the result of dereferencing every iterator in the range [first, last).

Return value:

f (until C++11) and std::move(f) (since C++11).

Complexity:

Applies f exactly last - first times.

Example:

Version ≥ c++11

std::vector<int> v { 1, 2, 4, 8, 16 };
std::for_each(v.begin(), v.end(), [](int elem) { std::cout << elem << " "; });

Applies the given function for every element of the vector v printing this element to stdout.

Section 63.3: std::accumulate
Defined in header <numeric>

template<class InputIterator, class T>
T accumulate(InputIterator first, InputIterator last, T init); // (1)

template<class InputIterator, class T, class BinaryOperation>
T accumulate(InputIterator first, InputIterator last, T init, BinaryOperation f); // (2)

Effects:

std::accumulate performs fold operation using f function on range [first, last) starting with init as
accumulator value.

Effectively it's equivalent of:

T acc = init;
for (auto it = first; first != last; ++it)
 acc = f(acc, *it);
return acc;

In version (1) operator+ is used in place of f, so accumulate over container is equivalent of sum of container
elements.

Parameters:

first, last - the range to apply f to.
init - initial value of accumulator.
f - binary folding function.

Return value:

http://en.cppreference.com/w/cpp/algorithm/accumulate
https://en.wikipedia.org/wiki/Fold_(higher-order_function)

C++ Notes for Professionals 332

Accumulated value of f applications.

Complexity:

O(n×k), where n is the distance from first to last, O(k) is complexity of f function.

Example:

Simple sum example:

std::vector<int> v { 2, 3, 4 };
auto sum = std::accumulate(v.begin(), v.end(), 1);
std::cout << sum << std::endl;

Output:

10

Convert digits to number:

Version < c++11

class Converter {
public:
 int operator()(int a, int d) const { return a * 10 + d; }
};

and later

const int ds[3] = {1, 2, 3};
int n = std::accumulate(ds, ds + 3, 0, Converter());
std::cout << n << std::endl;
Version ≥ c++11

const std::vector<int> ds = {1, 2, 3};
int n = std::accumulate(ds.begin(), ds.end(),
 0,
 [](int a, int d) { return a * 10 + d; });
std::cout << n << std::endl;

Output:

123

Section 63.4: std::find
template <class InputIterator, class T>
InputIterator find (InputIterator first, InputIterator last, const T& val);

Effects

Finds the first occurrence of val within the range [first, last)

Parameters

first => iterator pointing to the beginning of the range last => iterator pointing to the end of the range val => The
value to find within the range

C++ Notes for Professionals 333

Return

An iterator that points to the first element within the range that is equal(==) to val, the iterator points to last if val is
not found.

Example

#include <vector>
#include <algorithm>
#include <iostream>

using namespace std;

int main(int argc, const char * argv[]) {

 //create a vector
 vector<int> intVec {4, 6, 8, 9, 10, 30, 55,100, 45, 2, 4, 7, 9, 43, 48};

 //define iterators
 vector<int>::iterator itr_9;
 vector<int>::iterator itr_43;
 vector<int>::iterator itr_50;

 //calling find
 itr_9 = find(intVec.begin(), intVec.end(), 9); //occurs twice
 itr_43 = find(intVec.begin(), intVec.end(), 43); //occurs once

 //a value not in the vector
 itr_50 = find(intVec.begin(), intVec.end(), 50); //does not occur

 cout << "first occurrence of: " << *itr_9 << endl;
 cout << "only occurrence of: " << *itr_43 << Lendl;

 /*
 let's prove that itr_9 is pointing to the first occurrence
 of 9 by looking at the element after 9, which should be 10
 not 43
 */
 cout << "element after first 9: " << *(itr_9 + 1) << ends;

 /*
 to avoid dereferencing intVec.end(), lets look at the
 element right before the end
 */
 cout << "last element: " << *(itr_50 - 1) << endl;

 return 0;
}

Output

first occurrence of: 9
only occurrence of: 43
element after first 9: 10
last element: 48

C++ Notes for Professionals 334

Section 63.5: std::min_element
template <class ForwardIterator>
ForwardIterator min_element (ForwardIterator first, ForwardIterator last);

template <class ForwardIterator, class Compare>
ForwardIterator min_element (ForwardIterator first, ForwardIterator last,Compare comp);

Effects

Finds the minimum element in a range

Parameters

first - iterator pointing to the beginning of the range
last - iterator pointing to the end of the range comp - a function pointer or function object that takes two
arguments and returns true or false indicating whether argument is less than argument 2. This function should not
modify inputs

Return

Iterator to the minimum element in the range

Complexity

Linear in one less than the number of elements compared.

Example

#include <iostream>
#include <algorithm>
#include <vector>
#include <utility> //to use make_pair

using namespace std;

//function compare two pairs
bool pairLessThanFunction(const pair<string, int> &p1, const pair<string, int> &p2)
{
 return p1.second < p2.second;
}

int main(int argc, const char * argv[]) {

 vector<int> intVec {30,200,167,56,75,94,10,73,52,6,39,43};

 vector<pair<string, int>> pairVector = {make_pair("y", 25), make_pair("b", 2), make_pair("z",
26), make_pair("e", 5) };

 // default using < operator
 auto minInt = min_element(intVec.begin(), intVec.end());

 //Using pairLessThanFunction
 auto minPairFunction = min_element(pairVector.begin(), pairVector.end(), pairLessThanFunction);

 //print minimum of intVector
 cout << "min int from default: " << *minInt << endl;

C++ Notes for Professionals 335

 //print minimum of pairVector
 cout << "min pair from PairLessThanFunction: " << (*minPairFunction).second << endl;

 return 0;
}

Output

min int from default: 6
min pair from PairLessThanFunction: 2

Section 63.6: std::find_if
template <class InputIterator, class UnaryPredicate>
InputIterator find_if (InputIterator first, InputIterator last, UnaryPredicate pred);

Effects

Finds the first element in a range for which the predicate function pred returns true.

Parameters

first => iterator pointing to the beginning of the range last => iterator pointing to the end of the range pred =>
predicate function(returns true or false)

Return

An iterator that points to the first element within the range the predicate function pred returns true for. The
iterator points to last if val is not found

Example

#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

/*
 define some functions to use as predicates
*/

//Returns true if x is multiple of 10
bool multOf10(int x) {
 return x % 10 == 0;
}

//returns true if item greater than passed in parameter
class Greater {
 int _than;

public:
 Greater(int th):_than(th){

 }
 bool operator()(int data) const

C++ Notes for Professionals 336

 {
 return data > _than;
 }
};

int main()
{

 vector<int> myvec {2, 5, 6, 10, 56, 7, 48, 89, 850, 7, 456};

 //with a lambda function
 vector<int>::iterator gt10 = find_if(myvec.begin(), myvec.end(), [](int x){return x>10;}); // >=
C++11

 //with a function pointer
 vector<int>::iterator pow10 = find_if(myvec.begin(), myvec.end(), multOf10);

 //with functor
 vector<int>::iterator gt5 = find_if(myvec.begin(), myvec.end(), Greater(5));

 //not Found
 vector<int>::iterator nf = find_if(myvec.begin(), myvec.end(), Greater(1000)); // nf points to
myvec.end()

 //check if pointer points to myvec.end()
 if(nf != myvec.end()) {
 cout << "nf points to: " << *nf << endl;
 }
 else {
 cout << "item not found" << endl;
 }

 cout << "First item > 10: " << *gt10 << endl;
 cout << "First Item n * 10: " << *pow10 << endl;
 cout << "First Item > 5: " << *gt5 << endl;

 return 0;
}

Output

item not found
First item > 10: 56
First Item n * 10: 10
First Item > 5: 6

Section 63.7: Using std::nth_element To Find The Median (Or
Other Quantiles)
The std::nth_element algorithm takes three iterators: an iterator to the beginning, nth position, and end. Once the
function returns, the nth element (by order) will be the nth smallest element. (The function has more elaborate
overloads, e.g., some taking comparison functors; see the above link for all the variations.)

Note This function is very efficient - it has linear complexity.

http://en.cppreference.com/w/cpp/algorithm/nth_element
http://en.cppreference.com/w/cpp/algorithm/nth_element
http://en.cppreference.com/w/cpp/algorithm/nth_element

C++ Notes for Professionals 337

For the sake of this example, let's define the median of a sequence of length n as the element that would be in
position ?n / 2?. For example, the median of a sequence of length 5 is the 3rd smallest element, and so is the
median of a sequence of length 6.

To use this function to find the median, we can use the following. Say we start with

std::vector<int> v{5, 1, 2, 3, 4};

std::vector<int>::iterator b = v.begin();
std::vector<int>::iterator e = v.end();

std::vector<int>::iterator med = b;
std::advance(med, v.size() / 2);

// This makes the 2nd position hold the median.
std::nth_element(b, med, e);

// The median is now at v[2].

To find the pth quantile, we would change some of the lines above:

const std::size_t pos = p * std::distance(b, e);

std::advance(nth, pos);

and look for the quantile at position pos.

Section 63.8: std::count
template <class InputIterator, class T>
typename iterator_traits<InputIterator>::difference_type
count (InputIterator first, InputIterator last, const T& val);

Effects

Counts the number of elements that are equal to val

Parameters

first => iterator pointing to the beginning of the range
last => iterator pointing to the end of the range
val => The occurrence of this value in the range will be counted

Return

The number of elements in the range that are equal(==) to val.

Example

#include <vector>
#include <algorithm>
#include <iostream>

using namespace std;

int main(int argc, const char * argv[]) {

https://en.wikipedia.org/wiki/Quantile

C++ Notes for Professionals 338

 //create vector
 vector<int> intVec{4,6,8,9,10,30,55,100,45,2,4,7,9,43,48};

 //count occurrences of 9, 55, and 101
 size_t count_9 = count(intVec.begin(), intVec.end(), 9); //occurs twice
 size_t count_55 = count(intVec.begin(), intVec.end(), 55); //occurs once
 size_t count_101 = count(intVec.begin(), intVec.end(), 101); //occurs once

 //print result
 cout << "There are " << count_9 << " 9s"<< endl;
 cout << "There is " << count_55 << " 55"<< endl;
 cout << "There is " << count_101 << " 101"<< ends;

 //find the first element == 4 in the vector
 vector<int>::iterator itr_4 = find(intVec.begin(), intVec.end(), 4);

 //count its occurrences in the vector starting from the first one
 size_t count_4 = count(itr_4, intVec.end(), *itr_4); // should be 2

 cout << "There are " << count_4 << " " << *itr_4 << endl;

 return 0;
}

Output

There are 2 9s
There is 1 55
There is 0 101
There are 2 4

Section 63.9: std::count_if
template <class InputIterator, class UnaryPredicate>
typename iterator_traits<InputIterator>::difference_type
count_if (InputIterator first, InputIterator last, UnaryPredicate red);

Effects

Counts the number of elements in a range for which a specified predicate function is true

Parameters

first => iterator pointing to the beginning of the range last => iterator pointing to the end of the range red =>
predicate function(returns true or false)

Return

The number of elements within the specified range for which the predicate function returned true.

Example

#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

C++ Notes for Professionals 339

/*
 Define a few functions to use as predicates
*/

//return true if number is odd
bool isOdd(int i){
 return i%2 == 1;
}

//functor that returns true if number is greater than the value of the constructor parameter
provided
class Greater {
 int _than;
public:
 Greater(int th): _than(th){}
 bool operator()(int i){
 return i > _than;
 }
};

int main(int argc, const char * argv[]) {

 //create a vector
 vector<int> myvec = {1,5,8,0,7,6,4,5,2,1,5,0,6,9,7};

 //using a lambda function to count even numbers
 size_t evenCount = count_if(myvec.begin(), myvec.end(), [](int i){return i % 2 == 0;}); // >=
C++11

 //using function pointer to count odd number in the first half of the vector
 size_t oddCount = count_if(myvec.begin(), myvec.end()- myvec.size()/2, isOdd);

 //using a functor to count numbers greater than 5
 size_t greaterCount = count_if(myvec.begin(), myvec.end(), Greater(5));

 cout << "vector size: " << myvec.size() << endl;
 cout << "even numbers: " << evenCount << " found" << endl;
 cout << "odd numbers: " << oddCount << " found" << endl;
 cout << "numbers > 5: " << greaterCount << " found"<< endl;

 return 0;
}

Output

vector size: 15
even numbers: 7 found
odd numbers: 4 found
numbers > 5: 6 found

C++ Notes for Professionals 340

Chapter 64: The ISO C++ Standard
In 1998, the there was a first publication of the standard making C++ an internally standardized language. From
that time, C++ has evolved resulting in different dialects of C++. On this page, you can find an overview of all
different standards and their changes compared to the previous version. The details on how to use these features
is described on more specialized pages.

Section 64.1: Current Working Drafts
All published ISO standards are available for sale from the ISO store (http://www.iso.org). The working drafts of the
C++ standards are publicly available for free though.

The different versions of the standard:

Upcoming (Sometimes referred as C++20 or C++2a): Current working draft (HTML-version)
Proposed (Sometimes referred as C++17 or C++1z): March 2017 working draft N4659.
C++14 (Sometimes referred as C++1y): November 2014 working draft N4296
C++11 (Sometimes referred as C++0x): February 2011 working draft N3242
C++03
C++98

Section 64.2: C++17
The C++17 standard is feature complete and has been proposed for standardization. In compilers with
experimental support for these features, it is usually referred to as C++1z.

Language Extensions

Fold Expressions
declaring non-type template arguments with auto
Guaranteed copy elision
Template parameter deduction for constructors
Structured bindings
Compact nested namespaces
New attributes: [[fallthrough]], [[nodiscard]], [[maybe_unused]]
Default message for static_assert
Initializers in if and switch
Inline variables
if constexpr

Order of expression evaluation guarantees
Dynamic memory allocation for over-aligned data

Library Extensions

std::optional

std::variant

std::string_view

merge() and extract() for associative containers
A file system library with the <filesystem> header.
Parallel versions of most of the standard algorithms (in the <algorithm> header).
Addition of mathematical special functions in the <cmath> header.
Moving nodes between map<>, unordered_map<>, set<>, and unordered_set<>

http://www.iso.org
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4659.pdf
http://eel.is/c++draft/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4659.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4296.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3505.html
http://en.cppreference.com/w/cpp/filesystem
http://en.cppreference.com/w/cpp/filesystem
http://en.cppreference.com/w/cpp/filesystem
http://en.cppreference.com/w/cpp/filesystem
https://isocpp.org/files/papers/P0024R2.html
http://en.cppreference.com/w/cpp/algorithm
http://en.cppreference.com/w/cpp/algorithm
http://en.cppreference.com/w/cpp/algorithm
http://en.cppreference.com/w/cpp/algorithm
https://isocpp.org/files/papers/P0226R1.pdf
http://en.cppreference.com/w/cpp/numeric/special_math
http://en.cppreference.com/w/cpp/numeric/special_math
http://en.cppreference.com/w/cpp/numeric/special_math
http://en.cppreference.com/w/cpp/numeric/special_math

C++ Notes for Professionals 341

Section 64.3: C++11
The C++11 standard is a major extension to the C++ standard. Below you can find an overview of the changes as
they have been grouped on the isocpp FAQ with links to more detailed documentation.

Language Extensions
General Features

auto
decltype
Range-for statement
Initializer lists
Uniform initialization syntax and semantics
Rvalue references and move semantics
Lambdas
noexcept to prevent exception propagation
constexpr
nullptr – a null pointer literal
Copying and rethrowing exceptions
Inline namespaces
User-defined literals

Classes

=default and =delete
Control of default move and copy
Delegating constructors
In-class member initializers
Inherited constructors
Override controls: override
Override controls: final
Explicit conversion operators

Other Types

enum class
long long – a longer integer
Extended integer types
Generalized unions
Generalized PODs

Templates

Extern templates
Template aliases
Variadic templates
Local types as template arguments

Concurrency

Concurrency memory model
Dynamic initialization and destruction with concurrency
Thread-local storage

Miscellaneous Language Features

https://isocpp.org/faq
https://isocpp.org/wiki/faq/cpp11-language
https://isocpp.org/wiki/faq/cpp11-language-classes
https://isocpp.org/wiki/faq/cpp11-language-types
https://isocpp.org/wiki/faq/cpp11-language-templates
https://isocpp.org/wiki/faq/cpp11-language-concurrency
https://isocpp.org/wiki/faq/cpp11-language-misc

C++ Notes for Professionals 342

What is the value of __cplusplus for C++11?
Suffix return type syntax
Preventing narrowing
Right-angle brackets
static_assert compile-time assertions
Raw string literals
Attributes
Alignment
C99 features

Library Extensions
General

unique_ptr
shared_ptr
weak_ptr
Garbage collection ABI
tuple
Type traits
function and bind
Regular Expressions
Time utilities
Random number generation
Scoped allocators

Containers and Algorithms

Algorithms improvements
Container improvements
unordered_* containers
std::array
forward_list

Concurrency

Threads
Mutual exclusion
Locks
Condition variables
Atomics
Futures and promises
async
Abandoning a process

Section 64.4: C++14
The C++14 standard is often referred to as a bugfix for C++11. It contains only a limited list of changes of which
most are extensions to the new features in C++11. Below you can find an overview of the changes as they have
been grouped on the isocpp FAQ with links to more detailed documentation.

Language Extensions

Binary literals
Generalized return type deduction

https://isocpp.org/wiki/faq/cpp11-library
https://isocpp.org/wiki/faq/cpp11-library-stl
https://isocpp.org/wiki/faq/cpp11-library-concurrency
https://isocpp.org/faq
https://isocpp.org/wiki/faq/cpp14-language

C++ Notes for Professionals 343

decltype(auto)
Generalized lambda captures
Generic lambdas
Variable templates
Extended constexpr
The [[deprecated]] attribute
Digit separators

Library Extensions

Shared locking
User-defined literals for std:: types
std::make_unique

Type transformation _t aliases
Addressing tuples by type (e.g. get<string>(t))
Transparent Operator Functors (e.g. greater<>(x))
std::quoted

Deprecated / Removed

std::gets was deprecated in C++11 and removed from C++14
std::random_shuffle is deprecated

Section 64.5: C++98
C++98 is the first standardized version of C++. As it was developed as an extension to C, many of the features which
set apart C++ from C are added.

Language Extensions (in respect to C89/C90)

Classes, Derived classes, virtual member functions, const member functions
Function overloading, Operator overloading
Single line comments (Has been introduced in the C-languague with C99 standard)
References
new and delete
boolean type (Has been introduced in the C-languague with C99 standard)
templates
namespaces
exceptions
specific casts

Library Extensions

The Standard Template Library

Section 64.6: C++03
The C++03 standard mainly addresses defect reports of the C++98 standard. Apart from these defects, it only adds
one new feature.

Language Extensions

Value initalization

https://isocpp.org/wiki/faq/cpp14-library
http://en.cppreference.com/w/cpp/memory/unique_ptr/make_unique
http://en.cppreference.com/w/cpp/memory/unique_ptr/make_unique
http://en.cppreference.com/w/cpp/memory/unique_ptr/make_unique
http://stackoverflow.com/q/29719558/3235496
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3421
http://en.cppreference.com/w/cpp/io/manip/quoted
http://en.cppreference.com/w/cpp/io/manip/quoted
http://en.cppreference.com/w/cpp/io/manip/quoted
http://en.cppreference.com/w/cpp/io/c/gets
http://en.cppreference.com/w/cpp/io/c/gets
http://en.cppreference.com/w/cpp/io/c/gets
http://en.cppreference.com/w/cpp/algorithm/random_shuffle
http://en.cppreference.com/w/cpp/algorithm/random_shuffle
http://en.cppreference.com/w/cpp/algorithm/random_shuffle
http://stackoverflow.com/a/620402/2466431

C++ Notes for Professionals 344

Section 64.7: C++20
C++20 is the upcoming standard of C++, currently in development, based upon the C++17 standard. It's progress
can be tracked on the official ISO cpp website.

The following features are simply what has been accepted for the next release of the C++ standard, targeted for
2020.

Language Extensions

No language extensions have been accepted for now.

Library Extensions

No library extensions have been accepted for now.

https://isocpp.org/std/status

C++ Notes for Professionals 345

Chapter 65: Random number generation
Section 65.1: True random value generator
To generate true random values that can be used for cryptography std::random_device has to be used as
generator.

#include <iostream>
#include <random>

int main()
{
 std::random_device crypto_random_generator;
 std::uniform_int_distribution<int> int_distribution(0,9);

 int actual_distribution[10] = {0,0,0,0,0,0,0,0,0,0};

 for(int i = 0; i < 10000; i++) {
 int result = int_distribution(crypto_random_generator);
 actual_distribution[result]++;
 }

 for(int i = 0; i < 10; i++) {
 std::cout << actual_distribution[i] << " ";
 }

 return 0;
}

std::random_device is used in the same way as a pseudo random value generator is used.

However std::random_device may be implemented in terms of an implementation-defined pseudo-random
number engine if a non-deterministic source (e.g. a hardware device) isn't available to the implementation.

Detecting such implementations should be possible via the entropy member function (which return zero when the
generator is completely deterministic), but many popular libraries (both GCC's libstdc++ and LLVM's libc++) always
return zero, even when they're using high-quality external randomness.

Section 65.2: Generating a pseudo-random number
A pseudo-random number generator generates values that can be guessed based on previously generated values.
In other words: it is deterministic. Do not use a pseudo-random number generator in situations where a true
random number is required.

#include <iostream>
#include <random>

int main()
{
 std::default_random_engine pseudo_random_generator;
 std::uniform_int_distribution<int> int_distribution(0, 9);

 int actual_distribution[10] = {0,0,0,0,0,0,0,0,0,0};

 for(int i = 0; i < 10000; i++) {
 int result = int_distribution(pseudo_random_generator);
 actual_distribution[result]++;

http://en.cppreference.com/w/cpp/numeric/random/random_device/entropy
http://en.cppreference.com/w/cpp/numeric/random/random_device/entropy

C++ Notes for Professionals 346

 }

 for(int i = 0; i <= 9; i++) {
 std::cout << actual_distribution[i] << " ";
 }

 return 0;
}

This code creates a random number generator, and a distribution that generates integers in the range [0,9] with
equal likelihood. It then counts how many times each result was generated.

The template parameter of std::uniform_int_distribution<T> specifies the type of integer that should be
generated. Use std::uniform_real_distribution<T> to generate floats or doubles.

Section 65.3: Using the generator for multiple distributions
The random number generator can (and should) be used for multiple distributions.

#include <iostream>
#include <random>

int main()
{
 std::default_random_engine pseudo_random_generator;
 std::uniform_int_distribution<int> int_distribution(0, 9);
 std::uniform_real_distribution<float> float_distribution(0.0, 1.0);
 std::discrete_distribution<int> rigged_dice({1,1,1,1,1,100});

 std::cout << int_distribution(pseudo_random_generator) << std::endl;
 std::cout << float_distribution(pseudo_random_generator) << std::endl;
 std::cout << (rigged_dice(pseudo_random_generator) + 1) << std::endl;

 return 0;
}

In this example, only one generator is defined. It is subsequently used to generate a random value in three
different distributions. The rigged_dice distribution will generate a value between 0 and 5, but almost always
generates a 5, because the chance to generate a 5 is 100 / 105.

http://en.cppreference.com/w/cpp/numeric/random/uniform_int_distribution
http://en.cppreference.com/w/cpp/numeric/random/uniform_int_distribution
http://en.cppreference.com/w/cpp/numeric/random/uniform_int_distribution
http://en.cppreference.com/w/cpp/numeric/random/uniform_int_distribution
http://en.cppreference.com/w/cpp/numeric/random/uniform_int_distribution
http://en.cppreference.com/w/cpp/numeric/random/uniform_int_distribution
http://en.cppreference.com/w/cpp/numeric/random/uniform_real_distribution
http://en.cppreference.com/w/cpp/numeric/random/uniform_real_distribution
http://en.cppreference.com/w/cpp/numeric/random/uniform_real_distribution
http://en.cppreference.com/w/cpp/numeric/random/uniform_real_distribution
http://en.cppreference.com/w/cpp/numeric/random/uniform_real_distribution
http://en.cppreference.com/w/cpp/numeric/random/uniform_real_distribution

C++ Notes for Professionals 347

Chapter 66: Date and time using <chrono>
header
Section 66.1: Measuring time using <chrono>
The system_clock can be used to measure the time elapsed during some part of a program's execution.

Version = c++11

#include <iostream>
#include <chrono>
#include <thread>

int main() {
 auto start = std::chrono::system_clock::now(); // This and "end"'s type is
std::chrono::time_point
 { // The code to test
 std::this_thread::sleep_for(std::chrono::seconds(2));
 }
 auto end = std::chrono::system_clock::now();

 std::chrono::duration<double> elapsed = end - start;
 std::cout << "Elapsed time: " << elapsed.count() << "s";
}

In this example, sleep_for was used to make the active thread sleep for a time period measured in
std::chrono::seconds, but the code between braces could be any function call that takes some time to execute.

Section 66.2: Find number of days between two dates
This example shows how to find number of days between two dates. A date is specified by year/month/day of
month, and additionally hour/minute/second.

Program calculates number of days in years since 2000.

#include <iostream>
#include <string>
#include <chrono>
#include <ctime>

/***
 * Creates a std::tm structure from raw date.
 *
 * \param year (must be 1900 or greater)
 * \param month months since January – [1, 12]
 * \param day day of the month – [1, 31]
 * \param minutes minutes after the hour – [0, 59]
 * \param seconds seconds after the minute – [0, 61](until C++11) / [0, 60] (since C++11)
 *
 * Based on http://en.cppreference.com/w/cpp/chrono/c/tm
 */
std::tm CreateTmStruct(int year, int month, int day, int hour, int minutes, int seconds) {
 struct tm tm_ret = {0};

 tm_ret.tm_sec = seconds;
 tm_ret.tm_min = minutes;
 tm_ret.tm_hour = hour;
 tm_ret.tm_mday = day;

C++ Notes for Professionals 348

 tm_ret.tm_mon = month - 1;
 tm_ret.tm_year = year - 1900;

 return tm_ret;
}

int get_days_in_year(int year) {

 using namespace std;
 using namespace std::chrono;

 // We want results to be in days
 typedef duration<int, ratio_multiply<hours::period, ratio<24> >::type> days;

 // Create start time span
 std::tm tm_start = CreateTmStruct(year, 1, 1, 0, 0, 0);
 auto tms = system_clock::from_time_t(std::mktime(&tm_start));

 // Create end time span
 std::tm tm_end = CreateTmStruct(year + 1, 1, 1, 0, 0, 0);
 auto tme = system_clock::from_time_t(std::mktime(&tm_end));

 // Calculate time duration between those two dates
 auto diff_in_days = std::chrono::duration_cast<days>(tme - tms);

 return diff_in_days.count();
}

int main()
{
 for (int year = 2000; year <= 2016; ++year)
 std::cout << "There are " << get_days_in_year(year) << " days in " << year << "\n";
}

C++ Notes for Professionals 349

Chapter 67: Sorting
Section 67.1: Sorting and sequence containers
std::sort, found in the standard library header algorithm, is a standard library algorithm for sorting a range of
values, defined by a pair of iterators. std::sort takes as the last parameter a functor used to compare two values;
this is how it determines the order. Note that std::sort is not stable.

The comparison function must impose a Strict, Weak Ordering on the elements. A simple less-than (or greater-than)
comparison will suffice.

A container with random-access iterators can be sorted using the std::sort algorithm:

Version ≥ C++11

#include <vector>
#include <algorithm>

std::vector<int> MyVector = {3, 1, 2}

//Default comparison of <
std::sort(MyVector.begin(), MyVector.end());

std::sort requires that its iterators are random access iterators. The sequence containers std::list and
std::forward_list (requiring C++11) do not provide random access iterators, so they cannot be used with
std::sort. However, they do have sort member functions which implement a sorting algorithm that works with
their own iterator types.

Version ≥ C++11

#include <list>
#include <algorithm>

std::list<int> MyList = {3, 1, 2}

//Default comparison of <
//Whole list only.
MyList.sort();

Their member sort functions always sort the entire list, so they cannot sort a sub-range of elements. However,
since list and forward_list have fast splicing operations, you could extract the elements to be sorted from the
list, sort them, then stuff them back where they were quite efficiently like this:

void sort_sublist(std::list<int>& mylist, std::list<int>::const_iterator start,
std::list<int>::const_iterator end) {
 //extract and sort half-open sub range denoted by start and end iterator
 std::list<int> tmp;
 tmp.splice(tmp.begin(), list, start, end);
 tmp.sort();
 //re-insert range at the point we extracted it from
 list.splice(end, tmp);
}

Section 67.2: sorting with std::map (ascending and
descending)
This example sorts elements in ascending order of a key using a map. You can use any type, including class,

https://en.wikipedia.org/wiki/Sorting_algorithm#Stability
https://en.wikipedia.org/wiki/Weak_ordering#Strict_weak_orderings

C++ Notes for Professionals 350

instead of std::string, in the example below.

#include <iostream>
#include <utility>
#include <map>

int main()
{
 std::map<double, std::string> sorted_map;
 // Sort the names of the planets according to their size
 sorted_map.insert(std::make_pair(0.3829, "Mercury"));
 sorted_map.insert(std::make_pair(0.9499, "Venus"));
 sorted_map.insert(std::make_pair(1, "Earth"));
 sorted_map.insert(std::make_pair(0.532, "Mars"));
 sorted_map.insert(std::make_pair(10.97, "Jupiter"));
 sorted_map.insert(std::make_pair(9.14, "Saturn"));
 sorted_map.insert(std::make_pair(3.981, "Uranus"));
 sorted_map.insert(std::make_pair(3.865, "Neptune"));

 for (auto const& entry: sorted_map)
 {
 std::cout << entry.second << " (" << entry.first << " of Earth's radius)" << '\n';
 }
}

Output:

Mercury (0.3829 of Earth's radius)
Mars (0.532 of Earth's radius)
Venus (0.9499 of Earth's radius)
Earth (1 of Earth's radius)
Neptune (3.865 of Earth's radius)
Uranus (3.981 of Earth's radius)
Saturn (9.14 of Earth's radius)
Jupiter (10.97 of Earth's radius)

If entries with equal keys are possible, use multimap instead of map (like in the following example).

To sort elements in descending manner, declare the map with a proper comparison functor (std::greater<>):

#include <iostream>
#include <utility>
#include <map>

int main()
{
 std::multimap<int, std::string, std::greater<int>> sorted_map;
 // Sort the names of animals in descending order of the number of legs
 sorted_map.insert(std::make_pair(6, "bug"));
 sorted_map.insert(std::make_pair(4, "cat"));
 sorted_map.insert(std::make_pair(100, "centipede"));
 sorted_map.insert(std::make_pair(2, "chicken"));
 sorted_map.insert(std::make_pair(0, "fish"));
 sorted_map.insert(std::make_pair(4, "horse"));
 sorted_map.insert(std::make_pair(8, "spider"));

 for (auto const& entry: sorted_map)
 {
 std::cout << entry.second << " (has " << entry.first << " legs)" << '\n';
 }

C++ Notes for Professionals 351

}

Output

centipede (has 100 legs)
spider (has 8 legs)
bug (has 6 legs)
cat (has 4 legs)
horse (has 4 legs)
chicken (has 2 legs)
fish (has 0 legs)

Section 67.3: Sorting sequence containers by overloaded less
operator
If no ordering function is passed, std::sort will order the elements by calling operator< on pairs of elements,
which must return a type contextually convertible to bool (or just bool). Basic types (integers, floats, pointers etc)
have already build in comparison operators.

We can overload this operator to make the default sort call work on user-defined types.

// Include sequence containers
#include <vector>
#include <deque>
#include <list>

// Insert sorting algorithm
#include <algorithm>

class Base {
 public:

 // Constructor that set variable to the value of v
 Base(int v): variable(v) {
 }

 // Use variable to provide total order operator less
 //`this` always represents the left-hand side of the compare.
 bool operator<(const Base &b) const {
 return this->variable < b.variable;
 }

 int variable;
};

int main() {
 std::vector <Base> vector;
 std::deque <Base> deque;
 std::list <Base> list;

 // Create 2 elements to sort
 Base a(10);
 Base b(5);

 // Insert them into backs of containers
 vector.push_back(a);
 vector.push_back(b);

 deque.push_back(a);

C++ Notes for Professionals 352

 deque.push_back(b);

 list.push_back(a);
 list.push_back(b);

 // Now sort data using operator<(const Base &b) function
 std::sort(vector.begin(), vector.end());
 std::sort(deque.begin(), deque.end());
 // List must be sorted differently due to its design
 list.sort();

 return 0;
}

Section 67.4: Sorting sequence containers using compare
function
// Include sequence containers
#include <vector>
#include <deque>
#include <list>

// Insert sorting algorithm
#include <algorithm>

class Base {
 public:

 // Constructor that set variable to the value of v
 Base(int v): variable(v) {
 }

 int variable;
};

bool compare(const Base &a, const Base &b) {
 return a.variable < b.variable;
}

int main() {
 std::vector <Base> vector;
 std::deque <Base> deque;
 std::list <Base> list;

 // Create 2 elements to sort
 Base a(10);
 Base b(5);

 // Insert them into backs of containers
 vector.push_back(a);
 vector.push_back(b);

 deque.push_back(a);
 deque.push_back(b);

 list.push_back(a);
 list.push_back(b);

 // Now sort data using comparing function
 std::sort(vector.begin(), vector.end(), compare);
 std::sort(deque.begin(), deque.end(), compare);

C++ Notes for Professionals 353

 list.sort(compare);

 return 0;
}

Section 67.5: Sorting sequence containers using lambda
expressions (C++11)
Version ≥ C++11

// Include sequence containers
#include <vector>
#include <deque>
#include <list>
#include <array>
#include <forward_list>

// Include sorting algorithm
#include <algorithm>

class Base {
 public:

 // Constructor that set variable to the value of v
 Base(int v): variable(v) {
 }

 int variable;
};

int main() {
 // Create 2 elements to sort
 Base a(10);
 Base b(5);

 // We're using C++11, so let's use initializer lists to insert items.
 std::vector <Base> vector = {a, b};
 std::deque <Base> deque = {a, b};
 std::list <Base> list = {a, b};
 std::array <Base, 2> array = {a, b};
 std::forward_list<Base> flist = {a, b};

 // We can sort data using an inline lambda expression
 std::sort(std::begin(vector), std::end(vector),
 [](const Base &a, const Base &b) { return a.variable < b.variable;});

 // We can also pass a lambda object as the comparator
 // and reuse the lambda multiple times
 auto compare = [](const Base &a, const Base &b) {
 return a.variable < b.variable;};
 std::sort(std::begin(deque), std::end(deque), compare);
 std::sort(std::begin(array), std::end(array), compare);
 list.sort(compare);
 flist.sort(compare);

 return 0;
}

C++ Notes for Professionals 354

Section 67.6: Sorting built-in arrays
The sort algorithm sorts a sequence defined by two iterators. This is enough to sort a built-in (also known as c-
style) array.

Version ≥ C++11

int arr1[] = {36, 24, 42, 60, 59};

// sort numbers in ascending order
sort(std::begin(arr1), std::end(arr1));

// sort numbers in descending order
sort(std::begin(arr1), std::end(arr1), std::greater<int>());

Prior to C++11, end of array had to be "calculated" using the size of the array:

Version < C++11

// Use a hard-coded number for array size
sort(arr1, arr1 + 5);

// Alternatively, use an expression
const size_t arr1_size = sizeof(arr1) / sizeof(*arr1);
sort(arr1, arr1 + arr1_size);

Section 67.7: Sorting sequence containers with specifed
ordering
If the values in a container have certain operators already overloaded, std::sort can be used with specialized
functors to sort in either ascending or descending order:

Version ≥ C++11

#include <vector>
#include <algorithm>
#include <functional>

std::vector<int> v = {5,1,2,4,3};

//sort in ascending order (1,2,3,4,5)
std::sort(v.begin(), v.end(), std::less<int>());

// Or just:
std::sort(v.begin(), v.end());

//sort in descending order (5,4,3,2,1)
std::sort(v.begin(), v.end(), std::greater<int>());

//Or just:
std::sort(v.rbegin(), v.rend());
Version ≥ C++14

In C++14, we don't need to provide the template argument for the comparison function objects and instead let the
object deduce based on what it gets passed in:

std::sort(v.begin(), v.end(), std::less<>()); // ascending order
std::sort(v.begin(), v.end(), std::greater<>()); // descending order

C++ Notes for Professionals 355

Chapter 68: Enumeration
Section 68.1: Iteration over an enum
There is no built-in to iterate over enumeration.

But there are several ways

for enum with only consecutive values:

enum E {
 Begin,
 E1 = Begin,
 E2,
 // ..
 En,
 End
};

for (E e = E::Begin; e != E::End; ++e) {
 // Do job with e
}

Version ≥ C++11

with enum class, operator ++ has to be implemented:

E& operator ++ (E& e)
{
 if (e == E::End) {
 throw std::out_of_range("for E& operator ++ (E&)");
 }
 e = E(static_cast<std::underlying_type<E>::type>(e) + 1);
 return e;
}

using a container as std::vector

enum E {
 E1 = 4,
 E2 = 8,
 // ..
 En
};

std::vector<E> build_all_E()
{
 const E all[] = {E1, E2, /*..*/ En};

 return std::vector<E>(all, all + sizeof(all) / sizeof(E));
}

std::vector<E> all_E = build_all_E();

and then

for (std::vector<E>::const_iterator it = all_E.begin(); it != all_E.end(); ++it) {

C++ Notes for Professionals 356

 E e = *it;
 // Do job with e;
}

Version ≥ C++11

or std::initializer_list and a simpler syntax:

enum E {
 E1 = 4,
 E2 = 8,
 // ..
 En
};

constexpr std::initializer_list<E> all_E = {E1, E2, /*..*/ En};

and then

for (auto e : all_E) {
 // Do job with e
}

Section 68.2: Scoped enums
C++11 introduces what are known as scoped enums. These are enumerations whose members must be qualified
with enumname::membername. Scoped enums are declared using the enum class syntax. For example, to store the
colors in a rainbow:

enum class rainbow {
 RED,
 ORANGE,
 YELLOW,
 GREEN,
 BLUE,
 INDIGO,
 VIOLET
};

To access a specific color:

rainbow r = rainbow::INDIGO;

enum classes cannot be implicitly converted to ints without a cast. So int x = rainbow::RED is invalid.

Scoped enums also allow you to specify the underlying type, which is the type used to represent a member. By
default it is int. In a Tic-Tac-Toe game, you may store the piece as

enum class piece : char {
 EMPTY = '\0',
 X = 'X',
 O = 'O',
};

As you may notice, enums can have a trailing comma after the last member.

C++ Notes for Professionals 357

Section 68.3: Enum forward declaration in C++11
Scoped enumerations:

...
enum class Status; // Forward declaration
Status doWork(); // Use the forward declaration
...
enum class Status { Invalid, Success, Fail };
Status doWork() // Full declaration required for implementation
{
 return Status::Success;
}

Unscoped enumerations:

...
enum Status: int; // Forward declaration, explicit type required
Status doWork(); // Use the forward declaration
...
enum Status: int{ Invalid=0, Success, Fail }; // Must match forward declare type
static_assert(Success == 1);

An in-depth multi-file example can be found here: Blind fruit merchant example

Section 68.4: Basic Enumeration Declaration
Standard enumerations allow users to declare a useful name for a set of integers. The names are collectively
referred to as enumerators. An enumeration and its associated enumerators are defined as follows:

enum myEnum
{
 enumName1,
 enumName2,
};

An enumeration is a type, one which is distinct from all other types. In this case, the name of this type is myEnum.
Objects of this type are expected to assume the value of an enumerator within the enumeration.

The enumerators declared within the enumeration are constant values of the type of the enumeration. Though the
enumerators are declared within the type, the scope operator :: is not needed to access the name. So the name of
the first enumerator is enumName1.

Version ≥ C++11

The scope operator can be optionally used to access an enumerator within an enumeration. So enumName1 can also
be spelled myEnum::enumName1.

Enumerators are assigned integer values starting from 0 and increasing by 1 for each enumerator in an
enumeration. So in the above case, enumName1 has the value 0, while enumName2 has the value 1.

Enumerators can also be assigned a specific value by the user; this value must be an integral constant expression.
Enumerators who's values are not explicitly provided will have their value set to the value of the previous
enumerator + 1.

enum myEnum

http://stackoverflow.com/a/19074269/1873507

C++ Notes for Professionals 358

{
 enumName1 = 1, // value will be 1
 enumName2 = 2, // value will be 2
 enumName3, // value will be 3, previous value + 1
 enumName4 = 7, // value will be 7
 enumName5, // value will be 8
 enumName6 = 5, // value will be 5, legal to go backwards
 enumName7 = 3, // value will be 3, legal to reuse numbers
 enumName8 = enumName4 + 2, // value will be 9, legal to take prior enums and adjust them
};

Section 68.5: Enumeration in switch statements
A common use for enumerators is for switch statements and so they commonly appear in state machines. In fact a
useful feature of switch statements with enumerations is that if no default statement is included for the switch, and
not all values of the enum have been utilized, the compiler will issue a warning.

enum State {
 start,
 middle,
 end
};

...

switch(myState) {
 case start:
 ...
 case middle:
 ...
} // warning: enumeration value 'end' not handled in switch [-Wswitch]

C++ Notes for Professionals 359

Chapter 69: Iteration
Section 69.1: break
Jumps out of the nearest enclosing loop or switch statement.

// print the numbers to a file, one per line
for (const int num : num_list) {
 errno = 0;
 fprintf(file, "%d\n", num);
 if (errno == ENOSPC) {
 fprintf(stderr, "no space left on device; output will be truncated\n");
 break;
 }
}

Section 69.2: continue
Jumps to the end of the smallest enclosing loop.

int sum = 0;
for (int i = 0; i < N; i++) {
 int x;
 std::cin >> x;
 if (x < 0) continue;
 sum += x;
 // equivalent to: if (x >= 0) sum += x;
}

Section 69.3: do
Introduces a do-while loop.

// Gets the next non-whitespace character from standard input
char read_char() {
 char c;
 do {
 c = getchar();
 } while (isspace(c));
 return c;
}

Section 69.4: while
Introduces a while loop.

int i = 0;
// print 10 asterisks
while (i < 10) {
 putchar('*');
 i++;
}

C++ Notes for Professionals 360

Section 69.5: range-based for loop
std::vector<int> primes = {2, 3, 5, 7, 11, 13};

for(auto prime : primes) {
 std::cout << prime << std::endl;
}

Section 69.6: for
Introduces a for loop or, in C++11 and later, a range-based for loop.

// print 10 asterisks
for (int i = 0; i < 10; i++) {
 putchar('*');
}

C++ Notes for Professionals 361

Chapter 70: Regular expressions
Signature Description

bool regex_match(BidirectionalIterator first,
BidirectionalIterator last, smatch& sm, const
regex& re, regex_constraints::match_flag_type
flags)

BidirectionalIterator is any character iterator that
provides increment and decrement operators smatch may
be cmatch or any other other variant of match_results that
accepts the type of BidirectionalIterator the smatch
argument may be ommitted if the results of the regex are
not needed Returns whether re matches the entire
character sequence defined by first and last

bool regex_match(const string& str, smatch&
sm, const regex re&,
regex_constraints::match_flag_type flags)

string may be either a const char* or an L-Value string,
the functions accepting an R-Value string are explicitly deleted
smatch may be cmatch or any other other variant of
match_results that accepts the type of str the smatch
argument may be ommitted if the results of the regex are
not needed Returns whether re matches the entire
character sequence defined by str

Regular Expressions (sometimes called regexs or regexps) are a textual syntax which represents the patterns which
can be matched in the strings operated upon.

Regular Expressions, introduced in c++11, may optionally support a return array of matched strings or another
textual syntax defining how to replace matched patterns in strings operated upon.

Section 70.1: Basic regex_match and regex_search Examples
const auto input = "Some people, when confronted with a problem, think \"I know, I'll use regular
expressions.\""s;
smatch sm;

cout << input << endl;

// If input ends in a quotation that contains a word that begins with "reg" and another word
beginning with "ex" then capture the preceding portion of input
if (regex_match(input, sm, regex("(.*)\".*\\breg.*\\bex.*\"\\s*$"))) {
 const auto capture = sm[1].str();

 cout << '\t' << capture << endl; // Outputs: "\tSome people, when confronted with a problem,
think\n"

 // Search our capture for "a problem" or "# problems"
 if(regex_search(capture, sm, regex("(a|d+)\\s+problems?"))) {
 const auto count = sm[1] == "a"s ? 1 : stoi(sm[1]);

 cout << '\t' << count << (count > 1 ? " problems\n" : " problem\n"); // Outputs: "\t1
problem\n"
 cout << "Now they have " << count + 1 << " problems.\n"; // Outputs: "Now they have 2
problems\n"
 }
}

Live Example

Section 70.2: regex_iterator Example
When processing of captures has to be done iteratively a regex_iterator is a good choice. Dereferencing a
regex_iterator returns a match_result. This is great for conditional captures or captures which have

https://en.wikipedia.org/wiki/Regular_expression
https://stackoverflow.com/questions/tagged/c%2b%2b11
http://ideone.com/nSRXEa

C++ Notes for Professionals 362

interdependence. Let's say that we want to tokenize some C++ code. Given:

enum TOKENS {
 NUMBER,
 ADDITION,
 SUBTRACTION,
 MULTIPLICATION,
 DIVISION,
 EQUALITY,
 OPEN_PARENTHESIS,
 CLOSE_PARENTHESIS
};

We can tokenize this string: const auto input = "42/2 + -8\t=\n(2 + 2) * 2 * 2 -3"s with a regex_iterator
like this:

vector<TOKENS> tokens;
const regex re{ "\\s*(\\(?)\\s*(-?\\s*\\d+)\\s*(\\)?)\\s*(?:(\\+)|(-)|(*)|(/)|(=))" };

for_each(sregex_iterator(cbegin(input), cend(input), re), sregex_iterator(), [&](const auto& i) {
 if(i[1].length() > 0) {
 tokens.push_back(OPEN_PARENTHESIS);
 }

 tokens.push_back(i[2].str().front() == '-' ? NEGATIVE_NUMBER : NON_NEGATIVE_NUMBER);

 if(i[3].length() > 0) {
 tokens.push_back(CLOSE_PARENTHESIS);
 }

 auto it = next(cbegin(i), 4);

 for(int result = ADDITION; it != cend(i); ++result, ++it) {
 if (it->length() > 0U) {
 tokens.push_back(static_cast<TOKENS>(result));
 break;
 }
 }
});

match_results<string::const_reverse_iterator> sm;

if(regex_search(crbegin(input), crend(input), sm, regex{ tokens.back() == SUBTRACTION ?
"^\\s*\\d+\\s*-\\s*(-?)" : "^\\s*\\d+\\s*(-?)" })) {
 tokens.push_back(sm[1].length() == 0 ? NON_NEGATIVE_NUMBER : NEGATIVE_NUMBER);
}

Live Example

A notable gotcha with regex iterators is that the regex argument must be an L-value, an R-value will not work: Visual
Studio regex_iterator Bug?

Section 70.3: Anchors
C++ provides only 4 anchors:

^ which asserts the start of the string
$ which asserts the end of the string
\b which asserts a \W character or the beginning or end of the string

http://ideone.com/Rv5WNI
http://stackoverflow.com/q/29895747/2642059
http://stackoverflow.com/q/29895747/2642059

C++ Notes for Professionals 363

\B which asserts a \w character

Let's say for example we want to capture a number with it's sign:

auto input = "+1--12*123/+1234"s;
smatch sm;

if(regex_search(input, sm, regex{ "(?:^|\\b\\W)([+-]?\\d+)" })) {

 do {
 cout << sm[1] << endl;
 input = sm.suffix().str();
 } while(regex_search(input, sm, regex{ "(?:^\\W|\\b\\W)([+-]?\\d+)" }));
}

Live Example

An important note here is that the anchor does not consume any characters.

Section 70.4: regex_replace Example
This code takes in various brace styles and converts them to One True Brace Style:

const auto input = "if (KnR)\n\tfoo();\nif (spaces) {\n foo();\n}\nif
(allman)\n{\n\tfoo();\n}\nif (horstmann)\n{\tfoo();\n}\nif (pico)\n{\tfoo(); }\nif
(whitesmiths)\n\t{\n\tfoo();\n\t}\n"s;

cout << input << regex_replace(input, regex("(.+?)\\s*\\{?\\s*(.+?;)\\s*\\}?\\s*"), "$1
{\n\t$2\n}\n") << endl;

Live Example

Section 70.5: regex_token_iterator Example
A std::regex_token_iterator provides a tremendous tool for extracting elements of a Comma Separated Value
file. Aside from the advantages of iteration, this iterator is also able to capture escaped commas where other
methods struggle:

const auto input = "please split,this,csv, ,line,\\,\n"s;
const regex re{ "((?:[^\\\\,]|\\\\.)+)(?:,|$)" };
const vector<string> m_vecFields{ sregex_token_iterator(cbegin(input), cend(input), re, 1),
sregex_token_iterator() };

cout << input << endl;

copy(cbegin(m_vecFields), cend(m_vecFields), ostream_iterator<string>(cout, "\n"));

Live Example

A notable gotcha with regex iterators is, that the regex argument must be an L-value. An R-value will not work.

Section 70.6: Quantifiers
Let's say that we're given const string input as a phone number to be validated. We could start by requiring a
numeric input with a zero or more quantifier: regex_match(input, regex("\\d*")) or a one or more
quantifier: regex_match(input, regex("\\d+")) But both of those really fall short if input contains an invalid

http://ideone.com/uE4dGr
https://en.wikipedia.org/wiki/Indent_style#Variant:_1TBS
http://ideone.com/ICR5wM
http://en.cppreference.com/w/cpp/regex/regex_token_iterator
http://en.cppreference.com/w/cpp/regex/regex_token_iterator
http://en.cppreference.com/w/cpp/regex/regex_token_iterator
http://stackoverflow.com/a/28880605/2642059
http://stackoverflow.com/a/28880605/2642059
http://ideone.com/lySlTJ
http://stackoverflow.com/q/29895747/2642059

C++ Notes for Professionals 364

numeric string like: "123" Let's use a n or more quantifier to ensure that we're getting at least 7 digits:

regex_match(input, regex("\\d{7,}"))

This will guarantee that we will get at least a phone number of digits, but input could also contain a numeric string
that's too long like: "123456789012". So lets go with a between n and m quantifier so the input is at least 7 digits
but not more than 11:

regex_match(input, regex("\\d{7,11}"));

This gets us closer, but illegal numeric strings that are in the range of [7, 11] are still accepted, like: "123456789" So
let's make the country code optional with a lazy quantifier:

regex_match(input, regex("\\d?\\d{7,10}"))

It's important to note that the lazy quantifier matches as few characters as possible, so the only way this character
will be matched is if there are already 10 characters that have been matched by \d{7,10}. (To match the first
character greedily we would have had to do: \d{0,1}.) The lazy quantifier can be appended to any other
quantifier.

Now, how would we make the area code optional and only accept a country code if the area code was present?

regex_match(input, regex("(?:\\d{3,4})?\\d{7}"))

In this final regex, the \d{7} requires 7 digits. These 7 digits are optionally preceded by either 3 or 4 digits.

Note that we did not append the lazy quantifier: \d{3,4}?\d{7}, the \d{3,4}? would have matched either 3 or 4
characters, preferring 3. Instead we're making the non-capturing group match at most once, preferring not to
match. Causing a mismatch if input didn't include the area code like: "1234567".

In conclusion of the quantifier topic, I'd like to mention the other appending quantifier that you can use, the
possessive quantifier. Either the lazy quantifier or the possessive quantifier can be appended to any quantifier.
The possessive quantifier's only function is to assist the regex engine by telling it, greedily take these characters
and don't ever give them up even if it causes the regex to fail. This for example doesn't make much sense:
regex_match(input, regex("\\d{3,4}+\\d{7})) Because an input like: "1234567890" wouldn't be matched as
\d{3,4}+ will always match 4 characters even if matching 3 would have allowed the regex to succeed.
The possessive quantifier is best used when the quantified token limits the number of matchable characters. For
example:

regex_match(input, regex("(?:.*\\d{3,4}+){3}"))

Can be used to match if input contained any of the following:

123 456 7890
123-456-7890
(123)456-7890
(123) 456 - 7890

But when this regex really shines is when input contains an illegal input:

12345 - 67890

C++ Notes for Professionals 365

Without the possessive quantifier the regex engine has to go back and test every combination of .* and either 3 or
4 characters to see if it can find a matchable combination. With the possessive quantifier the regex starts where
the 2nd possessive quantifier left off, the '0' character, and the regex engine tries to adjust the .* to allow \d{3,4}
to match; when it can't the regex just fails, no back tracking is done to see if earlier .* adjustment could have
allowed a match.

Section 70.7: Splitting a string
std::vector<std::string> split(const std::string &str, std::string regex)
{
 std::regex r{ regex };
 std::sregex_token_iterator start{ str.begin(), str.end(), r, -1 }, end;
 return std::vector<std::string>(start, end);
}

split("Some string\t with whitespace ", "\\s+"); // "Some", "string", "with", "whitespace"

C++ Notes for Professionals 366

Chapter 71: Implementation-defined
behavior
Section 71.1: Size of integral types
The following types are defined as integral types:

char

Signed integer types
Unsigned integer types
char16_t and char32_t
bool

wchar_t

With the exception of sizeof(char) / sizeof(signed char) / sizeof(unsigned char), which is split between §
3.9.1.1 [basic.fundamental/1] and § 5.3.3.1 [expr.sizeof], and sizeof(bool), which is entirely implementation-
defined and has no minimum size, the minimum size requirements of these types are given in section § 3.9.1
[basic.fundamental] of the standard, and shall be detailed below.

Size of char

All versions of the C++ standard specify, in § 5.3.3.1, that sizeof yields 1 for unsigned char, signed char, and char
(it is implementation defined whether the char type is signed or unsigned).

Version ≥ C++14

char is large enough to represent 256 different values, to be suitable for storing UTF-8 code units.

Size of signed and unsigned integer types

The standard specifies, in § 3.9.1.2, that in the list of standard signed integer types, consisting of signed char, short
int, int, long int, and long long int, each type will provide at least as much storage as those preceding it in the
list. Furthermore, as specified in § 3.9.1.3, each of these types has a corresponding standard unsigned integer type,
unsigned char, unsigned short int, unsigned int, unsigned long int, and unsigned long long int, which has
the same size and alignment as its corresponding signed type. Additionally, as specified in § 3.9.1.1, char has the
same size and alignment requirements as both signed char and unsigned char.

Version < C++11

Prior to C++11, long long and unsigned long long were not officially part of the C++ standard. However, after
their introduction to C, in C99, many compilers supported long long as an extended signed integer type, and
unsigned long long as an extended unsigned integer type, with the same rules as the C types.

The standard thus guarantees that:

1 == sizeof(char) == sizeof(signed char) == sizeof(unsigned char)
 <= sizeof(short) == sizeof(unsigned short)
 <= sizeof(int) == sizeof(unsigned int)
 <= sizeof(long) == sizeof(unsigned long)
Version ≥ C++11

 <= sizeof(long long) == sizeof(unsigned long long)

Specific minimum sizes for each type are not given by the standard. Instead, each type has a minimum range of

C++ Notes for Professionals 367

values it can support, which is, as specified in § 3.9.1.3, inherited from the C standard, in §5.2.4.2.1. The minimum
size of each type can be roughly inferred from this range, by determining the minimum number of bits required;
note that for any given platform, any type's actual supported range may be larger than the minimum. Note that for
signed types, ranges correspond to one's complement, not the more commonly used two's complement; this is to
allow a wider range of platforms to comply with the standard.

Type Minimum range Minimum bits required
signed char -127 to 127 (-(27 - 1) to (27 - 1)) 8
unsigned char 0 to 255 (0 to 28 - 1) 8
signed short -32,767 to 32,767 (-(215 - 1) to (215 - 1)) 16
unsigned short 0 to 65,535 (0 to 216 - 1) 16
signed int -32,767 to 32,767 (-(215 - 1) to (215 - 1)) 16
unsigned int 0 to 65,535 (0 to 216 - 1) 16
signed long -2,147,483,647 to 2,147,483,647 (-(231 - 1) to (231 - 1)) 32
unsigned long 0 to 4,294,967,295 (0 to 232 - 1) 32
Version ≥ C++11

Type Minimum range Minimum bits
required

signed long long -9,223,372,036,854,775,807 to 9,223,372,036,854,775,807 (-(263 - 1) to
(263 - 1)) 64

unsigned long long 0 to 18,446,744,073,709,551,615 (0 to 264 - 1) 64

As each type is allowed to be greater than its minimum size requirement, types may differ in size between
implementations. The most notable example of this is with the 64-bit data models LP64 and LLP64, where LLP64
systems (such as 64-bit Windows) have 32-bit ints and longs, and LP64 systems (such as 64-bit Linux) have 32-bit
ints and 64-bit longs. Due to this, integer types cannot be assumed to have a fixed width across all platforms.

Version ≥ C++11

If integer types with fixed width are required, use types from the <cstdint> header, but note that the standard
makes it optional for implementations to support the exact-width types int8_t, int16_t, int32_t, int64_t,
intptr_t, uint8_t, uint16_t, uint32_t, uint64_t and uintptr_t.

Version ≥ C++11

Size of char16_t and char32_t

The sizes of char16_t and char32_t are implementation-defined, as specified in § 5.3.3.1, with the stipulations
given in § 3.9.1.5:

char16_t is large enough to represent any UTF-16 code unit, and has the same size, signedness, and
alignment as uint_least16_t; it is thus required to be at least 16 bits in size.

char32_t is large enough to represent any UTF-32 code unit, and has the same size, signedness, and
alignment as uint_least32_t; it is thus required to be at least 32 bits in size.

Size of bool

The size of bool is implementation defined, and may or may not be 1.

Size of wchar_t

wchar_t, as specified in § 3.9.1.5, is a distinct type, whose range of values can represent every distinct code unit of
the largest extended character set among the supported locales. It has the same size, signedness, and alignment as
one of the other integral types, which is known as its underlying type. This type's size is implementation-defined, as
specified in § 5.3.3.1, and may be, for example, at least 8, 16, or 32 bits; if a system supports Unicode, for example,
wchar_t is required to be at least 32 bits (an exception to this rule is Windows, where wchar_t is 16 bits for

http://en.cppreference.com/w/cpp/header/cstdint
http://en.cppreference.com/w/cpp/header/cstdint
http://en.cppreference.com/w/cpp/header/cstdint
http://en.cppreference.com/w/cpp/header/cstdint

C++ Notes for Professionals 368

compatibility purposes). It is inherited from the C90 standard, ISO 9899:1990 § 4.1.5, with only minor rewording.

Depending on the implementation, the size of wchar_t is often, but not always, 8, 16, or 32 bits. The most common
examples of these are:

In Unix and Unix-like systems, wchar_t is 32-bit, and is usually used for UTF-32.
In Windows, wchar_t is 16-bit, and is used for UTF-16.
On a system which only has 8-bit support, wchar_t is 8 bit.

Version ≥ C++11

If Unicode support is desired, it is recommended to use char for UTF-8, char16_t for UTF-16, or char32_t for
UTF-32, instead of using wchar_t.

Data Models

As mentioned above, the widths of integer types can differ between platforms. The most common models are as
follows, with sizes specified in bits:

Model int long pointer
LP32 (2/4/4) 16 32 32
ILP32 (4/4/4) 32 32 32
LLP64 (4/4/8) 32 32 64
LP64 (4/8/8) 32 64 64

Out of these models:

16-bit Windows used LP32.
32-bit *nix systems (Unix, Linux, Mac OSX, and other Unix-like OSes) and Windows use ILP32.
64-bit Windows uses LLP64.
64-bit *nix systems use LP64.

Note, however, that these models aren't specifically mentioned in the standard itself.

Section 71.2: Char might be unsigned or signed
The standard doesn't specify if char should be signed or unsigned. Different compilers implement it differently, or
might allow to change it using a command line switch.

Section 71.3: Ranges of numeric types
The ranges of the integer types are implementation-defined. The header <limits> provides the
std::numeric_limits<T> template which provides the minimum and maximum values of all fundamental types.
The values satisfy guarantees provided by the C standard through the <climits> and (>= C++11) <cinttypes>
headers.

std::numeric_limits<signed char>::min() equals SCHAR_MIN, which is less than or equal to -127.
std::numeric_limits<signed char>::max() equals SCHAR_MAX, which is greater than or equal to 127.
std::numeric_limits<unsigned char>::max() equals UCHAR_MAX, which is greater than or equal to 255.
std::numeric_limits<short>::min() equals SHRT_MIN, which is less than or equal to -32767.
std::numeric_limits<short>::max() equals SHRT_MAX, which is greater than or equal to 32767.
std::numeric_limits<unsigned short>::max() equals USHRT_MAX, which is greater than or equal to 65535.
std::numeric_limits<int>::min() equals INT_MIN, which is less than or equal to -32767.
std::numeric_limits<int>::max() equals INT_MAX, which is greater than or equal to 32767.
std::numeric_limits<unsigned int>::max() equals UINT_MAX, which is greater than or equal to 65535.

C++ Notes for Professionals 369

std::numeric_limits<long>::min() equals LONG_MIN, which is less than or equal to -2147483647.
std::numeric_limits<long>::max() equals LONG_MAX, which is greater than or equal to 2147483647.
std::numeric_limits<unsigned long>::max() equals ULONG_MAX, which is greater than or equal to
4294967295.

Version ≥ C++11

std::numeric_limits<long long>::min() equals LLONG_MIN, which is less than or equal to
-9223372036854775807.
std::numeric_limits<long long>::max() equals LLONG_MAX, which is greater than or equal to
9223372036854775807.
std::numeric_limits<unsigned long long>::max() equals ULLONG_MAX, which is greater than or equal to
18446744073709551615.

For floating-point types T, max() is the maximum finite value while min() is the minimum positive normalized value.
Additional members are provided for floating-point types, which are also implementation-defined but satisfy
certain guarantees provided by the C standard through the <cfloat> header.

The member digits10 gives the number of decimal digits of precision.
std::numeric_limits<float>::digits10 equals FLT_DIG, which is at least 6.
std::numeric_limits<double>::digits10 equals DBL_DIG, which is at least 10.
std::numeric_limits<long double>::digits10 equals LDBL_DIG, which is at least 10.

The member min_exponent10 is the minimum negative E such that 10 to the power E is normal.
std::numeric_limits<float>::min_exponent10 equals FLT_MIN_10_EXP, which is at most -37.
std::numeric_limits<double>::min_exponent10 equals DBL_MIN_10_EXP, which is at most -37.
std::numeric_limits<long double>::min_exponent10 equals LDBL_MIN_10_EXP, which is at most -37.

The member max_exponent10 is the maximum E such that 10 to the power E is finite.
std::numeric_limits<float>::max_exponent10 equals FLT_MIN_10_EXP, which is at least 37.
std::numeric_limits<double>::max_exponent10 equals DBL_MIN_10_EXP, which is at least 37.
std::numeric_limits<long double>::max_exponent10 equals LDBL_MIN_10_EXP, which is at least 37.

If the member is_iec559 is true, the type conforms to IEC 559 / IEEE 754, and its range is therefore
determined by that standard.

Section 71.4: Value representation of floating point types
The standard requires that long double provides at least as much precision as double, which provides at least as
much precision as float; and that a long double can represent any value that a double can represent, while a
double can represent any value that a float can represent. The details of the representation are, however,
implementation-defined.

For a floating point type T, std::numeric_limits<T>::radix specifies the radix used by the representation of T.

If std::numeric_limits<T>::is_iec559 is true, then the representation of T matches one of the formats defined
by IEC 559 / IEEE 754.

Section 71.5: Overflow when converting from integer to
signed integer
When either a signed or unsigned integer is converted to a signed integer type, and its value is not representable in
the destination type, the value produced is implementation-defined. Example:

// Suppose that on this implementation, the range of signed char is -128 to +127 and
// the range of unsigned char is 0 to 255

C++ Notes for Professionals 370

int x = 12345;
signed char sc = x; // sc has an implementation-defined value
unsigned char uc = x; // uc is initialized to 57 (i.e., 12345 modulo 256)

Section 71.6: Underlying type (and hence size) of an enum
If the underlying type is not explicitly specified for an unscoped enumeration type, it is determined in an
implementation-defined manner.

enum E {
 RED,
 GREEN,
 BLUE,
};
using T = std::underlying_type<E>::type; // implementation-defined

However, the standard does require the underlying type of an enumeration to be no larger than int unless both
int and unsigned int are unable to represent all the values of the enumeration. Therefore, in the above code, T
could be int, unsigned int, or short, but not long long, to give a few examples.

Note that an enum has the same size (as returned by sizeof) as its underlying type.

Section 71.7: Numeric value of a pointer
The result of casting a pointer to an integer using reinterpret_cast is implementation-defined, but "... is intended
to be unsurprising to those who know the addressing structure of the underlying machine."

int x = 42;
int* p = &x;
long addr = reinterpret_cast<long>(p);
std::cout << addr << "\n"; // prints some numeric address,
 // probably in the architecture's native address format

Likewise, the pointer obtained by conversion from an integer is also implementation-defined.

The right way to store a pointer as an integer is using the uintptr_t or intptr_t types:

// `uintptr_t` was not in C++03. It's in C99, in <stdint.h>, as an optional type
#include <stdint.h>

uintptr_t uip;
Version ≥ C++11

// There is an optional `std::uintptr_t` in C++11
#include <cstdint>

std::uintptr_t uip;

C++11 refers to C99 for the definition uintptr_t (C99 standard, 6.3.2.3):

an unsigned integer type with the property that any valid pointer to void can be converted to this type,
then converted back to pointer to void, and the result will compare equal to the original pointer.

While, for the majority of modern platforms, you can assume a flat address space and that arithmetic on uintptr_t
is equivalent to arithmetic on char *, it's entirely possible for an implementation to perform any transformation

C++ Notes for Professionals 371

when casting void * to uintptr_t as long the transformation can be reversed when casting back from uintptr_t
to void *.

Technicalities

On XSI-conformant (X/Open System Interfaces) systems, intptr_t and uintptr_t types are required,
otherwise they are optional.

Within the meaning of the C standard, functions aren't objects; it isn't guaranteed by the C standard that
uintptr_t can hold a function pointer. Anyway POSIX (2.12.3) conformance requires that:

All function pointer types shall have the same representation as the type pointer to void.
Conversion of a function pointer to void * shall not alter the representation. A void * value
resulting from such a conversion can be converted back to the original function pointer type, using
an explicit cast, without loss of information.

C99 §7.18.1:

When typedef names differing only in the absence or presence of the initial u are defined, they
shall denote corresponding signed and unsigned types as described in 6.2.5; an implementation
providing one of these corresponding types shall also provide the other.

uintptr_t might make sense if you want to do things to the bits of the pointer that you can't do as sensibly
with a signed integer.

Section 71.8: Number of bits in a byte
In C++, a byte is the space occupied by a char object. The number of bits in a byte is given by CHAR_BIT, which is
defined in climits and required to be at least 8. While most modern systems have 8-bit bytes, and POSIX requires
CHAR_BIT to be exactly 8, there are some systems where CHAR_BIT is greater than 8 i.e a single byte may be
comprised of 8, 16, 32 or 64 bits.

C++ Notes for Professionals 372

Chapter 72: Exceptions
Section 72.1: Catching exceptions
A try/catch block is used to catch exceptions. The code in the try section is the code that may throw an exception,
and the code in the catch clause(s) handles the exception.

#include <iostream>
#include <string>
#include <stdexcept>

int main() {
 std::string str("foo");

 try {
 str.at(10); // access element, may throw std::out_of_range
 } catch (const std::out_of_range& e) {
 // what() is inherited from std::exception and contains an explanatory message
 std::cout << e.what();
 }
}

Multiple catch clauses may be used to handle multiple exception types. If multiple catch clauses are present, the
exception handling mechanism tries to match them in order of their appearance in the code:

std::string str("foo");

try {
 str.reserve(2); // reserve extra capacity, may throw std::length_error
 str.at(10); // access element, may throw std::out_of_range
} catch (const std::length_error& e) {
 std::cout << e.what();
} catch (const std::out_of_range& e) {
 std::cout << e.what();
}

Exception classes which are derived from a common base class can be caught with a single catch clause for the
common base class. The above example can replace the two catch clauses for std::length_error and
std::out_of_range with a single clause for std:exception:

std::string str("foo");

try {
 str.reserve(2); // reserve extra capacity, may throw std::length_error
 str.at(10); // access element, may throw std::out_of_range
} catch (const std::exception& e) {
 std::cout << e.what();
}

Because the catch clauses are tried in order, be sure to write more specific catch clauses first, otherwise your
exception handling code might never get called:

try {
 /* Code throwing exceptions omitted. */
} catch (const std::exception& e) {
 /* Handle all exceptions of type std::exception. */
} catch (const std::runtime_error& e) {

C++ Notes for Professionals 373

 /* This block of code will never execute, because std::runtime_error inherits
 from std::exception, and all exceptions of type std::exception were already
 caught by the previous catch clause. */
}

Another possibility is the catch-all handler, which will catch any thrown object:

try {
 throw 10;
} catch (...) {
 std::cout << "caught an exception";
}

Section 72.2: Rethrow (propagate) exception
Sometimes you want to do something with the exception you catch (like write to log or print a warning) and let it
bubble up to the upper scope to be handled. To do so, you can rethrow any exception you catch:

try {
 ... // some code here
} catch (const SomeException& e) {
 std::cout << "caught an exception";
 throw;
}

Using throw; without arguments will re-throw the currently caught exception.

Version ≥ C++11

To rethrow a managed std::exception_ptr, the C++ Standard Library has the rethrow_exception function that
can be used by including the <exception> header in your program.

#include <iostream>
#include <string>
#include <exception>
#include <stdexcept>

void handle_eptr(std::exception_ptr eptr) // passing by value is ok
{
 try {
 if (eptr) {
 std::rethrow_exception(eptr);
 }
 } catch(const std::exception& e) {
 std::cout << "Caught exception \"" << e.what() << "\"\n";
 }
}

int main()
{
 std::exception_ptr eptr;
 try {
 std::string().at(1); // this generates an std::out_of_range
 } catch(...) {
 eptr = std::current_exception(); // capture
 }
 handle_eptr(eptr);
} // destructor for std::out_of_range called here, when the eptr is destructed

C++ Notes for Professionals 374

Section 72.3: Best practice: throw by value, catch by const
reference
In general, it is considered good practice to throw by value (rather than by pointer), but catch by (const) reference.

try {
 // throw new std::runtime_error("Error!"); // Don't do this!
 // This creates an exception object
 // on the heap and would require you to catch the
 // pointer and manage the memory yourself. This can
 // cause memory leaks!

 throw std::runtime_error("Error!");
} catch (const std::runtime_error& e) {
 std::cout << e.what() << std::endl;
}

One reason why catching by reference is a good practice is that it eliminates the need to reconstruct the object
when being passed to the catch block (or when propagating through to other catch blocks). Catching by reference
also allows the exceptions to be handled polymorphically and avoids object slicing. However, if you are rethrowing
an exception (like throw e;, see example below), you can still get object slicing because the throw e; statement
makes a copy of the exception as whatever type is declared:

#include <iostream>

struct BaseException {
 virtual const char* what() const { return "BaseException"; }
};

struct DerivedException : BaseException {
 // "virtual" keyword is optional here
 virtual const char* what() const { return "DerivedException"; }
};

int main(int argc, char** argv) {
 try {
 try {
 throw DerivedException();
 } catch (const BaseException& e) {
 std::cout << "First catch block: " << e.what() << std::endl;
 // Output ==> First catch block: DerivedException

 throw e; // This changes the exception to BaseException
 // instead of the original DerivedException!
 }
 } catch (const BaseException& e) {
 std::cout << "Second catch block: " << e.what() << std::endl;
 // Output ==> Second catch block: BaseException
 }
 return 0;
}

If you are sure that you are not going to do anything to change the exception (like add information or modify the
message), catching by const reference allows the compiler to make optimizations and can improve performance.
But this can still cause object splicing (as seen in the example above).

Warning: Beware of throwing unintended exceptions in catch blocks, especially related to allocating extra memory
or resources. For example, constructing logic_error, runtime_error or their subclasses might throw bad_alloc

C++ Notes for Professionals 375

due to memory running out when copying the exception string, I/O streams might throw during logging with
respective exception masks set, etc.

Section 72.4: Custom exception
You shouldn't throw raw values as exceptions, instead use one of the standard exception classes or make your
own.

Having your own exception class inherited from std::exception is a good way to go about it. Here's a custom
exception class which directly inherits from std::exception:

#include <exception>

class Except: virtual public std::exception {

protected:

 int error_number; ///< Error number
 int error_offset; ///< Error offset
 std::string error_message; ///< Error message

public:

 /** Constructor (C++ STL string, int, int).
 * @param msg The error message
 * @param err_num Error number
 * @param err_off Error offset
 */
 explicit
 Except(const std::string& msg, int err_num, int err_off):
 error_number(err_num),
 error_offset(err_off),
 error_message(msg)
 {}

 /** Destructor.
 * Virtual to allow for subclassing.
 */
 virtual ~Except() throw () {}

 /** Returns a pointer to the (constant) error description.
 * @return A pointer to a const char*. The underlying memory
 * is in possession of the Except object. Callers must
 * not attempt to free the memory.
 */
 virtual const char* what() const throw () {
 return error_message.c_str();
 }

 /** Returns error number.
 * @return #error_number
 */
 virtual int getErrorNumber() const throw() {
 return error_number;
 }

 /**Returns error offset.
 * @return #error_offset
 */
 virtual int getErrorOffset() const throw() {

C++ Notes for Professionals 376

 return error_offset;
 }

};

An example throw catch:

try {
 throw(Except("Couldn't do what you were expecting", -12, -34));
} catch (const Except& e) {
 std::cout<<e.what()
 <<"\nError number: "<<e.getErrorNumber()
 <<"\nError offset: "<<e.getErrorOffset();
}

As you are not only just throwing a dumb error message, also some other values representing what the error
exactly was, your error handling becomes much more efficient and meaningful.

There's an exception class that let's you handle error messages nicely :std::runtime_error

You can inherit from this class too:

#include <stdexcept>

class Except: virtual public std::runtime_error {

protected:

 int error_number; ///< Error number
 int error_offset; ///< Error offset

public:

 /** Constructor (C++ STL string, int, int).
 * @param msg The error message
 * @param err_num Error number
 * @param err_off Error offset
 */
 explicit
 Except(const std::string& msg, int err_num, int err_off):
 std::runtime_error(msg)
 {
 error_number = err_num;
 error_offset = err_off;

 }

 /** Destructor.
 * Virtual to allow for subclassing.
 */
 virtual ~Except() throw () {}

 /** Returns error number.
 * @return #error_number
 */
 virtual int getErrorNumber() const throw() {
 return error_number;
 }

 /**Returns error offset.

