

ibm.com/redbooks Redpaper

Front cover

Performance Tuning
for IBM Tivoli
Directory Server

Axel Buecker
Robert Hodges

Richard Macbeth
John McGarvey

Casey Peel
Jukka Rantanen

Performance tuning for Tivoli Directory
Server for very large user environments

Complete coverage from operating
system to database tuning

Extensive scripts and
checklists

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

Performance Tuning for IBM Tivoli Directory Server

March 2007

© Copyright International Business Machines Corporation 2007. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (March 2007)

This edition applies to different versions of IBM Tivoli Directory Server and its underlying support software.

Note: Before using this information and the product it supports, read the information in “Notices” on
page ix.

Contents

Notices . ix
Trademarks .x

Preface . xi
The team that wrote this IBM Redpaper . xi
Become a published author . xiii
Comments welcome. xiii

Chapter 1. Service level objectives and agreements. 1
1.1 Common service level agreements and objectives. 2

1.1.1 SLA and SLO guiding principles . 2
1.1.2 Lightweight Directory Access Protocol specific SLAs . 2

Chapter 2. Does your directory have a cold? Time to do a health check 5
2.1 Questions to ask . 6
2.2 Diagrams and layouts of the system . 6
2.3 Configurations, logs, and outputs . 6
2.4 Scripts to help gather information . 8

2.4.1 perfcheck_database.sh. 8
2.4.2 perfcheck_runstats.sh. 9
2.4.3 perfcheck_system.sh . 9
2.4.4 perfcheck_ldap.sh. 10

2.5 IBM DB2 monitors . 11
2.6 Analyzing the gathered information. 12

Chapter 3. Tools to help you assist with your DB2 tuning . 13
3.1 DB2-Config-calc-tool-template Excel sheet . 14
3.2 db2_tunings.sh . 17

3.2.1 Using the script . 17

Chapter 4. DB2 settings related to LDAP . 23
4.1 SHEAPTHRES: Sort heap threshold . 24
4.2 DBHEAP: Database heap . 24
4.3 CATALOGCACHE_SZ: Catalog cache size . 24
4.4 SORTHEAP: Sort heap size . 25
4.5 MAXLOCKS: Maximum percentage of lock list before escalation. 25
4.6 LOCKTIMEOUT: Lock timeout . 25
4.7 LOCKLIST: Maximum storage for lock list . 26
4.8 MINCOMMIT: Number of commits to group . 26
4.9 UTIL_HEAP_SZ: Utility heap size. 26
4.10 APPLHEAPSZ: Application heap size. 26
4.11 STAT_HEAP_SZ: Statistics heap size . 27
4.12 CHNGPGS_THREASH: Changed pages threshold . 27
4.13 NUM_IOCLEANERS: Number of async page cleaners . 27
4.14 NUM_IOSERVERS: Number of I/O servers . 28
4.15 MAXFILOP: Maximum database files open per application . 28
4.16 MAXAPPLS: Maximum number of active applications . 28
4.17 PKGCACHESZ: Package cache size . 28
4.18 LOGFILSIZ: Size of log files . 29
© Copyright IBM Corp. 2007. All rights reserved. iii

4.19 LOGPRIMARY: Number of primary log files . 29
4.20 LOGSECOND: Number of secondary log files . 30
4.21 DFT_PREFETCH_SZ: Default prefetch size. 30
4.22 DFT_EXTENT_SZ: Default extent size of tablespaces. 30
4.23 NEWLOGPATH: Change the database log path . 30
4.24 DB2SET commands . 31

4.24.1 DB2_PARALLEL_IO . 31
4.24.2 DB2_HASH_JOIN. 31

Chapter 5. Table cardinality and LDAP_MAXCARD setting . 33
5.1 Adjusting table cardinality for performance . 34
5.2 LDAP_MAXCARD setting . 36

Chapter 6. Tools and scripts . 39
6.1 ITDSAUDIT.JAR . 40

6.1.1 Theory of operation. 40
6.1.2 Prerequisites . 40
6.1.3 Invoking itdsaudit.jar . 41
6.1.4 itdsaudit.jar error messages . 41
6.1.5 itdsaudit.jar stdout output . 41
6.1.6 itdsaudit.jar PDF output . 42

6.2 tune_enablemonitor.sh . 48
6.3 perftune_enablemonitor_all.sh . 48
6.4 tune_disablemonitor.sh . 49
6.5 perfanalyze_indexes.pl . 49

6.5.1 Usage . 49
6.5.2 Examples . 50

6.6 perfanalyze_audit.pl . 50
6.6.1 Usage . 50
6.6.2 Examples . 51

6.7 perfanalyze_dynamicsql.pl . 51
6.7.1 Usage . 52
6.7.2 Examples . 52

6.8 perfanalyze_database.pl . 52
6.8.1 Usage . 53
6.8.2 Examples . 53

6.9 perfanalyze_tables.pl . 53
6.9.1 Usage . 53
6.9.2 Examples . 54

Chapter 7. RUNSTATS: Why you have to run this . 55
7.1 Optimization . 56
7.2 How to use tune_runstats.sh. 57

Chapter 8. REORG: When and how you should run this. 59
8.1 Performing a reorg as required . 60

8.1.1 Reorg a table . 60
8.1.2 Reorg an index . 61

Chapter 9. LDAP searches and slow operations . 63
9.1 Improving LDAP searches . 64
9.2 Identifying slow operations . 65

Chapter 10. Indexes and direct I/O . 67
iv Performance Tuning for IBM Tivoli Directory Server

10.1 Indexes explained . 68
10.1.1 Optimizing indexes using DB2 commands . 68
10.1.2 Optimizing searches using DB2 explain . 69

10.2 Direct I/O . 73

Chapter 11. Disk striping and RAID. 75
11.1 Considerations for RAID arrays . 76

Chapter 12. Buffer pool settings and sort buffer overflow . 77
12.1 Adjusting the buffer pool and sort heap threshold settings . 78

Chapter 13. Replicas and partitions for performance . 79
13.1 Distinguishing between LDAP reads and writes . 80

Chapter 14. LDAP replication information . 81
14.1 Defining replication terms . 82
14.2 cn=ibmpolicies replication problem . 84
14.3 Conflict resolution . 85
14.4 Monitoring and managing replication . 88

14.4.1 Operational attributes . 88
14.4.2 Extended operations . 90
14.4.3 Troubleshooting replication problems . 92

14.5 Introduction to forwarders and gateways . 92
14.5.1 Forwarders . 92
14.5.2 Gateways . 94

14.6 Migration considerations . 96
14.6.1 Tivoli Directory Server v3.2.2 to Tivoli Directory Server v6. 96
14.6.2 Tivoli Directory Server v4.1 to Tivoli Directory Server v6 (in place) 96
14.6.3 Tivoli Directory Server v4.1 to Tivoli Directory Server v6 (new servers) 97
14.6.4 Tivoli Directory Server v5.1 or v5.2 to Tivoli Directory Server v6 97

14.7 Synchronizing two-way cryptography for server instances . 97

Chapter 15. Adding a new LDAP server to an existing enclave 99
15.1 Installing a new Tivoli Directory Server . 100
15.2 Building new replication agreements . 101

15.2.1 Defining the role of the new Tivoli Directory Server v6 101
15.2.2 Creating the new replication agreement to add the new server 102
15.2.3 Loading the new agreement . 108
15.2.4 Backing up data from a Tivoli Directory Server v6 peer master server. 109
15.2.5 Restoring data to the replicas, peer masters, and forwarders 110
15.2.6 Starting all new LDAP servers and verifying replication queues. 112

15.3 Testing replication . 113

Appendix A. Special operating system tuning for Tivoli Directory Server 115
Sun Solaris and HP-UX operating system tuning . 116

Determining which system settings are required for DB2 and LDAP 116
IBM AIX operating system tuning. 117

Enabling large files . 117
Setting MALLOCTYPE . 117
Setting other environment variables . 118
Viewing ibmslapd environment variables on AIX . 123

Appendix B. How to apply DB2 fix packs to an LDAP server 125
Prerequisites . 126
Stopping all DB2 processes . 127
 Contents v

Unpacking fix pack to server . 128
Installing fix pack . 129
Post-installation . 130

Updating instances to use the new level of DB2. 130
Steps to perform after applying the fix pack . 131

Appendix C. DB2 UDB concepts and definitions . 133

Appendix D. DB2 UDB quick reference guide . 137
DB2 command line processor (CLP) . 138
Instance configuration . 138
Instance configuration keywords . 138
DB2 registry configuration . 139
Catalog remote database. 139
DB2 instance start/stop . 139
Database commands . 139
Database connection . 140
Display database object . 140
Database configuration . 140
Granting database privilege . 140
Update database statistics . 141
DB2 monitoring commands . 141
Database recovery . 141
Troubleshooting . 141

Appendix E. Online backup of Tivoli Directory Server . 143
DB2 information . 144
Directory schema and database definitions . 144

Tivoli Directory Server V6.0 directory schema . 144
Tivoli Directory Server V6.0 directory database definitions. 145
Tivoli Directory Server directory database and tablespaces . 145

Tivoli Directory Server change log database and tablespaces . 147
Distributing databases across multiple physical disks . 147

Creating file systems and directories on the target disks . 148
Backing up the existing database . 148
Performing a redirected restore of the database. 149

Overview of backup and restore procedures for LDAP . 151
Replication considerations . 152

Overview of online backup and restore procedures for LDAP . 152
Example DB2 list history information . 154
Example offline backup and restore procedures . 155
Example online backup for the directory database . 156
Restoring the directory database . 157
Incremental directory and change log database online backup . 158

Creating full offline backups for directory and change log databases. 159
Creating incremental online backups for directory and change log databases. 159

Restoring both directory and change log databases . 159
Using incremental delta backups . 160
Restoring from incremental delta backups. 161
Pros and cons of different recovery strategies . 161
Other backup, restore, and roll-forward command options . 162
Common problems for backup, restore, and roll-forward commands 162
Optional migration for Tivoli Directory Server V5.2 to V6.0 to support online backup 163

Evaluating BLOB columns on Tivoli Directory Server 5.2 and 6.0 164
vi Performance Tuning for IBM Tivoli Directory Server

blobmigrate1G script . 169

Appendix F. Checklist . 179
Maintenance checklist . 180

IBM Tivoli Directory Server support tool . 180
Monitoring Tivoli Directory Server checklist . 180

Monitoring for outages and performance degradations . 182
Monitoring for performance and SLA conformance . 183
Monitoring Tivoli Directory Server status . 183
Analyzing log files . 187
Monitoring Tivoli Directory Server performance . 188
Using the ldapsearch utility for monitoring . 189

Appendix G. Additional material . 193
Locating the Web material . 193
Using the Web material . 193

How to use the Web material . 193

Related publications . 195
IBM Redbooks . 195
Other publications . 195
Online resources . 195
How to get IBM Redbooks . 196
Help from IBM . 196

Index . 197
 Contents vii

viii Performance Tuning for IBM Tivoli Directory Server

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2007. All rights reserved. ix

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX 5L™
AIX®
DB2 Universal Database™
DB2®

HACMP™
IBM®
RDN™
Redbooks (logo) ™

Redbooks™
Tivoli®
WebSphere®

The following terms are trademarks of other companies:

Java, JDBC, JVM, Solaris, Sun, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in
the United States, other countries, or both.

Excel, Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
x Performance Tuning for IBM Tivoli Directory Server

Preface

In today's highly connected world, directory servers are the IT cornerstone of many
businesses. These components of the corporate infrastructure are the foundation of
authentication systems for internal, and more commonly, external user populations.
Managing a directory server with several hundred internal users is not all that difficult.
However, when managing a directory server with several million external users in all 24 time
zones throughout the world is a much more daunting task.

IBM® Tivoli® Directory Server is capable of handling millions of entries given the right
architecture, configuration, and performance tuning—tunings that can differ greatly from that
of a smaller server with only a few hundred thousand entries. Managing and tuning a
directory server of this size requires a change in mindset: No longer can tuning be done after
the fact. Tuning and performance must be a focus before the hardware is even ordered. A
proactive role must be taken after installation as well, including pre-tuning steps to better
interface with other products to make installations and migrations more successful, and
regular maintenance to keep the directory well-tuned and running smoothly.

This IBM Redpaper is the cumulation of lessons learned in many different real-world
environments, including a 24-server fault tolerant configuration with over 300 million entries.
The authors have pooled their collective knowledge and resources to provide the most
comprehensive performance view possible, from hardware to software, sort heaps to buffer
pools, and table cardinalities to explain plans.

In large directory server deployments, use this document as an outline on how to get the right
fit for your environment.

The team that wrote this IBM Redpaper
This IBM Redpaper was produced by a team of specialists from around the world working at
the International Technical Support Organization (ITSO), Austin Center.

Axel Buecker is a Certified Consulting Software IT Specialist at the ITSO, Austin Center. He
writes extensively and teaches IBM classes worldwide on areas of Software Security
Architecture and Network Computing Technologies. He holds a degree in computer science
from the University of Bremen, Germany. He has 20 years of experience in a variety of areas
related to Workstation and Systems Management, Network Computing, and e-business
Solutions. Before joining the ITSO in March 2000, Axel worked for IBM in Germany as a
Senior IT Specialist in Software Security Architecture.

Robert Hodges is a Systems Management Architect working for the Tivoli Services
organization. He has 27 years of experience in systems management and IT architecture with
the last 16 of those focused on the Tivoli product set and its use. Bob has multiple patents
and has written or coauthored numerous papers and best-practices guides on systems
management disciplines.

Richard Macbeth is an IBM Directory Services Architect for IBM Software Services Tivoli,
Services Delivery, Americas Security Practice. He has been with IBM for 27 years in the
computer/IT field with 15 years of experience in the Lightweight Directory Access Protocol
(LDAP) directory field. He has current certifications with Novell as a Certified Directory
Engineer, Certified Novell Instructor, Certified Novell Engineer, and Sun™ One Directory 5
Engineer. He has worked on SecureWay/IBM Directory Server on most platforms for seven
© Copyright IBM Corp. 2007. All rights reserved. xi

years and also has seven years of experience with Tivoli Access Manager for e-business. He
also held a CCNP Certification with Cisco and had over 10 years of experience as a Senior
Network IT Specialist. He has coauthored two IBM Redbooks™, the last one: Understanding
LDAP - Design and Implementation, SG24-4986, in June 2004. He holds an AS degree in
Psychology and a Computer Technology Certification.

John McGarvey is a senior technical staff member for Tivoli at Research Triangle Park in
North Carolina. For the past five years he has been the product architect for Tivoli Directory
Server and has contributed to the design of numerous scalability and performance
enhancements for this product. He also has expertise in TCP/IP internals, IBM DB2® tuning,
and security management products.

Casey Peel is an Advisory Software Engineer for Tivoli specializing in performance tuning for
IBM Tivoli security products. He joined IBM Austin upon graduation from Texas A&M
University with a BS in Computer Science in 2000. Casey works with IBM Tivoli Identity
Manager and its middleware: IBM Tivoli Directory Server, IBM WebSphere® Application
Server, and IBM DB2 Universal Database™. His work on Identity Manager includes
maintaining the IBM Tivoli Identity Manager tuning guides, educating internal and external
audiences about performance issues, and supporting customers around the world.

Jukka Rantanen is a Senior IT Specialist in Global Technology Services in Helsinki, IBM
Finland. Jukka has worked with DB2 since 1988 and joined IBM in 2000. He has graduated in
the Department of Computer Science at the Helsinki University. Jukka is a Database Team
leader and he supports large Finnish customer DB2 deployments focusing on performance
tuning, high available solutions, and so on.

We like to thank the following people who contributed to making this document.

A special thanks to Anne for her help and expertise with DB2 and for thinking out of the box
for more places to look to tweak DB2.

Anne Lesell, IBM Finland IT Specialist with DB2 Information Technology Services,
IT Services.

A special thanks to Karen for her assistance with information for using DB2 on SAN arrays.
This information was taken from her document called: Best Practices for EMC CLARiiON
CX600 with IBM DB2 Universal Database, published May 24, 2004 IBM.

Karen Duxbury, IBM Canada Ltd., IBM Toronto Lab.

A special thanks to Michael for rewriting some of the scripts that we have included in this
document and to Jeff for helping to convert some of them to be used on a Windows® base
platform.

Michael Seedorff, IBM USA IT Specialist IBM software Group ISST, Americas Security
Practice.

Jeff DeMent, IBM USA Tivoli Directory/Security Architect IBM software Group ISST,
Americas Security Practice.

A special thanks for the following people who put together the online backup section for
IBM Tivoli Directory Server.

Cindy Corn, USA Software Engineer, LDAP Development, IBM Software Group, Tivoli.

Shevaun M. Fontenot, USA Software Engineer, LDAP Development, IBM Software Group,
Tivoli.
xii Performance Tuning for IBM Tivoli Directory Server

John D. Sullivan, USA Software Engineer, Security Architect, IBM Software Group, Tivoli.

Mark McConaughy, USA Software Engineer, LDAP Development, IBM Software Group,
Tivoli.

Shirley Chrisco, USA Software Engineer, Information Development, IBM Software Group,
Tivoli.

A special thanks to Chunhui for her inputs on the checklist.

Chunhui Yang, USA Certified Sir ITS, IBM Software Group ISST, Americas Security Practice.

A special thanks to Ram for his assistance with IBM AIX® tuning and reviewing this
document.

Ram Sreerangam, USA Security Consultant, IBM Software Group ISST, Americas Security
Practice.

And a very special thanks to our families who have given up a lot, for us to do our jobs; we
would not have been able to do this without their help and support.

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook dealing with
specific products or solutions, while getting hands-on experience with leading-edge
technologies. You'll have the opportunity to team with IBM technical professionals, Business
Partners, and Clients.

Your efforts will help increase product acceptance and customer satisfaction. As a bonus,
you'll develop a network of contacts in IBM development labs, and increase your productivity
and marketability.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our papers to be as helpful as possible. Send us your comments about this
IBM Redpaper or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
 Preface xiii

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xiv Performance Tuning for IBM Tivoli Directory Server

Chapter 1. Service level objectives and
agreements

Every component within an IT environment should have an overall performance objective, an
agreement, or both, such as a service level objective (SLO) or a service level agreement
(SLA). These objectives and agreements should be used in both the initial design (hardware,
network, redundancy, placement, monitoring, management, and so on) and the ongoing
maintenance and measurement of the service to determine if it is still meeting its objectives
and agreements.

With IBM Tivoli Directory Server, like many applications that are transaction based, it can be
difficult to predict its operation and performance on paper. Until it is configured, the data is
loaded and the actual client transactions applied, only rules of thumb can be used. The size
of the directory objects (fat versus thin), transaction mix (number of clients, adds, modifies,
searches, and so on) and the types and quantities of results that must be returned to the
clients can vary significantly throughout its service life.

In addition, because the Directory Server is normally a data store/back-end for user-facing
applications, setting baselines (service level agreements and objectives) and continuously
monitoring it to ensure that it meets the required performance level can prevent both
finger-pointing and lost time in problem determination.

For the above reasons, IBM recommends that all instances of IBM Tivoli Directory Server be
benchmarked, SLA/SLOs be defined, and operational measurements be taken on a regular
basis to ensure that performance objectives are being met.

1

© Copyright IBM Corp. 2007. All rights reserved. 1

1.1 Common service level agreements and objectives

Let us take a look at some general guidelines and some Lightweight Directory Access
Protocol (LDAP) specific details.

1.1.1 SLA and SLO guiding principles

In order to be meaningful, service level agreements/objectives (SLA/SLOs) for a specific
entity within a multi-tiered application must conform to three primary rules:

� The SLA must be measurable. The SLA must be subject to programmatic or manual
measurements that provide repeated nonsubjective values.

� The SLA must measure items under the control of the application, the entity, or both.
Including items that are not under the direct control of the application or entity (for
example, network transition time) falls under the heading of an end-to-end SLA/SLO for
which there should be an individual component part SLAs/SLOs.

� The SLA/SLO must be reasonable and obtainable with the design and topology chosen.

1.1.2 Lightweight Directory Access Protocol specific SLAs

For the IBM Tivoli Directory Server, all SLA/O measurements are defined as the average time
taken for internal processing and the start of the data delivery. By measuring only the time to
process the operation (bind, add, modify, search, and so on), we measure only the items for
which the Directory Server has control. A large result set might take considerable time for a
client application to retrieve, parse, and make use of.

In addition, these SLAs/SLOs are specified as an average time, not as an absolute or
maximum value. A search operation that returns a result set of a thousand objects always
takes longer than a single value result set.

Average bind time
This is measured as the average time in milliseconds, measured from the receipt of a
correctly formatted and valid bind operation to the initial return of the success operation and
data to the client application.

Average unbind time
This is measured as the average time in milliseconds, measured from the receipt of a
correctly formatted and valid unbind operation to the initial return of the success operation
and data to the client application.

Average add time
This is measured as the average time in milliseconds, measured from the receipt of a
correctly formatted and valid add operation to the initial return of the success operation and
data to the client application.

Average modify time
This is measured as the average time in milliseconds, measured from the receipt of a
correctly formatted and valid modify operation to the initial return of the success operation
and data to the client application.
2 Performance Tuning for IBM Tivoli Directory Server

Average delete time
This is measured as the average time in milliseconds, measured from the receipt of a
correctly formatted and valid delete operation to the initial return of the success operation and
data to the client application.

Average search time
This is measured as the average time in milliseconds, measured from the receipt of a
correctly formatted and valid search operation to the initial return of the success operation
and data to the client application. Measuring from the receipt of the valid search operation
request to the initial but not final set of data to the client prevents large search results from
skewing the average.
Chapter 1. Service level objectives and agreements 3

4 Performance Tuning for IBM Tivoli Directory Server

Chapter 2. Does your directory have a cold?
Time to do a health check

The Directory Server is a constantly changing entity and from time to time, a health check has
to be done to ensure that it is working at its potential. IBM is commonly called in to check over
an enterprise directory to determine why the performance appears to be slowing or not
meeting the required levels. This is called a health check or performance tuning engagement.

The following section defines a list of questions about the system and data that has to be
gathered to make concrete recommendations. You have to know what you have to work with
before you can make the right decisions.

2

© Copyright IBM Corp. 2007. All rights reserved. 5

2.1 Questions to ask

Here is a list of questions that should be asked about each Lightweight Directory Access
Protocol (LDAP) environment.

� What version of IBM Tivoli Directory Server is it?

� What fix packs have been applied to the Directory Server?

� Is there a mix of Directory Server versions on this system?

� What version of IBM DB2 is being used?

� What fix packs have been applied to IBM DB2?

� What operating system (OS) version is the Directory Server running on?

� What fix packs have been applied to the OS?

� Which applications are using this Directory Server?

� How many users are using this Directory Server?

� How many entries are in the database?

� How many processors are on the server?

� How much memory is on the server?

� Is the database on local or storage area network (SAN) drives?

� Are you running Redundant Array of Independent Disks (RAID)?

� How many master or peer-to-peer master servers are in this system?

� How many replicas are in this system?

� How many Forwarder or Gateway servers are in this system?

� Do you have a wide area network (WAN) environment and if so, how many and how fast
are they?

� What is your failover process?

� What is your backup process?

� Do you have a distributive or central administration?

2.2 Diagrams and layouts of the system

In addition to asking the above questions you also have to obtain the following information:

� Physical layout of the Directory Servers
� Logical layout of the Directory Servers

2.3 Configurations, logs, and outputs

In determining the health of the directory, reviewing the logs should be the first item
performed. The following section describes the log files available to you as part of the review
process.

Depending on the version of the IBM Tivoli Directory Server you are using and what OS you
are running, the configuration and error logs will be in different locations.
6 Performance Tuning for IBM Tivoli Directory Server

The following list provides the default locations of where the software puts them unless you
make changes to the configuration files instructing the software to write to a different location.

� Version 4.x:

– Directory Server configuration files:

• UNIX®: /usr/ldap/etc
• Solaris™: /opt/IBMldaps/etc
• Windows: <Drive>:\Program Files\IBM\ldap\etc

– Directory Server error logs:

• UNIX: /var/ldap/
• Windows: <Drive>:\Program Files\IBM\ldap\var\

– IBM DB2 error logs:

• UNIX: <instance_home_directory>/<instance_name>/sqllib/db2dump
• Windows: <Drive>:<instance_home_directory>\<instance_name>\sqllib\db2dump

� Version 5.x:

– Directory Server configuration files:

• UNIX: /usr/ldap/etc
• Solaris: /opt/IBMldaps/etc
• Windows: <Drive>:\Program Files\IBM\ldap\etc

– Directory Server error logs:

• UNIX: /var/ldap/
• Windows: <Drive>:\Program Files\IBM\ldap\var\

– IBM DB2 error logs:

• UNIX: <instance_home_directory>/<instance_name>/sqllib/db2dump
• Windows: <Drive>:<instance_home_directory>\<instance_name>\sqllib\db2dump

� Version 6.x:

– Directory Server configuration files:

• UNIX: <instance_home_directory>/<instance_name>/idsslapd-<instance_name>/etc
• Solaris: /opt/IBMldaps/etc
• Windows: <Drive>:\Program Files\IBM\ldap\etc

– Directory Sever error logs:

• UNIX: <instance_home_directory>/<instance_name>/idsslapd-<instance_name>/logs
• Windows: <Drive>:\Program Files\IBM\ldap\var\

– IBM DB2 error logs:

• UNIX: <instance_home_directory>/<instance_name>/sqllib/db2dump
• Windows: <Drive>:<instance_home_directory>\<instance_name>\sqllib\db2dump

The following files and logs can all be used to understand what the Directory Server is doing
and how it is configured and tuned. This document includes tools that will assist you in
problem determination and possible ways to correct them.

� For IBM Tivoli Directory Server:

– Version 4.x:

• slapd32.conf: This is where you look for LDAP cache settings and DB2 database
connections.

• errors.log: This is where you look for problems with the schema and abnormal
errors being posted.
Chapter 2. Does your directory have a cold? Time to do a health check 7

• audit: This log can used to obtain information about what the customer is really
doing with the directory.

– Version 5.x and later:

• ibmslapd.conf: This is where you look for LDAP cache settings and DB2 database
connections.

• ibmslapd.log: This is where you look for problems with the schema and abnormal
errors being posted.

• db2cli.log: This log shows any communication errors between the Directory Server
and DB2 database.

• audit.log: This log can be used to obtain information about what the customer is
really doing with the directory. We discuss this log in more detail later in this
document.

– Version 6.x and later:

• lostandfound.log: This log shows replication conflicts, if any. If there are lots of
conflicts being logged, this affects the performance of the server.

� For IBM DB2:

– Version 4x and later:

• db2diag.log: This log tells you of any problems with the database and shows when
someone kicks off a reorg or other action against the database. Each entry is time
stamped.

• idsldap.nfy: This log is like a short version of the db2diag.log and shows just the
problems with the instance without lots of operating details.

• cli.log (4x only) or db2cli.log (5x and later): This log shows any communication
errors between the Directory Server and DB2 database.

2.4 Scripts to help gather information

We have built scripts that can be run to gather most of the required configuration settings for
both the LDAP and DB2. These scripts help you to identify the current state of the Directory
Server.

2.4.1 perfcheck_database.sh

This script gathers configuration information about IBM DB2 and is run as the instance owner
of IBM DB2. This script gathers the following information:

� DB2 environmental settings
� DB2 database manager configuration settings
� DB2 instance configuration settings
� DB2 buffer pool settings
� List of the tablespaces used in this instance

It also prints out a db2look output that shows the structure of the database instance along
with how each of the tables and indexes is built.

Note: Refer to Appendix G, “Additional material” on page 193, for details about how to
obtain the additional files mentioned throughout this IBM Redpaper.
8 Performance Tuning for IBM Tivoli Directory Server

1. sudo (or su) to the DB2 instance owner and then source the DB2 environment variables
by db2profile (if this is not performed, the db2 commands will not work). The script file
db2profile is located in the sqllib subdirectory under the instance owner's home directory.
If you have to tailor this file, follow the comments inside the file to set your instance name,
user paths, and default database name (the default path is
/home/ldapdb2/sqllib/db2profile.) Then run the script. If, for example, your instance owner
is ldapdb2:

#su - ldapdb2
#. /home/ldapdb2/sqllib/db2profile

2. Change to the directory where your ldapscripts are located:

#cp /opt/tmp/ldapscripts
./perfcheck_database.sh ldapdb2 > /tmp/perfcheck_database.out 2>&1

3. When done, type exit to return to root ID.

2.4.2 perfcheck_runstats.sh

This gathers information about when the last time runstats was run on the DB2 tables and
indexes used in the LDAP instance. This is run as the instance owner of DB2.

This script gathers information about each of the tables and indexes, which are listed with the
date and time the last runstats was run.