C++ Notes for Professionals 377

 * @return #error_offset
 */
 virtual int getErrorOffset() const throw() {
 return error_offset;
 }

};

Note that I haven't overridden the what() function from the base class (std::runtime_error) i.e we will be using
the base class's version of what(). You can override it if you have further agenda.

Section 72.5: std::uncaught_exceptions
Version ≥ c++17

C++17 introduces int std::uncaught_exceptions() (to replace the limited bool std::uncaught_exception()) to
know how many exceptions are currently uncaught. That allows for a class to determine if it is destroyed during a
stack unwinding or not.

#include <exception>
#include <string>
#include <iostream>

// Apply change on destruction:
// Rollback in case of exception (failure)
// Else Commit (success)
class Transaction
{
public:
 Transaction(const std::string& s) : message(s) {}
 Transaction(const Transaction&) = delete;
 Transaction& operator =(const Transaction&) = delete;
 void Commit() { std::cout << message << ": Commit\n"; }
 void RollBack() noexcept(true) { std::cout << message << ": Rollback\n"; }

 // ...

 ~Transaction() {
 if (uncaughtExceptionCount == std::uncaught_exceptions()) {
 Commit(); // May throw.
 } else { // current stack unwinding
 RollBack();
 }
 }

private:
 std::string message;
 int uncaughtExceptionCount = std::uncaught_exceptions();
};

class Foo
{
public:
 ~Foo() {
 try {
 Transaction transaction("In ~Foo"); // Commit,
 // even if there is an uncaught exception
 //...
 } catch (const std::exception& e) {
 std::cerr << "exception/~Foo:" << e.what() << std::endl;

C++ Notes for Professionals 378

 }
 }
};

int main()
{
 try {
 Transaction transaction("In main"); // RollBack
 Foo foo; // ~Foo commit its transaction.
 //...
 throw std::runtime_error("Error");
 } catch (const std::exception& e) {
 std::cerr << "exception/main:" << e.what() << std::endl;
 }
}

Output:

In ~Foo: Commit
In main: Rollback
exception/main:Error

Section 72.6: Function Try Block for regular function
void function_with_try_block()
try
{
 // try block body
}
catch (...)
{
 // catch block body
}

Which is equivalent to

void function_with_try_block()
{
 try
 {
 // try block body
 }
 catch (...)
 {
 // catch block body
 }
}

Note that for constructors and destructors, the behavior is different as the catch block re-throws an exception
anyway (the caught one if there is no other throw in the catch block body).

The function main is allowed to have a function try block like any other function, but main's function try block will
not catch exceptions that occur during the construction of a non-local static variable or the destruction of any static
variable. Instead, std::terminate is called.

Section 72.7: Nested exception
Version ≥ C++11

C++ Notes for Professionals 379

During exception handling there is a common use case when you catch a generic exception from a low-level
function (such as a filesystem error or data transfer error) and throw a more specific high-level exception which
indicates that some high-level operation could not be performed (such as being unable to publish a photo on Web).
This allows exception handling to react to specific problems with high level operations and also allows, having only
error an message, the programmer to find a place in the application where an exception occurred. Downside of this
solution is that exception callstack is truncated and original exception is lost. This forces developers to manually
include text of original exception into a newly created one.

Nested exceptions aim to solve the problem by attaching low-level exception, which describes the cause, to a high
level exception, which describes what it means in this particular case.

std::nested_exception allows to nest exceptions thanks to std::throw_with_nested:

#include <stdexcept>
#include <exception>
#include <string>
#include <fstream>
#include <iostream>

struct MyException
{
 MyException(const std::string& message) : message(message) {}
 std::string message;
};

void print_current_exception(int level)
{
 try {
 throw;
 } catch (const std::exception& e) {
 std::cerr << std::string(level, ' ') << "exception: " << e.what() << '\n';
 } catch (const MyException& e) {
 std::cerr << std::string(level, ' ') << "MyException: " << e.message << '\n';
 } catch (...) {
 std::cerr << "Unkown exception\n";
 }
}

void print_current_exception_with_nested(int level = 0)
{
 try {
 throw;
 } catch (...) {
 print_current_exception(level);
 }
 try {
 throw;
 } catch (const std::nested_exception& nested) {
 try {
 nested.rethrow_nested();
 } catch (...) {
 print_current_exception_with_nested(level + 1); // recursion
 }
 } catch (...) {
 //Empty // End recursion
 }
}

// sample function that catches an exception and wraps it in a nested exception
void open_file(const std::string& s)

C++ Notes for Professionals 380

{
 try {
 std::ifstream file(s);
 file.exceptions(std::ios_base::failbit);
 } catch(...) {
 std::throw_with_nested(MyException{"Couldn't open " + s});
 }
}

// sample function that catches an exception and wraps it in a nested exception
void run()
{
 try {
 open_file("nonexistent.file");
 } catch(...) {
 std::throw_with_nested(std::runtime_error("run() failed"));
 }
}

// runs the sample function above and prints the caught exception
int main()
{
 try {
 run();
 } catch(...) {
 print_current_exception_with_nested();
 }
}

Possible output:

exception: run() failed
 MyException: Couldn't open nonexistent.file
 exception: basic_ios::clear

If you work only with exceptions inherited from std::exception, code can even be simplified.

Section 72.8: Function Try Blocks In constructor
The only way to catch exception in initializer list:

struct A : public B
{
 A() try : B(), foo(1), bar(2)
 {
 // constructor body
 }
 catch (...)
 {
 // exceptions from the initializer list and constructor are caught here
 // if no exception is thrown here
 // then the caught exception is re-thrown.
 }

private:
 Foo foo;
 Bar bar;
};

C++ Notes for Professionals 381

Section 72.9: Function Try Blocks In destructor
struct A
{
 ~A() noexcept(false) try
 {
 // destructor body
 }
 catch (...)
 {
 // exceptions of destructor body are caught here
 // if no exception is thrown here
 // then the caught exception is re-thrown.
 }
};

Note that, although this is possible, one needs to be very careful with throwing from destructor, as if a destructor
called during stack unwinding throws an exception, std::terminate is called.

C++ Notes for Professionals 382

Chapter 73: Lambdas
Parameter Details

default-capture
Specifies how all non-listed variables are captured. Can be = (capture by value) or & (capture by
reference). If omitted, non-listed variables are inaccessible within the lambda-body. The default-
capture must precede the capture-list.

capture-list

Specifies how local variables are made accessible within the lambda-body. Variables without
prefix are captured by value. Variables prefixed with & are captured by reference. Within a class
method, this can be used to make all its members accessible by reference. Non-listed variables
are inaccessible, unless the list is preceded by a default-capture.

argument-list Specifies the arguments of the lambda function.

mutable (optional) Normally variables captured by value are const. Specifying mutable makes them non-
const. Changes to those variables are retained between calls.

throw-specification (optional) Specifies the exception throwing behavior of the lambda function. For example:
noexcept or throw(std::exception).

attributes (optional) Any attributes for the lambda function. For example, if the lambda-body always throws
an exception then [[noreturn]] can be used.

-> return-type (optional) Specifies the return type of the lambda function. Required when the return type
cannot be determined by the compiler.

lambda-body A code block containing the implementation of the lambda function.

Section 73.1: What is a lambda expression?
A lambda expression provides a concise way to create simple function objects. A lambda expression is a prvalue
whose result object is called closure object, which behaves like a function object.

The name 'lambda expression' originates from lambda calculus, which is a mathematical formalism invented in the
1930s by Alonzo Church to investigate questions about logic and computability. Lambda calculus formed the basis
of LISP, a functional programming language. Compared to lambda calculus and LISP, C++ lambda expressions share
the properties of being unnamed, and to capture variables from the surrounding context, but they lack the ability to
operate on and return functions.

A lambda expression is often used as an argument to functions that take a callable object. That can be simpler than
creating a named function, which would be only used when passed as the argument. In such cases, lambda
expressions are generally preferred because they allow defining the function objects inline.

A lambda consists typically of three parts: a capture list [], an optional parameter list () and a body {}, all of which
can be empty:

[](){} // An empty lambda, which does and returns nothing

Capture list

[] is the capture list. By default, variables of the enclosing scope cannot be accessed by a lambda. Capturing a
variable makes it accessible inside the lambda, either as a copy or as a reference. Captured variables become a part
of the lambda; in contrast to function arguments, they do not have to be passed when calling the lambda.

int a = 0; // Define an integer variable
auto f = []() { return a*9; }; // Error: 'a' cannot be accessed
auto f = [a]() { return a*9; }; // OK, 'a' is "captured" by value
auto f = [&a]() { return a++; }; // OK, 'a' is "captured" by reference
 // Note: It is the responsibility of the programmer
 // to ensure that a is not destroyed before the
 // lambda is called.
auto b = f(); // Call the lambda function. a is taken from the capture list and

https://en.wikipedia.org/wiki/Closure_(computer_programming)
https://en.wikipedia.org/wiki/Lambda_calculus
https://en.wikipedia.org/wiki/Lisp_(programming_language)

C++ Notes for Professionals 383

not passed here.

Parameter list

() is the parameter list, which is almost the same as in regular functions. If the lambda takes no arguments, these
parentheses can be omitted (except if you need to declare the lambda mutable). These two lambdas are equivalent:

auto call_foo = [x](){ x.foo(); };
auto call_foo2 = [x]{ x.foo(); };
Version ≥ C++14

The parameter list can use the placeholder type auto instead of actual types. By doing so, this argument behaves
like a template parameter of a function template. Following lambdas are equivalent when you want to sort a vector
in generic code:

auto sort_cpp11 = [](std::vector<T>::const_reference lhs, std::vector<T>::const_reference rhs) {
return lhs < rhs; };
auto sort_cpp14 = [](const auto &lhs, const auto &rhs) { return lhs < rhs; };

Function body

{} is the body, which is the same as in regular functions.

Calling a lambda

A lambda expression's result object is a closure, which can be called using the operator() (as with other function
objects):

int multiplier = 5;
auto timesFive = [multiplier](int a) { return a * multiplier; };
std::out << timesFive(2); // Prints 10

multiplier = 15;
std::out << timesFive(2); // Still prints 2*5 == 10

Return Type

By default, the return type of a lambda expression is deduced.

[](){ return true; };

In this case the return type is bool.

You can also manually specify the return type using the following syntax:

[]() -> bool { return true; };

Mutable Lambda

Objects captured by value in the lambda are by default immutable. This is because the operator() of the generated
closure object is const by default.

auto func = [c = 0](){++c; std::cout << c;}; // fails to compile because ++c
 // tries to mutate the state of
 // the lambda.

https://en.wikipedia.org/wiki/Closure_(computer_programming)

C++ Notes for Professionals 384

Modifying can be allowed by using the keyword mutable, which make the closer object's operator() non-const:

auto func = [c = 0]() mutable {++c; std::cout << c;};

If used together with the return type, mutable comes before it.

auto func = [c = 0]() mutable -> int {++c; std::cout << c; return c;};

An example to illustrate the usefulness of lambdas

Before C++11:

Version < C++11

// Generic functor used for comparison
struct islessthan
{
 islessthan(int threshold) : _threshold(threshold) {}

 bool operator()(int value) const
 {
 return value < _threshold;
 }
private:
 int _threshold;
};

// Declare a vector
const int arr[] = { 1, 2, 3, 4, 5 };
std::vector<int> vec(arr, arr+5);

// Find a number that's less than a given input (assume this would have been function input)
int threshold = 10;
std::vector<int>::iterator it = std::find_if(vec.begin(), vec.end(), islessthan(threshold));

Since C++11:

Version ≥ C++11

// Declare a vector
std::vector<int> vec{ 1, 2, 3, 4, 5 };

// Find a number that's less than a given input (assume this would have been function input)
int threshold = 10;
auto it = std::find_if(vec.begin(), vec.end(), [threshold](int value) { return value < threshold;
});

Section 73.2: Specifying the return type
For lambdas with a single return statement, or multiple return statements whose expressions are of the same type,
the compiler can deduce the return type:

// Returns bool, because "value > 10" is a comparison which yields a Boolean result
auto l = [](int value) {
 return value > 10;
}

For lambdas with multiple return statements of different types, the compiler can't deduce the return type:

// error: return types must match if lambda has unspecified return type

C++ Notes for Professionals 385

auto l = [](int value) {
 if (value < 10) {
 return 1;
 } else {
 return 1.5;
 }
};

In this case you have to specify the return type explicitly:

// The return type is specified explicitly as 'double'
auto l = [](int value) -> double {
 if (value < 10) {
 return 1;
 } else {
 return 1.5;
 }
};

The rules for this match the rules for auto type deduction. Lambdas without explicitly specified return types never
return references, so if a reference type is desired it must be explicitly specified as well:

auto copy = [](X& x) { return x; }; // 'copy' returns an X, so copies its input
auto ref = [](X& x) -> X& { return x; }; // 'ref' returns an X&, no copy

Section 73.3: Capture by value
If you specify the variable's name in the capture list, the lambda will capture it by value. This means that the
generated closure type for the lambda stores a copy of the variable. This also requires that the variable's type be
copy-constructible:

int a = 0;

[a]() {
 return a; // Ok, 'a' is captured by value
};
Version < C++14

auto p = std::unique_ptr<T>(...);

[p]() { // Compile error; `unique_ptr` is not copy-constructible
 return p->createWidget();
};

From C++14 on, it is possible to initialize variables on the spot. This allows move only types to be captured in the
lambda.

Version ≥ C++14

auto p = std::make_unique<T>(...);

[p = std::move(p)]() {
 return p->createWidget();
};

Even though a lambda captures variables by value when they are given by their name, such variables cannot be
modified within the lambda body by default. This is because the closure type puts the lambda body in a declaration
of operator() const.

C++ Notes for Professionals 386

The const applies to accesses to member variables of the closure type, and captured variables that are members of
the closure (all appearances to the contrary):

int a = 0;

[a]() {
 a = 2; // Illegal, 'a' is accessed via `const`

 decltype(a) a1 = 1;
 a1 = 2; // valid: variable 'a1' is not const
};

To remove the const, you have to specify the keyword mutable on the lambda:

int a = 0;

[a]() mutable {
 a = 2; // OK, 'a' can be modified
 return a;
};

Because a was captured by value, any modifications done by calling the lambda will not affect a. The value of a was
copied into the lambda when it was constructed, so the lambda's copy of a is separate from the external a variable.

int a = 5 ;
auto plus5Val = [a] (void) { return a + 5 ; } ;
auto plus5Ref = [&a] (void) {return a + 5 ; } ;

a = 7 ;
std::cout << a << ", value " << plus5Val() << ", reference " << plus5Ref() ;
// The result will be "7, value 10, reference 12"

Section 73.4: Recursive lambdas
Let's say we wish to write Euclid's gcd() as a lambda. As a function, it is:

int gcd(int a, int b) {
 return b == 0 ? a : gcd(b, a%b);
}

But a lambda cannot be recursive, it has no way to invoke itself. A lambda has no name and using this within the
body of a lambda refers to a captured this (assuming the lambda is created in the body of a member function,
otherwise it is an error). So how do we solve this problem?

Use std::function

We can have a lambda capture a reference to a not-yet constructed std::function:

std::function<int(int, int)> gcd = [&](int a, int b){
 return b == 0 ? a : gcd(b, a%b);
};

This works, but should be used sparingly. It's slow (we're using type erasure now instead of a direct function call),
it's fragile (copying gcd or returning gcd will break since the lambda refers to the original object), and it won't work
with generic lambdas.

C++ Notes for Professionals 387

Using two smart pointers:
auto gcd_self = std::make_shared<std::unique_ptr< std::function<int(int, int)> >>();
*gcd_self = std::make_unique<std::function<int(int, int)>>(
 [gcd_self](int a, int b){
 return b == 0 ? a : (**gcd_self)(b, a%b);
 };
};

This adds a lot of indirection (which is overhead), but it can be copied/returned, and all copies share state. It does
let you return the lambda, and is otherwise less fragile than the above solution.

Use a Y-combinator

With the help of a short utility struct, we can solve all of these problems:

template <class F>
struct y_combinator {
 F f; // the lambda will be stored here

 // a forwarding operator():
 template <class... Args>
 decltype(auto) operator()(Args&&... args) const {
 // we pass ourselves to f, then the arguments.
 // the lambda should take the first argument as `auto&& recurse` or similar.
 return f(*this, std::forward<Args>(args)...);
 }
};
// helper function that deduces the type of the lambda:
template <class F>
y_combinator<std::decay_t<F>> make_y_combinator(F&& f) {
 return {std::forward<F>(f)};
}
// (Be aware that in C++17 we can do better than a `make_` function)

we can implement our gcd as:

auto gcd = make_y_combinator(
 [](auto&& gcd, int a, int b){
 return b == 0 ? a : gcd(b, a%b);
 }
);

The y_combinator is a concept from the lambda calculus that lets you have recursion without being able to name
yourself until you are defined. This is exactly the problem lambdas have.

You create a lambda that takes "recurse" as its first argument. When you want to recurse, you pass the arguments
to recurse.

The y_combinator then returns a function object that calls that function with its arguments, but with a suitable
"recurse" object (namely the y_combinator itself) as its first argument. It forwards the rest of the arguments you call
the y_combinator with to the lambda as well.

In short:

auto foo = make_y_combinator([&](auto&& recurse, some arguments) {
 // write body that processes some arguments
 // when you want to recurse, call recurse(some other arguments)

C++ Notes for Professionals 388

});

and you have recursion in a lambda with no serious restrictions or significant overhead.

Section 73.5: Default capture
By default, local variables that are not explicitly specified in the capture list, cannot be accessed from within the
lambda body. However, it is possible to implicitly capture variables named by the lambda body:

int a = 1;
int b = 2;

// Default capture by value
[=]() { return a + b; }; // OK; a and b are captured by value

// Default capture by reference
[&]() { return a + b; }; // OK; a and b are captured by reference

Explicit capturing can still be done alongside implicit default capturing. The explicit capture definition will override
the default capture:

int a = 0;
int b = 1;

[=, &b]() {
 a = 2; // Illegal; 'a' is capture by value, and lambda is not 'mutable'
 b = 2; // OK; 'b' is captured by reference
};

Section 73.6: Class lambdas and capture of this
A lambda expression evaluated in a class' member function is implicitly a friend of that class:

class Foo
{
private:
 int i;

public:
 Foo(int val) : i(val) {}

 // definition of a member function
 void Test()
 {
 auto lamb = [](Foo &foo, int val)
 {
 // modification of a private member variable
 foo.i = val;
 };

 // lamb is allowed to access a private member, because it is a friend of Foo
 lamb(*this, 30);
 }
};

Such a lambda is not only a friend of that class, it has the same access as the class it is declared within has.

Lambdas can capture the this pointer which represents the object instance the outer function was called on. This

C++ Notes for Professionals 389

is done by adding this to the capture list:

class Foo
{
private:
 int i;

public:
 Foo(int val) : i(val) {}

 void Test()
 {
 // capture the this pointer by value
 auto lamb = [this](int val)
 {
 i = val;
 };

 lamb(30);
 }
};

When this is captured, the lambda can use member names of its containing class as though it were in its
containing class. So an implicit this-> is applied to such members.

Be aware that this is captured by value, but not the value of the type. It is captured by the value of this, which is a
pointer. As such, the lambda does not own this. If the lambda out lives the lifetime of the object that created it, the
lambda can become invalid.

This also means that the lambda can modify this without being declared mutable. It is the pointer which is const,
not the object being pointed to. That is, unless the outer member function was itself a const function.

Also, be aware that the default capture clauses, both [=] and [&], will also capture this implicitly. And they both
capture it by the value of the pointer. Indeed, it is an error to specify this in the capture list when a default is given.

Version ≥ C++17

Lambdas can capture a copy of the this object, created at the time the lambda is created. This is done by adding
*this to the capture list:

class Foo
{
private:
 int i;

public:
 Foo(int val) : i(val) {}

 void Test()
 {
 // capture a copy of the object given by the this pointer
 auto lamb = [*this](int val) mutable
 {
 i = val;
 };

 lamb(30); // does not change this->i
 }
};

C++ Notes for Professionals 390

Section 73.7: Capture by reference
If you precede a local variable's name with an &, then the variable will be captured by reference. Conceptually, this
means that the lambda's closure type will have a reference variable, initialized as a reference to the corresponding
variable from outside of the lambda's scope. Any use of the variable in the lambda body will refer to the original
variable:

// Declare variable 'a'
int a = 0;

// Declare a lambda which captures 'a' by reference
auto set = [&a]() {
 a = 1;
};

set();
assert(a == 1);

The keyword mutable is not needed, because a itself is not const.

Of course, capturing by reference means that the lambda must not escape the scope of the variables it captures.
So you could call functions that take a function, but you must not call a function that will store the lambda beyond
the scope of your references. And you must not return the lambda.

Section 73.8: Generic lambdas
Version ≥ c++14

Lambda functions can take arguments of arbitrary types. This allows a lambda to be more generic:

auto twice = [](auto x){ return x+x; };

int i = twice(2); // i == 4
std::string s = twice("hello"); // s == "hellohello"

This is implemented in C++ by making the closure type's operator() overload a template function. The following
type has equivalent behavior to the above lambda closure:

struct _unique_lambda_type
{
 template<typename T>
 auto operator() (T x) const {return x + x;}
};

Not all parameters in a generic lambda need be generic:

[](auto x, int y) {return x + y;}

Here, x is deduced based on the first function argument, while y will always be int.

Generic lambdas can take arguments by reference as well, using the usual rules for auto and &. If a generic
parameter is taken as auto&&, this is a forwarding reference to the passed in argument and not an rvalue reference:

auto lamb1 = [](int &&x) {return x + 5;};
auto lamb2 = [](auto &&x) {return x + 5;};
int x = 10;

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4164.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4164.pdf
http://en.cppreference.com/w/cpp/language/reference
http://en.cppreference.com/w/cpp/language/reference

C++ Notes for Professionals 391

lamb1(x); // Illegal; must use `std::move(x)` for `int&&` parameters.
lamb2(x); // Legal; the type of `x` is deduced as `int&`.

Lambda functions can be variadic and perfectly forward their arguments:

auto lam = [](auto&&... args){return f(std::forward<decltype(args)>(args)...);};

or:

auto lam = [](auto&&... args){return f(decltype(args)(args)...);};

which only works "properly" with variables of type auto&&.

A strong reason to use generic lambdas is for visiting syntax.

boost::variant<int, double> value;
apply_visitor(value, [&](auto&& e){
 std::cout << e;
});

Here we are visiting in a polymorphic manner; but in other contexts, the names of the type we are passing isn't
interesting:

mutex_wrapped<std::ostream&> os = std::cout;
os.write([&](auto&& os){
 os << "hello world\n";
});

Repeating the type of std::ostream& is noise here; it would be like having to mention the type of a variable every
time you use it. Here we are creating a visitor, but no a polymorphic one; auto is used for the same reason you
might use auto in a for(:) loop.

Section 73.9: Using lambdas for inline parameter pack
unpacking
Version ≥ C++14

Parameter pack unpacking traditionally requires writing a helper function for each time you want to do it.

In this toy example:

template<std::size_t...Is>
void print_indexes(std::index_sequence<Is...>) {
 using discard=int[];
 (void)discard{0,((void)(
 std::cout << Is << '\n' // here Is is a compile-time constant.
),0)...};
}
template<std::size_t I>
void print_indexes_upto() {
 return print_indexes(std::make_index_sequence<I>{});
}

The print_indexes_upto wants to create and unpack a parameter pack of indexes. In order to do so, it must call a
helper function. Every time you want to unpack a parameter pack you created, you end up having to create a

C++ Notes for Professionals 392

custom helper function to do it.

This can be avoided with lambdas.

You can unpack parameter packs into a set of invocations of a lambda, like this:

template<std::size_t I>
using index_t = std::integral_constant<std::size_t, I>;
template<std::size_t I>
constexpr index_t<I> index{};

template<class=void, std::size_t...Is>
auto index_over(std::index_sequence<Is...>) {
 return [](auto&& f){
 using discard=int[];
 (void)discard{0,(void(
 f(index<Is>)
),0)...};
 };
}

template<std::size_t N>
auto index_over(index_t<N> = {}) {
 return index_over(std::make_index_sequence<N>{});
}
Version ≥ C++17

With fold expressions, index_over() can be simplified to:

template<class=void, std::size_t...Is>
auto index_over(std::index_sequence<Is...>) {
 return [](auto&& f){
 ((void)(f(index<Is>)), ...);
 };
}

Once you have done that, you can use this to replace having to manually unpack parameter packs with a second
overload in other code, letting you unpack parameter packs "inline":

template<class Tup, class F>
void for_each_tuple_element(Tup&& tup, F&& f) {
 using T = std::remove_reference_t<Tup>;
 using std::tuple_size;
 auto from_zero_to_N = index_over< tuple_size<T>{} >();

 from_zero_to_N(
 [&](auto i){
 using std::get;
 f(get<i>(std::forward<Tup>(tup)));
 }
);
}

The auto i passed to the lambda by the index_over is a std::integral_constant<std::size_t, ???>. This has a
constexpr conversion to std::size_t that does not depend on the state of this, so we can use it as a compile-time
constant, such as when we pass it to std::get<i> above.

To go back to the toy example at the top, rewrite it as:

C++ Notes for Professionals 393

template<std::size_t I>
void print_indexes_upto() {
 index_over(index<I>)([](auto i){
 std::cout << i << '\n'; // here i is a compile-time constant
 });
}

which is much shorter, and keeps logic in the code that uses it.

Live example to play with.

Section 73.10: Generalized capture
Version ≥ C++14

Lambdas can capture expressions, rather than just variables. This permits lambdas to store move-only types:

auto p = std::make_unique<T>(...);

auto lamb = [p = std::move(p)]() //Overrides capture-by-value of `p`.
{
 p->SomeFunc();
};

This moves the outer p variable into the lambda capture variable, also called p. lamb now owns the memory
allocated by make_unique. Because the closure contains a type that is non-copyable, this means that lamb is itself
non-copyable. But it can be moved:

auto lamb_copy = lamb; //Illegal
auto lamb_move = std::move(lamb); //legal.

Now lamb_move owns the memory.

Note that std::function<> requires that the values stored be copyable. You can write your own move-only-
requiring std::function, or you could just stuff the lambda into a shared_ptr wrapper:

auto shared_lambda = [](auto&& f){
 return [spf = std::make_shared<std::decay_t<decltype(f)>>(decltype(f)(f))]
 (auto&&...args)->decltype(auto) {
 return (*spf)(decltype(args)(args)...);
 };
};
auto lamb_shared = shared_lambda(std::move(lamb_move));

takes our move-only lambda and stuffs its state into a shared pointer then returns a lambda that can be copied,
and then stored in a std::function or similar.

Generalized capture uses auto type deduction for the variable's type. It will declare these captures as values by
default, but they can be references as well:

int a = 0;

auto lamb = [&v = a](int add) //Note that `a` and `v` have different names
{
 v += add; //Modifies `a`
};

http://coliru.stacked-crooked.com/a/32c204301f7163c9

C++ Notes for Professionals 394

lamb(20); //`a` becomes 20.

Generalize capture does not need to capture an external variable at all. It can capture an arbitrary expression:

auto lamb = [p = std::make_unique<T>(...)]()
{
 p->SomeFunc();
}

This is useful for giving lambdas arbitrary values that they can hold and potentially modify, without having to
declare them externally to the lambda. Of course, that is only useful if you do not intend to access those variables
after the lambda has completed its work.

Section 73.11: Conversion to function pointer
If a lambda's capture list is empty, then the lambda has an implicit conversion to a function pointer that takes the
same arguments and returns the same return type:

auto sorter = [](int lhs, int rhs) -> bool {return lhs < rhs;};

using func_ptr = bool(*)(int, int);
func_ptr sorter_func = sorter; // implicit conversion

Such a conversion may also be enforced using unary plus operator:

func_ptr sorter_func2 = +sorter; // enforce implicit conversion

Calling this function pointer behaves exactly like invoking operator() on the lambda. This function pointer is in no
way reliant on the source lambda closure's existence. It therefore may outlive the lambda closure.

This feature is mainly useful for using lambdas with APIs that deal in function pointers, rather than C++ function
objects.

Version ≥ C++14

Conversion to a function pointer is also possible for generic lambdas with an empty capture list. If necessary,
template argument deduction will be used to select the correct specialization.

auto sorter = [](auto lhs, auto rhs) { return lhs < rhs; };
using func_ptr = bool(*)(int, int);
func_ptr sorter_func = sorter; // deduces int, int
// note however that the following is ambiguous
// func_ptr sorter_func2 = +sorter;

Section 73.12: Porting lambda functions to C++03 using
functors
Lambda functions in C++ are syntactic sugar that provide a very concise syntax for writing functors. As such,
equivalent functionality can be obtained in C++03 (albeit much more verbose) by converting the lambda function
into a functor:

// Some dummy types:
struct T1 {int dummy;};
struct T2 {int dummy;};
struct R {int dummy;};

C++ Notes for Professionals 395

// Code using a lambda function (requires C++11)
R use_lambda(T1 val, T2 ref) {
 // Use auto because the type of the lambda is unknown.
 auto lambda = [val, &ref](int arg1, int arg2) -> R {
 /* lambda-body */
 return R();
 };
 return lambda(12, 27);
}

// The functor class (valid C++03)
// Similar to what the compiler generates for the lambda function.
class Functor {
 // Capture list.
 T1 val;
 T2& ref;

public:
 // Constructor
 inline Functor(T1 val, T2& ref) : val(val), ref(ref) {}

 // Functor body
 R operator()(int arg1, int arg2) const {
 /* lambda-body */
 return R();
 }
};

// Equivalent to use_lambda, but uses a functor (valid C++03).
R use_functor(T1 val, T2 ref) {
 Functor functor(val, ref);
 return functor(12, 27);
}

// Make this a self-contained example.
int main() {
 T1 t1;
 T2 t2;
 use_functor(t1,t2);
 use_lambda(t1,t2);
 return 0;
}

If the lambda function is mutable then make the functor's call-operator non-const, i.e.:

R operator()(int arg1, int arg2) /*non-const*/ {
 /* lambda-body */
 return R();
}

C++ Notes for Professionals 396

Chapter 74: Value Categories
Section 74.1: Value Category Meanings
Expressions in C++ are assigned a particular value category, based on the result of those expressions. Value
categories for expressions can affect C++ function overload resolution.

Value categories determines two important-but-separate properties about an expression. One property is whether
the expression has identity. An expression has identity if it refers to an object that has a variable name. The variable
name may not be involved in the expression, but the object can still have one.

The other property is whether it is legal to implicitly move from the expression's value. Or more specifically,
whether the expression, when used as a function parameter, will bind to r-value parameter types or not.

C++ defines 3 value categories which represent the useful combination of these properties: lvalue (expressions with
identity but not movable from), xvalue (expressions with identity that are moveable from), and prvalue (expressions
without identity that are moveable from). C++ does not have expressions which have no identity and cannot be
moved from.

C++ defines two other value categories, each based solely on one of these properties: glvalue (expressions with
identity) and rvalue (expressions that can be moved from). These act as useful groupings of the prior categories.

This graph serves as an illustration:

Section 74.2: rvalue
An rvalue expression is any expression which can be implicitly moved from, regardless of whether it has identity.

More precisely, rvalue expressions may be used as the argument to a function that takes a parameter of type T &&
(where T is the type of expr). Only rvalue expressions may be given as arguments to such function parameters; if a
non-rvalue expression is used, then overload resolution will pick any function that does not use an rvalue reference
parameter. And if none exist, then you get an error.

The category of rvalue expressions includes all xvalue and prvalue expressions, and only those expressions.

The standard library function std::move exists to explicitly transform a non-rvalue expression into an rvalue. More
specifically, it turns the expression into an xvalue, since even if it was an identity-less prvalue expression before, by
passing it as a parameter to std::move, it gains identity (the function's parameter name) and becomes an xvalue.

http://i.stack.imgur.com/C09fH.png

C++ Notes for Professionals 397

Consider the following:

std::string str("init"); //1
std::string test1(str); //2
std::string test2(std::move(str)); //3

str = std::string("new value"); //4
std::string &&str_ref = std::move(str); //5
std::string test3(str_ref); //6

std::string has a constructor which takes a single parameter of type std::string&&, commonly called a "move
constructor". However, the value category of the expression str is not an rvalue (specifically it is an lvalue), so it
cannot call that constructor overload. Instead, it calls the const std::string& overload, the copy constructor.

Line 3 changes things. The return value of std::move is a T&&, where T is the base type of the parameter passed in.
So std::move(str) returns std::string&&. A function call who's return value is an rvalue reference is an rvalue
expression (specifically an xvalue), so it may call the move constructor of std::string. After line 3, str has been
moved from (who's contents are now undefined).

Line 4 passes a temporary to the assignment operator of std::string. This has an overload which takes a
std::string&&. The expression std::string("new value") is an rvalue expression (specifically a prvalue), so it
may call that overload. Thus, the temporary is moved into str, replacing the undefined contents with specific
contents.

Line 5 creates a named rvalue reference called str_ref that refers to str. This is where value categories get
confusing.

See, while str_ref is an rvalue reference to std::string, the value category of the expression str_ref is not an
rvalue. It is an lvalue expression. Yes, really. Because of this, one cannot call the move constructor of std::string
with the expression str_ref. Line 6 therefore copies the value of str into test3.

To move it, we would have to employ std::move again.

Section 74.3: xvalue
An xvalue (eXpiring value) expression is an expression which has identity and represents an object which can be
implicitly moved from. The general idea with xvalue expressions is that the object they represent is going to be
destroyed soon (hence the "eXpiring" part), and therefore implicitly moving from them is fine.

Given:

struct X { int n; };
extern X x;

4; // prvalue: does not have an identity
x; // lvalue
x.n; // lvalue
std::move(x); // xvalue
std::forward<X&>(x); // lvalue
X{4}; // prvalue: does not have an identity
X{4}.n; // xvalue: does have an identity and denotes resources
 // that can be reused

Section 74.4: prvalue
A prvalue (pure-rvalue) expression is an expression which lacks identity, whose evaluation is typically used to

C++ Notes for Professionals 398

initialize an object, and which can be implicitly moved from. These include, but are not limited to:

Expressions that represent temporary objects, such as std::string("123").
A function call expression that does not return a reference
A literal (except a string literal - those are lvalues), such has 1, true, 0.5f, or 'a'
A lambda expression

The built-in addressof operator (&) cannot be applied on these expressions.

Section 74.5: lvalue
An lvalue expression is an expression which has identity, but cannot be implicitly moved from. Among these are
expressions that consist of a variable name, function name, expressions that are built-in dereference operator uses
and expressions that refer to lvalue references.

The typical lvalue is simply a name, but lvalues can come in other flavors as well:

struct X { ... };

X x; // x is an lvalue
X* px = &x; // px is an lvalue
*px = X{}; // *px is also an lvalue, X{} is a prvalue

X* foo_ptr(); // foo_ptr() is a prvalue
X& foo_ref(); // foo_ref() is an lvalue

Additionally, while most literals (e.g. 4, 'x', etc.) are prvalues, string literals are lvalues.

Section 74.6: glvalue
A glvalue (a "generalized lvalue") expression is any expression which has identity, regardless of whether it can be
moved from or not. This category includes lvalues (expressions that have identity but can't be moved from) and
xvalues (expressions that have identity, and can be moved from), but excludes prvalues (expressions without
identity).

If an expression has a name, it's a glvalue:

struct X { int n; };
X foo();

X x;
x; // has a name, so it's a glvalue
std::move(x); // has a name (we're moving from "x"), so it's a glvalue
 // can be moved from, so it's an xvalue not an lvalue

foo(); // has no name, so is a prvalue, not a glvalue
X{}; // temporary has no name, so is a prvalue, not a glvalue
X{}.n; // HAS a name, so is a glvalue. can be moved from, so it's an xvalue

C++ Notes for Professionals 399

Chapter 75: Preprocessor
The C preprocessor is a simple text parser/replacer that is run before the actual compilation of the code. Used to
extend and ease the use of the C (and later C++) language, it can be used for:

a. Including other files using #include

b. Define a text-replacement macro using #define

c. Conditional Compilation using#if #ifdef

d. Platform/Compiler specific logic (as an extension of conditional compilation)

Section 75.1: Include Guards
A header file may be included by other header files. A source file (compilation unit) that includes multiple headers
may therefore, indirectly, include some headers more than once. If such a header file that is included more than
once contains definitions, the compiler (after preprocessing) detects a violation of the One Definition Rule (e.g. §3.2
of the 2003 C++ standard) and therefore issues a diagnostic and compilation fails.

Multiple inclusion is prevented using "include guards", which are sometimes also known as header guards or macro
guards. These are implemented using the preprocessor #define, #ifndef, #endif directives.

e.g.

// Foo.h
#ifndef FOO_H_INCLUDED
#define FOO_H_INCLUDED

class Foo // a class definition
{
};

#endif

The key advantage of using include guards is that they will work with all standard-compliant compilers and
preprocessors.

However, include guards also cause some problems for developers, as it is necessary to ensure the macros are
unique within all headers used in a project. Specifically, if two (or more) headers use FOO_H_INCLUDED as their
include guard, the first of those headers included in a compilation unit will effectively prevent the others from being
included. Particular challenges are introduced if a project uses a number of third-party libraries with header files
that happen to use include guards in common.

It is also necessary to ensure that the macros used in include guards do not conflict with any other macros defined
in header files.

Most C++ implementations also support the #pragma once directive which ensures the file is only included once
within a single compilation. This is a de facto standard directive, but it is not part of any ISO C++ standard. For
example:

// Foo.h
#pragma once

class Foo

https://en.wikipedia.org/wiki/Pragma_once#Portability
https://en.wikipedia.org/wiki/De_facto_standard
https://en.wikipedia.org/wiki/De_facto_standard

C++ Notes for Professionals 400

{
};

While #pragma once avoids some problems associated with include guards, a #pragma - by definition in the
standards - is inherently a compiler-specific hook, and will be silently ignored by compilers that don't support it.
Projects which use #pragma once are more difficult to port to compilers that don't support it.

A number of coding guidelines and assurance standards for C++ specifically discourage any use of the preprocessor
other than to #include header files or for the purposes of placing include guards in headers.

Section 75.2: Conditional logic and cross-platform handling
In a nutshell, conditional pre-processing logic is about making code-logic available or unavailable for compilation
using macro definitions.

Three prominent use-cases are:

different app profiles (e.g. debug, release, testing, optimised) that can be candidates of the same app (e.g.
with extra logging).
cross-platform compiles - single code-base, multiple compilation platforms.
utilising a common code-base for multiple application versions (e.g. Basic, Premium and Pro versions of a
software) - with slightly different features.

Example a: A cross-platform approach for removing files (illustrative):

#ifdef _WIN32
#include <windows.h> // and other windows system files
#endif
#include <cstdio>

bool remove_file(const std::string &path)
{
#ifdef _WIN32
 return DeleteFile(path.c_str());
#elif defined(_POSIX_VERSION) || defined(__unix__)
 return (0 == remove(path.c_str()));
#elif defined(__APPLE__)
 //TODO: check if NSAPI has a more specific function with permission dialog
 return (0 == remove(path.c_str()));
#else
#error "This platform is not supported"
#endif
}

Macros like _WIN32, __APPLE__ or __unix__ are normally predefined by corresponding implementations.

Example b: Enabling additional logging for a debug build:

void s_PrintAppStateOnUserPrompt()
{
 std::cout << "--------BEGIN-DUMP---------------\n"
 << AppState::Instance()->Settings().ToString() << "\n"
#if (1 == TESTING_MODE) //privacy: we want user details only when testing
 << ListToString(AppState::UndoStack()->GetActionNames())
 << AppState::Instance()->CrntDocument().Name()
 << AppState::Instance()->CrntDocument().SignatureSHA() << "\n"
#endif

C++ Notes for Professionals 401

 << "--------END-DUMP---------------\n"
}

Example c: Enable a premium feature in a separate product build (note: this is illustrative. it is often a better idea to
allow a feature to be unlocked without the need to reinstall an application)

void MainWindow::OnProcessButtonClick()
{
#ifndef _PREMIUM
 CreatePurchaseDialog("Buy App Premium", "This feature is available for our App Premium users.
Click the Buy button to purchase the Premium version at our website");
 return;
#endif
 //...actual feature logic here
}

Some common tricks:

Defining symbols at invocation time:

The preprocessor can be called with predefined symbols (with optional initialisation). For example this command
(gcc -E runs only the preprocessor)

gcc -E -DOPTIMISE_FOR_OS_X -DTESTING_MODE=1 Sample.cpp

processes Sample.cpp in the same way as it would if #define OPTIMISE_FOR_OS_X and #define TESTING_MODE 1
were added to the top of Sample.cpp.

Ensuring a macro is defined:

If a macro isn't defined and its value is compared or checked, the preprocessor almost always silently assumes the
value to be 0. There are a few ways to work with this. One approach is to assume that the default settings are
represented as 0, and any changes (e.g. to the app build profile) needs to be explicitly done (e.g.
ENABLE_EXTRA_DEBUGGING=0 by default, set -DENABLE_EXTRA_DEBUGGING=1 to override). Another approach is
make all definitions and defaults explicit. This can be achieved using a combination of #ifndef and #error
directives:

#ifndef (ENABLE_EXTRA_DEBUGGING)
// please include DefaultDefines.h if not already included.
error "ENABLE_EXTRA_DEBUGGING is not defined"
#else
if (1 == ENABLE_EXTRA_DEBUGGING)
 //code
endif
#endif

Section 75.3: X-macros
An idiomatic technique for generating repeating code structures at compile time.

An X-macro consists of two parts: the list, and the execution of the list.

Example:

#define LIST \
 X(dog) \

C++ Notes for Professionals 402

 X(cat) \
 X(racoon)

// class Animal {
// public:
// void say();
// };

#define X(name) Animal name;
LIST
#undef X

int main() {
#define X(name) name.say();
 LIST
#undef X

 return 0;
}

which is expanded by the preprocessor into the following:

Animal dog;
Animal cat;
Animal racoon;

int main() {
 dog.say();
 cat.say();
 racoon.say();

 return 0;
}

As lists become bigger (let's say, more than 100 elements), this technique helps to avoid excessive copy-pasting.

Source: https://en.wikipedia.org/wiki/X_Macro

See also: X-macros

If defining a seamingly irrelevant X before using LIST is not to your liking, you can pass a macro name as an
argument as well:

#define LIST(MACRO) \
 MACRO(dog) \
 MACRO(cat) \
 MACRO(racoon)

Now, you explicitly specify which macro should be used when expanding the list, e.g.

#define FORWARD_DECLARE_ANIMAL(name) Animal name;
LIST(FORWARD_DECLARE_ANIMAL)

If each invocation of the MACRO should take additional parameters - constant with respect to the list, variadic macros
can be used

//a walkaround for Visual studio
#define EXPAND(x) x

https://en.wikipedia.org/wiki/X_Macro

C++ Notes for Professionals 403

#define LIST(MACRO, ...) \
 EXPAND(MACRO(dog, __VA_ARGS__)) \
 EXPAND(MACRO(cat, __VA_ARGS__)) \
 EXPAND(MACRO(racoon, __VA_ARGS__))

The first argument is supplied by the LIST, while the rest is provided by the user in the LIST invocation. For
example:

#define FORWARD_DECLARE(name, type, prefix) type prefix##name;
LIST(FORWARD_DECLARE,Animal,anim_)
LIST(FORWARD_DECLARE,Object,obj_)

will expand to

Animal anim_dog;
Animal anim_cat;
Animal anim_racoon;
Object obj_dog;
Object obj_cat;
Object obj_racoon;

Section 75.4: Macros
Macros are categorized into two main groups: object-like macros and function-like macros. Macros are treated as a
token substitution early in the compilation process. This means that large (or repeating) sections of code can be
abstracted into a preprocessor macro.

// This is an object-like macro
#define PI 3.14159265358979

// This is a function-like macro.
// Note that we can use previously defined macros
// in other macro definitions (object-like or function-like)
// But watch out, its quite useful if you know what you're doing, but the
// Compiler doesn't know which type to handle, so using inline functions instead
// is quite recommended (But e.g. for Minimum/Maximum functions it is quite useful)
#define AREA(r) (PI*(r)*(r))

// They can be used like this:
double pi_macro = PI;
double area_macro = AREA(4.6);

The Qt library makes use of this technique to create a meta-object system by having the user declare the Q_OBJECT
macro at the head of the user-defined class extending QObject.

Macro names are usually written in all caps, to make them easier to differentiate from normal code. This isn't a
requirement, but is merely considered good style by many programmers.

When an object-like macro is encountered, it's expanded as a simple copy-paste operation, with the macro's name
being replaced with its definition. When a function-like macro is encountered, both its name and its parameters are
expanded.

double pi_squared = PI * PI;
// Compiler sees:
double pi_squared = 3.14159265358979 * 3.14159265358979;

double area = AREA(5);

C++ Notes for Professionals 404

// Compiler sees:
double area = (3.14159265358979*(5)*(5))

Due to this, function-like macro parameters are often enclosed within parentheses, as in AREA() above. This is to
prevent any bugs that can occur during macro expansion, specifically bugs caused by a single macro parameter
being composed of multiple actual values.

#define BAD_AREA(r) PI * r * r

double bad_area = BAD_AREA(5 + 1.6);
// Compiler sees:
double bad_area = 3.14159265358979 * 5 + 1.6 * 5 + 1.6;

double good_area = AREA(5 + 1.6);
// Compiler sees:
double good_area = (3.14159265358979*(5 + 1.6)*(5 + 1.6));

Also note that due to this simple expansion, care must be taken with the parameters passed to macros, to prevent
unexpected side effects. If the parameter is modified during evaluation, it will be modified each time it is used in
the expanded macro, which usually isn't what we want. This is true even if the macro encloses the parameters in
parentheses to prevent expansion from breaking anything.

int oops = 5;
double incremental_damage = AREA(oops++);
// Compiler sees:
double incremental_damage = (3.14159265358979*(oops++)*(oops++));

Additionally, macros provide no type-safety, leading to hard-to-understand errors about type mismatch.

As programmers normally terminate lines with a semicolon, macros that are intended to be used as standalone
lines are often designed to "swallow" a semicolon; this prevents any unintended bugs from being caused by an
extra semicolon.

#define IF_BREAKER(Func) Func();

if (some_condition)
 // Oops.
 IF_BREAKER(some_func);
else
 std::cout << "I am accidentally an orphan." << std::endl;

In this example, the inadvertent double semicolon breaks the if...else block, preventing the compiler from
matching the else to the if. To prevent this, the semicolon is omitted from the macro definition, which will cause it
to "swallow" the semicolon immediately following any usage of it.

#define IF_FIXER(Func) Func()

if (some_condition)
 IF_FIXER(some_func);
else
 std::cout << "Hooray! I work again!" << std::endl;

Leaving off the trailing semicolon also allows the macro to be used without ending the current statement, which
can be beneficial.

#define DO_SOMETHING(Func, Param) Func(Param, 2)

C++ Notes for Professionals 405

// ...

some_function(DO_SOMETHING(some_func, 3), DO_SOMETHING(some_func, 42));

Normally, a macro definition ends at the end of the line. If a macro needs to cover multiple lines, however, a
backslash can be used at the end of a line to indicate this. This backslash must be the last character in the line,
which indicates to the preprocessor that the following line should be concatenated onto the current line, treating
them as a single line. This can be used multiple times in a row.

#define TEXT "I \
am \
many \
lines."

// ...

std::cout << TEXT << std::endl; // Output: I am many lines.

This is especially useful in complex function-like macros, which may need to cover multiple lines.

#define CREATE_OUTPUT_AND_DELETE(Str) \
 std::string* tmp = new std::string(Str); \
 std::cout << *tmp << std::endl; \
 delete tmp;

// ...

CREATE_OUTPUT_AND_DELETE("There's no real need for this to use 'new'.")

In the case of more complex function-like macros, it can be useful to give them their own scope to prevent possible
name collisions or to cause objects to be destroyed at the end of the macro, similar to an actual function. A
common idiom for this is do while 0, where the macro is enclosed in a do-while block. This block is generally not
followed with a semicolon, allowing it to swallow a semicolon.

#define DO_STUFF(Type, Param, ReturnVar) do { \
 Type temp(some_setup_values); \
 ReturnVar = temp.process(Param); \
} while (0)

int x;
DO_STUFF(MyClass, 41153.7, x);

// Compiler sees:

int x;
do {
 MyClass temp(some_setup_values);
 x = temp.process(41153.7);
} while (0);

There are also variadic macros; similarly to variadic functions, these take a variable number of arguments, and then
expand them all in place of a special "Varargs" parameter, __VA_ARGS__.

#define VARIADIC(Param, ...) Param(__VA_ARGS__)

VARIADIC(printf, "%d", 8);
// Compiler sees:

C++ Notes for Professionals 406

printf("%d", 8);

Note that during expansion, __VA_ARGS__ can be placed anywhere in the definition, and will be expanded correctly.

#define VARIADIC2(POne, PTwo, PThree, ...) POne(PThree, __VA_ARGS__, PTwo)

VARIADIC2(some_func, 3, 8, 6, 9);
// Compiler sees:
some_func(8, 6, 9, 3);

In the case of a zero-argument variadic parameter, different compilers will handle the trailing comma differently.
Some compilers, such as Visual Studio, will silently swallow the comma without any special syntax. Other compilers,
such as GCC, require you to place ## immediately before __VA_ARGS__. Due to this, it is wise to conditionally define
variadic macros when portability is a concern.

// In this example, COMPILER is a user-defined macro specifying the compiler being used.

#if COMPILER == "VS"
 #define VARIADIC3(Name, Param, ...) Name(Param, __VA_ARGS__)
#elif COMPILER == "GCC"
 #define VARIADIC3(Name, Param, ...) Name(Param, ##__VA_ARGS__)
#endif /* COMPILER */

Section 75.5: Predefined macros
Predefined macros are those that the compiler defines (in contrast to those user defines in the source file). Those
macros must not be re-defined or undefined by user.

The following macros are predefined by the C++ standard:

__LINE__ contains the line number of the line this macro is used on, and can be changed by the #line
directive.
__FILE__ contains the filename of the file this macro is used in, and can be changed by the #line directive.
__DATE__ contains date (in "Mmm dd yyyy" format) of the file compilation, where Mmm is formatted as if
obtained by a call to std::asctime().
__TIME__ contains time (in "hh:mm:ss" format) of the file compilation.
__cplusplus is defined by (conformant) C++ compilers while compiling C++ files. Its value is the standard
version the compiler is fully conformant with, i.e. 199711L for C++98 and C++03, 201103L for C++11 and
201402L for C++14 standard.

Version ≥ c++11

__STDC_HOSTED__ is defined to 1 if the implementation is hosted, or 0 if it is freestanding.

Version ≥ c++17

__STDCPP_DEFAULT_NEW_ALIGNMENT__ contains a size_t literal, which is the alignment used for a call to
alignment-unaware operator new.

Additionally, the following macros are allowed to be predefined by implementations, and may or may not be
present:

__STDC__ has implementation-dependent meaning, and is usually defined only when compiling a file as C, to
signify full C standard compliance. (Or never, if the compiler decides not to support this macro.)

Version ≥ c++11

C++ Notes for Professionals 407

__STDC_VERSION__ has implementation-dependent meaning, and its value is usually the C version, similarly
to how __cplusplus is the C++ version. (Or is not even defined, if the compiler decides not to support this
macro.)
__STDC_MB_MIGHT_NEQ_WC__ is defined to 1, if values of the narrow encoding of the basic character set might
not be equal to the values of their wide counterparts (e.g. if (uintmax_t)'x' != (uintmax_t)L'x')
__STDC_ISO_10646__ is defined if wchar_t is encoded as Unicode, and expands to an integer constant in the
form yyyymmL, indicating the latest Unicode revision supported.
__STDCPP_STRICT_POINTER_SAFETY__ is defined to 1, if the implementation has strict pointer safety (otherwise
it has relaxed pointer safety)
__STDCPP_THREADS__ is defined to 1, if the program can have more than one thread of execution (applicable
to freestanding implementation — hosted implementations can always have more than one thread)

It is also worth mentioning __func__, which is not an macro, but a predefined function-local variable. It contains the
name of the function it is used in, as a static character array in an implementation-defined format.

On top of those standard predefined macros, compilers can have their own set of predefined macros. One must
refer to the compiler documentation to learn those. E.g.:

gcc
Microsoft Visual C++
clang
Intel C++ Compiler

Some of the macros are just to query support of some feature:

#ifdef __cplusplus // if compiled by C++ compiler
extern "C"{ // C code has to be decorated
 // C library header declarations here
}
#endif

Others are very useful for debugging:

Version ≥ c++11

bool success = doSomething(/*some arguments*/);
if(!success){
 std::cerr << "ERROR: doSomething() failed on line " << __LINE__ - 2
 << " in function " << __func__ << "()"
 << " in file " << __FILE__
 << std::endl;
}

And others for trivial version control:

int main(int argc, char *argv[]){
 if(argc == 2 && std::string(argv[1]) == "-v"){
 std::cout << "Hello World program\n"
 << "v 1.1\n" // I have to remember to update this manually
 << "compiled: " << __DATE__ << ' ' << __TIME__ // this updates automagically
 << std::endl;
 }
 else{
 std::cout << "Hello World!\n";
 }
}

https://gcc.gnu.org/onlinedocs/cpp/Predefined-Macros.html
https://msdn.microsoft.com/en-us/library/b0084kay.aspx#Anchor_2
http://clang.llvm.org/docs/LanguageExtensions.html#builtin-macros
https://software.intel.com/en-us/node/514528

C++ Notes for Professionals 408

Section 75.6: Preprocessor Operators
operator or stringizing operator is used to convert a Macro parameter to a string literal. It can only be used with
the Macros having arguments.

// preprocessor will convert the parameter x to the string literal x
#define PRINT(x) printf(#x "\n")

PRINT(This line will be converted to string by preprocessor);
// Compiler sees
printf("This line will be converted to string by preprocessor""\n");

Compiler concatenate two strings and the final printf() argument will be a string literal with newline character at
its end.

Preprocessor will ignore the spaces before or after the macro argument. So below print statement will give us the
same result.

PRINT(This line will be converted to string by preprocessor);

If the parameter of the string literal requires an escape sequence like before a double quote() it will automatically
be inserted by the preprocessor.

PRINT(This "line" will be converted to "string" by preprocessor);
// Compiler sees
printf("This \"line\" will be converted to \"string\" by preprocessor""\n");

operator or Token pasting operator is used to concatenate two parameters or tokens of a Macro.

// preprocessor will combine the variable and the x
#define PRINT(x) printf("variable" #x " = %d", variable##x)

int variableY = 15;
PRINT(Y);
//compiler sees
printf("variable""Y"" = %d", variableY);

and the final output will be

variableY = 15

Section 75.7: #pragma once
Most, but not all, C++ implementations support the #pragma once directive which ensures the file is only included
once within a single compilation. It is not part of any ISO C++ standard. For example:

// Foo.h
#pragma once

class Foo
{
};

While #pragma once avoids some problems associated with include guards, a #pragma - by definition in the
standards - is inherently a compiler-specific hook, and will be silently ignored by compilers that don't support it.

https://en.wikipedia.org/wiki/Pragma_once#Portability

C++ Notes for Professionals 409

Projects which use #pragma once must be modified to be standard-compliant.

With some compilers - particularly those that employ precompiled headers - #pragma once can result in a
considerable speedup of the compilation process. Similarly, some preprocessors achieve speedup of compilation
by tracking which headers have employed include guards. The net benefit, when both #pragma once and include
guards are employed, depends on the implementation and can be either an increase or decrease of compilation
times.

#pragma once combined with include guards was the recommended layout for header files when writing MFC
based applications on windows, and was generated by Visual Studio’s add class, add dialog, add windows wizards.
Hence it is very common to find them combined in C++ Windows Applicants.

Section 75.8: Preprocessor error messages
Compile errors can be generated using the preprocessor. This is useful for a number of reasons some of which
include, notifying a user if they are on an unsupported platform or an unsupported compiler.

e.g. Return Error if gcc version is 3.0.0 or earlier.

#if __GNUC__ < 3
#error "This code requires gcc > 3.0.0"
#endif

e.g. Return Error if compiling on an Apple computer.

#ifdef __APPLE__
#error "Apple products are not supported in this release"
#endif

https://en.wikipedia.org/wiki/Precompiled_header

C++ Notes for Professionals 410

Chapter 76: Data Structures in C++
Section 76.1: Linked List implementation in C++
Creating a List Node

class listNode
{
 public:
 int data;
 listNode *next;
 listNode(int val):data(val),next(NULL){}
};

Creating List class

class List
{
 public:
 listNode *head;
 List():head(NULL){}
 void insertAtBegin(int val);
 void insertAtEnd(int val);
 void insertAtPos(int val);
 void remove(int val);
 void print();
 ~List();
};

Insert a new node at the beginning of the list

void List::insertAtBegin(int val)//inserting at front of list
{
 listNode *newnode = new listNode(val);
 newnode->next=this->head;
 this->head=newnode;
}

Insert a new node at the end of the list

void List::insertAtEnd(int val) //inserting at end of list
{
 if(head==NULL)
 {
 insertAtBegin(val);
 return;
 }
 listNode *newnode = new listNode(val);
 listNode *ptr=this->head;
 while(ptr->next!=NULL)
 {
 ptr=ptr->next;
 }
 ptr->next=newnode;
}

Insert at a particular position in list

C++ Notes for Professionals 411

void List::insertAtPos(int pos,int val)
{
 listNode *newnode=new listNode(val);
 if(pos==1)
 {
 //as head
 newnode->next=this->head;
 this->head=newnode;
 return;
 }
 pos--;
 listNode *ptr=this->head;
 while(ptr!=NULL && --pos)
 {
 ptr=ptr->next;
 }
 if(ptr==NULL)
 return;//not enough elements
 newnode->next=ptr->next;
 ptr->next=newnode;
}

Removing a node from the list

void List::remove(int toBeRemoved)//removing an element
{
 if(this->head==NULL)
 return; //empty
 if(this->head->data==toBeRemoved)
 {
 //first node to be removed
 listNode *temp=this->head;
 this->head=this->head->next;
 delete(temp);
 return;
 }
 listNode *ptr=this->head;
 while(ptr->next!=NULL && ptr->next->data!=toBeRemoved)
 ptr=ptr->next;
 if(ptr->next==NULL)
 return;//not found
 listNode *temp=ptr->next;
 ptr->next=ptr->next->next;
 delete(temp);
}

Print the list

void List::print()//printing the list
{
 listNode *ptr=this->head;
 while(ptr!=NULL)
 {
 cout<<ptr->data<<" " ;
 ptr=ptr->next;
 }
 cout<<endl;
}

Destructor for the list

C++ Notes for Professionals 412

 List::~List()
{
 listNode *ptr=this->head,*next=NULL;
 while(ptr!=NULL)
 {
 next=ptr->next;
 delete(ptr);
 ptr=next;
 }
}

C++ Notes for Professionals 413

Chapter 77: Templates
Classes, functions, and (since C++14) variables can be templated. A template is a piece of code with some free
parameters that will become a concrete class, function, or variable when all parameters are specified. Parameters
can be types, values, or themselves templates. A well-known template is std::vector, which becomes a concrete
container type when the element type is specified, e.g., std::vector<int>.

Section 77.1: Basic Class Template
The basic idea of a class template is that the template parameter gets substituted by a type at compile time. The
result is that the same class can be reused for multiple types. The user specifies which type will be used when a
variable of the class is declared. Three examples of this are shown in main():

#include <iostream>
using std::cout;

template <typename T> // A simple class to hold one number of any type
class Number {
public:
 void setNum(T n); // Sets the class field to the given number
 T plus1() const; // returns class field's "follower"
private:
 T num; // Class field
};

template <typename T> // Set the class field to the given number
void Number<T>::setNum(T n) {
 num = n;
}

template <typename T> // returns class field's "follower"
T Number<T>::plus1() const {
 return num + 1;
}

int main() {
 Number<int> anInt; // Test with an integer (int replaces T in the class)
 anInt.setNum(1);
 cout << "My integer + 1 is " << anInt.plus1() << "\n"; // Prints 2

 Number<double> aDouble; // Test with a double
 aDouble.setNum(3.1415926535897);
 cout << "My double + 1 is " << aDouble.plus1() << "\n"; // Prints 4.14159

 Number<float> aFloat; // Test with a float
 aFloat.setNum(1.4);
 cout << "My float + 1 is " << aFloat.plus1() << "\n"; // Prints 2.4

 return 0; // Successful completion
}

Section 77.2: Function Templates
Templating can also be applied to functions (as well as the more traditional structures) with the same effect.

// 'T' stands for the unknown type
// Both of our arguments will be of the same type.

C++ Notes for Professionals 414

template<typename T>
void printSum(T add1, T add2)
{
 std::cout << (add1 + add2) << std::endl;
}

This can then be used in the same way as structure templates.

printSum<int>(4, 5);
printSum<float>(4.5f, 8.9f);

In both these case the template argument is used to replace the types of the parameters; the result works just like
a normal C++ function (if the parameters don't match the template type the compiler applies the standard
conversions).

One additional property of template functions (unlike template classes) is that the compiler can infer the template
parameters based on the parameters passed to the function.

printSum(4, 5); // Both parameters are int.
 // This allows the compiler deduce that the type
 // T is also int.

printSum(5.0, 4); // In this case the parameters are two different types.
 // The compiler is unable to deduce the type of T
 // because there are contradictions. As a result
 // this is a compile time error.

This feature allows us to simplify code when we combine template structures and functions. There is a common
pattern in the standard library that allows us to make template structure X using a helper function make_X().

// The make_X pattern looks like this.
// 1) A template structure with 1 or more template types.
template<typename T1, typename T2>
struct MyPair
{
 T1 first;
 T2 second;
};
// 2) A make function that has a parameter type for
// each template parameter in the template structure.
template<typename T1, typename T2>
MyPair<T1, T2> make_MyPair(T1 t1, T2 t2)
{
 return MyPair<T1, T2>{t1, t2};
}

How does this help?

auto val1 = MyPair<int, float>{5, 8.7}; // Create object explicitly defining the types
auto val2 = make_MyPair(5, 8.7); // Create object using the types of the parameters.
 // In this code both val1 and val2 are the same
 // type.

Note: This is not designed to shorten the code. This is designed to make the code more robust. It allows the types
to be changed by changing the code in a single place rather than in multiple locations.

C++ Notes for Professionals 415

Section 77.3: Variadic template data structures
Version ≥ C++14

It is often useful to define classes or structures that have a variable number and type of data members which are
defined at compile time. The canonical example is std::tuple, but sometimes is it is necessary to define your own
custom structures. Here is an example that defines the structure using compounding (rather than inheritance as
with std::tuple. Start with the general (empty) definition, which also serves as the base-case for recrusion
termination in the later specialisation:

template<typename ... T>
struct DataStructure {};

This already allows us to define an empty structure, DataStructure<> data, albeit that isn't very useful yet.

Next comes the recursive case specialisation:

template<typename T, typename ... Rest>
struct DataStructure<T, Rest ...>
{
 DataStructure(const T& first, const Rest& ... rest)
 : first(first)
 , rest(rest...)
 {}

 T first;
 DataStructure<Rest ... > rest;
};

This is now sufficient for us to create arbitrary data structures, like DataStructure<int, float, std::string>
data(1, 2.1, "hello").

So what's going on? First, note that this is a specialisation whose requirement is that at least one variadic template
parameter (namely T above) exists, whilst not caring about the specific makeup of the pack Rest. Knowing that T
exists allows the definition of its data member, first. The rest of the data is recursively packaged as
DataStructure<Rest ... > rest. The constructor initiates both of those members, including a recursive
constructor call to the rest member.

To understand this better, we can work through an example: suppose you have a declaration DataStructure<int,
float> data. The declaration first matches against the specialisation, yielding a structure with int first and
DataStructure<float> rest data members. The rest definition again matches this specialisation, creating its own
float first and DataStructure<> rest members. Finally this last rest matches against the base-case defintion,
producing an empty structure.

You can visualise this as follows:

DataStructure<int, float>
 -> int first
 -> DataStructure<float> rest
 -> float first
 -> DataStructure<> rest
 -> (empty)

Now we have the data structure, but its not terribly useful yet as we cannot easily access the individual data
elements (for example to access the last member of DataStructure<int, float, std::string> data we would
have to use data.rest.rest.first, which is not exactly user-friendly). So we add a get method to it (only needed

C++ Notes for Professionals 416

in the specialisation as the base-case structure has no data to get):

template<typename T, typename ... Rest>
struct DataStructure<T, Rest ...>
{
 ...
 template<size_t idx>
 auto get()
 {
 return GetHelper<idx, DataStructure<T,Rest...>>::get(*this);
 }
 ...
};

As you can see this get member function is itself templated - this time on the index of the member that is needed
(so usage can be things like data.get<1>(), similar to std::tuple). The actual work is done by a static function in a
helper class, GetHelper. The reason we can't define the required functionality directly in DataStructure's get is
because (as we will shortly see) we would need to specialise on idx - but it isn't possible to specialise a template
member function without specialising the containing class template. Note also the use of a C++14-style auto here
makes our lives significantly simpler as otherwise we would need quite a complicated expression for the return
type.

So on to the helper class. This time we will need an empty forward declaration and two specialisations. First the
declaration:

template<size_t idx, typename T>
struct GetHelper;

Now the base-case (when idx==0). In this case we just return the first member:

template<typename T, typename ... Rest>
struct GetHelper<0, DataStructure<T, Rest ... >>
{
 static T get(DataStructure<T, Rest...>& data)
 {
 return data.first;
 }
};

In the recursive case, we decrement idx and invoke the GetHelper for the rest member:

template<size_t idx, typename T, typename ... Rest>
struct GetHelper<idx, DataStructure<T, Rest ... >>
{
 static auto get(DataStructure<T, Rest...>& data)
 {
 return GetHelper<idx-1, DataStructure<Rest ...>>::get(data.rest);
 }
};

To work through an example, suppose we have DataStructure<int, float> data and we need data.get<1>().
This invokes GetHelper<1, DataStructure<int, float>>::get(data) (the 2nd specialisation), which in turn
invokes GetHelper<0, DataStructure<float>>::get(data.rest), which finally returns (by the 1st specialisation as
now idx is 0) data.rest.first.

So that's it! Here is the whole functioning code, with some example use in the main function:

C++ Notes for Professionals 417

#include <iostream>

template<size_t idx, typename T>
struct GetHelper;

template<typename ... T>
struct DataStructure
{
};

template<typename T, typename ... Rest>
struct DataStructure<T, Rest ...>
{
 DataStructure(const T& first, const Rest& ... rest)
 : first(first)
 , rest(rest...)
 {}

 T first;
 DataStructure<Rest ... > rest;

 template<size_t idx>
 auto get()
 {
 return GetHelper<idx, DataStructure<T,Rest...>>::get(*this);
 }
};

template<typename T, typename ... Rest>
struct GetHelper<0, DataStructure<T, Rest ... >>
{
 static T get(DataStructure<T, Rest...>& data)
 {
 return data.first;
 }
};

template<size_t idx, typename T, typename ... Rest>
struct GetHelper<idx, DataStructure<T, Rest ... >>
{
 static auto get(DataStructure<T, Rest...>& data)
 {
 return GetHelper<idx-1, DataStructure<Rest ...>>::get(data.rest);
 }
};

int main()
{
 DataStructure<int, float, std::string> data(1, 2.1, "Hello");

 std::cout << data.get<0>() << std::endl;
 std::cout << data.get<1>() << std::endl;
 std::cout << data.get<2>() << std::endl;

 return 0;
}

Section 77.4: Argument forwarding
Template may accept both lvalue and rvalue references using forwarding reference:

C++ Notes for Professionals 418

template <typename T>
void f(T &&t);

In this case, the real type of t will be deduced depending on the context:

struct X { };

X x;
f(x); // calls f<X&>(x)
f(X()); // calls f<X>(x)

In the first case, the type T is deduced as reference to X (X&), and the type of t is lvalue reference to X, while in the
second case the type of T is deduced as X and the type of t as rvalue reference to X (X&&).

Note: It is worth noticing that in the first case, decltype(t) is the same as T, but not in the second.

In order to perfectly forward t to another function ,whether it is an lvalue or rvalue reference, one must use
std::forward:

template <typename T>
void f(T &&t) {
 g(std::forward<T>(t));
}

Forwarding references may be used with variadic templates:

template <typename... Args>
void f(Args&&... args) {
 g(std::forward<Args>(args)...);
}

Note: Forwarding references can only be used for template parameters, for instance, in the following code, v is a
rvalue reference, not a forwarding reference:

#include <vector>

template <typename T>
void f(std::vector<T> &&v);

Section 77.5: Partial template specialization
In contrast of a full template specialization partial template specialization allows to introduce template with some of
the arguments of existing template fixed. Partial template specialization is only available for template class/structs:

// Common case:
template<typename T, typename U>
struct S {
 T t_val;
 U u_val;
};

// Special case when the first template argument is fixed to int
template<typename V>
struct S<int, V> {
 double another_value;
 int foo(double arg) {// Do something}

C++ Notes for Professionals 419

};

As shown above, partial template specializations may introduce completely different sets of data and function
members.

When a partially specialized template is instantiated, the most suitable specialization is selected. For example, let's
define a template and two partial specializations:

template<typename T, typename U, typename V>
struct S {
 static void foo() {
 std::cout << "General case\n";
 }
};

template<typename U, typename V>
struct S<int, U, V> {
 static void foo() {
 std::cout << "T = int\n";
 }
};

template<typename V>
struct S<int, double, V> {
 static void foo() {
 std::cout << "T = int, U = double\n";
 }
};

Now the following calls:

S<std::string, int, double>::foo();
S<int, float, std::string>::foo();
S<int, double, std::string>::foo();

will print

General case
T = int
T = int, U = double

Function templates may only be fully specialized:

template<typename T, typename U>
void foo(T t, U u) {
 std::cout << "General case: " << t << " " << u << std::endl;
}

// OK.
template<>
void foo<int, int>(int a1, int a2) {
 std::cout << "Two ints: " << a1 << " " << a2 << std::endl;
}

void invoke_foo() {
 foo(1, 2.1); // Prints "General case: 1 2.1"
 foo(1,2); // Prints "Two ints: 1 2"
}

C++ Notes for Professionals 420

// Compilation error: partial function specialization is not allowed.
template<typename U>
void foo<std::string, U>(std::string t, U u) {
 std::cout << "General case: " << t << " " << u << std::endl;
}

Section 77.6: Template Specialization
You can define implementation for specific instantiations of a template class/method.

For example if you have:

template <typename T>
T sqrt(T t) { /* Some generic implementation */ }

You can then write:

template<>
int sqrt<int>(int i) { /* Highly optimized integer implementation */ }

Then a user that writes sqrt(4.0) will get the generic implementation whereas sqrt(4) will get the specialized
implementation.

Section 77.7: Alias template
Version ≥ C++11

Basic example:

template<typename T> using pointer = T*;

This definition makes pointer<T> an alias of T*. For example:

pointer<int> p = new int; // equivalent to: int* p = new int;

Alias templates cannot be specialized. However, that functionality can be obtained indirectly by having them refer
to a nested type in a struct:

template<typename T>
 struct nonconst_pointer_helper { typedef T* type; };

template<typename T>
 struct nonconst_pointer_helper<T const> { typedef T* type; };

template<typename T> using nonconst_pointer = nonconst_pointer_helper<T>::type;

Section 77.8: Explicit instantiation
An explicit instantiation definition creates and declares a concrete class, function, or variable from a template,
without using it just yet. An explicit instantiation can be referenced from other translation units. This can be used to
avoid defining a template in a header file, if it will only be instantiated with a finite set of arguments. For example:

// print_string.h
template <class T>
void print_string(const T* str);

C++ Notes for Professionals 421

// print_string.cpp
#include "print_string.h"
template void print_string(const char*);
template void print_string(const wchar_t*);

Because print_string<char> and print_string<wchar_t> are explicitly instantiated in print_string.cpp, the
linker will be able to find them even though the print_string template is not defined in the header. If these explicit
instantiation declarations were not present, a linker error would likely occur. See Why can templates only be
implemented in the header file?

Version ≥ C++11

If an explicit instantiation definition is preceded by the extern keyword, it becomes an explicit instantiation
declaration instead. The presence of an explicit instantiation declaration for a given specialization prevents the
implicit instantiation of the given specialization within the current translation unit. Instead, a reference to that
specialization that would otherwise cause an implicit instantiation can refer to an explicit instantiation definition in
the same or another TU.

foo.h

#ifndef FOO_H
#define FOO_H
template <class T> void foo(T x) {
 // complicated implementation
}
#endif

foo.cpp

#include "foo.h"
// explicit instantiation definitions for common cases
template void foo(int);
template void foo(double);

main.cpp

#include "foo.h"
// we already know foo.cpp has explicit instantiation definitions for these
extern template void foo(double);
int main() {
 foo(42); // instantiates foo<int> here;
 // wasteful since foo.cpp provides an explicit instantiation already!
 foo(3.14); // does not instantiate foo<double> here;
 // uses instantiation of foo<double> in foo.cpp instead
}

Section 77.9: Non-type template parameter
Apart from types as a template parameter we are allowed to declare values of constant expressions meeting one of
the following criteria:

integral or enumeration type,
pointer to object or pointer to function,
lvalue reference to object or lvalue reference to function,
pointer to member,
std::nullptr_t.

http://stackoverflow.com/questions/495021/why-can-templates-only-be-implemented-in-the-header-file
http://stackoverflow.com/questions/495021/why-can-templates-only-be-implemented-in-the-header-file

C++ Notes for Professionals 422

Like all template parameters, non-type template parameters can be explicitly specified, defaulted, or derived
implicitly via Template Argument Deduction.

Example of non-type template parameter usage:

#include <iostream>

template<typename T, std::size_t size>
std::size_t size_of(T (&anArray)[size]) // Pass array by reference. Requires.
{ // an exact size. We allow all sizes
 return size; // by using a template "size".
}

int main()
{
 char anArrayOfChar[15];
 std::cout << "anArrayOfChar: " << size_of(anArrayOfChar) << "\n";

 int anArrayOfData[] = {1,2,3,4,5,6,7,8,9};
 std::cout << "anArrayOfData: " << size_of(anArrayOfData) << "\n";
}

Example of explicitly specifying both type and non-type template parameters:

#include <array>
int main ()
{
 std::array<int, 5> foo; // int is a type parameter, 5 is non-type
}

Non-type template parameters are one of the ways to achieve template recurrence and enables to do
Metaprogramming.