1. sudo (or su) to the DB2 instance owner and then source the DB2 environment variables
by db2profile (if this is not performed, the db2 commands will not work). The script file
db2profile is located in the sqllib subdirectory under the instance owner's home directory.
If you have to tailor this file, follow the comments inside the file to set your instance name,
user paths, and default database name (the default path is
/home/ldapdb2/sqllib/db2profile.) Then run the script. If, for example, your instance owner
is ldapdb2:

#su - ldapdb2
#. /home/ldapdb2/sqllib/db2profile

2. Change to the directory where your ldapscripts are located:

#cp /opt/tmp/ldapscripts
./perfcheck_runstats.sh ldapdb2 > /tmp/perfcheck_runstats.out 2>&1

3. When done, type exit to return to root ID.

2.4.3 perfcheck_system.sh

This script gathers information about the OS that the Directory Server is running on. This is
run as the root user of the OS.

This script gathers the following information depending on the type of UNIX OS:

� Memory
� SWAP space
� How many and type of CPUs
� Kernel level
� Outputs for:

– vmstat
– iostat
Chapter 2. Does your directory have a cold? Time to do a health check 9

� Solaris only

– prstat output

� Copy of /etc/system file for OS settings

For example:

./perfcheck_system.sh >/tmp/perfcheck_system.out 2>&1

2.4.4 perfcheck_ldap.sh

This script gathers information about the Directory Server configuration. This is run as the
root user.

This script gathers the following information:

� The following information is gathered from the LDAP configuration file:

– How many DB2 connections
– What the LDAP cache settings are set to

� Then it prints out the LDAP configuration file (ibmslapd.conf).

� Outputs for the following ldapsearch commands:

– ldapsearch -b "" -s base objectclass=*

This search tells you what suffixes are created, what version of LDAP is running, what
type of LDAP server this is (master, replica, and so on), and the port number being
used. Depending on the version of LDAP, it also shows you if you are in configuration
mode or not.

– ldapsearch -b cn=monitor -s base "objectclass=*"

This search, depending on the version of LDAP, gives you a snapshot of the directory
statistics from the last time it was started to the point of the snapshot. These stats get
reset when you restart the LDAP.

Make sure that you have the path variable to the LDAP configuration file correct or you will
get some errors about some of the commands in this script. For example, for 4.x and 5.x
(most of the time), it is /usr/ldap/etc, but for 6.0, it is in the home directory of the LDAP
instance because you can have more than one LDAP instance on a server.

If you are running a 4.x server or earlier, you will receive an error saying that you cannot find
the ibmslapd.conf file; this is expected. If you are running a 5.x server or later, you will receive
an error saying that you cannot find the slapd32.conf file; this is expected.

For example, if you are running 6.0 and your DB2 instance owner home directory is called
ldapdb2:

./perfcheck_ldap.sh "/home/ldapdb2/idsslapd-ldapdb2/etc"
>/tmp/perfcheck_ldap.out 2>&1
10 Performance Tuning for IBM Tivoli Directory Server

2.5 IBM DB2 monitors

The next piece of information that helps you to determine what tuning, if any, the LDAP
database needs, requires you to turn on special DB2 monitors to gather timings, stats, and list
types of SQL searches being run against the database.

Collecting system monitor data introduces processing overhead for the database manager.
For example, in order to calculate the execution time of SQL statements, the database
manager must make calls to the operating system to obtain timestamps before and after the
execution of every statement. These types of system calls are generally expensive. Another
form of overhead incurred by the system monitor is increased memory consumption. For
every monitor element tracked by the system monitor, the database manager uses its
memory to store the collected data.

Care has to be taken with turning on the DFT_MON_TABLE monitor switch as this will be a
performance hit on the database. This switch should only be enabled when needed and then
disabled.

The following monitors shown in Table 2-1 can be turned on to gather stats. By default, all
switches are turned off, except DFT_MON_TIMESTAMP.

Table 2-1 DB2 monitor overview

We have provided scripts to help you turn on and turn off these monitor switches. Each time
you turn the monitor switches on or off, you have to stop and start DB2.

� perftune_enablemonitor.sh: Turn on all monitors except DFT_MON_TABLE
� perftune_enablemonitor_all.sh: Turns on all monitors
� perftune_disablemonitor.sh: Turns off all monitors except DFT_MON_TIMESTAMP

1. Stop the Directory Server. For example, for IBM Tivoli Directory Server 6.0 with an
instance name of ldapdb2:

idsslapd -I ldapdb2 -k

2. Now sudo (or su) to the DB2 instance owner and then source the DB2 environment
variables with db2profile (if this is not performed, db2 commands will not work). The script
file db2profile is located in the sqllib subdirectory under the instance owner's home
directory. If you have to tailor this file, follow the comments inside the file to set your
instance name, user paths, and default database name (the default path is
/home/ldapdb2/sqllib/db2profile.) Then run the script. For example, if your instance owner
is ldapdb2:

#su - ldapdb2
#. /home/ldapdb2/sqllib/db2profile

Monitor switch DBM parameter Information provided

BUFFERPOOL DFT_MON_BUFPOOL Number of reads and writes, time taken of all the buffer pools

LOCK DFT_MON_LOCK Lock wait times, deadlocks

SORT DFT_MON_SORT Number of heaps used, sort performance

STATEMENT DFT_MON_STMT Start/stop time, statement identification

TABLE DFT_MON_TABLE Measure of activity (rows read/written)

UOW DFT_MON_UOW Start/end times, completion status of Unit of Work

TIMESTAMP DFT_MON_TIMESTAMP Timestamps
Chapter 2. Does your directory have a cold? Time to do a health check 11

3. Change to the directory where your ldapscripts are located. Run one of the three following
monitor scripts to either turn on or turn off the monitors.

./perftune_enablemonitor.sh

Or:

./perftune_enablemonitor_all.sh

Or:

./perftune_disablemonitor.sh
db2stop
db2start

4. Type exit to return to the root ID.

5. Start the Directory Server back up.

idsslapd -I ldapdb2

2.6 Analyzing the gathered information

The first step is to look over the outputs from the perfcheck scripts and then apply the tools in
the next section to analyze and make recommendations to improve the throughput of
directory.

There are specific settings that improve performance when used with large enterprise
environments with hundreds of millions of entries. For example, with 1 million entries in a
directory, the Directory Server cache does not increase performance and in fact can degrade
performance to filter cache invalidation. In these instances, it is better to allocate the memory
to DB2 and bypass the Directory Server caches with smaller directories. What we suggest
that you do is to drop the filter cache setting down to 100 and use the performance tools
included in this book to determine what the other LDAP cache settings should be.

Run the monitor script for a few days to see what types of loads are being used, how much
memory and how much of the Directory Server caches are being used.

The important thing to remember when tuning the IBM Tivoli Directory Server is that it is a
continual process. The interaction between the transaction mix, the Directory Server process,
and DB2 has to be evaluated and tuned on a regular basis to ensure the best performance
possible from the directory. Directories change from time to time as data is added, changed,
or deleted. More applications are using LDAP not just for their authentication needs but also
as their authorization database. Therefore, the need to do benchmarking of the directory is
very important. With benchmarking, you have a place to start from and compare back to. The
benchmarks enable you to identify when your system is not running up to par. When
identified, further testing is required to improve the outcome.
12 Performance Tuning for IBM Tivoli Directory Server

Chapter 3. Tools to help you assist with
your DB2 tuning

This chapter introduces a Microsoft® Excel® spreadsheet and a script that can be used for
DB2 tuning.

3

© Copyright IBM Corp. 2007. All rights reserved. 13

3.1 DB2-Config-calc-tool-template Excel sheet

This Excel sheet was designed to work with DB2 8.1 with Fix Packs 9 through 13 (to date) to
help set up the db2_tunings.sh file. The spreadsheet requires the following information, each
of which is covered in a later section:

� Turning on the DB2 monitor switches (use perftune_enablemonitor.sh, as described in 6.3,
“perftune_enablemonitor_all.sh” on page 48) and run the monitors during the high loads of
the database, preferably for a 24-hour period.

� Run the perfanalyze_getallsnapshots.sh (included in the IBM Redpaper download) to get
the snapshot-database.<date.time> output.

� Retrieve the DB2 instance configuration. This information can be retrieved by the
perfcheck_database.sh script (see 2.4.1, “perfcheck_database.sh” on page 8).

Steps to use the spreadsheet:

1. Open the DB2-Config-calc-tool-template Excel sheet and select the DBCFG tab at the
bottom.

2. Open the perfcheck_database.out file (this is the output from perfcheck_database.sh) and
scroll down to the line called Database Configuration for Database <instance name> and
copy to the clipboard from the next line up to and including Automatic reorganization, as
shown in Example 3-1.

Example 3-1 Database configuration for database

Database Configuration for Database ldapdb2
Database configuration release level = 0x0a00 <= start copying at this line
Database release level = 0x0a00
Database territory = US
Database code page = 1208
Database code set = UTF-8
Database country/region code = 1
Database collating sequence = BINARY
Alternate collating sequence (ALT_COLLATE) =
Database page size = 4096
...
Automatic maintenance (AUTO_MAINT) = OFF
Automatic database backup (AUTO_DB_BACKUP) = OFF
Automatic table maintenance (AUTO_TBL_MAINT) = OFF
Automatic runstats (AUTO_RUNSTATS) = OFF
Automatic statistics profiling (AUTO_STATS_PROF) = OFF
Automatic profile updates (AUTO_PROF_UPD) = OFF
Automatic reorganization (AUTO_REORG) = OFF <= end copying this line

3. Open a new Microsoft Word document and paste what you just copied.

4. Convert database configuration from table.

a. Click Edit → Select All.
b. Click Table → Convert → Text to Table.

5. The window shown in Figure 3-1 is displayed. In this widow, perform the following steps:

a. Select 2 from the Number of columns drop-down menu.
b. In the AutoFit behavior section, select Fixed column with and select Auto.
c. In the “Separate text at” section, select Other at and enter an equals to sign (=) in the box.
d. Click OK.
14 Performance Tuning for IBM Tivoli Directory Server

This converts the highlighted text to a table.

Figure 3-1 Convert text to table

6. Cut the whole area of the converted table using “Ctrl+x” and go back to the Excel sheet.
From the DBCFG tab, click the “B4” cell and paste the converted table using “Ctrl+v”. This
replaces the data on this sheet with the new converted data.

7. Open the snapshot-database. <date.time> output file and scroll down to the line called
“Database Snapshot”. Copy to the clipboard, starting from the next line, and up to and
including “Configured size (bytes)” line as shown in Example 3-2.

Example 3-2 Snapshot-database excerpt (continued)

Database Snapshot
Database name = LDAPDB2 <= start copying at this line
Database path = /opt/export/home/ldapdb2/ldapdb2/NODE0000/SQL00001/
Input database alias = LDAPDB2
Database status = Active
Catalog database partition number = 0
Catalog network node name =
Operating system running at database server= SUN
Location of the database = Local
First database connect timestamp = 05/02/2006 13:35:29.418903
Last reset timestamp =
Last backup timestamp = 04/26/2006 15:08:37.000000
Snapshot timestamp = 05/03/2006 14:56:45.602867
...
Memory Pool Type = Other Memory
Current size (bytes) = 0
High water mark (bytes) = 0
Configured size (bytes) = 12353536 <= end copying this line

8. Open a new Microsoft Word document and paste what you just copied.

9. Convert database configuration from table.

a. Click Edit → Select All.
b. Click Table → Convert → Text to Table.
Chapter 3. Tools to help you assist with your DB2 tuning 15

10.The same window as shown in Figure 3-1 on page 15 is displayed. In this window, perform
the following steps:

a. Select 2 from the Number of columns drop-down list.
b. In the AutoFit behavior section, select Fixed column with and select Auto.
c. In the “Separate text at” section, select Other and enter an equals to sign (=) in the box.
d. Click OK.

This converts the highlighted text to a table.

11.Cut this whole area of the converted table using “Ctrl+x” and go back to the Excel sheet.
From the Snapshot tab, click the “B4” cell and paste the converted table using “Ctrl+v”.
This replaces the data on this sheet with the new converted data.

12.Click the Results tab of the DB2-Config-calc-tool-template Excel sheet.

This shows you the results from what the LDAP/DB2 was configured at this time
compared to what performance results that were logged for this DB2 during the capture.

This is an example of using a part of the output. As you can see, it tells you that you have
to increase or decrease a setting.

13.When you get the output, you have to edit the db2_tunings.sh (see 3.2, “db2_tunings.sh”
on page 17) and plug in new settings for those configurations that require updating.

14.Apply the new settings to DB2, restart, and test and reset the monitors. Monitor the LDAP
for another 24 hours and pull a new set of monitor outputs and rerun through the Excel
sheet to check if the settings are okay.

Figure 3-2 is an example of what the spreadsheet can look like when you input the above
information.

Figure 3-2 Spreadsheet tuning results
16 Performance Tuning for IBM Tivoli Directory Server

3.2 db2_tunings.sh

Out of the box, the Directory Server database is tuned for a small directory and must be tuned
to run correctly for medium or large directories. For example, the DB2 buffer pools are set by
default to use only 256 MB of memory. With the performance improvements with DB2 8.2 and
later (8.1 with Fix Pack 9 or later) and the many changes that have been made with
IBM Directory Server V6.0 through fix packs, there are a number of improvements to the
performance of the Directory Server. Some big improvements deal with how we index
attributes and how we process searches. Another improvement or change is the amount of
memory we recommend to the DB2 buffers; with large directories we find that the best
throughput comes with larger DB2 buffers. This script starts off with figuring out how much
real memory you have on this server and recommend taking half of it for the DB2 buffers. This
can be raised or lowered depending on the requirement. Use this information along with the
output of the DB2-Config-calc-tool-template to help set up the many settings in this script.

The following settings can be changed in this script. These setting are pre-set up for over
1 million entries and can be changed up or down as required by using the
DB2-Config-calc-tool-template after running your benchmarks with the DB2 monitors. In
Chapter 4, “DB2 settings related to LDAP” on page 23, we cover each of these settings.

� SHEAPTHRES=30000
� DBHEAP=2000
� CATALOGCACHE_SZ=64
� CHNGPGS_THRESH=60
� SORTHEAP=7138
� MAXLOCKS=80
� LOCKTIMEOUT=120
� LOCKLIST=400
� MINCOMMIT=1
� UTIL_HEAP_SZ=5000
� APPLHEAPSZ=2048
� STAT_HEAP_SZ=5120
� DFT_PREFETCH_SZ=32
� MAXFILOP=384
� MAXAPPLS=100
� PCKCACHESZ=1440
� DFT_EXTENT_SZ=32
� LOGFILSIZ=5000
� LOGPRIMARY=5
� LOGSECOND=60

3.2.1 Using the script

The db2_tunings.sh script was designed to be used to pre-tune the database.

$ /opt/tmp/tools/tuning/db2_tunings.sh -?