Section 77.10: Declaring non-type template arguments with
auto
Prior to C++17, when writing a template non-type parameter, you had to specify its type first. So a common pattern
became writing something like:

template <class T, T N>
struct integral_constant {
 using type = T;
 static constexpr T value = N;
};

using five = integral_constant<int, 5>;

But for complicated expressions, using something like this involves having to write decltype(expr), expr when
instantiating templates. The solution is to simplify this idiom and simply allow auto:

Version ≥ C++17

template <auto N>
struct integral_constant {
 using type = decltype(N);
 static constexpr type value = N;
};

C++ Notes for Professionals 423

using five = integral_constant<5>;

Empty custom deleter for unique_ptr

A nice motivating example can come from trying to combine the empty base optimization with a custom deleter for
unique_ptr. Different C API deleters have different return types, but we don't care - we just want something to
work for any function:

template <auto DeleteFn>
struct FunctionDeleter {
 template <class T>
 void operator()(T* ptr) const {
 DeleteFn(ptr);
 }
};

template <T, auto DeleteFn>
using unique_ptr_deleter = std::unique_ptr<T, FunctionDeleter<DeleteFn>>;

And now you can simply use any function pointer that can take an argument of type T as a template non-type
parameter, regardless of return type, and get a no-size overhead unique_ptr out of it:

unique_ptr_deleter<std::FILE, std::fclose> p;

Section 77.11: Template template parameters
Sometimes we would like to pass into the template a template type without fixing its values. This is what template
template parameters are created for. Very simple template template parameter examples:

template <class T>
struct Tag1 { };

template <class T>
struct Tag2 { };

template <template <class> class Tag>
struct IntTag {
 typedef Tag<int> type;
};

int main() {
 IntTag<Tag1>::type t;
}
Version ≥ C++11

#include <vector>
#include <iostream>

template <class T, template <class...> class C, class U>
C<T> cast_all(const C<U> &c) {
 C<T> result(c.begin(), c.end());
 return result;
}

int main() {
 std::vector<float> vf = {1.2, 2.6, 3.7};
 auto vi = cast_all<int>(vf);
 for(auto &&i: vi) {
 std::cout << i << std::endl;
 }

C++ Notes for Professionals 424

}

Section 77.12: Default template parameter value
Just like in case of the function arguments, template parameters can have their default values. All template
parameters with a default value have to be declared at the end of the template parameter list. The basic idea is that
the template parameters with default value can be omitted while template instantiation.

Simple example of default template parameter value usage:

template <class T, size_t N = 10>
struct my_array {
 T arr[N];
};

int main() {
 /* Default parameter is ignored, N = 5 */
 my_array<int, 5> a;

 /* Print the length of a.arr: 5 */
 std::cout << sizeof(a.arr) / sizeof(int) << std::endl;

 /* Last parameter is omitted, N = 10 */
 my_array<int> b;

 /* Print the length of a.arr: 10 */
 std::cout << sizeof(b.arr) / sizeof(int) << std::endl;
}

C++ Notes for Professionals 425

Chapter 78: Expression templates
Section 78.1: A basic example illustrating expression
templates
An expression template is a compile-time optimization technique used mostly in scientific computing. It's main
purpose is to avoid unnecessary temporaries and optimize loop calculations using a single pass (typically when
performing operations on numerical aggregates). Expression templates were initially devised in order to circumvent
the inefficiencies of naïve operator overloading when implementing numerical Array or Matrix types. An equivalent
terminology for expression templates has been introduced by Bjarne Stroustrup, who calls them "fused operations"
in the latest version of his book, "The C++ Programming Language".

Before actually diving into expression templates, you should understand why you need them in the first place. To
illustrate this, consider the very simple Matrix class given below:

template <typename T, std::size_t COL, std::size_t ROW>
class Matrix {
public:
 using value_type = T;

 Matrix() : values(COL * ROW) {}

 static size_t cols() { return COL; }
 static size_t rows() { return ROW; }

 const T& operator()(size_t x, size_t y) const { return values[y * COL + x]; }
 T& operator()(size_t x, size_t y) { return values[y * COL + x]; }

private:
 std::vector<T> values;
};

template <typename T, std::size_t COL, std::size_t ROW>
Matrix<T, COL, ROW>
operator+(const Matrix<T, COL, ROW>& lhs, const Matrix<T, COL, ROW>& rhs)
{
 Matrix<T, COL, ROW> result;

 for (size_t y = 0; y != lhs.rows(); ++y) {
 for (size_t x = 0; x != lhs.cols(); ++x) {
 result(x, y) = lhs(x, y) + rhs(x, y);
 }
 }
 return result;
}

Given the previous class definition, you can now write Matrix expressions such as:

const std::size_t cols = 2000;
const std::size_t rows = 1000;

Matrix<double, cols, rows> a, b, c;

// initialize a, b & c
for (std::size_t y = 0; y != rows; ++y) {
 for (std::size_t x = 0; x != cols; ++x) {
 a(x, y) = 1.0;
 b(x, y) = 2.0;

C++ Notes for Professionals 426

 c(x, y) = 3.0;
 }
}

Matrix<double, cols, rows> d = a + b + c; // d(x, y) = 6

As illustrated above, being able to overload operator+() provides you with a notation which mimics the natural
mathematical notation for matrices.

Unfortunately, the previous implementation is also highly inefficient compared to an equivalent "hand-crafted"
version.

To understand why, you have to consider what happens when you write an expression such as Matrix d = a + b
+ c. This in fact expands to ((a + b) + c) or operator+(operator+(a, b), c). In other words, the loop inside
operator+() is executed twice, whereas it could have been easily performed in a single pass. This also results in 2
temporaries being created, which further degrades performance. In essence, by adding the flexibility to use a
notation close to its mathematical counterpart, you have also made the Matrix class highly inefficient.

For example, without operator overloading, you could implement a far more efficient Matrix summation using a
single pass:

template<typename T, std::size_t COL, std::size_t ROW>
Matrix<T, COL, ROW> add3(const Matrix<T, COL, ROW>& a,
 const Matrix<T, COL, ROW>& b,
 const Matrix<T, COL, ROW>& c)
{
 Matrix<T, COL, ROW> result;
 for (size_t y = 0; y != ROW; ++y) {
 for (size_t x = 0; x != COL; ++x) {
 result(x, y) = a(x, y) + b(x, y) + c(x, y);
 }
 }
 return result;
}

The previous example however has its own disadvantages because it creates a far more convoluted interface for
the Matrix class (you would have to consider methods such as Matrix::add2(), Matrix::AddMultiply() and so
on).

Instead let us take a step back and see how we can adapt operator overloading to perform in a more efficient way

The problem stems from the fact that the expression Matrix d = a + b + c is evaluated too "eagerly" before you
have had an opportunity to build the entire expression tree. In other words, what you really want to achieve is to
evaluate a + b + c in one pass and only once you actually need to assign the resulting expressing to d.

This is the core idea behind expression templates: instead of having operator+() evaluate immediately the result
of adding two Matrix instances, it will return an "expression template" for future evaluation once the entire
expression tree has been built.

For example, here is a possible implementation for an expression template corresponding to the summation of 2
types:

template <typename LHS, typename RHS>
class MatrixSum
{
public:
 using value_type = typename LHS::value_type;

C++ Notes for Professionals 427

 MatrixSum(const LHS& lhs, const RHS& rhs) : rhs(rhs), lhs(lhs) {}

 value_type operator() (int x, int y) const {
 return lhs(x, y) + rhs(x, y);
 }
private:
 const LHS& lhs;
 const RHS& rhs;
};

And here is the updated version of operator+()

template <typename LHS, typename RHS>
MatrixSum<LHS, RHS> operator+(const LHS& lhs, const LHS& rhs) {
 return MatrixSum<LHS, RHS>(lhs, rhs);
}

As you can see, operator+() no longer returns an "eager evaluation" of the result of adding 2 Matrix instances
(which would be another Matrix instance), but instead an expression template representing the addition operation.
The most important point to keep in mind is that the expression has not been evaluated yet. It merely holds
references to its operands.

In fact, nothing stops you from instantiating the MatrixSum<> expression template as follows:

MatrixSum<Matrix<double>, Matrix<double> > SumAB(a, b);

You can however at a later stage, when you actually need the result of the summation, evaluate the expression d =
a + b as follows:

for (std::size_t y = 0; y != a.rows(); ++y) {
 for (std::size_t x = 0; x != a.cols(); ++x) {
 d(x, y) = SumAB(x, y);
 }
}

As you can see, another benefit of using an expression template, is that you have basically managed to evaluate the
sum of a and b and assign it to d in a single pass.

Also, nothing stops you from combining multiple expression templates. For example, a + b + c would result in the
following expression template:

MatrixSum<MatrixSum<Matrix<double>, Matrix<double> >, Matrix<double> > SumABC(SumAB, c);

And here again you can evaluate the final result using a single pass:

for (std::size_t y = 0; y != a.rows(); ++y) {
 for (std::size_t x = 0; x != a.cols(); ++x) {
 d(x, y) = SumABC(x, y);
 }
}

Finally, the last piece of the puzzle is to actually plug your expression template into the Matrix class. This is
essentially achieved by providing an implementation for Matrix::operator=(), which takes the expression
template as an argument and evaluates it in one pass, as you did "manually" before:

template <typename T, std::size_t COL, std::size_t ROW>

C++ Notes for Professionals 428

class Matrix {
public:
 using value_type = T;

 Matrix() : values(COL * ROW) {}

 static size_t cols() { return COL; }
 static size_t rows() { return ROW; }

 const T& operator()(size_t x, size_t y) const { return values[y * COL + x]; }
 T& operator()(size_t x, size_t y) { return values[y * COL + x]; }

 template <typename E>
 Matrix<T, COL, ROW>& operator=(const E& expression) {
 for (std::size_t y = 0; y != rows(); ++y) {
 for (std::size_t x = 0; x != cols(); ++x) {
 values[y * COL + x] = expression(x, y);
 }
 }
 return *this;
 }

private:
 std::vector<T> values;
};

C++ Notes for Professionals 429

Chapter 79: Curiously Recurring Template
Pattern (CRTP)
A pattern in which a class inherits from a class template with itself as one of its template parameters. CRTP is
usually used to provide static polymorphism in C++.

Section 79.1: The Curiously Recurring Template Pattern
(CRTP)
CRTP is a powerful, static alternative to virtual functions and traditional inheritance that can be used to give types
properties at compile time. It works by having a base class template which takes, as one of its template parameters,
the derived class. This permits it to legally perform a static_cast of its this pointer to the derived class.

Of course, this also means that a CRTP class must always be used as the base class of some other class. And the
derived class must pass itself to the base class.

Version ≥ C++14

Let's say you have a set of containers that all support the functions begin() and end(). The standard library's
requirements for containers require more functionality. We can design a CRTP base class that provides that
functionality, based solely on begin() and end():

#include <iterator>
template <typename Sub>
class Container {
 private:
 // self() yields a reference to the derived type
 Sub& self() { return *static_cast<Sub*>(this); }
 Sub const& self() const { return *static_cast<Sub const*>(this); }

 public:
 decltype(auto) front() {
 return *self().begin();
 }

 decltype(auto) back() {
 return *std::prev(self().end());
 }

 decltype(auto) size() const {
 return std::distance(self().begin(), self().end());
 }

 decltype(auto) operator[](std::size_t i) {
 return *std::next(self().begin(), i);
 }
};

The above class provides the functions front(), back(), size(), and operator[] for any subclass which provides
begin() and end(). An example subclass is a simple dynamically allocated array:

#include <memory>
// A dynamically allocated array
template <typename T>
class DynArray : public Container<DynArray<T>> {
 public:

C++ Notes for Professionals 430

 using Base = Container<DynArray<T>>;

 DynArray(std::size_t size)
 : size_{size},
 data_{std::make_unique<T[]>(size_)}
 { }

 T* begin() { return data_.get(); }
 const T* begin() const { return data_.get(); }
 T* end() { return data_.get() + size_; }
 const T* end() const { return data_.get() + size_; }

 private:
 std::size_t size_;
 std::unique_ptr<T[]> data_;
};

Users of the DynArray class can use the interfaces provided by the CRTP base class easily as follows:

DynArray<int> arr(10);
arr.front() = 2;
arr[2] = 5;
assert(arr.size() == 10);

Usefulness: This pattern particularly avoids virtual function calls at run-time which occur to traverse down the
inheritance hierarchy and simply relies on static casts:

DynArray<int> arr(10);
DynArray<int>::Base & base = arr;
base.begin(); // no virtual calls

The only static cast inside the function begin() in the base class Container<DynArray<int>> allows the compiler to
drastically optimize the code and no virtual table look up happens at runtime.

Limitations: Because the base class is templated and different for two different DynArrays it is not possible to
store pointers to their base classes in an type-homogenous array as one could generally do with normal inheritance
where the base class is not dependent on the derived type:

class A {};
class B: public A{};

A* a = new B;

Section 79.2: CRTP to avoid code duplication
The example in Visitor Pattern provides a compelling use-case for CRTP:

struct IShape
{
 virtual ~IShape() = default;

 virtual void accept(IShapeVisitor&) const = 0;
};

struct Circle : IShape
{
 // ...
 // Each shape has to implement this method the same way

C++ Notes for Professionals 431

 void accept(IShapeVisitor& visitor) const override { visitor.visit(*this); }
 // ...
};

struct Square : IShape
{
 // ...
 // Each shape has to implement this method the same way
 void accept(IShapeVisitor& visitor) const override { visitor.visit(*this); }
 // ...
};

Each child type of IShape needs to implement the same function the same way. That's a lot of extra typing. Instead,
we can introduce a new type in the hierarchy that does this for us:

template <class Derived>
struct IShapeAcceptor : IShape {
 void accept(IShapeVisitor& visitor) const override {
 // visit with our exact type
 visitor.visit(*static_cast<Derived const*>(this));
 }
};

And now, each shape simply needs to inherit from the acceptor:

struct Circle : IShapeAcceptor<Circle>
{
 Circle(const Point& center, double radius) : center(center), radius(radius) {}
 Point center;
 double radius;
};

struct Square : IShapeAcceptor<Square>
{
 Square(const Point& topLeft, double sideLength) : topLeft(topLeft), sideLength(sideLength) {}

 Point topLeft;
 double sideLength;
};

No duplicate code necessary.

C++ Notes for Professionals 432

Chapter 80: Threading
Parameter Details
other Takes ownership of other, other doesn't own the thread anymore
func Function to call in a separate thread
args Arguments for func

Section 80.1: Creating a std::thread
In C++, threads are created using the std::thread class. A thread is a separate flow of execution; it is analogous to
having a helper perform one task while you simultaneously perform another. When all the code in the thread is
executed, it terminates. When creating a thread, you need to pass something to be executed on it. A few things that
you can pass to a thread:

Free functions
Member functions
Functor objects
Lambda expressions

Free function example - executes a function on a separate thread (Live Example):

#include <iostream>
#include <thread>

void foo(int a)
{
 std::cout << a << '\n';
}

int main()
{
 // Create and execute the thread
 std::thread thread(foo, 10); // foo is the function to execute, 10 is the
 // argument to pass to it

 // Keep going; the thread is executed separately

 // Wait for the thread to finish; we stay here until it is done
 thread.join();

 return 0;
}

Member function example - executes a member function on a separate thread (Live Example):

#include <iostream>
#include <thread>

class Bar
{
public:
 void foo(int a)
 {
 std::cout << a << '\n';
 }
};

http://ideone.com/hX1Ygn
http://ideone.com/4QeG4E

C++ Notes for Professionals 433

int main()
{
 Bar bar;

 // Create and execute the thread
 std::thread thread(&Bar::foo, &bar, 10); // Pass 10 to member function

 // The member function will be executed in a separate thread

 // Wait for the thread to finish, this is a blocking operation
 thread.join();

 return 0;
}

Functor object example (Live Example):

#include <iostream>
#include <thread>

class Bar
{
public:
 void operator()(int a)
 {
 std::cout << a << '\n';
 }
};

int main()
{
 Bar bar;

 // Create and execute the thread
 std::thread thread(bar, 10); // Pass 10 to functor object

 // The functor object will be executed in a separate thread

 // Wait for the thread to finish, this is a blocking operation
 thread.join();

 return 0;
}

Lambda expression example (Live Example):

#include <iostream>
#include <thread>

int main()
{
 auto lambda = [](int a) { std::cout << a << '\n'; };

 // Create and execute the thread
 std::thread thread(lambda, 10); // Pass 10 to the lambda expression

 // The lambda expression will be executed in a separate thread

 // Wait for the thread to finish, this is a blocking operation
 thread.join();

http://ideone.com/h2EepE
http://ideone.com/UacLRf

C++ Notes for Professionals 434

 return 0;
}

Section 80.2: Passing a reference to a thread
You cannot pass a reference (or const reference) directly to a thread because std::thread will copy/move them.
Instead, use std::reference_wrapper:

void foo(int& b)
{
 b = 10;
}

int a = 1;
std::thread thread{ foo, std::ref(a) }; //'a' is now really passed as reference

thread.join();
std::cout << a << '\n'; //Outputs 10

void bar(const ComplexObject& co)
{
 co.doCalculations();
}

ComplexObject object;
std::thread thread{ bar, std::cref(object) }; //'object' is passed as const&

thread.join();
std::cout << object.getResult() << '\n'; //Outputs the result

Section 80.3: Using std::async instead of std::thread
std::async is also able to make threads. Compared to std::thread it is considered less powerful but easier to use
when you just want to run a function asynchronously.

Asynchronously calling a function
#include <future>
#include <iostream>

unsigned int square(unsigned int i){
 return i*i;
}

int main() {
 auto f = std::async(std::launch::async, square, 8);
 std::cout << "square currently running\n"; //do something while square is running
 std::cout << "result is " << f.get() << '\n'; //getting the result from square
}

Common Pitfalls

std::async returns a std::future that holds the return value that will be calculated by the function. When
that future gets destroyed it waits until the thread completes, making your code effectively single threaded.
This is easily overlooked when you don't need the return value:

std::async(std::launch::async, square, 5);
//thread already completed at this point, because the returning future got destroyed

std::async works without a launch policy, so std::async(square, 5); compiles. When you do that the

C++ Notes for Professionals 435

system gets to decide if it wants to create a thread or not. The idea was that the system chooses to make a
thread unless it is already running more threads than it can run efficiently. Unfortunately implementations
commonly just choose not to create a thread in that situation, ever, so you need to override that behavior
with std::launch::async which forces the system to create a thread.

Beware of race conditions.

More on async on Futures and Promises

Section 80.4: Basic Synchronization
Thread synchronization can be accomplished using mutexes, among other synchronization primitives. There are
several mutex types provided by the standard library, but the simplest is std::mutex. To lock a mutex, you
construct a lock on it. The simplest lock type is std::lock_guard:

std::mutex m;
void worker() {
 std::lock_guard<std::mutex> guard(m); // Acquires a lock on the mutex
 // Synchronized code here
} // the mutex is automatically released when guard goes out of scope

With std::lock_guard the mutex is locked for the whole lifetime of the lock object. In cases where you need to
manually control the regions for locking, use std::unique_lock instead:

std::mutex m;
void worker() {
 // by default, constructing a unique_lock from a mutex will lock the mutex
 // by passing the std::defer_lock as a second argument, we
 // can construct the guard in an unlocked state instead and
 // manually lock later.
 std::unique_lock<std::mutex> guard(m, std::defer_lock);
 // the mutex is not locked yet!
 guard.lock();
 // critical section
 guard.unlock();
 // mutex is again released
}

More Thread synchronization structures

Section 80.5: Create a simple thread pool
C++11 threading primitives are still relatively low level. They can be used to write a higher level construct, like a
thread pool:

Version ≥ C++14

struct tasks {
 // the mutex, condition variable and deque form a single
 // thread-safe triggered queue of tasks:
 std::mutex m;
 std::condition_variable v;
 // note that a packaged_task<void> can store a packaged_task<R>:
 std::deque<std::packaged_task<void()>> work;

 // this holds futures representing the worker threads being done:
 std::vector<std::future<void>> finished;

C++ Notes for Professionals 436

 // queue(lambda) will enqueue the lambda into the tasks for the threads
 // to use. A future of the type the lambda returns is given to let you get
 // the result out.
 template<class F, class R=std::result_of_t<F&()>>
 std::future<R> queue(F&& f) {
 // wrap the function object into a packaged task, splitting
 // execution from the return value:
 std::packaged_task<R()> p(std::forward<F>(f));

 auto r=p.get_future(); // get the return value before we hand off the task
 {
 std::unique_lock<std::mutex> l(m);
 work.emplace_back(std::move(p)); // store the task<R()> as a task<void()>
 }
 v.notify_one(); // wake a thread to work on the task

 return r; // return the future result of the task
 }

 // start N threads in the thread pool.
 void start(std::size_t N=1){
 for (std::size_t i = 0; i < N; ++i)
 {
 // each thread is a std::async running this->thread_task():
 finished.push_back(
 std::async(
 std::launch::async,
 [this]{ thread_task(); }
)
);
 }
 }
 // abort() cancels all non-started tasks, and tells every working thread
 // stop running, and waits for them to finish up.
 void abort() {
 cancel_pending();
 finish();
 }
 // cancel_pending() merely cancels all non-started tasks:
 void cancel_pending() {
 std::unique_lock<std::mutex> l(m);
 work.clear();
 }
 // finish enques a "stop the thread" message for every thread, then waits for them:
 void finish() {
 {
 std::unique_lock<std::mutex> l(m);
 for(auto&&unused:finished){
 work.push_back({});
 }
 }
 v.notify_all();
 finished.clear();
 }
 ~tasks() {
 finish();
 }
private:
 // the work that a worker thread does:
 void thread_task() {
 while(true){
 // pop a task off the queue:

C++ Notes for Professionals 437

 std::packaged_task<void()> f;
 {
 // usual thread-safe queue code:
 std::unique_lock<std::mutex> l(m);
 if (work.empty()){
 v.wait(l,[&]{return !work.empty();});
 }
 f = std::move(work.front());
 work.pop_front();
 }
 // if the task is invalid, it means we are asked to abort:
 if (!f.valid()) return;
 // otherwise, run the task:
 f();
 }
 }
};

tasks.queue([]{ return "hello world"s; }) returns a std::future<std::string>, which when the tasks
object gets around to running it is populated with hello world.

You create threads by running tasks.start(10) (which starts 10 threads).

The use of packaged_task<void()> is merely because there is no type-erased std::function equivalent that stores
move-only types. Writing a custom one of those would probably be faster than using packaged_task<void()>.

Live example.

Version = C++11

In C++11, replace result_of_t<blah> with typename result_of<blah>::type.

More on Mutexes.

Section 80.6: Ensuring a thread is always joined
When the destructor for std::thread is invoked, a call to either join() or detach() must have been made. If a
thread has not been joined or detached, then by default std::terminate will be called. Using RAII, this is generally
simple enough to accomplish:

class thread_joiner
{
public:

 thread_joiner(std::thread t)
 : t_(std::move(t))
 { }

 ~thread_joiner()
 {
 if(t_.joinable()) {
 t_.join();
 }
 }

private:

 std::thread t_;

http://coliru.stacked-crooked.com/
http://en.cppreference.com/w/cpp/language/raii

C++ Notes for Professionals 438

}

This is then used like so:

 void perform_work()
 {
 // Perform some work
 }

 void t()
 {
 thread_joiner j{std::thread(perform_work)};
 // Do some other calculations while thread is running
 } // Thread is automatically joined here

This also provides exception safety; if we had created our thread normally and the work done in t() performing
other calculations had thrown an exception, join() would never have been called on our thread and our process
would have been terminated.

Section 80.7: Operations on the current thread
std::this_thread is a namespace which has functions to do interesting things on the current thread from function
it is called from.

Function Description
get_id Returns the id of the thread
sleep_for Sleeps for a specified amount of time
sleep_until Sleeps until a specific time
yield Reschedule running threads, giving other threads priority

Getting the current threads id using std::this_thread::get_id:

void foo()
{
 //Print this threads id
 std::cout << std::this_thread::get_id() << '\n';
}

std::thread thread{ foo };
thread.join(); //'threads' id has now been printed, should be something like 12556

foo(); //The id of the main thread is printed, should be something like 2420

Sleeping for 3 seconds using std::this_thread::sleep_for:

void foo()
{
 std::this_thread::sleep_for(std::chrono::seconds(3));
}

std::thread thread{ foo };
foo.join();

std::cout << "Waited for 3 seconds!\n";

Sleeping until 3 hours in the future using std::this_thread::sleep_until:

C++ Notes for Professionals 439

void foo()
{
 std::this_thread::sleep_until(std::chrono::system_clock::now() + std::chrono::hours(3));
}

std::thread thread{ foo };
thread.join();

std::cout << "We are now located 3 hours after the thread has been called\n";

Letting other threads take priority using std::this_thread::yield:

void foo(int a)
{
 for (int i = 0; i < al ++i)
 std::this_thread::yield(); //Now other threads take priority, because this thread
 //isn't doing anything important

 std::cout << "Hello World!\n";
}

std::thread thread{ foo, 10 };
thread.join();

Section 80.8: Using Condition Variables
A condition variable is a primitive used in conjunction with a mutex to orchestrate communication between
threads. While it is neither the exclusive or most efficient way to accomplish this, it can be among the simplest to
those familiar with the pattern.

One waits on a std::condition_variable with a std::unique_lock<std::mutex>. This allows the code to safely
examine shared state before deciding whether or not to proceed with acquisition.

Below is a producer-consumer sketch that uses std::thread, std::condition_variable, std::mutex, and a few
others to make things interesting.

#include <condition_variable>
#include <cstddef>
#include <iostream>
#include <mutex>
#include <queue>
#include <random>
#include <thread>

int main()
{
 std::condition_variable cond;
 std::mutex mtx;
 std::queue<int> intq;
 bool stopped = false;

 std::thread producer{[&]()
 {
 // Prepare a random number generator.
 // Our producer will simply push random numbers to intq.
 //
 std::default_random_engine gen{};
 std::uniform_int_distribution<int> dist{};

C++ Notes for Professionals 440

 std::size_t count = 4006;
 while(count--)
 {
 // Always lock before changing
 // state guarded by a mutex and
 // condition_variable (a.k.a. "condvar").
 std::lock_guard<std::mutex> L{mtx};

 // Push a random int into the queue
 intq.push(dist(gen));

 // Tell the consumer it has an int
 cond.notify_one();
 }

 // All done.
 // Acquire the lock, set the stopped flag,
 // then inform the consumer.
 std::lock_guard<std::mutex> L{mtx};

 std::cout << "Producer is done!" << std::endl;

 stopped = true;
 cond.notify_one();
 }};

 std::thread consumer{[&]()
 {
 do{
 std::unique_lock<std::mutex> L{mtx};
 cond.wait(L,[&]()
 {
 // Acquire the lock only if
 // we've stopped or the queue
 // isn't empty
 return stopped || ! intq.empty();
 });

 // We own the mutex here; pop the queue
 // until it empties out.

 while(! intq.empty())
 {
 const auto val = intq.front();
 intq.pop();

 std::cout << "Consumer popped: " << val << std::endl;
 }

 if(stopped){
 // producer has signaled a stop
 std::cout << "Consumer is done!" << std::endl;
 break;
 }

 }while(true);
 }};

 consumer.join();
 producer.join();

 std::cout << "Example Completed!" << std::endl;

C++ Notes for Professionals 441

 return 0;
}

Section 80.9: Thread operations
When you start a thread, it will execute until it is finished.

Often, at some point, you need to (possibly - the thread may already be done) wait for the thread to finish, because
you want to use the result for example.

int n;
std::thread thread{ calculateSomething, std::ref(n) };

//Doing some other stuff

//We need 'n' now!
//Wait for the thread to finish - if it is not already done
thread.join();

//Now 'n' has the result of the calculation done in the separate thread
std::cout << n << '\n';

You can also detach the thread, letting it execute freely:

std::thread thread{ doSomething };

//Detaching the thread, we don't need it anymore (for whatever reason)
thread.detach();

//The thread will terminate when it is done, or when the main thread returns

Section 80.10: Thread-local storage
Thread-local storage can be created using the thread_local keyword. A variable declared with the thread_local
specifier is said to have thread storage duration.

Each thread in a program has its own copy of each thread-local variable.
A thread-local variable with function (local) scope will be initialized the first time control passes through its
definition. Such a variable is implicitly static, unless declared extern.
A thread-local variable with namespace or class (non-local) scope will be initialized as part of thread startup.
Thread-local variables are destroyed upon thread termination.
A member of a class can only be thread-local if it is static. There will therefore be one copy of that variable
per thread, rather than one copy per (thread, instance) pair.

Example:

void debug_counter() {
 thread_local int count = 0;
 Logger::log("This function has been called %d times by this thread", ++count);
}

Section 80.11: Reassigning thread objects
We can create empty thread objects and assign work to them later.

If we assign a thread object to another active, joinable thread, std::terminate will automatically be called before

C++ Notes for Professionals 442

the thread is replaced.

#include <thread>

void foo()
{
 std::this_thread::sleep_for(std::chrono::seconds(3));
}
//create 100 thread objects that do nothing
std::thread executors[100];

// Some code

// I want to create some threads now

for (int i = 0;i < 100;i++)
{
 // If this object doesn't have a thread assigned
 if (!executors[i].joinable())
 executors[i] = std::thread(foo);
}

C++ Notes for Professionals 443

Chapter 81: Thread synchronization
structures
Working with threads might need some synchronization techniques if the threads interact. In this topic, you can
find the different structures which are provided by the standard library to solve these issues.

Section 81.1: std::condition_variable_any, std::cv_status
A generalization of std::condition_variable, std::condition_variable_any works with any type of
BasicLockable structure.

std::cv_status as a return status for a condition variable has two possible return codes:

std::cv_status::no_timeout: There was no timeout, condition variable was notified
std::cv_status::no_timeout: Condition variable timed out

Section 81.2: std::shared_lock
A shared_lock can be used in conjunction with a unique lock to allow multiple readers and exclusive writers.

#include <unordered_map>
#include <mutex>
#include <shared_mutex>
#include <thread>
#include <string>
#include <iostream>

class PhoneBook {
 public:
 string getPhoneNo(const std::string & name)
 {
 shared_lock<shared_timed_mutex> r(_protect);
 auto it = _phonebook.find(name);
 if (it == _phonebook.end())
 return (*it).second;
 return "";
 }
 void addPhoneNo (const std::string & name, const std::string & phone)
 {
 unique_lock<shared_timed_mutex> w(_protect);
 _phonebook[name] = phone;
 }

 shared_timed_mutex _protect;
 unordered_map<string,string> _phonebook;
 };

Section 81.3: std::call_once, std::once_flag
std::call_once ensures execution of a function exactly once by competing threads. It throws std::system_error
in case it cannot complete its task.

Used in conjunction with std::once_flag.

#include <mutex>

C++ Notes for Professionals 444

#include <iostream>

std::once_flag flag;
void do_something(){
 std::call_once(flag, [](){std::cout << "Happens once" << std::endl;});

 std::cout << "Happens every time" << std::endl;
}

Section 81.4: Object locking for ecient access
Often you want to lock the entire object while you perform multiple operations on it. For example, if you need to
examine or modify the object using iterators. Whenever you need to call multiple member functions it is generally
more efficient to lock the whole object rather than individual member functions.

For example:

class text_buffer
{
 // for readability/maintainability
 using mutex_type = std::shared_timed_mutex;
 using reading_lock = std::shared_lock<mutex_type>;
 using updates_lock = std::unique_lock<mutex_type>;

public:
 // This returns a scoped lock that can be shared by multiple
 // readers at the same time while excluding any writers
 [[nodiscard]]
 reading_lock lock_for_reading() const { return reading_lock(mtx); }

 // This returns a scoped lock that is exclusing to one
 // writer preventing any readers
 [[nodiscard]]
 updates_lock lock_for_updates() { return updates_lock(mtx); }

 char* data() { return buf; }
 char const* data() const { return buf; }

 char* begin() { return buf; }
 char const* begin() const { return buf; }

 char* end() { return buf + sizeof(buf); }
 char const* end() const { return buf + sizeof(buf); }

 std::size_t size() const { return sizeof(buf); }

private:
 char buf[1024];
 mutable mutex_type mtx; // mutable allows const objects to be locked
};

When calculating a checksum the object is locked for reading, allowing other threads that want to read from the
object at the same time to do so.

std::size_t checksum(text_buffer const& buf)
{
 std::size_t sum = 0xA44944A4;

 // lock the object for reading

C++ Notes for Professionals 445

 auto lock = buf.lock_for_reading();

 for(auto c: buf)
 sum = (sum << 8) | (((unsigned char) ((sum & 0xFF000000) >> 24)) ^ c);

 return sum;
}

Clearing the object updates its internal data so it must be done using an exclusing lock.

void clear(text_buffer& buf)
{
 auto lock = buf.lock_for_updates(); // exclusive lock
 std::fill(std::begin(buf), std::end(buf), '\0');
}

When obtaining more than one lock care should be taken to always acquire the locks in the same order for all
threads.

void transfer(text_buffer const& input, text_buffer& output)
{
 auto lock1 = input.lock_for_reading();
 auto lock2 = output.lock_for_updates();

 std::copy(std::begin(input), std::end(input), std::begin(output));
}

note: This is best done using std::deferred::lock and calling std::lock

http://en.cppreference.com/w/cpp/thread/lock_tag
http://en.cppreference.com/w/cpp/thread/lock

C++ Notes for Professionals 446

Chapter 82: The Rule of Three, Five, And
Zero
Section 82.1: Rule of Zero
Version ≥ C++11

We can combine the principles of the Rule of Five and RAII to get a much leaner interface: the Rule of Zero: any
resource that needs to be managed should be in its own type. That type would have to follow the Rule of Five, but
all users of that resource do not need to write any of the five special member functions and can simply default all
of them.

Using the Person class introduced in the Rule of Three example, we can create a resource-managing object for
cstrings:

class cstring {
private:
 char* p;

public:
 ~cstring() { delete [] p; }
 cstring(cstring const&);
 cstring(cstring&&);
 cstring& operator=(cstring const&);
 cstring& operator=(cstring&&);

 /* other members as appropriate */
};

And once this is separate, our Person class becomes far simpler:

class Person {
 cstring name;
 int arg;

public:
 ~Person() = default;
 Person(Person const&) = default;
 Person(Person&&) = default;
 Person& operator=(Person const&) = default;
 Person& operator=(Person&&) = default;

 /* other members as appropriate */
};

The special members in Person do not even need to be declared explicitly; the compiler will default or delete them
appropriately, based on the contents of Person. Therefore, the following is also an example of the rule of zero.

struct Person {
 cstring name;
 int arg;
};

If cstring were to be a move-only type, with a deleted copy constructor/assignment operator, then Person would
automatically be move-only as well.

C++ Notes for Professionals 447

The term rule of zero was introduced by R. Martinho Fernandes

Section 82.2: Rule of Five
Version ≥ C++11

C++11 introduces two new special member functions: the move constructor and the move assignment operator.
For all the same reasons that you want to follow the Rule of Three in C++03, you usually want to follow the Rule of
Five in C++11: If a class requires ONE of five special member functions, and if move semantics are desired, then it
most likely requires ALL FIVE of them.

Note, however, that failing to follow the Rule of Five is usually not considered an error, but a missed optimisation
opportunity, as long as the Rule of Three is still followed. If no move constructor or move assignment operator is
available when the compiler would normally use one, it will instead use copy semantics if possible, resulting in a
less efficient operation due to unnecessary copy operations. If move semantics aren't desired for a class, then it has
no need to declare a move constructor or assignment operator.

Same example as for the Rule of Three:

class Person
{
 char* name;
 int age;

public:
 // Destructor
 ~Person() { delete [] name; }

 // Implement Copy Semantics
 Person(Person const& other)
 : name(new char[std::strlen(other.name) + 1])
 , age(other.age)
 {
 std::strcpy(name, other.name);
 }

 Person &operator=(Person const& other)
 {
 // Use copy and swap idiom to implement assignment.
 Person copy(other);
 swap(*this, copy);
 return *this;
 }

 // Implement Move Semantics
 // Note: It is usually best to mark move operators as noexcept
 // This allows certain optimizations in the standard library
 // when the class is used in a container.

 Person(Person&& that) noexcept
 : name(nullptr) // Set the state so we know it is undefined
 , age(0)
 {
 swap(*this, that);
 }

 Person& operator=(Person&& that) noexcept
 {

https://rmf.io/cxx11/rule-of-zero

C++ Notes for Professionals 448

 swap(*this, that);
 return *this;
 }

 friend void swap(Person& lhs, Person& rhs) noexcept
 {
 std::swap(lhs.name, rhs.name);
 std::swap(lhs.age, rhs.age);
 }
};

Alternatively, both the copy and move assignment operator can be replaced with a single assignment operator,
which takes an instance by value instead of reference or rvalue reference to facilitate using the copy-and-swap
idiom.

Person& operator=(Person copy)
{
 swap(*this, copy);
 return *this;
}

Extending from the Rule of Three to the Rule of Five is important for performance reasons, but is not strictly
necessary in most cases. Adding the copy constructor and assignment operator ensures that moving the type will
not leak memory (move-constructing will simply fall back to copying in that case), but will be performing copies that
the caller probably did not anticipate.

Section 82.3: Rule of Three
Version ≤ c++03

The Rule of Three states that if a type ever needs to have a user-defined copy constructor, copy assignment
operator, or destructor, then it must have all three.

The reason for the rule is that a class which needs any of the three manages some resource (file handles,
dynamically allocated memory, etc), and all three are needed to manage that resource consistently. The copy
functions deal with how the resource gets copied between objects, and the destructor would destroy the resource,
in accord with RAII principles.

Consider a type that manages a string resource:

class Person
{
 char* name;
 int age;

public:
 Person(char const* new_name, int new_age)
 : name(new char[std::strlen(new_name) + 1])
 , age(new_age)
 {
 std::strcpy(name, new_name);
 }

 ~Person() {
 delete [] name;
 }
};

C++ Notes for Professionals 449

Since name was allocated in the constructor, the destructor deallocates it to avoid leaking memory. But what
happens if such an object is copied?

int main()
{
 Person p1("foo", 11);
 Person p2 = p1;
}

First, p1 will be constructed. Then p2 will be copied from p1. However, the C++-generated copy constructor will copy
each component of the type as-is. Which means that p1.name and p2.name both point to the same string.

When main ends, destructors will be called. First p2's destructor will be called; it will delete the string. Then p1's
destructor will be called. However, the string is already deleted. Calling delete on memory that was already deleted
yields undefined behavior.

To avoid this, it is necessary to provide a suitable copy constructor. One approach is to implement a reference
counted system, where different Person instances share the same string data. Each time a copy is performed, the
shared reference count is incremented. The destructor then decrements the reference count, only releasing the
memory if the count is zero.

Or we could implement value semantics and deep copying behavior:

Person(Person const& other)
 : name(new char[std::strlen(other.name) + 1])
 , age(other.age)
{
 std::strcpy(name, other.name);
}

Person &operator=(Person const& other)
{
 // Use copy and swap idiom to implement assignment
 Person copy(other);
 swap(copy); // assume swap() exchanges contents of *this and copy
 return *this;
}

Implementation of the copy assignment operator is complicated by the need to release an existing buffer. The copy
and swap technique creates a temporary object which holds a new buffer. Swapping the contents of *this and
copy gives ownership to copy of the original buffer. Destruction of copy, as the function returns, releases the buffer
previously owned by *this.

Section 82.4: Self-assignment Protection
When writing a copy assignment operator, it is very important that it be able to work in the event of self-
assignment. That is, it has to allow this:

SomeType t = ...;
t = t;

Self-assignment usually doesn't happen in such an obvious way. It typically happens via a circuitous route through
various code systems, where the location of the assignment simply has two Person pointers or references and has
no idea that they are the same object.

C++ Notes for Professionals 450

Any copy assignment operator you write must be able to take this into account.

The typical way to do so is to wrap all of the assignment logic in a condition like this:

SomeType &operator=(const SomeType &other)
{
 if(this != &other)
 {
 //Do assignment logic.
 }
 return *this;
}

Note: It is important to think about self-assignment and ensure that your code behaves correctly when it happens.
However, self-assignment is a very rare occurrence and optimizing to prevent it may actually pessimize the normal
case. Since the normal case is much more common, pessimizing for self-assignment may well reduce your code
efficiency (so be careful using it).

As an example, the normal technique for implementing the assignment operator is the copy and swap idiom. The
normal implementation of this technique does not bother to test for self-assignment (even though self-assignment
is expensive because a copy is made). The reason is that pessimization of the normal case has been shown to be
much more costly (as it happens more often).

Version ≥ c++11

Move assignment operators must also be protected against self-assignment. However, the logic for many such
operators is based on std::swap, which can handle swapping from/to the same memory just fine. So if your move
assignment logic is nothing more than a series of swap operations, then you do not need self-assignment
protection.

If this is not the case, you must take similar measures as above.

C++ Notes for Professionals 451

Chapter 83: RAII: Resource Acquisition Is
Initialization
Section 83.1: Locking
Bad locking:

std::mutex mtx;

void bad_lock_example() {
 mtx.lock();
 try
 {
 foo();
 bar();
 if (baz()) {
 mtx.unlock(); // Have to unlock on each exit point.
 return;
 }
 quux();
 mtx.unlock(); // Normal unlock happens here.
 }
 catch(...) {
 mtx.unlock(); // Must also force unlock in the presence of
 throw; // exceptions and allow the exception to continue.
 }
}

That is the wrong way to implement the locking and unlocking of the mutex. To ensure the correct release of the
mutex with unlock() requires the programer to make sure that all the flows resulting in the exiting of the function
result in a call to unlock(). As shown above this is a brittle processes as it requires any maintainers to continue
following the pattern manually.

Using an appropriately crafted class to implement RAII, the problem is trivial:

std::mutex mtx;

void good_lock_example() {
 std::lock_guard<std::mutex> lk(mtx); // constructor locks.
 // destructor unlocks. destructor call
 // guaranteed by language.
 foo();
 bar();
 if (baz()) {
 return;
 }
 quux();
}

lock_guard is an extremely simple class template that simply calls lock() on its argument in its constructor, keeps
a reference to the argument, and calls unlock() on the argument in its destructor. That is, when the lock_guard
goes out of scope, the mutex is guaranteed to be unlocked. It doesn't matter if the reason it went out of scope is an
exception or an early return - all cases are handled; regardless of the control flow, we have guaranteed that we will
unlock correctly.

C++ Notes for Professionals 452

Section 83.2: ScopeSuccess (c++17)
Version ≥ C++17

Thanks to int std::uncaught_exceptions(), we can implement action which executes only on success (no thrown
exception in scope). Previously bool std::uncaught_exception() just allows to detect if any stack unwinding is
running.

#include <exception>
#include <iostream>

template <typename F>
class ScopeSuccess
{
private:
 F f;
 int uncaughtExceptionCount = std::uncaught_exceptions();
public:
 explicit ScopeSuccess(const F& f) : f(f) {}
 ScopeSuccess(const ScopeSuccess&) = delete;
 ScopeSuccess& operator =(const ScopeSuccess&) = delete;

 // f() might throw, as it can be caught normally.
 ~ScopeSuccess() noexcept(noexcept(f())) {
 if (uncaughtExceptionCount == std::uncaught_exceptions()) {
 f();
 }
 }
};

struct Foo {
 ~Foo() {
 try {
 ScopeSuccess logSuccess{[](){std::cout << "Success 1\n";}};
 // Scope succeeds,
 // even if Foo is destroyed during stack unwinding
 // (so when 0 < std::uncaught_exceptions())
 // (or previously std::uncaught_exception() == true)
 } catch (...) {
 }
 try {
 ScopeSuccess logSuccess{[](){std::cout << "Success 2\n";}};

 throw std::runtime_error("Failed"); // returned value
 // of std::uncaught_exceptions increases
 } catch (...) { // returned value of std::uncaught_exceptions decreases
 }
 }

};

int main()
{
 try {
 Foo foo;

 throw std::runtime_error("Failed"); // std::uncaught_exceptions() == 1
 } catch (...) { // std::uncaught_exceptions() == 0
 }
}

C++ Notes for Professionals 453

Output:

Success 1

Section 83.3: ScopeFail (c++17)
Version ≥ C++17

Thanks to int std::uncaught_exceptions(), we can implement action which executes only on failure (thrown
exception in scope). Previously bool std::uncaught_exception() just allows to detect if any stack unwinding is
running.

#include <exception>
#include <iostream>

template <typename F>
class ScopeFail
{
private:
 F f;
 int uncaughtExceptionCount = std::uncaught_exceptions();
public:
 explicit ScopeFail(const F& f) : f(f) {}
 ScopeFail(const ScopeFail&) = delete;
 ScopeFail& operator =(const ScopeFail&) = delete;

 // f() should not throw, else std::terminate is called.
 ~ScopeFail() {
 if (uncaughtExceptionCount != std::uncaught_exceptions()) {
 f();
 }
 }
};

struct Foo {
 ~Foo() {
 try {
 ScopeFail logFailure{[](){std::cout << "Fail 1\n";}};
 // Scope succeeds,
 // even if Foo is destroyed during stack unwinding
 // (so when 0 < std::uncaught_exceptions())
 // (or previously std::uncaught_exception() == true)
 } catch (...) {
 }
 try {
 ScopeFail logFailure{[](){std::cout << "Failure 2\n";}};

 throw std::runtime_error("Failed"); // returned value
 // of std::uncaught_exceptions increases
 } catch (...) { // returned value of std::uncaught_exceptions decreases
 }
 }

};

int main()
{
 try {
 Foo foo;

C++ Notes for Professionals 454

 throw std::runtime_error("Failed"); // std::uncaught_exceptions() == 1
 } catch (...) { // std::uncaught_exceptions() == 0
 }
}

Output:

Failure 2

Section 83.4: Finally/ScopeExit
For cases when we don't want to write special classes to handle some resource, we may write a generic class:

template<typename Function>
class Finally final
{
public:
 explicit Finally(Function f) : f(std::move(f)) {}
 ~Finally() { f(); } // (1) See below

 Finally(const Finally&) = delete;
 Finally(Finally&&) = default;
 Finally& operator =(const Finally&) = delete;
 Finally& operator =(Finally&&) = delete;
private:
 Function f;
};
// Execute the function f when the returned object goes out of scope.
template<typename Function>
auto onExit(Function &&f) { return Finally<std::decay_t<Function>>{std::forward<Function>(f)}; }

And its example usage

void foo(std::vector<int>& v, int i)
{
 // ...

 v[i] += 42;
 auto autoRollBackChange = onExit([&](){ v[i] -= 42; });

 // ... code as recursive call `foo(v, i + 1)`
}

Note (1): Some discussion about destructor definition has to be considered to handle exception:

~Finally() noexcept { f(); }: std::terminate is called in case of exception
~Finally() noexcept(noexcept(f())) { f(); }: terminate() is called only in case of exception during stack
unwinding.
~Finally() noexcept { try { f(); } catch (...) { /* ignore exception (might log it) */} } No
std::terminate called, but we cannot handle error (even for non stack unwinding).

C++ Notes for Professionals 455

Chapter 84: RTTI: Run-Time Type
Information
Section 84.1: dynamic_cast
Use dynamic_cast<>() as a function, which helps you to cast down through an inheritance hierarchy (main
description).

If you must do some non-polymorphic work on some derived classes B and C, but received the base class A, then
write like this:

class A { public: virtual ~A(){} };

class B: public A
{ public: void work4B(){} };

class C: public A
{ public: void work4C(){} };

void non_polymorphic_work(A* ap)
{
 if (B* bp =dynamic_cast<B*>(ap))
 bp->work4B();
 if (C* cp =dynamic_cast<C*>(ap))
 cp->work4C();
}

Section 84.2: The typeid keyword
The typeid keyword is a unary operator that yields run-time type information about its operand if the operand's
type is a polymorphic class type. It returns an lvalue of type const std::type_info. Top-level cv-qualification are
ignored.

struct Base {
 virtual ~Base() = default;
};
struct Derived : Base {};
Base* b = new Derived;
assert(typeid(*b) == typeid(Derived{})); // OK

typeid can also be applied to a type directly. In this case, first top-level references are stripped, then top-level cv-
qualification is ignored. Thus, the above example could have been written with typeid(Derived) instead of
typeid(Derived{}):

assert(typeid(*b) == typeid(Derived{})); // OK

If typeid is applied to any expression that is not of polymorphic class type, the operand is not evaluated, and the
type info returned is for the static type.

struct Base {
 // note: no virtual destructor
};
struct Derived : Base {};
Derived d;
Base& b = d;

C++ Notes for Professionals 456

assert(typeid(b) == typeid(Base)); // not Derived
assert(typeid(std::declval<Base>()) == typeid(Base)); // OK because unevaluated

Section 84.3: Name of a type
You can retrieve the implementation defined name of a type in runtime by using the .name() member function of
the std::type_info object returned by typeid.

#include <iostream>
#include <typeinfo>

int main()
{
 int speed = 110;

 std::cout << typeid(speed).name() << '\n';
}

Output (implementation-defined):

int

Section 84.4: When to use which cast in c++
Use dynamic_cast for converting pointers/references within an inheritance hierarchy.

Use static_cast for ordinary type conversions.

Use reinterpret_cast for low-level reinterpreting of bit patterns. Use with extreme caution.

Use const_cast for casting away const/volatile. Avoid this unless you are stuck using a const-incorrect API.

C++ Notes for Professionals 457

Chapter 85: Mutexes
Section 85.1: Mutex Types
C++1x offers a selection of mutex classes:

std::mutex - offers simple locking functionality.
std::timed_mutex - offers try_to_lock functionality
std::recursive_mutex - allows recursive locking by the same thread.
std::shared_mutex, std::shared_timed_mutex - offers shared and unique lock functionality.

Section 85.2: std::lock
std::lock uses deadlock avoidance algorithms to lock one or more mutexes. If an exception is thrown during a call
to lock multiple objects, std::lock unlocks the successfully locked objects before re-throwing the exception.

std::lock(_mutex1, _mutex2);

Section 85.3: std::unique_lock, std::shared_lock,
std::lock_guard
Used for the RAII style acquiring of try locks, timed try locks and recursive locks.

std::unique_lock allows for exclusive ownership of mutexes.

std::shared_lock allows for shared ownership of mutexes. Several threads can hold std::shared_locks on a
std::shared_mutex. Available from C++ 14.

std::lock_guard is a lightweight alternative to std::unique_lock and std::shared_lock.

#include <unordered_map>
#include <mutex>
#include <shared_mutex>
#include <thread>
#include <string>
#include <iostream>

class PhoneBook {
public:
 std::string getPhoneNo(const std::string & name)
 {
 std::shared_lock<std::shared_timed_mutex> l(_protect);
 auto it = _phonebook.find(name);
 if (it != _phonebook.end())
 return (*it).second;
 return "";
 }
 void addPhoneNo (const std::string & name, const std::string & phone)
 {
 std::unique_lock<std::shared_timed_mutex> l(_protect);
 _phonebook[name] = phone;
 }

 std::shared_timed_mutex _protect;
 std::unordered_map<std::string,std::string> _phonebook;

C++ Notes for Professionals 458

};

Section 85.4: Strategies for lock classes: std::try_to_lock,
std::adopt_lock, std::defer_lock
When creating a std::unique_lock, there are three different locking strategies to choose from: std::try_to_lock,
std::defer_lock and std::adopt_lock

std::try_to_lock allows for trying a lock without blocking:1.

{
 std::atomic_int temp {0};
 std::mutex _mutex;

 std::thread t([&](){

 while(temp!= -1){
 std::this_thread::sleep_for(std::chrono::seconds(5));
 std::unique_lock<std::mutex> lock(_mutex, std::try_to_lock);

 if(lock.owns_lock()){
 //do something
 temp=0;
 }
 }
 });

 while (true)
 {
 std::this_thread::sleep_for(std::chrono::seconds(1));
 std::unique_lock<std::mutex> lock(_mutex, std::try_to_lock);
 if(lock.owns_lock()){
 if (temp < INT_MAX){
 ++temp;
 }
 std::cout << temp << std::endl;
 }
 }
}

std::defer_lock allows for creating a lock structure without acquiring the lock. When locking more than one2.
mutex, there is a window of opportunity for a deadlock if two function callers try to acquire the locks at the
same time:

{
 std::unique_lock<std::mutex> lock1(_mutex1, std::defer_lock);
 std::unique_lock<std::mutex> lock2(_mutex2, std::defer_lock);
 lock1.lock()
 lock2.lock(); // deadlock here
 std::cout << "Locked! << std::endl;
 //...
}

With the following code, whatever happens in the function, the locks are acquired and released in appropriate
order:

 {
 std::unique_lock<std::mutex> lock1(_mutex1, std::defer_lock);
 std::unique_lock<std::mutex> lock2(_mutex2, std::defer_lock);

C++ Notes for Professionals 459

 std::lock(lock1,lock2); // no deadlock possible
 std::cout << "Locked! << std::endl;
 //...

 }

std::adopt_lock does not attempt to lock a second time if the calling thread currently owns the lock.3.

{
 std::unique_lock<std::mutex> lock1(_mutex1, std::adopt_lock);
 std::unique_lock<std::mutex> lock2(_mutex2, std::adopt_lock);
 std::cout << "Locked! << std::endl;
 //...
}

Something to keep in mind is that std::adopt_lock is not a substitute for recursive mutex usage. When the lock goes
out of scope the mutex is released.

Section 85.5: std::mutex
std::mutex is a simple, non-recursive synchronization structure that is used to protect data which is accessed by
multiple threads.

 std::atomic_int temp{0};
 std::mutex _mutex;

 std::thread t([&](){

 while(temp!= -1){
 std::this_thread::sleep_for(std::chrono::seconds(5));
 std::unique_lock<std::mutex> lock(_mutex);

 temp=0;
 }
 });

 while (true)
 {
 std::this_thread::sleep_for(std::chrono::milliseconds(1));
 std::unique_lock<std::mutex> lock(_mutex, std::try_to_lock);
 if (temp < INT_MAX)
 temp++;
 cout << temp << endl;

 }

Section 85.6: std::scoped_lock (C++ 17)
std::scoped_lock provides RAII style semantics for owning one more mutexes, combined with the lock avoidance
algorithms used by std::lock. When std::scoped_lock is destroyed, mutexes are released in the reverse order
from which they where acquired.

{
 std::scoped_lock lock{_mutex1,_mutex2};
 //do something
}

C++ Notes for Professionals 460

Chapter 86: Recursive Mutex
Section 86.1: std::recursive_mutex
Recursive mutex allows the same thread to recursively lock a resource - up to an unspecified limit.

There are very few real-word justifications for this. Certain complex implementations might need to call an
overloaded copy of a function without releasing the lock.

 std::atomic_int temp{0};
 std::recursive_mutex _mutex;

 //launch_deferred launches asynchronous tasks on the same thread id

 auto future1 = std::async(
 std::launch::deferred,
 [&]()
 {
 std::cout << std::this_thread::get_id() << std::endl;

 std::this_thread::sleep_for(std::chrono::seconds(3));
 std::unique_lock<std::recursive_mutex> lock(_mutex);
 temp=0;

 });

 auto future2 = std::async(
 std::launch::deferred,
 [&]()
 {
 std::cout << std::this_thread::get_id() << std::endl;
 while (true)
 {
 std::this_thread::sleep_for(std::chrono::milliseconds(1));
 std::unique_lock<std::recursive_mutex> lock(_mutex, std::try_to_lock);
 if (temp < INT_MAX)
 temp++;

 cout << temp << endl;

 }
 });
 future1.get();
 future2.get();

C++ Notes for Professionals 461

Chapter 87: Semaphore
Semaphores are not available in C++ as of now, but can easily be implemented with a mutex and a condition
variable.

This example was taken from:

C++0x has no semaphores? How to synchronize threads?

Section 87.1: Semaphore C++ 11
#include <mutex>
#include <condition_variable>

class Semaphore {
public:
 Semaphore (int count_ = 0)
 : count(count_)
 {
 }

 inline void notify(int tid) {
 std::unique_lock<std::mutex> lock(mtx);
 count++;
 cout << "thread " << tid << " notify" << endl;
 //notify the waiting thread
 cv.notify_one();
 }
 inline void wait(int tid) {
 std::unique_lock<std::mutex> lock(mtx);
 while(count == 0) {
 cout << "thread " << tid << " wait" << endl;
 //wait on the mutex until notify is called
 cv.wait(lock);
 cout << "thread " << tid << " run" << endl;
 }
 count--;
 }
private:
 std::mutex mtx;
 std::condition_variable cv;
 int count;
};

Section 87.2: Semaphore class in action
The following function adds four threads. Three threads compete for the semaphore, which is set to a count of one.
A slower thread calls notify_one(), allowing one of the waiting threads to proceed.

The result is that s1 immediately starts spinning, causing the Semaphore's usage count to remain below 1. The
other threads wait in turn on the condition variable until notify() is called.

int main()
{
 Semaphore sem(1);

 thread s1([&]() {

http://stackoverflow.com/questions/4792449/c0x-has-no-semaphores-how-to-synchronize-threads

C++ Notes for Professionals 462

 while(true) {
 this_thread::sleep_for(std::chrono::seconds(5));
 sem.wait(1);
 }
 });
 thread s2([&]() {
 while(true){
 sem.wait(2);
 }
 });
 thread s3([&]() {
 while(true) {
 this_thread::sleep_for(std::chrono::milliseconds(600));
 sem.wait(3);
 }
 });
 thread s4([&]() {
 while(true) {
 this_thread::sleep_for(std::chrono::seconds(5));
 sem.notify(4);
 }
 });

 s1.join();
 s2.join();
 s3.join();
 s4.join();

 ...
 }

C++ Notes for Professionals 463

Chapter 88: Futures and Promises
Promises and Futures are used to ferry a single object from one thread to another.

A std::promise object is set by the thread which generates the result.

A std::future object can be used to retrieve a value, to test to see if a value is available, or to halt execution until
the value is available.

Section 88.1: Async operation classes
std::async: performs an asynchronous operation.
std::future: provides access to the result of an asynchronous operation.
std::promise: packages the result of an asynchronous operation.
std::packaged_task: bundles a function and the associated promise for its return type.

Section 88.2: std::future and std::promise
The following example sets a promise to be consumed by another thread:

 {
 auto promise = std::promise<std::string>();

 auto producer = std::thread([&]
 {
 promise.set_value("Hello World");
 });

 auto future = promise.get_future();

 auto consumer = std::thread([&]
 {
 std::cout << future.get();
 });

 producer.join();
 consumer.join();
}

Section 88.3: Deferred async example
This code implements a version of std::async, but it behaves as if async were always called with the deferred
launch policy. This function also does not have async's special future behavior; the returned future can be
destroyed without ever acquiring its value.

template<typename F>
auto async_deferred(F&& func) -> std::future<decltype(func())>
{
 using result_type = decltype(func());

 auto promise = std::promise<result_type>();
 auto future = promise.get_future();

 std::thread(std::bind([=](std::promise<result_type>& promise)
 {
 try

C++ Notes for Professionals 464

 {
 promise.set_value(func());
 // Note: Will not work with std::promise<void>. Needs some meta-template programming
which is out of scope for this example.
 }
 catch(...)
 {
 promise.set_exception(std::current_exception());
 }
 }, std::move(promise))).detach();

 return future;
}

Section 88.4: std::packaged_task and std::future
std::packaged_task bundles a function and the associated promise for its return type:

template<typename F>
auto async_deferred(F&& func) -> std::future<decltype(func())>
{
 auto task = std::packaged_task<decltype(func())()>(std::forward<F>(func));
 auto future = task.get_future();

 std::thread(std::move(task)).detach();

 return std::move(future);
}

The thread starts running immediately. We can either detach it, or have join it at the end of the scope. When the
function call to std::thread finishes, the result is ready.

Note that this is slightly different from std::async where the returned std::future when destructed will actually
block until the thread is finished.

Section 88.5: std::future_error and std::future_errc
If constraints for std::promise and std::future are not met an exception of type std::future_error is thrown.

The error code member in the exception is of type std::future_errc and values are as below, along with some test
cases:

enum class future_errc {
 broken_promise = /* the task is no longer shared */,
 future_already_retrieved = /* the answer was already retrieved */,
 promise_already_satisfied = /* the answer was stored already */,
 no_state = /* access to a promise in non-shared state */
};

Inactive promise:

int test()
{
 std::promise<int> pr;
 return 0; // returns ok
}

C++ Notes for Professionals 465

Active promise, unused:

 int test()
 {
 std::promise<int> pr;
 auto fut = pr.get_future(); //blocks indefinitely!
 return 0;
 }

Double retrieval:

int test()
{
 std::promise<int> pr;
 auto fut1 = pr.get_future();

 try{
 auto fut2 = pr.get_future(); // second attempt to get future
 return 0;
 }
 catch(const std::future_error& e)
 {
 cout << e.what() << endl; // Error: "The future has already been retrieved from the
promise or packaged_task."
 return -1;
 }
 return fut2.get();
}

Setting std::promise value twice:

int test()
{
 std::promise<int> pr;
 auto fut = pr.get_future();
 try{
 std::promise<int> pr2(std::move(pr));
 pr2.set_value(10);
 pr2.set_value(10); // second attempt to set promise throws exception
 }
 catch(const std::future_error& e)
 {
 cout << e.what() << endl; // Error: "The state of the promise has already been
set."
 return -1;
 }
 return fut.get();
}

Section 88.6: std::future and std::async
In the following naive parallel merge sort example, std::async is used to launch multiple parallel merge_sort tasks.
std::future is used to wait for the results and synchronize them:

#include <iostream>
using namespace std;

void merge(int low,int mid,int high, vector<int>&num)

C++ Notes for Professionals 466

{
 vector<int> copy(num.size());
 int h,i,j,k;
 h=low;
 i=low;
 j=mid+1;

 while((h<=mid)&&(j<=high))
 {
 if(num[h]<=num[j])
 {
 copy[i]=num[h];
 h++;
 }
 else
 {
 copy[i]=num[j];
 j++;
 }
 i++;
 }
 if(h>mid)
 {
 for(k=j;k<=high;k++)
 {
 copy[i]=num[k];
 i++;
 }
 }
 else
 {
 for(k=h;k<=mid;k++)
 {
 copy[i]=num[k];
 i++;
 }
 }
 for(k=low;k<=high;k++)
 swap(num[k],copy[k]);
}

void merge_sort(int low,int high,vector<int>& num)
{
 int mid;
 if(low<high)
 {
 mid = low + (high-low)/2;
 auto future1 = std::async(std::launch::deferred,[&]()
 {
 merge_sort(low,mid,num);
 });
 auto future2 = std::async(std::launch::deferred, [&]()
 {
 merge_sort(mid+1,high,num) ;
 });

 future1.get();
 future2.get();
 merge(low,mid,high,num);
 }
}

C++ Notes for Professionals 467

Note: In the example std::async is launched with policy std::launch_deferred. This is to avoid a new thread
being created in every call. In the case of our example, the calls to std::async are made out of order, the they
synchronize at the calls for std::future::get().

std::launch_async forces a new thread to be created in every call.

The default policy is std::launch::deferred| std::launch::async, meaning the implementation determines the
policy for creating new threads.

C++ Notes for Professionals 468

Chapter 89: Atomic Types
Section 89.1: Multi-threaded Access
An atomic type can be used to safely read and write to a memory location shared between two threads.

A Bad example that is likely to cause a data race:

#include <thread>
#include <iostream>

//function will add all values including and between 'a' and 'b' to 'result'
void add(int a, int b, int * result) {
 for (int i = a; i <= b; i++) {
 *result += i;
 }
}

int main() {
 //a primitive data type has no thread safety
 int shared = 0;

 //create a thread that may run parallel to the 'main' thread
 //the thread will run the function 'add' defined above with parameters a = 1, b = 100, result =
&shared
 //analogous to 'add(1,100, &shared);'
 std::thread addingThread(add, 1, 100, &shared);

 //attempt to print the value of 'shared' to console
 //main will keep repeating this until the addingThread becomes joinable
 while (!addingThread.joinable()) {
 //this may cause undefined behavior or print a corrupted value
 //if the addingThread tries to write to 'shared' while the main thread is reading it
 std::cout << shared << std::endl;
 }

 //rejoin the thread at the end of execution for cleaning purposes
 addingThread.join();

 return 0;
}

The above example may cause a corrupted read and can lead to undefined behavior.

An example with thread safety:

#include <atomic>
#include <thread>
#include <iostream>

 //function will add all values including and between 'a' and 'b' to 'result'
void add(int a, int b, std::atomic<int> * result) {
 for (int i = a; i <= b; i++) {
 //atomically add 'i' to result
 result->fetch_add(i);
 }

C++ Notes for Professionals 469

}

int main() {
 //atomic template used to store non-atomic objects
 std::atomic<int> shared = 0;

 //create a thread that may run parallel to the 'main' thread
 //the thread will run the function 'add' defined above with parameters a = 1, b = 100, result =
&shared
 //analogous to 'add(1,100, &shared);'
 std::thread addingThread(add, 1, 10000, &shared);

 //print the value of 'shared' to console
 //main will keep repeating this until the addingThread becomes joinable
 while (!addingThread.joinable()) {
 //safe way to read the value of shared atomically for thread safe read
 std::cout << shared.load() << std::endl;
 }

 //rejoin the thread at the end of execution for cleaning purposes
 addingThread.join();

 return 0;
}

The above example is safe because all store() and load() operations of the atomic data type protect the
encapsulated int from simultaneous access.

C++ Notes for Professionals 470

Chapter 90: Type Erasure
Type erasure is a set of techniques for creating a type that can provide a uniform interface to various underlying
types, while hiding the underlying type information from the client. std::function<R(A...)>, which has the ability
to hold callable objects of various types, is perhaps the best known example of type erasure in C++.

Section 90.1: A move-only `std::function`
std::function type erases down to a few operations. One of the things it requires is that the stored value be
copyable.

This causes problems in a few contexts, like lambdas storing unique ptrs. If you are using the std::function in a
context where copying doesn't matter, like a thread pool where you dispatch tasks to threads, this requirement can
add overhead.

In particular, std::packaged_task<Sig> is a callable object that is move-only. You can store a
std::packaged_task<R(Args...)> in a std::packaged_task<void(Args...)>, but that is a pretty heavy-weight and
obscure way to create a move-only callable type-erasure class.

Thus the task. This demonstrates how you could write a simple std::function type. I omitted the copy constructor
(which would involve adding a clone method to details::task_pimpl<...> as well).

template<class Sig>
struct task;

// putting it in a namespace allows us to specialize it nicely for void return value:
namespace details {
 template<class R, class...Args>
 struct task_pimpl {
 virtual R invoke(Args&&...args) const = 0;
 virtual ~task_pimpl() {};
 virtual const std::type_info& target_type() const = 0;
 };

 // store an F. invoke(Args&&...) calls the f
 template<class F, class R, class...Args>
 struct task_pimpl_impl:task_pimpl<R,Args...> {
 F f;
 template<class Fin>
 task_pimpl_impl(Fin&& fin):f(std::forward<Fin>(fin)) {}
 virtual R invoke(Args&&...args) const final override {
 return f(std::forward<Args>(args)...);
 }
 virtual const std::type_info& target_type() const final override {
 return typeid(F);
 }
 };

 // the void version discards the return value of f:
 template<class F, class...Args>
 struct task_pimpl_impl<F,void,Args...>:task_pimpl<void,Args...> {
 F f;
 template<class Fin>
 task_pimpl_impl(Fin&& fin):f(std::forward<Fin>(fin)) {}
 virtual void invoke(Args&&...args) const final override {
 f(std::forward<Args>(args)...);
 }

C++ Notes for Professionals 471

 virtual const std::type_info& target_type() const final override {
 return typeid(F);
 }
 };
};

template<class R, class...Args>
struct task<R(Args...)> {
 // semi-regular:
 task()=default;
 task(task&&)=default;
 // no copy

private:
 // aliases to make some SFINAE code below less ugly:
 template<class F>
 using call_r = std::result_of_t<F const&(Args...)>;
 template<class F>
 using is_task = std::is_same<std::decay_t<F>, task>;
public:
 // can be constructed from a callable F
 template<class F,
 // that can be invoked with Args... and converted-to-R:
 class= decltype((R)(std::declval<call_r<F>>())),
 // and is not this same type:
 std::enable_if_t<!is_task<F>{}, int>* = nullptr
 >
 task(F&& f):
 m_pImpl(make_pimpl(std::forward<F>(f)))
 {}

 // the meat: the call operator
 R operator()(Args... args)const {
 return m_pImpl->invoke(std::forward<Args>(args)...);
 }
 explicit operator bool() const {
 return (bool)m_pImpl;
 }
 void swap(task& o) {
 std::swap(m_pImpl, o.m_pImpl);
 }
 template<class F>
 void assign(F&& f) {
 m_pImpl = make_pimpl(std::forward<F>(f));
 }
 // Part of the std::function interface:
 const std::type_info& target_type() const {
 if (!*this) return typeid(void);
 return m_pImpl->target_type();
 }
 template< class T >
 T* target() {
 return target_impl<T>();
 }
 template< class T >
 const T* target() const {
 return target_impl<T>();
 }
 // compare with nullptr :
 friend bool operator==(std::nullptr_t, task const& self) { return !self; }
 friend bool operator==(task const& self, std::nullptr_t) { return !self; }
 friend bool operator!=(std::nullptr_t, task const& self) { return !!self; }

C++ Notes for Professionals 472

 friend bool operator!=(task const& self, std::nullptr_t) { return !!self; }
private:
 template<class T>
 using pimpl_t = details::task_pimpl_impl<T, R, Args...>;

 template<class F>
 static auto make_pimpl(F&& f) {
 using dF=std::decay_t<F>;
 using pImpl_t = pimpl_t<dF>;
 return std::make_unique<pImpl_t>(std::forward<F>(f));
 }
 std::unique_ptr<details::task_pimpl<R,Args...>> m_pImpl;

 template< class T >
 T* target_impl() const {
 return dynamic_cast<pimpl_t<T>*>(m_pImpl.get());
 }
};

To make this library-worthy, you'd want to add in a small buffer optimization, so it does not store every callable on
the heap.

Adding SBO would require a non-default task(task&&), some std::aligned_storage_t within the class, a m_pImpl
unique_ptr with a deleter that can be set to destroy-only (and not return the memory to the heap), and a
emplace_move_to(void*) = 0 in the task_pimpl.

live example of the above code (with no SBO).

Section 90.2: Erasing down to a Regular type with manual
vtable
C++ thrives on what is known as a Regular type (or at least Pseudo-Regular).

A Regular type is a type that can be constructed and assigned-to and assigned-from via copy or move, can be
destroyed, and can be compared equal-to. It can also be constructed from no arguments. Finally, it also has
support for a few other operations that are highly useful in various std algorithms and containers.

This is the root paper, but in C++11 would want to add std::hash support.

I will use the manual vtable approach to type erasure here.

using dtor_unique_ptr = std::unique_ptr<void, void(*)(void*)>;
template<class T, class...Args>
dtor_unique_ptr make_dtor_unique_ptr(Args&&... args) {
 return {new T(std::forward<Args>(args)...), [](void* self){ delete static_cast<T*>(self); }};
}
struct regular_vtable {
 void(*copy_assign)(void* dest, void const* src); // T&=(T const&)
 void(*move_assign)(void* dest, void* src); // T&=(T&&)
 bool(*equals)(void const* lhs, void const* rhs); // T const&==T const&
 bool(*order)(void const* lhs, void const* rhs); // std::less<T>{}(T const&, T const&)
 std::size_t(*hash)(void const* self); // std::hash<T>{}(T const&)
 std::type_info const&(*type)(); // typeid(T)
 dtor_unique_ptr(*clone)(void const* self); // T(T const&)
};

template<class T>
regular_vtable make_regular_vtable() noexcept {
 return {

http://coliru.stacked-crooked.com/a/6e6811e8626a37d1
http://www.stepanovpapers.com/DeSt98.pdf

C++ Notes for Professionals 473

 [](void* dest, void const* src){ *static_cast<T*>(dest) = *static_cast<T const*>(src); },
 [](void* dest, void* src){ *static_cast<T*>(dest) = std::move(*static_cast<T*>(src)); },
 [](void const* lhs, void const* rhs){ return *static_cast<T const*>(lhs) == *static_cast<T
const*>(rhs); },
 [](void const* lhs, void const* rhs) { return std::less<T>{}(*static_cast<T
const*>(lhs),*static_cast<T const*>(rhs)); },
 [](void const* self){ return std::hash<T>{}(*static_cast<T const*>(self)); },
 []()->decltype(auto){ return typeid(T); },
 [](void const* self){ return make_dtor_unique_ptr<T>(*static_cast<T const*>(self)); }
 };
}
template<class T>
regular_vtable const* get_regular_vtable() noexcept {
 static const regular_vtable vtable=make_regular_vtable<T>();
 return &vtable;
}

struct regular_type {
 using self=regular_type;
 regular_vtable const* vtable = 0;
 dtor_unique_ptr ptr{nullptr, [](void*){}};

 bool empty() const { return !vtable; }

 template<class T, class...Args>
 void emplace(Args&&... args) {
 ptr = make_dtor_unique_ptr<T>(std::forward<Args>(args)...);
 if (ptr)
 vtable = get_regular_vtable<T>();
 else
 vtable = nullptr;
 }
 friend bool operator==(regular_type const& lhs, regular_type const& rhs) {
 if (lhs.vtable != rhs.vtable) return false;
 return lhs.vtable->equals(lhs.ptr.get(), rhs.ptr.get());
 }
 bool before(regular_type const& rhs) const {
 auto const& lhs = *this;
 if (!lhs.vtable || !rhs.vtable)
 return std::less<regular_vtable const*>{}(lhs.vtable,rhs.vtable);
 if (lhs.vtable != rhs.vtable)
 return lhs.vtable->type().before(rhs.vtable->type());
 return lhs.vtable->order(lhs.ptr.get(), rhs.ptr.get());
 }
 // technically friend bool operator< that calls before is also required

 std::type_info const* type() const {
 if (!vtable) return nullptr;
 return &vtable->type();
 }
 regular_type(regular_type&& o):
 vtable(o.vtable),
 ptr(std::move(o.ptr))
 {
 o.vtable = nullptr;
 }
 friend void swap(regular_type& lhs, regular_type& rhs){
 std::swap(lhs.ptr, rhs.ptr);
 std::swap(lhs.vtable, rhs.vtable);
 }
 regular_type& operator=(regular_type&& o) {
 if (o.vtable == vtable) {

C++ Notes for Professionals 474

 vtable->move_assign(ptr.get(), o.ptr.get());
 return *this;
 }
 auto tmp = std::move(o);
 swap(*this, tmp);
 return *this;
 }
 regular_type(regular_type const& o):
 vtable(o.vtable),
 ptr(o.vtable?o.vtable->clone(o.ptr.get()):dtor_unique_ptr{nullptr, [](void*){}})
 {
 if (!ptr && vtable) vtable = nullptr;
 }
 regular_type& operator=(regular_type const& o) {
 if (o.vtable == vtable) {
 vtable->copy_assign(ptr.get(), o.ptr.get());
 return *this;
 }
 auto tmp = o;
 swap(*this, tmp);
 return *this;
 }
 std::size_t hash() const {
 if (!vtable) return 0;
 return vtable->hash(ptr.get());
 }
 template<class T,
 std::enable_if_t< !std::is_same<std::decay_t<T>, regular_type>{}, int>* =nullptr
 >
 regular_type(T&& t) {
 emplace<std::decay_t<T>>(std::forward<T>(t));
 }
};
namespace std {
 template<>
 struct hash<regular_type> {
 std::size_t operator()(regular_type const& r)const {
 return r.hash();
 }
 };
 template<>
 struct less<regular_type> {
 bool operator()(regular_type const& lhs, regular_type const& rhs) const {
 return lhs.before(rhs);
 }
 };
}

live example.

Such a regular type can be used as a key for a std::map or a std::unordered_map that accepts anything regular for a
key, like:

std::map<regular_type, std::any>

would be basically a map from anothing regular, to anything copyable.

Unlike any, my regular_type does no small object optimization nor does it support getting the original data back.
Getting the original type back isn't hard.

http://coliru.stacked-crooked.com/a/28ef6be761012a81

C++ Notes for Professionals 475

Small object optimization requires that we store an aligned storage buffer within the regular_type, and carefully
tweak the deleter of the ptr to only destroy the object and not delete it.

I would start at make_dtor_unique_ptr and teach it how to sometimes store the data in a buffer, and then in the
heap if no room in the buffer. That may be sufficient.

Section 90.3: Basic mechanism
Type erasure is a way to hide the type of an object from code using it, even though it is not derived from a common
base class. In doing so, it provides a bridge between the worlds of static polymorphism (templates; at the place of
use, the exact type must be known at compile time, but it need not be declared to conform to an interface at
definition) and dynamic polymorphism (inheritance and virtual functions; at the place of use, the exact type need
not be known at compile time, but must be declared to conform to an interface at definition).

The following code shows the basic mechanism of type erasure.

#include <ostream>

class Printable
{
public:
 template <typename T>
 Printable(T value) : pValue(new Value<T>(value)) {}
 ~Printable() { delete pValue; }
 void print(std::ostream &os) const { pValue->print(os); }

private:
 Printable(Printable const &) /* in C++1x: =delete */; // not implemented
 void operator = (Printable const &) /* in C++1x: =delete */; // not implemented
 struct ValueBase
 {
 virtual ~ValueBase() = default;
 virtual void print(std::ostream &) const = 0;
 };
 template <typename T>
 struct Value : ValueBase
 {
 Value(T const &t) : v(t) {}
 virtual void print(std::ostream &os) const { os << v; }
 T v;
 };
 ValueBase *pValue;
};

At the use site, only the above definition need to be visible, just as with base classes with virtual functions. For
example:

#include <iostream>

void print_value(Printable const &p)
{
 p.print(std::cout);
}

Note that this is not a template, but a normal function that only needs to be declared in a header file, and can be
defined in an implementation file (unlike templates, whose definition must be visible at the place of use).

At the definition of the concrete type, nothing needs to be known about Printable, it just needs to conform to an

C++ Notes for Professionals 476

interface, as with templates:

struct MyType { int i; };
ostream& operator << (ostream &os, MyType const &mc)
{
 return os << "MyType {" << mc.i << "}";
}

We can now pass an object of this class to the function defined above:

MyType foo = { 42 };
print_value(foo);

Section 90.4: Erasing down to a contiguous buer of T
Not all type erasure involves virtual inheritance, allocations, placement new, or even function pointers.

What makes type erasure type erasure is that it describes a (set of) behavior(s), and takes any type that supports
that behavior and wraps it up. All information that isn't in that set of behaviors is "forgotten" or "erased".

An array_view takes its incoming range or container type and erases everything except the fact it is a contiguous
buffer of T.

// helper traits for SFINAE:
template<class T>
using data_t = decltype(std::declval<T>().data());

template<class Src, class T>
using compatible_data = std::integral_constant<bool, std::is_same< data_t<Src>, T* >{} ||
std::is_same< data_t<Src>, std::remove_const_t<T>* >{}>;

template<class T>
struct array_view {
 // the core of the class:
 T* b=nullptr;
 T* e=nullptr;
 T* begin() const { return b; }
 T* end() const { return e; }

 // provide the expected methods of a good contiguous range:
 T* data() const { return begin(); }
 bool empty() const { return begin()==end(); }
 std::size_t size() const { return end()-begin(); }

 T& operator[](std::size_t i)const{ return begin()[i]; }
 T& front()const{ return *begin(); }
 T& back()const{ return *(end()-1); }

 // useful helpers that let you generate other ranges from this one
 // quickly and safely:
 array_view without_front(std::size_t i=1) const {
 i = (std::min)(i, size());
 return {begin()+i, end()};
 }
 array_view without_back(std::size_t i=1) const {
 i = (std::min)(i, size());
 return {begin(), end()-i};
 }

C++ Notes for Professionals 477

 // array_view is plain old data, so default copy:
 array_view(array_view const&)=default;
 // generates a null, empty range:
 array_view()=default;

 // final constructor:
 array_view(T* s, T* f):b(s),e(f) {}
 // start and length is useful in my experience:
 array_view(T* s, std::size_t length):array_view(s, s+length) {}

 // SFINAE constructor that takes any .data() supporting container
 // or other range in one fell swoop:
 template<class Src,
 std::enable_if_t< compatible_data<std::remove_reference_t<Src>&, T >{}, int>* =nullptr,
 std::enable_if_t< !std::is_same<std::decay_t<Src>, array_view >{}, int>* =nullptr
 >
 array_view(Src&& src):
 array_view(src.data(), src.size())
 {}

 // array constructor:
 template<std::size_t N>
 array_view(T(&arr)[N]):array_view(arr, N) {}

 // initializer list, allowing {} based:
 template<class U,
 std::enable_if_t< std::is_same<const U, T>{}, int>* =nullptr
 >
 array_view(std::initializer_list<U> il):array_view(il.begin(), il.end()) {}
};

an array_view takes any container that supports .data() returning a pointer to T and a .size() method, or an
array, and erases it down to being a random-access range over contiguous Ts.

It can take a std::vector<T>, a std::string<T> a std::array<T, N> a T[37], an initializer list (including {} based
ones), or something else you make up that supports it (via T* x.data() and size_t x.size()).

In this case, the data we can extract from the thing we are erasing, together with our "view" non-owning state,
means we don't have to allocate memory or write custom type-dependent functions.

Live example.

An improvement would be to use a non-member data and a non-member size in an ADL-enabled context.

Section 90.5: Type erasing type erasure with std::any
This example uses C++14 and boost::any. In C++17 you can swap in std::any instead.

The syntax we end up with is:

const auto print =
 make_any_method<void(std::ostream&)>([](auto&& p, std::ostream& t){ t << p << "\n"; });

super_any<decltype(print)> a = 7;

(a->*print)(std::cout);

which is almost optimal.

http://coliru.stacked-crooked.com/a/c9f8e013a309ca66

C++ Notes for Professionals 478

This example is based off of work by @dyp and @cpplearner as well as my own.

First we use a tag to pass around types:

template<class T>struct tag_t{constexpr tag_t(){};};
template<class T>constexpr tag_t<T> tag{};

This trait class gets the signature stored with an any_method:

This creates a function pointer type, and a factory for said function pointers, given an any_method:

template<class any_method>
using any_sig_from_method = typename any_method::signature;

template<class any_method, class Sig=any_sig_from_method<any_method>>
struct any_method_function;

template<class any_method, class R, class...Args>
struct any_method_function<any_method, R(Args...)>
{
 template<class T>
 using decorate = std::conditional_t< any_method::is_const, T const, T >;

 using any = decorate<boost::any>;

 using type = R(*)(any&, any_method const*, Args&&...);
 template<class T>
 type operator()(tag_t<T>)const{
 return +[](any& self, any_method const* method, Args&&...args) {
 return (*method)(boost::any_cast<decorate<T>&>(self), decltype(args)(args)...);
 };
 }
};

any_method_function::type is the type of a function pointer we will store alongside the instance.
any_method_function::operator() takes a tag_t<T> and writes a custom instance of the
any_method_function::type that assumes the any& is going to be a T.

We want to be able to type-erase more than one method at a time. So we bundle them up in a tuple, and write a
helper wrapper to stick the tuple into static storage on a per-type basis and maintain a pointer to them.

template<class...any_methods>
using any_method_tuple = std::tuple< typename any_method_function<any_methods>::type... >;

template<class...any_methods, class T>
any_method_tuple<any_methods...> make_vtable(tag_t<T>) {
 return std::make_tuple(
 any_method_function<any_methods>{}(tag<T>)...
);
}

template<class...methods>
struct any_methods {
private:
 any_method_tuple<methods...> const* vtable = 0;
 template<class T>
 static any_method_tuple<methods...> const* get_vtable(tag_t<T>) {
 static const auto table = make_vtable<methods...>(tag<T>);
 return &table;

http://coliru.stacked-crooked.com/a/2ab8d7e41d24e616
http://stackoverflow.com/a/38865269/1774667

C++ Notes for Professionals 479

 }
public:
 any_methods() = default;
 template<class T>
 any_methods(tag_t<T>): vtable(get_vtable(tag<T>)) {}
 any_methods& operator=(any_methods const&)=default;
 template<class T>
 void change_type(tag_t<T> ={}) { vtable = get_vtable(tag<T>); }

 template<class any_method>
 auto get_invoker(tag_t<any_method> ={}) const {
 return std::get<typename any_method_function<any_method>::type>(*vtable);
 }
};

We could specialize this for a cases where the vtable is small (for example, 1 item), and use direct pointers stored
in-class in those cases for efficiency.

Now we start the super_any. I use super_any_t to make the declaration of super_any a bit easier.

template<class...methods>
struct super_any_t;

This searches the methods that the super any supports for SFINAE and better error messages:

template<class super_any, class method>
struct super_method_applies_helper : std::false_type {};

template<class M0, class...Methods, class method>
struct super_method_applies_helper<super_any_t<M0, Methods...>, method> :
 std::integral_constant<bool, std::is_same<M0, method>{} ||
super_method_applies_helper<super_any_t<Methods...>, method>{}>
{};

template<class...methods, class method>
auto super_method_test(super_any_t<methods...> const&, tag_t<method>)
{
 return std::integral_constant<bool, super_method_applies_helper< super_any_t<methods...>, method
>{} && method::is_const >{};
}
template<class...methods, class method>
auto super_method_test(super_any_t<methods...>&, tag_t<method>)
{
 return std::integral_constant<bool, super_method_applies_helper< super_any_t<methods...>, method
>{} >{};
}

template<class super_any, class method>
struct super_method_applies:
 decltype(super_method_test(std::declval<super_any>(), tag<method>))
{};

Next we create the any_method type. An any_method is a pseudo-method-pointer. We create it globally and constly
using syntax like:

const auto print=make_any_method([](auto&&self, auto&&os){ os << self; });

or in C++17:

C++ Notes for Professionals 480

const any_method print=[](auto&&self, auto&&os){ os << self; };

Note that using a non-lambda can make things hairy, as we use the type for a lookup step. This can be fixed, but
would make this example longer than it already is. So always initialize an any method from a lambda, or from a
type parametarized on a lambda.

template<class Sig, bool const_method, class F>
struct any_method {
 using signature=Sig;
 enum{is_const=const_method};
private:
 F f;
public:

 template<class Any,
 // SFINAE testing that one of the Anys's matches this type:
 std::enable_if_t< super_method_applies< Any&&, any_method >{}, int>* =nullptr
 >
 friend auto operator->*(Any&& self, any_method const& m) {
 // we don't use the value of the any_method, because each any_method has
 // a unique type (!) and we check that one of the auto*'s in the super_any
 // already has a pointer to us. We then dispatch to the corresponding
 // any_method_data...

 return [&self, invoke = self.get_invoker(tag<any_method>), m](auto&&...args)->decltype(auto)
 {
 return invoke(decltype(self)(self), &m, decltype(args)(args)...);
 };
 }
 any_method(F fin):f(std::move(fin)) {}

 template<class...Args>
 decltype(auto) operator()(Args&&...args)const {
 return f(std::forward<Args>(args)...);
 }
};

A factory method, not needed in C++17 I believe:

template<class Sig, bool is_const=false, class F>
any_method<Sig, is_const, std::decay_t<F>>
make_any_method(F&& f) {
 return {std::forward<F>(f)};
}

This is the augmented any. It is both an any, and it carries around a bundle of type-erasure function pointers that
change whenever the contained any does:

template<class... methods>
struct super_any_t:boost::any, any_methods<methods...> {
 using vtable=any_methods<methods...>;
public:
 template<class T,
 std::enable_if_t< !std::is_base_of<super_any_t, std::decay_t<T>>{}, int> =0
 >
 super_any_t(T&& t):
 boost::any(std::forward<T>(t))
 {
 using dT=std::decay_t<T>;

C++ Notes for Professionals 481

 this->change_type(tag<dT>);
 }

 boost::any& as_any()&{return *this;}
 boost::any&& as_any()&&{return std::move(*this);}
 boost::any const& as_any()const&{return *this;}
 super_any_t()=default;
 super_any_t(super_any_t&& o):
 boost::any(std::move(o.as_any())),
 vtable(o)
 {}
 super_any_t(super_any_t const& o):
 boost::any(o.as_any()),
 vtable(o)
 {}
 template<class S,
 std::enable_if_t< std::is_same<std::decay_t<S>, super_any_t>{}, int> =0
 >
 super_any_t(S&& o):
 boost::any(std::forward<S>(o).as_any()),
 vtable(o)
 {}
 super_any_t& operator=(super_any_t&&)=default;
 super_any_t& operator=(super_any_t const&)=default;

 template<class T,
 std::enable_if_t< !std::is_same<std::decay_t<T>, super_any_t>{}, int>* =nullptr
 >
 super_any_t& operator=(T&& t) {
 ((boost::any&)*this) = std::forward<T>(t);
 using dT=std::decay_t<T>;
 this->change_type(tag<dT>);
 return *this;
 }
};

Because we store the any_methods as const objects, this makes making a super_any a bit easier:

template<class...Ts>
using super_any = super_any_t< std::remove_cv_t<Ts>... >;

Test code:

const auto print = make_any_method<void(std::ostream&)>([](auto&& p, std::ostream& t){ t << p <<
"\n"; });
const auto wprint = make_any_method<void(std::wostream&)>([](auto&& p, std::wostream& os){ os << p
<< L"\n"; });

int main()
{
 super_any<decltype(print), decltype(wprint)> a = 7;
 super_any<decltype(print), decltype(wprint)> a2 = 7;

 (a->*print)(std::cout);
 (a->*wprint)(std::wcout);
}

live example.

Originally posted here in a SO self question & answer (and people noted above helped with the implementation).

http://coliru.stacked-crooked.com/a/fbd10edb3336cce1
http://stackoverflow.com/a/38837687/1774667

C++ Notes for Professionals 482

Chapter 91: Explicit type conversions
An expression can be explicitly converted or cast to type T using dynamic_cast<T>, static_cast<T>,
reinterpret_cast<T>, or const_cast<T>, depending on what type of cast is intended.

C++ also supports function-style cast notation, T(expr), and C-style cast notation, (T)expr.

Section 91.1: C-style casting
C-Style casting can be considered 'Best effort' casting and is named so as it is the only cast which could be used in
C. The syntax for this cast is (NewType)variable.

Whenever this cast is used, it uses one of the following c++ casts (in order):

const_cast<NewType>(variable)

static_cast<NewType>(variable)

const_cast<NewType>(static_cast<const NewType>(variable))

reinterpret_cast<const NewType>(variable)

const_cast<NewType>(reinterpret_cast<const NewType>(variable))

Functional casting is very similar, though as a few restrictions as the result of its syntax: NewType(expression). As a
result, only types without spaces can be cast to.

It's better to use new c++ cast, because s more readable and can be spotted easily anywhere inside a C++ source
code and errors will be detected in compile-time, instead in run-time.

As this cast can result in unintended reinterpret_cast, it is often considered dangerous.

Section 91.2: Casting away constness
A pointer to a const object can be converted to a pointer to non-const object using the const_cast keyword. Here
we use const_cast to call a function that is not const-correct. It only accepts a non-const char* argument even
though it never writes through the pointer:

void bad_strlen(char*);
const char* s = "hello, world!";
bad_strlen(s); // compile error
bad_strlen(const_cast<char*>(s)); // OK, but it's better to make bad_strlen accept const char*

const_cast to reference type can be used to convert a const-qualified lvalue into a non-const-qualified value.

const_cast is dangerous because it makes it impossible for the C++ type system to prevent you from trying to
modify a const object. Doing so results in undefined behavior.

const int x = 123;
int& mutable_x = const_cast<int&>(x);
mutable_x = 456; // may compile, but produces *undefined behavior*

Section 91.3: Base to derived conversion
A pointer to base class can be converted to a pointer to derived class using static_cast. static_cast does not do
any run-time checking and can lead to undefined behaviour when the pointer does not actually point to the desired
type.

C++ Notes for Professionals 483

struct Base {};
struct Derived : Base {};
Derived d;
Base* p1 = &d;
Derived* p2 = p1; // error; cast required
Derived* p3 = static_cast<Derived*>(p1); // OK; p2 now points to Derived object
Base b;
Base* p4 = &b;
Derived* p5 = static_cast<Derived*>(p4); // undefined behaviour since p4 does not
 // point to a Derived object

Likewise, a reference to base class can be converted to a reference to derived class using static_cast.

struct Base {};
struct Derived : Base {};
Derived d;
Base& r1 = d;
Derived& r2 = r1; // error; cast required
Derived& r3 = static_cast<Derived&>(r1); // OK; r3 now refers to Derived object

If the source type is polymorphic, dynamic_cast can be used to perform a base to derived conversion. It performs a
run-time check and failure is recoverable instead of producing undefined behaviour. In the pointer case, a null
pointer is returned upon failure. In the reference case, an exception is thrown upon failure of type std::bad_cast
(or a class derived from std::bad_cast).

struct Base { virtual ~Base(); }; // Base is polymorphic
struct Derived : Base {};
Base* b1 = new Derived;
Derived* d1 = dynamic_cast<Derived*>(b1); // OK; d1 points to Derived object
Base* b2 = new Base;
Derived* d2 = dynamic_cast<Derived*>(b2); // d2 is a null pointer

Section 91.4: Conversion between pointer and integer
An object pointer (including void*) or function pointer can be converted to an integer type using
reinterpret_cast. This will only compile if the destination type is long enough. The result is implementation-
defined and typically yields the numeric address of the byte in memory that the pointer pointers to.

Typically, long or unsigned long is long enough to hold any pointer value, but this is not guaranteed by the
standard.

Version ≥ C++11

If the types std::intptr_t and std::uintptr_t exist, they are guaranteed to be long enough to hold a void* (and
hence any pointer to object type). However, they are not guaranteed to be long enough to hold a function pointer.

Similarly, reinterpret_cast can be used to convert an integer type into a pointer type. Again the result is
implementation-defined, but a pointer value is guaranteed to be unchanged by a round trip through an integer
type. The standard does not guarantee that the value zero is converted to a null pointer.

void register_callback(void (*fp)(void*), void* arg); // probably a C API
void my_callback(void* x) {
 std::cout << "the value is: " << reinterpret_cast<long>(x); // will probably compile
}
long x;
std::cin >> x;

C++ Notes for Professionals 484

register_callback(my_callback,
 reinterpret_cast<void*>(x)); // hopefully this doesn't lose information...

Section 91.5: Conversion by explicit constructor or explicit
conversion function
A conversion that involves calling an explicit constructor or conversion function can't be done implicitly. We can
request that the conversion be done explicitly using static_cast. The meaning is the same as that of a direct
initialization, except that the result is a temporary.

class C {
 std::unique_ptr<int> p;
 public:
 explicit C(int* p) : p(p) {}
};
void f(C c);
void g(int* p) {
 f(p); // error: C::C(int*) is explicit
 f(static_cast<C>(p)); // ok
 f(C(p)); // equivalent to previous line
 C c(p); f(c); // error: C is not copyable
}

Section 91.6: Implicit conversion
static_cast can perform any implicit conversion. This use of static_cast can occasionally be useful, such as in
the following examples:

When passing arguments to an ellipsis, the "expected" argument type is not statically known, so no implicit
conversion will occur.

const double x = 3.14;
printf("%d\n", static_cast<int>(x)); // prints 3
// printf("%d\n", x); // undefined behaviour; printf is expecting an int here
// alternative:
// const int y = x; printf("%d\n", y);

Without the explicit type conversion, a double object would be passed to the ellipsis, and undefined
behaviour would occur.

A derived class assignment operator can call a base class assignment operator like so:

struct Base { /* ... */ };
struct Derived : Base {
 Derived& operator=(const Derived& other) {
 static_cast<Base&>(*this) = other;
 // alternative:
 // Base& this_base_ref = *this; this_base_ref = other;
 }
};

Section 91.7: Enum conversions
static_cast can convert from an integer or floating point type to an enumeration type (whether scoped or

C++ Notes for Professionals 485

unscoped), and vice versa. It can also convert between enumeration types.

The conversion from an unscoped enumeration type to an arithmetic type is an implicit conversion; it is
possible, but not necessary, to use static_cast.

Version ≥ C++11

When a scoped enumeration type is converted to an arithmetic type:

If the enum's value can be represented exactly in the destination type, the result is that value.
Otherwise, if the destination type is an integer type, the result is unspecified.
Otherwise, if the destination type is a floating point type, the result is the same as that of converting to
the underlying type and then to the floating point type.

Example:

enum class Format {
 TEXT = 0,
 PDF = 1000,
 OTHER = 2000,
};
Format f = Format::PDF;
int a = f; // error
int b = static_cast<int>(f); // ok; b is 1000
char c = static_cast<char>(f); // unspecified, if 1000 doesn't fit into char
double d = static_cast<double>(f); // d is 1000.0... probably

When an integer or enumeration type is converted to an enumeration type:

If the original value is within the destination enum's range, the result is that value. Note that this value
might be unequal to all enumerators.
Otherwise, the result is unspecified (<= C++14) or undefined (>= C++17).

Example:

enum Scale {
 SINGLE = 1,
 DOUBLE = 2,
 QUAD = 4
};
Scale s1 = 1; // error
Scale s2 = static_cast<Scale>(2); // s2 is DOUBLE
Scale s3 = static_cast<Scale>(3); // s3 has value 3, and is not equal to any enumerator
Scale s9 = static_cast<Scale>(9); // unspecified value in C++14; UB in C++17

Version ≥ C++11

When a floating point type is converted to an enumeration type, the result is the same as converting to the
enum's underlying type and then to the enum type.

enum Direction {
 UP = 0,
 LEFT = 1,
 DOWN = 2,
 RIGHT = 3,
};

C++ Notes for Professionals 486

Direction d = static_cast<Direction>(3.14); // d is RIGHT

Section 91.8: Derived to base conversion for pointers to
members
A pointer to member of derived class can be converted to a pointer to member of base class using static_cast.
The types pointed to must match.

If the operand is a null pointer to member value, the result is also a null pointer to member value.

Otherwise, the conversion is only valid if the member pointed to by the operand actually exists in the destination
class, or if the destination class is a base or derived class of the class containing the member pointed to by the
operand. static_cast does not check for validity. If the conversion is not valid, the behaviour is undefined.

struct A {};
struct B { int x; };
struct C : A, B { int y; double z; };
int B::*p1 = &B::x;
int C::*p2 = p1; // ok; implicit conversion
int B::*p3 = p2; // error
int B::*p4 = static_cast<int B::*>(p2); // ok; p4 is equal to p1
int A::*p5 = static_cast<int A::*>(p2); // undefined; p2 points to x, which is a member
 // of the unrelated class B
double C::*p6 = &C::z;
double A::*p7 = static_cast<double A::*>(p6); // ok, even though A doesn't contain z
int A::*p8 = static_cast<int A::*>(p6); // error: types don't match

Section 91.9: void* to T*
In C++, void* cannot be implicitly converted to T* where T is an object type. Instead, static_cast should be used to
perform the conversion explicitly. If the operand actually points to a T object, the result points to that object.
Otherwise, the result is unspecified.

Version ≥ C++11

Even if the operand does not point to a T object, as long as the operand points to a byte whose address is properly
aligned for the type T, the result of the conversion points to the same byte.

// allocating an array of 100 ints, the hard way
int* a = malloc(100*sizeof(*a)); // error; malloc returns void*
int* a = static_cast<int*>(malloc(100*sizeof(*a))); // ok
// int* a = new int[100]; // no cast needed
// std::vector<int> a(100); // better

const char c = '!';
const void* p1 = &c;
const char* p2 = p1; // error
const char* p3 = static_cast<const char*>(p1); // ok; p3 points to c
const int* p4 = static_cast<const int*>(p1); // unspecified in C++03;
 // possibly unspecified in C++11 if
 // alignof(int) > alignof(char)
char* p5 = static_cast<char*>(p1); // error: casting away constness

C++ Notes for Professionals 487

Section 91.10: Type punning conversion
A pointer (resp. reference) to an object type can be converted to a pointer (resp. reference) to any other object type
using reinterpret_cast. This does not call any constructors or conversion functions.

int x = 42;
char* p = static_cast<char*>(&x); // error: static_cast cannot perform this conversion
char* p = reinterpret_cast<char*>(&x); // OK
*p = 'z'; // maybe this modifies x (see below)
Version ≥ C++11

The result of reinterpret_cast represents the same address as the operand, provided that the address is
appropriately aligned for the destination type. Otherwise, the result is unspecified.

int x = 42;
char& r = reinterpret_cast<char&>(x);
const void* px = &x;
const void* pr = &r;
assert(px == pr); // should never fire
Version < C++11

The result of reinterpret_cast is unspecified, except that a pointer (resp. reference) will survive a round trip from
the source type to the destination type and back, as long as the destination type's alignment requirement is not
stricter than that of the source type.

int x = 123;
unsigned int& r1 = reinterpret_cast<unsigned int&>(x);
int& r2 = reinterpret_cast<int&>(r1);
r2 = 456; // sets x to 456

On most implementations, reinterpret_cast does not change the address, but this requirement was not
standardized until C++11.

reinterpret_cast can also be used to convert from one pointer-to-data-member type to another, or one pointer-
to-member-function type to another.

Use of reinterpret_cast is considered dangerous because reading or writing through a pointer or reference
obtained using reinterpret_cast may trigger undefined behaviour when the source and destination types are
unrelated.

C++ Notes for Professionals 488

Chapter 92: Unnamed types
Section 92.1: Unnamed classes
Unlike a named class or struct, unnamed classes and structs must be instantiated where they are defined, and
cannot have constructors or destructors.

struct {
 int foo;
 double bar;
} foobar;

foobar.foo = 5;
foobar.bar = 4.0;

class {
 int baz;
public:
 int buzz;

 void setBaz(int v) {
 baz = v;
 }
} barbar;

barbar.setBaz(15);
barbar.buzz = 2;

Section 92.2: As a type alias
Unnamed class types may also be used when creating type aliases, i.e. via typedef and using:

Version < C++11

using vec2d = struct {
 float x;
 float y;
};

typedef struct {
 float x;
 float y;
} vec2d;

vec2d pt;
pt.x = 4.f;
pt.y = 3.f;

Section 92.3: Anonymous members
As a non-standard extension to C++, common compilers allow the use of classes as anonymous members.

struct Example {
 struct {
 int inner_b;
 };

 int outer_b;

C++ Notes for Professionals 489

 //The anonymous struct's members are accessed as if members of the parent struct
 Example() : inner_b(2), outer_b(4) {
 inner_b = outer_b + 2;
 }
};

Example ex;

//The same holds true for external code referencing the struct
ex.inner_b -= ex.outer_b;

Section 92.4: Anonymous Union
Member names of an anonymous union belong to the scope of the union declaration an must be distinct to all
other names of this scope. The example here has the same construction as example Anonymous Members using
"struct" but is standard conform.

struct Sample {
 union {
 int a;
 int b;
 };
 int c;
};
int main()
{
 Sample sa;
 sa.a =3;
 sa.b =4;
 sa.c =5;
}

C++ Notes for Professionals 490

Chapter 93: Type Traits
Section 93.1: Type Properties
Version ≥ C++11

Type properties compare the modifiers that can be placed upon different variables. The usefulness of these type
traits is not always obvious.

Note: The example below would only offer an improvement on a non-optimizing compiler. It is a simple a proof of
concept, rather than complex example.

e.g. Fast divide by four.

template<typename T>
inline T FastDivideByFour(cont T &var) {
 // Will give an error if the inputted type is not an unsigned integral type.
 static_assert(std::is_unsigned<T>::value && std::is_integral<T>::value,
 "This function is only designed for unsigned integral types.");
 return (var >> 2);
}

Is Constant:

This will evaluate as true when type is constant.

std::cout << std::is_const<const int>::value << "\n"; // Prints true.
std::cout << std::is_const<int>::value << "\n"; // Prints false.

Is Volatile:

This will evaluate as true when the type is volatile.

std::cout << std::is_volatile<static volatile int>::value << "\n"; // Prints true.
std::cout << std::is_const<const int>::value << "\n"; // Prints false.

Is signed:

This will evaluate as true for all signed types.

std::cout << std::is_signed<int>::value << "\n"; // Prints true.
std::cout << std::is_signed<float>::value << "\n"; // Prints true.
std::cout << std::is_signed<unsigned int>::value << "\n"; // Prints false.
std::cout << std::is_signed<uint8_t>::value << "\n"; // Prints false.

Is Unsigned:

Will evaluate as true for all unsigned types.

std::cout << std::is_unsigned<unsigned int>::value << "\n"; // Prints true.
std::cout << std::is_signed<uint8_t>::value << "\n"; // Prints true.
std::cout << std::is_unsigned<int>::value << "\n"; // Prints false.
std::cout << std::is_signed<float>::value << "\n"; // Prints false.

C++ Notes for Professionals 491

Section 93.2: Standard type traits
Version ≥ C++11

The type_traits header contains a set of template classes and helpers to transform and check properties of types
at compile-time.

These traits are typically used in templates to check for user errors, support generic programming, and allow for
optimizations.

Most type traits are used to check if a type fulfils some criteria. These have the following form:

template <class T> struct is_foo;

If the template class is instantiated with a type which fulfils some criteria foo, then is_foo<T> inherits from
std::integral_constant<bool,true> (a.k.a. std::true_type), otherwise it inherits from
std::integral_constant<bool,false> (a.k.a. std::false_type). This gives the trait the following members:

Constants

static constexpr bool value

true if T fulfils the criteria foo, false otherwise

Functions

operator bool

Returns value

Version ≥ C++14

bool operator()

Returns value

Types
Name Definition

value_type bool
type std::integral_constant<bool,value>

The trait can then be used in constructs such as static_assert or std::enable_if. An example with
std::is_pointer:

template <typename T>
void i_require_a_pointer (T t) {
 static_assert(std::is_pointer<T>::value, "T must be a pointer type");
}

//Overload for when T is not a pointer type
template <typename T>
typename std::enable_if<!std::is_pointer<T>::value>::type
does_something_special_with_pointer (T t) {
 //Do something boring
}

//Overload for when T is a pointer type
template <typename T>
typename std::enable_if<std::is_pointer<T>::value>::type

C++ Notes for Professionals 492

does_something_special_with_pointer (T t) {
 //Do something special
}

There are also various traits which transform types, such as std::add_pointer and std::underlying_type. These
traits generally expose a single type member type which contains the transformed type. For example,
std::add_pointer<int>::type is int*.

Section 93.3: Type relations with std::is_same<T, T>
Version ≥ C++11

The std::is_same<T, T> type relation is used to compare two types. It will evaluate as boolean, true if the types
are the same and false if otherwise.

e.g.

// Prints true on most x86 and x86_64 compilers.
std::cout << std::is_same<int, int32_t>::value << "\n";
// Prints false on all compilers.
std::cout << std::is_same<float, int>::value << "\n";
// Prints false on all compilers.
std::cout << std::is_same<unsigned int, int>::value << "\n";

The std::is_same type relation will also work regardless of typedefs. This is actually demonstrated in the first
example when comparing int == int32_t however this is not entirely clear.

e.g.

// Prints true on all compilers.
typedef int MyType
std::cout << std::is_same<int, MyType>::value << "\n";

Using std::is_same to warn when improperly using a templated class or function.

When combined with a static assert the std::is_same template can be valuable tool in enforcing proper usage of
templated classes and functions.

e.g. A function that only allows input from an int and a choice of two structs.

#include <type_traits>
struct foo {
 int member;
 // Other variables
};

struct bar {
 char member;
};

template<typename T>
int AddStructMember(T var1, int var2) {
 // If type T != foo || T != bar then show error message.
 static_assert(std::is_same<T, foo>::value ||
 std::is_same<T, bar>::value,
 "This function does not support the specified type.");
 return var1.member + var2;

C++ Notes for Professionals 493

}

Section 93.4: Fundamental type traits
Version ≥ C++11

There are a number of different type traits that compare more general types.

Is Integral:

Evaluates as true for all integer types int, char, long, unsigned int etc.

std::cout << std::is_integral<int>::value << "\n"; // Prints true.
std::cout << std::is_integral<char>::value << "\n"; // Prints true.
std::cout << std::is_integral<float>::value << "\n"; // Prints false.

Is Floating Point:

Evaluates as true for all floating point types. float,double, long double etc.

std::cout << std::is_floating_point<float>::value << "\n"; // Prints true.
std::cout << std::is_floating_point<double>::value << "\n"; // Prints true.
std::cout << std::is_floating_point<char>::value << "\n"; // Prints false.

Is Enum:

Evaluates as true for all enumerated types, including enum class.

enum fruit {apple, pair, banana};
enum class vegetable {carrot, spinach, leek};
std::cout << std::is_enum<fruit>::value << "\n"; // Prints true.
std::cout << std::is_enum<vegetable>::value << "\n"; // Prints true.
std::cout << std::is_enum<int>::value << "\n"; // Prints false.

Is Pointer:

Evaluates as true for all pointers.

std::cout << std::is_pointer<int *>::value << "\n"; // Prints true.
typedef int* MyPTR;
std::cout << std::is_pointer<MyPTR>::value << "\n"; // Prints true.
std::cout << std::is_pointer<int>::value << "\n"; // Prints false.

Is Class:

Evaluates as true for all classes and struct, with the exception of enum class.

struct FOO {int x, y;};
class BAR {
 public:
 int x, y;
};
enum class fruit {apple, pair, banana};
std::cout << std::is_class<FOO>::value << "\n"; // Prints true.
std::cout << std::is_class<BAR>::value << "\n"; // Prints true.
std::cout << std::is_class<fruit>::value << "\n"; // Prints false.
std::cout << std::is_class<int>::value << "\n"; // Prints false.

C++ Notes for Professionals 494

Chapter 94: Return Type Covariance
Section 94.1: Covariant result version of the base example,
static type checking
// 2. Covariant result version of the base example, static type checking.

class Top
{
public:
 virtual Top* clone() const = 0;
 virtual ~Top() = default; // Necessary for `delete` via Top*.
};

class D : public Top
{
public:
 D* /* ← Covariant return */ clone() const override
 { return new D(*this); }
};

class DD : public D
{
private:
 int answer_ = 42;

public:
 int answer() const
 { return answer_;}

 DD* /* ← Covariant return */ clone() const override
 { return new DD(*this); }
};

#include <iostream>
using namespace std;

int main()
{
 DD* p1 = new DD();
 DD* p2 = p1->clone();
 // Correct dynamic type DD for *p2 is guaranteed by the static type checking.

 cout << p2->answer() << endl; // "42"
 delete p2;
 delete p1;
}

Section 94.2: Covariant smart pointer result (automated
cleanup)
// 3. Covariant smart pointer result (automated cleanup).

#include <memory>
using std::unique_ptr;

template< class Type >
auto up(Type* p) { return unique_ptr<Type>(p); }

C++ Notes for Professionals 495

class Top
{
private:
 virtual Top* virtual_clone() const = 0;

public:
 unique_ptr<Top> clone() const
 { return up(virtual_clone()); }

 virtual ~Top() = default; // Necessary for `delete` via Top*.
};

class D : public Top
{
private:
 D* /* ← Covariant return */ virtual_clone() const override
 { return new D(*this); }

public:
 unique_ptr<D> /* ← Apparent covariant return */ clone() const
 { return up(virtual_clone()); }
};

class DD : public D
{
private:
 int answer_ = 42;

 DD* /* ← Covariant return */ virtual_clone() const override
 { return new DD(*this); }

public:
 int answer() const
 { return answer_;}

 unique_ptr<DD> /* ← Apparent covariant return */ clone() const
 { return up(virtual_clone()); }
};

#include <iostream>
using namespace std;

int main()
{
 auto p1 = unique_ptr<DD>(new DD());
 auto p2 = p1->clone();
 // Correct dynamic type DD for *p2 is guaranteed by the static type checking.

 cout << p2->answer() << endl; // "42"
 // Cleanup is automated via unique_ptr.
 }

C++ Notes for Professionals 496

Chapter 95: Layout of object types
Section 95.1: Class types
By "class", we mean a type that was defined using the class or struct keyword (but not enum struct or enum
class).

Even an empty class still occupies at least one byte of storage; it will therefore consist purely of padding. This
ensures that if p points to an object of an empty class, then p + 1 is a distinct address and points to a distinct
object. However, it is possible for an empty class to have a size of 0 when used as a base class. See empty
base optimisation.

class Empty_1 {}; // sizeof(Empty_1) == 1
class Empty_2 {}; // sizeof(Empty_2) == 1
class Derived : Empty_1 {}; // sizeof(Derived) == 1
class DoubleDerived : Empty_1, Empty_2 {}; // sizeof(DoubleDerived) == 1
class Holder { Empty_1 e; }; // sizeof(Holder) == 1
class DoubleHolder { Empty_1 e1; Empty_2 e2; }; // sizeof(DoubleHolder) == 2
class DerivedHolder : Empty_1 { Empty_1 e; }; // sizeof(DerivedHolder) == 2

The object representation of a class type contains the object representations of the base class and non-static
member types. Therefore, for example, in the following class:

struct S {
 int x;
 char* y;
};

there is a consecutive sequence of sizeof(int) bytes within an S object, called a subobject, that contain the
value of x, and another subobject with sizeof(char*) bytes that contains the value of y. The two cannot be
interleaved.

If a class type has members and/or base classes with types t1, t2,...tN, the size must be at least
sizeof(t1) + sizeof(t2) + ... + sizeof(tN) given the preceding points. However, depending on the
alignment requirements of the members and base classes, the compiler may be forced to insert padding
between subobjects, or at the beginning or end of the complete object.

struct AnInt { int i; };
 // sizeof(AnInt) == sizeof(int)
 // Assuming a typical 32- or 64-bit system, sizeof(AnInt) == 4 (4).
struct TwoInts { int i, j; };
 // sizeof(TwoInts) >= 2 * sizeof(int)
 // Assuming a typical 32- or 64-bit system, sizeof(TwoInts) == 8 (4 + 4).
struct IntAndChar { int i; char c; };
 // sizeof(IntAndChar) >= sizeof(int) + sizeof(char)
 // Assuming a typical 32- or 64-bit system, sizeof(IntAndChar) == 8 (4 + 1 + padding).
struct AnIntDerived : AnInt { long long l; };
 // sizeof(AnIntDerived) >= sizeof(AnInt) + sizeof(long long)
 // Assuming a typical 32- or 64-bit system, sizeof(AnIntDerived) == 16 (4 + padding + 8).

If padding is inserted in an object due to alignment requirements, the size will be greater than the sum of the
sizes of the members and base classes. With n-byte alignment, size will typically be the smallest multiple of n
which is larger than the size of all members & base classes. Each member memN will typically be placed at an
address which is a multiple of alignof(memN), and n will typically be the largest alignof out of all members'

http://en.cppreference.com/w/cpp/language/ebo
http://en.cppreference.com/w/cpp/language/ebo

C++ Notes for Professionals 497

alignofs. Due to this, if a member with a smaller alignof is followed by a member with a larger alignof,
there is a possibility that the latter member will not be aligned properly if placed immediately after the
former. In this case, padding (also known as an alignment member) will be placed between the two members,
such that the latter member can have its desired alignment. Conversely, if a member with a larger alignof is
followed by a member with a smaller alignof, no padding will usually be necessary. This process is also
known as "packing".
Due to classes typically sharing the alignof of their member with the largest alignof, classes will typically be
aligned to the alignof of the largest built-in type they directly or indirectly contain.

// Assume sizeof(short) == 2, sizeof(int) == 4, and sizeof(long long) == 8.
// Assume 4-byte alignment is specified to the compiler.
struct Char { char c; };
 // sizeof(Char) == 1 (sizeof(char))
struct Int { int i; };
 // sizeof(Int) == 4 (sizeof(int))
struct CharInt { char c; int i; };
 // sizeof(CharInt) == 8 (1 (char) + 3 (padding) + 4 (int))
struct ShortIntCharInt { short s; int i; char c; int j; };
 // sizeof(ShortIntCharInt) == 16 (2 (short) + 2 (padding) + 4 (int) + 1 (char) +
 // 3 (padding) + 4 (int))
struct ShortIntCharCharInt { short s; int i; char c; char d; int j; };
 // sizeof(ShortIntCharCharInt) == 16 (2 (short) + 2 (padding) + 4 (int) + 1 (char) +
 // 1 (char) + 2 (padding) + 4 (int))
struct ShortCharShortInt { short s; char c; short t; int i; };
 // sizeof(ShortCharShortInt) == 12 (2 (short) + 1 (char) + 1 (padding) + 2 (short) +
 // 2 (padding) + 4 (int))
struct IntLLInt { int i; long long l; int j; };
 // sizeof(IntLLInt) == 16 (4 (int) + 8 (long long) + 4 (int))
 // If packing isn't explicitly specified, most compilers will pack this as
 // 8-byte alignment, such that:
 // sizeof(IntLLInt) == 24 (4 (int) + 4 (padding) + 8 (long long) +
 // 4 (int) + 4 (padding))

// Assume sizeof(bool) == 1, sizeof(ShortIntCharInt) == 16, and sizeof(IntLLInt) == 24.
// Assume default alignment: alignof(ShortIntCharInt) == 4, alignof(IntLLInt) == 8.
struct ShortChar3ArrShortInt {
 short s;
 char c3[3];
 short t;
 int i;
};
 // ShortChar3ArrShortInt has 4-byte alignment: alignof(int) >= alignof(char) &&
 // alignof(int) >= alignof(short)
 // sizeof(ShortChar3ArrShortInt) == 12 (2 (short) + 3 (char[3]) + 1 (padding) +
 // 2 (short) + 4 (int))
 // Note that t is placed at alignment of 2, not 4. alignof(short) == 2.

struct Large_1 {
 ShortIntCharInt sici;
 bool b;
 ShortIntCharInt tjdj;
};
 // Large_1 has 4-byte alignment.
 // alignof(ShortIntCharInt) == alignof(int) == 4
 // alignof(b) == 1
 // Therefore, alignof(Large_1) == 4.
 // sizeof(Large_1) == 36 (16 (ShortIntCharInt) + 1 (bool) + 3 (padding) +
 // 16 (ShortIntCharInt))
struct Large_2 {
 IntLLInt illi;

C++ Notes for Professionals 498

 float f;
 IntLLInt jmmj;
};
 // Large_2 has 8-byte alignment.
 // alignof(IntLLInt) == alignof(long long) == 8
 // alignof(float) == 4
 // Therefore, alignof(Large_2) == 8.
 // sizeof(Large_2) == 56 (24 (IntLLInt) + 4 (float) + 4 (padding) + 24 (IntLLInt))

Version ≥ C++11

If strict alignment is forced with alignas, padding will be used to force the type to meet the specified
alignment, even when it would otherwise be smaller. For example, with the definition below, Chars<5> will
have three (or possibly more) padding bytes inserted at the end so that its total size is 8. It is not possible for
a class with an alignment of 4 to have a size of 5 because it would be impossible to make an array of that
class, so the size must be "rounded up" to a multiple of 4 by inserting padding bytes.

// This type shall always be aligned to a multiple of 4. Padding shall be inserted as
// needed.
// Chars<1>..Chars<4> are 4 bytes, Chars<5>..Chars<8> are 8 bytes, etc.
template<size_t SZ>
struct alignas(4) Chars { char arr[SZ]; };

static_assert(sizeof(Chars<1>) == sizeof(Chars<4>), "Alignment is strict.\n");

If two non-static members of a class have the same access specifier, then the one that comes later in
declaration order is guaranteed to come later in the object representation. But if two non-static members
have different access specifiers, their relative order within the object is unspecified.
It is unspecified what order the base class subobjects appear in within an object, whether they occur
consecutively, and whether they appear before, after, or between member subobjects.

Section 95.2: Arithmetic types
Narrow character types

The unsigned char type uses all bits to represent a binary number. Therefore, for example, if unsigned char is 8
bits long, then the 256 possible bit patterns of a char object represent the 256 different values {0, 1, ..., 255}. The
number 42 is guaranteed to be represented by the bit pattern 00101010.

The signed char type has no padding bits, i.e., if signed char is 8 bits long, then it has 8 bits of capacity to
represent a number.

Note that these guarantees do not apply to types other than narrow character types.

Integer types

The unsigned integer types use a pure binary system, but may contain padding bits. For example, it is possible
(though unlikely) for unsigned int to be 64 bits long but only be capable of storing integers between 0 and 232 - 1,
inclusive. The other 32 bits would be padding bits, which should not be written to directly.

The signed integer types use a binary system with a sign bit and possibly padding bits. Values that belong to the
common range of a signed integer type and the corresponding unsigned integer type have the same
representation. For example, if the bit pattern 0001010010101011 of an unsigned short object represents the value
5291, then it also represents the value 5291 when interpreted as a short object.

C++ Notes for Professionals 499

It is implementation-defined whether a two's complement, one's complement, or sign-magnitude representation is
used, since all three systems satisfy the requirement in the previous paragraph.

Floating point types

The value representation of floating point types is implementation-defined. Most commonly, the float and double
types conform to IEEE 754 and are 32 and 64 bits long (so, for example, float would have 23 bits of precision which
would follow 8 exponent bits and 1 sign bit). However, the standard does not guarantee anything. Floating point
types often have "trap representations", which cause errors when they are used in calculations.

Section 95.3: Arrays
An array type has no padding in between its elements. Therefore, an array with element type T is just a sequence of
T objects laid out in memory, in order.

A multidimensional array is an array of arrays, and the above applies recursively. For example, if we have the
declaration

int a[5][3];

then a is an array of 5 arrays of 3 ints. Therefore, a[0], which consists of the three elements a[0][0], a[0][1],
a[0][2], is laid out in memory before a[1], which consists of a[1][0], a[1][1], and a[1][2]. This is called row
major order.

C++ Notes for Professionals 500

Chapter 96: Type Inference
This topic discusses about type inferencing that involves the keyword auto type that is available from C++11.

Section 96.1: Data Type: Auto
This example shows the basic type inferences the compiler can perform.

auto a = 1; // a = int
auto b = 2u; // b = unsigned int
auto c = &a; // c = int*
const auto d = c; // d = const int*
const auto& e = b; // e = const unsigned int&

auto x = a + b // x = int, #compiler warning unsigned and signed

auto v = std::vector<int>; // v = std::vector<int>

However, the auto keyword does not always perform the expected type inference without additional hints for & or
const or constexpr

// y = unsigned int,
// note that y does not infer as const unsigned int&
// The compiler would have generated a copy instead of a reference value to e or b
auto y = e;

Section 96.2: Lambda auto
The data type auto keyword is a convenient way for programmers to declare lambda functions. It helps by
shortening the amount of text programmers need to type to declare a function pointer.

auto DoThis = [](int a, int b) { return a + b; };
// Do this is of type (int)(*DoThis)(int, int)
// else we would have to write this long
int(*pDoThis)(int, int)= [](int a, int b) { return a + b; };

auto c = Dothis(1, 2); // c = int
auto d = pDothis(1, 2); // d = int

// using 'auto' shortens the definition for lambda functions

By default, if the return type of lambda functions is not defined, it will be automatically inferred from the return
expression types.

These 3 is basically the same thing

[](int a, int b) -> int { return a + b; };
[](int a, int b) -> auto { return a + b; };
[](int a, int b) { return a + b; };

Section 96.3: Loops and auto
This example shows how auto can be used to shorten type declaration for for loops

std::map<int, std::string> Map;

C++ Notes for Professionals 501

for (auto pair : Map) // pair = std::pair<int, std::string>
for (const auto pair : Map) // pair = const std::pair<int, std::string>
for (const auto& pair : Map) // pair = const std::pair<int, std::string>&
for (auto i = 0; i < 1000; ++i) // i = int
for (auto i = 0; i < Map.size(); ++i) // Note that i = int and not size_t
for (auto i = Map.size(); i > 0; --i) // i = size_t

C++ Notes for Professionals 502

Chapter 97: Typedef and type aliases
The typedef and (since C++11) using keywords can be used to give a new name to an existing type.

Section 97.1: Basic typedef syntax
A typedef declaration has the same syntax as a variable or function declaration, but it contains the word typedef.
The presence of typedef causes the declaration to declare a type instead of a variable or function.

int T; // T has type int
typedef int T; // T is an alias for int

int A[100]; // A has type "array of 100 ints"
typedef int A[100]; // A is an alias for the type "array of 100 ints"

Once a type alias has been defined, it can be used interchangeably with the original name of the type.

typedef int A[100];
// S is a struct containing an array of 100 ints
struct S {
 A data;
};

typedef never creates a distinct type. It only gives another way of referring to an existing type.

struct S {
 int f(int);
};
typedef int I;
// ok: defines int S::f(int)
I S::f(I x) { return x; }

Section 97.2: More complex uses of typedef
The rule that typedef declarations have the same syntax as ordinary variable and function declarations can be used
to read and write more complex declarations.

void (*f)(int); // f has type "pointer to function of int returning void"
typedef void (*f)(int); // f is an alias for "pointer to function of int returning void"

This is especially useful for constructs with confusing syntax, such as pointers to non-static members.

void (Foo::*pmf)(int); // pmf has type "pointer to member function of Foo taking int
 // and returning void"
typedef void (Foo::*pmf)(int); // pmf is an alias for "pointer to member function of Foo
 // taking int and returning void"

It is hard to remember the syntax of the following function declarations, even for experienced programmers:

void (Foo::*Foo::f(const char*))(int);
int (&g())[100];

typedef can be used to make them easier to read and write:

typedef void (Foo::pmf)(int); // pmf is a pointer to member function type

C++ Notes for Professionals 503

pmf Foo::f(const char*); // f is a member function of Foo

typedef int (&ra)[100]; // ra means "reference to array of 100 ints"
ra g(); // g returns reference to array of 100 ints

Section 97.3: Declaring multiple types with typedef
The typedef keyword is a specifier, so it applies separately to each declarator. Therefore, each name declared
refers to the type that that name would have in the absence of typedef.

int *x, (*p)(); // x has type int*, and p has type int(*)()
typedef int *x, (*p)(); // x is an alias for int*, while p is an alias for int(*)()

Section 97.4: Alias declaration with "using"
Version ≥ C++11

The syntax of using is very simple: the name to be defined goes on the left hand side, and the definition goes on
the right hand side. No need to scan to see where the name is.

using I = int;
using A = int[100]; // array of 100 ints
using FP = void(*)(int); // pointer to function of int returning void
using MP = void (Foo::*)(int); // pointer to member function of Foo of int returning void

Creating a type alias with using has exactly the same effect as creating a type alias with typedef. It is simply an
alternative syntax for accomplishing the same thing.

Unlike typedef, using can be templated. A "template typedef" created with using is called an alias template.

C++ Notes for Professionals 504

Chapter 98: type deduction
Section 98.1: Template parameter deduction for constructors
Prior to C++17, template deduction cannot deduce the class type for you in a constructor. It must be explicitly
specified. Sometimes, however, these types can be very cumbersome or (in the case of lambdas) impossible to
name, so we got a proliferation of type factories (like make_pair(), make_tuple(), back_inserter(), etc.).

Version ≥ C++17

This is no longer necessary:

std::pair p(2, 4.5); // std::pair<int, double>
std::tuple t(4, 3, 2.5); // std::tuple<int, int, double>
std::copy_n(vi1.begin(), 3,
 std::back_insert_iterator(vi2)); // constructs a back_insert_iterator<std::vector<int>>
std::lock_guard lk(mtx); // std::lock_guard<decltype(mtx)>

Constructors are considered to deduce the class template parameters, but in some cases this is insufficient and we
can provide explicit deduction guides:

template <class Iter>
vector(Iter, Iter) -> vector<typename iterator_traits<Iter>::value_type>

int array[] = {1, 2, 3};
std::vector v(std::begin(array), std::end(array)); // deduces std::vector<int>

Section 98.2: Auto Type Deduction
Version ≥ C++11

Type deduction using the auto keyword works almost the same as Template Type Deduction. Below are a few
examples:

auto x = 27; // (x is neither a pointer nor a reference), x's type is int
const auto cx = x; // (cx is neither a pointer nor a reference), cs's type is const int
const auto& rx = x; // (rx is a non-universal reference), rx's type is a reference to a const
int

auto&& uref1 = x; // x is int and lvalue, so uref1's type is int&
auto&& uref2 = cx; // cx is const int and lvalue, so uref2's type is const int &
auto&& uref3 = 27; // 27 is an int and rvalue, so uref3's type is int&&

The differences are outlined below:

auto x1 = 27; // type is int, value is 27
auto x2(27); // type is int, value is 27
auto x3 = { 27 }; // type is std::initializer_list<int>, value is { 27 }
auto x4{ 27 }; // type is std::initializer_list<int>, value is { 27 }
 // in some compilers type may be deduced as an int with a
 // value of 27. See remarks for more information.
auto x5 = { 1, 2.0 } // error! can't deduce T for std::initializer_list<t>

As you can see if you use braced initializers, auto is forced into creating a variable of type
std::initializer_list<T>. If it can't deduce the of T, the code is rejected.

C++ Notes for Professionals 505

When auto is used as the return type of a function, it specifies that the function has a trailing return type.

auto f() -> int {
 return 42;
}
Version ≥ C++14

C++14 allows, in addition to the usages of auto allowed in C++11, the following:

When used as the return type of a function without a trailing return type, specifies that the function's return1.
type should be deduced from the return statements in the function's body, if any.

// f returns int:
auto f() { return 42; }
// g returns void:
auto g() { std::cout << "hello, world!\n"; }

When used in the parameter type of a lambda, defines the lambda to be a generic lambda.2.

auto triple = [](auto x) { return 3*x; };
const auto x = triple(42); // x is a const int with value 126

The special form decltype(auto) deduces a type using the type deduction rules of decltype rather than those of
auto.

int* p = new int(42);
auto x = *p; // x has type int
decltype(auto) y = *p; // y is a reference to *p

In C++03 and earlier, the auto keyword had a completely different meaning as a storage class specifier that was
inherited from C.

Section 98.3: Template Type Deduction
Template Generic Syntax

template<typename T>
void f(ParamType param);

f(expr);

Case 1: ParamType is a Reference or Pointer, but not a Universal or Forward Reference. In this case type deduction
works this way. The compiler ignores the reference part if it exists in expr. The compiler then pattern-matches
expr's type against ParamType to determing T.

template<typename T>
void f(T& param); //param is a reference

int x = 27; // x is an int
const int cx = x; // cx is a const int
const int& rx = x; // rx is a reference to x as a const int

f(x); // T is int, param's type is int&
f(cx); // T is const int, param's type is const int&
f(rx); // T is const int, param's type is const int&

C++ Notes for Professionals 506

Case 2: ParamType is a Universal Reference or Forward Reference. In this case type deduction is the same as in case
1 if the expr is an rvalue. If expr is an lvalue, both T and ParamType are deduced to be lvalue references.

template<typename T>
void f(T&& param); // param is a universal reference

int x = 27; // x is an int
const int cx = x; // cx is a const int
const int& rx = x; // rx is a reference to x as a const int

f(x); // x is lvalue, so T is int&, param's type is also int&
f(cx); // cx is lvalue, so T is const int&, param's type is also const int&
f(rx); // rx is lvalue, so T is const int&, param's type is also const int&
f(27); // 27 is rvalue, so T is int, param's type is therefore int&&

Case 3: ParamType is Neither a Pointer nor a Reference. If expr is a reference the reference part is ignored. If expr is
const that is ignored as well. If it is volatile that is also ignored when deducing T's type.

template<typename T>
void f(T param); // param is now passed by value

int x = 27; // x is an int
const int cx = x; // cx is a const int
const int& rx = x; // rx is a reference to x as a const int

f(x); // T's and param's types are both int
f(cx); // T's and param's types are again both int
f(rx); // T's and param's types are still both int

C++ Notes for Professionals 507

Chapter 99: Trailing return type
Section 99.1: Avoid qualifying a nested type name
class ClassWithAReallyLongName {
 public:
 class Iterator { /* ... */ };
 Iterator end();
};

Defining the member end with a trailing return type:

auto ClassWithAReallyLongName::end() -> Iterator { return Iterator(); }

Defining the member end without a trailing return type:

ClassWithAReallyLongName::Iterator ClassWithAReallyLongName::end() { return Iterator(); }

The trailing return type is looked up in the scope of the class, while a leading return type is looked up in the
enclosing namespace scope and can therefore require "redundant" qualification.

Section 99.2: Lambda expressions
A lambda can only have a trailing return type; the leading return type syntax is not applicable to lambdas. Note that
in many cases it is not necessary to specify a return type for a lambda at all.

struct Base {};
struct Derived1 : Base {};
struct Derived2 : Base {};
auto lambda = [](bool b) -> Base* { if (b) return new Derived1; else return new Derived2; };
// ill-formed: auto lambda = Base* [](bool b) { ... };

C++ Notes for Professionals 508

Chapter 100: Alignment
All types in C++ have an alignment. This is a restriction on the memory address that objects of that type can be
created within. A memory address is valid for an object's creation if dividing that address by the object's alignment
is a whole number.

Type alignments are always a power of two (including 1).

Section 100.1: Controlling alignment
Version ≥ C++11

The alignas keyword can be used to force a variable, class data member, declaration or definition of a class, or
declaration or definition of an enum, to have a particular alignment, if supported. It comes in two forms:

alignas(x), where x is a constant expression, gives the entity the alignment x, if supported.
alignas(T), where T is a type, gives the entity an alignment equal to the alignment requirement of T, that is,
alignof(T), if supported.

If multiple alignas specifiers are applied to the same entity, the strictest one applies.

In this example, the buffer buf is guaranteed to be appropriately aligned to hold an int object, even though its
element type is unsigned char, which may have a weaker alignment requirement.

alignas(int) unsigned char buf[sizeof(int)];
new (buf) int(42);

alignas cannot be used to give a type a smaller alignment than the type would have without this declaration:

alignas(1) int i; //Il-formed, unless `int` on this platform is aligned to 1 byte.
alignas(char) int j; //Il-formed, unless `int` has the same or smaller alignment than `char`.

alignas, when given an integer constant expression, must be given a valid alignment. Valid alignments are always
powers of two, and must be greater than zero. Compilers are required to support all valid alignments up to the
alignment of the type std::max_align_t. They may support larger alignments than this, but support for allocating
memory for such objects is limited. The upper limit on alignments is implementation dependent.

C++17 features direct support in operator new for allocating memory for over-aligned types.

Section 100.2: Querying the alignment of a type
Version ≥ c++11

The alignment requirement of a type can be queried using the alignof keyword as a unary operator. The result is a
constant expression of type std::size_t, i.e., it can be evaluated at compile time.

#include <iostream>
int main() {
 std::cout << "The alignment requirement of int is: " << alignof(int) << '\n';
}

Possible output

C++ Notes for Professionals 509

The alignment requirement of int is: 4

If applied to an array, it yields the alignment requirement of the element type. If applied to a reference type, it
yields the alignment requirement of the referenced type. (References themselves have no alignment, since they are
not objects.)

C++ Notes for Professionals 510

Chapter 101: Perfect Forwarding
Section 101.1: Factory functions
Suppose we want to write a factory function that accepts an arbitrary list of arguments and passes those
arguments unmodified to another function. An example of such a function is make_unique, which is used to safely
construct a new instance of T and return a unique_ptr<T> that owns the instance.

The language rules regarding variadic templates and rvalue references allows us to write such a function.

template<class T, class... A>
unique_ptr<T> make_unique(A&&... args)
{
 return unique_ptr<T>(new T(std::forward<A>(args)...));
}

The use of ellipses ... indicate a parameter pack, which represents an arbitrary number of types. The compiler will
expand this parameter pack to the correct number of arguments at the call site. These arguments are then passed
to T's constructor using std::forward. This function is required to preserve the ref-qualifiers of the arguments.

struct foo
{
 foo() {}
 foo(const foo&) {} // copy constructor
 foo(foo&&) {} // copy constructor
 foo(int, int, int) {}
};

foo f;
auto p1 = make_unique<foo>(f); // calls foo::foo(const foo&)
auto p2 = make_unique<foo>(std::move(f)); // calls foo::foo(foo&&)
auto p3 = make_unique<foo>(1, 2, 3);

C++ Notes for Professionals 511

Chapter 102: decltype
The keyword decltype can be used to get the type of a variable, function or an expression.

Section 102.1: Basic Example
This example just illustrates how this keyword can be used.

int a = 10;

// Assume that type of variable 'a' is not known here, or it may
// be changed by programmer (from int to long long, for example).
// Hence we declare another variable, 'b' of the same type using
// decltype keyword.
decltype(a) b; // 'decltype(a)' evaluates to 'int'

If, for example, someone changes, type of 'a' to:

float a=99.0f;

Then the type of variable b now automatically becomes float.

Section 102.2: Another example
Let's say we have vector:

std::vector<int> intVector;

And we want to declare an iterator for this vector. An obvious idea is to use auto. However, it may be needed just
declare an iterator variable (and not to assign it to anything). We would do:

vector<int>::iterator iter;

However, with decltype it becomes easy and less error prone (if type of intVector changes).

decltype(intVector)::iterator iter;

Alternatively:

decltype(intVector.begin()) iter;

In second example, the return type of begin is used to determine the actual type, which is vector<int>::iterator.

If we need a const_iterator, we just need to use cbegin:

decltype(intVector.cbegin()) iter; // vector<int>::const_iterator

C++ Notes for Professionals 512

Chapter 103: SFINAE (Substitution Failure Is
Not An Error)
Section 103.1: What is SFINAE
SFINAE stands for Substitution Failure Is Not An Error. Ill-formed code that results from substituting types (or
values) to instantiate a function template or a class template is not a hard compile error, it is only treated as a
deduction failure.

Deduction failures on instantiating function templates or class template specializations remove that candidate from
the set of consideration - as if that failed candidate did not exist to begin with.

template <class T>
auto begin(T& c) -> decltype(c.begin()) { return c.begin(); }

template <class T, size_t N>
T* begin(T (&arr)[N]) { return arr; }

int vals[10];
begin(vals); // OK. The first function template substitution fails because
 // vals.begin() is ill-formed. This is not an error! That function
 // is just removed from consideration as a viable overload candidate,
 // leaving us with the array overload.

Only substitution failures in the immediate context are considered deduction failures, all others are considered
hard errors.

template <class T>
void add_one(T& val) { val += 1; }

int i = 4;
add_one(i); // ok

std::string msg = "Hello";
add_one(msg); // error. msg += 1 is ill-formed for std::string, but this
 // failure is NOT in the immediate context of substituting T

Section 103.2: void_t
Version ≥ C++11

void_t is a meta-function that maps any (number of) types to type void. The primary purpose of void_t is to
facilitate writing of type traits.

std::void_t will be part of C++17, but until then, it is extremely straightforward to implement:

template <class...> using void_t = void;

Some compilers require a slightly different implementation:

template <class...>
struct make_void { using type = void; };

template <typename... T>
using void_t = typename make_void<T...>::type;

http://en.cppreference.com/w/cpp/types/void_t
http://en.cppreference.com/w/cpp/types/void_t
http://en.cppreference.com/w/cpp/types/void_t
http://open-std.org/JTC1/SC22/WG21/docs/cwg_defects.html#1558

C++ Notes for Professionals 513

The primary application of void_t is writing type traits that check validity of a statement. For example, let's check if
a type has a member function foo() that takes no arguments:

template <class T, class=void>
struct has_foo : std::false_type {};

template <class T>
struct has_foo<T, void_t<decltype(std::declval<T&>().foo())>> : std::true_type {};

How does this work? When I try to instantiate has_foo<T>::value, that will cause the compiler to try to look for the
best specialization for has_foo<T, void>. We have two options: the primary, and this secondary one which involves
having to instantiate that underlying expression:

If T does have a member function foo(), then whatever type that returns gets converted to void, and the
specialization is preferred to the primary based on the template partial ordering rules. So
has_foo<T>::value will be true
If T doesn't have such a member function (or it requires more than one argument), then substitution fails for
the specialization and we only have the primary template to fallback on. Hence, has_foo<T>::value is false.

A simpler case:

template<class T, class=void>
struct can_reference : std::false_type {};

template<class T>
struct can_reference<T, std::void_t<T&>> : std::true_type {};

this doesn't use std::declval or decltype.

You may notice a common pattern of a void argument. We can factor this out:

struct details {
 template<template<class...>class Z, class=void, class...Ts>
 struct can_apply:
 std::false_type
 {};
 template<template<class...>class Z, class...Ts>
 struct can_apply<Z, std::void_t<Z<Ts...>>, Ts...>:
 std::true_type
 {};
};

template<template<class...>class Z, class...Ts>
using can_apply = details::can_apply<Z, void, Ts...>;

which hides the use of std::void_t and makes can_apply act like an indicator whether the type supplied as the
first template argument is well-formed after substituting the other types into it. The previous examples may now be
rewritten using can_apply as:

template<class T>
using ref_t = T&;

template<class T>
using can_reference = can_apply<ref_t, T>; // Is T& well formed for T?

and:

C++ Notes for Professionals 514

template<class T>
using dot_foo_r = decltype(std::declval<T&>().foo());

template<class T>
using can_dot_foo = can_apply< dot_foo_r, T >; // Is T.foo() well formed for T?

which seems simpler than the original versions.

There are post-C++17 proposals for std traits similar to can_apply.

The utility of void_t was discovered by Walter Brown. He gave a wonderful presentation on it at CppCon 2016.

Section 103.3: enable_if
std::enable_if is a convenient utility to use boolean conditions to trigger SFINAE. It is defined as:

template <bool Cond, typename Result=void>
struct enable_if { };

template <typename Result>
struct enable_if<true, Result> {
 using type = Result;
};

That is, enable_if<true, R>::type is an alias for R, whereas enable_if<false, T>::type is ill-formed as that
specialization of enable_if does not have a type member type.

std::enable_if can be used to constrain templates:

int negate(int i) { return -i; }

template <class F>
auto negate(F f) { return -f(); }

Here, a call to negate(1) would fail due to ambiguity. But the second overload is not intended to be used for
integral types, so we can add:

int negate(int i) { return -i; }

template <class F, class = typename std::enable_if<!std::is_arithmetic<F>::value>::type>
auto negate(F f) { return -f(); }

Now, instantiating negate<int> would result in a substitution failure since !std::is_arithmetic<int>::value is
false. Due to SFINAE, this is not a hard error, this candidate is simply removed from the overload set. As a result,
negate(1) only has one single viable candidate - which is then called.

When to use it

It's worth keeping in mind that std::enable_if is a helper on top of SFINAE, but it's not what makes SFINAE work in
the first place. Let's consider these two alternatives for implementing functionality similar to std::size, i.e. an
overload set size(arg) that produces the size of a container or array:

// for containers
template<typename Cont>
auto size1(Cont const& cont) -> decltype(cont.size());

https://youtu.be/a0FliKwcwXE?t=1747

C++ Notes for Professionals 515

// for arrays
template<typename Elt, std::size_t Size>
std::size_t size1(Elt const(&arr)[Size]);

// implementation omitted
template<typename Cont>
struct is_sizeable;

// for containers
template<typename Cont, std::enable_if_t<std::is_sizeable<Cont>::value, int> = 0>
auto size2(Cont const& cont);

// for arrays
template<typename Elt, std::size_t Size>
std::size_t size2(Elt const(&arr)[Size]);

Assuming that is_sizeable is written appropriately, these two declarations should be exactly equivalent with
respect to SFINAE. Which is the easiest to write, and which is the easiest to review and understand at a glance?

Now let's consider how we might want to implement arithmetic helpers that avoid signed integer overflow in favour
of wrap around or modular behaviour. Which is to say that e.g. incr(i, 3) would be the same as i += 3 save for
the fact that the result would always be defined even if i is an int with value INT_MAX. These are two possible
alternatives:

// handle signed types
template<typename Int>
auto incr1(Int& target, Int amount)
-> std::void_t<int[static_cast<Int>(-1) < static_cast<Int>(0)]>;

// handle unsigned types by just doing target += amount
// since unsigned arithmetic already behaves as intended
template<typename Int>
auto incr1(Int& target, Int amount)
-> std::void_t<int[static_cast<Int>(0) < static_cast<Int>(-1)]>;

template<typename Int, std::enable_if_t<std::is_signed<Int>::value, int> = 0>
void incr2(Int& target, Int amount);

template<typename Int, std::enable_if_t<std::is_unsigned<Int>::value, int> = 0>
void incr2(Int& target, Int amount);

Once again which is the easiest to write, and which is the easiest to review and understand at a glance?

A strength of std::enable_if is how it plays with refactoring and API design. If is_sizeable<Cont>::value is
meant to reflect whether cont.size() is valid then just using the expression as it appears for size1 can be more
concise, although that could depend on whether is_sizeable would be used in several places or not. Contrast that
with std::is_signed which reflects its intention much more clearly than when its implementation leaks into the
declaration of incr1.

Section 103.4: is_detected
To generalize type_trait creation:based on SFINAE there are experimental traits detected_or, detected_t,
is_detected.

With template parameters typename Default, template <typename...> Op and typename ... Args:

is_detected: alias of std::true_type or std::false_type depending of the validity of Op<Args...>
detected_t: alias of Op<Args...> or nonesuch depending of validity of Op<Args...>.

C++ Notes for Professionals 516

detected_or: alias of a struct with value_t which is is_detected, and type which is Op<Args...> or Default
depending of validity of Op<Args...>

which can be implemented using std::void_t for SFINAE as following:

Version ≥ C++17

namespace detail {
 template <class Default, class AlwaysVoid,
 template<class...> class Op, class... Args>
 struct detector
 {
 using value_t = std::false_type;
 using type = Default;
 };

 template <class Default, template<class...> class Op, class... Args>
 struct detector<Default, std::void_t<Op<Args...>>, Op, Args...>
 {
 using value_t = std::true_type;
 using type = Op<Args...>;
 };

} // namespace detail

// special type to indicate detection failure
struct nonesuch {
 nonesuch() = delete;
 ~nonesuch() = delete;
 nonesuch(nonesuch const&) = delete;
 void operator=(nonesuch const&) = delete;
};

template <template<class...> class Op, class... Args>
using is_detected =
 typename detail::detector<nonesuch, void, Op, Args...>::value_t;

template <template<class...> class Op, class... Args>
using detected_t = typename detail::detector<nonesuch, void, Op, Args...>::type;

template <class Default, template<class...> class Op, class... Args>
using detected_or = detail::detector<Default, void, Op, Args...>;

Traits to detect presence of method can then be simply implemented:

typename <typename T, typename ...Ts>
using foo_type = decltype(std::declval<T>().foo(std::declval<Ts>()...));

struct C1 {};

struct C2 {
 int foo(char) const;
};

template <typename T>
using has_foo_char = is_detected<foo_type, T, char>;

static_assert(!has_foo_char<C1>::value, "Unexpected");
static_assert(has_foo_char<C2>::value, "Unexpected");

static_assert(std::is_same<int, detected_t<foo_type, C2, char>>::value,
 "Unexpected");

C++ Notes for Professionals 517

static_assert(std::is_same<void, // Default
 detected_or<void, foo_type, C1, char>>::value,
 "Unexpected");
static_assert(std::is_same<int, detected_or<void, foo_type, C2, char>>::value,
 "Unexpected");

Section 103.5: Overload resolution with a large number of
options
If you need to select between several options, enabling just one via enable_if<> can be quite cumbersome, since
several conditions needs to be negated too.

The ordering between overloads can instead be selected using inheritance, i.e. tag dispatch.

Instead of testing for the thing that needs to be well-formed, and also testing the negation of all the other versions
conditions, we instead test just for what we need, preferably in a decltype in a trailing return.
This might leave several option well formed, we differentiate between those using 'tags', similar to iterator-trait tags
(random_access_tag et al). This works because a direct match is better that a base class, which is better that a base
class of a base class, etc.

#include <algorithm>
#include <iterator>

namespace detail
{
 // this gives us infinite types, that inherit from each other
 template<std::size_t N>
 struct pick : pick<N-1> {};
 template<>
 struct pick<0> {};

 // the overload we want to be preferred have a higher N in pick<N>
 // this is the first helper template function
 template<typename T>
 auto stable_sort(T& t, pick<2>)
 -> decltype(t.stable_sort(), void())
 {
 // if the container have a member stable_sort, use that
 t.stable_sort();
 }

 // this helper will be second best match
 template<typename T>
 auto stable_sort(T& t, pick<1>)
 -> decltype(t.sort(), void())
 {
 // if the container have a member sort, but no member stable_sort
 // it's customary that the sort member is stable
 t.sort();
 }

 // this helper will be picked last
 template<typename T>
 auto stable_sort(T& t, pick<0>)
 -> decltype(std::stable_sort(std::begin(t), std::end(t)), void())
 {
 // the container have neither a member sort, nor member stable_sort
 std::stable_sort(std::begin(t), std::end(t));
 }

C++ Notes for Professionals 518

}

// this is the function the user calls. it will dispatch the call
// to the correct implementation with the help of 'tags'.
template<typename T>
void stable_sort(T& t)
{
 // use an N that is higher that any used above.
 // this will pick the highest overload that is well formed.
 detail::stable_sort(t, detail::pick<10>{});
}

There are other methods commonly used to differentiate between overloads, such as exact match being better
than conversion, being better than ellipsis.

However, tag-dispatch can extend to any number of choices, and is a bit more clear in intent.

Section 103.6: trailing decltype in function templates
Version ≥ C++11

One of constraining function is to use trailing decltype to specify the return type:

namespace details {
 using std::to_string;

 // this one is constrained on being able to call to_string(T)
 template <class T>
 auto convert_to_string(T const& val, int)
 -> decltype(to_string(val))
 {
 return to_string(val);
 }

 // this one is unconstrained, but less preferred due to the ellipsis argument
 template <class T>
 std::string convert_to_string(T const& val, ...)
 {
 std::ostringstream oss;
 oss << val;
 return oss.str();
 }
}

template <class T>
std::string convert_to_string(T const& val)
{
 return details::convert_to_string(val, 0);
}

If I call convert_to_string() with an argument with which I can invoke to_string(), then I have two viable
functions for details::convert_to_string(). The first is preferred since the conversion from 0 to int is a better
implicit conversion sequence than the conversion from 0 to ...

If I call convert_to_string() with an argument from which I cannot invoke to_string(), then the first function
template instantiation leads to substitution failure (there is no decltype(to_string(val))). As a result, that
candidate is removed from the overload set. The second function template is unconstrained, so it is selected and
we instead go through operator<<(std::ostream&, T). If that one is undefined, then we have a hard compile error
with a template stack on the line oss << val.