� Usage:

db2_tunings.sh -s size [-r ratio] [-e] [-db dbname]
db2_tunings.sh -ibp ibmdefaultbp -lbp ldapbp [-db dbname]

� Options:

db dbname DB name to update (Default=ldapdb2)

s size Target memory usage in MB

r ratio Buffer pool ratio, IBMDefaultBP/LdapBP (Default=3)
Chapter 3. Tools to help you assist with your DB2 tuning 17

ibp ibmdefbp Size of ibmdefaultbp buffer pool setting

lbp ldapbp Size of ldapbp buffer pool setting

e Estimate buffer pools only. If size is not specified, the amount of
system memory is determined and SIZE is set to 50% of the total. If
system memory cannot be determined, size must be specified.

Note that this script must be executed as the DB2 instance owner.

Estimate the memory usage for the buffer pools. The -e option provides the recommended
memory usage in MB.

$ /opt/tmp/tools/tuning/db2_tunings.sh -e

The output is similar to the following:

Memory Detected: 4096
Recommended Memory Size: 2048.00 MB (assumes 50% of total memory)
Recommended ibmdefaultbp setting: 393216 (assumes RATIO=3)
Recommended ldapbp setting: 16384 (assumes RATIO=3)

Tune the database using the required memory usage size (in MB). The recommendation of
50% of total memory provided using the -e option is only a guideline. From the example
above, <size> would be 2048.

If more than one instance of Tivoli Directory Server is to be run on a single server, the
available physical memory must be divided between instances. You have to reduce the -e
option accordingly, so as not to allocate more memory than you really have.

$ /opt/tmp/tools/tuning/db2_tunings.sh -s 2048 -db ldapdb2

This script can and should be edited to fit the requirements of your database. The settings
that we used in this script were a starting point for a directory that had over 1 million entries.
When you edit this script, the only places you should have to change, if needed, will be the
ones between the constants remarks as shown in Example 3-3.

Example 3-3 Changeable parameters for the db2_tunings.sh script

###############
CONSTANTS
###############

SHEAPTHRES=30000
DBHEAP=3000
CATALOGCACHE_SZ=64
CHNGPGS_THRESH=60
SORTHEAP=7138
MAXLOCKS=80
LOCKTIMEOUT=120

Note: The optimum memory size to allocate for the database depends both on the amount
of physical memory and on the operating system. Buffer pools are used for memory
mapped I/O, therefore they should not be configured to swap. Physical memory, not virtual
memory, is used for buffer pools. Tivoli Directory Server 5.2 and 6.0 versions are
implemented using 32-bit code and calling a 32-bit version of DB2, on all platforms except
AIX. As a result, for all platforms except AIX, the maximum amount of memory
addressable by the DB2 process is 4 GB, and this includes both code and data. In practice,
only about 2.5 GB can be used for data, including the buffer pools.
18 Performance Tuning for IBM Tivoli Directory Server

LOCKLIST=400
MINCOMMIT=1
UTIL_HEAP_SZ=5000
APPLHEAPSZ=2048
STAT_HEAP_SZ=5120
IOCLEANERS and IOSERVERS are now calculated based on the ldapbp value
#NUM_IOCLEANERS=8
#NUM_IOSERVERS=6
DFT_PREFETCH_SZ=32
MAXFILOP=384
MAXAPPLS=100
PCKCACHESZ=1440
If you are going to change the DFT_ENTENT_SZ you will also need to
remove the comment character from the "db2 update" command later on in
this script. HINT: Search for EXTENT to find the command.
DFT_EXTENT_SZ=32

LOGFILSIZ=5000
LOGPRIMARY=5
LOGSECOND=60

If you are going to change the NEWLOGPATH you will also need to
remove the comment character from the "db2 update" command later on in
this script. HINT: Search for NEWLOGPATH to find the command.
NEWLOGPATH=/usr/logfiles/logs

######################
END DB CONSTANTS
######################

From your findings with the DB2-Config-calc-tool-template and other tools used in this
document, you can come up with the required settings for this script.

The output is similar to the one shown in Example 3-4.

Example 3-4 db2_tunings.sh output

Database Connection Information
Database server = DB2/SUN 8.2.3
SQL authorization ID = LDAPDB2
Local database alias = LDAPDB2
The current buffer pool settings are as follows:
BPNAME NPAGES PAGESIZE
IBMDEFAULTBP 29500 4096
LDAPBP 1230 32768
2 record(s) selected.
Updating the buffer pool settings.

SQL20189W The buffer pool operation (CREATE/ALTER) will not take effect until the
next database startup due to insufficient memory. SQLSTATE=01657

SQL20189W The buffer pool operation (CREATE/ALTER) will not take effect until the
next database startup due to insufficient memory. SQLSTATE=01657

The DB2 configuration parameters settings are as follows:
Chapter 3. Tools to help you assist with your DB2 tuning 19

Database heap (4 KB) (DBHEAP) = 1200
Catalog cache size (4 KB) (CATALOGCACHE_SZ) = (MAXAPPLS*4)
Utilities heap size (4 KB) (UTIL_HEAP_SZ) = 5000
Buffer pool size (pages) (BUFFPAGE) = 1000
Max storage for lock list (4 KB) (LOCKLIST) = 100
Sort list heap (4 KB) (SORTHEAP) = 256
Default application heap (4 KB) (APPLHEAPSZ) = 2048
Package cache size (4 KB) (PCKCACHESZ) = 360
Statistics heap size (4 KB) (STAT_HEAP_SZ) = 4384
Percent. of lock lists per application (MAXLOCKS) = 10
Number of asynchronous page cleaners (NUM_IOCLEANERS) = 1
Number of I/O servers (NUM_IOSERVERS) = 3
Default prefetch size (pages) (DFT_PREFETCH_SZ) = AUTOMATIC
Default tablespace extentsize (pages) (DFT_EXTENT_SZ) = 32
Max number of active applications (MAXAPPLS) = AUTOMATIC
Max DB files open per application (MAXFILOP) = 64
Group commit count (MINCOMMIT) = 1

Updating the DB2 config settings

DB20000I The UPDATE DATABASE MANAGER CONFIGURATION command completed successfully.
DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.
DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.
DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.
DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.

SQL1363W One or more of the parameters submitted for immediate modification were
not changed dynamically. For these configuration parameters, all applications must
disconnect from this database before the changes become effective.

DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.
DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.
DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.
DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.

SQL1363W One or more of the parameters submitted for immediate modification were
not changed dynamically. For these configuration parameters, all applications must
disconnect from this database before the changes become effective.

DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.

SQL1363W One or more of the parameters submitted for immediate modification were
not changed dynamically. For these configuration parameters, all applications must
disconnect from this database before the changes become effective.

DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.

SQL1363W One or more of the parameters submitted for immediate modification were
not changed dynamically. For these configuration parameters, all applications must
disconnect from this database before the changes become effective.

DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.
20 Performance Tuning for IBM Tivoli Directory Server

SQL1363W One or more of the parameters submitted for immediate modification were
not changed dynamically. For these configuration parameters, all applications must
disconnect from this database before the changes become effective.

DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.
DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.
DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.
DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.

The DB2 configuration parameters settings are as follows:

Database heap (4 KB) (DBHEAP) = 2000
Catalog cache size (4 KB) (CATALOGCACHE_SZ) = (MAXAPPLS*4)
Utilities heap size (4 KB) (UTIL_HEAP_SZ) = 5000
Buffer pool size (pages) (BUFFPAGE) = 1000
Max storage for lock list (4 KB) (LOCKLIST) = 1000
Sort list heap (4 KB) (SORTHEAP) = 7138
Default application heap (4 KB) (APPLHEAPSZ) = 2048
Package cache size (4 KB) (PCKCACHESZ) = 1440
Statistics heap size (4 KB) (STAT_HEAP_SZ) = 5120
Percent of lock lists per application (MAXLOCKS) = 80
Number of asynchronous page cleaners (NUM_IOCLEANERS) = 18
Number of I/O servers (NUM_IOSERVERS) = 16
Default prefetch size (pages) (DFT_PREFETCH_SZ) = AUTOMATIC
Default tablespace extentsize (pages) (DFT_EXTENT_SZ) = 32
Max number of active applications (MAXAPPLS) = AUTOMATIC
Max DB files open per application (MAXFILOP) = 384
Group commit count (MINCOMMIT) = 1

DB20000I The TERMINATE command completed successfully.
DB20000I The FORCE APPLICATION command completed successfully.
DB21024I This command is asynchronous and may not be effective immediately.
03/08/2006 16:34:47 0 0 SQL1064N DB2STOP processing was successful.
SQL1064N DB2STOP processing was successful.
03/08/2006 16:34:49 0 0 SQL1063N DB2START processing was successful.
SQL1063N DB2START processing was successful.
Database Connection Information
Database server = DB2/SUN 8.2.3
SQL authorization ID = LDAPDB2
Local database alias = LDAPDB2
The new buffer pool settings are as follows:
BPNAME NPAGES PAGESIZE
IBMDEFAULTBP 393216 4096
LDAPBP 16384 32768
2 record(s) selected.
DB20000I The TERMINATE command completed successfully.

Defining the transaction log size parameters allow for the worst case of ACL
propagation. The chosen setting will allow ACLs to propagate from a suffix to up
to 3 million Access Manager users. This setting can use up to 1.2 GB additional
disk space in the DB2 instance owner home directory.
Chapter 3. Tools to help you assist with your DB2 tuning 21

The number of log file size will be increased to 5000.
The number of primary log buffers will be increased to 5.
The number of secondary log buffers will be increased to 60.

Adjust the LOGSECOND setting for more or less users. Ensure the disk space is
available for whatever setting is used, since running out of disk space for the
transaction log can corrupt the database and require reloading of the database.

The default transaction log settings are as follows:
Log file size (4 KB) (LOGFILSIZ) = 2000
Number of primary log files (LOGPRIMARY) = 3
Number of secondary log files (LOGSECOND) = 2
Changed path to log files (NEWLOGPATH) =

Path to log files =/opt/export/home/ldapdb2/ldapdb2/NODE0000/SQL00001/SQLOGDIR/

Updating the transaction log settings.
DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.
DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.
DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.
03/08/2006 16:35:02 0 0 SQL1064N DB2STOP processing was successful.
SQL1064N DB2STOP processing was successful.
03/08/2006 16:35:04 0 0 SQL1063N DB2START processing was successful.
SQL1063N DB2START processing was successful.

The new transaction log settings are as follows:
Log file size (4 KB) (LOGFILSIZ) = 5000
Number of primary log files (LOGPRIMARY) = 5
Number of secondary log files (LOGSECOND) = 60
Changed path to log files (NEWLOGPATH) =

Path to log files = /opt/export/home/ldap
db2/ldapdb2/NODE0000/SQL00001/SQLOGDIR/

Verifying that the file system for the transaction logs is large enough to
accommodate the maximum growth.

logfilsiz=5000 logprimary=5 logsecond=60 logspace=1300000
The available file space on
/opt/export/home/ldapdb2/ldapdb2/NODE0000/SQL00001/SQLOGDIR/ is 41812992 KB.
The log parameters allow the log files to grow to a maximum of 1300000 KB.
Check succeeded: There is sufficient disk space to allow for the maximum log file
growth.
22 Performance Tuning for IBM Tivoli Directory Server

Chapter 4. DB2 settings related to LDAP

All the settings covered in this chapter can be changed in the db2_tunings.sh script (see 3.2,
“db2_tunings.sh” on page 17). Using the DB2-Config-calc-tool-template Excel sheet results
tab along with this section, you can have a better understanding of appropriate values for
these settings.

4

© Copyright IBM Corp. 2007. All rights reserved. 23

4.1 SHEAPTHRES: Sort heap threshold

The Sort Heap Threshold parameter, as a database manager configuration parameter,
applies across the entire DB2 instances. This threshold prevents the database manager from
using excessive amounts of memory for large number of sorts for any and all instances that
this DB2 will use.

This is the only database manager (DBM) setting that Lightweight Directory Access Protocol
(LDAP) cares about. For most production accounts, you will only have one DB2 instance per
server. With IBM Directory Server 6.0, you can have more than one LDAP instance on a
server and that is where this setting will really have to be watched, because you will have to
take into consideration each of the DB2 instances SORTHEAP settings for each of the LDAP
instances that are on this one server to find what this setting should be.

4.2 DBHEAP: Database heap

There is one database heap per database, and the database manager uses it on behalf of all
applications connected to the database. It contains control block information for tables,
indexes, tablespaces, and buffer pools. It also contains space for the log buffer (logbufsz) and
temporary memory used by utilities.

4.3 CATALOGCACHE_SZ: Catalog cache size

The catalog cache size parameter is allocated out of the database shared memory, and is
used to cache system catalog information. Caching catalog information allows the database
manager to reduce its internal overhead by eliminating the need to access the system
catalogs to obtain information that has previously been retrieved.

Recommendation: Ideally, you should set this parameter to a reasonable multiple of the
largest SORTHEAP parameter you have in your database manager instance. This
parameter should be at least twice the largest SORTHEAP defined for any database within
the instance. For LDAP, depending on the types of searches, we found that setting this to
300,000 works for most large directories. Monitor and adjust this, if needed, using the tools
in this document.

Recommendation: For LDAP, depending on the types of searches, we found that setting
this to 2000 works depending on the types of loads you have. You might have to raise this
to 3000 for some large directories. You have to monitor and adjust this, if needed, using
the tools in this document.

Recommendation: For LDAP, setting this to 64 works for most large directories. Monitor
and adjust this, if needed, using the tools in this document.
24 Performance Tuning for IBM Tivoli Directory Server

4.4 SORTHEAP: Sort heap size

The sort heap size parameter defines the maximum number of private memory pages to be
used for private sorts or the maximum number of shared memory pages to be used for
shared sorts.

4.5 MAXLOCKS: Maximum percentage of lock list before
escalation

Lock escalation is the process of replacing row locks with table locks, reducing the number of
locks in the list. This parameter defines a percentage of the lock list held by an application
that must be filled before the database manager performs escalation. When the number of
locks held by any one application reaches this percentage of the total lock list size, lock
escalation occurs for the locks held by that application. Lock escalation also occurs if the lock
list runs out of space.

4.6 LOCKTIMEOUT: Lock timeout

This database parameter specifies the number of seconds that an application will wait to
obtain a lock. This helps to avoid global deadlocks for applications.

If you set this parameter to 0, locks are not waited for. In this situation, if no lock is available at
the time of the request, the application immediately receives a -911.

If you set this parameter to -1, lock timeout detection is turned off. In this situation, a lock will
be waited for (if one is not available at the time of the request) until either of the following
events:

� The lock is granted.
� A deadlock occurs.