C++ Notes for Professionals 519

Section 103.7: enable_if_all / enable_if_any
Version ≥ C++11

Motivational example

When you have a variadic template pack in the template parameters list, like in the following code snippet:

template<typename ...Args> void func(Args &&...args) { //... };

The standard library (prior to C++17) offers no direct way to write enable_if to impose SFINAE constraints on all of
the parameters in Args or any of the parameters in Args. C++17 offers std::conjunction and std::disjunction
which solve this problem. For example:

/// C++17: SFINAE constraints on all of the parameters in Args.
template<typename ...Args,
 std::enable_if_t<std::conjunction_v<custom_conditions_v<Args>...>>* = nullptr>
void func(Args &&...args) { //... };

/// C++17: SFINAE constraints on any of the parameters in Args.
template<typename ...Args,
 std::enable_if_t<std::disjunction_v<custom_conditions_v<Args>...>>* = nullptr>
void func(Args &&...args) { //... };

If you do not have C++17 available, there are several solutions to achieve these. One of them is to use a base-case
class and partial specializations, as demonstrated in answers of this question.

Alternatively, one may also implement by hand the behavior of std::conjunction and std::disjunction in a
rather straight-forward way. In the following example I'll demonstrate the implementations and combine them with
std::enable_if to produce two alias: enable_if_all and enable_if_any, which do exactly what they are supposed
to semantically. This may provide a more scalable solution.

Implementation of enable_if_all and enable_if_any

First let's emulate std::conjunction and std::disjunction using customized seq_and and seq_or respectively:

/// Helper for prior to C++14.
template<bool B, class T, class F >
using conditional_t = typename std::conditional<B,T,F>::type;

/// Emulate C++17 std::conjunction.
template<bool...> struct seq_or: std::false_type {};
template<bool...> struct seq_and: std::true_type {};

template<bool B1, bool... Bs>
struct seq_or<B1,Bs...>:
 conditional_t<B1,std::true_type,seq_or<Bs...>> {};

template<bool B1, bool... Bs>
struct seq_and<B1,Bs...>:
 conditional_t<B1,seq_and<Bs...>,std::false_type> {};

Then the implementation is quite straight-forward:

template<bool... Bs>
using enable_if_any = std::enable_if<seq_or<Bs...>::value>;

template<bool... Bs>

http://en.cppreference.com/w/cpp/types/conjunction
http://en.cppreference.com/w/cpp/types/conjunction
http://en.cppreference.com/w/cpp/types/conjunction
http://en.cppreference.com/w/cpp/types/disjunction
http://en.cppreference.com/w/cpp/types/disjunction
http://en.cppreference.com/w/cpp/types/disjunction
http://stackoverflow.com/questions/26421104/how-do-i-enable-if-a-class-with-variadic-template-arguments

C++ Notes for Professionals 520

using enable_if_all = std::enable_if<seq_and<Bs...>::value>;

Eventually some helpers:

template<bool... Bs>
using enable_if_any_t = typename enable_if_any<Bs...>::type;

template<bool... Bs>
using enable_if_all_t = typename enable_if_all<Bs...>::type;

Usage

The usage is also straight-forward:

 /// SFINAE constraints on all of the parameters in Args.
 template<typename ...Args,
 enable_if_all_t<custom_conditions_v<Args>...>* = nullptr>
 void func(Args &&...args) { //... };

 /// SFINAE constraints on any of the parameters in Args.
 template<typename ...Args,
 enable_if_any_t<custom_conditions_v<Args>...>* = nullptr>
 void func(Args &&...args) { //... };

C++ Notes for Professionals 521

Chapter 104: Undefined Behavior
What is undefined behavior (UB)? According to the ISO C++ Standard (§1.3.24, N4296), it is "behavior for which this
International Standard imposes no requirements."

This means that when a program encounters UB, it is allowed to do whatever it wants. This often means a crash,
but it may simply do nothing, make demons fly out of your nose, or even appear to work properly!

Needless to say, you should avoid writing code that invokes UB.

Section 104.1: Reading or writing through a null pointer
int *ptr = nullptr;
*ptr = 1; // Undefined behavior

This is undefined behavior, because a null pointer does not point to any valid object, so there is no object at *ptr
to write to.

Although this most often causes a segmentation fault, it is undefined and anything can happen.

Section 104.2: Using an uninitialized local variable
int a;
std::cout << a; // Undefined behavior!

This results in undefined behavior, because a is uninitialised.

It is often, incorrectly, claimed that this is because the value is "indeterminate", or "whatever value was in that
memory location before". However, it is the act of accessing the value of a in the above example that gives
undefined behaviour. In practice, printing a "garbage value" is a common symptom in this case, but that is only one
possible form of undefined behaviour.

Although highly unlikely in practice (since it is reliant on specific hardware support) the compiler could equally well
electrocute the programmer when compiling the code sample above. With such a compiler and hardware support,
such a response to undefined behaviour would markedly increase average (living) programmer understanding of
the true meaning of undefined behaviour - which is that the standard places no constraint on the resultant
behaviour.

Version ≥ C++14

Using an indeterminate value of unsigned char type does not produce undefined behavior if the value is used as:

the second or third operand of the ternary conditional operator;
the right operand of the built-in comma operator;
the operand of a conversion to unsigned char;
the right operand of the assignment operator, if the left operand is also of type unsigned char;
the initializer for an unsigned char object;

or if the value is discarded. In such cases, the indeterminate value simply propagates to the result of the
expression, if applicable.

Note that a static variable is always zero-initialized (if possible):

http://catb.org/jargon/html/N/nasal-demons.html

C++ Notes for Professionals 522

static int a;
std::cout << a; // Defined behavior, 'a' is 0

Section 104.3: Accessing an out-of-bounds index
It is undefined behavior to access an index that is out of bounds for an array (or standard library container for that
matter, as they are all implemented using a raw array):

 int array[] = {1, 2, 3, 4, 5};
 array[5] = 0; // Undefined behavior

It is allowed to have a pointer pointing to the end of the array (in this case array + 5), you just can't dereference it,
as it is not a valid element.

 const int *end = array + 5; // Pointer to one past the last index
 for (int *p = array; p != end; ++p)
 // Do something with `p`

In general, you're not allowed to create an out-of-bounds pointer. A pointer must point to an element within the
array, or one past the end.

Section 104.4: Deleting a derived object via a pointer to a
base class that doesn't have a virtual destructor
class base { };
class derived: public base { };

int main() {
 base* p = new derived();
 delete p; // The is undefined behavior!
}

In section [expr.delete] §5.3.5/3 the standard says that if delete is called on an object whose static type does not
have a virtual destructor:

if the static type of the object to be deleted is different from its dynamic type, the static type shall be a
base class of the dynamic type of the object to be deleted and the static type shall have a virtual
destructor or the behavior is undefined.

This is the case regardless of the question whether the derived class added any data members to the base class.

Section 104.5: Extending the `std` or `posix` Namespace
The standard (17.6.4.2.1/1) generally forbids extending the std namespace:

The behavior of a C++ program is undefined if it adds declarations or definitions to namespace std or to a
namespace within namespace std unless otherwise specified.

The same goes for posix (17.6.4.2.2/1):

https://isocpp.org/files/papers/N3690.pdf

C++ Notes for Professionals 523

The behavior of a C++ program is undefined if it adds declarations or definitions to namespace posix or
to a namespace within namespace posix unless otherwise specified.

Consider the following:

#include <algorithm>

namespace std
{
 int foo(){}
}

Nothing in the standard forbids algorithm (or one of the headers it includes) defining the same definition, and so
this code would violate the One Definition Rule.

So, in general, this is forbidden. There are specific exceptions allowed, though. Perhaps most usefully, it is allowed
to add specializations for user defined types. So, for example, suppose your code has

class foo
{
 // Stuff
};

Then the following is fine

namespace std
{
 template<>
 struct hash<foo>
 {
 public:
 size_t operator()(const foo &f) const;
 };
}

Section 104.6: Invalid pointer arithmetic
The following uses of pointer arithmetic cause undefined behavior:

Addition or subtraction of an integer, if the result does not belong to the same array object as the pointer
operand. (Here, the element one past the end is considered to still belong to the array.)

int a[10];
int* p1 = &a[5];
int* p2 = p1 + 4; // ok; p2 points to a[9]
int* p3 = p1 + 5; // ok; p2 points to one past the end of a
int* p4 = p1 + 6; // UB
int* p5 = p1 - 5; // ok; p2 points to a[0]
int* p6 = p1 - 6; // UB
int* p7 = p3 - 5; // ok; p7 points to a[5]

Subtraction of two pointers if they do not both belong to the same array object. (Again, the element one past
the end is considered to belong to the array.) The exception is that two null pointers may be subtracted,
yielding 0.

https://en.wikipedia.org/wiki/One_Definition_Rule
http://en.cppreference.com/w/cpp/language/extending_std

C++ Notes for Professionals 524

int a[10];
int b[10];
int *p1 = &a[8], *p2 = &a[3];
int d1 = p1 - p2; // yields 5
int *p3 = p1 + 2; // ok; p3 points to one past the end of a
int d2 = p3 - p2; // yields 7
int *p4 = &b[0];
int d3 = p4 - p1; // UB

Subtraction of two pointers if the result overflows std::ptrdiff_t.

Any pointer arithmetic where either operand's pointee type does not match the dynamic type of the object
pointed to (ignoring cv-qualification). According to the standard, "[in] particular, a pointer to a base class
cannot be used for pointer arithmetic when the array contains objects of a derived class type."

struct Base { int x; };
struct Derived : Base { int y; };
Derived a[10];
Base* p1 = &a[1]; // ok
Base* p2 = p1 + 1; // UB; p1 points to Derived
Base* p3 = p1 - 1; // likewise
Base* p4 = &a[2]; // ok
auto p5 = p4 - p1; // UB; p4 and p1 point to Derived
const Derived* p6 = &a[1];
const Derived* p7 = p6 + 1; // ok; cv-qualifiers don't matter

Section 104.7: No return statement for a function with a non-
void return type
Omitting the return statement in a function which is has a return type that is not void is undefined behavior.

int function() {
 // Missing return statement
}

int main() {
 function(); //Undefined Behavior
}

Most modern day compilers emit a warning at compile time for this kind of undefined behavior.

Note: main is the only exception to the rule. If main doesn't have a return statement, the compiler automatically
inserts return 0; for you, so it can be safely left out.

Section 104.8: Accessing a dangling reference
It is illegal to access a reference to an object that has gone out of scope or been otherwise destroyed. Such a
reference is said to be dangling since it no longer refers to a valid object.

#include <iostream>
int& getX() {
 int x = 42;
 return x;
}
int main() {
 int& r = getX();

C++ Notes for Professionals 525

 std::cout << r << "\n";
}

In this example, the local variable x goes out of scope when getX returns. (Note that lifetime extension cannot
extend the lifetime of a local variable past the scope of the block in which it is defined.) Therefore r is a dangling
reference. This program has undefined behavior, although it may appear to work and print 42 in some cases.

Section 104.9: Integer division by zero
int x = 5 / 0; // Undefined behavior

Division by 0 is mathematically undefined, and as such it makes sense that this is undefined behavior.

However:

float x = 5.0f / 0.0f; // x is +infinity

Most implementation implement IEEE-754, which defines floating point division by zero to return NaN (if numerator
is 0.0f), infinity (if numerator is positive) or -infinity (if numerator is negative).

Section 104.10: Shifting by an invalid number of positions
For the built-in shift operator, the right operand must be nonnegative and strictly less than the bit width of the
promoted left operand. Otherwise, the behavior is undefined.

const int a = 42;
const int b = a << -1; // UB
const int c = a << 0; // ok
const int d = a << 32; // UB if int is 32 bits or less
const int e = a >> 32; // also UB if int is 32 bits or less
const signed char f = 'x';
const int g = f << 10; // ok even if signed char is 10 bits or less;
 // int must be at least 16 bits

Section 104.11: Incorrect pairing of memory allocation and
deallocation
An object can only be deallocated by delete if it was allocated by new and is not an array. If the argument to delete
was not returned by new or is an array, the behavior is undefined.

An object can only be deallocated by delete[] if it was allocated by new and is an array. If the argument to delete[]
was not returned by new or is not an array, the behavior is undefined.

If the argument to free was not returned by malloc, the behavior is undefined.

int* p1 = new int;
delete p1; // correct
// delete[] p1; // undefined
// free(p1); // undefined

int* p2 = new int[10];
delete[] p2; // correct
// delete p2; // undefined
// free(p2); // undefined

int* p3 = static_cast<int*>(malloc(sizeof(int)));

C++ Notes for Professionals 526

free(p3); // correct
// delete p3; // undefined
// delete[] p3; // undefined

Such issues can be avoided by completely avoiding malloc and free in C++ programs, preferring the standard
library smart pointers over raw new and delete, and preferring std::vector and std::string over raw new and
delete[].

Section 104.12: Signed Integer Overflow
int x = INT_MAX + 1;

// x can be anything -> Undefined behavior

If during the evaluation of an expression, the result is not mathematically defined or not in the range of
representable values for its type, the behavior is undefined.

(C++11 Standard paragraph 5/4)

This is one of the more nasty ones, as it usually yields reproducible, non-crashing behavior so developers may be
tempted to rely heavily on the observed behavior.

On the other hand:

unsigned int x = UINT_MAX + 1;

// x is 0

is well defined since:

Unsigned integers, declared unsigned, shall obey the laws of arithmetic modulo 2^n where n is the
number of bits in the value representation of that particular size of integer.

(C++11 Standard paragraph 3.9.1/4)

Sometimes compilers may exploit an undefined behavior and optimize

signed int x ;
if(x > x + 1)
{
 //do something
}

Here since a signed integer overflow is not defined, compiler is free to assume that it may never happen and hence
it can optimize away the "if" block

Section 104.13: Multiple non-identical definitions (the One
Definition Rule)
If a class, enum, inline function, template, or member of a template has external linkage and is defined in multiple
translation units, all definitions must be identical or the behavior is undefined according to the One Definition Rule
(ODR).

https://en.wikipedia.org/wiki/One_Definition_Rule
https://en.wikipedia.org/wiki/One_Definition_Rule

C++ Notes for Professionals 527

foo.h:

class Foo {
 public:
 double x;
 private:
 int y;
};

Foo get_foo();

foo.cpp:

#include "foo.h"
Foo get_foo() { /* implementation */ }

main.cpp:

// I want access to the private member, so I am going to replace Foo with my own type
class Foo {
 public:
 double x;
 int y;
};
Foo get_foo(); // declare this function ourselves since we aren't including foo.h
int main() {
 Foo foo = get_foo();
 // do something with foo.y
}

The above program exhibits undefined behavior because it contains two definitions of the class ::Foo, which has
external linkage, in different translation units, but the two definitions are not identical. Unlike redefinition of a class
within the same translation unit, this problem is not required to be diagnosed by the compiler.

Section 104.14: Modifying a const object
Any attempt to modify a const object results in undefined behavior. This applies to const variables, members of
const objects, and class members declared const. (However, a mutable member of a const object is not const.)

Such an attempt can be made through const_cast:

const int x = 123;
const_cast<int&>(x) = 456;
std::cout << x << '\n';

A compiler will usually inline the value of a const int object, so it's possible that this code compiles and prints 123.
Compilers can also place const objects' values in read-only memory, so a segmentation fault may occur. In any
case, the behavior is undefined and the program might do anything.

The following program conceals a far more subtle error:

#include <iostream>

class Foo* instance;

class Foo {
 public:

C++ Notes for Professionals 528

 int get_x() const { return m_x; }
 void set_x(int x) { m_x = x; }
 private:
 Foo(int x, Foo*& this_ref): m_x(x) {
 this_ref = this;
 }
 int m_x;
 friend const Foo& getFoo();
};

const Foo& getFoo() {
 static const Foo foo(123, instance);
 return foo;
}

void do_evil(int x) {
 instance->set_x(x);
}

int main() {
 const Foo& foo = getFoo();
 do_evil(456);
 std::cout << foo.get_x() << '\n';
}

In this code, getFoo creates a singleton of type const Foo and its member m_x is initialized to 123. Then do_evil is
called and the value of foo.m_x is apparently changed to 456. What went wrong?

Despite its name, do_evil does nothing particularly evil; all it does is call a setter through a Foo*. But that pointer
points to a const Foo object even though const_cast was not used. This pointer was obtained through Foo's
constructor. A const object does not become const until its initialization is complete, so this has type Foo*, not
const Foo*, within the constructor.

Therefore, undefined behavior occurs even though there are no obviously dangerous constructs in this program.

Section 104.15: Returning from a [[noreturn]] function
Version ≥ C++11

Example from the Standard, [dcl.attr.noreturn]:

[[noreturn]] void f() {
 throw "error"; // OK
}
[[noreturn]] void q(int i) { // behavior is undefined if called with an argument <= 0
 if (i > 0)
 throw "positive";
}

Section 104.16: Infinite template recursion
Example from the Standard, [temp.inst]/17:

template<class T> class X {
 X<T>* p; // OK
 X<T*> a; // implicit generation of X<T> requires
 // the implicit instantiation of X<T*> which requires
 // the implicit instantiation of X<T**> which ...

C++ Notes for Professionals 529

};

Section 104.17: Overflow during conversion to or from
floating point type
If, during the conversion of:

an integer type to a floating point type,
a floating point type to an integer type, or
a floating point type to a shorter floating point type,

the source value is outside the range of values that can be represented in the destination type, the result is
undefined behavior. Example:

double x = 1e100;
int y = x; // int probably cannot hold numbers that large, so this is UB

Section 104.18: Modifying a string literal
Version < C++11

char *str = "hello world";
str[0] = 'H';

"hello world" is a string literal, so modifying it gives undefined behaviour.

The initialisation of str in the above example was formally deprecated (scheduled for removal from a future
version of the standard) in C++03. A number of compilers before 2003 might issue a warning about this (e.g. a
suspicious conversion). After 2003, compilers typically warn about a deprecated conversion.

Version ≥ C++11

The above example is illegal, and results in a compiler diagnostic, in C++11 and later. A similar example may be
constructed to exhibit undefined behaviour by explicitly permitting the type conversion, such as:

char *str = const_cast<char *>("hello world");
str[0] = 'H';

Section 104.19: Accessing an object as the wrong type
In most cases, it is illegal to access an object of one type as though it were a different type (disregarding cv-
qualifiers). Example:

float x = 42;
int y = reinterpret_cast<int&>(x);

The result is undefined behavior.

There are some exceptions to this strict aliasing rule:

An object of class type can be accessed as though it were of a type that is a base class of the actual class type.
Any type can be accessed as a char or unsigned char, but the reverse is not true: a char array cannot be
accessed as though it were an arbitrary type.
A signed integer type can be accessed as the corresponding unsigned type and vice versa.

C++ Notes for Professionals 530

A related rule is that if a non-static member function is called on an object that does not actually have the same
type as the defining class of the function, or a derived class, then undefined behavior occurs. This is true even if the
function does not access the object.

struct Base {
};
struct Derived : Base {
 void f() {}
};
struct Unrelated {};
Unrelated u;
Derived& r1 = reinterpret_cast<Derived&>(u); // ok
r1.f(); // UB
Base b;
Derived& r2 = reinterpret_cast<Derived&>(b); // ok
r2.f(); // UB

Section 104.20: Invalid derived-to-base conversion for
pointers to members
When static_cast is used to convert T D::* to T B::*, the member pointed to must belong to a class that is a
base class or derived class of B. Otherwise the behavior is undefined. See Derived to base conversion for pointers
to members

Section 104.21: Destroying an object that has already been
destroyed
In this example, a destructor is explicitly invoked for an object that will later be automatically destroyed.

struct S {
 ~S() { std::cout << "destroying S\n"; }
};
int main() {
 S s;
 s.~S();
} // UB: s destroyed a second time here

A similar issue occurs when a std::unique_ptr<T> is made to point at a T with automatic or static storage duration.

void f(std::unique_ptr<S> p);
int main() {
 S s;
 std::unique_ptr<S> p(&s);
 f(std::move(p)); // s destroyed upon return from f
} // UB: s destroyed

Another way to destroy an object twice is by having two shared_ptrs both manage the object without sharing
ownership with each other.

void f(std::shared_ptr<S> p1, std::shared_ptr<S> p2);
int main() {
 S* p = new S;
 // I want to pass the same object twice...
 std::shared_ptr<S> sp1(p);
 std::shared_ptr<S> sp2(p);
 f(sp1, sp2);
} // UB: both sp1 and sp2 will destroy s separately

C++ Notes for Professionals 531

// NB: this is correct:
// std::shared_ptr<S> sp(p);
// f(sp, sp);

Section 104.22: Access to nonexistent member through
pointer to member
When accessing a non-static member of an object through a pointer to member, if the object does not actually
contain the member denoted by the pointer, the behavior is undefined. (Such a pointer to member can be obtained
through static_cast.)

struct Base { int x; };
struct Derived : Base { int y; };
int Derived::*pdy = &Derived::y;
int Base::*pby = static_cast<int Base::*>(pdy);

Base* b1 = new Derived;
b1->*pby = 42; // ok; sets y in Derived object to 42
Base* b2 = new Base;
b2->*pby = 42; // undefined; there is no y member in Base

Section 104.23: Invalid base-to-derived static cast
If static_cast is used to convert a pointer (resp. reference) to base class to a pointer (resp. reference) to derived
class, but the operand does not point (resp. refer) to an object of the derived class type, the behavior is undefined.
See Base to derived conversion.

Section 104.24: Floating point overflow
If an arithmetic operation that yields a floating point type produces a value that is not in the range of representable
values of the result type, the behavior is undefined according to the C++ standard, but may be defined by other
standards the machine might conform to, such as IEEE 754.

float x = 1.0;
for (int i = 0; i < 10000; i++) {
 x *= 10.0; // will probably overflow eventually; undefined behavior
}

Section 104.25: Calling (Pure) Virtual Members From
Constructor Or Destructor
The Standard (10.4) states:

Member functions can be called from a constructor (or destructor) of an abstract class; the effect of
making a virtual call (10.3) to a pure virtual function directly or indirectly for the object being created (or
destroyed) from such a constructor (or destructor) is undefined.

More generally, some C++ authorities, e.g. Scott Meyers, suggest never calling virtual functions (even non-pure
ones) from constructors and dstructors.

Consider the following example, modified from the above link:

class transaction

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4527.pdf
http://www.artima.com/cppsource/nevercall.html

C++ Notes for Professionals 532

{
public:
 transaction(){ log_it(); }
 virtual void log_it() const = 0;
};

class sell_transaction : public transaction
{
public:
 virtual void log_it() const { /* Do something */ }
};

Suppose we create a sell_transaction object:

sell_transaction s;

This implicitly calls the constructor of sell_transaction, which first calls the constructor of transaction. When the
constructor of transaction is called though, the object is not yet of the type sell_transaction, but rather only of
the type transaction.

Consequently, the call in transaction::transaction() to log_it, won't do what might seem to be the intuitive
thing - namely call sell_transaction::log_it.

If log_it is pure virtual, as in this example, the behaviour is undefined.

If log_it is non-pure virtual, transaction::log_it will be called.

Section 104.26: Function call through mismatched function
pointer type
In order to call a function through a function pointer, the function pointer's type must exactly match the function's
type. Otherwise, the behaviour is undefined. Example:

int f();
void (*p)() = reinterpret_cast<void(*)()>(f);
p(); // undefined

C++ Notes for Professionals 533

Chapter 105: Overload resolution
Section 105.1: Categorization of argument to parameter cost
Overload resolution partitions the cost of passing an argument to a parameter into one of four different
categorizes, called "sequences". Each sequence may include zero, one or several conversions

Standard conversion sequence

void f(int a); f(42);

User defined conversion sequence

void f(std::string s); f("hello");

Ellipsis conversion sequence

void f(...); f(42);

List initialization sequence

void f(std::vector<int> v); f({1, 2, 3});

The general principle is that Standard conversion sequences are the cheapest, followed by user defined conversion
sequences, followed by ellipsis conversion sequences.

A special case is the list initialization sequence, which does not constitute a conversion (an initializer list is not an
expression with a type). Its cost is determined by defining it to be equivalent to one of the other three conversion
sequences, depending on the parameter type and form of initializer list.

Section 105.2: Arithmetic promotions and conversions
Converting an integer type to the corresponding promoted type is better than converting it to some other integer
type.

void f(int x);
void f(short x);
signed char c = 42;
f(c); // calls f(int); promotion to int is better than conversion to short
short s = 42;
f(s); // calls f(short); exact match is better than promotion to int

Promoting a float to double is better than converting it to some other floating point type.

void f(double x);
void f(long double x);
f(3.14f); // calls f(double); promotion to double is better than conversion to long double

Arithmetic conversions other than promotions are neither better nor worse than each other.

void f(float x);
void f(long double x);
f(3.14); // ambiguous

C++ Notes for Professionals 534

void g(long x);
void g(long double x);
g(42); // ambiguous
g(3.14); // ambiguous

Therefore, in order to ensure that there will be no ambiguity when calling a function f with either integral or
floating-point arguments of any standard type, a total of eight overloads are needed, so that for each possible
argument type, either an overload matches exactly or the unique overload with the promoted argument type will
be selected.

void f(int x);
void f(unsigned int x);
void f(long x);
void f(unsigned long x);
void f(long long x);
void f(unsigned long long x);
void f(double x);
void f(long double x);

Section 105.3: Overloading on Forwarding Reference
You must be very careful when providing a forwarding reference overload as it may match too well:

struct A {
 A() = default; // #1
 A(A const&) = default; // #2

 template <class T>
 A(T&&); // #3
};

The intent here was that A is copyable, and that we have this other constructor that might initialize some other
member. However:

A a; // calls #1
A b(a); // calls #3!

There are two viable matches for the construction call:

A(A const&); // #2
A(A&); // #3, with T = A&

Both are Exact Matches, but #3 takes a reference to a less cv-qualified object than #2 does, so it has the better
standard conversion sequence and is the best viable function.

The solution here is to always constrain these constructors (e.g. using SFINAE):

template <class T,
 class = std::enable_if_t<!std::is_convertible<std::decay_t<T>*, A*>::value>
 >
A(T&&);

The type trait here is to exclude any A or class publicly and unambiguously derived from A from consideration,
which would make this constructor ill-formed in the example described earlier (and hence removed from the
overload set). As a result, the copy constructor is invoked - which is what we wanted.

C++ Notes for Professionals 535

Section 105.4: Exact match
An overload without conversions needed for parameter types or only conversions needed between types that are
still considered exact matches is preferred over an overload that requires other conversions in order to call.

void f(int x);
void f(double x);
f(42); // calls f(int)

When an argument binds to a reference to the same type, the match is considered to not require a conversion even
if the reference is more cv-qualified.

void f(int& x);
void f(double x);
int x = 42;
f(x); // argument type is int; exact match with int&

void g(const int& x);
void g(int x);
g(x); // ambiguous; both overloads give exact match

For the purposes of overload resolution, the type "array of T" is considered to match exactly with the type "pointer
to T", and the function type T is considered to match exactly with the function pointer type T*, even though both
require conversions.

void f(int* p);
void f(void* p);

void g(int* p);
void g(int (&p)[100]);

int a[100];
f(a); // calls f(int*); exact match with array-to-pointer conversion
g(a); // ambiguous; both overloads give exact match

Section 105.5: Overloading on constness and volatility
Passing a pointer argument to a T* parameter, if possible, is better than passing it to a const T* parameter.

struct Base {};
struct Derived : Base {};
void f(Base* pb);
void f(const Base* pb);
void f(const Derived* pd);
void f(bool b);

Base b;
f(&b); // f(Base*) is better than f(const Base*)
Derived d;
f(&d); // f(const Derived*) is better than f(Base*) though;
 // constness is only a "tie-breaker" rule

Likewise, passing an argument to a T& parameter, if possible, is better than passing it to a const T& parameter,
even if both have exact match rank.

void f(int& r);
void f(const int& r);

C++ Notes for Professionals 536

int x;
f(x); // both overloads match exactly, but f(int&) is still better
const int y = 42;
f(y); // only f(const int&) is viable

This rule applies to const-qualified member functions as well, where it is important for allowing mutable access to
non-const objects and immutable access to const objects.

class IntVector {
 public:
 // ...
 int* data() { return m_data; }
 const int* data() const { return m_data; }
 private:
 // ...
 int* m_data;
};
IntVector v1;
int* data1 = v1.data(); // Vector::data() is better than Vector::data() const;
 // data1 can be used to modify the vector's data
const IntVector v2;
const int* data2 = v2.data(); // only Vector::data() const is viable;
 // data2 can't be used to modify the vector's data

In the same way, a volatile overload will be less preferred than a non-volatile overload.

class AtomicInt {
 public:
 // ...
 int load();
 int load() volatile;
 private:
 // ...
};
AtomicInt a1;
a1.load(); // non-volatile overload preferred; no side effect
volatile AtomicInt a2;
a2.load(); // only volatile overload is viable; side effect
static_cast<volatile AtomicInt&>(a1).load(); // force volatile semantics for a1

Section 105.6: Name lookup and access checking
Overload resolution occurs after name lookup. This means that a better-matching function will not be selected by
overload resolution if it loses name lookup:

void f(int x);
struct S {
 void f(double x);
 void g() { f(42); } // calls S::f because global f is not visible here,
 // even though it would be a better match
};

Overload resolution occurs before access checking. An inaccessible function might be selected by overload
resolution if it is a better match than an accessible function.

class C {
 public:
 static void f(double x);

C++ Notes for Professionals 537

 private:
 static void f(int x);
};
C::f(42); // Error! Calls private C::f(int) even though public C::f(double) is viable.

Similarly, overload resolution happens without checking whether the resulting call is well-formed with regards to
explicit:

struct X {
 explicit X(int);
 X(char);
};

void foo(X);
foo({4}); // X(int) is better much, but expression is
 // ill-formed because selected constructor is explicit

Section 105.7: Overloading within a class hierarchy
The following examples will use this class hierarchy:

struct A { int m; };
struct B : A {};
struct C : B {};

The conversion from derived class type to base class type is preferred to user-defined conversions. This applies
when passing by value or by reference, as well as when converting pointer-to-derived to pointer-to-base.

struct Unrelated {
 Unrelated(B b);
};
void f(A a);
void f(Unrelated u);
B b;
f(b); // calls f(A)

A pointer conversion from derived class to base class is also better than conversion to void*.

void f(A* p);
void f(void* p);
B b;
f(&b); // calls f(A*)

If there are multiple overloads within the same chain of inheritance, the most derived base class overload is
preferred. This is based on a similar principle as virtual dispatch: the "most specialized" implementation is chosen.
However, overload resolution always occurs at compile time and will never implicitly down-cast.

void f(const A& a);
void f(const B& b);
C c;
f(c); // calls f(const B&)
B b;
A& r = b;
f(r); // calls f(const A&); the f(const B&) overload is not viable

For pointers to members, which are contravariant with respect to the class, a similar rule applies in the opposite
direction: the least derived derived class is preferred.

C++ Notes for Professionals 538

void f(int B::*p);
void f(int C::*p);
int A::*p = &A::m;
f(p); // calls f(int B::*)

Section 105.8: Steps of Overload Resolution
The steps of overload resolution are:

Find candidate functions via name lookup. Unqualified calls will perform both regular unqualified lookup as1.
well as argument-dependent lookup (if applicable).

Filter the set of candidate functions to a set of viable functions. A viable function for which there exists an2.
implicit conversion sequence between the arguments the function is called with and the parameters the
function takes.

void f(char); // (1)
void f(int) = delete; // (2)
void f(); // (3)
void f(int&); // (4)

f(4); // 1,2 are viable (even though 2 is deleted!)
 // 3 is not viable because the argument lists don't match
 // 4 is not viable because we cannot bind a temporary to
 // a non-const lvalue reference

Pick the best viable candidate. A viable function F1 is a better function than another viable function F2 if the3.
implicit conversion sequence for each argument in F1 is not worse than the corresponding implicit
conversion sequence in F2, and...:

3.1. For some argument, the implicit conversion sequence for that argument in F1 is a better conversion
sequence than for that argument in F2, or

void f(int); // (1)
void f(char); // (2)

f(4); // call (1), better conversion sequence

3.2. In a user-defined conversion, the standard conversion sequence from the return of F1 to the destination
type is a better conversion sequence than that of the return type of F2, or

struct A
{
 operator int();
 operator double();
} a;

int i = a; // a.operator int() is better than a.operator double() and a conversion
float f = a; // ambiguous

3.3. In a direct reference binding, F1 has the same kind of reference by F2 is not, or

struct A
{
 operator X&(); // #1
 operator X&&(); // #2

C++ Notes for Professionals 539

};
A a;
X& lx = a; // calls #1
X&& rx = a; // calls #2

3.4. F1 is not a function template specialization, but F2 is, or

template <class T> void f(T); // #1
void f(int); // #2

f(42); // calls #2, the non-template

3.5. F1 and F2 are both function template specializations, but F1 is more specialized than F2.

template <class T> void f(T); // #1
template <class T> void f(T*); // #2

int* p;
f(p); // calls #2, more specialized

The ordering here is significant. The better conversion sequence check happens before the template vs non-
template check. This leads to a common error with overloading on forwarding reference:

struct A {
 A(A const&); // #1

 template <class T>
 A(T&&); // #2, not constrained
};

A a;
A b(a); // calls #2!
 // #1 is not a template but #2 resolves to
 // A(A&), which is a less cv-qualified reference than #1
 // which makes it a better implicit conversion sequence

If there's no single best viable candidate at the end, the call is ambiguous:

void f(double) { }
void f(float) { }

f(42); // error: ambiguous

C++ Notes for Professionals 540

Chapter 106: Move Semantics
Section 106.1: Move semantics
Move semantics are a way of moving one object to another in C++. For this, we empty the old object and place
everything it had in the new object.

For this, we must understand what an rvalue reference is. An rvalue reference (T&& where T is the object type) is not
much different than a normal reference (T&, now called lvalue references). But they act as 2 different types, and so,
we can make constructors or functions that take one type or the other, which will be necessary when dealing with
move semantics.

The reason why we need two different types is to specify two different behaviors. Lvalue reference constructors are
related to copying, while rvalue reference constructors are related to moving.

To move an object, we will use std::move(obj). This function returns an rvalue reference to the object, so that we
can steal the data from that object into a new one. There are several ways of doing this which are discussed below.

Important to note is that the use of std::move creates just an rvalue reference. In other words the statement
std::move(obj) does not change the content of obj, while auto obj2 = std::move(obj) (possibly) does.

Section 106.2: Using std::move to reduce complexity from
O(n²) to O(n)
C++11 introduced core language and standard library support for moving an object. The idea is that when an
object o is a temporary and one wants a logical copy, then its safe to just pilfer o's resources, such as a dynamically
allocated buffer, leaving o logically empty but still destructible and copyable.

The core language support is mainly

the rvalue reference type builder &&, e.g., std::string&& is an rvalue reference to a std::string, indicating
that that referred to object is a temporary whose resources can just be pilfered (i.e. moved)

special support for a move constructor T(T&&), which is supposed to efficiently move resources from the
specified other object, instead of actually copying those resources, and

special support for a move assignment operator auto operator=(T&&) -> T&, which also is supposed to
move from the source.

The standard library support is mainly the std::move function template from the <utility> header. This function
produces an rvalue reference to the specified object, indicating that it can be moved from, just as if it were a
temporary.

For a container actual copying is typically of O(n) complexity, where n is the number of items in the container, while
moving is O(1), constant time. And for an algorithm that logically copies that container n times, this can reduce the
complexity from the usually impractical O(n²) to just linear O(n).

In his article “Containers That Never Change” in Dr. Dobbs Journal in September 19 2013, Andrew Koenig presented
an interesting example of algorithmic inefficiency when using a style of programming where variables are
immutable after initialization. With this style loops are generally expressed using recursion. And for some
algorithms such as generating a Collatz sequence, the recursion requires logically copying a container:

// Based on an example by Andrew Koenig in his Dr. Dobbs Journal article

http://www.drdobbs.com/cpp/containters-that-never-change/240161543

C++ Notes for Professionals 541

// “Containers That Never Change” September 19, 2013, available at
// <url: http://www.drdobbs.com/cpp/containters-that-never-change/240161543>

// Includes here, e.g. <vector>

namespace my {
 template< class Item >
 using Vector_ = /* E.g. std::vector<Item> */;

 auto concat(Vector_<int> const& v, int const x)
 -> Vector_<int>
 {
 auto result{ v };
 result.push_back(x);
 return result;
 }

 auto collatz_aux(int const n, Vector_<int> const& result)
 -> Vector_<int>
 {
 if(n == 1)
 {
 return result;
 }
 auto const new_result = concat(result, n);
 if(n % 2 == 0)
 {
 return collatz_aux(n/2, new_result);
 }
 else
 {
 return collatz_aux(3*n + 1, new_result);
 }
 }

 auto collatz(int const n)
 -> Vector_<int>
 {
 assert(n != 0);
 return collatz_aux(n, Vector_<int>());
 }
} // namespace my

#include <iostream>
using namespace std;
auto main() -> int
{
 for(int const x : my::collatz(42))
 {
 cout << x << ' ';
 }
 cout << '\n';
}

Output:

42 21 64 32 16 8 4 2

The number of item copy operations due to copying of the vectors is here roughly O(n²), since it's the sum 1 + 2 + 3
+ ... n.

C++ Notes for Professionals 542

In concrete numbers, with g++ and Visual C++ compilers the above invocation of collatz(42) resulted in a Collatz
sequence of 8 items and 36 item copy operations (8*7/2 = 28, plus some) in vector copy constructor calls.

All of these item copy operations can be removed by simply moving vectors whose values are not needed anymore.
To do this it's necessary to remove const and reference for the vector type arguments, passing the vectors by value.
The function returns are already automatically optimized. For the calls where vectors are passed, and not used
again further on in the function, just apply std::move to move those buffers rather than actually copying them:

using std::move;

auto concat(Vector_<int> v, int const x)
 -> Vector_<int>
{
 v.push_back(x);
 // warning: moving a local object in a return statement prevents copy elision [-Wpessimizing-
move]
 // See https://stackoverflow.com/documentation/c%2b%2b/2489/copy-elision
 // return move(v);
 return v;
}

auto collatz_aux(int const n, Vector_<int> result)
 -> Vector_<int>
{
 if(n == 1)
 {
 return result;
 }
 auto new_result = concat(move(result), n);
 struct result; // Make absolutely sure no use of `result` after this.
 if(n % 2 == 0)
 {
 return collatz_aux(n/2, move(new_result));
 }
 else
 {
 return collatz_aux(3*n + 1, move(new_result));
 }
}

auto collatz(int const n)
 -> Vector_<int>
{
 assert(n != 0);
 return collatz_aux(n, Vector_<int>());
}

Here, with g++ and Visual C++ compilers, the number of item copy operations due to vector copy constructor
invocations, was exactly 0.

The algorithm is necessarily still O(n) in the length of the Collatz sequence produced, but this is a quite dramatic
improvement: O(n²) ? O(n).

With some language support one could perhaps use moving and still express and enforce the immutability of a
variable between its initialization and final move, after which any use of that variable should be an error. Alas, as of
C++14 C++ does not support that. For loop-free code the no use after move can be enforced via a re-declaration of
the relevant name as an incomplete struct, as with struct result; above, but this is ugly and not likely to be
understood by other programmers; also the diagnostics can be quite misleading.

C++ Notes for Professionals 543

Summing up, the C++ language and library support for moving allows drastic improvements in algorithm
complexity, but due the support's incompleteness, at the cost of forsaking the code correctness guarantees and
code clarity that const can provide.

For completeness, the instrumented vector class used to measure the number of item copy operations due to copy
constructor invocations:

template< class Item >
class Copy_tracking_vector
{
private:
 static auto n_copy_ops()
 -> int&
 {
 static int value;
 return value;
 }

 vector<Item> items_;

public:
 static auto n() -> int { return n_copy_ops(); }

 void push_back(Item const& o) { items_.push_back(o); }
 auto begin() const { return items_.begin(); }
 auto end() const { return items_.end(); }

 Copy_tracking_vector(){}

 Copy_tracking_vector(Copy_tracking_vector const& other)
 : items_(other.items_)
 { n_copy_ops() += items_.size(); }

 Copy_tracking_vector(Copy_tracking_vector&& other)
 : items_(move(other.items_))
 {}
};

Section 106.3: Move constructor
Say we have this code snippet.

class A {
public:
 int a;
 int b;

 A(const A &other) {
 this->a = other.a;
 this->b = other.b;
 }
};

To create a copy constructor, that is, to make a function that copies an object and creates a new one, we normally
would choose the syntax shown above, we would have a constructor for A that takes an reference to another object
of type A, and we would copy the object manually inside the method.

Alternatively, we could have written A(const A &) = default; which automatically copies over all members,
making use of its copy constructor.

C++ Notes for Professionals 544

To create a move constructor, however, we will be taking an rvalue reference instead of an lvalue reference, like
here.

class Wallet {
public:
 int nrOfDollars;

 Wallet() = default; //default ctor

 Wallet(Wallet &&other) {
 this->nrOfDollars = other.nrOfDollars;
 other.nrOfDollars = 0;
 }
};

Please notice that we set the old values to zero. The default move constructor (Wallet(Wallet&&) = default;)
copies the value of nrOfDollars, as it is a POD.

As move semantics are designed to allow 'stealing' state from the original instance, it is important to consider how
the original instance should look like after this stealing. In this case, if we would not change the value to zero we
would have doubled the amount of dollars into play.

Wallet a;
a.nrOfDollars = 1;
Wallet b (std::move(a)); //calling B(B&& other);
std::cout << a.nrOfDollars << std::endl; //0
std::cout << b.nrOfDollars << std::endl; //1

Thus we have move constructed an object from an old one.

While the above is a simple example, it shows what the move constructor is intended to do. It becomes more useful
in more complex cases, such as when resource management is involved.

 // Manages operations involving a specified type.
 // Owns a helper on the heap, and one in its memory (presumably on the stack).
 // Both helpers are DefaultConstructible, CopyConstructible, and MoveConstructible.
 template<typename T,
 template<typename> typename HeapHelper,
 template<typename> typename StackHelper>
 class OperationsManager {
 using MyType = OperationsManager<T, HeapHelper, StackHelper>;

 HeapHelper<T>* h_helper;
 StackHelper<T> s_helper;
 // ...

 public:
 // Default constructor & Rule of Five.
 OperationsManager() : h_helper(new HeapHelper<T>) {}
 OperationsManager(const MyType& other)
 : h_helper(new HeapHelper<T>(*other.h_helper)), s_helper(other.s_helper) {}
 MyType& operator=(MyType copy) {
 swap(*this, copy);
 return *this;
 }
 ~OperationsManager() {
 if (h_helper) { delete h_helper; }
 }

C++ Notes for Professionals 545

 // Move constructor (without swap()).
 // Takes other's HeapHelper<T>*.
 // Takes other's StackHelper<T>, by forcing the use of StackHelper<T>'s move constructor.
 // Replaces other's HeapHelper<T>* with nullptr, to keep other from deleting our shiny
 // new helper when it's destroyed.
 OperationsManager(MyType&& other) noexcept
 : h_helper(other.h_helper),
 s_helper(std::move(other.s_helper)) {
 other.h_helper = nullptr;
 }

 // Move constructor (with swap()).
 // Places our members in the condition we want other's to be in, then switches members
 // with other.
 // OperationsManager(MyType&& other) noexcept : h_helper(nullptr) {
 // swap(*this, other);
 // }

 // Copy/move helper.
 friend void swap(MyType& left, MyType& right) noexcept {
 std::swap(left.h_helper, right.h_helper);
 std::swap(left.s_helper, right.s_helper);
 }
 };

Section 106.4: Re-use a moved object
You can re-use a moved object:

void consumingFunction(std::vector<int> vec) {
 // Some operations
}

int main() {
 // initialize vec with 1, 2, 3, 4
 std::vector<int> vec{1, 2, 3, 4};

 // Send the vector by move
 consumingFunction(std::move(vec));

 // Here the vec object is in an indeterminate state.
 // Since the object is not destroyed, we can assign it a new content.
 // We will, in this case, assign an empty value to the vector,
 // making it effectively empty
 vec = {};

 // Since the vector as gained a determinate value, we can use it normally.
 vec.push_back(42);

 // Send the vector by move again.
 consumingFunction(std::move(vec));
}

Section 106.5: Move assignment
Similarly to how we can assign a value to an object with an lvalue reference, copying it, we can also move the values
from an object to another without constructing a new one. We call this move assignment. We move the values from
one object to another existing object.

C++ Notes for Professionals 546

For this, we will have to overload operator =, not so that it takes an lvalue reference, like in copy assignment, but
so that it takes an rvalue reference.

class A {
 int a;
 A& operator= (A&& other) {
 this->a = other.a;
 other.a = 0;
 return *this;
 }
};

This is the typical syntax to define move assignment. We overload operator = so that we can feed it an rvalue
reference and it can assign it to another object.

A a;
a.a = 1;
A b;
b = std::move(a); //calling A& operator= (A&& other)
std::cout << a.a << std::endl; //0
std::cout << b.a << std::endl; //1

Thus, we can move assign an object to another one.

Section 106.6: Using move semantics on containers
You can move a container instead of copying it:

void print(const std::vector<int>& vec) {
 for (auto&& val : vec) {
 std::cout << val << ", ";
 }
 std::cout << std::endl;
}

int main() {
 // initialize vec1 with 1, 2, 3, 4 and vec2 as an empty vector
 std::vector<int> vec1{1, 2, 3, 4};
 std::vector<int> vec2;

 // The following line will print 1, 2, 3, 4
 print(vec1);

 // The following line will print a new line
 print(vec2);

 // The vector vec2 is assigned with move assingment.
 // This will "steal" the value of vec1 without copying it.
 vec2 = std::move(vec1);

 // Here the vec1 object is in an indeterminate state, but still valid.
 // The object vec1 is not destroyed,
 // but there's is no guarantees about what it contains.

 // The following line will print 1, 2, 3, 4
 print(vec2);
}

C++ Notes for Professionals 547

Chapter 107: Pimpl Idiom
Section 107.1: Basic Pimpl idiom
Version ≥ C++11

In the header file:

// widget.h

#include <memory> // std::unique_ptr
#include <experimental/propagate_const>

class Widget
{
 public:
 Widget();
 ~Widget();
 void DoSomething();

 private:
 // the pImpl idiom is named after the typical variable name used
 // ie, pImpl:
 struct Impl; // forward declaration
 std::experimental::propagate_const<std::unique_ptr< Impl >> pImpl; // ptr to actual
implementation
};

In the implementation file:

// widget.cpp

#include "widget.h"
#include "reallycomplextype.h" // no need to include this header inside widget.h

struct Widget::Impl
{
 // the attributes needed from Widget go here
 ReallyComplexType rct;
};

Widget::Widget() :
 pImpl(std::make_unique<Impl>())
{}

Widget::~Widget() = default;

void Widget::DoSomething()
{
 // do the stuff here with pImpl
}

The pImpl contains the Widget state (or some/most of it). Instead of the Widget description of state being exposed
in the header file, it can be only exposed within the implementation.

pImpl stands for "pointer to implementation". The "real" implementation of Widget is in the pImpl.

Danger: Note that for this to work with unique_ptr, ~Widget() must be implemented at a point in a file where the

C++ Notes for Professionals 548

Impl is fully visible. You can =default it there, but if =default where Impl is undefined, the program may easily
become ill-formed, no diagnostic required.

C++ Notes for Professionals 549

Chapter 108: auto
Section 108.1: Basic auto sample
The keyword auto provides the auto-deduction of type of a variable.

It is especially convenient when dealing with long type names:

std::map< std::string, std::shared_ptr< Widget > > table;
// C++98
std::map< std::string, std::shared_ptr< Widget > >::iterator i = table.find("42");
// C++11/14/17
auto j = table.find("42");

with range-based for loops:

vector<int> v = {0, 1, 2, 3, 4, 5};
for(auto n: v)
 std::cout << n << ' ';

with lambdas:

auto f = [](){ std::cout << "lambda\n"; };
f();

to avoid the repetition of the type:

auto w = std::make_shared< Widget >();

to avoid surprising and unnecessary copies:

auto myMap = std::map<int,float>();
myMap.emplace(1,3.14);

std::pair<int,float> const& firstPair2 = *myMap.begin(); // copy!
auto const& firstPair = *myMap.begin(); // no copy!

The reason for the copy is that the returned type is actually std::pair<const int,float>!

Section 108.2: Generic lambda (C++14)
Version ≥ C++14

C++14 allows to use auto in lambda argument

auto print = [](const auto& arg) { std::cout << arg << std::endl; };

print(42);
print("hello world");

That lambda is mostly equivalent to

struct lambda {
 template <typename T>
 auto operator ()(const T& arg) const {

C++ Notes for Professionals 550

 std::cout << arg << std::endl;
 }
};

and then

lambda print;

print(42);
print("hello world");

Section 108.3: auto and proxy objects
Sometimes auto may behave not quite as was expected by a programmer. It type deduces the expression, even
when type deduction is not the right thing to do.

As an example, when proxy objects are used in the code:

std::vector<bool> flags{true, true, false};
auto flag = flags[0];
flags.push_back(true);

Here flag would be not bool, but std::vector<bool>::reference, since for bool specialization of template vector
the operator [] returns a proxy object with conversion operator operator bool defined.

When flags.push_back(true) modifies the container, this pseudo-reference could end up dangling, referring to an
element that no longer exists.

It also makes the next situation possible:

void foo(bool b);

std::vector<bool> getFlags();

auto flag = getFlags()[5];
foo(flag);

The vector is discarded immediately, so flag is a pseudo-reference to an element that has been discarded. The call
to foo invokes undefined behavior.

In cases like this you can declare a variable with auto and initialize it by casting to the type you want to be deduced:

auto flag = static_cast<bool>(getFlags()[5]);

but at that point, simply replacing auto with bool makes more sense.

Another case where proxy objects can cause problems is expression templates. In that case, the templates are
sometimes not designed to last beyond the current full-expression for efficiency sake, and using the proxy object
on the next causes undefined behavior.

Section 108.4: auto and Expression Templates
auto can also cause problems where expression templates come into play:

auto mult(int c) {
 return c * std::valarray<int>{1};

C++ Notes for Professionals 551

}

auto v = mult(3);
std::cout << v[0]; // some value that could be, but almost certainly is not, 3.

The reason is that operator* on valarray gives you a proxy object that refers to the valarray as a means of lazy
evaluation. By using auto, you're creating a dangling reference. Instead of mult had returned a
std::valarray<int>, then the code would definitely print 3.

Section 108.5: auto, const, and references
The auto keyword by itself represents a value type, similar to int or char. It can be modified with the const
keyword and the & symbol to represent a const type or a reference type, respectively. These modifiers can be
combined.

In this example, s is a value type (its type will be inferred as std::string), so each iteration of the for loop copies a
string from the vector into s.

std::vector<std::string> strings = { "stuff", "things", "misc" };
for(auto s : strings) {
 std::cout << s << std::endl;
}

If the body of the loop modifies s (such as by calling s.append(" and stuff")), only this copy will be modified, not
the original member of strings.

On the other hand, if s is declared with auto& it will be a reference type (inferred to be std::string&), so on each
iteration of the loop it will be assigned a reference to a string in the vector:

for(auto& s : strings) {
 std::cout << s << std::endl;
}

In the body of this loop, modifications to s will directly affect the element of strings that it references.

Finally, if s is declared const auto&, it will be a const reference type, meaning that on each iteration of the loop it
will be assigned a const reference to a string in the vector:

for(const auto& s : strings) {
 std::cout << s << std::endl;
}

Within the body of this loop, s cannot be modified (i.e. no non-const methods can be called on it).

When using auto with range-based for loops, it is generally good practice to use const auto& if the loop body will
not modify the structure being looped over, since this avoids unnecessary copies.

Section 108.6: Trailing return type
auto is used in the syntax for trailing return type:

auto main() -> int {}

which is equivalent to

C++ Notes for Professionals 552

int main() {}

Mostly useful combined with decltype to use parameters instead of std::declval<T>:

template <typename T1, typename T2>
auto Add(const T1& lhs, const T2& rhs) -> decltype(lhs + rhs) { return lhs + rhs; }

C++ Notes for Professionals 553

Chapter 109: Copy Elision
Section 109.1: Purpose of copy elision
There are places in the standard where an object is copied or moved in order to initialize an object. Copy elision
(sometimes called return value optimization) is an optimization whereby, under certain specific circumstances, a
compiler is permitted to avoid the copy or move even though the standard says that it must happen.

Consider the following function:

std::string get_string()
{
 return std::string("I am a string.");
}

According to the strict wording of the standard, this function will initialize a temporary std::string, then
copy/move that into the return value object, then destroy the temporary. The standard is very clear that this is how
the code is interpreted.

Copy elision is a rule that permits a C++ compiler to ignore the creation of the temporary and its subsequent
copy/destruction. That is, the compiler can take the initializing expression for the temporary and initialize the
function's return value from it directly. This obviously saves performance.

However, it does have two visible effects on the user:

The type must have the copy/move constructor that would have been called. Even if the compiler elides the1.
copy/move, the type must still be able to have been copied/moved.

Side-effects of copy/move constructors are not guaranteed in circumstances where elision can happen.2.
Consider the following:

Version ≥ C++11

struct my_type
{
 my_type() = default;
 my_type(const my_type &) {std::cout <<"Copying\n";}
 my_type(my_type &&) {std::cout <<"Moving\n";}
};

my_type func()
{
 return my_type();
}

What will calling func do? Well, it will never print "Copying", since the temporary is an rvalue and my_type is a
moveable type. So will it print "Moving"?

Without the copy elision rule, this would be required to always print "Moving". But because the copy elision rule
exists, the move constructor may or may not be called; it is implementation-dependent.

And therefore, you cannot depend on the calling of copy/move constructors in contexts where elision is possible.

Because elision is an optimization, your compiler may not support elision in all cases. And regardless of whether
the compiler elides a particular case or not, the type must still support the operation being elided. So if a copy

C++ Notes for Professionals 554

construction is elided, the type must still have a copy constructor, even though it will not be called.

Section 109.2: Guaranteed copy elision
Version ≥ C++17

Normally, elision is an optimization. While virtually every compiler support copy elision in the simplest of cases,
having elision still places a particular burden on users. Namely, the type who's copy/move is being elided must still
have the copy/move operation that was elided.

For example:

std::mutex a_mutex;
std::lock_guard<std::mutex> get_lock()
{
 return std::lock_guard<std::mutex>(a_mutex);
}

This might be useful in cases where a_mutex is a mutex that is privately held by some system, yet an external user
might want to have a scoped lock to it.

This is also not legal, because std::lock_guard cannot be copied or moved. Even though virtually every C++
compiler will elide the copy/move, the standard still requires the type to have that operation available.

Until C++17.

C++17 mandates elision by effectively redefining the very meaning of certain expressions so that no copy/moving
takes place. Consider the above code.

Under pre-C++17 wording, that code says to create a temporary and then use the temporary to copy/move into the
return value, but the temporary copy can be elided. Under C++17 wording, that does not create a temporary at all.

In C++17, any prvalue expression, when used to initialize an object of the same type as the expression, does not
generate a temporary. The expression directly initializes that object. If you return a prvalue of the same type as the
return value, then the type need not have a copy/move constructor. And therefore, under C++17 rules, the above
code can work.

The C++17 wording works in cases where the prvalue's type matches the type being initialized. So given get_lock
above, this will also not require a copy/move:

std::lock_guard the_lock = get_lock();

Since the result of get_lock is a prvalue expression being used to initialize an object of the same type, no copying
or moving will happen. That expression never creates a temporary; it is used to directly initialize the_lock. There is
no elision because there is no copy/move to be elided elide.

The term "guaranteed copy elision" is therefore something of a misnomer, but that is the name of the feature as it
is proposed for C++17 standardization. It does not guarantee elision at all; it eliminates the copy/move altogether,
redefining C++ so that there never was a copy/move to be elided.

This feature only works in cases involving a prvalue expression. As such, this uses the usual elision rules:

std::mutex a_mutex;
std::lock_guard<std::mutex> get_lock()
{
 std::lock_guard<std::mutex> my_lock(a_mutex);

http://wg21.link/P0135
http://wg21.link/P0135

C++ Notes for Professionals 555

 //Do stuff
 return my_lock;
}

While this is a valid case for copy elision, C++17 rules do not eliminate the copy/move in this case. As such, the type
must still have a copy/move constructor to use to initialize the return value. And since lock_guard does not, this is
still a compile error. Implementations are allowed to refuse to elide copies when passing or returning an object of
trivially-copyable type. This is to allow moving such objects around in registers, which some ABIs might mandate in
their calling conventions.

struct trivially_copyable {
 int a;
};

void foo (trivially_copyable a) {}

foo(trivially_copyable{}); //copy elision not mandated

Section 109.3: Parameter elision
When you pass an argument to a function, and the argument is a prvalue expression of the function's parameter
type, and this type is not a reference, then the prvalue's construction can be elided.

void func(std::string str) { ... }

func(std::string("foo"));

This says to create a temporary string, then move it into the function parameter str. Copy elision permits this
expression to directly create the object in str, rather than using a temporary+move.

This is a useful optimization for cases where a constructor is declared explicit. For example, we could have
written the above as func("foo"), but only because string has an implicit constructor that converts from a const
char* to a string. If that constructor was explicit, we would be forced to use a temporary to call the explicit
constructor. Copy elision saves us from having to do a needless copy/move.

Section 109.4: Return value elision
If you return a prvalue expression from a function, and the prvalue expression has the same type as the function's
return type, then the copy from the prvalue temporary can be elided:

std::string func()
{
 return std::string("foo");
}

Pretty much all compilers will elide the temporary construction in this case.

Section 109.5: Named return value elision
If you return an lvalue expression from a function, and this lvalue:

represents an automatic variable local to that function, which will be destroyed after the return
the automatic variable is not a function parameter
and the type of the variable is the same type as the function's return type

C++ Notes for Professionals 556

If all of these are the case, then the copy/move from the lvalue can be elided:

std::string func()
{
 std::string str("foo");
 //Do stuff
 return str;
}

More complex cases are eligible for elision, but the more complex the case, the less likely the compiler will be to
actually elide it:

std::string func()
{
 std::string ret("foo");
 if(some_condition)
 {
 return "bar";
 }
 return ret;
}

The compiler could still elide ret, but the chances of them doing so go down.

As noted earlier, elision is not permitted for value parameters.

std::string func(std::string str)
{
 str.assign("foo");
 //Do stuff
 return str; //No elision possible
}

Section 109.6: Copy initialization elision
If you use a prvalue expression to copy initialize a variable, and that variable has the same type as the prvalue
expression, then the copying can be elided.

std::string str = std::string("foo");

Copy initialization effectively transforms this into std::string str("foo"); (there are minor differences).

This also works with return values:

std::string func()
{
 return std::string("foo");
}

std::string str = func();

Without copy elision, this would provoke 2 calls to std::string's move constructor. Copy elision permits this to call
the move constructor 1 or zero times, and most compilers will opt for the latter.

C++ Notes for Professionals 557

Chapter 110: Fold Expressions
Section 110.1: Unary Folds
Unary folds are used to fold parameter packs over a specific operator. There are 2 kinds of unary folds:

Unary Left Fold (... op pack) which expands as follows:

((Pack1 op Pack2) op ...) op PackN

Unary Right Fold (pack op ...) which expands as follows:

Pack1 op (... (Pack(N-1) op PackN))

Here is an example

template<typename... Ts>
int sum(Ts... args)
{
 return (... + args); //Unary left fold
 //return (args + ...); //Unary right fold

 // The two are equivalent if the operator is associative.
 // For +, ((1+2)+3) (left fold) == (1+(2+3)) (right fold)
 // For -, ((1-2)-3) (left fold) != (1-(2-3)) (right fold)
}

int result = sum(1, 2, 3); // 6

Section 110.2: Binary Folds
Binary folds are basically unary folds, with an extra argument.

There are 2 kinds of binary folds:

Binary Left Fold - (value op ... op pack) - Expands as follows:

(((Value op Pack1) op Pack2) op ...) op PackN

Binary Right Fold (pack op ... op value) - Expands as follows:

Pack1 op (... op (Pack(N-1) op (PackN op Value)))

Here is an example:

template<typename... Ts>
int removeFrom(int num, Ts... args)
{
 return (num - ... - args); //Binary left fold
 // Note that a binary right fold cannot be used
 // due to the lack of associativity of operator-
}

C++ Notes for Professionals 558

int result = removeFrom(1000, 5, 10, 15); //'result' is 1000 - 5 - 10 - 15 = 970

Section 110.3: Folding over a comma
It is a common operation to need to perform a particular function over each element in a parameter pack. With
C++11, the best we can do is:

template <class... Ts>
void print_all(std::ostream& os, Ts const&... args) {
 using expander = int[];
 (void)expander{0,
 (void(os << args), 0)...
 };
}

But with a fold expression, the above simplifies nicely to:

template <class... Ts>
void print_all(std::ostream& os, Ts const&... args) {
 (void(os << args), ...);
}

No cryptic boilerplate required.

C++ Notes for Professionals 559

Chapter 111: Unions
Section 111.1: Undefined Behavior
union U {
 int a;
 short b;
 float c;
};
U u;

u.a = 10;
if (u.b == 10) {
 // this is undefined behavior since 'a' was the last member to be
 // written to. A lot of compilers will allow this and might issue a
 // warning, but the result will be "as expected"; this is a compiler
 // extension and cannot be guaranteed across compilers (i.e. this is
 // not compliant/portable code).
}

Section 111.2: Basic Union Features
Unions are a specialized struct within which all members occupy overlapping memory.

union U {
 int a;
 short b;
 float c;
};
U u;

//Address of a and b will be equal
(void*)&u.a == (void*)&u.b;
(void*)&u.a == (void*)&u.c;

//Assigning to any union member changes the shared memory of all members
u.c = 4.f;
u.a = 5;
u.c != 4.f;

Section 111.3: Typical Use
Unions are useful for minimizing memory usage for exclusive data, such as when implementing mixed data types.

struct AnyType {
 enum {
 IS_INT,
 IS_FLOAT
 } type;

 union Data {
 int as_int;
 float as_float;
 } value;

 AnyType(int i) : type(IS_INT) { value.as_int = i; }
 AnyType(float f) : type(IS_FLOAT) { value.as_float = f; }

C++ Notes for Professionals 560

 int get_int() const {
 if(type == IS_INT)
 return value.as_int;
 else
 return (int)value.as_float;
 }

 float get_float() const {
 if(type == IS_FLOAT)
 return value.as_float;
 else
 return (float)value.as_int;
 }
};

C++ Notes for Professionals 561

Chapter 112: Design pattern
implementation in C++
On this page, you can find examples of how design patterns are implemented in C++. For the details on these
patterns, you can check out the design patterns documentation.

Section 112.1: Adapter Pattern
Convert the interface of a class into another interface clients expect. Adapter (or Wrapper) lets classes work
together that couldn't otherwise because of incompatible interfaces. Adapter pattern's motivation is that we can
reuse existing software if we can modify the interface.

Adapter pattern relies on object composition.1.

Client calls operation on Adapter object.2.

Adapter calls Adaptee to carry out the operation.3.

In STL, stack adapted from vector: When stack executes push(), underlying vector does vector::push_back().4.

Example:

#include <iostream>

// Desired interface (Target)
class Rectangle
{
 public:
 virtual void draw() = 0;
};

// Legacy component (Adaptee)
class LegacyRectangle
{
 public:
 LegacyRectangle(int x1, int y1, int x2, int y2) {
 x1_ = x1;
 y1_ = y1;
 x2_ = x2;
 y2_ = y2;
 std::cout << "LegacyRectangle(x1,y1,x2,y2)\n";
 }
 void oldDraw() {
 std::cout << "LegacyRectangle: oldDraw(). \n";
 }
 private:
 int x1_;
 int y1_;
 int x2_;
 int y2_;
};

// Adapter wrapper
class RectangleAdapter: public Rectangle, private LegacyRectangle
{
 public:
 RectangleAdapter(int x, int y, int w, int h):
 LegacyRectangle(x, y, x + w, y + h) {

C++ Notes for Professionals 562

 std::cout << "RectangleAdapter(x,y,x+w,x+h)\n";
 }

 void draw() {
 std::cout << "RectangleAdapter: draw().\n";
 oldDraw();
 }
};

int main()
{
 int x = 20, y = 50, w = 300, h = 200;
 Rectangle *r = new RectangleAdapter(x,y,w,h);
 r->draw();
}

//Output:
//LegacyRectangle(x1,y1,x2,y2)
//RectangleAdapter(x,y,x+w,x+h)

Summary of the code:

The client thinks he is talking to a Rectangle1.

The target is the Rectangle class. This is what the client invokes method on.2.

 Rectangle *r = new RectangleAdapter(x,y,w,h);
 r->draw();

Note that the adapter class uses multiple inheritance.3.

 class RectangleAdapter: public Rectangle, private LegacyRectangle {
 ...
 }

The Adapter RectangleAdapter lets the LegacyRectangle responds to request (draw() on a Rectangle) by4.
inheriting BOTH classes.

The LegacyRectangle class does not have the same methods (draw()) as Rectangle, but the5.
Adapter(RectangleAdapter) can take the Rectangle method calls and turn around and invoke method on
the LegacyRectangle, oldDraw().

 class RectangleAdapter: public Rectangle, private LegacyRectangle {
 public:
 RectangleAdapter(int x, int y, int w, int h):
 LegacyRectangle(x, y, x + w, y + h) {
 std::cout << "RectangleAdapter(x,y,x+w,x+h)\n";
 }

 void draw() {
 std::cout << "RectangleAdapter: draw().\n";
 oldDraw();
 }
 };

Adapter design pattern translates the interface for one class into a compatible but different interface. So, this is
similar to the proxy pattern in that it's a single-component wrapper. But the interface for the adapter class and the

C++ Notes for Professionals 563

original class may be different.

As we've seen in the example above, this adapter pattern is useful to expose a different interface for an existing
API to allow it to work with other code. Also, by using adapter pattern, we can take heterogeneous interfaces, and
transform them to provide consistent API.

Bridge pattern has a structure similar to an object adapter, but Bridge has a different intent: It is meant to
separate an interface from its implementation so that they can be varied easily and independently. An adapter is
meant to change the interface of an existing object.

Section 112.2: Observer pattern
Observer Pattern's intent is to define a one-to-many dependency between objects so that when one object changes
state, all its dependents are notified and updated automatically.

The subject and observers define the one-to-many relationship. The observers are dependent on the subject such
that when the subject's state changes, the observers get notified. Depending on the notification, the observers may
also be updated with new values.

Here is the example from the book "Design Patterns" by Gamma.

#include <iostream>
#include <vector>

class Subject;

class Observer
{
public:
 virtual ~Observer() = default;
 virtual void Update(Subject&) = 0;
};

class Subject
{
public:
 virtual ~Subject() = default;
 void Attach(Observer& o) { observers.push_back(&o); }
 void Detach(Observer& o)
 {
 observers.erase(std::remove(observers.begin(), observers.end(), &o));
 }
 void Notify()
 {
 for (auto* o : observers) {
 o->Update(*this);
 }
 }
private:
 std::vector<Observer*> observers;
};

class ClockTimer : public Subject
{
public:

 void SetTime(int hour, int minute, int second)
 {
 this->hour = hour;

C++ Notes for Professionals 564

 this->minute = minute;
 this->second = second;

 Notify();
 }

 int GetHour() const { return hour; }
 int GetMinute() const { return minute; }
 int GetSecond() const { return second; }

private:
 int hour;
 int minute;
 int second;
};

class DigitalClock: public Observer
{
public:
 explicit DigitalClock(ClockTimer& s) : subject(s) { subject.Attach(*this); }
 ~DigitalClock() { subject.Detach(*this); }
 void Update(Subject& theChangedSubject) override
 {
 if (&theChangedSubject == &subject) {
 Draw();
 }
 }

 void Draw()
 {
 int hour = subject.GetHour();
 int minute = subject.GetMinute();
 int second = subject.GetSecond();

 std::cout << "Digital time is " << hour << ":"
 << minute << ":"
 << second << std::endl;
 }

private:
 ClockTimer& subject;
};

class AnalogClock: public Observer
{
public:
 explicit AnalogClock(ClockTimer& s) : subject(s) { subject.Attach(*this); }
 ~AnalogClock() { subject.Detach(*this); }
 void Update(Subject& theChangedSubject) override
 {
 if (&theChangedSubject == &subject) {
 Draw();
 }
 }
 void Draw()
 {
 int hour = subject.GetHour();
 int minute = subject.GetMinute();
 int second = subject.GetSecond();

 std::cout << "Analog time is " << hour << ":"
 << minute << ":"

C++ Notes for Professionals 565

 << second << std::endl;
 }
private:
 ClockTimer& subject;
};

int main()
{
 ClockTimer timer;

 DigitalClock digitalClock(timer);
 AnalogClock analogClock(timer);

 timer.SetTime(14, 41, 36);
}

Output:

Digital time is 14:41:36
Analog time is 14:41:36

Here are the summary of the pattern:

Objects (DigitalClock or AnalogClock object) use the Subject interfaces (Attach() or Detach()) either to1.
subscribe (register) as observers or unsubscribe (remove) themselves from being observers
(subject.Attach(*this); , subject.Detach(*this);.

Each subject can have many observers(vector<Observer*> observers;).2.

All observers need to implement the Observer interface. This interface just has one method, Update(), that3.
gets called when the Subject's state changes (Update(Subject &))

In addition to the Attach() and Detach() methods, the concrete subject implements a Notify() method that4.
is used to update all the current observers whenever state changes. But in this case, all of them are done in
the parent class, Subject (Subject::Attach (Observer&), void Subject::Detach(Observer&) and void
Subject::Notify() .

The Concrete object may also have methods for setting and getting its state.5.

Concrete observers can be any class that implements the Observer interface. Each observer subscribe6.
(register) with a concrete subject to receive update (subject.Attach(*this);).

The two objects of Observer Pattern are loosely coupled, they can interact but with little knowledge of each7.
other.

Variation:

Signal and Slots

Signals and slots is a language construct introduced in Qt, which makes it easy to implement the Observer pattern
while avoiding boilerplate code. The concept is that controls (also known as widgets) can send signals containing
event information which can be received by other controls using special functions known as slots. The slot in Qt
must be a class member declared as such. The signal/slot system fits well with the way Graphical User Interfaces
are designed. Similarly, the signal/slot system can be used for asynchronous I/O (including sockets, pipes, serial
devices, etc.) event notification or to associate timeout events with appropriate object instances and methods or
functions. No registration/deregistration/invocation code need be written, because Qt's Meta Object Compiler
(MOC) automatically generates the needed infrastructure.

C++ Notes for Professionals 566

The C# language also supports a similar construct although with a different terminology and syntax: events play the
role of signals, and delegates are the slots. Additionally, a delegate can be a local variable, much like a function
pointer, while a slot in Qt must be a class member declared as such.

Section 112.3: Factory Pattern
Factory pattern decouples object creation and allows creation by name using a common interface:

class Animal{
public:
 virtual std::shared_ptr<Animal> clone() const = 0;
 virtual std::string getname() const = 0;
};

class Bear: public Animal{
public:
 virtual std::shared_ptr<Animal> clone() const override
 {
 return std::make_shared<Bear>(*this);
 }
 virtual std::string getname() const override
 {
 return "bear";
 }
};

class Cat: public Animal{
public:
 virtual std::shared_ptr<Animal> clone() const override
 {
 return std::make_shared<Cat>(*this);
 }
 virtual std::string getname() const override
 {
 return "cat";
 }
};

class AnimalFactory{
public:
 static std::shared_ptr<Animal> getAnimal(const std::string& name)
 {
 if (name == "bear")
 return std::make_shared<Bear>();
 if (name == "cat")
 return std::shared_ptr<Cat>();

 return nullptr;
 }

};

Section 112.4: Builder Pattern with Fluent API
The Builder Pattern decouples the creation of the object from the object itself. The main idea behind is that an
object does not have to be responsible for its own creation. The correct and valid assembly of a complex object
may be a complicated task in itself, so this task can be delegated to another class.

C++ Notes for Professionals 567

Inspired by the Email Builder in C#, I've decided to make a C++ version here. An Email object is not necessarily a
very complex object, but it can demonstrate the pattern.

#include <iostream>
#include <sstream>
#include <string>

using namespace std;

// Forward declaring the builder
class EmailBuilder;

class Email
{
 public:
 friend class EmailBuilder; // the builder can access Email's privates

 static EmailBuilder make();

 string to_string() const {
 stringstream stream;
 stream << "from: " << m_from
 << "\nto: " << m_to
 << "\nsubject: " << m_subject
 << "\nbody: " << m_body;
 return stream.str();
 }

 private:
 Email() = default; // restrict construction to builder

 string m_from;
 string m_to;
 string m_subject;
 string m_body;
};

class EmailBuilder
{
 public:
 EmailBuilder& from(const string &from) {
 m_email.m_from = from;
 return *this;
 }

 EmailBuilder& to(const string &to) {
 m_email.m_to = to;
 return *this;
 }

 EmailBuilder& subject(const string &subject) {
 m_email.m_subject = subject;
 return *this;
 }

 EmailBuilder& body(const string &body) {
 m_email.m_body = body;
 return *this;
 }

 operator Email&&() {

C++ Notes for Professionals 568

 return std::move(m_email); // notice the move
 }

 private:
 Email m_email;
};

EmailBuilder Email::make()
{
 return EmailBuilder();
}

// Bonus example!
std::ostream& operator <<(std::ostream& stream, const Email& email)
{
 stream << email.to_string();
 return stream;
}

int main()
{
 Email mail = Email::make().from("me@mail.com")
 .to("you@mail.com")
 .subject("C++ builders")
 .body("I like this API, don't you?");

 cout << mail << endl;
}

For older versions of C++, one may just ignore the std::move operation and remove the && from the conversion
operator (although this will create a temporary copy).

The builder finishes its work when it releases the built email by the operator Email&&(). In this example, the
builder is a temporary object and returns the email before being destroyed. You could also use an explicit
operation like Email EmailBuilder::build() {...} instead of the conversion operator.

Pass the builder around

A great feature the Builder Pattern provides is the ability to use several actors to build an object together. This is
done by passing the builder to the other actors that will each one give some more information to the built object.
This is specially powerful when you are building some sort of query, adding filters and other specifications.

void add_addresses(EmailBuilder& builder)
{
 builder.from("me@mail.com")
 .to("you@mail.com");
}

void compose_mail(EmailBuilder& builder)
{
 builder.subject("I know the subject")
 .body("And the body. Someone else knows the addresses.");
}

int main()
{
 EmailBuilder builder;
 add_addresses(builder);
 compose_mail(builder);

C++ Notes for Professionals 569

 Email mail = builder;
 cout << mail << endl;
}

Design variant : Mutable object

You can change the design of this pattern to fit your needs. I'll give one variant.

In the given example the Email object is immutable, i.e., it's properties can't be modified because there is no access
to them. This was a desired feature. If you need to modify the object after its creation you have to provide some
setters to it. Since those setters would be duplicated in the builder, you may consider to do it all in one class (no
builder class needed anymore). Nevertheless, I would consider the need to make the built object mutable in the
first place.

C++ Notes for Professionals 570

Chapter 113: Singleton Design Pattern
Section 113.1: Lazy Initialization
This example has been lifted from the Q & A section here:http://stackoverflow.com/a/1008289/3807729

See this article for a simple design for a lazy evaluated with guaranteed destruction singleton:
Can any one provide me a sample of Singleton in c++?