The value should be set to quickly detect waits that are occurring because of an abnormal
situation, such as a transaction that is stalled (possibly as a result of a user leaving their
workstation). You should set it high enough so that valid lock requests do not time out
because of peak workloads, during which time, there is more waiting for locks.

Recommendation: For LDAP with large directories and high traffic, the default value of
256 is too low and has to be changed. We found that setting this to 5120 works. You have
to monitor and adjust this higher, if needed, using the tools in this document. Depending on
your types of searches and the complexity of the search, this has to be set higher. When
doing so, it is best to add in 1024 chunks.

Recommendation: When using the provided version of DB2, there should not be any
other application running against the database other than the LDAP process (the provided
version is only licensed for LDAP use). With that we found that setting this to 80% is the
best for all sizes of the directory. The default of 10% is way too low.

Recommendation: The default of -1 is not recommended for Tivoli Directory Server. We
found that setting this to 120 fits most LDAP applications. Monitor and adjust this, if
needed, using the tools in this document.
Chapter 4. DB2 settings related to LDAP 25

4.7 LOCKLIST: Maximum storage for lock list

This database parameter indicates the amount of storage that is allocated to the lock list.
There is one lock list per database and it contains the locks held by all applications
concurrently connected to the database.

4.8 MINCOMMIT: Number of commits to group

This parameter allows you to delay the writing of log records to disk, until a minimum number
of commits have been performed.

4.9 UTIL_HEAP_SZ: Utility heap size

This database parameter indicates the maximum amount of memory that can be used
simultaneously by the BACKUP, RESTORE, and LOAD (including load recovery) utilities.

4.10 APPLHEAPSZ: Application heap size

This database parameter defines the number of private memory pages available to be used
by the database manager on behalf of a specific agent or subagent.

Recommendation: The default of -1 is not recommended for Tivoli Directory Server. We
found that setting this to 400 fits most large LDAP applications. Monitor and adjust this, if
needed, using the tools in this document. The default of 100 tends to be too low to handle
the amount of locks that are going on in large LDAP directories.

Recommendation: For LDAP, this must be set to 1 due to replication and making sure
that the data has been committed. This way you will not lose any data, if the LDAP stops. If
this is set higher than 1, it will affect the replication and cause out-of-sync conditions.

Recommendation: For Tivoli Directory Server, we found that the default value of 5000
works with no issues. If you have issues with running these utilities, such as running out of
space, then you should increase this value. If the parameter is set too low and no more
memory is available in the overflow area, you might not be able to concurrently run the
utilities.

Recommendation: For LDAP, we found that the default value of 256 is too low and we
increased this to 2048 to start with. Adjust this, if needed, using the tools in this document.
26 Performance Tuning for IBM Tivoli Directory Server

4.11 STAT_HEAP_SZ: Statistics heap size

This database parameter indicates the maximum size of the heap used in collecting statistics
using the RUNSTATS command. If you find that runstats is taking too long to run, you will
have to raise this number.

4.12 CHNGPGS_THREASH: Changed pages threshold

Asynchronous page cleaners write changed pages from the buffer pool (or the buffer pools)
to disk before the space in the buffer pool is required by a database agent. As a result,
database agents should not have to wait for changed pages to be written out so that they
might use the space in the buffer pool. This improves the overall performance of the database
applications.

4.13 NUM_IOCLEANERS: Number of async page cleaners

This database parameter allows you to specify the number of asynchronous page cleaners
for a database. These page cleaners write changed pages from the buffer pool to disk before
the space in the buffer pool is required by a database agent. As a result, database agents
should not have to wait for changed pages to be written out so that they might use the space
in the buffer pool. This improves the overall performance of the database applications. If the
applications for a database primarily consist of transactions that update data, an increase in
the number of cleaners will speed up the performance. Increasing the page cleaners also
decreases the recovery time from soft failures such as power outages, because the contents
of the database on disk is more up-to-date at any given time.

Recommendation: For LDAP, we found that the default value of 4384 is too low for large
LDAP directories and we increased this to 5120 to start with. Adjust this, if needed, using
the tools in this document.

Recommendation: For LDAP with large directories and high traffic, we found that you
have to set this to 50 at times but start with the default of 60. Monitor and adjust this, if
needed, using the tools in this document.

Recommendation: We took into consideration the following factors when we set the
NUM_IOCLEANERS and NUM_IOSERVERS values with the db2_tunings.sh.

� Application type
� Workload
� Buffer pool sizes

We found through testing that if we calculate NUM_IOCLEANERS and NUM_IOSERVERS
based on the buffer pool values, we then set NUM_IOSERVERS to be approximately 1 for
every 1500 of LDAPBP, and then set NUM_IOCLEANERS to 2 higher than
NUM_IOSERVERS. With all our testing, we found that this is a good ratio. This is in the
ballpark, where these setting should be. Again with every benchmarking, you might find
that you might have to change these values. If you are higher than you really have to be on
either one of these values, you will not have any problems, because there is minimal
overhead associated with each I/O server and any unused I/O servers remains idle along
with any unused I/O cleaner. It is always better to have a few to many, rather than not have
enough, when at peak loads.
Chapter 4. DB2 settings related to LDAP 27

4.14 NUM_IOSERVERS: Number of I/O servers

I/O servers are used on behalf of the database agents to perform prefetch I/O and
asynchronous I/O by utilities such as backup and restore. This parameter specifies the
number of I/O servers for a database. No more than this number of I/Os for prefetching and
utilities can be in progress for a database at any time. An I/O server waits while an I/O
operation that it initiated is in progress. Non-prefetch I/Os are scheduled directly from the
database agents and as a result are not constrained by NUM_IOSERVERS.

4.15 MAXFILOP: Maximum database files open per application

This database parameter specifies the maximum number of file handles that can be open for
each database agent. If opening a file causes this value to be exceeded, some files in use by
this agent are closed. If MAXFILOP is too small, the overhead of opening and closing files so
as not to exceed this limit will become excessive and might degrade performance.

4.16 MAXAPPLS: Maximum number of active applications

This database parameter specifies the maximum number of concurrent applications that can
be connected to a database. Because each application that attaches to a database causes
some private memory to be allocated, allowing a larger number of concurrent applications
potentially uses more memory.

4.17 PKGCACHESZ: Package cache size

This database parameter is allocated out of the database shared memory, and is used for
caching of sections for static and dynamic SQL statements on a database.

Recommendation: Compare with the recommendation provided in 4.13,
“NUM_IOCLEANERS: Number of async page cleaners” on page 27.

Recommendation: For LDAP, we found that the default value of 64 is too low for large
LDAP directories and we increased this to 384 to start with. Adjust this, if needed, using
the tools in this document.

Recommendation: For LDAP large directories, we found that setting this to 100 is a good
starting point that works for most all directories. We came to this after also increasing the
value of the locklist to work together. Adjust this, if needed, using the tools in this
document.

Recommendation: For LDAP large directories, we found that the default setting of -1 is
low and that setting this to 1440 is a good starting point that works for most directories.
Adjust this, if needed, using the tools in this document.
28 Performance Tuning for IBM Tivoli Directory Server

4.18 LOGFILSIZ: Size of log files

This database parameter defines the size of each primary and secondary log file. The size of
these log files limits the number of log records that can be written to them before they become
full and a new log file is required.

4.19 LOGPRIMARY: Number of primary log files

The primary log files establish a fixed amount of storage allocated to the recovery log files.
This parameter allows you to specify the number of primary log files to be preallocated.

Under circular logging, the primary logs are used repeatedly in sequence, that is, when a log
is full, the next primary log in the sequence is used, if it is available. A log is considered
available if all units of work with log records in it have been committed or rolled back. If the
next primary log in sequence is not available, then a secondary log is allocated and used.
Additional secondary logs are allocated and used until the next primary log in the sequence
becomes available or the limit imposed by the logsecond parameter is reached. These
secondary log files are dynamically deallocated as they are no longer needed by the
database manager.

Recommendation: You must balance the size of the log files with the number of primary
log files. The value of the LOGFILSIZ should be increased if the database has a large
number of update, delete, or insert transactions running against it, which causes the log file
to become full very quickly.

Notes:

� The upper limit of the log file size, combined with the upper limit of the number of log
files (logprimary + logsecond), gives an upper limit of 256 GB of active log space.

� A log file that is too small can affect the system performance because of the overhead
of archiving old log files, allocating new log files, and waiting for a usable log file.

� The value of the LOGFILSIZ should be reduced if disk space is scarce because primary
logs are preallocated at this size.

� A log file that is too large can reduce your flexibility when managing archived log files
and copies of log files because some media might not be able to hold an entire log file.

� If you are using log retention, the current active log file is closed and truncated when
the last application disconnects from a database. When the next connection to the
database occurs, the next log file is used. Therefore, if you understand the logging
requirements of your concurrent applications, you might be able to determine a log file
size that will not allocate excessive amounts of wasted space.

Recommendation: For large LDAP directories, we found that the default setting of 1000 is
low and setting this to 5000 is a good starting point that works for most directories. Adjust
this, if needed, using the tools in this document.

Recommendation: For LDAP large directories, we found that the default setting of 3 is low
and setting this to 5 is a good starting point that works for most directories. Adjust this
value, if needed, using the tools in this document.
Chapter 4. DB2 settings related to LDAP 29

4.20 LOGSECOND: Number of secondary log files

This database parameter specifies the number of secondary log files that are created and
used for recovery log files (only as needed). When the primary log files become full, the
secondary log files (of size LOGFILSIZ) are allocated one at a time as needed, up to a
maximum number as controlled by this parameter. An error code will be returned to the
application and the database will be shut down, if more secondary log files are required than
are allowed by this parameter.

4.21 DFT_PREFETCH_SZ: Default prefetch size

If you do not specify the prefetch size on invocation of the CREATE TABLESPACE
statement, the database manager uses the current value of the DFT_PREFETCH_SZ
parameter.

If the prefetch size is a multiple of the extent size, the database manager might perform I/O in
parallel, if the following conditions are true:

� The extents being prefetched are on different physical devices
� Multiple I/O servers are configured (NUM_IOSERVERS)

4.22 DFT_EXTENT_SZ: Default extent size of tablespaces

When a tablespace is created, EXTENTSIZE n can be optionally specified, where n is the
extent size. If you do not specify the extent size on the CREATE TABLESPACE statement,
the database manager uses the value given by this parameter.

4.23 NEWLOGPATH: Change the database log path

This database parameter allows you to specify a string of up to 242 bytes to change the
location where the log files are stored. The string can point to either a path name or to a raw
device. If the string points to a path name, it must be a fully qualified path name, not a relative
path name.

Recommendation: For LDAP large directories, we found that the default setting of 2 is far
too low and setting this to 60 is a good starting point that works for most directories. Adjust
this, if needed, using the tools in this document.

Recommendation: For LDAP, using the default of 32 works with most DB2 systems and
should match what your extent size is set to. If you are going to be using SANs, then this
value depends on your array, the extent size, or both. Using system monitoring tools, you
can determine if your CPU is idle while the system is waiting for I/O.

Recommendation: For LDAP, using the default of 32 works with most DB2 systems and
should match what your extent size is set to. If you are going to be using SANs, then this
value depends on your array, the extent size, or both. Using system monitoring tools, you
can determine if your CPU is idle while the system is waiting for I/O.
30 Performance Tuning for IBM Tivoli Directory Server

You should move the default location of the path of the transaction log files. By default, it is
put where the DB2 instance is found, for example: /usr/opt/db2/log/LDAPDB2. It is best if you
move the location to another directory, preferably on a different physical drive, if possible.
This lessens the I/O contention for writing to the disk space.

If you are going to change the NEWLOGPATH, with the db2_tunings.sh, you also have to
remove the comment character from the db2 update command later on in this script. Hint:
Search for NEWLOGPATH to find the command. For example, on the NEWLOGPATH line,
put in the path where the transaction logs should go.

NEWLOGPATH=/usr/logfiles/logs

Then, do a search for NEWLOGPATH again and you should find the following line.
Uncomment it so that it will be used. This sets the new path to be used.

#db2 update db cfg for ${DBNAME} using NEWLOGPATH "${NEWLOGPATH}

4.24 DB2SET commands

Let us take a closer look at two DB2SET commands: DB2_PARALLEL_IO and
DB2_HASH_JOIN.

4.24.1 DB2_PARALLEL_IO

This section describes how to optimize performance when data is placed on Redundant Array
of Independent Disks (RAID) devices.

Procedure
You should perform the following steps for each tablespace that is stored on a RAID device:

1. Define a single container for the tablespace (using the RAID device).

2. Make the EXTENTSIZE of the tablespace equal to or a multiple of the RAID stripe size.

3. Ensure that the PREFETCHSIZE of the tablespace is:

– The RAID stripe size multiplied by the number of RAID parallel devices (or a whole
multiple of this product)

And:

– A multiple of the EXTENTSIZE

4. Use the DB2_PARALLEL_IO registry variable to enable parallel I/O for the tablespace.

For LDAP, we highly recommend that you set this variable to “*” anytime you are going to
be using RAID devices or putting your database instance on SANs.

db2set DB2_PARALLEL_IO="*"

4.24.2 DB2_HASH_JOIN

The DB2_HASH_JOIN, by default, is set to YES. For LDAP, we highly recommend that you
set this variable to NO. Our large directory testing produced better performance by tuning off
HASH_JOINs without producing any issues with the directory or LDAP commands with this
set to NO.

db2set DB2_HASH_JOIN=NO
Chapter 4. DB2 settings related to LDAP 31

32 Performance Tuning for IBM Tivoli Directory Server

Chapter 5. Table cardinality and
LDAP_MAXCARD setting

This chapter discusses how to adjust the cardinality of the table index. It also provides
information about the LDAP_MAXCARD setting, which is used to influence the behavior of
the DB2 search optimizer.

5

© Copyright IBM Corp. 2007. All rights reserved. 33

5.1 Adjusting table cardinality for performance

When DB2 performs a query, the DB2 optimizer defines a query plan to resolve the result set
at minimal cost. In most cases, a query consists of multiple conditions. Consider the
Lightweight Directory Access Protocol (LDAP) search:

ldapsearch -b "o=everything" objectclass=widgets

This translates to a DB2 query for all descendants of “o=everything” with object class of
widgets. DB2 tries to determine whether it is better to find all the descendants of o=everything
first, so as to determine which of these are widgets, or whether it is better to find all widgets
first, so as to determine which of these are descendants of o=everything. The actual query
looks something like:

SELECT distinct D.DEID FROM LDAPDB2.LDAP_DESC AS D WHERE D.AEID=? AND D.DEID IN
(SELECT EID FROM LDAPDB2.OBJECTCLASS WHERE OBJECTCLASS =?)