The classic lazy evaluated and correctly destroyed singleton.

class S
{
 public:
 static S& getInstance()
 {
 static S instance; // Guaranteed to be destroyed.
 // Instantiated on first use.
 return instance;
 }
 private:
 S() {}; // Constructor? (the {} brackets) are needed here.

 // C++ 03
 // ========
 // Don't forget to declare these two. You want to make sure they
 // are unacceptable otherwise you may accidentally get copies of
 // your singleton appearing.
 S(S const&); // Don't Implement
 void operator=(S const&); // Don't implement

 // C++ 11
 // =======
 // We can use the better technique of deleting the methods
 // we don't want.
 public:
 S(S const&) = delete;
 void operator=(S const&) = delete;

 // Note: Scott Meyers mentions in his Effective Modern
 // C++ book, that deleted functions should generally
 // be public as it results in better error messages
 // due to the compilers behavior to check accessibility
 // before deleted status
};

See this article about when to use a singleton: (not often)
Singleton: How should it be used

See this two article about initialization order and how to cope:
Static variables initialisation order
Finding C++ static initialization order problems

See this article describing lifetimes:
What is the lifetime of a static variable in a C++ function?

See this article that discusses some threading implications to singletons:
Singleton instance declared as static variable of GetInstance method

http://stackoverflow.com/a/1008289/3807729
http://stackoverflow.com/questions/270947/can-any-one-provide-me-a-sample-of-singleton-in-c/271104#271104
http://stackoverflow.com/questions/86582/singleton-how-should-it-be-used
http://stackoverflow.com/questions/211237/c-static-variables-initialisation-order/211307#211307
http://stackoverflow.com/questions/335369/finding-c-static-initialization-order-problems/335746#335746
http://stackoverflow.com/questions/246564/what-is-the-lifetime-of-a-static-variable-in-a-c-function
http://stackoverflow.com/questions/449436/singleton-instance-declared-as-static-variable-of-getinstance-method/449823#449823

C++ Notes for Professionals 571

See this article that explains why double checked locking will not work on C++:
What are all the common undefined behaviours that a C++ programmer should know about?

Section 113.2: Static deinitialization-safe singleton
There are times with multiple static objects where you need to be able to guarantee that the singleton will not be
destroyed until all the static objects that use the singleton no longer need it.

In this case std::shared_ptr can be used to keep the singleton alive for all users even when the static destructors
are being called at the end of the program:

class Singleton
{
public:
 Singleton(Singleton const&) = delete;
 Singleton& operator=(Singleton const&) = delete;

 static std::shared_ptr<Singleton> instance()
 {
 static std::shared_ptr<Singleton> s{new Singleton};
 return s;
 }

private:
 Singleton() {}
};

NOTE: This example appears as an answer in the Q&A section here.

Section 113.3: Thread-safe Singeton
Version ≥ C++11

The C++11 standards guarantees that the initialization of function scope objects are initialized in a synchronized
manner. This can be used to implement a thread-safe singleton with lazy initialization.

class Foo
{
public:
 static Foo& instance()
 {
 static Foo inst;
 return inst;
 }
private:
 Foo() {}
 Foo(const Foo&) = delete;
 Foo& operator =(const Foo&) = delete;
};

Section 113.4: Subclasses
class API
{
public:
 static API& instance();

 virtual ~API() {}

http://stackoverflow.com/questions/367633/what-are-all-the-common-undefined-behaviour-that-c-programmer-should-know-about/367690#367690
http://stackoverflow.com/a/40337728/3807729

C++ Notes for Professionals 572

 virtual const char* func1() = 0;
 virtual void func2() = 0;

protected:
 API() {}
 API(const API&) = delete;
 API& operator=(const API&) = delete;
};

class WindowsAPI : public API
{
public:
 virtual const char* func1() override { /* Windows code */ }
 virtual void func2() override { /* Windows code */ }
};

class LinuxAPI : public API
{
public:
 virtual const char* func1() override { /* Linux code */ }
 virtual void func2() override { /* Linux code */ }
};

API& API::instance() {
#if PLATFORM == WIN32
 static WindowsAPI instance;
#elif PLATFORM = LINUX
 static LinuxAPI instance;
#endif
 return instance;
}

In this example, a simple compiler switch binds the API class to the appropriate subclass. In this way, API can be
accessed without being coupled to platform-specific code.

C++ Notes for Professionals 573

Chapter 114: User-Defined Literals
Section 114.1: Self-made user-defined literal for binary
Despite you can write a binary number in C++14 like:

int number =0b0001'0101; // ==21

here comes a famous example with a self-made implementation for binary numbers:

Note: The whole template expanding program is running at compile time.

template< char FIRST, char... REST > struct binary
{
 static_assert(FIRST == '0' || FIRST == '1', "invalid binary digit") ;
 enum { value = ((FIRST - '0') << sizeof...(REST)) + binary<REST...>::value } ;
};

template<> struct binary<'0'> { enum { value = 0 } ; };
template<> struct binary<'1'> { enum { value = 1 } ; };

// raw literal operator
template< char... LITERAL > inline
constexpr unsigned int operator "" _b() { return binary<LITERAL...>::value ; }

// raw literal operator
template< char... LITERAL > inline
constexpr unsigned int operator "" _B() { return binary<LITERAL...>::value ; }

#include <iostream>

int main()
{
 std::cout << 10101_B << ", " << 011011000111_b << '\n' ; // prints 21, 1735
}

Section 114.2: Standard user-defined literals for duration
Version ≥ C++14

Those following duration user literals are declared in the namespace std::literals::chrono_literals, where both
literals and chrono_literals are inline namespaces. Access to these operators can be gained with using
namespace std::literals, using namespace std::chrono_literals, and using namespace
std::literals::chrono_literals.

#include <chrono>
#include <iostream>

int main()
{
 using namespace std::literals::chrono_literals;

 std::chrono::nanoseconds t1 = 600ns;
 std::chrono::microseconds t2 = 42us;
 std::chrono::milliseconds t3 = 51ms;
 std::chrono::seconds t4 = 61s;
 std::chrono::minutes t5 = 88min;

C++ Notes for Professionals 574

 auto t6 = 2 * 0.5h;

 auto total = t1 + t2 + t3 + t4 + t5 + t6;

 std::cout.precision(13);
 std::cout << total.count() << " nanoseconds" << std::endl; // 8941051042600 nanoseconds
 std::cout << std::chrono::duration_cast<std::chrono::hours>(total).count()
 << " hours" << std::endl; // 2 hours
}

Section 114.3: User-defined literals with long double values
#include <iostream>

long double operator"" _km(long double val)
{
 return val * 1000.0;
}

long double operator"" _mi(long double val)
{
 return val * 1609.344;
}

int main()
{
 std::cout << "3 km = " << 3.0_km << " m\n";
 std::cout << "3 mi = " << 3.0_mi << " m\n";
 return 0;
}

The output of this program is the following:

3 km = 3000 m
3 mi = 4828.03 m

Section 114.4: Standard user-defined literals for strings
Version ≥ C++14

Those following string user literals are declared in the namespace std::literals::string_literals, where both
literals and string_literals are inline namespaces. Access to these operators can be gained with using
namespace std::literals, using namespace std::string_literals, and using namespace
std::literals::string_literals.

#include <codecvt>
#include <iostream>
#include <locale>
#include <string>

int main()
{
 using namespace std::literals::string_literals;

 std::string s = "hello world"s;
 std::u16string s16 = u"hello world"s;
 std::u32string s32 = U"hello world"s;
 std::wstring ws = L"hello world"s;

C++ Notes for Professionals 575

 std::cout << s << std::endl;

 std::wstring_convert<std::codecvt_utf8_utf16<char16_t>, char16_t> utf16conv;
 std::cout << utf16conv.to_bytes(s16) << std::endl;

 std::wstring_convert<std::codecvt_utf8_utf16<char32_t>, char32_t> utf32conv;
 std::cout << utf32conv.to_bytes(s32) << std::endl;

 std::wcout << ws << std::endl;
}

Note:

Literal string may containing \0

std::string s1 = "foo\0\0bar"; // constructor from C-string: results in "foo"s
std::string s2 = "foo\0\0bar"s; // That string contains 2 '\0' in its middle

Section 114.5: Standard user-defined literals for complex
Version ≥ C++14

Those following complex user literals are declared in the namespace std::literals::complex_literals, where
both literals and complex_literals are inline namespaces. Access to these operators can be gained with using
namespace std::literals, using namespace std::complex_literals, and using namespace
std::literals::complex_literals.

#include <complex>
#include <iostream>

int main()
{
 using namespace std::literals::complex_literals;

 std::complex<double> c = 2.0 + 1i; // {2.0, 1.}
 std::complex<float> cf = 2.0f + 1if; // {2.0f, 1.f}
 std::complex<long double> cl = 2.0L + 1il; // {2.0L, 1.L}

 std::cout << "abs" << c << " = " << abs(c) << std::endl; // abs(2,1) = 2.23607
 std::cout << "abs" << cf << " = " << abs(cf) << std::endl; // abs(2,1) = 2.23607
 std::cout << "abs" << cl << " = " << abs(cl) << std::endl; // abs(2,1) = 2.23607
}

C++ Notes for Professionals 576

Chapter 115: Memory management
Section 115.1: Free Storage (Heap, Dynamic Allocation ...)
The term 'heap' is a general computing term meaning an area of memory from which portions can be allocated
and deallocated independently of the memory provided by the stack.

In C++ the Standard refers to this area as the Free Store which is considered a more accurate term.

Areas of memory allocated from the Free Store may live longer than the original scope in which it was allocated.
Data too large to be stored on the stack may also be allocated from the Free Store.

Raw memory can be allocated and deallocated by the new and delete keywords.

float *foo = nullptr;
{
 *foo = new float; // Allocates memory for a float
 float bar; // Stack allocated
} // End lifetime of bar, while foo still alive

delete foo; // Deletes the memory for the float at pF, invalidating the pointer
foo = nullptr; // Setting the pointer to nullptr after delete is often considered good
practice

It's also possible to allocate fixed size arrays with new and delete, with a slightly different syntax. Array allocation is
not compatible with non-array allocation, and mixing the two will lead to heap corruption. Allocating an array also
allocates memory to track the size of the array for later deletion in an implementation-defined way.

// Allocates memory for an array of 256 ints
int *foo = new int[256];
// Deletes an array of 256 ints at foo
delete[] foo;

When using new and delete instead malloc and free, the constructor and destructor will get executed (Similar to
stack based objects). This is why new and delete are preferred over malloc and free.

struct ComplexType {
 int a = 0;

 ComplexType() { std::cout << "Ctor" << std::endl; }
 ~ComplexType() { std::cout << "Dtor" << std::endl; }
};

// Allocates memory for a ComplexType, and calls its constructor
ComplexType *foo = new ComplexType();
//Calls the destructor for ComplexType() and deletes memory for a Complextype at pC
delete foo;
Version ≥ C++11

From C++11 on, the use of smart pointers is recommended for indicating ownership.

Version ≥ C++14

C++14 added std::make_unique to the STL, changing the recommendation to favor std::make_unique or
std::make_shared instead of using naked new and delete.

C++ Notes for Professionals 577

Section 115.2: Placement new
There are situations when we don't want to rely upon Free Store for allocating memory and we want to use custom
memory allocations using new.

For these situations we can use Placement New, where we can tell `new' operator to allocate memory from a pre-
allocated memory location

For example

int a4byteInteger;

char *a4byteChar = new (&a4byteInteger) char[4];

In this example, the memory pointed by a4byteChar is 4 byte allocated to 'stack' via integer variable a4byteInteger.

The benefit of this kind of memory allocation is the fact that programmers control the allocation. In the example
above, since a4byteInteger is allocated on stack, we don't need to make an explicit call to 'delete a4byteChar`.

Same behavior can be achieved for dynamic allocated memory also. For example

int *a8byteDynamicInteger = new int[2];

char *a8byteChar = new (a8byteDynamicInteger) char[8];

In this case, the memory pointer by a8byteChar will be referring to dynamic memory allocated by
a8byteDynamicInteger. In this case however, we need to explicitly calldelete a8byteDynamicInteger to release the
memory

Another example for C++ Class

struct ComplexType {
 int a;

 ComplexType() : a(0) {}
 ~ComplexType() {}
};

int main() {
 char* dynArray = new char[256];

 //Calls ComplexType's constructor to initialize memory as a ComplexType
 new((void*)dynArray) ComplexType();

 //Clean up memory once we're done
 reinterpret_cast<ComplexType*>(dynArray)->~ComplexType();
 delete[] dynArray;

 //Stack memory can also be used with placement new
 alignas(ComplexType) char localArray[256]; //alignas() available since C++11

 new((void*)localArray) ComplexType();

 //Only need to call the destructor for stack memory
 reinterpret_cast<ComplexType*>(localArray)->~ComplexType();

 return 0;
}

C++ Notes for Professionals 578

Section 115.3: Stack
The stack is a small region of memory into which temporary values are placed during execution. Allocating data into
the stack is very fast compared to heap allocation, as all the memory has already been assigned for this purpose.

int main() {
 int a = 0; //Stored on the stack
 return a;
}

The stack is named because chains of function calls will have their temporary memory 'stacked' on top of each
other, each one using a separate small section of memory.

float bar() {
 //f will be placed on the stack after anything else
 float f = 2;
 return f;
}

double foo() {
 //d will be placed just after anything within main()
 double d = bar();
 return d;
}

int main() {
 //The stack has no user variables stored in it until foo() is called
 return (int)foo();
}

Data stored on the stack is only valid so long as the scope that allocated the variable is still active.

int* pA = nullptr;

void foo() {
 int b = *pA;
 pA = &b;
}

int main() {
 int a = 5;
 pA = &a;
 foo();
 //Undefined behavior, the value pointed to by pA is no longer in scope
 a = *pA;
}

C++ Notes for Professionals 579

Chapter 116: C++11 Memory Model
Section 116.1: Need for Memory Model
int x, y;
bool ready = false;

void init()
{
 x = 2;
 y = 3;
 ready = true;
}
void use()
{
 if (ready)
 std::cout << x + y;
}

One thread calls the init() function while another thread (or signal handler) calls the use() function. One might
expect that the use() function will either print 5 or do nothing. This may not always be the case for several reasons:

The CPU may reorder the writes that happen in init() so that the code that actually executes might look
like:

void init()
{
 ready = true;
 x = 2;
 y = 3;
}

The CPU may reorder the reads that happen in use() so that the actually executed code might become:

void use()
{
 int local_x = x;
 int local_y = y;
 if (ready)
 std::cout << local_x + local_y;
}

An optimizing C++ compiler may decide to reorder the program in similar way.

Such reordering cannot change the behavior of a program running in single thread because a thread cannot
interleave the calls to init() and use(). On the other hand in a multi-threaded setting one thread may see part of
the writes performed by the other thread where it may happen that use() may see ready==true and garbage in x
or y or both.

The C++ Memory Model allows the programmer to specify which reordering operations are permitted and which
are not, so that a multi-threaded program would also be able to behave as expected. The example above can be
rewritten in thread-safe way like this:

int x, y;
std::atomic<bool> ready{false};

C++ Notes for Professionals 580

void init()
{
 x = 2;
 y = 3;
 ready.store(true, std::memory_order_release);
}
void use()
{
 if (ready.load(std::memory_order_acquire))
 std::cout << x + y;
}

Here init() performs atomic store-release operation. This not only stores the value true into ready, but also tells
the compiler that it cannot move this operation before write operations that are sequenced before it.

The use() function does an atomic load-acquire operation. It reads the current value of ready and also forbids the
compiler from placing read operations that are sequenced after it to happen before the atomic load-acquire.

These atomic operations also cause the compiler to put whatever hardware instructions are needed to inform the
CPU to refrain from the unwanted reorderings.

Because the atomic store-release is to the same memory location as the atomic load-acquire, the memory model
stipulates that if the load-acquire operation sees the value written by the store-release operation, then all writes
performed by init()'s thread prior to that store-release will be visible to loads that use()'s thread executes after its
load-acquire. That is if use() sees ready==true, then it is guaranteed to see x==2 and y==3.

Note that the compiler and the CPU are still allowed to write to y before writing to x, and similarly the reads from
these variables in use() can happen in any order.

Section 116.2: Fence example
The example above can also be implemented with fences and relaxed atomic operations:

int x, y;
std::atomic<bool> ready{false};

void init()
{
 x = 2;
 y = 3;
 atomic_thread_fence(std::memory_order_release);
 ready.store(true, std::memory_order_relaxed);
}
void use()
{
 if (ready.load(std::memory_order_relaxed))
 {
 atomic_thread_fence(std::memory_order_acquire);
 std::cout << x + y;
 }
}

If the atomic load operation sees the value written by the atomic store then the store happens before the load, and
so do the fences: the release fence happens before the acquire fence making the writes to x and y that precede the
release fence to become visible to the std::cout statement that follows the acquire fence.

A fence might be beneficial if it can reduce the overall number of acquire, release or other synchronization

C++ Notes for Professionals 581

operations. For example:

void block_and_use()
{
 while (!ready.load(std::memory_order_relaxed))
 ;
 atomic_thread_fence(std::memory_order_acquire);
 std::cout << x + y;
}

The block_and_use() function spins until the ready flag is set with the help of relaxed atomic load. Then a single
acquire fence is used to provide the needed memory ordering.

C++ Notes for Professionals 582

Chapter 117: Scopes
Section 117.1: Global variables
To declare a single instance of a variable which is accessible in different source files, it is possible to make it in the
global scope with keyword extern. This keyword says the compiler that somewhere in the code there is a definition
for this variable, so it can be used everywhere and all write/read will be done in one place of memory.

// File my_globals.h:

#ifndef __MY_GLOBALS_H__
#define __MY_GLOBALS_H__

extern int circle_radius; // Promise to the compiler that circle_radius
 // will be defined somewhere

#endif

// File foo1.cpp:

#include "my_globals.h"

int circle_radius = 123; // Defining the extern variable

// File main.cpp:

#include "my_globals.h"
#include <iostream>

int main()
{
 std::cout << "The radius is: " << circle_radius << "\n";'
 return 0;
}

Output:

The radius is: 123

Section 117.2: Simple block scope
The scope of a variable in a block { ... }, begins after declaration and ends at the end of the block. If there is
nested block, the inner block can hide the scope of a variable which is declared in the outer block.

{
 int x = 100;
 // ^
 // Scope of `x` begins here
 //
} // <- Scope of `x` ends here

If a nested block starts within an outer block, a new declared variable with the same name which is before in the

C++ Notes for Professionals 583

outer class, hides the first one.

{
 int x = 100;

 {
 int x = 200;

 std::cout << x; // <- Output is 200
 }

 std::cout << x; // <- Output is 100
}

C++ Notes for Professionals 584

Chapter 118: static_assert
Parameter Details

bool_constexpr Expression to check
message Message to print when bool_constexpr is false

Section 118.1: static_assert
Assertations mean that a condition should be checked and if it's false, it's an error. For static_assert(), this is
done compile-time.

template<typename T>
T mul10(const T t)
{
 static_assert(std::is_integral<T>::value, "mul10() only works for integral types");
 return (t << 3) + (t << 1);
}

A static_assert() has a mandatory first parameter, the condition, that is a bool constexpr. It might have a second
parameter, the message, that is a string literal. From C++17, the second parameter is optional; before that, it's
mandatory.

Version ≥ C++17

template<typename T>
T mul10(const T t)
{
 static_assert(std::is_integral<T>::value);
 return (t << 3) + (t << 1);
}

It is used when:

In general, a verification at compile-time is required on some type on constexpr value
A template function needs to verify certain properties of a type passed to it
One wants to write test cases for:

template metafunctions
constexpr functions
macro metaprogramming

Certain defines are required (for ex., C++ version)
Porting legacy code, assertations on sizeof(T) (e.g., 32-bit int)
Certain compiler features are required for the program to work (packing, empty base class optimization, etc.)

Note that static_assert() does not participate in SFINAE: thus, when additional overloads / specializations are
possible, one should not use it instead of template metaprogramming techniques (like std::enable_if<>). It might
be used in template code when the expected overload / specialization is already found, but further verifications are
required. In such cases, it might provide more concrete error message(s) than relying on SFINAE for this.

C++ Notes for Professionals 585

Chapter 119: constexpr
constexpr is a keyword that can be used to mark a variable's value as a constant expression, a function as
potentially usable in constant expressions, or (since C++17) an if statement as having only one of its branches
selected to be compiled.

Section 119.1: constexpr variables
A variable declared constexpr is implicitly const and its value may be used as a constant expression.

Comparison with #define

A constexpr is type-safe replacement for #define based compile-time expressions. With constexpr the compile-
time evaluated expression is replaced with the result. For example:

Version ≥ C++11

int main()
{
 constexpr int N = 10 + 2;
 cout << N;
}

will produce the following code:

cout << 12;

A pre-processor based compile-time macro would be different. Consider:

#define N 10 + 2

int main()
{
 cout << N;
}

will produce:

cout << 10 + 2;

which will obviously be converted to cout << 10 + 2;. However, the compiler would have to do more work. Also, it
creates a problem if not used correctly.

For example (with #define):

cout << N * 2;

forms:

cout << 10 + 2 * 2; // 14

But a pre-evaluated constexpr would correctly give 24.

Comparison with const

C++ Notes for Professionals 586

A const variable is a variable which needs memory for its storage. A constexpr does not. A constexpr produces
compile time constant, which cannot be changed. You may argue that const may also not be changed. But
consider:

int main()
{
 const int size1 = 10;
 const int size2 = abs(10);

 int arr_one[size1];
 int arr_two[size2];
}

With most compilers the second statement will fail (may work with GCC, for example). The size of any array, as you
might know, has to be a constant expression (i.e. results in compile-time value). The second variable size2 is
assigned some value that is decided at runtime (even though you know it is 10, for the compiler it is not compile-
time).

This means that a const may or may not be a true compile-time constant. You cannot guarantee or enforce that a
particular const value is absolutely compile-time. You may use #define but it has its own pitfalls.

Therefore simply use:

Version ≥ C++11

int main()
{
 constexpr int size = 10;

 int arr[size];
}

A constexpr expression must evaluate to a compile-time value. Thus, you cannot use:

Version ≥ C++11

constexpr int size = abs(10);

Unless the function (abs) is itself returning a constexpr.

All basic types can be initialized with constexpr.

Version ≥ C++11

constexpr bool FailFatal = true;
constexpr float PI = 3.14f;
constexpr char* site= "StackOverflow";

Interestingly, and conveniently, you may also use auto:

Version ≥ C++11

constexpr auto domain = ".COM"; // const char * const domain = ".COM"
constexpr auto PI = 3.14; // constexpr double

Section 119.2: Static if statement
Version ≥ C++17

The if constexpr statement can be used to conditionally compile code. The condition must be a constant
expression. The branch not selected is discarded. A discarded statement inside a template is not instantiated. For

C++ Notes for Professionals 587

example:

template<class T, class ... Rest>
void g(T &&p, Rest &&...rs)
{
 // ... handle p
 if constexpr (sizeof...(rs) > 0)
 g(rs...); // never instantiated with an empty argument list
}

In addition, variables and functions that are odr-used only inside discarded statements are not required to be
defined, and discarded return statements are not used for function return type deduction.

if constexpr is distinct from #ifdef. #ifdef conditionally compiles code, but only based on conditions that can be
evaluated at preprocessing time. For example, #ifdef could not be used to conditionally compile code depending
on the value of a template parameter. On the other hand, if constexpr cannot be used to discard syntactically
invalid code, while #ifdef can.

if constexpr(false) {
 foobar; // error; foobar has not been declared
 std::vector<int> v("hello, world"); // error; no matching constructor
}

Section 119.3: constexpr functions
A function that is declared constexpr is implicitly inline and calls to such a function potentially yield constant
expressions. For example, the following function, if called with constant expression arguments, yields a constant
expression too:

Version ≥ C++11

constexpr int Sum(int a, int b)
{
 return a + b;
}

Thus, the result of the function call may be used as an array bound or a template argument, or to initialize a
constexpr variable:

Version ≥ C++11

int main()
{
 constexpr int S = Sum(10,20);

 int Array[S];
 int Array2[Sum(20,30)]; // 50 array size, compile time
}

Note that if you remove constexpr from function's return type specification, assignment to S will not work, as S is a
constexpr variable, and must be assigned a compile-time const. Similarly, size of array will also not be a constant-
expression, if function Sum is not constexpr.

Interesting thing about constexpr functions is that you may also use it like ordinary functions:

Version ≥ C++11

int a = 20;
auto sum = Sum(a, abs(-20));

C++ Notes for Professionals 588

Sum will not be a constexpr function now, it will be compiled as an ordinary function, taking variable (non-constant)
arguments, and returning non-constant value. You need not to write two functions.

It also means that if you try to assign such call to a non-const variable, it won't compile:

Version ≥ C++11

int a = 20;
constexpr auto sum = Sum(a, abs(-20));

The reason is simple: constexpr must only be assigned a compile-time constant. However, the above function call
makes Sum a non-constexpr (R-value is non-const, but L-value is declaring itself to be constexpr).

The constexpr function must also return a compile-time constant. Following will not compile:

Version ≥ C++11

constexpr int Sum(int a, int b)
{
 int a1 = a; // ERROR
 return a + b;
}

Because a1 is a non-constexpr variable, and prohibits the function from being a true constexpr function. Making it
constexpr and assigning it a will also not work - since value of a (incoming parameter) is still not yet known:

Version ≥ C++11

constexpr int Sum(int a, int b)
{
 constexpr int a1 = a; // ERROR
 ..

Furthermore, following will also not compile:

Version ≥ C++11

constexpr int Sum(int a, int b)
{
 return abs(a) + b; // or abs(a) + abs(b)
}

Since abs(a) is not a constant expression (even abs(10) will not work, since abs is not returning a constexpr int !

What about this?

Version ≥ C++11

constexpr int Abs(int v)
{
 return v >= 0 ? v : -v;
}

constexpr int Sum(int a, int b)
{
 return Abs(a) + b;
}

We crafted our own Abs function which is a constexpr, and the body of Abs also doesn't break any rule. Also, at the
call site (inside Sum), the expression evaluates to a constexpr. Hence, the call to Sum(-10, 20) will be a compile-time
constant expression resulting to 30.

C++ Notes for Professionals 589

Chapter 120: One Definition Rule (ODR)
Section 120.1: ODR violation via overload resolution
Even with identical tokens for inline functions, ODR can be violated if lookup of names doesn't refer to the same
entity. let's consider func in following:

header.h

void overloaded(int);
inline void func() { overloaded('*'); }

foo.cpp

#include "header.h"

void foo()
{
 func(); // `overloaded` refers to `void overloaded(int)`
}

bar.cpp

void overloaded(char); // can come from other include
#include "header.h"

void bar()
{
 func(); // `overloaded` refers to `void overloaded(char)`
}

We have an ODR violation as overloaded refers to different entities depending of the translation unit.

Section 120.2: Multiply defined function
The most important consequence of the One Definition Rule is that non-inline functions with external linkage
should only be defined once in a program, although they can be declared multiple times. Therefore, such functions
should not be defined in headers, since a header can be included multiple times from different translation units.

foo.h:

#ifndef FOO_H
#define FOO_H
#include <iostream>
void foo() { std::cout << "foo"; }
void bar();
#endif

foo.cpp:

#include "foo.h"
void bar() { std:: cout << "bar"; }

main.cpp:

C++ Notes for Professionals 590

#include "foo.h"
int main() {
 foo();
 bar();
}

In this program, the function foo is defined in the header foo.h, which is included twice: once from foo.cpp and
once from main.cpp. Each translation unit therefore contains its own definition of foo. Note that the include guards
in foo.h do not prevent this from happening, since foo.cpp and main.cpp both separately include foo.h. The most
likely result of trying to build this program is a link-time error identifying foo as having been multiply defined.

To avoid such errors, one should declare functions in headers and define them in the corresponding .cpp files, with
some exceptions (see other examples).

Section 120.3: Inline functions
A function declared inline may be defined in multiple translation units, provided that all definitions are identical. It
also must be defined in every translation unit in which it is used. Therefore, inline functions should be defined in
headers and there is no need to mention them in the implementation file.

The program will behave as though there is a single definition of the function.

foo.h:

#ifndef FOO_H
#define FOO_H
#include <iostream>
inline void foo() { std::cout << "foo"; }
void bar();
#endif

foo.cpp:

#include "foo.h"
void bar() {
 // more complicated definition
}

main.cpp:

#include "foo.h"
int main() {
 foo();
 bar();
}

In this example, the simpler function foo is defined inline in the header file while the more complicated function
bar is not inline and is defined in the implementation file. Both the foo.cpp and main.cpp translation units contain
definitions of foo, but this program is well-formed since foo is inline.

A function defined within a class definition (which may be a member function or a friend function) is implicitly inline.
Therefore, if a class is defined in a header, member functions of the class may be defined within the class definition,
even though the definitions may be included in multiple translation units:

// in foo.h
class Foo {

C++ Notes for Professionals 591

 void bar() { std::cout << "bar"; }
 void baz();
};

// in foo.cpp
void Foo::baz() {
 // definition
}

The function Foo::baz is defined out-of-line, so it is not an inline function, and must not be defined in the header.

C++ Notes for Professionals 592

Chapter 121: Unspecified behavior
Section 121.1: Value of an out-of-range enum
If a scoped enum is converted to an integral type that is too small to hold its value, the resulting value is
unspecified. Example:

enum class E {
 X = 1,
 Y = 1000,
};
// assume 1000 does not fit into a char
char c1 = static_cast<char>(E::X); // c1 is 1
char c2 = static_cast<char>(E::Y); // c2 has an unspecified value

Also, if an integer is converted to an enum and the integer's value is outside the range of the enum's values, the
resulting value is unspecified. Example:

enum Color {
 RED = 1,
 GREEN = 2,
 BLUE = 3,
};
Color c = static_cast<Color>(4);

However, in the next example, the behavior is not unspecified, since the source value is within the range of the
enum, although it is unequal to all enumerators:

enum Scale {
 ONE = 1,
 TWO = 2,
 FOUR = 4,
};
Scale s = static_cast<Scale>(3);

Here s will have the value 3, and be unequal to ONE, TWO, and FOUR.

Section 121.2: Evaluation order of function arguments
If a function has multiple arguments, it is unspecified what order they are evaluated in. The following code could
print x = 1, y = 2 or x = 2, y = 1 but it is unspecified which.

int f(int x, int y) {
 printf("x = %d, y = %d\n", x, y);
}
int get_val() {
 static int x = 0;
 return ++x;
}
int main() {
 f(get_val(), get_val());
}
Version ≥ C++17

In C++17, the order of evaluation of function arguments remains unspecified.

C++ Notes for Professionals 593

However, each function argument is completely evaluated, and the calling object is guaranteed evaluated before
any function arguments are.

struct from_int {
 from_int(int x) { std::cout << "from_int (" << x << ")\n"; }
};
int make_int(int x){ std::cout << "make_int (" << x << ")\n"; return x; }

void foo(from_int a, from_int b) {
}
void bar(from_int a, from_int b) {
}

auto which_func(bool b){
 std::cout << b?"foo":"bar" << "\n";
 return b?foo:bar;
}

int main(int argc, char const*const* argv) {
 which_func(true)(make_int(1), make_int(2));
}

this must print:

bar
make_int(1)
from_int(1)
make_int(2)
from_int(2)

or

bar
make_int(2)
from_int(2)
make_int(1)
from_int(1)

it may not print bar after any of the make or from's, and it may not print:

bar
make_int(2)
make_int(1)
from_int(2)
from_int(1)

or similar. Prior to C++17 printing bar after make_ints was legal, as was doing both make_ints prior to doing any
from_ints.

Section 121.3: Result of some reinterpret_cast conversions
The result of a reinterpret_cast from one function pointer type to another, or one function reference type to
another, is unspecified. Example:

int f();

C++ Notes for Professionals 594

auto fp = reinterpret_cast<int(*)(int)>(&f); // fp has unspecified value
Version ≤ C++03

The result of a reinterpret_cast from one object pointer type to another, or one object reference type to another,
is unspecified. Example:

int x = 42;
char* p = reinterpret_cast<char*>(&x); // p has unspecified value

However, with most compilers, this was equivalent to static_cast<char*>(static_cast<void*>(&x)) so the
resulting pointer p pointed to the first byte of x. This was made the standard behavior in C++11. See type punning
conversion for more details.

Section 121.4: Space occupied by a reference
A reference is not an object, and unlike an object, it is not guaranteed to occupy some contiguous bytes of memory.
The standard leaves it unspecified whether a reference requires any storage at all. A number of features of the
language conspire to make it impossible to portably examine any storage the reference might occupy:

If sizeof is applied to a reference, it returns the size of the referenced type, thereby giving no information
about whether the reference occupies any storage.
Arrays of references are illegal, so it is not possible to examine the addresses of two consecutive elements of
a hypothetical reference of arrays in order to determine the size of a reference.
If the address of a reference is taken, the result is the address of the referent, so we cannot get a pointer to
the reference itself.
If a class has a reference member, attempting to extract the address of that member using offsetof yields
undefined behavior since such a class is not a standard-layout class.
If a class has a reference member, the class is no longer standard layout, so attempts to access any data used
to store the reference results in undefined or unspecified behavior.

In practice, in some cases a reference variable may be implemented similarly to a pointer variable and hence
occupy the same amount of storage as a pointer, while in other cases a reference may occupy no space at all since
it can be optimized out. For example, in:

void f() {
 int x;
 int& r = x;
 // do something with r
}

the compiler is free to simply treat r as an alias for x and replace all occurrences of r in the rest of the function f
with x, and not allocate any storage to hold r.

Section 121.5: Moved-from state of most standard library
classes
Version ≥ C++11

All standard library containers are left in a valid but unspecified state after being moved from. For example, in the
following code, v2 will contain {1, 2, 3, 4} after the move, but v1 is not guaranteed to be empty.

int main() {
 std::vector<int> v1{1, 2, 3, 4};
 std::vector<int> v2 = std::move(v1);

C++ Notes for Professionals 595

}

Some classes do have a precisely defined moved-from state. The most important case is that of
std::unique_ptr<T>, which is guaranteed to be null after being moved from.

Section 121.6: Result of some pointer comparisons
If two pointers are compared using <, >, <=, or >=, the result is unspecified in the following cases:

The pointers point into different arrays. (A non-array object is considered an array of size 1.)

int x;
int y;
const bool b1 = &x < &y; // unspecified
int a[10];
const bool b2 = &a[0] < &a[1]; // true
const bool b3 = &a[0] < &x; // unspecified
const bool b4 = (a + 9) < (a + 10); // true
 // note: a+10 points past the end of the array

The pointers point into the same object, but to members with different access control.

class A {
 public:
 int x;
 int y;
 bool f1() { return &x < &y; } // true; x comes before y
 bool f2() { return &x < &z; } // unspecified
 private:
 int z;
};

Section 121.7: Static cast from bogus void* value
If a void* value is converted to a pointer to object type, T*, but is not properly aligned for T, the resulting pointer
value is unspecified. Example:

// Suppose that alignof(int) is 4
int x = 42;
void* p1 = &x;
// Do some pointer arithmetic...
void* p2 = static_cast<char*>(p1) + 2;
int* p3 = static_cast<int*>(p2);

The value of p3 is unspecified because p2 cannot point to an object of type int; its value is not a properly aligned
address.

Section 121.8: Order of initialization of globals across TU
Whereas inside a Translation Unit, order of initialization of global variables is specified, order of initialization across
Translation Units is unspecified.

So program with following files

C++ Notes for Professionals 596

foo.cpp

#include <iostream>

int dummyFoo = ((std::cout << "foo"), 0);

bar.cpp

#include <iostream>

int dummyBar = ((std::cout << "bar"), 0);

main.cpp

int main() {}

might produce as output:

foobar

or

barfoo

That may lead to Static Initialization Order Fiasco.

C++ Notes for Professionals 597

Chapter 122: Argument Dependent Name
Lookup
Section 122.1: What functions are found
Functions are found by first collecting a set of "associated classes" and "associated namespaces" that include one ore
more of the following, depending on the argument type T. First, let us show the rules for classes, enumeration and
class template specialization names.

If T is a nested class, member enumeration, then the surrounding class of it.
If T is an enumeration (it may also be a class member!), the innermost namespace of it.
If T is a class (it may also be nested!), all its base classes and the class itself. The innermost namespace of all
associated classes.
If T is a ClassTemplate<TemplateArguments> (this is also a class!), the classes and namespaces associated
with the template type arguments, the namespace of any template template argument and the surrounding
class of any template template argument, if a template argument is a member template.

Now there are a few rules for builtin types as well

If T is a pointer to U or array of U, the classes and namespaces associated with U. Example: void (*fptr)(A);
f(fptr);, includes the namespaces and classes associated with void(A) (see next rule).
If T is a function type, the classes and namespaces associated with parameter and return types. Example:
void(A) would includes the namespaces and classes associated with A.
If T is a pointer to member, the classes and namespaces associated with the member type (may apply to both
pointer to member functions and pointer to data member!). Example: B A::*p; void (A::*pf)(B); f(p);
f(pf); includes the namespaces and classes associated with A, B, void(B) (which applies bullet above for
function types).

All functions and templates within all associated namespaces are found by argument dependent lookup. In addition,
namespace-scope friend functions declared in associated classes are found, which are normally not visible. Using
directives are ignored, however.

All of the following example calls are valid, without qualifying f by the namespace name in the call.

namespace A {
 struct Z { };
 namespace I { void g(Z); }
 using namespace I;

 struct X { struct Y { }; friend void f(Y) { } };
 void f(X p) { }
 void f(std::shared_ptr<X> p) { }
}

// example calls
f(A::X());
f(A::X::Y());
f(std::make_shared<A::X>());

g(A::Z()); // invalid: "using namespace I;" is ignored!

C++ Notes for Professionals 598

Chapter 123: Attributes
Section 123.1: [[fallthrough]]
Version ≥ C++17

Whenever a case is ended in a switch, the code of the next case will get executed. This last one can be prevented
by using the ´break` statement. As this so-called fallthrough behavior can introduce bugs when not intended,
several compilers and static analyzers give a warning on this.

From C++17 on, a standard attribute was introduced to indicate that the warning is not needed when the code is
meant to fall through. Compilers can safely give warnings when a case is ended without break or [[fallthrough]]
and has at least one statement.

switch(input) {
 case 2011:
 case 2014:
 case 2017:
 std::cout << "Using modern C++" << std::endl;
 [[fallthrough]]; // > No warning
 case 1998:
 case 2003:
 standard = input;
}

See the proposal for more detailed examples on how [[fallthrough]] can be used.

Section 123.2: [[nodiscard]]
Version ≥ C++17

The [[nodiscard]] attribute can be used to indicate that the return value of a function shouldn't be ignored when
you do a function call. If the return value is ignored, the compiler should give a warning on this. The attribute can be
added to:

A function definition
A type

Adding the attribute to a type has the same behaviour as adding the attribute to every single function which returns
this type.

template<typename Function>
[[nodiscard]] Finally<std::decay_t<Function>> onExit(Function &&f);

void f(int &i) {
 assert(i == 0); // Just to make comments clear!
 ++i; // i == 1
 auto exit1 = onExit([&i]{ --i; }); // Reduce by 1 on exiting f()
 ++i; // i == 2
 onExit([&i]{ --i; }); // BUG: Reducing by 1 directly
 // Compiler warning expected
 std::cout << i << std::end; // Expected: 2, Real: 1
}

See the proposal for more detailed examples on how [[nodiscard]] can be used.

https://isocpp.org/files/papers/P0188R0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0068r0.pdf

C++ Notes for Professionals 599

Note: The implementation details of Finally/onExit are omitted in the example, see Finally/ScopeExit.

Section 123.3: [[deprecated]] and [[deprecated("reason")]]
Version ≥ C++14

C++14 introduced a standard way of deprecating functions via attributes. [[deprecated]] can be used to indicate
that a function is deprecated. [[deprecated("reason")]] allows adding a specific reason which can be shown by
the compiler.

void function(std::unique_ptr<A> &&a);

// Provides specific message which helps other programmers fixing there code
[[deprecated("Use the variant with unique_ptr instead, this function will be removed in the next
release")]]
void function(std::auto_ptr<A> a);

// No message, will result in generic warning if called.
[[deprecated]]
void function(A *a);

This attribute may be applied to:

the declaration of a class
a typedef-name
a variable
a non-static data member
a function
an enumeration
a template specialization

(ref. c++14 standard draft: 7.6.5 Deprecated attribute)

Section 123.4: [[maybe_unused]]
The [[maybe_unused]] attribute is created for indicating in code that certain logic might not be used. This if often
linked to preprocessor conditions where this might be used or might not be used. As compilers can give warnings
on unused variables, this is a way of suppressing them by indicating intent.

A typical example of variables which are needed in debug builds while unneeded in production are return values
indicating success. In the debug builds, the condition should be asserted, though in production these asserts have
been removed.

[[maybe_unused]] auto mapInsertResult = configuration.emplace("LicenseInfo",
stringifiedLicenseInfo);
assert(mapInsertResult.second); // We only get called during startup, so we can't be in the map

A more complex example are different kind of helper functions which are in an unnamed namespace. If these
functions aren't used during compilation, a compiler might give a warning on them. Ideally you would like to guard
them with the same preprocessor tags as the caller, though as this might become complex the [[maybe_unused]]
attribute is a more maintainable alternative.

namespace {
 [[maybe_unused]] std::string createWindowsConfigFilePath(const std::string &relativePath);

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3797.pdf

C++ Notes for Professionals 600

 // TODO: Reuse this on BSD, MAC ...
 [[maybe_unused]] std::string createLinuxConfigFilePath(const std::string &relativePath);
}

std::string createConfigFilePath(const std::string &relativePath) {
#if OS == "WINDOWS"
 return createWindowsConfigFilePath(relativePath);
#elif OS == "LINUX"
 return createLinuxConfigFilePath(relativePath);
#else
#error "OS is not yet supported"
#endif
}

See the proposal for more detailed examples on how [[maybe_unused]] can be used.

Section 123.5: [[noreturn]]
Version ≥ C++11

C++11 introduced the [[noreturn]] attribute. It can be used for a function to indicate that the function does not
return to the caller by either executing a return statement, or by reaching the end if it's body (it is important to note
that this does not apply to void functions, since they do return to the caller, they just do not return any value). Such
a function may end by calling std::terminate or std::exit, or by throwing an exception. It is also worth noting
that such a function can return by executing longjmp.

For instance, the function below will always either throw an exception or call std::terminate, so it is a good
candidate for [[noreturn]]:

[[noreturn]] void ownAssertFailureHandler(std::string message) {
 std::cerr << message << std::endl;
 if (THROW_EXCEPTION_ON_ASSERT)
 throw AssertException(std::move(message));
 std::terminate();
}

This kind of functionality allows the compiler to end a function without a return statement if it knows the code will
never be executed. Here, because the call to ownAssertFailureHandler (defined above) in the code below will
never return, the compiler does not need to add code below that call:

std::vector<int> createSequence(int end) {
 if (end > 0) {
 std::vector<int> sequence;
 sequence.reserve(end+1);
 for (int i = 0; i <= end; ++i)
 sequence.push_back(i);
 return sequence;
 }
 ownAssertFailureHandler("Negative number passed to createSequence()"s);
 // return std::vector<int>{}; //< Not needed because of [[noreturn]]
}

It is undefined behavior if the function will actually return, so the following is not allowed:

[[noreturn]] void assertPositive(int number) {
 if (number >= 0)
 return;
 else

https://isocpp.org/files/papers/P0212R0.pdf

C++ Notes for Professionals 601

 ownAssertFailureHandler("Positive number expected"s); //< [[noreturn]]
}

Note that the [[noreturn]] is mostly used in void functions. However, this is not a requirement, allowing the
functions to be used in generic programming:

template<class InconsistencyHandler>
double fortyTwoDivideBy(int i) {
 if (i == 0)
 i = InconsistencyHandler::correct(i);
 return 42. / i;
}

struct InconsistencyThrower {
 static [[noreturn]] int correct(int i) { ownAssertFailureHandler("Unknown inconsistency"s); }
}

struct InconsistencyChangeToOne {
 static int correct(int i) { return 1; }
}

double fortyTwo = fortyTwoDivideBy<InconsistencyChangeToOne>(0);
double unreachable = fortyTwoDivideBy<InconsistencyThrower>(0);

The following standard library functions have this attribute:

std::abort
std::exit
std::quick_exit
std::unexpected
std::terminate
std::rethrow_exception
std::throw_with_nested
std::nested_exception::rethrow_nested

C++ Notes for Professionals 602

Chapter 124: Recursion in C++
Section 124.1: Using tail recursion and Fibonnaci-style
recursion to solve the Fibonnaci sequence
The simple and most obvious way to use recursion to get the Nth term of the Fibonnaci sequence is this

int get_term_fib(int n)
{
 if (n == 0)
 return 0;
 if (n == 1)
 return 1;
 return get_term_fib(n - 1) + get_term_fib(n - 2);
}

However, this algorithm does not scale for higher terms: for bigger and bigger n, the number of function calls that
you need to make grows exponentially. This can be replaced with a simple tail recursion.

int get_term_fib(int n, int prev = 0, int curr = 1)
{
 if (n == 0)
 return prev;
 if (n == 1)
 return curr;
 return get_term_fib(n - 1, curr, prev + curr);
}

Each call to the function now immediately calculates the next term in the Fibonnaci sequence, so the number of
function calls scales linearly with n.

Section 124.2: Recursion with memoization
Recursive functions can get quite expensive. If they are pure functions (functions that always return the same value
when called with the same arguments, and that neither depend on nor modify external state), they can be made
considerably faster at the expense of memory by storing the values already calculated.

The following is an implementation of the Fibonacci sequence with memoization:

#include <map>

int fibonacci(int n)
{
 static std::map<int, int> values;
 if (n==0 || n==1)
 return n;
 std::map<int,int>::iterator iter = values.find(n);
 if (iter == values.end())
 {
 return values[n] = fibonacci(n-1) + fibonacci(n-2);
 }
 else
 {
 return iter->second;
 }
}

C++ Notes for Professionals 603

Note that despite using the simple recursion formula, on first call this function is $O(n)$. On subsequent calls with
the same value, it is of course $O(1)$.

Note however that this implementation is not reentrant. Also, it doesn't allow to get rid of stored values. An
alternative implementation would be to allow the map to be passed as additional argument:

#include <map>

int fibonacci(int n, std::map<int, int> values)
{
 if (n==0 || n==1)
 return n;
 std::map<int,int>::iterator iter = values.find(n);
 if (iter == values.end())
 {
 return values[n] = fibonacci(n-1) + fibonacci(n-2);
 }
 else
 {
 return iter->second;
 }
}

For this version, the caller is required to maintain the map with the stored values. This has the advantage that the
function is now reentrant, and that the caller can remove values that are no longer needed, saving memory. It has
the disadvantage that it breaks encapsulation; the caller can change the output by populating the map with
incorrect values.

C++ Notes for Professionals 604

Chapter 125: Arithmitic Metaprogramming
These are example of using C++ template metaprogramming in processing arithmitic operations in compile time.

Section 125.1: Calculating power in O(log n)
This example shows an efficient way of calculating power using template metaprogramming.

template <int base, unsigned int exponent>
struct power
{
 static const int halfvalue = power<base, exponent / 2>::value;
 static const int value = halfvalue * halfvalue * power<base, exponent % 2>::value;
};

template <int base>
struct power<base, 0>
{
 static const int value = 1;
 static_assert(base != 0, "power<0, 0> is not allowed");
};

template <int base>
struct power<base, 1>
{
 static const int value = base;
};

Example Usage:

std::cout << power<2, 9>::value;
Version ≥ C++14

This one also handles negative exponents:

template <int base, int exponent>
struct powerDouble
{
 static const int exponentAbs = exponent < 0 ? (-exponent) : exponent;
 static const int halfvalue = powerDouble<base, exponentAbs / 2>::intermediateValue;
 static const int intermediateValue = halfvalue * halfvalue * powerDouble<base, exponentAbs %
2>::intermediateValue;

 constexpr static double value = exponent < 0 ? (1.0 / intermediateValue) : intermediateValue;

};

template <int base>
struct powerDouble<base, 0>
{
 static const int intermediateValue = 1;
 constexpr static double value = 1;
 static_assert(base != 0, "powerDouble<0, 0> is not allowed");
};

template <int base>

C++ Notes for Professionals 605

struct powerDouble<base, 1>
{
 static const int intermediateValue = base;
 constexpr static double value = base;
};

int main()
{
 std::cout << powerDouble<2,-3>::value;
}

C++ Notes for Professionals 606

Chapter 126: Callable Objects
Callable objects are the collection of all C++ structures which can be used as a function. In practice, this are all
things you can pass to the C++17 STL function invoke() or which can be used in the constructor of std::function, this
includes: Function pointers, Classes with operator(), Classes with implicit conversions, References to functions,
Pointers to member functions, Pointers to member data, lambdas. The callable objects are used in many STL
algorithms as predicate.

Section 126.1: Function Pointers
Function pointers are the most basic way of passing functions around, which can also be used in C. (See the C
documentation for more details).

For the purpose of callable objects, a function pointer can be defined as:

typedef returnType(*name)(arguments); // All
using name = returnType(*)(arguments); // <= C++11
using name = std::add_pointer<returnType(arguments)>::type; // <= C++11
using name = std::add_pointer_t<returnType(arguments)>; // <= C++14

If we would be using a function pointer for writing our own vector sort, it would look like:

using LessThanFunctionPtr = std::add_pointer_t<bool(int, int)>;
void sortVectorInt(std::vector<int>&v, LessThanFunctionPtr lessThan) {
 if (v.size() < 2)
 return;
 if (v.size() == 2) {
 if (!lessThan(v.front(), v.back())) // Invoke the function pointer
 std::swap(v.front(), v.back());
 return;
 }
 std::sort(v, lessThan);
}

bool lessThanInt(int lhs, int rhs) { return lhs < rhs; }
sortVectorInt(vectorOfInt, lessThanInt); // Passes the pointer to a free function

struct GreaterThanInt {
 static bool cmp(int lhs, int rhs) { return lhs > rhs; }
};
sortVectorInt(vectorOfInt, &GreaterThanInt::cmp); // Passes the pointer to a static member function

Alternatively, we could have invoked the function pointer one of following ways:

(*lessThan)(v.front(), v.back()) // All

std::invoke(lessThan, v.front(), v.back()) // <= C++17

Section 126.2: Classes with operator() (Functors)
Every class which overloads the operator() can be used as a function object. These classes can be written by hand
(often referred to as functors) or automatically generated by the compiler by writing Lambdas from C++11 on.

struct Person {
 std::string name;
 unsigned int age;
};

C++ Notes for Professionals 607

// Functor which find a person by name
struct FindPersonByName {
 FindPersonByName(const std::string &name) : _name(name) {}

 // Overloaded method which will get called
 bool operator()(const Person &person) const {
 return person.name == _name;
 }
private:
 std::string _name;
};

std::vector<Person> v; // Assume this contains data
std::vector<Person>::iterator iFind =
 std::find_if(v.begin(), v.end(), FindPersonByName("Foobar"));
// ...

As functors have their own identity, they cannot be put in a typedef and these have to be accepted via template
argument. The definition of std::find_if can look like:

template<typename Iterator, typename Predicate>
Iterator find_if(Iterator begin, Iterator end, Predicate &predicate) {
 for (Iterator i = begin, i != end, ++i)
 if (predicate(*i))
 return i;
 return end;
}

From C++17 on, the calling of the predicate can be done with invoke: std::invoke(predicate, *i).

C++ Notes for Professionals 608

Chapter 127: Client server examples
Section 127.1: Hello TCP Client
This program is complimentary to Hello TCP Server program, you can run either of them to check the validity of
each other. The program flow is quite common with Hello TCP server, so make sure to take a look at that too.

Here's the code -

#include <cstring>
#include <iostream>
#include <string>

#include <arpa/inet.h>
#include <netdb.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <unistd.h>

int main(int argc, char *argv[])
{
 // Now we're taking an ipaddress and a port number as arguments to our program
 if (argc != 3) {
 std::cerr << "Run program as 'program <ipaddress> <port>'\n";
 return -1;
 }

 auto &ipAddress = argv[1];
 auto &portNum = argv[2];

 addrinfo hints, *p;
 memset(&hints, 0, sizeof(hints));
 hints.ai_family = AF_UNSPEC;
 hints.ai_socktype = SOCK_STREAM;
 hints.ai_flags = AI_PASSIVE;

 int gAddRes = getaddrinfo(ipAddress, portNum, &hints, &p);
 if (gAddRes != 0) {
 std::cerr << gai_strerror(gAddRes) << "\n";
 return -2;
 }

 if (p == NULL) {
 std::cerr << "No addresses found\n";
 return -3;
 }

 // socket() call creates a new socket and returns it's descriptor
 int sockFD = socket(p->ai_family, p->ai_socktype, p->ai_protocol);
 if (sockFD == -1) {
 std::cerr << "Error while creating socket\n";
 return -4;
 }

 // Note: there is no bind() call as there was in Hello TCP Server
 // why? well you could call it though it's not necessary
 // because client doesn't necessarily has to have a fixed port number
 // so next call will bind it to a random available port number

C++ Notes for Professionals 609

 // connect() call tries to establish a TCP connection to the specified server
 int connectR = connect(sockFD, p->ai_addr, p->ai_addrlen);
 if (connectR == -1) {
 close(sockFD);
 std::cerr << "Error while connecting socket\n";
 return -5;
 }

 std::string reply(15, ' ');

 // recv() call tries to get the response from server
 // BUT there's a catch here, the response might take multiple calls
 // to recv() before it is completely received
 // will be demonstrated in another example to keep this minimal
 auto bytes_recv = recv(sockFD, &reply.front(), reply.size(), 0);
 if (bytes_recv == -1) {
 std::cerr << "Error while receiving bytes\n";
 return -6;
 }

 std::cout << "\nClient recieved: " << reply << std::endl;
 close(sockFD);
 freeaddrinfo(p);

 return 0;
}

Section 127.2: Hello TCP Server
Let me start by saying you should first visit Beej's Guide to Network Programming and give it a quick read, which
explains most of this stuff a bit more verbosely. We'll be creating a simple TCP server here which will say "Hello
World" to all incoming connections and then close them. Another thing to note is, the server will be communicating
to clients iteratively, which means one client at a time. Make sure to check out relevant man pages as they might
contain valuable information about each function call and socket structures.

We'll run the server with a port, so we'll take an argument for port number as well. Let's get started with code -

#include <cstring> // sizeof()
#include <iostream>
#include <string>

// headers for socket(), getaddrinfo() and friends
#include <arpa/inet.h>
#include <netdb.h>
#include <sys/socket.h>
#include <sys/types.h>

#include <unistd.h> // close()

int main(int argc, char *argv[])
{
 // Let's check if port number is supplied or not..
 if (argc != 2) {
 std::cerr << "Run program as 'program <port>'\n";
 return -1;
 }

 auto &portNum = argv[1];
 const unsigned int backLog = 8; // number of connections allowed on the incoming queue

https://beej.us/guide/bgnet/output/html/singlepage/bgnet.html

C++ Notes for Professionals 610

 addrinfo hints, *res, *p; // we need 2 pointers, res to hold and p to iterate over
 memset(&hints, 0, sizeof(hints));

 // for more explanation, man socket
 hints.ai_family = AF_UNSPEC; // don't specify which IP version to use yet
 hints.ai_socktype = SOCK_STREAM; // SOCK_STREAM refers to TCP, SOCK_DGRAM will be?
 hints.ai_flags = AI_PASSIVE;

 // man getaddrinfo
 int gAddRes = getaddrinfo(NULL, portNum, &hints, &res);
 if (gAddRes != 0) {
 std::cerr << gai_strerror(gAddRes) << "\n";
 return -2;
 }

 std::cout << "Detecting addresses" << std::endl;

 unsigned int numOfAddr = 0;
 char ipStr[INET6_ADDRSTRLEN]; // ipv6 length makes sure both ipv4/6 addresses can be stored
in this variable

 // Now since getaddrinfo() has given us a list of addresses
 // we're going to iterate over them and ask user to choose one
 // address for program to bind to
 for (p = res; p != NULL; p = p->ai_next) {
 void *addr;
 std::string ipVer;

 // if address is ipv4 address
 if (p->ai_family == AF_INET) {
 ipVer = "IPv4";
 sockaddr_in *ipv4 = reinterpret_cast<sockaddr_in *>(p->ai_addr);
 addr = &(ipv4->sin_addr);
 ++numOfAddr;
 }

 // if address is ipv6 address
 else {
 ipVer = "IPv6";
 sockaddr_in6 *ipv6 = reinterpret_cast<sockaddr_in6 *>(p->ai_addr);
 addr = &(ipv6->sin6_addr);
 ++numOfAddr;
 }

 // convert IPv4 and IPv6 addresses from binary to text form
 inet_ntop(p->ai_family, addr, ipStr, sizeof(ipStr));
 std::cout << "(" << numOfAddr << ") " << ipVer << " : " << ipStr
 << std::endl;
 }

 // if no addresses found :(
 if (!numOfAddr) {
 std::cerr << "Found no host address to use\n";
 return -3;
 }

 // ask user to choose an address
 std::cout << "Enter the number of host address to bind with: ";
 unsigned int choice = 0;
 bool madeChoice = false;

C++ Notes for Professionals 611

 do {
 std::cin >> choice;
 if (choice > (numOfAddr + 1) || choice < 1) {
 madeChoice = false;
 std::cout << "Wrong choice, try again!" << std::endl;
 } else
 madeChoice = true;
 } while (!madeChoice);

 p = res;

 // let's create a new socket, socketFD is returned as descriptor
 // man socket for more information
 // these calls usually return -1 as result of some error
 int sockFD = socket(p->ai_family, p->ai_socktype, p->ai_protocol);
 if (sockFD == -1) {
 std::cerr << "Error while creating socket\n";
 freeaddrinfo(res);
 return -4;
 }

 // Let's bind address to our socket we've just created
 int bindR = bind(sockFD, p->ai_addr, p->ai_addrlen);
 if (bindR == -1) {
 std::cerr << "Error while binding socket\n";

 // if some error occurs, make sure to close socket and free resources
 close(sockFD);
 freeaddrinfo(res);
 return -5;
 }

 // finally start listening for connections on our socket
 int listenR = listen(sockFD, backLog);
 if (listenR == -1) {
 std::cerr << "Error while Listening on socket\n";

 // if some error occurs, make sure to close socket and free resources
 close(sockFD);
 freeaddrinfo(res);
 return -6;
 }

 // structure large enough to hold client's address
 sockaddr_storage client_addr;
 socklen_t client_addr_size = sizeof(client_addr);

 const std::string response = "Hello World";

 // a fresh infinite loop to communicate with incoming connections
 // this will take client connections one at a time
 // in further examples, we're going to use fork() call for each client connection
 while (1) {

 // accept call will give us a new socket descriptor

C++ Notes for Professionals 612

 int newFD
 = accept(sockFD, (sockaddr *) &client_addr, &client_addr_size);
 if (newFD == -1) {
 std::cerr << "Error while Accepting on socket\n";
 continue;
 }

 // send call sends the data you specify as second param and it's length as 3rd param, also
returns how many bytes were actually sent
 auto bytes_sent = send(newFD, response.data(), response.length(), 0);
 close(newFD);
 }

 close(sockFD);
 freeaddrinfo(res);

 return 0;
}

The following program runs as -

Detecting addresses
(1) IPv4 : 0.0.0.0
(2) IPv6 : ::
Enter the number of host address to bind with: 1

C++ Notes for Professionals 613

Chapter 128: Const Correctness
Section 128.1: The Basics
const correctness is the practice of designing code so that only code that needs to modify an instance is able to
modify an instance (i.e. has write access), and conversely, that any code that doesn't need to modify an instance is
unable to do so (i.e. only has read access). This prevents the instance from being modified unintentionally, making
code less errorprone, and documents whether the code is intended to change the instance's state or not. It also
allows instances to be treated as const whenever they don't need to be modified, or defined as const if they don't
need to be changed after initialisation, without losing any functionality.

This is done by giving member functions const CV-qualifiers, and by making pointer/reference parameters const,
except in the case that they need write access.

class ConstCorrectClass {
 int x;

 public:
 int getX() const { return x; } // Function is const: Doesn't modify instance.
 void setX(int i) { x = i; } // Not const: Modifies instance.
};

// Parameter is const: Doesn't modify parameter.
int const_correct_reader(const ConstCorrectClass& c) {
 return c.getX();
}

// Parameter isn't const: Modifies parameter.
void const_correct_writer(ConstCorrectClass& c) {
 c.setX(42);
}

const ConstCorrectClass invariant; // Instance is const: Can't be modified.
ConstCorrectClass variant; // Instance isn't const: Can be modified.

// ...

const_correct_reader(invariant); // Good. Calling non-modifying function on const instance.
const_correct_reader(variant); // Good. Calling non-modifying function on modifiable instance.

const_correct_writer(variant); // Good. Calling modifying function on modifiable instance.
const_correct_writer(invariant); // Error. Calling modifying function on const instance.

Due to the nature of const correctness, this starts with the class' member functions, and works its way outwards; if
you try to call a non-const member function from a const instance, or from a non-const instance being treated as
const, the compiler will give you an error about it losing cv-qualifiers.

Section 128.2: Const Correct Class Design
In a const-correct class, all member functions which don't change logical state have this cv-qualified as const,
indicating that they don't modify the object (apart from any mutable fields, which can freely be modified even in
const instances); if a const cv-qualified function returns a reference, that reference should also be const. This
allows them to be called on both constant and non-cv-qualified instances, as a const T* is capable of binding to
either a T* or a const T*. This, in turn, allows functions to declare their passed-by-reference parameters as const
when they don't need to be modified, without losing any functionality.

C++ Notes for Professionals 614

Furthermore, in a const correct class, all passed-by-reference function parameters will be const correct, as
discussed in Const Correct Function Parameters, so that they can only be modified when the function explicitly
needs to modify them.

First, let's look at this cv-qualifiers:

// Assume class Field, with member function "void insert_value(int);".

class ConstIncorrect {
 Field fld;

 public:
 ConstIncorrect(Field& f); // Modifies.

 Field& getField(); // Might modify. Also exposes member as non-const reference,
 // allowing indirect modification.
 void setField(Field& f); // Modifies.

 void doSomething(int i); // Might modify.
 void doNothing(); // Might modify.
};

ConstIncorrect::ConstIncorrect(Field& f) : fld(f) {} // Modifies.
Field& ConstIncorrect::getField() { return fld; } // Doesn't modify.
void ConstIncorrect::setField(Field& f) { fld = f; } // Modifies.
void ConstIncorrect::doSomething(int i) { // Modifies.
 fld.insert_value(i);
}
void ConstIncorrect::doNothing() {} // Doesn't modify.

class ConstCorrectCVQ {
 Field fld;

 public:
 ConstCorrectCVQ(Field& f); // Modifies.

 const Field& getField() const; // Doesn't modify. Exposes member as const reference,
 // preventing indirect modification.
 void setField(Field& f); // Modifies.

 void doSomething(int i); // Modifies.
 void doNothing() const; // Doesn't modify.
};

ConstCorrectCVQ::ConstCorrectCVQ(Field& f) : fld(f) {}
Field& ConstCorrectCVQ::getField() const { return fld; }
void ConstCorrectCVQ::setField(Field& f) { fld = f; }
void ConstCorrectCVQ::doSomething(int i) {
 fld.insert_value(i);
}
void ConstCorrectCVQ::doNothing() const {}

// This won't work.
// No member functions can be called on const ConstIncorrect instances.
void const_correct_func(const ConstIncorrect& c) {
 Field f = c.getField();
 c.do_nothing();
}

// But this will.

C++ Notes for Professionals 615

// getField() and doNothing() can be called on const ConstCorrectCVQ instances.
void const_correct_func(const ConstCorrectCVQ& c) {
 Field f = c.getField();
 c.do_nothing();
}

We can then combine this with Const Correct Function Parameters, causing the class to be fully const-correct.

class ConstCorrect {
 Field fld;

 public:
 ConstCorrect(const Field& f); // Modifies instance. Doesn't modify parameter.

 const Field& getField() const; // Doesn't modify. Exposes member as const reference,
 // preventing indirect modification.
 void setField(const Field& f); // Modifies instance. Doesn't modify parameter.

 void doSomething(int i); // Modifies. Doesn't modify parameter (passed by value).
 void doNothing() const; // Doesn't modify.
};

ConstCorrect::ConstCorrect(const Field& f) : fld(f) {}
Field& ConstCorrect::getField() const { return fld; }
void ConstCorrect::setField(const Field& f) { fld = f; }
void ConstCorrect::doSomething(int i) {
 fld.insert_value(i);
}
void ConstCorrect::doNothing() const {}

This can also be combined with overloading based on constness, in the case that we want one behaviour if the
instance is const, and a different behaviour if it isn't; a common use for this is constainers providing accessors that
only allow modification if the container itself is non-const.

class ConstCorrectContainer {
 int arr[5];

 public:
 // Subscript operator provides read access if instance is const, or read/write access
 // otherwise.
 int& operator[](size_t index) { return arr[index]; }
 const int& operator[](size_t index) const { return arr[index]; }

 // ...
};

This is commonly used in the standard library, with most containers providing overloads to take constness into
account.

Section 128.3: Const Correct Function Parameters
In a const-correct function, all passed-by-reference parameters are marked as const unless the function directly or
indirectly modifies them, preventing the programmer from inadvertently changing something they didn't mean to
change. This allows the function to take both const and non-cv-qualified instances, and in turn, causes the
instance's this to be of type const T* when a member function is called, where T is the class' type.

struct Example {
 void func() { std::cout << 3 << std::endl; }

C++ Notes for Professionals 616

 void func() const { std::cout << 5 << std::endl; }
};

void const_incorrect_function(Example& one, Example* two) {
 one.func();
 two->func();
}

void const_correct_function(const Example& one, const Example* two) {
 one.func();
 two->func();
}

int main() {
 Example a, b;
 const_incorrect_function(a, &b);
 const_correct_function(a, &b);
}

// Output:
3
3
5
5

While the effects of this are less immediately visible than those of const correct class design (in that const-correct
functions and const-incorrect classes will cause compilation errors, while const-correct classes and const-incorrect
functions will compile properly), const correct functions will catch a lot of errors that const incorrect functions
would let slip through, such as the one below. [Note, however, that a const-incorrect function will cause
compilation errors if passed a const instance when it expected a non-const one.]

// Read value from vector, then compute & return a value.
// Caches return values for speed.
template<typename T>
const T& bad_func(std::vector<T>& v, Helper<T>& h) {
 // Cache values, for future use.
 // Once a return value has been calculated, it's cached & its index is registered.
 static std::vector<T> vals = {};

 int v_ind = h.get_index(); // Current working index for v.
 int vals_ind = h.get_cache_index(v_ind); // Will be -1 if cache index isn't registered.

 if (vals.size() && (vals_ind != -1) && (vals_ind < vals.size()) && !(h.needs_recalc())) {
 return vals[h.get_cache_index(v_ind)];
 }

 T temp = v[v_ind];

 temp -= h.poll_device();
 temp *= h.obtain_random();
 temp += h.do_tedious_calculation(temp, v[h.get_last_handled_index()]);

 // We're feeling tired all of a sudden, and this happens.
 if (vals_ind != -1) {
 vals[vals_ind] = temp;
 } else {
 v.push_back(temp); // Oops. Should've been accessing vals.
 vals_ind = vals.size() - 1;
 h.register_index(v_ind, vals_ind);
 }

C++ Notes for Professionals 617

 return vals[vals_ind];
}

// Const correct version. Is identical to above version, so most of it shall be skipped.
template<typename T>
const T& good_func(const std::vector<T>& v, Helper<T>& h) {
 // ...

 // We're feeling tired all of a sudden, and this happens.
 if (vals_ind != -1) {
 vals[vals_ind] = temp;
 } else {
 v.push_back(temp); // Error: discards qualifiers.
 vals_ind = vals.size() - 1;
 h.register_index(v_ind, vals_ind);
 }

 return vals[vals_ind];
}

Section 128.4: Const Correctness as Documentation
One of the more useful things about const correctness is that it serves as a way of documenting code, providing
certain guarantees to the programmer and other users. These guarantees are enforced by the compiler due to
constness, with a lack of constness in turn indicating that code doesn't provide them.

const CV-Qualified Member Functions:

Any member function which is const can be assumed to have intent to read the instance, and:
Shall not modify the logical state of the instance they are called on. Therefore, they shall not modify
any member variables of the instance they are called on, except mutable variables.
Shall not call any other functions that would modify any member variables of the instance, except
mutable variables.

Conversely, any member function which isn't const can be assumed to have intent to modify the instance,
and:

May or may not modify logical state.
May or may not call other functions which modify logical state.

This can be used to make assumptions about the state of the object after any given member function is called, even
without seeing the definition of that function:

// ConstMemberFunctions.h

class ConstMemberFunctions {
 int val;
 mutable int cache;
 mutable bool state_changed;

 public:
 // Constructor clearly changes logical state. No assumptions necessary.
 ConstMemberFunctions(int v = 0);

 // We can assume this function doesn't change logical state, and doesn't call
 // set_val(). It may or may not call squared_calc() or bad_func().
 int calc() const;

 // We can assume this function doesn't change logical state, and doesn't call
 // set_val(). It may or may not call calc() or bad_func().

C++ Notes for Professionals 618

 int squared_calc() const;

 // We can assume this function doesn't change logical state, and doesn't call
 // set_val(). It may or may not call calc() or squared_calc().
 void bad_func() const;

 // We can assume this function changes logical state, and may or may not call
 // calc(), squared_calc(), or bad_func().
 void set_val(int v);
};

Due to const rules, these assumptions will in fact be enforced by the compiler.

// ConstMemberFunctions.cpp

ConstMemberFunctions::ConstMemberFunctions(int v /* = 0*/)
 : cache(0), val(v), state_changed(true) {}

// Our assumption was correct.
int ConstMemberFunctions::calc() const {
 if (state_changed) {
 cache = 3 * val;
 state_changed = false;
 }

 return cache;
}

// Our assumption was correct.
int ConstMemberFunctions::squared_calc() const {
 return calc() * calc();
}

// Our assumption was incorrect.
// Function fails to compile, due to `this` losing qualifiers.
void ConstMemberFunctions::bad_func() const {
 set_val(863);
}

// Our assumption was correct.
void ConstMemberFunctions::set_val(int v) {
 if (v != val) {
 val = v;
 state_changed = true;
 }
}

const Function Parameters:

Any function with one or more parameters which are const can be assumed to have intent to read those
parameters, and:

Shall not modify those parameters, or call any member functions that would modify them.
Shall not pass those parameters to any other function which would modify them and/or call any
member functions that would modify them.

Conversely, any function with one or more parameters which aren't const can be assumed to have intent to
modify those parameters, and:

May or may not modify those parameters, or call any member functions which whould modify them.
May or may not pass those parameters to other functions which would modify them and/or call any
member functions that would modify them.

C++ Notes for Professionals 619

This can be used to make assumptions about the state of the parameters after being passed to any given function,
even without seeing the definition of that function.

// function_parameter.h

// We can assume that c isn't modified (and c.set_val() isn't called), and isn't passed
// to non_qualified_function_parameter(). If passed to one_const_one_not(), it is the first
// parameter.
void const_function_parameter(const ConstMemberFunctions& c);

// We can assume that c is modified and/or c.set_val() is called, and may or may not be passed
// to any of these functions. If passed to one_const_one_not, it may be either parameter.
void non_qualified_function_parameter(ConstMemberFunctions& c);

// We can assume that:
 // l is not modified, and l.set_val() won't be called.
 // l may or may not be passed to const_function_parameter().
 // r is modified, and/or r.set_val() may be called.
 // r may or may not be passed to either of the preceding functions.
void one_const_one_not(const ConstMemberFunctions& l, ConstMemberFunctions& r);

// We can assume that c isn't modified (and c.set_val() isn't called), and isn't passed
// to non_qualified_function_parameter(). If passed to one_const_one_not(), it is the first
// parameter.
void bad_parameter(const ConstMemberFunctions& c);

Due to const rules, these assumptions will in fact be enforced by the compiler.

// function_parameter.cpp

// Our assumption was correct.
void const_function_parameter(const ConstMemberFunctions& c) {
 std::cout << "With the current value, the output is: " << c.calc() << '\n'
 << "If squared, it's: " << c.squared_calc()
 << std::endl;
}

// Our assumption was correct.
void non_qualified_function_parameter(ConstMemberFunctions& c) {
 c.set_val(42);
 std::cout << "For the value 42, the output is: " << c.calc() << '\n'
 << "If squared, it's: " << c.squared_calc()
 << std::endl;
}

// Our assumption was correct, in the ugliest possible way.
// Note that const correctness doesn't prevent encapsulation from intentionally being broken,
// it merely prevents code from having write access when it doesn't need it.
void one_const_one_not(const ConstMemberFunctions& l, ConstMemberFunctions& r) {
 // Let's just punch access modifiers and common sense in the face here.
 struct Machiavelli {
 int val;
 int unimportant;
 bool state_changed;
 };
 reinterpret_cast<Machiavelli&>(r).val = l.calc();
 reinterpret_cast<Machiavelli&>(r).state_changed = true;

 const_function_parameter(l);
 const_function_parameter(r);
}

C++ Notes for Professionals 620

// Our assumption was incorrect.
// Function fails to compile, due to `this` losing qualifiers in c.set_val().
void bad_parameter(const ConstMemberFunctions& c) {
 c.set_val(18);
}

While it is possible to circumvent const correctness, and by extension break these guarantees, this must be done
intentionally by the programmer (just like breaking encapsulation with Machiavelli, above), and is likely to cause
undefined behaviour.

class DealBreaker : public ConstMemberFunctions {
 public:
 DealBreaker(int v = 0);

 // A foreboding name, but it's const...
 void no_guarantees() const;
}

DealBreaker::DealBreaker(int v /* = 0 */) : ConstMemberFunctions(v) {}

// Our assumption was incorrect.
// const_cast removes const-ness, making the compiler think we know what we're doing.
void DealBreaker::no_guarantees() const {
 const_cast<DealBreaker*>(this)->set_val(823);
}

// ...

const DealBreaker d(50);
d.no_guarantees(); // Undefined behaviour: d really IS const, it may or may not be modified.

However, due to this requiring the programmer to very specifically tell the compiler that they intend to ignore
constness, and being inconsistent across compilers, it is generally safe to assume that const correct code will
refrain from doing so unless otherwise specified.

C++ Notes for Professionals 621

Chapter 129: Parameter packs
Section 129.1: A template with a parameter pack
template<class ... Types> struct Tuple {};

A parameter pack is a template parameter accepting zero or more template arguments. If a template has at least
one parameter pack is a variadic template.