Note the use of the “?”. This is a parameter marker, and the actual value of the parameter
marker is substituted in when the query is performed. When DB2 does the optimization, the
optimizer does not know what values will be substituted for the parameter markers.
Therefore, it makes an estimate based on the average values for the table. In the
LDAP_DESC table, most entries have few or no descendants, because in an LDAP
namespace, most entries are leaf entries. Therefore, the DB2 optimizer estimates that this
clause will be very selective. However, the OBJECTCLASS table is the largest table in the
directory's database, because every object has several object class attribute values. And for
most object classes, there are many entries. Therefore, the DB2 optimizer estimates that the
objectclass=widgets clause is not very selective.

Assume that there are few entries in the tree with an object class of “widgets” so that the
result set of the original LDAP search is small. The default DB2 optimizer behavior turns out
to be very expensive. It finds all the descendants of o=everything first, and then it discards all
of those that do not have objectclass=widgets. The result is bad performance.

To remedy this, we can adjust the cardinality of the table index. When a DB2 runstats is
performed, DB2 counts the number of distinct values in each indexed attribute, by
comparison with the length of the table (its cardinality). If the number of distinct values is low
by comparison with the cardinality, DB2 concludes that a search for this attribute value will
not be very selective. If the number of distinct values is high, DB2 concludes that the search
will be very selective. By setting the cardinality of the LDAP_DESC table artificially high, you
can ensure that the descendant table is not queried first. The cardinality is set as follows (we
do set this in the tune_runstats.sh, which we discuss in 7.2, “How to use tune_runstats.sh”
on page 57):

db2 update sysstat.tables set card = 9E18 where tabname = 'LDAP_DESC'

After this is done, the previous query for widgets objects in the o=everything tree becomes
much faster. The difference might be on the order of 100X or more.

Unfortunately, this step is not always wise. Consider the following LDAP search:

ldapsearch -b "ou=verySmall, o=everything" objectclass=person

We assume that the ou called “verySmall” contains very few entries. However, there are
perhaps millions of entries in the directory with objectclass=person. Therefore, the best
approach is to find the descendants of ou=verySmall first, and then find all of those with
objectclass=person. This is what DB2 does by default. But, if the cardinality of the
LDAP_DESC table has been set as previously described, the DB2 optimizer instead chooses
34 Performance Tuning for IBM Tivoli Directory Server

to find all person entries first, and then find which of those are descendants of ou=verySmall.
This makes the search much slower. Again, the difference can be in the order of 100x.

Therefore, the appropriate setting of cardinality for LDAP_DESC depends on whether most
subtree searches are for small subtrees or large ones. This setting only affects subtree
searches, not one level or base searches. For most LDAP usage patterns, searches of large
subtrees predominate. Therefore, for most LDAP usage patterns, the cardinality of
LDAP_DESC should be set as previously described.

The DB2 statistics tables are updated every time runstats is performed. When this happens,
the artificial cardinality that was set into the table is overwritten. Therefore, whenever
runstats is performed, the cardinality of LDAP_DESC has to be adjusted again (this is taken
care of with the tune_runstats.sh, which is covered in 7.2, “How to use tune_runstats.sh” on
page 57).

Several exception cases should be mentioned. Consider:

ldapsearch -b "ou=verySmall, o=everything" objectclass=*

This search translates to the DB2 query:

SELECT distinct D.DEID FROM LDAPDB2.LDAP_DESC AS D WHERE D.AEID=?

The OBJECTCLASS table is not queried at all, because “objectclass=*” is true for every entry
in the directory. Therefore, this query performs the same way regardless of how the
cardinality of the descendant table is set. Consider also:

ldapsearch -b "ou=verySmall, o=everything" rareAttribute=blue

We assume that very few entries in the directory have a value for rareAttribute. In this case,
the query performs well, regardless of how the cardinality is set.

The cardinality of the LDAP_DESC table is best adjusted using the LDAP_MAXCARD setting
in ibmslapd.conf. Refer to 5.2, “LDAP_MAXCARD setting” on page 36, for more information
about this.

Infrequently, there are cases where it might help to set the cardinality of the LDAP_ENTRY
table. This occurs whenever there are many one-level searches. Consider the query:

ldapsearch -b "ou=people, o=everything" -s one objectclass=widgets

We assume that the ou=people entry has more than a million descendants, but that very few
of those are widgets. The corresponding SQL statement looks something like:

SELECT distinct E.EID FROM LDAPDB2.LDAP_ENTRY AS E, LDAPDB2.LDAP_ENTRY as pchild
WHERE E.EID=pchild.EID AND pchild.PEID=? AND E.EID IN (SELECT EID FROM
LDAPDB2.OBJECTCLASS WHERE OBJECTCLASS =?)

In this case, DB2 does not know how many immediate children the search base entry has,
because of the use of the “?” placeholder. Therefore, DB2 assumes that there are few, and
finds all the children first. Again, this is very expensive. To remedy this, one can set the
cardinality of the entry table as very large, as follows:

db2 update sysstat.tables set card = 9E18 where tabname = 'LDAP_ENTRY'

Future releases of Tivoli Directory Server and DB2 might contain optimizations to minimize or
eliminate the need to adjust cardinalities artificially. This also can be set with the
tune_runstats.sh by un-remarking this line (line 211) in the script.
Chapter 5. Table cardinality and LDAP_MAXCARD setting 35

5.2 LDAP_MAXCARD setting

IBM Tivoli Directory Server has a special environment variable in ibmslapd.conf called
LDAP_MAXCARD, which is used to influence the behavior of the DB2 search optimizer. One
of the largest tables in the directory is the LDAP_DESC table. This table and its indexes are
used when a Lightweight Directory Access Protocol (LDAP) subtree search is requested. The
directory must ensure that all returned values are descendants of the root of the search. A
subtree search typically includes a search filter. The DB2 optimizer determines whether it
should first find all descendants of the root of the search and then evaluate whether they
match the search filter, or whether it should evaluate the search filter first, and then evaluate
whether each of the matching entries is a descendant of the root of the tree. DB2 does this
using an internal statistic for the LDAP_DESC table called the cardinality. If
LDAP_MAXCARD is on, the cardinality for LDAP_DESC is set to an artificially high number
(9E18, which means 9000000000000000000). This tells the DB2 search optimizer to always
use LDAP_DESC last when evaluating subtree searches.

LDAP_MAXCARD can make searches much faster or much slower, depending on usage
patterns. Consider the following two searches.

� ldapsearch -b “ou=very small, ou=small, o=Acme, c=US” -s subtree objectclass=person
� ldapsearch -b “o=Acme, c=US” -s subtree objectclass=rareWidgets

If LDAP_MAXCARD is off, the DB2 optimizer will use the real cardinality of the LDAP_DESC
table and the OBJECTCLASS table to figure out the best way to evaluate the search. The
only table in the directory larger than the LDAP_DESC table is the OBJECTCLASS table.
Therefore, if LDAP_MAXCARD is off, DB2 will always find all descendants of the root of the
search first, and then it will check to see which of these are of the required object class. This
approach resolves search 1 very quickly, because there are very few descendants of ou=very
small. However, it works very poorly for search 2. The entry o=Acme might have millions of
descendants, and each must be checked to see if it is of object class rareWidgets. Very few
are.

If LDAP_MAXCARD is on, the DB2 optimizer will never use the LDAP_DESC table first,
because the cardinality is too big. Instead, it finds all entries that match the filter. This works
very well for search 2, because only a handful of entries are of object class rareWidgets. DB2
finds those and then checks each to find which are descendants of o=Acme. Unfortunately,
this approach works very poorly for search 1. The directory might have millions of entries with
object class person, and DB2 ends up evaluating each to obtain which is a descendant of
ou=very small. Very few are.

The DB2 optimizer does not recognize the difference between the two statements. It does not
know which search bases give a large number of descendants and which give a small
number. On an average, most entries in the directory have few or no descendants, therefore
the DB2 optimizer assumes, given the default cardinality, that it should evaluate the
descendants first. You must determine whether searches of type 1 predominate in your
directory traffic, or searches of type 2. If searches of type 1 predominate, you want
LDAP_MAXCARD off. If searches of type 2 predominate, you want LDAP_MAXCARD on.
This tuning has a big effect. One value of the switch can make certain searches 10000X
slower than the other value, and if the setting is wrong, the server gives poor throughput with
CPU consumption running near 100%.
36 Performance Tuning for IBM Tivoli Directory Server

Depending on the version of the Directory Server you are using, LDAP_MAXCARD works
differently:

� In Version 5.2, it does the card tuning by default, unless the environment variable
LDAP_MAXCARD is set to NO.

� In Version 5.2 Fix Pack 3, it does not do the card tuning by default, unless the environment
variable LDAP_MAXCARD is set to YES. If you are going to set it to YES, you will also
have to update the tune_runstats.sh (this is covered in 7.2, “How to use
tune_runstats.sh” on page 57) and edit to either remark out the card line or un-remark the
sysstat.tables set card line for LDAP_DESC or LDAP_ENTRY.

With 6.0, it has changed again:

� Version 6.0 by default will set LDAP_DESC card to 9E18 once only when the server starts
up, if LDAP_MAXCARD is not defined.

� If LDAP_MAXCARD is set to YES, the server will set it once, every minute.

� If LDAP_MAXCARD is set to NO, the server will not set it at all.

In practice, you should always set the value to either YES or NO. There is a good reason for
the server to set the cardinality every minute. If reinstates is run on the LDAP_DESC table, it
sets the cardinality to the default value, therefore the Directory Server must reset it to 9E18 to
re-enable LDAP_MAXCARD. For bulkloads, you should always have LDAP_MAXCARD=YES
(because most directory entries have few descendants). At other times, the best setting
depends on whether searches of type 1 or type 2 predominate in the load.

An additional index on the LDAP_DESC table is strongly recommended. This index is
especially important if LDAP_MAXCARD is set to ON. The index is not needed, if you have
LDAP_MAXCARD ON. The name of the index is LDAP_DESC_DEID. (LDAP_DESC_AEID
is always created.) You can check for its presence as follows. (The commands below assume
that the DB2 instance name and LDAP database name are LDAPDB2, but you should
substitute correct values for your installation.)

su - LDAPDB2
db2 connect to ldapdb2
db2 "SELECT INDNAME FROM SYSCAT.INDEXES WHERE TABNAME='LDAP_DESC'"

This select statement should show two indexes, LDAP_DESC_AEID and
LDAP_DESC_DEID. If the second is not present, you can create it as follows.

db2 "CREATE INDEX LDAPDB2.LDAP_DESC_DEID ON LDAPDB2.LDAP_DESC ('AEID' ASC, 'DEID'
ASC) MINPCTUSED 10 ALLOW REVERSE SCANS"
db2 commit
db2 connect reset
Chapter 5. Table cardinality and LDAP_MAXCARD setting 37

38 Performance Tuning for IBM Tivoli Directory Server

Chapter 6. Tools and scripts

In this chapter, we introduce some important tools and scripts, some of which are available as
a download from the ITSO Web site (refer to Appendix G, “Additional material” on page 193).
These tools are:

� ITDSAUDIT.JAR

� tune_enablemonitor.sh

� perftune_enablemonitor_all.sh

� tune_disablemonitor.sh

� perfanalyze_indexes.pl

� perfanalyze_audit.pl

� perfanalyze_dynamicsql.pl

� perfanalyze_database.pl

� perfanalyze_tables.pl

6

© Copyright IBM Corp. 2007. All rights reserved. 39

6.1 ITDSAUDIT.JAR

Understanding what the directory is doing and how well it is doing is necessary before,
during, and after any tuning exercise. Understanding the transaction types, their distribution,
and the current performance of the directory is necessary to determine what (if any) tuning
might be necessary. In addition, without a baseline and method to measure the impact of
tuning changes, it is possible to degrade the performance of the directory or worse yet, to be
unable to demonstrate or measure the effects of tuning and the actual performance of the
directory post tuning.

As with any client/server application, determining where the performance issues actually
reside can be troublesome and difficult to diagnose. There might be server side issues (poor
performance to client requests), network throughput/stability issues, or it might be the client
that is the actual culprit (for example, malformed queries or inability to process information
fast enough). The Directory Server can be scoped to provide services to one or many clients
and their interaction must also be taken into account when evaluating the directories
performance (for example, one application consuming the majority of the CPU).

Along with the other tools discussed in this document, itdsaudit.jar provides a snapshot look
at the directory and the operations executed against it by parsing and reporting the
transactions as seen by the directory audit log. When audit logging is enabled, the Directory
Server provides a comprehensive list of client requests, parameters, response times, and
success/failure of the request for each transaction performed during the time the audit log is
turned on.

6.1.1 Theory of operation

The audit log (a standard text file) provides a tremendous amount of information when
enabled. Depending upon what level and options are selected, the audit log can contain:

� Directory control information (enabling auditing, audit levels, and so on)
� For each transaction (as appropriate for the transaction type):

– Start and stop time of a transaction
– Transaction type (bind, unbind, search, add, delete and modify)
– Bind ID performing the transaction
– Success or failure of the request
– Filters
– Controls
– Attributes

The difficulty with the log (which can be huge, based upon the transaction volume) is
extracting and turning the raw data into information we can use. The itdsaudit.jar tool can
assist with this.

6.1.2 Prerequisites

itdsaudit.jar is a Java™ application packaged as an executable jar file. It has been developed
against Java 1.5, but there is no known reason why it will not run with any recent version of
Java. The only prerequisites are:

� Java must be available.

� The user must have read permissions for the input file.

� The location where the input audit log resides must be writeable by the invoking user if
you want PDF output.
40 Performance Tuning for IBM Tivoli Directory Server

6.1.3 Invoking itdsaudit.jar

itdsaudit.jar has a very simple invocation because it has no switches and expects only the file
name of the input audit log on the command line. The command line for running itdsaudit.jar
is:

java -jar itdsaudit.jar <path_and_file_name>

Where:

“java -jar itdsaudit.jar” is the normal start command for the Java JVM™ and tells the JVM to
start the main entry point of the supplied jar file name.

<path_and_file_name> is the full path and name of the audit log to be parsed. If the file name
contains spaces it must be quoted to ensure that it is passed to itdsaudit.jar properly.

6.1.4 itdsaudit.jar error messages

There are three error conditions that itdsaudit.jar can run into:

� No file name passed on the command line. If this occurs, itdsaudit.jar produces an output
with the following error message.

ITDS audit log parser version 0.2b
You must supply the file name to parse on the command line, e.g.: java -jar
itdsaudit.jar <FILENAME>
itdsaudit.jar will parse and report (both to stdout and a PDF file) the
absolute and statistical information contained within an ITDS audit log file.
Note: the PDF filename is always <FILENAME>.pdf and any existing file with that
name will be overwritten.