Section 129.2: Expansion of a parameter pack
The pattern parameter_pack ... is expanded into a list of comma-separated substitutions of parameter_pack with
each one of its parameters

template<class T> // Base of recursion
void variadic_printer(T last_argument) {
 std::cout << last_argument;
}

template<class T, class ...Args>
void variadic_printer(T first_argument, Args... other_arguments) {
 std::cout << first_argument << "\n";
 variadic_printer(other_arguments...); // Parameter pack expansion
}

The code above invoked with variadic_printer(1, 2, 3, "hello"); prints

1
2
3
hello

C++ Notes for Professionals 622

Chapter 130: Build Systems
C++, like C, has a long and varied history regarding compilation workflows and build processes. Today, C++ has
various popular build systems that are used to compile programs, sometimes for multiple platforms within one
build system. Here, a few build systems will be reviewed and analyzed.

Section 130.1: Generating Build Environment with CMake
CMake generates build environments for nearly any compiler or IDE from a single project definition. The following
examples will demonstrate how to add a CMake file to the cross-platform "Hello World" C++ code.

CMake files are always named "CMakeLists.txt" and should already exist in every project's root directory (and
possibly in sub-directories too.) A basic CMakeLists.txt file looks like:

cmake_minimum_required(VERSION 2.4)

project(HelloWorld)

add_executable(HelloWorld main.cpp)

See it live on Coliru.

This file tells CMake the project name, what file version to expect, and instructions to generate an executable called
"HelloWorld" that requires main.cpp.

Generate a build environment for your installed compiler/IDE from the command line:

> cmake .

Build the application with:

> cmake --build .

This generates the default build environment for the system, depending on the OS and installed tools. Keep source
code clean from any build artifacts with use of "out-of-source" builds:

> mkdir build
> cd build
> cmake ..
> cmake --build .

CMake can also abstract the platform shell's basic commands from the previous example:

> cmake -E make_directory build
> cmake -E chdir build cmake ..
> cmake --build build

CMake includes generators for a number of common build tools and IDEs. To generate makefiles for Visual Studio's
nmake:

> cmake -G "NMake Makefiles" ..
> nmake

https://cmake.org/
http://coliru.stacked-crooked.com/a/616a0939bdd91b8b
https://cmake.org/cmake/help/v3.0/manual/cmake-generators.7.html
https://msdn.microsoft.com/en-us/library/dd9y37ha.aspx
https://msdn.microsoft.com/en-us/library/dd9y37ha.aspx

C++ Notes for Professionals 623

Section 130.2: Compiling with GNU make
Introduction

The GNU Make (styled make) is a program dedicated to the automation of executing shell commands. GNU Make is
one specific program that falls under the Make family. Make remains popular among Unix-like and POSIX-like
operating systems, including those derived from the Linux kernel, Mac OS X, and BSD.

GNU Make is especially notable for being attached to the GNU Project, which is attached to the popular GNU/Linux
operating system. GNU Make also has compatible versions running on various flavors of Windows and Mac OS X. It
is also a very stable version with historical significance that remains popular. It is for these reasons that GNU Make
is often taught alongside C and C++.

Basic rules

To compile with make, create a Makefile in your project directory. Your Makefile could be as simple as:

Makefile

Set some variables to use in our command
First, we set the compiler to be g++
CXX=g++

Then, we say that we want to compile with g++'s recommended warnings and some extra ones.
CXXFLAGS=-Wall -Wextra -pedantic

This will be the output file
EXE=app

SRCS=main.cpp

When you call `make` at the command line, this "target" is called.
The $(EXE) at the right says that the `all` target depends on the `$(EXE)` target.
$(EXE) expands to be the content of the EXE variable
Note: Because this is the first target, it becomes the default target if `make` is called without
target
all: $(EXE)

This is equivalent to saying
app: $(SRCS)
$(SRCS) can be separated, which means that this target would depend on each file.
Note that this target has a "method body": the part indented by a tab (not four spaces).
When we build this target, make will execute the command, which is:
g++ -Wall -Wextra -pedantic -o app main.cpp
I.E. Compile main.cpp with warnings, and output to the file ./app
$(EXE): $(SRCS)
 @$(CXX) $(CXXFLAGS) -o $@ $(SRCS)

This target should reverse the `all` target. If you call
make with an argument, like `make clean`, the corresponding target
gets called.
clean:
 @rm -f $(EXE)

NOTE: Make absolutely sure that the indentations are with a tab, not with four spaces. Otherwise,
you'll get an error of Makefile:10: *** missing separator. Stop.

C++ Notes for Professionals 624

To run this from the command-line, do the following:

$ cd ~/Path/to/project
$ make
$ ls
app main.cpp Makefile

$./app
Hello World!

$ make clean
$ ls
main.cpp Makefile

Incremental builds

When you start having more files, make becomes more useful. What if you edited a.cpp but not b.cpp? Recompiling
b.cpp would take more time.

With the following directory structure:

.
+-- src
| +-- a.cpp
| +-- a.hpp
| +-- b.cpp
| +-- b.hpp
+-- Makefile

This would be a good Makefile:

Makefile

CXX=g++
CXXFLAGS=-Wall -Wextra -pedantic
EXE=app

SRCS_GLOB=src/*.cpp
SRCS=$(wildcard $(SRCS_GLOB))
OBJS=$(SRCS:.cpp=.o)

all: $(EXE)

$(EXE): $(OBJS)
 @$(CXX) -o $@ $(OBJS)

depend: .depend

.depend: $(SRCS)
 @-rm -f ./.depend
 @$(CXX) $(CXXFLAGS) -MM $^>>./.depend

clean:
 -rm -f $(EXE)
 -rm $(OBJS)
 -rm *~
 -rm .depend

include .depend

C++ Notes for Professionals 625

Again watch the tabs. This new Makefile ensures that you only recompile changed files, minimizing compile time.

Documentation

For more on make, see the official documentation by the Free Software Foundation, the stackoverflow
documentation and dmckee's elaborate answer on stackoverflow.

Section 130.3: Building with SCons
You can build the cross-platform "Hello World" C++ code, using Scons - A Python-language software construction
tool.

First, create a file called SConstruct (note that SCons will look for a file with this exact name by default). For now,
the file should be in a directory right along your hello.cpp. Write in the new file the line

 Program('hello.cpp')

Now, from the terminal, run scons. You should see something like

$ scons
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
g++ -o hello.o -c hello.cpp
g++ -o hello hello.o
scons: done building targets.

(although the details will vary depending on your operating system and installed compiler).

The Environment and Glob classes will help you further configure what to build. E.g., the SConstruct file

env=Environment(CPPPATH='/usr/include/boost/',
 CPPDEFINES=[],
 LIBS=[],
 SCONS_CXX_STANDARD="c++11"
)

env.Program('hello', Glob('src/*.cpp'))

builds the executable hello, using all cpp files in src. Its CPPPATH is /usr/include/boost and it specifies the C++11
standard.

Section 130.4: Autotools (GNU)
Introduction

The Autotools are a group of programs that create a GNU Build System for a given software package. It is a suite of
tools that work together to produce various build resources, such as a Makefile (to be used with GNU Make). Thus,
Autotools can be considered a de facto build system generator.

Some notable Autotools programs include:

Autoconf
Automake (not to be confused with make)

In general, Autotools is meant to generate the Unix-compatible script and Makefile to allow the following command

https://www.gnu.org/software/make/manual/
http://stackoverflow.com/a/2481326/1896169
http://scons.org/
https://www.python.org/

C++ Notes for Professionals 626

to build (as well as install) most packages (in the simple case):

./configure && make && make install

As such, Autotools also has a relationship with certain package managers, especially those that are attached to
operating systems that conform to the POSIX Standard(s).

Section 130.5: Ninja
Introduction

The Ninja build system is described by its project website as "a small build system with a focus on speed." Ninja is
designed to have its files generated by build system file generators, and takes a low-level approach to build
systems, in contrast to higher-level build system managers like CMake or Meson.

Ninja is primarily written in C++ and Python, and was created as an alternative to the SCons build system for the
Chromium project.

Section 130.6: NMAKE (Microsoft Program Maintenance Utility)
Introduction

NMAKE is a command-line utility developed by Microsoft to be used primarily in conjunction with Microsoft Visual
Studio and/or the Visual C++ command line tools.

NMAKE is build system that falls under the Make family of build systems, but has certain distinct features that
diverge from Unix-like Make programs, such as supporting Windows-specific file path syntax (which itself differs
from Unix-style file paths).

https://ninja-build.org/

C++ Notes for Professionals 627

Chapter 131: Concurrency With OpenMP
This topic covers the basics of concurrency in C++ using OpenMP. OpenMP is documented in more detail in the
OpenMP tag.

Parallelism or concurrency implies the execution of code at the same time.

Section 131.1: OpenMP: Parallel Sections
This example illustrates the basics of executing sections of code in parallel.

As OpenMP is a built-in compiler feature, it works on any supported compilers without including any libraries. You
may wish to include omp.h if you want to use any of the openMP API features.

Sample Code

std::cout << "begin ";
// This pragma statement hints the compiler that the
// contents within the { } are to be executed in as
// parallel sections using openMP, the compiler will
// generate this chunk of code for parallel execution
#pragma omp parallel sections
{
 // This pragma statement hints the compiler that
 // this is a section that can be executed in parallel
 // with other section, a single section will be executed
 // by a single thread.
 // Note that it is "section" as opposed to "sections" above
 #pragma omp section
 {
 std::cout << "hello " << std::endl;
 /** Do something **/
 }
 #pragma omp section
 {
 std::cout << "world " << std::endl;
 /** Do something **/
 }
}
// This line will not be executed until all the
// sections defined above terminates
std::cout << "end" << std::endl;

Outputs

This example produces 2 possible outputs and is dependent on the operating system and hardware. The output
also illustrates a race condition problem that would occur from such an implementation.

OUTPUT A OUTPUT B
begin hello world end begin world hello end

Section 131.2: OpenMP: Parallel Sections
This example shows how to execute chunks of code in parallel

std::cout << "begin ";
// Start of parallel sections

C++ Notes for Professionals 628

#pragma omp parallel sections
{
 // Execute these sections in parallel
 #pragma omp section
 {
 ... do something ...
 std::cout << "hello ";
 }
 #pragma omp section
 {
 ... do something ...
 std::cout << "world ";
 }
 #pragma omp section
 {
 ... do something ...
 std::cout << "forever ";
 }
}
// end of parallel sections
std::cout << "end";

Output

begin hello world forever end
begin world hello forever end
begin hello forever world end
begin forever hello world end

As execution order is not guaranteed, you may observe any of the above output.

Section 131.3: OpenMP: Parallel For Loop
This example shows how to divide a loop into equal parts and execute them in parallel.

// Splits element vector into element.size() / Thread Qty
// and allocate that range for each thread.
#pragma omp parallel for
for (size_t i = 0; i < element.size(); ++i)
 element[i] = ...

// Example Allocation (100 element per thread)
// Thread 1 : 0 ~ 99
// Thread 2 : 100 ~ 199
// Thread 2 : 200 ~ 299
// ...

// Continue process
// Only when all threads completed their allocated
// loop job
...

*Please take extra care to not modify the size of the vector used in parallel for loops as allocated range indices
doesn't update automatically.

Section 131.4: OpenMP: Parallel Gathering / Reduction
This example illustrates a concept to perform reduction or gathering using std::vector and OpenMP.

C++ Notes for Professionals 629

Supposed we have a scenario where we want multiple threads to help us generate a bunch of stuff, int is used
here for simplicity and can be replaced with other data types.

This is particularly useful when you need to merge results from slaves to avoid segement faults or memory access
violations and do not wish to use libraries or custom sync container libraries.

// The Master vector
// We want a vector of results gathered from slave threads
std::vector<int> Master;

// Hint the compiler to parallelize this { } of code
// with all available threads (usually the same as logical processor qty)
#pragma omp parallel
{
 // In this area, you can write any code you want for each
 // slave thread, in this case a vector to hold each of their results
 // We don't have to worry about how many threads were spawn or if we need
 // to repeat this declaration or not.
 std::vector<int> Slave;

 // Tell the compiler to use all threads allocated for this parallel region
 // to perform this loop in parts. Actual load appx = 1000000 / Thread Qty
 // The nowait keyword tells the compiler that the slave threads don't
 // have to wait for all other slaves to finish this for loop job
 #pragma omp for nowait
 for (size_t i = 0; i < 1000000; ++i
 {
 /* Do something */

 Slave.push_back(...);
 }

 // Slaves that finished their part of the job
 // will perform this thread by thread one at a time
 // critical section ensures that only 0 or 1 thread performs
 // the { } at any time
 #pragma omp critical
 {
 // Merge slave into master
 // use move iterators instead, avoid copy unless
 // you want to use it for something else after this section
 Master.insert(Master.end(),
 std::make_move_iterator(Slave.begin()),
 std::make_move_iterator(Slave.end()));
 }
}

// Have fun with Master vector
...

C++ Notes for Professionals 630

Chapter 132: Resource Management
One of the hardest things to do in C and C++ is resource management. Thankfully, in C++, we have many ways to go
about designing resource management in our programs. This article hopes to explain some of the idioms and
methods used to manage allocated resources.

Section 132.1: Resource Acquisition Is Initialization
Resource Acquisition Is Initialization (RAII) is a common idiom in resource management. In the case of dynamic
memory, it uses smart pointers to accomplish resource management. When using RAII, an acquired resource is
immediately given ownership to a smart pointer or equivalent resource manager. The resource is only accessed
through this manager, so the manager can keep track of various operations. For example, std::auto_ptr
automatically frees its corresponding resource when it falls out of scope or is otherwise deleted.

#include <memory>
#include <iostream>
using namespace std;

int main() {
 {
 auto_ptr ap(new int(5)); // dynamic memory is the resource
 cout << *ap << endl; // prints 5
 } // auto_ptr is destroyed, its resource is automatically freed
}
Version ≥ C++11

std::auto_ptr's main problem is that it can't copied without transferring ownership:

#include <memory>
#include <iostream>
using namespace std;

int main() {
 auto_ptr ap1(new int(5));
 cout << *ap1 << endl; // prints 5
 auto_ptr ap2(ap1); // copy ap2 from ap1; ownership now transfers to ap2
 cout << *ap2 << endl; // prints 5
 cout << ap1 == nullptr << endl; // prints 1; ap1 has lost ownership of resource
}

Because of these weird copy semantics, std::auto_ptr can't be used in containers, among other things. The
reason it does this is to prevent deleting memory twice: if there are two auto_ptrs with ownership of the same
resource, they both try to free it when they're destroyed. Freeing an already freed resource can generally cause
problems, so it is important to prevent it. However, std::shared_ptr has a method to avoid this while not
transferring ownership when copying:

#include <memory>
#include <iostream>
using namespace std;

int main() {
 shared_ptr sp2;
 {
 shared_ptr sp1(new int(5)); // give ownership to sp1
 cout << *sp1 << endl; // prints 5
 sp2 = sp1; // copy sp2 from sp1; both have ownership of resource

C++ Notes for Professionals 631

 cout << *sp1 << endl; // prints 5
 cout << *sp2 << endl; // prints 5
 } // sp1 goes out of scope and is destroyed; sp2 has sole ownership of resource
 cout << *sp2 << endl;
} // sp2 goes out of scope; nothing has ownership, so resource is freed

Section 132.2: Mutexes & Thread Safety
Problems may happen when multiple threads try to access a resource. For a simple example, suppose we have a
thread that adds one to a variable. It does this by first reading the variable, adding one to it, then storing it back.
Suppose we initialize this variable to 1, then create two instances of this thread. After both threads finish, intuition
suggests that this variable should have a value of 3. However, the below table illustrates what might go wrong:

Thread 1 Thread 2
Time Step 1 Read 1 from variable
Time Step 2 Read 1 from variable
Time Step 3 Add 1 plus 1 to get 2
Time Step 4 Add 1 plus 1 to get 2
Time Step 5 Store 2 into variable
Time Step 6 Store 2 into variable

As you can see, at the end of the operation, 2 is in the variable, instead of 3. The reason is that Thread 2 read the
variable before Thread 1 was done updating it. The solution? Mutexes.

A mutex (portmanteau of mutual exclusion) is a resource management object designed to solve this type of
problem. When a thread wants to access a resource, it "acquires" the resource's mutex. Once it is done accessing
the resource, the thread "releases" the mutex. While the mutex is acquired, all calls to acquire the mutex will not
return until the mutex is released. To better understand this, think of a mutex as a waiting line at the supermarket:
the threads go into line by trying to acquire the mutex and then waiting for the threads ahead of them to finish up,
then using the resource, then stepping out of line by releasing the mutex. There would be complete pandemonium
if everybody tried to access the resource at once.

Version ≥ C++11

std::mutex is C++11's implementation of a mutex.

#include <thread>
#include <mutex>
#include <iostream>
using namespace std;

void add_1(int& i, const mutex& m) { // function to be run in thread
 m.lock();
 i += 1;
 m.unlock();
}

int main() {
 int var = 1;
 mutex m;

 cout << var << endl; // prints 1

 thread t1(add_1, var, m); // create thread with arguments
 thread t2(add_1, var, m); // create another thread
 t1.join(); t2.join(); // wait for both threads to finish

 cout << var << endl; // prints 3

C++ Notes for Professionals 632

}

C++ Notes for Professionals 633

Chapter 133: Storage class specifiers
Storage class specifiers are keywords that can be used in declarations. They do not affect the type of the
declaration, but typically modify the way in which the entity is stored.

Section 133.1: extern
The extern storage class specifier can modify a declaration in one of the three following ways, depending on
context:

It can be used to declare a variable without defining it. Typically, this is used in a header file for a variable that1.
will be defined in a separate implementation file.

// global scope
int x; // definition; x will be default-initialized
extern int y; // declaration; y is defined elsewhere, most likely another TU
extern int z = 42; // definition; "extern" has no effect here (compiler may warn)

It gives external linkage to a variable at namespace scope even if const or constexpr would have otherwise2.
caused it to have internal linkage.

// global scope
const int w = 42; // internal linkage in C++; external linkage in C
static const int x = 42; // internal linkage in both C++ and C
extern const int y = 42; // external linkage in both C++ and C
namespace {
 extern const int z = 42; // however, this has internal linkage since
 // it's in an unnamed namespace
}

It redeclares a variable at block scope if it was previously declared with linkage. Otherwise, it declares a new3.
variable with linkage, which is a member of the nearest enclosing namespace.

// global scope
namespace {
 int x = 1;
 struct C {
 int x = 2;
 void f() {
 extern int x; // redeclares namespace-scope x
 std::cout << x << '\n'; // therefore, this prints 1, not 2
 }
 };
}
void g() {
 extern int y; // y has external linkage; refers to global y defined elsewhere
}

A function can also be declared extern, but this has no effect. It is usually used as a hint to the reader that a
function declared here is defined in another translation unit. For example:

 void f(); // typically a forward declaration; f defined later in this TU
 extern void g(); // typically not a forward declaration; g defined in another TU

C++ Notes for Professionals 634

In the above code, if f were changed to extern and g to non-extern, it would not affect the correctness or
semantics of the program at all, but would likely confuse the reader of the code.

Section 133.2: register
Version < C++17

A storage class specifier that hints to the compiler that a variable will be heavily used. The word "register" is related
to the fact that a compiler might choose to store such a variable in a CPU register so that it can be accessed in fewer
clock cycles. It was deprecated starting in C++11.

register int i = 0;
while (i < 100) {
 f(i);
 int g = i*i;
 i += h(i, g);
}

Both local variables and function parameters may be declared register. Unlike C, C++ does not place any
restrictions on what can be done with a register variable. For example, it is valid to take the address of a register
variable, but this may prevent the compiler from actually storing such a variable in a register.

Version ≥ C++17

The keyword register is unused and reserved. A program that uses the keyword register is ill-formed.

Section 133.3: static
The static storage class specifier has three different meanings.

Gives internal linkage to a variable or function declared at namespace scope.1.

// internal function; can't be linked to
static double semiperimeter(double a, double b, double c) {
 return (a + b + c)/2.0;
}
// exported to client
double area(double a, double b, double c) {
 const double s = semiperimeter(a, b, c);
 return sqrt(s*(s-a)*(s-b)*(s-c));
}

Declares a variable to have static storage duration (unless it is thread_local). Namespace-scope variables2.
are implicitly static. A static local variable is initialized only once, the first time control passes through its
definition, and is not destroyed every time its scope is exited.

void f() {
 static int count = 0;
 std::cout << "f has been called " << ++count << " times so far\n";
}

When applied to the declaration of a class member, declares that member to be a static member.3.

struct S {
 static S* create() {

C++ Notes for Professionals 635

 return new S;
 }
};
int main() {
 S* s = S::create();
}

Note that in the case of a static data member of a class, both 2 and 3 apply simultaneously: the static keyword
both makes the member into a static data member and makes it into a variable with static storage duration.

Section 133.4: auto
Version ≤ C++03

Declares a variable to have automatic storage duration. It is redundant, since automatic storage duration is already
the default at block scope, and the auto specifier is not allowed at namespace scope.

void f() {
 auto int x; // equivalent to: int x;
 auto y; // illegal in C++; legal in C89
}
auto int z; // illegal: namespace-scope variable cannot be automatic

In C++11, auto changed meaning completely, and is no longer a storage class specifier, but is instead used for type
deduction.

Section 133.5: mutable
A specifier that can be applied to the declaration of a non-static, non-reference data member of a class. A mutable
member of a class is not const even when the object is const.

class C {
 int x;
 mutable int times_accessed;
 public:
 C(): x(0), times_accessed(0) {
 }
 int get_x() const {
 ++times_accessed; // ok: const member function can modify mutable data member
 return x;
 }
 void set_x(int x) {
 ++times_accessed;
 this->x = x;
 }
};
Version ≥ C++11

A second meaning for mutable was added in C++11. When it follows the parameter list of a lambda, it suppresses
the implicit const on the lambda's function call operator. Therefore, a mutable lambda can modify the values of
entities captured by copy. See mutable lambdas for more details.

std::vector<int> my_iota(int start, int count) {
 std::vector<int> result(count);
 std::generate(result.begin(), result.end(),
 [start]() mutable { return start++; });
 return result;

C++ Notes for Professionals 636

}

Note that mutable is not a storage class specifier when used this way to form a mutable lambda.

C++ Notes for Professionals 637

Chapter 134: Linkage specifications
A linkage specification tells the compiler to compile declarations in a way that allows them to be linked together
with declarations written in another language, such as C.

Section 134.1: Signal handler for Unix-like operating system
Since a signal handler will be called by the kernel using the C calling convention, we must tell the compiler to use
the C calling convention when compiling the function.

volatile sig_atomic_t death_signal = 0;
extern "C" void cleanup(int signum) {
 death_signal = signum;
}
int main() {
 bind(...);
 listen(...);
 signal(SIGTERM, cleanup);
 while (int fd = accept(...)) {
 if (fd == -1 && errno == EINTR && death_signal) {
 printf("Caught signal %d; shutting down\n", death_signal);
 break;
 }
 // ...
 }
}

Section 134.2: Making a C library header compatible with C++
A C library header can usually be included into a C++ program, since most declarations are valid in both C and C++.
For example, consider the following foo.h:

typedef struct Foo {
 int bar;
} Foo;
Foo make_foo(int);

The definition of make_foo is separately compiled and distributed with the header in object form.

A C++ program can #include <foo.h>, but the compiler will not know that the make_foo function is defined as a C
symbol, and will probably try to look for it with a mangled name, and fail to locate it. Even if it can find the definition
of make_foo in the library, not all platforms use the same calling conventions for C and C++, and the C++ compiler
will use the C++ calling convention when calling make_foo, which is likely to cause a segmentation fault if make_foo is
expecting to be called with the C calling convention.

The way to remedy this problem is to wrap almost all the declarations in the header in an extern "C" block.

#ifdef __cplusplus
extern "C" {
#endif

typedef struct Foo {
 int bar;
} Foo;
Foo make_foo(int);

C++ Notes for Professionals 638

#ifdef __cplusplus
} /* end of "extern C" block */
#endif

Now when foo.h is included from a C program, it will just appear as ordinary declarations, but when foo.h is
included from a C++ program, make_foo will be inside an extern "C" block and the compiler will know to look for
an unmangled name and use the C calling convention.

C++ Notes for Professionals 639

Chapter 135: Digit separators
Section 135.1: Digit Separator
Numeric literals of more than a few digits are hard to read.

Pronounce 7237498123.
Compare 237498123 with 237499123 for equality.
Decide whether 237499123 or 20249472 is larger.

C++14 define Simple Quotation Mark ' as a digit separator, in numbers and user-defined literals. This can make it
easier for human readers to parse large numbers.

Version ≥ C++14

long long decn = 1'000'000'000ll;
long long hexn = 0xFFFF'FFFFll;
long long octn = 00'23'00ll;
long long binn = 0b1010'0011ll;

Single quotes mark are ignored when determining its value.

Example:

The literals 1048576, 1'048'576, 0X100000, 0x10'0000, and 0'004'000'000 all have the same value.
The literals 1.602'176'565e-19 and 1.602176565e-19 have the same value.

The position of the single quotes is irrelevant. All the following are equivalent:

Version ≥ C++14

long long a1 = 123456789ll;
long long a2 = 123'456'789ll;
long long a3 = 12'34'56'78'9ll;
long long a4 = 12345'6789ll;

It is also allowed in user-defined literals:

Version ≥ C++14

std::chrono::seconds tiempo = 1'674'456s + 5'300h;

C++ Notes for Professionals 640

Chapter 136: C incompatibilities
This describes what C code will break in a C++ compiler.

Section 136.1: Reserved Keywords
The first example are keywords that have a special purpose in C++: the following is legal in C, but not C++.

int class = 5

These errors are easy to fix: just rename the variable.

Section 136.2: Weakly typed pointers
In C, pointers can be cast to a void*, which needs an explicit cast in C++. The following is illegal in C++, but legal in
C:

void* ptr;
int* intptr = ptr;

Adding an explicit cast makes this work, but can cause further issues.

Section 136.3: goto or switch
In C++, you may not skip initializations with goto or switch. The following is valid in C, but not C++:

goto foo;
int skipped = 1;
foo;

These bugs may require redesign.

C++ Notes for Professionals 641

Chapter 137: Side by Side Comparisons of
classic C++ examples solved via C++ vs
C++11 vs C++14 vs C++17
Section 137.1: Looping through a container
In C++, looping through a sequence container c can be done using indexes as follows:

for(size_t i = 0; i < c.size(); ++i) c[i] = 0;

While simple, such writings are subject to common semantic errors, like wrong comparison operator, or wrong
indexing variable:

for(size_t i = 0; i <= c.size(); ++j) c[i] = 0;
 ^~~~~~~~~~~~~~^

Looping can also be achieved for all containers using iterators, with similar drawbacks:

for(iterator it = c.begin(); it != c.end(); ++it) (*it) = 0;

C++11 introduced range-based for loops and auto keyword, allowing the code to become:

for(auto& x : c) x = 0;

Here the only parameters are the container c, and a variable x to hold the current value. This prevents the
semantics errors previously pointed.

According to the C++11 standard, the underlying implementation is equivalent to:

for(auto begin = c.begin(), end = c.end(); begin != end; ++begin)
{
 // ...
}

In such implementation, the expression auto begin = c.begin(), end = c.end(); forces begin and end to be of
the same type, while end is never incremented, nor dereferenced. So the range-based for loop only works for
containers defined by a pair iterator/iterator. The C++17 standard relaxes this constraint by changing the
implementation to:

auto begin = c.begin();
auto end = c.end();
for(; begin != end; ++begin)
{
 // ...
}

Here begin and end are allowed to be of different types, as long as they can be compared for inequality. This allows
to loop through more containers, e.g. a container defined by a pair iterator/sentinel.

C++ Notes for Professionals 642

Chapter 138: Compiling and Building
Programs written in C++ need to be compiled before they can be run. There is a large variety of compilers available
depending on your operating system.

Section 138.1: Compiling with GCC
Assuming a single source file named main.cpp, the command to compile and link an non-optimized executable is as
follows (Compiling without optimization is useful for initial development and debugging, although -Og is officially
recommended for newer GCC versions).

g++ -o app -Wall main.cpp -O0

To produce an optimized executable for use in production, use one of the -O options (see: -O1, -O2, -O3, -Os, -
Ofast):

g++ -o app -Wall -O2 main.cpp

If the -O option is omitted, -O0, which means no optimizations, is used as default (specifying -O without a number
resolves to -O1).

Alternatively, use optimization flags from the O groups (or more experimental optimizations) directly. The following
example builds with -O2 optimization, plus one flag from the -O3 optimization level:

g++ -o app -Wall -O2 -ftree-partial-pre main.cpp

To produce a platform-specific optimized executable (for use in production on the machine with the same
architecture), use:

g++ -o app -Wall -O2 -march=native main.cpp

Either of the above will produce a binary file that can be run with .\app.exe on Windows and ./app on Linux, Mac
OS, etc.

The -o flag can also be skipped. In this case, GCC will create default output executable a.exe on Windows and
a.out on Unix-like systems. To compile a file without linking it, use the -c option:

g++ -o file.o -Wall -c file.cpp

This produces an object file named file.o which can later be linked with other files to produce a binary:

g++ -o app file.o otherfile.o

More about optimization options can be found at gcc.gnu.org. Of particular note are -Og (optimization with an
emphasis on debugging experience -- recommended for the standard edit-compile-debug cycle) and -Ofast (all
optimizations, including ones disregarding strict standards compliance).

The -Wall flag enables warnings for many common errors and should always be used. To improve code quality it is
often encouraged also to use -Wextra and other warning flags which are not automatically enabled by -Wall and -
Wextra.

If the code expects a specific C++ standard, specify which standard to use by including the -std= flag. Supported

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#index-Og-723
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#index-Og-723
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#index-O-716
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#index-O1-717
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#index-O1-717
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#index-O2-718
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#index-O2-718
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#index-O3-719
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#index-O3-719
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#index-Os-721
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#index-Os-721
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#index-Ofast-722
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#index-Ofast-722
https://gcc.gnu.org/onlinedocs/gcc/Overall-Options.html#index-o-86
https://gcc.gnu.org/onlinedocs/gcc/Overall-Options.html#index-c-82
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html#index-Wall-307
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html#index-Wall-307
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html#index-Wextra-310
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html#index-Wextra-310
https://gcc.gnu.org/onlinedocs/gcc/C-Dialect-Options.html#index-std-112
https://gcc.gnu.org/onlinedocs/gcc/C-Dialect-Options.html#index-std-112
https://gcc.gnu.org/onlinedocs/gcc/C-Dialect-Options.html#index-std-112

C++ Notes for Professionals 643

values correspond to the year of finalization for each version of the ISO C++ standard. As of GCC 6.1.0, valid values
for the std= flag are c++98/c++03, c++11, c++14, and c++17/c++1z. Values separated by a forward slash are
equivalent.

g++ -std=c++11 <file>

GCC includes some compiler-specific extensions that are disabled when they conflict with a standard specified by
the -std= flag. To compile with all extensions enabled, the value gnu++XX may be used, where XX is any of the years
used by the c++ values listed above.

The default standard will be used if none is specified. For versions of GCC prior to 6.1.0, the default is -
std=gnu++03; in GCC 6.1.0 and greater, the default is -std=gnu++14.

Note that due to bugs in GCC, the -pthread flag must be present at compilation and linking for GCC to support the
C++ standard threading functionality introduced with C++11, such as std::thread and std::wait_for. Omitting it
when using threading functions may result in no warnings but invalid results on some platforms.

Linking with libraries:

Use the -l option to pass the library name:

g++ main.cpp -lpcre2-8
#pcre2-8 is the PCRE2 library for 8bit code units (UTF-8)

If the library is not in the standard library path, add the path with -L option:

g++ main.cpp -L/my/custom/path/ -lmylib

Multiple libraries can be linked together:

g++ main.cpp -lmylib1 -lmylib2 -lmylib3

If one library depends on another, put the dependent library before the independent library:

g++ main.cpp -lchild-lib -lbase-lib

Or let the linker determine the ordering itself via --start-group and --end-group (note: this has significant
performance cost):

g++ main.cpp -Wl,--start-group -lbase-lib -lchild-lib -Wl,--end-group

Section 138.2: Compiling with Visual Studio (Graphical
Interface) - Hello World

Download and install Visual Studio Community 20151.
Open Visual Studio Community2.
Click File -> New -> Project3.

Click Templates -> Visual C++ -> Win32 Console Application and then name the project MyFirstProgram.4.

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58929
https://www.visualstudio.com/
http://i.stack.imgur.com/bFNzb.png

C++ Notes for Professionals 644

Click Ok5.
Click Next in the following window.6.

http://i.stack.imgur.com/kYTy1.png

C++ Notes for Professionals 645

Check the Empty project box and then click Finish:7.

http://i.stack.imgur.com/Rebpz.png

C++ Notes for Professionals 646

Right click on folder Source File then -> Add --> New Item :8.

Select C++ File and name the file main.cpp, then click Add:9.

http://i.stack.imgur.com/P0P5J.png
http://i.stack.imgur.com/DLwEd.png

C++ Notes for Professionals 647

10: Copy and paste the following code in the new file main.cpp:

#include <iostream>

int main()
{
 std::cout << "Hello World!\n";
 return 0;
}

You environment should look like:

Click Debug -> Start Without Debugging (or press ctrl + F5) :11.

http://i.stack.imgur.com/zQaws.png
http://i.stack.imgur.com/vTBkv.png

C++ Notes for Professionals 648

Done. You should get the following console output :12.

Section 138.3: Online Compilers
Various websites provide online access to C++ compilers. Online compiler's feature set vary significantly from site to
site, but usually they allow to do the following:

Paste your code into a web form in the browser.
Select some compiler options and compile the code.
Collect compiler and/or program output.

http://i.stack.imgur.com/B3twO.png
http://i.stack.imgur.com/1AwnS.png

C++ Notes for Professionals 649

Online compiler website behavior is usually quite restrictive as they allow anyone to run compilers and execute
arbitrary code on their server side, whereas ordinarily remote arbitrary code execution is considered as
vulnerability.

Online compilers may be useful for the following purposes:

Run a small code snippet from a machine which lacks C++ compiler (smartphones, tablets, etc.).
Ensure that code compiles successfully with different compilers and runs the same way regardless the
compiler it was compiled with.
Learn or teach basics of C++.
Learn modern C++ features (C++14 and C++17 in near future) when up-to-date C++ compiler is not available
on local machine.
Spot a bug in your compiler by comparison with a large set of other compilers. Check if a compiler bug was
fixed in future versions, which are unavailable on your machine.
Solve online judge problems.

What online compilers should not be used for:

Develop full-featured (even small) applications using C++. Usually online compilers do not allow to link with
third-party libraries or download build artifacts.
Perform intensive computations. Sever-side computing resources are limited, so any user-provided program
will be killed after a few seconds of execution. The permitted execution time is usually enough for testing and
learning.
Attack compiler server itself or any third-party hosts on the net.

Examples:

Disclaimer: documentation author(s) are not affiliated with any resources listed below. Websites are listed
alphabetically.

http://codepad.org/ Online compiler with code sharing. Editing code after compiling with a source code
warning or error does not work so well.
http://coliru.stacked-crooked.com/ Online compiler for which you specify the command line. Provides both
GCC and Clang compilers for use.
http://cpp.sh/ - Online compiler with C++14 support. Does not allow you to edit compiler command line, but
some options are available via GUI controls.
https://gcc.godbolt.org/ - Provides a wide list of compiler versions, architectures, and disassembly output.
Very useful when you need to inspect what your code compiles into by different compilers. GCC, Clang, MSVC
(CL), Intel compiler (icc), ELLCC, and Zapcc are present, with one or more of these compilers available for the
ARM, ARMv8 (as ARM64), Atmel AVR, MIPS, MIPS64, MSP430, PowerPC, x86, and x64 architecutres. Compiler
command line arguments may be edited.
https://ideone.com/ - Widely used on the Net to illustrate code snippet behavior. Provides both GCC and
Clang for use, but doesn't allow you to edit the compiler command line.
http://melpon.org/wandbox - Supports numerous Clang and GNU/GCC compiler versions.
http://onlinegdb.com/ - An extremely minimalistic IDE that includes an editor, a compiler (gcc), and a
debugger (gdb).
http://rextester.com/ - Provides Clang, GCC, and Visual Studio compilers for both C and C++ (along with
compilers for other languages), with the Boost library available for use.
http://tutorialspoint.com/compile_cpp11_online.php - Full-featured UNIX shell with GCC, and a user-friendly
project explorer.
http://webcompiler.cloudapp.net/ - Online Visual Studio 2015 compiler, provided by Microsoft as part of

http://codepad.org/
http://coliru.stacked-crooked.com/
http://cpp.sh/
https://gcc.godbolt.org/
https://ideone.com/
http://melpon.org/wandbox
http://onlinegdb.com/
http://rextester.com/
http://tutorialspoint.com/compile_cpp11_online.php
http://webcompiler.cloudapp.net/

C++ Notes for Professionals 650

RiSE4fun.

Section 138.4: Compiling with Visual C++ (Command Line)
For programmers coming from GCC or Clang to Visual Studio, or programmers more comfortable with the
command line in general, you can use the Visual C++ compiler from the command line as well as the IDE.

If you desire to compile your code from the command line in Visual Studio, you first need to set up the command
line environment. This can be done either by opening the Visual Studio Command Prompt/Developer Command
Prompt/x86 Native Tools Command Prompt/x64 Native Tools Command Prompt or similar (as provided by your
version of Visual Studio), or at the command prompt, by navigating to the VC subdirectory of the compiler's install
directory (typically \Program Files (x86)\Microsoft Visual Studio x\VC, where x is the version number (such
as 10.0 for 2010, or 14.0 for 2015) and running the VCVARSALL batch file with a command-line parameter specified
here.

Note that unlike GCC, Visual Studio doesn't provide a front-end for the linker (link.exe) via the compiler (cl.exe),
but instead provides the linker as a separate program, which the compiler calls as it exits. cl.exe and link.exe can
be used separately with different files and options, or cl can be told to pass files and options to link if both tasks
are done together. Any linking options specified to cl will be translated into options for link, and any files not
processed by cl will be passed directly to link. As this is mainly a simple guide to compiling with the Visual Studio
command line, arguments for link will not be described at this time; if you need a list, see here.

Note that arguments to cl are case-sensitive, while arguments to link are not.

[Be advised that some of the following examples use the Windows shell "current directory" variable, %cd%, when
specifying absolute path names. For anyone unfamiliar with this variable, it expands to the current working
directory. From the command line, it will be the directory you were in when you ran cl, and is specified in the
command prompt by default (if your command prompt is C:\src>, for example, then %cd% is C:\src\).]

Assuming a single source file named main.cpp in the current folder, the command to compile and link an
unoptimised executable (useful for initial development and debugging) is (use either of the following):

cl main.cpp
// Generates object file "main.obj".
// Performs linking with "main.obj".
// Generates executable "main.exe".

cl /Od main.cpp
// Same as above.
// "/Od" is the "Optimisation: disabled" option, and is the default when no /O is specified.

Assuming an additional source file "niam.cpp" in the same directory, use the following:

cl main.cpp niam.cpp
// Generates object files "main.obj" and "niam.obj".
// Performs linking with "main.obj" and "niam.obj".
// Generates executable "main.exe".

You can also use wildcards, as one would expect:

cl main.cpp src*.cpp
// Generates object file "main.obj", plus one object file for each ".cpp" file in folder
// "%cd%\src".
// Performs linking with "main.obj", and every additional object file generated.
// All object files will be in the current folder.

https://msdn.microsoft.com/en-us/library/f2ccy3wt.aspx#Anchor_0
https://msdn.microsoft.com/en-us/library/f2ccy3wt.aspx#Anchor_0
https://msdn.microsoft.com/en-us/library/f2ccy3wt.aspx#Anchor_0
https://msdn.microsoft.com/en-us/library/f2ccy3wt.aspx#Anchor_0
https://msdn.microsoft.com/en-us/library/f2ccy3wt.aspx#Anchor_0
https://msdn.microsoft.com/en-us/library/f2ccy3wt.aspx#Anchor_0
https://msdn.microsoft.com/en-us/library/f2ccy3wt.aspx#Anchor_0
https://msdn.microsoft.com/en-us/library/f2ccy3wt.aspx#Anchor_0
https://msdn.microsoft.com/en-us/library/f2ccy3wt.aspx#Anchor_0
https://msdn.microsoft.com/en-us/library/f2ccy3wt.aspx#Anchor_1
https://msdn.microsoft.com/en-us/library/y0zzbyt4.aspx

C++ Notes for Professionals 651

// Generates executable "main.exe".

To rename or relocate the executable, use one of the following:

cl /o name main.cpp
// Generates executable named "name.exe".

cl /o folder\ main.cpp
// Generates executable named "main.exe", in folder "%cd%\folder".

cl /o folder\name main.cpp
// Generates executable named "name.exe", in folder "%cd%\folder".

cl /Fename main.cpp
// Same as "/o name".

cl /Fefolder\ main.cpp
// Same as "/o folder\".

cl /Fefolder\name main.cpp
// Same as "/o folder\name".

Both /o and /Fe pass their parameter (let's call it o-param) to link as /OUT:o-param, appending the appropriate
extension (generally .exe or .dll) to "name" o-params as necessary. While both /o and /Fe are to my knowledge
identical in functionality, the latter is preferred for Visual Studio. /o is marked as deprecated, and appears to mainly
be provided for programmers more familiar with GCC or Clang.

Note that while the space between /o and the specified folder and/or name is optional, there cannot be a space
between /Fe and the specified folder and/or name.

Similarly, to produce an optimised executable (for use in production), use:

cl /O1 main.cpp
// Optimise for executable size. Produces small programs, at the possible expense of slower
// execution.

cl /O2 main.cpp
// Optimise for execution speed. Produces fast programs, at the possible expense of larger
// file size.

cl /GL main.cpp other.cpp
// Generates special object files used for whole-program optimisation, which allows CL to
// take every module (translation unit) into consideration during optimisation.
// Passes the option "/LTCG" (Link-Time Code Generation) to LINK, telling it to call CL during
// the linking phase to perform additional optimisations. If linking is not performed at this
// time, the generated object files should be linked with "/LTCG".
// Can be used with other CL optimisation options.

Finally, to produce a platform-specific optimized executable (for use in production on the machine with the
specified architecture), choose the appropriate command prompt or VCVARSALL parameter for the target platform.
link should detect the desired platform from the object files; if not, use the /MACHINE option to explicitly specify the
target platform.

// If compiling for x64, and LINK doesn't automatically detect target platform:
cl main.cpp /link /machine:X64

Any of the above will produce an executable with the name specified by /o or /Fe, or if neither is provided, with a
name identical to the first source or object file specified to the compiler.

https://msdn.microsoft.com/en-us/library/x4d2c09s.aspx
https://msdn.microsoft.com/en-us/library/x4d2c09s.aspx
https://msdn.microsoft.com/en-us/library/5wy54dk2.aspx
https://msdn.microsoft.com/en-us/library/5wy54dk2.aspx
https://msdn.microsoft.com/en-us/library/5wy54dk2.aspx

C++ Notes for Professionals 652

cl a.cpp b.cpp c.cpp
// Generates "a.exe".

cl d.obj a.cpp q.cpp
// Generates "d.exe".

cl y.lib n.cpp o.obj
// Generates "n.exe".

cl /o yo zp.obj pz.cpp
// Generates "yo.exe".

To compile a file(s) without linking, use:

cl /c main.cpp
// Generates object file "main.obj".

This tells cl to exit without calling link, and produces an object file, which can later be linked with other files to
produce a binary.

cl main.obj niam.cpp
// Generates object file "niam.obj".
// Performs linking with "main.obj" and "niam.obj".
// Generates executable "main.exe".

link main.obj niam.obj
// Performs linking with "main.obj" and "niam.obj".
// Generates executable "main.exe".

There are other valuable command line parameters as well, which it would be very useful for users to know:

cl /EHsc main.cpp
// "/EHsc" specifies that only standard C++ ("synchronous") exceptions will be caught,
// and `extern "C"` functions will not throw exceptions.
// This is recommended when writing portable, platform-independent code.

cl /clr main.cpp
// "/clr" specifies that the code should be compiled to use the common language runtime,
// the .NET Framework's virtual machine.
// Enables the use of Microsoft's C++/CLI language in addition to standard ("native") C++,
// and creates an executable that requires .NET to run.

cl /Za main.cpp
// "/Za" specifies that Microsoft extensions should be disabled, and code should be
// compiled strictly according to ISO C++ specifications.
// This is recommended for guaranteeing portability.

cl /Zi main.cpp
// "/Zi" generates a program database (PDB) file for use when debugging a program, without
// affecting optimisation specifications, and passes the option "/DEBUG" to LINK.

cl /LD dll.cpp
// "/LD" tells CL to configure LINK to generate a DLL instead of an executable.
// LINK will output a DLL, in addition to an LIB and EXP file for use when linking.
// To use the DLL in other programs, pass its associated LIB to CL or LINK when compiling those
// programs.

cl main.cpp /link /LINKER_OPTION
// "/link" passes everything following it directly to LINK, without parsing it in any way.

C++ Notes for Professionals 653

// Replace "/LINKER_OPTION" with any desired LINK option(s).

For anyone more familiar with *nix systems and/or GCC/Clang, cl, link, and other Visual Studio command line
tools can accept parameters specified with a hyphen (such as -c) instead of a slash (such as /c). Additionally,
Windows recognises either a slash or a backslash as a valid path separator, so *nix-style paths can be used as well.
This makes it easy to convert simple compiler command lines from g++ or clang++ to cl, or vice versa, with minimal
changes.

g++ -o app src/main.cpp
cl -o app src/main.cpp

Of course, when porting command lines that use more complex g++ or clang++ options, you need to look up
equivalent commands in the applicable compiler documentations and/or on resource sites, but this makes it easier
to get things started with minimal time spent learning about new compilers.

In case you need specific language features for your code, a specific release of MSVC was required. From Visual C++
2015 Update 3 on it is possible to choose the version of the standard to compile with via the /std flag. Possible
values are /std:c++14 and /std:c++latest (/std:c++17 will follow soon).

Note: In older versions of this compiler, specific feature flags were available however this was mostly used for
previews of new features.

Section 138.5: Compiling with Clang
As the Clang front-end is designed for being compatible with GCC, most programs that can be compiled via GCC will
compile when you swap g++ by clang++ in the build scripts. If no -std=version is given, gnu11 will be used.

Windows users who are used to MSVC can swap cl.exe with clang-cl.exe. By default, clang tries to be compatible
with the highest version of MSVC that has been installed.

In the case of compiling with visual studio, clang-cl can be used by changing the Platform toolset in the project
properties.

In both cases, clang is only compatible via its front-end, though it also tries to generate binary compatible object
files. Users of clang-cl should note that the compatibility with MSVC is not complete yet.

To use clang or clang-cl, one could use the default installation on certain Linux distributions or those bundled with
IDEs (like XCode on Mac). For other versions of this compiler or on platforms which don't have this installed, this
can be download from the official download page.

If you're using CMake to build your code you can usually switch the compiler by setting the CC and CXX environment
variables like this:

mkdir build
cd build
CC=clang CXX=clang++ cmake ..
cmake --build .

See also introduction to Cmake.

Section 138.6: The C++ compilation process
When you develop a C++ program, the next step is to compile the program before running it. The compilation is the
process which converts the program written in human readable language like C, C++ etc into a machine code,

https://blogs.msdn.microsoft.com/vcblog/2016/06/07/standards-version-switches-in-the-compiler/
https://blogs.msdn.microsoft.com/vcblog/2016/06/07/standards-version-switches-in-the-compiler/
http://clang.llvm.org/
http://clang.llvm.org/docs/MSVCCompatibility.html
http://llvm.org/releases/download.html

C++ Notes for Professionals 654

directly understood by the Central Processing Unit. For example, if you have a C++ source code file named prog.cpp
and you execute the compile command,

 g++ -Wall -ansi -o prog prog.cpp

There are 4 main stages involved in creating an executable file from the source file.

The C++ the preprocessor takes a C++ source code file and deals with the headers(#include), macros(#define)1.
and other preprocessor directives.

The expanded C++ source code file produced by the C++ preprocessor is compiled into the assembly2.
language for the platform.

The assembler code generated by the compiler is assembled into the object code for the platform.3.

The object code file produced by the assembler is linked together4.
with the object code files for any library functions used to produce either a library or an executable file.

Preprocessing

The preprocessor handles the preprocessor directives, like #include and #define. It is agnostic of the syntax of C++,
which is why it must be used with care.

It works on one C++ source file at a time by replacing #include directives with the content of the respective files
(which is usually just declarations), doing replacement of macros (#define), and selecting different portions of text
depending of #if, #ifdef and #ifndef directives.

The preprocessor works on a stream of preprocessing tokens. Macro substitution is defined as replacing tokens
with other tokens (the operator ## enables merging two tokens when it make sense).

After all this, the preprocessor produces a single output that is a stream of tokens resulting from the
transformations described above. It also adds some special markers that tell the compiler where each line came
from so that it can use those to produce sensible error messages.

Some errors can be produced at this stage with clever use of the #if and #error directives.

By using below compiler flag, we can stop the process at preprocessing stage.

g++ -E prog.cpp

Compilation

The compilation step is performed on each output of the preprocessor. The compiler parses the pure C++ source
code (now without any preprocessor directives) and converts it into assembly code. Then invokes underlying back-
end(assembler in toolchain) that assembles that code into machine code producing actual binary file in some
format(ELF, COFF, a.out, ...). This object file contains the compiled code (in binary form) of the symbols defined in
the input. Symbols in object files are referred to by name.

Object files can refer to symbols that are not defined. This is the case when you use a declaration, and don't
provide a definition for it. The compiler doesn't mind this, and will happily produce the object file as long as the
source code is well-formed.

Compilers usually let you stop compilation at this point. This is very useful because with it you can compile each
source code file separately. The advantage this provides is that you don't need to recompile everything if you only
change a single file.

C++ Notes for Professionals 655

The produced object files can be put in special archives called static libraries, for easier reusing later on.

It's at this stage that "regular" compiler errors, like syntax errors or failed overload resolution errors, are reported.

In order to stop the process after the compile step, we can use the -S option:

g++ -Wall -ansi -S prog.cpp

Assembling

The assembler creates object code. On a UNIX system you may see files with a .o suffix (.OBJ on MSDOS) to indicate
object code files. In this phase the assembler converts those object files from assembly code into machine level
instructions and the file created is a relocatable object code. Hence, the compilation phase generates the
relocatable object program and this program can be used in different places without having to compile again.

To stop the process after the assembly step, you can use the -c option:

g++ -Wall -ansi -c prog.cpp

Linking

The linker is what produces the final compilation output from the object files the assembler produced. This output
can be either a shared (or dynamic) library (and while the name is similar, they don't have much in common with
static libraries mentioned earlier) or an executable.

It links all the object files by replacing the references to undefined symbols with the correct addresses. Each of
these symbols can be defined in other object files or in libraries. If they are defined in libraries other than the
standard library, you need to tell the linker about them.

At this stage the most common errors are missing definitions or duplicate definitions. The former means that either
the definitions don't exist (i.e. they are not written), or that the object files or libraries where they reside were not
given to the linker. The latter is obvious: the same symbol was defined in two different object files or libraries.

Section 138.7: Compiling with Code::Blocks (Graphical
interface)

Download and install Code::Blocks here. If you're on Windows, be careful to select a file for which the name1.
contains mingw, the other files don't install any compiler.

Open Code::Blocks and click on "Create a new project":2.

http://www.codeblocks.org/downloads/binaries

C++ Notes for Professionals 656

Select "Console application" and click "Go":3.

Click "Next", select "C++", click "Next", select a name for your project and choose a folder to save it in, click4.
"Next" and then click "Finish".

Now you can edit and compile your code. A default code that prints "Hello world!" in the console is already5.

https://i.stack.imgur.com/z4Oll.png
https://i.stack.imgur.com/0wBAn.png

C++ Notes for Professionals 657

there. To compile and/or run your program, press one of the three compile/run buttons in the toolbar:

To compile without running, press , to run without compiling again, press and to compile and then

run, press .

Compiling and running the default "Hello world!" code gives the following result:

https://i.stack.imgur.com/wCmdw.png
https://i.stack.imgur.com/gOkY9.png
https://i.stack.imgur.com/eLjbt.png
https://i.stack.imgur.com/Zgyi8.png
https://i.stack.imgur.com/qbVy8.png

C++ Notes for Professionals 658

Chapter 139: Common compile/linker
errors (GCC)
Section 139.1: undefined reference to `***'
This linker error happens, if the linker can't find a used symbol. Most of the time, this happens if a used library is
not linked against.

qmake:

LIBS += nameOfLib

cmake:

TARGET_LINK_LIBRARIES(target nameOfLib)

g++ call:

g++ -o main main.cpp -Llibrary/dir -lnameOfLib

One might also forget to compile and link all used .cpp files (functionsModule.cpp defines the needed function):

g++ -o binName main.o functionsModule.o

Section 139.2: error: '***' was not declared in this scope
This error happens if a unknown object is used.

Variables

Not compiling:

#include <iostream>

int main(int argc, char *argv[])
{
 {
 int i = 2;
 }

 std::cout << i << std::endl; // i is not in the scope of the main function

 return 0;
}

Fix:

#include <iostream>

int main(int argc, char *argv[])
{
 {
 int i = 2;
 std::cout << i << std::endl;

C++ Notes for Professionals 659

 }

 return 0;
}

Functions

Most of the time this error occurs if the needed header is not included (e.g. using std::cout without
#include <iostream>)

Not compiling:

#include <iostream>

int main(int argc, char *argv[])
{
 doCompile();

 return 0;
}

void doCompile()
{
 std::cout << "No!" << std::endl;
}

Fix:

#include <iostream>

void doCompile(); // forward declare the function

int main(int argc, char *argv[])
{
 doCompile();

 return 0;
}

void doCompile()
{
 std::cout << "No!" << std::endl;
}

Or:

#include <iostream>

void doCompile() // define the function before using it
{
 std::cout << "No!" << std::endl;
}

int main(int argc, char *argv[])
{
 doCompile();

 return 0;

C++ Notes for Professionals 660

}

Note: The compiler interprets the code from top to bottom (simplification). Everything must be at least declared (or
defined) before usage.

Section 139.3: fatal error: ***: No such file or directory
The compiler can't find a file (a source file uses #include "someFile.hpp").

qmake:

INCLUDEPATH += dir/Of/File

cmake:

include_directories(dir/Of/File)

g++ call:

g++ -o main main.cpp -Idir/Of/File

http://www.cprogramming.com/declare_vs_define.html
http://www.cprogramming.com/declare_vs_define.html

C++ Notes for Professionals 661

Chapter 140: More undefined behaviors in
C++
More examples on how C++ can go wrong.

Continuation from Undefined Behavior

Section 140.1: Referring to non-static members in initializer
lists
Referring to non-static members in initializer lists before the constructor has started executing can result in
undefined behavior. This results since not all members are constructed at this time. From the standard draft:

§12.7.1: For an object with a non-trivial constructor, referring to any non-static member or base class of
the object before the constructor begins execution results in undefined behavior.

Example

struct W { int j; };
struct X : public virtual W { };
struct Y {
 int *p;
 X x;
 Y() : p(&x.j) { // undefined, x is not yet constructed
 }
};

C++ Notes for Professionals 662

Chapter 141: Unit Testing in C++
Unit testing is a level in software testing that validates the behavior and correctness of units of code.

In C++, "units of code" often refer to either classes, functions, or groups of either. Unit testing is often performed
using specialized "testing frameworks" or "testing libraries" that often use non-trivial syntax or usage patterns.

This topic will review different strategies and unit testing libraries or frameworks.

Section 141.1: Google Test
Google Test is a C++ testing framework maintained by Google. It requires building the gtest library and linking it to
your testing framework when building a test case file.

Minimal Example
// main.cpp

#include <gtest/gtest.h>
#include <iostream>

// Google Test test cases are created using a C++ preprocessor macro
// Here, a "test suite" name and a specific "test name" are provided.
TEST(module_name, test_name) {
 std::cout << "Hello world!" << std::endl;
 // Google Test will also provide macros for assertions.
 ASSERT_EQ(1+1, 2);
}

// Google Test can be run manually from the main() function
// or, it can be linked to the gtest_main library for an already
// set-up main() function primed to accept Google Test test cases.
int main(int argc, char** argv) {
 ::testing::InitGoogleTest(&argc, argv);

 return RUN_ALL_TESTS();
}

// Build command: g++ main.cpp -lgtest

Section 141.2: Catch
Catch is a header only library that allows you to use both TDD and BDD unit test style.

The following snippet is from the Catch documentation page at this link:

SCENARIO("vectors can be sized and resized", "[vector]") {
 GIVEN("A vector with some items") {
 std::vector v(5);

 REQUIRE(v.size() == 5);
 REQUIRE(v.capacity() >= 5);

 WHEN("the size is increased") {
 v.resize(10);

 THEN("the size and capacity change") {
 REQUIRE(v.size() == 10);

https://github.com/google/googletest
https://github.com/philsquared/Catch
https://en.wikipedia.org/wiki/Test-driven_development
https://en.wikipedia.org/wiki/Behavior-driven_development
https://github.com/philsquared/Catch/blob/master/docs/tutorial.md

C++ Notes for Professionals 663

 REQUIRE(v.capacity() >= 10);
 }
 }
 WHEN("the size is reduced") {
 v.resize(0);

 THEN("the size changes but not capacity") {
 REQUIRE(v.size() == 0);
 REQUIRE(v.capacity() >= 5);
 }
 }
 WHEN("more capacity is reserved") {
 v.reserve(10);

 THEN("the capacity changes but not the size") {
 REQUIRE(v.size() == 5);
 REQUIRE(v.capacity() >= 10);
 }
 }
 WHEN("less capacity is reserved") {
 v.reserve(0);

 THEN("neither size nor capacity are changed") {
 REQUIRE(v.size() == 5);
 REQUIRE(v.capacity() >= 5);
 }
 }
 }
}

Conveniently, these tests will be reported as follows when run:

Scenario: vectors can be sized and resized Given: A vector with some items When: more capacity is reserved Then:
the capacity changes but not the size

C++ Notes for Professionals 664

Chapter 142: C++ Debugging and Debug-
prevention Tools & Techniques
A lot of time from C++ developers is spent debugging. This topic is meant to assist with this task and give inspiration
for techniques. Don't expect an extensive list of issues and solutions fixed by the tools or a manual on the
mentioned tools.

Section 142.1: Static analysis
Static analysis is the technique in which on checks the code for patterns linked to known bugs. Using this technique
is less time consuming than a code review, though, its checks are only limited to those programmed in the tool.

Checks can include the incorrect semi-colon behind the if-statement (if (var);) till advanced graph algorithms
which determine if a variable is not initialized.

Compiler warnings

Enabling static analysis is easy, the most simplistic version is already build-in in your compiler:

clang++ -Wall -Weverything -Werror ...

g++ -Wall -Weverything -Werror ...

cl.exe /W4 /WX ...

If you enable these options, you will notice that each compiler will find bugs the others don't and that you will get
errors on techniques which might be valid or valid in a specific context. while (staticAtomicBool); might be
acceptable even if while (localBool); ain't.

So unlike code review, you are fighting a tool which understands your code, tells you a lot of useful bugs and
sometimes disagrees with you. In this last case, you might have to suppress the warning locally.

As the options above enable all warnings, they might enable warnings you don't want. (Why should your code be
C++98 compatible?) If so, you can simply disable that specific warning:

clang++ -Wall -Weverything -Werror -Wno-errortoaccept ...

g++ -Wall -Weverything -Werror -Wno-errortoaccept ...

cl.exe /W4 /WX /wd<no of warning>...

Where compiler warnings assist you during development, they slow down compilation quite a bit. That is why you
might not always want to enable them by default. Either you run them by default or you enable some continuous
integration with the more expensive checks (or all of them).

External tools

If you decide to have some continuous integration, the use of other tools ain't such a stretch. A tool like clang-tidy
has an list of checks which covers a wide range of issues, some examples:

Actual bugs
Prevention of slicing
Asserts with side effects

Readability checks
Misleading indentation
Check identifier naming

Modernization checks

https://clang.llvm.org/docs/DiagnosticsReference.html
https://clang.llvm.org/docs/DiagnosticsReference.html
https://clang.llvm.org/docs/DiagnosticsReference.html
https://clang.llvm.org/docs/DiagnosticsReference.html
https://clang.llvm.org/docs/DiagnosticsReference.html
https://clang.llvm.org/docs/DiagnosticsReference.html
https://clang.llvm.org/docs/DiagnosticsReference.html
https://clang.llvm.org/docs/DiagnosticsReference.html
https://clang.llvm.org/docs/DiagnosticsReference.html
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
https://docs.microsoft.com/en-us/cpp/build/reference/compiler-option-warning-level
https://docs.microsoft.com/en-us/cpp/build/reference/compiler-option-warning-level
https://docs.microsoft.com/en-us/cpp/build/reference/compiler-option-warning-level
https://docs.microsoft.com/en-us/cpp/build/reference/compiler-option-warning-level
https://docs.microsoft.com/en-us/cpp/build/reference/compiler-option-warning-level
https://docs.microsoft.com/en-us/cpp/build/reference/compiler-option-warning-level
https://docs.microsoft.com/en-us/cpp/build/reference/compiler-option-warning-level
http://clang.llvm.org/extra/clang-tidy/
http://clang.llvm.org/extra/clang-tidy/checks/list.html

C++ Notes for Professionals 665

Use make_unique()
Use nullptr

Performance checks
Find unneeded copies
Find inefficient algorithm calls

The list might not be that large, as Clang already has a lot of compiler warnings, however it will bring you one step
closer to a high quality code base.

Other tools

Other tools with similar purpose exist, like:

the visual studio static analyzer as external tool
clazy, a Clang compiler plugin for checking Qt code

Conclusion

A lot static analysis tools exist for C++, both build-in in the compiler as external tools. Trying them out doesn't take
that much time for easy setups and they will find bugs you might miss in code review.

Section 142.2: Segfault analysis with GDB
Lets use the same code as above for this example.

#include <iostream>

void fail() {
 int *p1;
 int *p2(NULL);
 int *p3 = p1;
 if (p3) {
 std::cout << *p2 << std::endl;
 }
}

int main() {
 fail();
}

First lets compile it

g++ -g -o main main.cpp

Lets run it with gdb

gdb ./main

Now we will be in gdb shell. Type run.

(gdb) run
The program being debugged has been started already.
Start it from the beginning? (y or n) y
Starting program: /home/opencog/code-snippets/stackoverflow/a.out

Program received signal SIGSEGV, Segmentation fault.
0x0000000000400850 in fail () at debugging_with_gdb.cc:11

https://blogs.msdn.microsoft.com/hkamel/2013/10/24/visual-studio-2013-static-code-analysis-in-depth-what-when-and-how/
https://blogs.kde.org/2015/11/15/new-cqt-code-checks-clazy-static-analyzer

C++ Notes for Professionals 666

11 std::cout << *p2 << std::endl;

We see the segmentation fault is happening at line 11. So the only variable being used at this line is pointer p2. Lets
examine its content typing print.

(gdb) print p2
$1 = (int *) 0x0

Now we see that p2 was initialized to 0x0 which stands for NULL. At this line, we know that we are trying to
dereference a NULL pointer. So we go and fix it.

Section 142.3: Clean code
Debugging starts with understanding the code you are trying to debug.

Bad code:

int main() {
 int value;
 std::vector<int> vectorToSort;
 vectorToSort.push_back(42); vectorToSort.push_back(13);
 for (int i = 52; i; i = i - 1)
 {
 vectorToSort.push_back(i *2);
 }
 /// Optimized for sorting small vectors
 if (vectorToSort.size() == 1);
 else
 {
 if (vectorToSort.size() <= 2)
 std::sort(vectorToSort.begin(), std::end(vectorToSort));
 }
 for (value : vectorToSort) std::cout << value << ' ';
return 0; }

Better code:

std::vector<int> createSemiRandomData() {
 std::vector<int> data;
 data.push_back(42);
 data.push_back(13);
 for (int i = 52; i; --i)
 vectorToSort.push_back(i *2);
 return data;
}

/// Optimized for sorting small vectors
void sortVector(std::vector &v) {
 if (vectorToSort.size() == 1)
 return;
 if (vectorToSort.size() > 2)
 return;

 std::sort(vectorToSort.begin(), vectorToSort.end());
}

void printVector(const std::vector<int> &v) {
 for (auto i : v)
 std::cout << i << ' ';

C++ Notes for Professionals 667

}

int main() {
 auto vectorToSort = createSemiRandomData();
 sortVector(std::ref(vectorToSort));
 printVector(vectorToSort);

 return 0;
 }

Regardless of the coding styles you prefer and use, having a consistent coding (and formatting) style will help you
understanding the code.

Looking at the code above, one can identify a couple of improvements to improve readability and debuggability:

The use of separate functions for separate actions

The use of separate functions allow you to skip over some functions in the debugger if you ain't interested in the
details. In this specific case, you might not be interested in the creation or printing of the data and only want to step
into the sorting.

Another advantage is that you need to read less code (and memorize it) while stepping through the code. You now
only need to read 3 lines of code in main() in order to understand it, instead of the whole function.

The third advantage is that you simply have less code to look at, which helps a trained eye in spotting this bug
within seconds.

Using consistent formatting/constructions

The use of consistent formatting and constructions will remove clutter from the code making it easier to focus on
the code instead of text. A lot of discussions have been fed on the 'right' formatting style. Regardless of that style,
having a single consistent style in the code will improve familiarity and make it easier to focus on the code.

As formatting code is time consuming task, it is recommended to use a dedicated tool for this. Most IDEs have at
least some kind of support for this and can do formatting more consistent than humans.

You might note that the style is not limited to spaces and newlines as we no longer mix the free-style and the
member functions to get begin/end of the container. (v.begin() vs std::end(v)).

Point attention to the important parts of your code.

Regardless of the style you determine to choose, the above code contains a couple of markers which might give you
a hint on what might be important:

A comment stating optimized, this indicates some fancy techniques
Some early returns in sortVector() indicate that we are doing something special
The std::ref() indicates that something is going on with the sortVector()

Conclusion

Having clean code will help you understanding the code and will reduce the time you need to debug it. In the
second example, a code reviewer might even spot the bug at first glance, while the bug might be hidden in the
details in the first one. (PS: The bug is in the compare with 2.)

C++ Notes for Professionals 668

Chapter 143: Optimization in C++
Section 143.1: Introduction to performance
C and C++ are well known as high-performance languages - largely due to the heavy amount of code customization,
allowing a user to specify performance by choice of structure.

When optimizing it is important to benchmark relevant code and completely understand how the code will be used.

Common optimization mistakes include:

Premature optimization: Complex code may perform worse after optimization, wasting time and effort.
First priority should be to write correct and maintainable code, rather than optimized code.
Optimization for the wrong use case: Adding overhead for the 1% might not be worth the slowdown for
the other 99%
Micro-optimization: Compilers do this very efficiently and micro-optimization can even hurt the compilers
ability to further optimize the code

Typical optimization goals are:

To do less work
To use more efficient algorithms/structures
To make better use of hardware

Optimized code can have negative side effects, including:

Higher memory usage
Complex code -being difficult to read or maintain
Compromised API and code design

Section 143.2: Empty Base Class Optimization
An object cannot occupy less than 1 byte, as then the members of an array of this type would have the same
address. Thus sizeof(T)>=1 always holds. It's also true that a derived class cannot be smaller than any of its base
classes. However, when the base class is empty, its size is not necessarily added to the derived class:

class Base {};

class Derived : public Base
{
public:
 int i;
};

In this case, it's not required to allocate a byte for Base within Derived to have a distinct address per type per
object. If empty base class optimization is performed (and no padding is required), then sizeof(Derived) ==
sizeof(int), that is, no additional allocation is done for the empty base. This is possible with multiple base classes
as well (in C++, multiple bases cannot have the same type, so no issues arise from that).

Note that this can only be performed if the first member of Derived differs in type from any of the base classes.
This includes any direct or indirect common bases. If it's the same type as one of the bases (or there's a common
base), at least allocating a single byte is required to ensure that no two distinct objects of the same type have the
same address.

C++ Notes for Professionals 669

Section 143.3: Optimizing by executing less code
The most straightforward approach to optimizing is by executing less code. This approach usually gives a fixed
speed-up without changing the time complexity of the code.

Even though this approach gives you a clear speedup, this will only give noticable improvements when the code is
called a lot.

Removing useless code
void func(const A *a); // Some random function

// useless memory allocation + deallocation for the instance
auto a1 = std::make_unique<A>();
func(a1.get());

// making use of a stack object prevents
auto a2 = A{};
func(&a2);
Version ≥ C++14

From C++14, compilers are allowed to optimize this code to remove the allocation and matching deallocation.

Doing code only once
std::map<std::string, std::unique_ptr<A>> lookup;
// Slow insertion/lookup
// Within this function, we will traverse twice through the map lookup an element
// and even a thirth time when it wasn't in
const A *lazyLookupSlow(const std::string &key) {
 if (lookup.find(key) != lookup.cend())
 lookup.emplace_back(key, std::make_unique<A>());
 return lookup[key].get();
}

// Within this function, we will have the same noticeable effect as the slow variant while going at
double speed as we only traverse once through the code
const A *lazyLookupSlow(const std::string &key) {
 auto &value = lookup[key];
 if (!value)
 value = std::make_unique<A>();
 return value.get();
}

A similar approach to this optimization can be used to implement a stable version of unique

std::vector<std::string> stableUnique(const std::vector<std::string> &v) {
 std::vector<std::string> result;
 std::set<std::string> checkUnique;
 for (const auto &s : v) {
 // As insert returns if the insertion was successful, we can deduce if the element was
already in or not
 // This prevents an insertion, which will traverse through the map for every unique element
 // As a result we can almost gain 50% if v would not contain any duplicates
 if (checkUnique.insert(s).second)
 result.push_back(s);
 }
 return result;
}

Preventing useless reallocating and copying/moving

C++ Notes for Professionals 670

In the previous example, we already prevented lookups in the std::set, however the std::vector still contains a
growing algorithm, in which it will have to realloc its storage. This can be prevented by first reserving for the right
size.

std::vector<std::string> stableUnique(const std::vector<std::string> &v) {
 std::vector<std::string> result;
 // By reserving 'result', we can ensure that no copying or moving will be done in the vector
 // as it will have capacity for the maximum number of elements we will be inserting
 // If we make the assumption that no allocation occurs for size zero
 // and allocating a large block of memory takes the same time as a small block of memory
 // this will never slow down the program
 // Side note: Compilers can even predict this and remove the checks the growing from the
generated code
 result.reserve(v.size());
 std::set<std::string> checkUnique;
 for (const auto &s : v) {
 // See example above
 if (checkUnique.insert(s).second)
 result.push_back(s);
 }
 return result;
}

Section 143.4: Using ecient containers
Optimizing by using the right data structures at the right time can change the time-complexity of the code.

// This variant of stableUnique contains a complexity of N log(N)
// N > number of elements in v
// log(N) > insert complexity of std::set
std::vector<std::string> stableUnique(const std::vector<std::string> &v) {
 std::vector<std::string> result;
 std::set<std::string> checkUnique;
 for (const auto &s : v) {
 // See Optimizing by executing less code
 if (checkUnique.insert(s).second)
 result.push_back(s);
 }
 return result;
}

By using a container which uses a different implementation for storing its elements (hash container instead of tree),
we can transform our implementation to complexity N. As a side effect, we will call the comparison operator for
std::string less, as it only has to be called when the inserted string should end up in the same bucket.

// This variant of stableUnique contains a complexity of N
// N > number of elements in v
// 1 > insert complexity of std::unordered_set
std::vector<std::string> stableUnique(const std::vector<std::string> &v) {
 std::vector<std::string> result;
 std::unordered_set<std::string> checkUnique;
 for (const auto &s : v) {
 // See Optimizing by executing less code
 if (checkUnique.insert(s).second)
 result.push_back(s);
 }
 return result;
}

C++ Notes for Professionals 671

Section 143.5: Small Object Optimization
Small object optimization is a technique which is used within low level data structures, for instance the std::string
(Sometimes referred to as Short/Small String Optimization). It's meant to use stack space as a buffer instead of
some allocated memory in case the content is small enough to fit within the reserved space.

By adding extra memory overhead and extra calculations, it tries to prevent an expensive heap allocation. The
benefits of this technique are dependent on the usage and can even hurt performance if incorrectly used.

Example

A very naive way of implementing a string with this optimization would the following:

#include <cstring>

class string final
{
 constexpr static auto SMALL_BUFFER_SIZE = 16;

 bool _isAllocated{false}; ///< Remember if we allocated memory
 char *_buffer{nullptr}; ///< Pointer to the buffer we are using
 char _smallBuffer[SMALL_BUFFER_SIZE]= {'\0'}; ///< Stack space used for SMALL OBJECT
OPTIMIZATION

public:
 ~string()
 {
 if (_isAllocated)
 delete [] _buffer;
 }

 explicit string(const char *cStyleString)
 {
 auto stringSize = std::strlen(cStyleString);
 _isAllocated = (stringSize > SMALL_BUFFER_SIZE);
 if (_isAllocated)
 _buffer = new char[stringSize];
 else
 _buffer = &_smallBuffer[0];
 std::strcpy(_buffer, &cStyleString[0]);
 }

 string(string &&rhs)
 : _isAllocated(rhs._isAllocated)
 , _buffer(rhs._buffer)
 , _smallBuffer(rhs._smallBuffer) //< Not needed if allocated
 {
 if (_isAllocated)
 {
 // Prevent double deletion of the memory
 rhs._buffer = nullptr;
 }
 else
 {
 // Copy over data
 std::strcpy(_smallBuffer, rhs._smallBuffer);
 _buffer = &_smallBuffer[0];
 }
 }
 // Other methods, including other constructors, copy constructor,

C++ Notes for Professionals 672

 // assignment operators have been omitted for readability
};

As you can see in the code above, some extra complexity has been added in order to prevent some new and delete
operations. On top of this, the class has a larger memory footprint which might not be used except in a couple of
cases.

Often it is tried to encode the bool value _isAllocated, within the pointer _buffer with bit manipulation to reduce
the size of a single instance (intel 64 bit: Could reduce size by 8 byte). An optimization which is only possible when
its known what the alignment rules of the platform is.

When to use?

As this optimization adds a lot of complexity, it is not recommended to use this optimization on every single class. It
will often be encountered in commonly used, low-level data structures. In common C++11 standard library
implementations one can find usages in std::basic_string<> and std::function<>.

As this optimization only prevents memory allocations when the stored data is smaller than the buffer, it will only
give benefits if the class is often used with small data.

A final drawback of this optimization is that extra effort is required when moving the buffer, making the move-
operation more expensive than when the buffer would not be used. This is especially true when the buffer contains
a non-POD type.

C++ Notes for Professionals 673

Chapter 144: Optimization
When compiling, the compiler will often modify the program to increase performance. This is permitted by the as-if
rule, which allows any and all transformations that do not change observable behavior.

Section 144.1: Inline Expansion/Inlining
Inline expansion (also known as inlining) is compiler optimisation that replaces a call to a function with the body of
that function. This saves the function call overhead, but at the cost of space, since the function may be duplicated
several times.

// source:

int process(int value)
{
 return 2 * value;
}

int foo(int a)
{
 return process(a);
}

// program, after inlining:

int foo(int a)
{
 return 2 * a; // the body of process() is copied into foo()
}

Inlining is most commonly done for small functions, where the function call overhead is significant compared to the
size of the function body.

Section 144.2: Empty base optimization
The size of any object or member subobject is required to be at least 1 even if the type is an empty class type (that
is, a class or struct that has no non-static data members), in order to be able to guarantee that the addresses of
distinct objects of the same type are always distinct.

However, base class subobjects are not so constrained, and can be completely optimized out from the object
layout:

#include <cassert>

struct Base {}; // empty class

struct Derived1 : Base {
 int i;
};

int main() {
 // the size of any object of empty class type is at least 1
 assert(sizeof(Base) == 1);

 // empty base optimization applies
 assert(sizeof(Derived1) == sizeof(int));

http://en.cppreference.com/w/cpp/language/as_if
http://en.cppreference.com/w/cpp/language/as_if

C++ Notes for Professionals 674

}

Empty base optimization is commonly used by allocator-aware standard library classes (std::vector,
std::function, std::shared_ptr, etc) to avoid occupying any additional storage for its allocator member if the
allocator is stateless. This is achieved by storing one of the required data members (e.g., begin, end, or capacity
pointer for the vector).

Reference: cppreference

http://en.cppreference.com/w/cpp/language/ebo

C++ Notes for Professionals 675

Chapter 145: Profiling
Section 145.1: Profiling with gcc and gprof
The GNU gprof profiler, gprof, allows you to profile your code. To use it, you need to perform the following steps:

Build the application with settings for generating profiling information1.

Generate profiling information by running the built application2.

View the generated profiling information with gprof3.

In order to build the application with settings for generating profiling information, we add the -pg flag. So, for
example, we could use

$ gcc -pg *.cpp -o app

or

$ gcc -O2 -pg *.cpp -o app

and so forth.

Once the application, say app, is built, execute it as usual:

$./app

This should produce a file called gmon.out.

To see the profiling results, now run

$ gprof app gmon.out

(note that we provide both the application as well as the generated output).

Of course, you can also pipe or redirect:

$ gprof app gmon.out | less

and so forth.

The result of the last command should be a table, whose rows are the functions, and whose columns indicate the
number of calls, total time spent, self time spent (that is, time spent in the function excluding calls to children).

Section 145.2: Generating callgraph diagrams with gperf2dot
For more complex applications, flat execution profiles may be difficult to follow. This is why many profiling tools
also generate some form of annotated callgraph information.

gperf2dot converts text output from many profilers (Linux perf, callgrind, oprofile etc.) into a callgraph diagram.
You can use it by running your profiler (example for gprof):

compile with profiling flags
g++ *.cpp -pg

https://sourceware.org/binutils/docs/gprof/
https://github.com/jrfonseca/gprof2dot

C++ Notes for Professionals 676

run to generate profiling data
./main
translate profiling data to text, create image
gprof ./main | gprof2dot -s | dot -Tpng -o output.png

Section 145.3: Profiling CPU Usage with gcc and Google Perf
Tools
Google Perf Tools also provides a CPU profiler, with a slightly friendlier interface. To use it:

Install Google Perf Tools1.
Compile your code as usual2.
Add the libprofiler profiler library to your library load path at runtime3.
Use pprof to generate a flat execution profile, or a callgraph diagram4.

For example:

compile code
g++ -O3 -std=c++11 main.cpp -o main

run with profiler
LD_PRELOAD=/usr/local/lib/libprofiler.so CPUPROFILE=main.prof CPUPROFILE_FREQUENCY=100000 ./main

where:

CPUPROFILE indicates the output file for profiling data
CPUPROFILE_FREQUENCY indicates the profiler sampling frequency;

http://i.stack.imgur.com/QDQA0.png
https://github.com/gperftools/gperftools
https://github.com/gperftools/gperftools

C++ Notes for Professionals 677

Use pprof to post-process the profiling data.

You can generate a flat call profile as text:

$ pprof --text ./main main.prof
PROFILE: interrupts/evictions/bytes = 67/15/2016
pprof --text --lines ./main main.prof
Using local file ./main.
Using local file main.prof.
Total: 67 samples
22 32.8% 32.8% 67 100.0% longRunningFoo ??:0
20 29.9% 62.7% 20 29.9% __memmove_ssse3_back
/build/eglibc-3GlaMS/eglibc-2.19/string/../sysdeps/x86_64/multiarch/memcpy-ssse3-back.S:1627
4 6.0% 68.7% 4 6.0% __memmove_ssse3_back
/build/eglibc-3GlaMS/eglibc-2.19/string/../sysdeps/x86_64/multiarch/memcpy-ssse3-back.S:1619
3 4.5% 73.1% 3 4.5% __random_r /build/eglibc-3GlaMS/eglibc-2.19/stdlib/random_r.c:388
3 4.5% 77.6% 3 4.5% __random_r /build/eglibc-3GlaMS/eglibc-2.19/stdlib/random_r.c:401
2 3.0% 80.6% 2 3.0% __munmap
/build/eglibc-3GlaMS/eglibc-2.19/misc/../sysdeps/unix/syscall-template.S:81
2 3.0% 83.6% 12 17.9% __random /build/eglibc-3GlaMS/eglibc-2.19/stdlib/random.c:298
2 3.0% 86.6% 2 3.0% __random_r /build/eglibc-3GlaMS/eglibc-2.19/stdlib/random_r.c:385
2 3.0% 89.6% 2 3.0% rand /build/eglibc-3GlaMS/eglibc-2.19/stdlib/rand.c:26
1 1.5% 91.0% 1 1.5% __memmove_ssse3_back
/build/eglibc-3GlaMS/eglibc-2.19/string/../sysdeps/x86_64/multiarch/memcpy-ssse3-back.S:1617
1 1.5% 92.5% 1 1.5% __memmove_ssse3_back
/build/eglibc-3GlaMS/eglibc-2.19/string/../sysdeps/x86_64/multiarch/memcpy-ssse3-back.S:1623
1 1.5% 94.0% 1 1.5% __random /build/eglibc-3GlaMS/eglibc-2.19/stdlib/random.c:293
1 1.5% 95.5% 1 1.5% __random /build/eglibc-3GlaMS/eglibc-2.19/stdlib/random.c:296
1 1.5% 97.0% 1 1.5% __random_r /build/eglibc-3GlaMS/eglibc-2.19/stdlib/random_r.c:371
1 1.5% 98.5% 1 1.5% __random_r /build/eglibc-3GlaMS/eglibc-2.19/stdlib/random_r.c:381
1 1.5% 100.0% 1 1.5% rand /build/eglibc-3GlaMS/eglibc-2.19/stdlib/rand.c:28
0 0.0% 100.0% 67 100.0% __libc_start_main /build/eglibc-3GlaMS/eglibc-2.19/csu/libc-
start.c:287
0 0.0% 100.0% 67 100.0% _start ??:0
0 0.0% 100.0% 67 100.0% main ??:0
0 0.0% 100.0% 14 20.9% rand /build/eglibc-3GlaMS/eglibc-2.19/stdlib/rand.c:27
0 0.0% 100.0% 27 40.3% std::vector::_M_emplace_back_aux ??:0

... or you can generate an annotated callgraph in a pdf with:

pprof --pdf ./main main.prof > out.pdf

C++ Notes for Professionals 678

Chapter 146: Refactoring Techniques
Refactoring refers to the modification of existing code into an improved version. Although refactoring is often done
while changing code to add features or fix bugs, the term particularly refers improving code without necessarily
adding features or fixing bugs.

Section 146.1: Goto Cleanup
In C++ code bases which used to be C, one can find the pattern goto cleanup. As the goto command makes the
workflow of a function harder to understand, this is often avoided. Often, it can be replaced by return statements,
loops, functions. Though, with the goto cleanup one needs to get rid of cleanup logic.

short calculate(VectorStr **data) {
 short result = FALSE;
 VectorStr *vec = NULL;
 if (!data)
 goto cleanup; //< Could become return false

 // ... Calculation which 'new's VectorStr

 result = TRUE;
cleanup:
 delete [] vec;
 return result;
}

In C++ one could use RAII to fix this issue:

struct VectorRAII final {
 VectorStr *data{nullptr};
 VectorRAII() = default;
 ~VectorRAII() {
 delete [] data;
 }
 VectorRAII(const VectorRAII &) = delete;
};

short calculate(VectorStr **data) {
 VectorRAII vec{};
 if (!data)
 return FALSE; //< Could become return false

 // ... Calculation which 'new's VectorStr and stores it in vec.data

 return TRUE;
}

From this point on, one could continue refactoring the actual code. For example by replacing the VectorRAII by
std::unique_ptr or std::vector.

C++ Notes for Professionals 679

Credits
Thank you greatly to all the people from Stack Overflow Documentation who helped provide this content,

more changes can be sent to web@petercv.com for new content to be published or updated

0x5f3759df Chapter 39
1337ninja Chapter 48
3442 Chapter 48
4444 Chapter 143
A. Sarid Chapters 26 and 7
aaronsnoswell Chapter 25
Abhinav Gauniyal Chapter 127
Abyx Chapter 34
Adam Trhon Chapter 142
Adhokshaj Mishra Chapter 138
ADITYA Chapter 24
Ajay Chapters 34, 73, 8, 119 and 102
alain Chapter 73
Alejandro Chapter 80
Alexey Guseynov Chapter 72
Alexey Voytenko Chapters 35 and 34
amanuel2 Chapters 33, 40, 30, 128 and 22
amchacon Chapter 80
Ami Tavory Chapters 50, 104, 63, 145, 14 and 130
an0o0nym Chapter 4
anatolyg Chapters 50 and 67
anderas Chapters 17, 45, 13, 35, 34, 50 and 73
Andrea Chua Chapters 45, 131 and 96
Andrea Corbelli Chapters 48, 73, 51 and 27
AndyG Chapters 50 and 110
Anonymous1847 Chapter 132
anotherGatsby Chapters 12 and 16
Antonio Barreto Chapter 112
AProgrammer Chapter 13
Aravind .KEN Chapter 40
ArchbishopOfBanterbury Chapters 1, 37 and 138
Artalus Chapter 108
asantacreu Chapter 146
Asu Chapter 27
Ates Goral Chapter 37
Bakhtiar Hasan Chapter 36
Baron Chapter 31

Barry Chapters 77, 17, 10, 25, 48, 45, 34, 50, 37, 73, 12, 74, 103, 82, 83, 41, 67, 105, 108,
52, 110, 19, 64, 7, 138, 98 and 79

bcmpinc Chapter 73
Ben H Chapter 1
Ben Steffan Chapter 138
Benjy Kessler Chapter 77
BigONotation Chapter 78
Bim Chapters 55 and 40

Brian Chapters 1, 77, 45, 35, 37, 73, 80, 72, 71, 104, 105, 115, 91, 84, 4, 119, 99, 24, 120,
121, 2, 16, 21, 22, 23, 69, 98, 133, 100, 3, 134, 79, 47, 97 and 95

C.W.Holeman II Chapter 64
CaffeineToCode Chapters 34 and 80

mailto:web@petercv.com
https://stackoverflow.com/users/839932/
https://stackoverflow.com/users/2834504/
https://stackoverflow.com/users/5249858/
https://stackoverflow.com/users/1464444/
https://stackoverflow.com/users/3132173/
https://stackoverflow.com/users/885287/
https://stackoverflow.com/users/2648679/
https://stackoverflow.com/users/343443/
https://stackoverflow.com/users/446252/
https://stackoverflow.com/users/1460520/
https://stackoverflow.com/users/6524169/
https://stackoverflow.com/users/264325/
https://stackoverflow.com/users/3435400/
https://stackoverflow.com/users/1274223/
https://stackoverflow.com/users/6799654/
https://stackoverflow.com/users/3291022/
https://stackoverflow.com/users/5768335/
https://stackoverflow.com/users/2489715/
https://stackoverflow.com/users/3510736/
https://stackoverflow.com/users/2808371/
https://stackoverflow.com/users/509868/
https://stackoverflow.com/users/3198247/
https://stackoverflow.com/users/7193177/
https://stackoverflow.com/users/6503444/
https://stackoverflow.com/users/27678/
https://stackoverflow.com/users/6896866/
https://stackoverflow.com/users/7369809/
https://stackoverflow.com/users/4783169/
https://stackoverflow.com/users/136208/
https://stackoverflow.com/users/6873330/
https://stackoverflow.com/users/5508296/
https://stackoverflow.com/users/5232529/
https://stackoverflow.com/users/6355709/
https://stackoverflow.com/users/6261331/
https://stackoverflow.com/users/23501/
https://stackoverflow.com/users/6879340/
https://stackoverflow.com/users/2860921/
https://stackoverflow.com/users/2069064/
https://stackoverflow.com/users/558366/
https://stackoverflow.com/users/7204614/
https://stackoverflow.com/users/7691497/
https://stackoverflow.com/users/919578/
https://stackoverflow.com/users/826938/
https://stackoverflow.com/users/4396802/
https://stackoverflow.com/users/481267/
https://stackoverflow.com/users/101954/
https://stackoverflow.com/users/4005742/

C++ Notes for Professionals 680

callyalater Chapters 35, 75 and 72
Candlemancer Chapter 37
caps Chapter 48
cb4 Chapter 77
celtschk Chapters 1, 77, 17, 25, 108, 90 and 124
Chachmu Chapter 13
Cheers and hth. Chapters 1, 75, 106, 9 and 94
chema989 Chapter 144
ChemiCalChems Chapters 12, 74 and 106
CHess Chapter 50
chrisb2244 Chapters 1 and 35
ChrisN Chapter 12
Christophe Chapter 26
Christopher Oezbek Chapters 25, 48, 34 and 73
Cid1025 Chapter 114
CinCout Chapters 50 and 49
CodeMouse92 Chapter 77
Cody Gray Chapters 1, 50 and 7
CoffeeandCode Chapter 36
Colin Basnett Chapters 77, 17, 35 and 50
ColleenV Chapter 12
ComicSansMS Chapters 13, 34, 50 and 80
cpplearner Chapter 34
crea7or Chapter 48
CroCo Chapter 7
cshu Chapter 104
Curious Chapters 1 and 48
cute_ptr Chapters 10 and 50
CygnusX1 Chapters 51 and 75
Daemon Chapters 1 and 11
Daksh Gupta Chapters 1, 34, 50, 27, 39, 49 and 115
Dan Hulme Chapter 35
Danh Chapter 107
Daniel Chapters 67 and 63
Daniel Jour Chapter 10
Daniel Käfer Chapter 69
Daniel Stradowski Chapter 50
Daniele Pallastrelli Chapters 34, 107 and 108
darkpsychic Chapters 1 and 27
davidsheldon Chapter 51
DawidPi Chapter 17
Dean Seo Chapter 19
DeepCoder Chapters 1, 77, 25 and 50
deepmax Chapters 17, 113, 84 and 117
define cindy const Chapter 99
defube Chapters 37, 80 and 83
demonplus Chapters 55 and 59
Denkkar Chapter 68
didiz Chapters 80, 105, 4, 112, 87, 81, 88, 140, 85 and 86
diegodfrf Chapters 50, 119 and 135
Dietmar Kühl Chapter 61
Dim_ov Chapter 1
dkg Chapter 50
Donald Duck Chapters 1 and 138
Dr t Chapters 1, 13, 50 and 72

https://stackoverflow.com/users/4975646/
https://stackoverflow.com/users/3307308/
https://stackoverflow.com/users/2025214/
https://stackoverflow.com/users/1318479/
https://stackoverflow.com/users/1032073/
https://stackoverflow.com/users/1429351/
https://stackoverflow.com/users/464581/
https://stackoverflow.com/users/6410484/
https://stackoverflow.com/users/3563094/
https://stackoverflow.com/users/2351345/
https://stackoverflow.com/users/3098505/
https://stackoverflow.com/users/3853/
https://stackoverflow.com/users/3723423/
https://stackoverflow.com/users/278842/
https://stackoverflow.com/users/3120862/
https://stackoverflow.com/users/2912665/
https://stackoverflow.com/users/472647/
https://stackoverflow.com/users/366904/
https://stackoverflow.com/users/2297448/
https://stackoverflow.com/users/2209008/
https://stackoverflow.com/users/3735425/
https://stackoverflow.com/users/577603/
https://stackoverflow.com/users/4672588/
https://stackoverflow.com/users/1051830/
https://stackoverflow.com/users/1953533/
https://stackoverflow.com/users/2419922/
https://stackoverflow.com/users/5501675/
https://stackoverflow.com/users/7152606/
https://stackoverflow.com/users/635654/
https://stackoverflow.com/users/2045438/
https://stackoverflow.com/users/5662469/
https://stackoverflow.com/users/967945/
https://stackoverflow.com/users/4115625/
https://stackoverflow.com/users/4758972/
https://stackoverflow.com/users/1116364/
https://stackoverflow.com/users/1079174/
https://stackoverflow.com/users/5449709/
https://stackoverflow.com/users/993040/
https://stackoverflow.com/users/6649800/
https://stackoverflow.com/users/30773/
https://stackoverflow.com/users/4764736/
https://stackoverflow.com/users/921070/
https://stackoverflow.com/users/6639835/
https://stackoverflow.com/users/952747/
https://stackoverflow.com/users/6452255/
https://stackoverflow.com/users/368519/
https://stackoverflow.com/users/462639/
https://stackoverflow.com/users/1873507/
https://stackoverflow.com/users/7902545/
https://stackoverflow.com/users/8186051/
https://stackoverflow.com/users/1120273/
https://stackoverflow.com/users/2355119/
https://stackoverflow.com/users/1013504/
https://stackoverflow.com/users/4284627/
https://stackoverflow.com/users/7886227/

C++ Notes for Professionals 681

Dragma Chapter 35
drov Chapter 48
Duly Kinsky Chapters 50 and 63
Dutow Chapter 71
Edd Chapter 73
Edgar Rokyan Chapter 63
Edward Chapters 1, 48, 34, 12, 108, 66 and 146
ehudt Chapter 50
Ela782 Chapter 25
elimad Chapter 53
elvis.dukaj Chapter 141
Emil Rowland Chapter 48
emlai Chapter 34
Emmanuel Mathi Chapters 69 and 98
enzom83 Chapter 37
Error Chapters 49 and 117
Evgeniy Chapter 53
EvgeniyZh Chapter 10
Falias Chapter 50
Fantastic Mr Fox Chapters 1, 25, 48, 35, 50, 51, 75, 68 and 138
fbrereto Chapters 10 and 48
FedeWar Chapters 77 and 31
Florian Chapters 1 and 130
Fox Chapters 50 and 75
foxcub Chapters 34, 50 and 51
Gabriel Chapter 79
Gal Dreiman Chapter 10
Galik Chapters 25, 13, 50, 51, 113 and 81
Gaurav Kumar Garg Chapter 10
Gaurav Sehgal Chapter 76
ggrr Chapter 104
GIRISH kuniyal Chapter 104
granmirupa Chapter 50
Greg Chapter 77
Guillaume Pascal Chapters 64 and 63
Guillaume Racicot Chapter 106
Ha. Chapter 65
hello Chapter 82
Henkersmann Chapter 29
Hindrik Stegenga Chapter 31
holmicz Chapter 12
Holt Chapters 77, 17, 48 and 50
honk Chapters 1, 77, 10, 25, 48, 13, 34, 73, 12, 51, 82 and 79
Humam Helfawi Chapter 1
Hurkyl Chapters 10, 13 and 50
hyoslee Chapter 85
Ian Ringrose Chapter 75
Igor Oks Chapter 108
Ilyas Mimouni Chapter 1
immerhart Chapters 50 and 139
In silico Chapter 101
Ivan Kush Chapter 64
Jérémy Roy Chapter 45
Jack Chapter 48
Jahid Chapters 48, 72, 71 and 138

https://stackoverflow.com/users/6624845/
https://stackoverflow.com/users/4289519/
https://stackoverflow.com/users/1705189/
https://stackoverflow.com/users/73657/
https://stackoverflow.com/users/4064372/
https://stackoverflow.com/users/5507349/
https://stackoverflow.com/users/3191481/
https://stackoverflow.com/users/1385661/
https://stackoverflow.com/users/1345959/
https://stackoverflow.com/users/2745573/
https://stackoverflow.com/users/1266688/
https://stackoverflow.com/users/5410879/
https://stackoverflow.com/users/3425536/
https://stackoverflow.com/users/4250197/
https://stackoverflow.com/users/364056/
https://stackoverflow.com/users/8150685/
https://stackoverflow.com/users/3209505/
https://stackoverflow.com/users/1894478/
https://stackoverflow.com/users/2263978/
https://stackoverflow.com/users/1294207/
https://stackoverflow.com/users/153535/
https://stackoverflow.com/users/5501669/
https://stackoverflow.com/users/4763489/
https://stackoverflow.com/users/134793/
https://stackoverflow.com/users/44738/
https://stackoverflow.com/users/293195/
https://stackoverflow.com/users/3580365/
https://stackoverflow.com/users/3807729/
https://stackoverflow.com/users/3141151/
https://stackoverflow.com/users/3475381/
https://stackoverflow.com/users/4822120/
https://stackoverflow.com/users/6770027/
https://stackoverflow.com/users/4532326/
https://stackoverflow.com/users/384507/
https://stackoverflow.com/users/4186872/
https://stackoverflow.com/users/2104697/
https://stackoverflow.com/users/289684/
https://stackoverflow.com/users/3067055/
https://stackoverflow.com/users/2768788/
https://stackoverflow.com/users/5156017/
https://stackoverflow.com/users/1979521/
https://stackoverflow.com/users/2666289/
https://stackoverflow.com/users/2675154/
https://stackoverflow.com/users/4523099/
https://stackoverflow.com/users/1084944/
https://stackoverflow.com/users/7898708/
https://stackoverflow.com/users/57159/
https://stackoverflow.com/users/44673/
https://stackoverflow.com/users/2822643/
https://stackoverflow.com/users/1347198/
https://stackoverflow.com/users/308661/
https://stackoverflow.com/users/1433373/
https://stackoverflow.com/users/4789256/
https://stackoverflow.com/users/121747/
https://stackoverflow.com/users/3744681/

C++ Notes for Professionals 682

James Adkison Chapters 37 and 80
Jared Payne Chapters 34 and 52

Jarod42 Chapters 17, 45, 35, 103, 83, 72, 26, 18, 108, 113, 114, 68, 90, 7, 78, 112, 138, 120
and 121

Jason Watkins Chapters 50, 80, 138 and 130
Jatin Chapters 36 and 18
Jean Chapter 73
Jerry Coffin Chapter 35
Jim Clark Chapter 1
Johan Lundberg Chapters 1, 25, 34, 50, 82, 108, 113 and 138
Johannes Schaub Chapters 25, 45, 36, 73, 12, 74, 101, 105, 38 and 122
John Burger Chapter 32
John DiFini Chapter 44
John London Chapter 24
Jonathan Lee Chapters 103 and 78
Jonathan Mee Chapters 48 and 70
jotik Chapters 1, 48, 35, 34, 72, 71, 92 and 138
JPNotADragon Chapter 10
jpo38 Chapters 48 and 50
Julien Chapter 45
Justin Chapters 1, 77, 17, 34, 70, 18 and 130
Justin Time Chapters 1, 35, 36, 12, 75, 82, 71, 26, 39, 106, 138, 24, 42, 33, 128, 21 and 95

JVApen Chapters 1, 45, 13, 34, 36, 50, 73, 83, 28, 106, 107, 64, 115, 7, 91, 89, 118, 4, 143,
138, 123, 126, 146, 16, 130, 60 and 142

K48 Chapter 1
kd1508 Chapter 104
Ken Y Chapters 48 and 75
Kerrek SB Chapters 35, 34 and 22
Keshav Sharma Chapter 1
kiner_shah Chapters 1 and 58
krOoze Chapters 1, 50, 75 and 41
Kunal Tyagi Chapter 38
L.V.Rao Chapter 12
Leandros Chapter 1
legends2k Chapter 40
Let_Me_Be Chapter 25
Loki Astari Chapters 77, 25, 13, 50, 73, 82, 83 and 6
lordjohncena Chapter 50
lorro Chapters 118 and 143
Loufylouf Chapter 73
Luc Danton Chapter 103
maccard Chapter 67
madduci Chapters 115 and 138
Malcolm Chapters 1 and 49
Malick Chapters 1 and 138
manetsus Chapters 1, 25, 48, 50, 51, 67 and 138
manlio Chapters 1, 48, 13, 50, 12, 51, 71, 65, 26, 104, 6, 111, 64, 7 and 138
Marc.2377 Chapter 48
marcinj Chapter 66
Marco A. Chapters 75, 64, 118, 129, 59 and 100
Mark Gardner Chapter 1
marquesm91 Chapter 69
MasterHD Chapter 1
MathSquared Chapter 123
Matt Chapters 1 and 138

https://stackoverflow.com/users/4505712/
https://stackoverflow.com/users/709010/
https://stackoverflow.com/users/2684539/
https://stackoverflow.com/users/1118660/
https://stackoverflow.com/users/4762201/
https://stackoverflow.com/users/719263/
https://stackoverflow.com/users/179910/
https://stackoverflow.com/users/5331194/
https://stackoverflow.com/users/1149664/
https://stackoverflow.com/users/34509/
https://stackoverflow.com/users/6445597/
https://stackoverflow.com/users/6230654/
https://stackoverflow.com/users/6521181/
https://stackoverflow.com/users/6141807/
https://stackoverflow.com/users/2642059/
https://stackoverflow.com/users/3919155/
https://stackoverflow.com/users/754534/
https://stackoverflow.com/users/3336423/
https://stackoverflow.com/users/143504/
https://stackoverflow.com/users/1896169/
https://stackoverflow.com/users/5386374/
https://stackoverflow.com/users/2466431/
https://stackoverflow.com/users/6269864/
https://stackoverflow.com/users/2576475/
https://stackoverflow.com/users/1270789/
https://stackoverflow.com/users/596781/
https://stackoverflow.com/users/6130880/
https://stackoverflow.com/users/4688321/
https://stackoverflow.com/users/3007154/
https://stackoverflow.com/users/2292816/
https://stackoverflow.com/users/6911592/
https://stackoverflow.com/users/1070117/
https://stackoverflow.com/users/183120/
https://stackoverflow.com/users/211659/
https://stackoverflow.com/users/14065/
https://stackoverflow.com/users/5248907/
https://stackoverflow.com/users/6292621/
https://stackoverflow.com/users/2531068/
https://stackoverflow.com/users/726300/
https://stackoverflow.com/users/723918/
https://stackoverflow.com/users/2369389/
https://stackoverflow.com/users/3175443/
https://stackoverflow.com/users/3205529/
https://stackoverflow.com/users/3555000/
https://stackoverflow.com/users/3235496/
https://stackoverflow.com/users/3258851/
https://stackoverflow.com/users/471160/
https://stackoverflow.com/users/1938163/
https://stackoverflow.com/users/7105391/
https://stackoverflow.com/users/4015174/
https://stackoverflow.com/users/2163727/
https://stackoverflow.com/users/1979005/
https://stackoverflow.com/users/859774/

C++ Notes for Professionals 683

Matthew Brien Chapter 9
Matthieu M. Chapter 17
Maxito Chapter 77
Meena Alfons Chapter 125
merlinND Chapter 65
Meysam Chapters 48, 34 and 51
Michael Gaskill Chapter 138
Mike H Chapter 10
MikeMB Chapter 67
Mikitori Chapter 60
mindriot Chapters 13 and 143
Misgevolution Chapter 142
MKAROL Chapter 67
mkluwe Chapter 16
MotKohn Chapter 50
Motti Chapters 50, 39 and 104
mpromonet Chapters 48 and 14
MSalters Chapters 77 and 64
MSD Chapter 138
mtb Chapter 119
mtk Chapter 50
Muhammad Aladdin Chapter 1
muXXmit2X Chapter 1
n.m. Chapters 75 and 138
Naor Hadar Chapter 66
Nathan Osman Chapters 1, 138 and 130
Naveen Mittal Chapter 51
Neil A. Chapter 1
Nemanja Boric Chapters 1, 72 and 138
Niall Chapters 25, 48, 50 and 83
Nicholas Chapter 12

Nicol Bolas Chapters 17, 25, 45, 13, 50, 73, 12, 74, 75, 82, 67, 28, 53, 109, 68, 31, 100, 79 and
88

Nikola Vasilev Chapters 49, 91, 112, 55, 58, 56, 2 and 54
Nitinkumar Ambekar Chapter 31
nnrales Chapter 115
NonNumeric Chapter 116
Null Chapters 48, 45, 12, 51, 82 and 72
nwp Chapter 80
Omnifarious Chapter 21
Oz. Chapter 10
Pankaj Kumar Boora Chapter 84
patmanpato Chapters 13 and 50
Patryk Obara Chapter 63
paul Chapters 50 and 145
Paul Beckingham Chapter 50
Pavel Strakhov Chapter 1
PcAF Chapters 35 and 34
Ped7g Chapters 50 and 12
Perette Barella Chapter 8
Peter Chapters 25, 51, 75, 71, 104 and 138
phandinhlan Chapter 75
Pietro Saccardi Chapter 31
plasmacel Chapter 49
pmelanson Chapter 12

https://stackoverflow.com/users/6630530/
https://stackoverflow.com/users/147192/
https://stackoverflow.com/users/2313339/
https://stackoverflow.com/users/3997133/
https://stackoverflow.com/users/3792942/
https://stackoverflow.com/users/69537/
https://stackoverflow.com/users/2577852/
https://stackoverflow.com/users/966097/
https://stackoverflow.com/users/2881849/
https://stackoverflow.com/users/6065774/
https://stackoverflow.com/users/3233921/
https://stackoverflow.com/users/1083220/
https://stackoverflow.com/users/2079109/
https://stackoverflow.com/users/199201/
https://stackoverflow.com/users/5976576/
https://stackoverflow.com/users/3848/
https://stackoverflow.com/users/3102264/
https://stackoverflow.com/users/15416/
https://stackoverflow.com/users/2082004/
https://stackoverflow.com/users/5520058/
https://stackoverflow.com/users/1135954/
https://stackoverflow.com/users/235860/
https://stackoverflow.com/users/4711812/
https://stackoverflow.com/users/775806/
https://stackoverflow.com/users/2656778/
https://stackoverflow.com/users/193619/
https://stackoverflow.com/users/5453555/
https://stackoverflow.com/users/6719703/
https://stackoverflow.com/users/133707/
https://stackoverflow.com/users/3747990/
https://stackoverflow.com/users/5120389/
https://stackoverflow.com/users/734069/
https://stackoverflow.com/users/6181967/
https://stackoverflow.com/users/2706918/
https://stackoverflow.com/users/4749396/
https://stackoverflow.com/users/1587418/
https://stackoverflow.com/users/3964927/
https://stackoverflow.com/users/3484570/
https://stackoverflow.com/users/167958/
https://stackoverflow.com/users/321937/
https://stackoverflow.com/users/6696267/
https://stackoverflow.com/users/1846282/
https://stackoverflow.com/users/2033752/
https://stackoverflow.com/users/4128833/
https://stackoverflow.com/users/14356/
https://stackoverflow.com/users/344347/
https://stackoverflow.com/users/4932834/
https://stackoverflow.com/users/4271923/
https://stackoverflow.com/users/5265558/
https://stackoverflow.com/users/4706785/
https://stackoverflow.com/users/3880898/
https://stackoverflow.com/users/1749822/
https://stackoverflow.com/users/2430597/
https://stackoverflow.com/users/1333978/

C++ Notes for Professionals 684

Podgorskiy Chapter 18
Praetorian Chapters 50 and 73
Pyves Chapter 12
Qchmqs Chapter 16
Quirk Chapters 1 and 138
R. Martinho Fernandes Chapter 50
Rakete1111 Chapters 77, 25, 48, 45, 13, 35, 34, 36, 50, 37, 73, 12, 80, 104 and 110
ralismark Chapters 104 and 144
RamenChef Chapters 2, 16, 21, 22, 23 and 69
Ravi Chandra Chapters 67 and 55
Reuben Thomas Chapter 41
Richard Dally Chapters 48, 34, 50, 51, 75 and 138
rick112358 Chapter 51
rockoder Chapter 27
rodrigo Chapter 34
Roland Chapters 45, 34, 101, 92, 114 and 84
RomCoo Chapter 13
Ronen Ness Chapter 72
rtmh Chapter 17
Rushikesh Deshpande Chapters 1 and 50
Ryan Haining Chapters 73 and 79
R_Kapp Chapter 124
Saint Chapter 50
SajithP Chapter 67
Samer Tufail Chapter 50
sami1592 Chapter 34
Sean Chapters 36 and 75
Sergey Chapters 77, 10, 35, 39, 20, 138 and 14
Serikov Chapters 48, 13, 50 and 73
Shoe Chapters 1 and 50
sigalor Chapter 114
silvergasp Chapters 35, 50, 75 and 93
SingerOfTheFall Chapter 123
SirGuy Chapter 1
Skipper Chapters 48 and 50
Skywrath Chapter 35
Smeeheey Chapter 77
Snowhawk Chapter 73
sp2danny Chapter 103
stackptr Chapter 68
start2learn Chapters 37 and 133
Stephen Chapters 25, 50 and 89
sth Chapters 17 and 50
Stradigos Chapter 113
strangeqargo Chapter 50
SU3 Chapter 103
Sumurai8 Chapters 34, 83 and 65
T.C. Chapters 50 and 39
tambre Chapter 7
Tannin Chapters 83 and 104
Tarod Chapter 53
TartanLlama Chapters 109 and 93
Tejendra Chapter 16
tenpercent Chapters 25, 45, 75, 18 and 19
Tharindu Kumara Chapter 138

https://stackoverflow.com/users/2081094/
https://stackoverflow.com/users/241631/
https://stackoverflow.com/users/3527464/
https://stackoverflow.com/users/868770/
https://stackoverflow.com/users/2844164/
https://stackoverflow.com/users/46642/
https://stackoverflow.com/users/3980929/
https://stackoverflow.com/users/6936976/
https://stackoverflow.com/users/6392939/
https://stackoverflow.com/users/820800/
https://stackoverflow.com/users/6041265/
https://stackoverflow.com/users/5037799/
https://stackoverflow.com/users/3198508/
https://stackoverflow.com/users/62849/
https://stackoverflow.com/users/865874/
https://stackoverflow.com/users/3951733/
https://stackoverflow.com/users/5867869/
https://stackoverflow.com/users/1134649/
https://stackoverflow.com/users/2465194/
https://stackoverflow.com/users/2635286/
https://stackoverflow.com/users/1013719/
https://stackoverflow.com/users/5195699/
https://stackoverflow.com/users/6514807/
https://stackoverflow.com/users/3073378/
https://stackoverflow.com/users/5986881/
https://stackoverflow.com/users/5089102/
https://stackoverflow.com/users/26095/
https://stackoverflow.com/users/1690777/
https://stackoverflow.com/users/4899740/
https://stackoverflow.com/users/493122/
https://stackoverflow.com/users/3554605/
https://stackoverflow.com/users/4955829/
https://stackoverflow.com/users/1490355/
https://stackoverflow.com/users/1277769/
https://stackoverflow.com/users/4241435/
https://stackoverflow.com/users/4855159/
https://stackoverflow.com/users/6255513/
https://stackoverflow.com/users/3762339/
https://stackoverflow.com/users/3202093/
https://stackoverflow.com/users/2469027/
https://stackoverflow.com/users/4501684/
https://stackoverflow.com/users/5468596/
https://stackoverflow.com/users/56338/
https://stackoverflow.com/users/280904/
https://stackoverflow.com/users/5006740/
https://stackoverflow.com/users/2640636/
https://stackoverflow.com/users/2209007/
https://stackoverflow.com/users/2756719/
https://stackoverflow.com/users/2176813/
https://stackoverflow.com/users/1918759/
https://stackoverflow.com/users/4719550/
https://stackoverflow.com/users/496161/
https://stackoverflow.com/users/730537/
https://stackoverflow.com/users/2575377/
https://stackoverflow.com/users/3312620/

C++ Notes for Professionals 685

The Philomath Chapter 75
theo2003 Chapter 50
ThyReaper Chapters 18, 111, 92 and 115
Tim Straubinger Chapter 36
Toby Chapter 138
Tom Chapter 50
towi Chapter 50
Trevor Hickey Chapters 67, 104 and 7
TriskalJM Chapters 1, 50, 82 and 41
Trygve Laugstøl Chapter 138
tulak.hord Chapter 62
turoni Chapter 4
txtechhelp Chapters 6 and 111
UncleZeiv Chapter 1
user1336087 Chapters 48, 50 and 51
user2176127 Chapters 48 and 50
user3384414 Chapter 25
user3684240 Chapter 34
vdaras Chapter 51
Venki Chapter 17
VermillionAzure Chapters 1, 46, 130 and 141
Vijayabhaskarreddy CH Chapter 43
Ville Chapters 1 and 25
Vladimir Gamalyan Chapter 50
VladimirS Chapter 12
VolkA Chapter 51
W.F. Chapters 77 and 17
w1th0utnam3 Chapter 103
Walter Chapter 1
wasthishelpful Chapter 137
Wen Qin Chapters 1 and 9
Wolf Chapters 77, 48, 50 and 9
Wyzard Chapter 51
Xirema Chapter 5

Yakk Chapters 10, 25, 45, 34, 50, 37, 73, 12, 80, 103, 107, 108, 52, 90, 121, 57, 58 and
43

ysdx Chapter 17
Yuushi Chapter 80
ΦXocę 웃 Пepeúpa ツ Chapter 9
Алексей Неудачин Chapters 13 and 6
Владимир Стрелец Chapters 11 and 15
パスカル Chapters 1, 75 and 136

https://stackoverflow.com/users/6339395/
https://stackoverflow.com/users/6244076/
https://stackoverflow.com/users/4586007/
https://stackoverflow.com/users/5023438/
https://stackoverflow.com/users/1292918/
https://stackoverflow.com/users/888916/
https://stackoverflow.com/users/472245/
https://stackoverflow.com/users/908939/
https://stackoverflow.com/users/4433546/
https://stackoverflow.com/users/245614/
https://stackoverflow.com/users/6114605/
https://stackoverflow.com/users/3681671/
https://stackoverflow.com/users/1152524/
https://stackoverflow.com/users/60531/
https://stackoverflow.com/users/1336087/
https://stackoverflow.com/users/2176127/
https://stackoverflow.com/users/3384414/
https://stackoverflow.com/users/3684240/
https://stackoverflow.com/users/2225297/
https://stackoverflow.com/users/751865/
https://stackoverflow.com/users/3819850/
https://stackoverflow.com/users/6173047/
https://stackoverflow.com/users/5489178/
https://stackoverflow.com/users/5011111/
https://stackoverflow.com/users/3545806/
https://stackoverflow.com/users/25472/
https://stackoverflow.com/users/4324224/
https://stackoverflow.com/users/929037/
https://stackoverflow.com/users/1023390/
https://stackoverflow.com/users/6612932/
https://stackoverflow.com/users/7421086/
https://stackoverflow.com/users/2932052/
https://stackoverflow.com/users/226975/
https://stackoverflow.com/users/5241642/
https://stackoverflow.com/users/1774667/
https://stackoverflow.com/users/637866/
https://stackoverflow.com/users/1085573/
https://stackoverflow.com/users/982161/
https://stackoverflow.com/users/7172363/
https://stackoverflow.com/users/8221170/
https://stackoverflow.com/users/7632486/

You may also like

http://goalkicker.com/DotNETFrameworkBook
http://goalkicker.com/AlgorithmsBook
http://goalkicker.com/BashBook
http://goalkicker.com/CBook
http://goalkicker.com/CSharpBook
http://goalkicker.com/JavaBook
http://goalkicker.com/ObjectiveCBook
http://goalkicker.com/PHPBook
http://goalkicker.com/VisualBasic_NETBook

	Content list
	About
	Chapter 1: Getting started with C++
	Section 1.1: Hello World
	Section 1.2: Comments
	Section 1.3: The standard C++ compilation process
	Section 1.4: Function
	Section 1.5: Visibility of function prototypes and declarations
	Section 1.6: Preprocessor

	Chapter 2: Literals
	Section 2.1: this
	Section 2.2: Integer literal
	Section 2.3: true
	Section 2.4: false
	Section 2.5: nullptr

	Chapter 3: Inline variables
	Section 3.1: Deﬁning a static data member in the class deﬁnition

	Chapter 4: operator precedence
	Section 4.1: Logical && and || operators: short-circuit
	Section 4.2: Unary Operators
	Section 4.3: Arithmetic operators
	Section 4.4: Logical AND and OR operators

	Chapter 5: Floating Point Arithmetic
	Section 5.1: Floating Point Numbers are Weird

	Chapter 6: Bit Operators
	Section 6.1: | - bitwise OR
	Section 6.2: ^ - bitwise XOR (exclusive OR)
	Section 6.3: & - bitwise AND
	Section 6.4: << - left shift
	Section 6.5: >> - right shift

	Chapter 7: Bit Manipulation
	Section 7.1: Remove rightmost set bit
	Section 7.2: Set all bits
	Section 7.3: Toggling a bit
	Section 7.4: Checking a bit
	Section 7.5: Counting bits set
	Section 7.6: Check if an integer is a power of 2
	Section 7.7: Setting a bit
	Section 7.8: Clearing a bit
	Section 7.9: Changing the nth bit to x
	Section 7.10: Bit Manipulation Application: Small to Capital Letter

	Chapter 8: Bit ﬁelds
	Section 8.1: Declaration and Usage

	Chapter 9: Arrays
	Section 9.1: Array initialization
	Section 9.2: A ﬁxed size raw array matrix (that is, a 2D raw array)
	Section 9.3: Dynamically sized raw array
	Section 9.4: Array size: type safe at compile time
	Section 9.5: Expanding dynamic size array by using std::vector
	Section 9.6: A dynamic size matrix using std::vector for storage

	Chapter 10: Iterators
	Section 10.1: Overview
	Section 10.2: Vector Iterator
	Section 10.3: Map Iterator
	Section 10.4: Reverse Iterators
	Section 10.5: Stream Iterators
	Section 10.6: C Iterators (Pointers)
	Section 10.7: Write your own generator-backed iterator

	Chapter 11: Basic input/output in c++
	Section 11.1: user input and standard output

	Chapter 12: Loops
	Section 12.1: Range-Based For
	Section 12.2: For loop
	Section 12.3: While loop
	Section 12.4: Do-while loop
	Section 12.5: Loop Control statements : Break and Continue
	Section 12.6: Declaration of variables in conditions
	Section 12.7: Range-for over a sub-range

	Chapter 13: File I/O
	Section 13.1: Writing to a ﬁle
	Section 13.2: Opening a ﬁle
	Section 13.3: Reading from a ﬁle
	Section 13.4: Opening modes
	Section 13.5: Reading an ASCII ﬁle into a std::string
	Section 13.6: Writing ﬁles with non-standard locale settings
	Section 13.7: Checking end of ﬁle inside a loop condition, bad practice?
	Section 13.8: Flushing a stream
	Section 13.9: Reading a ﬁle into a container
	Section 13.10: Copying a ﬁle
	Section 13.11: Closing a ﬁle
	Section 13.12: Reading a `struct` from a formatted text ﬁle

	Chapter 14: C++ Streams
	Section 14.1: String streams
	Section 14.2: Printing collections with iostream

	Chapter 15: Stream manipulators
	Section 15.1: Stream manipulators
	Section 15.2: Output stream manipulators
	Section 15.3: Input stream manipulators

	Chapter 16: Flow Control
	Section 16.1: case
	Section 16.2: switch
	Section 16.3: catch
	Section 16.4: throw
	Section 16.5: default
	Section 16.6: try
	Section 16.7: if
	Section 16.8: else
	Section 16.9: Conditional Structures: if, if..else
	Section 16.10: goto
	Section 16.11: Jump statements : break, continue, goto, exit
	Section 16.12: return

	Chapter 17: Metaprogramming
	Section 17.1: Calculating Factorials
	Section 17.2: Iterating over a parameter pack
	Section 17.3: Iterating with std::integer_sequence
	Section 17.4: Tag Dispatching
	Section 17.5: Detect Whether Expression is Valid
	Section 17.6: If-then-else
	Section 17.7: Manual distinction of types when given any type T
	Section 17.8: Calculating power with C++11 (and higher)
	Section 17.9: Generic Min/Max with variable argument count

	Chapter 18: const keyword
	Section 18.1: Avoiding duplication of code in const and non-const getter methods
	Section 18.2: Const member functions
	Section 18.3: Const local variables
	Section 18.4: Const pointers

	Chapter 19: mutable keyword
	Section 19.1: mutable lambdas
	Section 19.2: non-static class member modiﬁer

	Chapter 20: Friend keyword
	Section 20.1: Friend function
	Section 20.2: Friend method
	Section 20.3: Friend class

	Chapter 21: Type Keywords
	Section 21.1: class
	Section 21.2: enum
	Section 21.3: struct
	Section 21.4: union

	Chapter 22: Basic Type Keywords
	Section 22.1: char
	Section 22.2: char16_t
	Section 22.3: char32_t
	Section 22.4: int
	Section 22.5: void
	Section 22.6: wchar_t
	Section 22.7: ﬂoat
	Section 22.8: double
	Section 22.9: long
	Section 22.10: short
	Section 22.11: bool

	Chapter 23: Variable Declaration Keywords
	Section 23.1: decltype
	Section 23.2: const
	Section 23.3: volatile
	Section 23.4: signed
	Section 23.5: unsigned

	Chapter 24: Keywords
	Section 24.1: asm
	Section 24.2: Dierent keywords
	Section 24.3: typename
	Section 24.4: explicit
	Section 24.5: sizeof
	Section 24.6: noexcept

	Chapter 25: Returning several values from a function
	Section 25.1: Using std::tuple
	Section 25.2: Structured Bindings
	Section 25.3: Using struct
	Section 25.4: Using Output Parameters
	Section 25.5: Using a Function Object Consumer
	Section 25.6: Using std::pair
	Section 25.7: Using std::array
	Section 25.8: Using Output Iterator
	Section 25.9: Using std::vector

	Chapter 26: Polymorphism
	Section 26.1: Deﬁne polymorphic classes
	Section 26.2: Safe downcasting
	Section 26.3: Polymorphism & Destructors

	Chapter 27: References
	Section 27.1: Deﬁning a reference

	Chapter 28: Value and Reference Semantics
	Section 28.1: Deﬁnitions
	Section 28.2: Deep copying and move support

	Chapter 29: C++ function "call by value" vs. "call by reference"
	Section 29.1: Call by value

	Chapter 30: Copying vs Assignment
	Section 30.1: Assignment Operator
	Section 30.2: Copy Constructor
	Section 30.3: Copy Constructor Vs Assignment Constructor

	Chapter 31: Pointers
	Section 31.1: Pointer Operations
	Section 31.2: Pointer basics
	Section 31.3: Pointer Arithmetic

	Chapter 32: Pointers to members
	Section 32.1: Pointers to static member functions
	Section 32.2: Pointers to member functions
	Section 32.3: Pointers to member variables
	Section 32.4: Pointers to static member variables

	Chapter 33: The This Pointer
	Section 33.1: this Pointer
	Section 33.2: Using the this Pointer to Access Member Data
	Section 33.3: Using the this Pointer to Dierentiate Between Member Data and Parameters
	Section 33.4: this Pointer CV-Qualiﬁers
	Section 33.5: this Pointer Ref-Qualiﬁers

	Chapter 34: Smart Pointers
	Section 34.1: Unique ownership (std::unique_ptr)
	Section 34.2: Sharing ownership (std::shared_ptr)
	Section 34.3: Sharing with temporary ownership (std::weak_ptr)
	Section 34.4: Using custom deleters to create a wrapper to a C interface
	Section 34.5: Unique ownership without move semantics (auto_ptr)
	Section 34.6: Casting std::shared_ptr pointers
	Section 34.7: Writing a smart pointer: value_ptr
	Section 34.8: Getting a shared_ptr referring to this

	Chapter 35: Classes/Structures
	Section 35.1: Class basics
	Section 35.2: Final classes and structs
	Section 35.3: Access speciﬁers
	Section 35.4: Inheritance
	Section 35.5: Friendship
	Section 35.6: Virtual Inheritance
	Section 35.7: Private inheritance: restricting base class interface
	Section 35.8: Accessing class members
	Section 35.9: Member Types and Aliases
	Section 35.10: Nested Classes/Structures
	Section 35.11: Unnamed struct/class
	Section 35.12: Static class members
	Section 35.13: Multiple Inheritance
	Section 35.14: Non-static member functions

	Chapter 36: Function Overloading
	Section 36.1: What is Function Overloading?
	Section 36.2: Return Type in Function Overloading
	Section 36.3: Member Function cv-qualiﬁer Overloading

	Chapter 37: Operator Overloading
	Section 37.1: Arithmetic operators
	Section 37.2: Array subscript operator
	Section 37.3: Conversion operators
	Section 37.4: Complex Numbers Revisited
	Section 37.5: Named operators
	Section 37.6: Unary operators
	Section 37.7: Comparison operators
	Section 37.8: Assignment operator
	Section 37.9: Function call operator
	Section 37.10: Bitwise NOT operator
	Section 37.11: Bit shift operators for I/O

	Chapter 38: Function Template Overloading
	Section 38.1: What is a valid function template overloading?

	Chapter 39: Virtual Member Functions
	Section 39.1: Final virtual functions
	Section 39.2: Using override with virtual in C++11 and later
	Section 39.3: Virtual vs non-virtual member functions
	Section 39.4: Behaviour of virtual functions in constructors and destructors
	Section 39.5: Pure virtual functions

	Chapter 40: Inline functions
	Section 40.1: Non-member inline function deﬁnition
	Section 40.2: Member inline functions
	Section 40.3: What is function inlining?
	Section 40.4: Non-member inline function declaration

	Chapter 41: Special Member Functions
	Section 41.1: Default Constructor
	Section 41.2: Destructor
	Section 41.3: Copy and swap
	Section 41.4: Implicit Move and Copy

	Chapter 42: Non-Static Member Functions
	Section 42.1: Non-static Member Functions
	Section 42.2: Encapsulation
	Section 42.3: Name Hiding & Importing
	Section 42.4: Virtual Member Functions
	Section 42.5: Const Correctness

	Chapter 43: Constant class member functions
	Section 43.1: constant member function

	Chapter 44: C++ Containers
	Section 44.1: C++ Containers Flowchart

	Chapter 45: Namespaces
	Section 45.1: What are namespaces?
	Section 45.2: Argument Dependent Lookup
	Section 45.3: Extending namespaces
	Section 45.4: Using directive
	Section 45.5: Making namespaces
	Section 45.6: Unnamed/anonymous namespaces
	Section 45.7: Compact nested namespaces
	Section 45.8: Namespace alias
	Section 45.9: Inline namespace
	Section 45.10: Aliasing a long namespace
	Section 45.11: Alias Declaration scope

	Chapter 46: Header Files
	Section 46.1: Basic Example
	Section 46.2: Templates in Header Files

	Chapter 47: Using declaration
	Section 47.1: Importing names individually from a namespace
	Section 47.2: Redeclaring members from a base class to avoid name hiding
	Section 47.3: Inheriting constructors

	Chapter 48: std::string
	Section 48.1: Tokenize
	Section 48.2: Conversion to (const) char*
	Section 48.3: Using the std::string_view class
	Section 48.4: Conversion to std::wstring
	Section 48.5: Lexicographical comparison
	Section 48.6: Trimming characters at start/end
	Section 48.7: String replacement
	Section 48.8: Converting to std::string
	Section 48.9: Splitting
	Section 48.10: Accessing a character
	Section 48.11: Checking if a string is a preﬁx of another
	Section 48.12: Looping through each character
	Section 48.13: Conversion to integers/ﬂoating point types
	Section 48.14: Concatenation
	Section 48.15: Converting between character encodings
	Section 48.16: Finding character(s) in a string

	Chapter 49: std::array
	Section 49.1: Initializing an std::array
	Section 49.2: Element access
	Section 49.3: Iterating through the Array
	Section 49.4: Checking size of the Array
	Section 49.5: Changing all array elements at once

	Chapter 50: std::vector
	Section 50.1: Accessing Elements
	Section 50.2: Initializing a std::vector
	Section 50.3: Deleting Elements
	Section 50.4: Iterating Over std::vector
	Section 50.5: vector<bool>: The Exception To So Many, So Many Rules
	Section 50.6: Inserting Elements
	Section 50.7: Using std::vector as a C array
	Section 50.8: Finding an Element in std::vector
	Section 50.9: Concatenating Vectors
	Section 50.10: Matrices Using Vectors
	Section 50.11: Using a Sorted Vector for Fast Element Lookup
	Section 50.12: Reducing the Capacity of a Vector
	Section 50.13: Vector size and capacity
	Section 50.14: Iterator/Pointer Invalidation
	Section 50.15: Find max and min Element and Respective Index in a Vector
	Section 50.16: Converting an array to std::vector
	Section 50.17: Functions Returning Large Vectors

	Chapter 51: std::map
	Section 51.1: Accessing elements
	Section 51.2: Inserting elements
	Section 51.3: Searching in std::map or in std::multimap
	Section 51.4: Initializing a std::map or std::multimap
	Section 51.5: Checking number of elements
	Section 51.6: Types of Maps
	Section 51.7: Deleting elements
	Section 51.8: Iterating over std::map or std::multimap
	Section 51.9: Creating std::map with user-deﬁned types as key

	Chapter 52: std::optional
	Section 52.1: Using optionals to represent the absence of a value
	Section 52.2: optional as return value
	Section 52.3: value_or
	Section 52.4: Introduction
	Section 52.5: Using optionals to represent the failure of a function

	Chapter 53: std::function: To wrap any element that is callable
	Section 53.1: Simple usage
	Section 53.2: std::function used with std::bind
	Section 53.3: Binding std::function to a dierent callable types
	Section 53.4: Storing function arguments in std::tuple
	Section 53.5: std::function with lambda and std::bind
	Section 53.6: `function` overhead

	Chapter 54: std::forward_list
	Section 54.1: Example
	Section 54.2: Methods

	Chapter 55: std::pair
	Section 55.1: Compare operators
	Section 55.2: Creating a Pair and accessing the elements

	Chapter 56: std::atomics
	Section 56.1: atomic types

	Chapter 57: std::variant
	Section 57.1: Create pseudo-method pointers
	Section 57.2: Basic std::variant use
	Section 57.3: Constructing a `std::variant`

	Chapter 58: std::iomanip
	Section 58.1: std::setprecision
	Section 58.2: std::setﬁll
	Section 58.3: std::setiosﬂags
	Section 58.4: std::setw

	Chapter 59: std::any
	Section 59.1: Basic usage

	Chapter 60: std::set and std::multiset
	Section 60.1: Changing the default sort of a set
	Section 60.2: Deleting values from a set
	Section 60.3: Inserting values in a set
	Section 60.4: Inserting values in a multiset
	Section 60.5: Searching values in set and multiset

	Chapter 61: std::integer_sequence
	Section 61.1: Turn a std::tuple<T...> into function parameters
	Section 61.2: Create a parameter pack consisting of integers
	Section 61.3: Turn a sequence of indices into copies of an element

	Chapter 62: Using std::unordered_map
	Section 62.1: Declaration and Usage
	Section 62.2: Some Basic Functions

	Chapter 63: Standard Library Algorithms
	Section 63.1: std::next_permutation
	Section 63.2: std::for_each
	Section 63.3: std::accumulate
	Section 63.4: std::ﬁnd
	Section 63.5: std::min_element
	Section 63.6: std::ﬁnd_if
	Section 63.7: Using std::nth_element To Find The Median (Or Other Quantiles)
	Section 63.8: std::count
	Section 63.9: std::count_if

	Chapter 64: The ISO C++ Standard
	Section 64.1: Current Working Drafts
	Section 64.2: C++17
	Section 64.3: C++11
	Section 64.4: C++14
	Section 64.5: C++98
	Section 64.6: C++03
	Section 64.7: C++20

	Chapter 65: Random number generation
	Section 65.1: True random value generator
	Section 65.2: Generating a pseudo-random number
	Section 65.3: Using the generator for multiple distributions

	Chapter 66: Date and time using <chrono> header
	Section 66.1: Measuring time using <chrono>
	Section 66.2: Find number of days between two dates

	Chapter 67: Sorting
	Section 67.1: Sorting and sequence containers
	Section 67.2: sorting with std::map (ascending and descending)
	Section 67.3: Sorting sequence containers by overloaded less operator
	Section 67.4: Sorting sequence containers using compare function
	Section 67.5: Sorting sequence containers using lambda expressions (C++11)
	Section 67.6: Sorting built-in arrays
	Section 67.7: Sorting sequence containers with specifed ordering

	Chapter 68: Enumeration
	Section 68.1: Iteration over an enum
	Section 68.2: Scoped enums
	Section 68.3: Enum forward declaration in C++11
	Section 68.4: Basic Enumeration Declaration
	Section 68.5: Enumeration in switch statements

	Chapter 69: Iteration
	Section 69.1: break
	Section 69.2: continue
	Section 69.3: do
	Section 69.4: while
	Section 69.5: range-based for loop
	Section 69.6: for

	Chapter 70: Regular expressions
	Section 70.1: Basic regex_match and regex_search Examples
	Section 70.2: regex_iterator Example
	Section 70.3: Anchors
	Section 70.4: regex_replace Example
	Section 70.5: regex_token_iterator Example
	Section 70.6: Quantiﬁers
	Section 70.7: Splitting a string

	Chapter 71: Implementation-deﬁned behavior
	Section 71.1: Size of integral types
	Section 71.2: Char might be unsigned or signed
	Section 71.3: Ranges of numeric types
	Section 71.4: Value representation of ﬂoating point types
	Section 71.5: Overﬂow when converting from integer to signed integer
	Section 71.6: Underlying type (and hence size) of an enum
	Section 71.7: Numeric value of a pointer
	Section 71.8: Number of bits in a byte

	Chapter 72: Exceptions
	Section 72.1: Catching exceptions
	Section 72.2: Rethrow (propagate) exception
	Section 72.3: Best practice: throw by value, catch by const reference
	Section 72.4: Custom exception
	Section 72.5: std::uncaught_exceptions
	Section 72.6: Function Try Block for regular function
	Section 72.7: Nested exception
	Section 72.8: Function Try Blocks In constructor
	Section 72.9: Function Try Blocks In destructor

	Chapter 73: Lambdas
	Section 73.1: What is a lambda expression?
	Section 73.2: Specifying the return type
	Section 73.3: Capture by value
	Section 73.4: Recursive lambdas
	Section 73.5: Default capture
	Section 73.6: Class lambdas and capture of this
	Section 73.7: Capture by reference
	Section 73.8: Generic lambdas
	Section 73.9: Using lambdas for inline parameter pack unpacking
	Section 73.10: Generalized capture
	Section 73.11: Conversion to function pointer
	Section 73.12: Porting lambda functions to C++03 using functors

	Chapter 74: Value Categories
	Section 74.1: Value Category Meanings
	Section 74.2: rvalue
	Section 74.3: xvalue
	Section 74.4: prvalue
	Section 74.5: lvalue
	Section 74.6: glvalue

	Chapter 75: Preprocessor
	Section 75.1: Include Guards
	Section 75.2: Conditional logic and cross-platform handling
	Section 75.3: X-macros
	Section 75.4: Macros
	Section 75.5: Predeﬁned macros
	Section 75.6: Preprocessor Operators
	Section 75.7: #pragma once
	Section 75.8: Preprocessor error messages

	Chapter 76: Data Structures in C++
	Section 76.1: Linked List implementation in C++

	Chapter 77: Templates
	Section 77.1: Basic Class Template
	Section 77.2: Function Templates
	Section 77.3: Variadic template data structures
	Section 77.4: Argument forwarding
	Section 77.5: Partial template specialization
	Section 77.6: Template Specialization
	Section 77.7: Alias template
	Section 77.8: Explicit instantiation
	Section 77.9: Non-type template parameter
	Section 77.10: Declaring non-type template arguments with auto
	Section 77.11: Template template parameters
	Section 77.12: Default template parameter value

	Chapter 78: Expression templates
	Section 78.1: A basic example illustrating expression templates

	Chapter 79: Curiously Recurring Template Pattern (CRTP)
	Section 79.1: The Curiously Recurring Template Pattern (CRTP)
	Section 79.2: CRTP to avoid code duplication

	Chapter 80: Threading
	Section 80.1: Creating a std::thread
	Section 80.2: Passing a reference to a thread
	Section 80.3: Using std::async instead of std::thread
	Section 80.4: Basic Synchronization
	Section 80.5: Create a simple thread pool
	Section 80.6: Ensuring a thread is always joined
	Section 80.7: Operations on the current thread
	Section 80.8: Using Condition Variables
	Section 80.9: Thread operations
	Section 80.10: Thread-local storage
	Section 80.11: Reassigning thread objects

	Chapter 81: Thread synchronization structures
	Section 81.1: std::condition_variable_any, std::cv_status
	Section 81.2: std::shared_lock
	Section 81.3: std::call_once, std::once_ﬂag
	Section 81.4: Object locking for ecient access

	Chapter 82: The Rule of Three, Five, And Zero
	Section 82.1: Rule of Zero
	Section 82.2: Rule of Five
	Section 82.3: Rule of Three
	Section 82.4: Self-assignment Protection

	Chapter 83: RAII: Resource Acquisition Is Initialization
	Section 83.1: Locking
	Section 83.2: ScopeSuccess (c++17)
	Section 83.3: ScopeFail (c++17)
	Section 83.4: Finally/ScopeExit

	Chapter 84: RTTI: Run-Time Type Information
	Section 84.1: dynamic_cast
	Section 84.2: The typeid keyword
	Section 84.3: Name of a type
	Section 84.4: When to use which cast in c++

	Chapter 85: Mutexes
	Section 85.1: Mutex Types
	Section 85.2: std::lock
	Section 85.3: std::unique_lock, std::shared_lock, std::lock_guard
	Section 85.4: Strategies for lock classes: std::try_to_lock, std::adopt_lock, std::defer_lock
	Section 85.5: std::mutex
	Section 85.6: std::scoped_lock (C++ 17)

	Chapter 86: Recursive Mutex
	Section 86.1: std::recursive_mutex

	Chapter 87: Semaphore
	Section 87.1: Semaphore C++ 11
	Section 87.2: Semaphore class in action

	Chapter 88: Futures and Promises
	Section 88.1: Async operation classes
	Section 88.2: std::future and std::promise
	Section 88.3: Deferred async example
	Section 88.4: std::packaged_task and std::future
	Section 88.5: std::future_error and std::future_errc
	Section 88.6: std::future and std::async

	Chapter 89: Atomic Types
	Section 89.1: Multi-threaded Access

	Chapter 90: Type Erasure
	Section 90.1: A move-only `std::function`
	Section 90.2: Erasing down to a Regular type with manual vtable
	Section 90.3: Basic mechanism
	Section 90.4: Erasing down to a contiguous buer of T
	Section 90.5: Type erasing type erasure with std::any

	Chapter 91: Explicit type conversions
	Section 91.1: C-style casting
	Section 91.2: Casting away constness
	Section 91.3: Base to derived conversion
	Section 91.4: Conversion between pointer and integer
	Section 91.5: Conversion by explicit constructor or explicit conversion function
	Section 91.6: Implicit conversion
	Section 91.7: Enum conversions
	Section 91.8: Derived to base conversion for pointers to members
	Section 91.9: void* to T*
	Section 91.10: Type punning conversion

	Chapter 92: Unnamed types
	Section 92.1: Unnamed classes
	Section 92.2: As a type alias
	Section 92.3: Anonymous members
	Section 92.4: Anonymous Union

	Chapter 93: Type Traits
	Section 93.1: Type Properties
	Section 93.2: Standard type traits
	Section 93.3: Type relations with std::is_same<T, T>
	Section 93.4: Fundamental type traits

	Chapter 94: Return Type Covariance
	Section 94.1: Covariant result version of the base example, static type checking
	Section 94.2: Covariant smart pointer result (automated cleanup)

	Chapter 95: Layout of object types
	Section 95.1: Class types
	Section 95.2: Arithmetic types
	Section 95.3: Arrays

	Chapter 96: Type Inference
	Section 96.1: Data Type: Auto
	Section 96.2: Lambda auto
	Section 96.3: Loops and auto

	Chapter 97: Typedef and type aliases
	Section 97.1: Basic typedef syntax
	Section 97.2: More complex uses of typedef
	Section 97.3: Declaring multiple types with typedef
	Section 97.4: Alias declaration with "using"

	Chapter 98: type deduction
	Section 98.1: Template parameter deduction for constructors
	Section 98.2: Auto Type Deduction
	Section 98.3: Template Type Deduction

	Chapter 99: Trailing return type
	Section 99.1: Avoid qualifying a nested type name
	Section 99.2: Lambda expressions

	Chapter 100: Alignment
	Section 100.1: Controlling alignment
	Section 100.2: Querying the alignment of a type

	Chapter 101: Perfect Forwarding
	Section 101.1: Factory functions

	Chapter 102: decltype
	Section 102.1: Basic Example
	Section 102.2: Another example

	Chapter 103: SFINAE (Substitution Failure Is Not An Error)
	Section 103.1: What is SFINAE
	Section 103.2: void_t
	Section 103.3: enable_if
	Section 103.4: is_detected
	Section 103.5: Overload resolution with a large number of options
	Section 103.6: trailing decltype in function templates
	Section 103.7: enable_if_all / enable_if_any

	Chapter 104: Undeﬁned Behavior
	Section 104.1: Reading or writing through a null pointer
	Section 104.2: Using an uninitialized local variable
	Section 104.3: Accessing an out-of-bounds index
	Section 104.4: Deleting a derived object via a pointer to a base class that doesn't have a virtual destructor
	Section 104.5: Extending the `std` or `posix` Namespace
	Section 104.6: Invalid pointer arithmetic
	Section 104.7: No return statement for a function with a non-void return type
	Section 104.8: Accessing a dangling reference
	Section 104.9: Integer division by zero
	Section 104.10: Shifting by an invalid number of positions
	Section 104.11: Incorrect pairing of memory allocation and deallocation
	Section 104.12: Signed Integer Overﬂow
	Section 104.13: Multiple non-identical deﬁnitions (the One Deﬁnition Rule)
	Section 104.14: Modifying a const object
	Section 104.15: Returning from a [[noreturn]] function
	Section 104.16: Inﬁnite template recursion
	Section 104.17: Overﬂow during conversion to or from ﬂoating point type
	Section 104.18: Modifying a string literal
	Section 104.19: Accessing an object as the wrong type
	Section 104.20: Invalid derived-to-base conversion for pointers to members
	Section 104.21: Destroying an object that has already been destroyed
	Section 104.22: Access to nonexistent member through pointer to member
	Section 104.23: Invalid base-to-derived static cast
	Section 104.24: Floating point overﬂow
	Section 104.25: Calling (Pure) Virtual Members From Constructor Or Destructor
	Section 104.26: Function call through mismatched function pointer type

	Chapter 105: Overload resolution
	Section 105.1: Categorization of argument to parameter cost
	Section 105.2: Arithmetic promotions and conversions
	Section 105.3: Overloading on Forwarding Reference
	Section 105.4: Exact match
	Section 105.5: Overloading on constness and volatility
	Section 105.6: Name lookup and access checking
	Section 105.7: Overloading within a class hierarchy
	Section 105.8: Steps of Overload Resolution

	Chapter 106: Move Semantics
	Section 106.1: Move semantics
	Section 106.2: Using std::move to reduce complexity from O(n²) to O(n)
	Section 106.3: Move constructor
	Section 106.4: Re-use a moved object
	Section 106.5: Move assignment
	Section 106.6: Using move semantics on containers

	Chapter 107: Pimpl Idiom
	Section 107.1: Basic Pimpl idiom

	Chapter 108: auto
	Section 108.1: Basic auto sample
	Section 108.2: Generic lambda (C++14)
	Section 108.3: auto and proxy objects
	Section 108.4: auto and Expression Templates
	Section 108.5: auto, const, and references
	Section 108.6: Trailing return type

	Chapter 109: Copy Elision
	Section 109.1: Purpose of copy elision
	Section 109.2: Guaranteed copy elision
	Section 109.3: Parameter elision
	Section 109.4: Return value elision
	Section 109.5: Named return value elision
	Section 109.6: Copy initialization elision

	Chapter 110: Fold Expressions
	Section 110.1: Unary Folds
	Section 110.2: Binary Folds
	Section 110.3: Folding over a comma

	Chapter 111: Unions
	Section 111.1: Undeﬁned Behavior
	Section 111.2: Basic Union Features
	Section 111.3: Typical Use

	Chapter 112: Design pattern implementation in C++
	Section 112.1: Adapter Pattern
	Section 112.2: Observer pattern
	Section 112.3: Factory Pattern
	Section 112.4: Builder Pattern with Fluent API

	Chapter 113: Singleton Design Pattern
	Section 113.1: Lazy Initialization
	Section 113.2: Static deinitialization-safe singleton
	Section 113.3: Thread-safe Singeton
	Section 113.4: Subclasses

	Chapter 114: User-Deﬁned Literals
	Section 114.1: Self-made user-deﬁned literal for binary
	Section 114.2: Standard user-deﬁned literals for duration
	Section 114.3: User-deﬁned literals with long double values
	Section 114.4: Standard user-deﬁned literals for strings
	Section 114.5: Standard user-deﬁned literals for complex

	Chapter 115: Memory management
	Section 115.1: Free Storage (Heap, Dynamic Allocation ...)
	Section 115.2: Placement new
	Section 115.3: Stack

	Chapter 116: C++11 Memory Model
	Section 116.1: Need for Memory Model
	Section 116.2: Fence example

	Chapter 117: Scopes
	Section 117.1: Global variables
	Section 117.2: Simple block scope

	Chapter 118: static_assert
	Section 118.1: static_assert

	Chapter 119: constexpr
	Section 119.1: constexpr variables
	Section 119.2: Static if statement
	Section 119.3: constexpr functions

	Chapter 120: One Deﬁnition Rule (ODR)
	Section 120.1: ODR violation via overload resolution
	Section 120.2: Multiply deﬁned function
	Section 120.3: Inline functions

	Chapter 121: Unspeciﬁed behavior
	Section 121.1: Value of an out-of-range enum
	Section 121.2: Evaluation order of function arguments
	Section 121.3: Result of some reinterpret_cast conversions
	Section 121.4: Space occupied by a reference
	Section 121.5: Moved-from state of most standard library classes
	Section 121.6: Result of some pointer comparisons
	Section 121.7: Static cast from bogus void* value
	Section 121.8: Order of initialization of globals across TU

	Chapter 122: Argument Dependent Name Lookup
	Section 122.1: What functions are found

	Chapter 123: Attributes
	Section 123.1: [[fallthrough]]
	Section 123.2: [[nodiscard]]
	Section 123.3: [[deprecated]] and [[deprecated("reason")]]
	Section 123.4: [[maybe_unused]]
	Section 123.5: [[noreturn]]

	Chapter 124: Recursion in C++
	Section 124.1: Using tail recursion and Fibonnaci-style recursion to solve the Fibonnaci sequence
	Section 124.2: Recursion with memoization

	Chapter 125: Arithmitic Metaprogramming
	Section 125.1: Calculating power in O(log n)

	Chapter 126: Callable Objects
	Section 126.1: Function Pointers
	Section 126.2: Classes with operator() (Functors)

	Chapter 127: Client server examples
	Section 127.1: Hello TCP Client
	Section 127.2: Hello TCP Server

	Chapter 128: Const Correctness
	Section 128.1: The Basics
	Section 128.2: Const Correct Class Design
	Section 128.3: Const Correct Function Parameters
	Section 128.4: Const Correctness as Documentation

	Chapter 129: Parameter packs
	Section 129.1: A template with a parameter pack
	Section 129.2: Expansion of a parameter pack

	Chapter 130: Build Systems
	Section 130.1: Generating Build Environment with CMake
	Section 130.2: Compiling with GNU make
	Section 130.3: Building with SCons
	Section 130.4: Autotools (GNU)
	Section 130.5: Ninja
	Section 130.6: NMAKE (Microsoft Program Maintenance Utility)

	Chapter 131: Concurrency With OpenMP
	Section 131.1: OpenMP: Parallel Sections
	Section 131.2: OpenMP: Parallel Sections
	Section 131.3: OpenMP: Parallel For Loop
	Section 131.4: OpenMP: Parallel Gathering / Reduction

	Chapter 132: Resource Management
	Section 132.1: Resource Acquisition Is Initialization
	Section 132.2: Mutexes & Thread Safety

	Chapter 133: Storage class speciﬁers
	Section 133.1: extern
	Section 133.2: register
	Section 133.3: static
	Section 133.4: auto
	Section 133.5: mutable

	Chapter 134: Linkage speciﬁcations
	Section 134.1: Signal handler for Unix-like operating system
	Section 134.2: Making a C library header compatible with C++

	Chapter 135: Digit separators
	Section 135.1: Digit Separator

	Chapter 136: C incompatibilities
	Section 136.1: Reserved Keywords
	Section 136.2: Weakly typed pointers
	Section 136.3: goto or switch

	Chapter 137: Side by Side Comparisons of classic C++ examples solved via C++ vs C++11 vs C++14 vs C++17
	Section 137.1: Looping through a container

	Chapter 138: Compiling and Building
	Section 138.1: Compiling with GCC
	Section 138.2: Compiling with Visual Studio (Graphical Interface) - Hello World
	Section 138.3: Online Compilers
	Section 138.4: Compiling with Visual C++ (Command Line)
	Section 138.5: Compiling with Clang
	Section 138.6: The C++ compilation process
	Section 138.7: Compiling with Code::Blocks (Graphical interface)

	Chapter 139: Common compile/linker errors (GCC)
	Section 139.1: undeﬁned reference to `***'
	Section 139.2: error: '***' was not declared in this scope
	Section 139.3: fatal error: ***: No such ﬁle or directory

	Chapter 140: More undeﬁned behaviors in C++
	Section 140.1: Referring to non-static members in initializer lists

	Chapter 141: Unit Testing in C++
	Section 141.1: Google Test
	Section 141.2: Catch

	Chapter 142: C++ Debugging and Debug-prevention Tools & Techniques
	Section 142.1: Static analysis
	Section 142.2: Segfault analysis with GDB
	Section 142.3: Clean code

	Chapter 143: Optimization in C++
	Section 143.1: Introduction to performance
	Section 143.2: Empty Base Class Optimization
	Section 143.3: Optimizing by executing less code
	Section 143.4: Using ecient containers
	Section 143.5: Small Object Optimization

	Chapter 144: Optimization
	Section 144.1: Inline Expansion/Inlining
	Section 144.2: Empty base optimization

	Chapter 145: Proﬁling
	Section 145.1: Proﬁling with gcc and gprof
	Section 145.2: Generating callgraph diagrams with gperf2dot
	Section 145.3: Proﬁling CPU Usage with gcc and Google Perf Tools

	Chapter 146: Refactoring Techniques
	Section 146.1: Goto Cleanup

	Credits
	You may also like