� Unable to open the input file.

Unable to open input file: bad_name.log. halting execution. Make sure you quote
the filename if it has spaces in it.

� Unable to write the PDF file. Because itdsaudit.jar writes the PDF file to the same directory
where the input file is located, if it is unable to create the file there, it will print an error
message and continue with stdout output only.

Unable to open PDF file for output (make sure you have write privileges where
the input file exists). Continuing with stdout only.

6.1.5 itdsaudit.jar stdout output

itdsaudit.jar outputs to stdout general statistical information found within the audit log. The
format and output looks similar to the following (depending upon the information contained
within the audit log) as shown in Example 6-1.

Example 6-1 itdsaudit.jar stdout output

-------------------------- Totals -------------------------
Total TransactionTime (hh:mm: ss.sss) = 2:7:23.678 Note: Not clock time
Total Number of Transactions = 42332
Average Transaction time in Milliseconds = 180
-------------------------- Binds --------------------------
Total Number of Binds = 6
Average Bind time in Milliseconds = 1
Chapter 6. Tools and scripts 41

-------------------------- Unbinds ------------------------
Total Number of Unbinds = 6
Average Unbind time in Milliseconds = 0
-------------------------- Searches ------------------------
Total Number of Searches = 41406
Average Search time in Milliseconds = 183
Longest Search (time in Milliseconds) = 18947
Longest Search text
AuditV3--2006-03-09-15:14:46.990-05:00--V3 Search--bindDN: cn=Directory Manager--client:
166.86.124.79:62309--connectionID: 98--received: 2006-03-09-15:14:28.043-05:00--Success
base: ou=orgChart, erglobalid=00000000000000000000, ou=abccompany, dc=itim
scope: singleLevel
derefAliases: derefAlways
typesOnly: false
filter:
(&(erparent=ERGLOBALID=6776123625579741330,OU=ORGCHART,ERGLOBALID=00000000000000000000,OU=abccom
pany,DC=ITIM)(|(objectclass=ERBPORGITEM)(objectclass=ERLOCATIONITEM)(objectclass=ERORGUNITITEM)(
objectclass=ERSECURITYDOMAINITEM)))
attributes: erparent, objectclass,
Total # of Attributes used in search filters = 16
Attribute = erpolicytarget Attribute count = 9772
Attribute = erprerequisite Attribute count = 21
Attribute = erpolicymembership Attribute count = 11386
Attribute = ou Attribute count = 4
Attribute = objectclass Attribute count = 47838
Attribute = owner Attribute count = 1264
Attribute = businesscategory Attribute count = 3660
Attribute = uid Attribute count = 613
Attribute = erobjectprofilename Attribute count = 3662
Attribute = erreqpolicytarget Attribute count = 10077
Attribute = erword Attribute count = 921
Attribute = erenabled Attribute count = 10686
Attribute = cemploymentstatus Attribute count = 610
Attribute = erisdeleted Attribute count = 24
Attribute = erparent Attribute count = 14958
Attribute = erservicename Attribute count = 1831
-------------------------- Adds -----------------------------
Total Number of Adds = 0
Average Add time in Milliseconds = 0
-------------------------- Deletes --------------------------
Total Number of Deletes = 0
Average Delete time in Milliseconds = 0
-------------------------- Modifies --------------------------
Total Number of Modifies = 914
Average Modify time in Milliseconds = 35
-------------------------- Unknowns --------------------------
Total Number of Unknown =
Average Unknown time in Milliseconds =

6.1.6 itdsaudit.jar PDF output

itdsaudit.jar's PDF output contains additional information and output in a format that is
appropriate for inclusion in tuning before, during, and after documentation. The PDF
document is broken down into a number of sections.
42 Performance Tuning for IBM Tivoli Directory Server

Title page
The title page contains:

� The version of itdsaudit.jar
� The input file name
� The date and timestamp for the creation of the PDF (useful for tracking and reporting

purposes)

Summary section
The summary section contains multiple charts and tables on the information found:

� Transaction types and totals

Table 6-1 provides a summary count of the transactions and their average time to
complete (in millisecond (ms)). As can be seen here, the overall average transaction time
was 183 ms (very poor), but the average for binds, unbinds, and modifies are within norms
for the hardware platform the directory was running on.

Table 6-1 Transaction totals and types

This is shown in a graph format in Figure 6-1 (this is the same information, but it shows at
a glance the distribution by transaction types).

Figure 6-1 Totals by type

� Transaction types and totals without binds and unbinds

Because binds and unbinds can skew the average transaction rate (they are normally low
overhead operations and if the directory is serving as an authentication engine, they can
hide issues with other transaction types). Refer to Table 6-2.

Transaction types and totals

Operation Count Average (ms)

Binds 6 1

Unbinds 6 0

Searches 41406 183

Adds 0 0

Deletes 0 0

Modifies 914 35

Totals 42332 180
Chapter 6. Tools and scripts 43

Table 6-2 Totals by type (without unbinds and binds)

This is shown in a graph format in Figure 6-2 (this is the same information, but it shows at
a glance the distribution by transaction types).

Figure 6-2 Totals by type (without unbinds and binds)

� Distribution by time (all transaction types)

This chart in Figure 6-3 shows by transaction count the number of transactions that are
completed within a given time frame. Looking at the chart, you can see that while the
overall transaction time average is 183 ms, the majority of transactions completed in 10
ms or less. It was 377 transactions pulling back the entire object tree that drove the
average to 183 ms.

Figure 6-3 Distribution by time

Transaction types and totals

Operation Count Average (ms)

Searches 41406 183

Adds 0 0

Deletes 0 0

Modifies 914 35

Totals 42332 180
44 Performance Tuning for IBM Tivoli Directory Server

Bind summary
The bind summary section provides a breakdown of the quantity and distribution by time of
the bind transactions found within the audit log.

� Bind distribution by time:

The chart in Figure 6-4 shows by transaction count the number of transactions that
completed within a given time frame.

Figure 6-4 Number of transactions that completed within a given time frame

Unbind summary
The unbind summary section provides a breakdown of the quantity and distribution by time of
the unbind transactions found within the audit log.

Add summary
The add summary section provides a breakdown of the quantity and distribution by time of the
add transactions found within the audit log.

The chart in Figure 6-5 shows by transaction count the number of transactions that completed
within a given time frame.

Note: Binds should be very fast low overhead transactions for the directory to process.
Binds that take excessive time (> 5 ms) point to issues with directory load, performance, or
possibly the network communication (for example, very slow or high error rate link).

Note: Unbinds should be very fast low overhead transactions for the directory to process.
Binds that take excessive time (> 5 ms) point to issues with directory load or performance.

Note: Because this audit log had no adds, the chart output defaults to centering a zero
input across the chart. This is not an error.
Chapter 6. Tools and scripts 45

Figure 6-5 Add distribution by time

Search summary
The search summary section provides a breakdown of the quantity and distribution by time of
the search transactions found within the audit log.

The chart in Figure 6-6 shows by transaction count the number of transactions that completed
within a given time frame.

Figure 6-6 Search distribution by time

In addition to the distribution chart, the search section (if searches were included in the audit
log) also shows two additional pieces of information in the output:

� The longest search text

The search query that took the longest time to complete is reproduced in the document to
allow you to evaluate and determine if tuning or client action has to be taken. See
Figure 6-7.

Figure 6-7 Longest search text
46 Performance Tuning for IBM Tivoli Directory Server

� Filter attributes used

A summary of all the attributes used in every search transaction found within the audit log.
This can be useful to determine if indexes have to be built or enabled. See Figure 6-8.

Figure 6-8 Filter attributes used

Delete summary
The delete summary section provides a breakdown of the quantity and distribution by time of
the delete transactions found within the audit log.

The chart in Figure 6-9 shows by transaction count the number of transactions that completed
within a given time frame.

Figure 6-9 Delete distribution by time

Modify summary
The modify summary section provides a breakdown of the quantity and distribution by time of
the modify transactions found within the audit log.

The chart in Figure 6-10 shows by transaction count the number of transactions that
completed within a given time frame.

Note: Because this audit log had no deletes, the chart output defaults to centering a zero
input across the chart. This is not an error.
Chapter 6. Tools and scripts 47

Figure 6-10 Modify distribution by time

6.2 tune_enablemonitor.sh

This script turns on the DB2 monitors in Table 6-3, which you will need running to gather
statistics in the database where you can use the following scripts to read and analyze this
data.

Table 6-3 DB2 monitors

These monitors capture most of what you need and can be left on for long periods of time to
gather data for benchmarking.

With this script, you have to stop and restart DB2 after you run the script. Make sure that
Lightweight Directory Access Protocol (LDAP) is down before running this script. You can
bring LDAP back up after you run this script. You must be the DB2 instance owner to run this
script.

6.3 perftune_enablemonitor_all.sh

This script turns on all of the monitors listed in Table 6-3 along with the one in Table 6-4.

Table 6-4 DB2 monitor

This monitor impacts the performance if it is left running for long periods of time. It should be
turned on only for troubleshooting and checking the tablespace.

Monitor switch DBM parameter Information provided

BUFFERPOOL DFT_MON_BUFPOOL Number of reads and writes, time taken

LOCK DFT_MON_LOCK Lock wait times, deadlocks

SORT DFT_MON_SORT Number of heaps used, sort performance

STATEMENT DFT_MON_STMT Start/stop time, statement identification

UOW (unit of work) DFT_MON_UOW Start/end times, completion status

TIMESTAMP DFT_MON_TIMESTAMP Timestamps

Monitor switch DBM parameter Information provided

TABLE DFT_MON_TABLE Measure of activity (rows read/written)
48 Performance Tuning for IBM Tivoli Directory Server

With this script, you have to stop and restart DB2 after you run the script. Make sure LDAP is
down first before running this script. You can bring LDAP back up after you run this script.
You must be the DB2 instance owner to run this script. Remember that this script includes the
table monitor that will impact the performance if it is left on for long periods of time.

6.4 tune_disablemonitor.sh

This script turns off all the monitors (except timestamps that have to be on all the time to keep
track of events) started with either of the two monitor scripts described in the previous
sections.

With this script, you have to stop and restart DB2 after you run the script. Make sure LDAP is
down before running this script. You can bring LDAP back up after you run this script. You
must be the DB2 instance owner to run this script.

6.5 perfanalyze_indexes.pl

This script is designed to determine if searches against the LDAP server are using filters
against attributes that do not have indexes. It does this by doing the following actions:

� Locating the LDAP schema files by reading them from the ibmslapd.conf file, looking for
the default schema files from a specified directory, reading the schema files to process
from the command line, or reading the schema from the LDAP server directly.

� Processing the LDAP schema files to read all attributes and determining those that have
indexes.

� Processing either an audit log or a dynamic SQL snapshot from the database instance to
determine all attributes being searched against.

� Comparing the searched attributes against the schema attributes.

� Printing a report of the attributes search on and their index status.

Because the script requires the LDAP schema files, it is easiest to run it from the Directory
Server itself. If this is not possible, or not desirable, the user can specify which directory on
the local machine contains the schema files or the schema can be read from a remote server.
If attributes are encountered in the input but were not found in the LDAP schema (usually due
to a missing schema file that the Directory Server is using) the report will mention this fact, but
will be unable to determine the index status of these attributes.

Not every searched attribute needs an index. Indexes create additional work for DB2 when
inserting or modifying entries with indexed attributes. Attributes that are searched on very
rarely might not benefit from being indexed given the overhead required to maintain them.
The script attempts to include the number of times the attribute was searched on if available
to aid in the evaluation if an index is necessary.

6.5.1 Usage

Invoking the script with the “-h” option produces an output with the following usage
information:

perfanalyze_indexes.pl [-c confFile | -d schemaDir | -s schemaFiles -r
[remoteHost] [-i inputFile] [-o outputFile] [-a]
Chapter 6. Tools and scripts 49

� Schema options:

-c Fully qualified path name to ibmslapd.conf file
-d Directory where schema files are located
-s Semicolon separated list of schema files (no spaces)
-r Remote host to pull schema from

� Other options:

-i File containing dynamic SQL statements or audit log for processing
-o File to put the processed results in, default is STDOUT
-a Print all attributes searched on, not just un-indexed ones

6.5.2 Examples

Use the following script to analyze indexes from an audit log in the current directory based on
the schema pulled from the ibmslapd.conf file on a Windows platform. The -a option shows all
attributes, not just un-indexed ones:

perfanlayze_indexes.pl -c "c:/program files/ibm/ldap/etc/ibmslapd.conf" -i
audit.log -a

To analyze indexes from a dynamic SQL snapshot with the default schema files in a given
directory but include a custom file as well:

perfanlayze_indexes.pl -d /usr/ldap/etc -s /usr/ldap/etc/custom.schema -i
idsdb2.snapshot

To analyze indexes from an audit log based on a schema from a remote machine:

perfanlayze_indexes.pl -r ldapserver -i audit.log

6.6 perfanalyze_audit.pl

This script is designed to find metadata from information in an audit log such as what queries
occur most frequently and how long queries take. It can do this for either the full query with
the searched on values or in a fuzzy method where the attributes are retained but the value
searched on is discarded. The fuzzy method is useful for determining what kind of filter
queries are being used regardless of the values for attributes in the filter.

Use this script to determine which LDAP queries are taking the longest, possibly from missing
indexes. Use this in conjunction with the perfanalyze_indexes.pl script to locate and index
attributes used in long-running LDAP queries.

6.6.1 Usage

Invoking the script with the “-h” option produces an output with the following usage
information:

perfscripts-devel/perfanalyze_audit.pl [-i inputFile] [-o outputFile] [-f
filterMethod] [-t [-c cutOff] | -g | -s | -d | -b | -p | -m timeFrame]

Note: Use UNIX-style slashes for all files and directories, even if on Windows. If no
arguments are given, the program will read input from STDIN.
50 Performance Tuning for IBM Tivoli Directory Server

� Filter options:

-f Filter method; the following options are valid:
all All filters, do not collect similar filters
fuzzy Use fuzzy filters (for example, no attribute values), default
full Use full filters

� Output options:

-t Show search filter timings

-d Show search distribution timings

-s Show transaction summary

-g Show search filter frequencies

-m Show time-interval stats, timeFrame is one of: second, minute, hour,
day, month

-c Statements longer than this time are not included in timings report,
default is 0.1

-b Show search bases

-p Show search scopes

� Other options:

-h Displays this help information
-i File containing log for processing
-o File to put the processed results in, default is STDOUT

If no inputFile is given, the program will read input from STDIN.

6.6.2 Examples

To see what queries are taking a long time to run regardless of the values in the filter (for
example, fuzzy):

perfanlayze_audit.pl -i audit.log -f fuzzy

To see what queries are taking a long time to run including the values in the filter (for
example, full):

perfanlayze_audit.pl -i audit.log -f full

To see the frequency of queries in the log:

perfanlayze_audit.pl -i audit.log -g

To see all queries and a transaction summary:

perfanlayze_audit.pl -i audit.log -s -f all

6.7 perfanalyze_dynamicsql.pl

This script is designed to locate slow queries from a dynamic SQL database snapshot. The
dynamic SQL snapshot shows how long a query takes to execute in aggregate form. This is
less meaningful from a response-time perspective than how long each individual query took
to execute. This script provides a list of queries sorted by the execution time and the number
of times those queries were executed. Long-running queries that are seen very infrequently
are generally less of a problem than longish queries that are seen frequently.
Chapter 6. Tools and scripts 51

Use this script to determine which LDAP queries are taking the longest, possibly from missing
indexes. Use this in conjunction with the perfanalyze_indexes.pl script to locate and index
attributes used in long-running LDAP queries.

Because SQL queries can be long, the printed report is truncated for the screen. To view the
entire query (or to change the length of the SQL reported), use the -t option. A zero -t value
results in the query being printed in full.

By default, only the queries taking longer than 0.1 seconds are shown. To change the cut-off
value, use the -c option. A zero -c value results in all queries being printed.

If run on a UNIX machine as the database owner, the script can pull the dynamic SQL
snapshot itself using the -d flag. If you want to retain this snapshot, use the -s flag as well.

6.7.1 Usage

Invoking the script with the “-h” option produces an output with the following usage
information:

perfanalyze_dynamicsql.pl [-i inputFile | [-d databaseName | -s]] [-o outputFile]

-i File containing dynamic SQL statements for processing

-d Database name to get dynamic SQL statements from directly

-s If given the temporary file with the dynamic SQL will be saved

-o File to put the processed results in, default is STDOUT

-t Length to truncate statement at, default is 90 characters; 0 = do not truncate

-c Time cut-off; statements longer than this time are not included, default is 0.1

-r Column to sort by, default is secPerExec

-n Include queries that have no statistics information

-w Include the number of rows written

If no arguments are given, the program will read input from STDIN.

6.7.2 Examples

To get a list of queries sorted by execution time:

perfanlayze_dynamicsql.pl -i idsdb2.snapshot

To view all queries regardless of execution time:

perfanlayze_dynamicsql.pl -i idsdb2.snapshot -c0

To view the full SQL for queries taking longer than 0.01 seconds:

perfanlayze_dynamicsql.pl -i idsdb2.snapshot -c0.01 -t0

6.8 perfanalyze_database.pl

This script is designed to parse and report on the database by analyzing database and/or
buffer pool snapshots and producing statistical information to stdout and a file. Maximizing
the hit ratio on the buffer pools provides a tremendous increase in performance of the
database (to the extent possible). Using this script enables you to determine what hit ratio is
52 Performance Tuning for IBM Tivoli Directory Server

currently being seen and what impact increasing buffer pools has on it. The ultimate goal is to
obtain a ratio of 99% on all buffer pool hits.

If run on a UNIX machine as the database owner, the script can pull the snapshots directly
using the -d flag. If you want to retain this snapshot, use the -s flag as well.

6.8.1 Usage

Invoking the script with the “-h” option produces an output with the following usage
information:

Usage: $0 [-i inputFile | [-d databaseName | -s]] [-o outputFile]

-i File containing snapshot for processing

-d Database name to get snapshot from directly

-s If given the temporary file with the snapshot will be saved

-o File to put the processed results in, default is STDOUT

If no arguments are given, the program will read input from STDIN.

6.8.2 Examples

To get a report from a database snapshot file:

perfanlayze_database.pl -i idsdb2.snapshot

To get a report directly from the database:

perfanlayze_database.pl -d DATABASENAME

To save the report (either from a file or from the database directly):

perfanlayze_database.pl -i idsdb2.snapshot -s -o SAVEFILENAME

6.9 perfanalyze_tables.pl

This script is designed to parse and report on DB2 table information. The information returned
includes rows read, written, overflows, and page reorgs.

If run on a UNIX machine as the database owner, the script can pull the snapshots directly
using the -d flag. If you want to retain this snapshot, use the -s flag as well.

6.9.1 Usage

Invoking the script with the “-h” option produces an output with the following usage information:

Usage: $0 [-i inputFile | [-d databaseName | -s]] [-o outputFile]

-i File containing snapshot for processing

-d Database name to get snapshot from database directly

-s If given the temporary file with the snapshot will be saved

-o File to put the processed results in, default is STDOUT

-r Column to sort by, default is rowsRead

If no arguments are given, the program will read input from STDIN.
Chapter 6. Tools and scripts 53

6.9.2 Examples

To get a report from a database snapshot file:

perfanlayze_tables.pl -i idsdb2table.snapshot

To get a report directly from the database:

perfanlayze_tables.pl -d DATABASENAME

To save the report (either from a file or from the database directly):

perfanlayze_tables.pl -i idsdb2table.snapshot -s -o SAVEFILENAME
54 Performance Tuning for IBM Tivoli Directory Server

Chapter 7. RUNSTATS: Why you have to run
this

DB2 uses a sophisticated set of algorithms to optimize the access to data stored in a
database. These algorithms depend upon many factors, including the organization of the data
in the database, and the distribution of that data in each table. Distribution of data is
represented by a set of statistics maintained by the database manager.

In addition, IBM Tivoli Directory Server creates a number of indexes for tables in the
database. These indexes are used to minimize the data accessed in order to locate a
particular row in a table.

In a read-only environment, the distribution of the data changes very little. However, with the
environment that has a large number of updates and additions to the database on a daily
basis, it is common for the distribution of the data to change significantly. Similarly, it is quite
possible for data in tables to become ordered in an inefficient manner.

To remedy these situations, we have provided for you a script that can help optimize the
access to data by updating the statistics and to reorganize the data within the tables of the
database. The script is called tune_runstats.sh, and it is covered in 7.2, “How to use
tune_runstats.sh” on page 57. This script can be set up with a cron job to run every night if
you have a high rate of changes to your database, or weekly if you have a low rate of
changes. This script can be executed with Lightweight Directory Access Protocol (LDAP) up
and running. It will be good to run the script at least once a month with LDAP shut down and
restart. This should clean out any index issues.

Along with running tune_runstats.sh, there will be times when just running this script will not
give you all the performance that you should be getting. This is the time when you have to run
a procedure called DB2 Reorg, which we cover in more detail in Chapter 8, “REORG: When
and how you should run this” on page 59.

7

© Copyright IBM Corp. 2007. All rights reserved. 55

7.1 Optimization

The optimizer uses the catalog tables from a database to obtain information about the
database, the amount of data in it, and other characteristics, and uses this information to
choose the best way to access the data. If current statistics are not available, the optimizer
might choose an inefficient access plan based on inaccurate default statistics.

Optimizing the database updates the statistics related to the data tables, which improves
performance and query speed. Optimizing the database periodically or after heavy database
updates by tuning the organization of the data in DB2 by using the tune_runstats.sh and
reorg commands are very important for optimal performance.

The tune_runstats.sh command updates statistical information to the DB2 optimizer to
improve performance, and reports statistics on the organization of the database tables.

We use the following options for runstats on a Version 8x of DB2:

� WITH DISTRIBUTION ON ALL COLUMNS AND SAMPLED DETAILED INDEXES ALL

This statement breaks down to the following:

– Distribution Clause: WITH DISTRIBUTION
– On Dist Cols Clause: ON ALL COLUMNS
– Index Clause: SAMPLED DETAILED INDEXES ALL

� AND INDEXES

Collects and updates statistics for both the table and the indexes.

� SAMPLED

This option, when used with the DETAILED option, allows RUNSTATS to employ a CPU
sampling technique when compiling the extended index statistics. If the option is not
specified, every entry in the index is examined to compute the extended index statistics. If
the directory is large, most tables in the directory are also large, therefore the SAMPLED
option must be used or runstats will take too long. However, some tables might be small.
For small tables, it might be best not to use SAMPLED, as it gives inaccurate information.

� ON ALL COLUMNS

Statistics collection can be done on some columns and not on others. Columns such as
LONG VARCHAR or CLOB columns are ineligible. If it is required to collect statistics on all
eligible columns, you can use the ON ALL COLUMNS clause. Columns can be specified
either for basic statistics collection (on-cols-clause) or in conjunction with the WITH
DISTRIBUTION clause (on-dist-cols-clause). The ON ALL COLUMNS specification is the
default option if neither of the column-specific clauses is specified.

If it is specified in the on-cols-clause, all columns will have only basic column statistics
collected unless specific columns are chosen as part of the WITH DISTRIBUTION clause.
Those columns specified as part of the WITH DISTRIBUTION clause will also have basic
and distribution statistics collected.

If the WITH DISTRIBUTION ON ALL COLUMNS is specified, both basic statistics and
distribution statistics are collected for all eligible columns. Anything specified in the
on-cols-clause is redundant and therefore not necessary.

We have included a reorgchk within the tune_runstats.sh to print out an output of the status
of each of the tables and indexes.
56 Performance Tuning for IBM Tivoli Directory Server

We use the following options for reorgchk:

� CURRENT STATISTICS ON TABLE ALL

 This statement breaks down to the following:

– CURRENT STATISTICS: Uses the current table statistics to determine if table
reorganization is required.

– ON TABLE

• USER: Checks the tables that are owned by the runtime authorization ID.

• SYSTEM: Checks the system tables.

• ALL: Checks all user and system tables.

7.2 How to use tune_runstats.sh

To use tune_runstats.sh:

1. Update the DB2 statistics to improve runtime performance on all LDAP servers.

su - ldapdb2
$./tune_runstats.sh
exit

This keeps the updates current with DB2 and improves the database performance. The
LDAP replication process does not include the propagation of database optimizations,
therefore it requires you to run this on each of the LDAP servers you have.

2. Recycle the LDAP process each week on all LDAP servers, to update all indexes.

a. Find the pid process for slapd and kill the process.

b. Make sure the slapd process is not running.

su - ldapdb2
$./tune_runstats.sh
$ exit

c. Start the slapd process back up:

$ slapd
Chapter 7. RUNSTATS: Why you have to run this 57

58 Performance Tuning for IBM Tivoli Directory Server

Chapter 8. REORG: When and how you
should run this

The reorg command, using the data generated by tune_runstats.sh, reorganizes
tablespaces to improve access performance and reorganizes indexes so that they are more
efficiently clustered. The tune_runstats.sh (covered in 7.2, “How to use tune_runstats.sh” on
page 57) and reorg commands can improve both search and update operation performance.

8

© Copyright IBM Corp. 2007. All rights reserved. 59

8.1 Performing a reorg as required

After you have generated organizational information about the database using
tune_runstats.sh for reorganization, reorg finds the necessary tables and indexes and
attempts to reorganize them. This can take a long time. The time it takes to perform the
reorganization process increases as the DB2 database size increases. This step is done if
tune_runstats.sh does not get the required results.

In general, reorganizing a table takes more time than updating statistics. You should update
statistics first, and only perform reorgs on specific tables if the performance is still not as
expected. Therefore, performance might be improved significantly by updating statistics first.

If you notice that your performance is not improving after running tune_runstats.sh and you
can trend this, then this is a good time to plan for doing some reorgs of tables and maybe
some indexes as needed in a maintenance window. Then rerun the tune_runstats.sh after
you finish your reorgs (this is a requirement to update the statistics and set the cardinality
back that gets reset when you do a reorg).

� Check if you have the last /tmp/tune_runstats.log from the last time you ran
tune_runstats.sh on your Lightweight Directory Access Protocol (LDAP) server. If you do
not have this, you will have to rerun the tune_runstats.sh to have this output log.

� The tune_runstats.log report has two sections. The first section is the table information
and the second section is the indexes. An asterisk in the last column indicates a possible
need for reorganization.

8.1.1 Reorg a table

To reorganize the tables with an asterisk in the last column, issue the DB2 command, as
shown in the following steps:

1. Find the pid process for slapd and kill the process.

2. Make sure the slapd process is not running.

3. Execute the following commands to reorg a table.

su - ldapdb2
db2 connect to ldapdb2
db2 reorg table <table_name>

4. After all reorgs are done, run the following script (required):

su - ldapdb2
$./tune_runstats.sh
$ exit

5. Start the slapd process back up.

$ ibmslapd

<table_name> specifies the name of the table to be reorganized. Take a look at our
example below.

su - ldapdb2
db2 connect to ldapdb2
db2 reorg table LDAPDB2.IFMIT
db2 reorg table LDAPDB2.IFMIURL
db2 reorg table LDAPDB2.INSTALLDATE
60 Performance Tuning for IBM Tivoli Directory Server

8.1.2 Reorg an index

To reorganize database indexes with an asterisk in the last column, issue the following DB2
command:

1. Find the pid process for slapd and kill the process.

2. Make sure the slapd process is not running.

3. Run the following commands to reorg a table.

su - ldapdb2
db2 connect to ldapdb2
db2 reorg table <table_name> index <index_name>

4. After all reorgs are done, run the following script (required):

su - ldapdb2
$./tune_runstats.sh
$ exit

5. Start the slapd process back up.

$ ibmslapd

<table_name> specifies the name of the table and the <index_name> is the name of the
index of that table that will be reorganized. To get the <index_name>: Take the two names
of the index that are right next to each other and take out the space between them and put
in a “.” so that it looks like the following:

Before:

Table: LDAPDB2.TELEPHONENUMBER
LDAPDB2 RTELEPHONENUMBER

After:

LDAPDB2.TELEPHONENUMBER = <tabel_name>
LDAPDB2.RTELEPHONENUMBER = <index_name>

Based on the example, we use the following commands:

su - ldapdb2
db2 connect to ldapdb2
db2 reorg table LDAPDB2.TELEPHONENUMBER index LDAPDB2.RTELEPHONENUMBER
db2 reorg table LDAPDB2.TELEPHONENUMBER index LDAPDB2.TELEPHONENUMBER
db2 reorg table LDAPDB2.TELEPHONENUMBER index LDAPDB2.TELEPHONENUMBERi

The following three indexes (or any other index not listed here, that might be created in
these three tables) should never have to be reorganized, because you will require a 32 k
temp page area to do it in and it will not buy you anything by doing so. These are the
biggest indexes in the directory that are always changing:

Table: LDAPDB2.LDAP_DESC
LDAPDB2 LDAP_DESC
Table: LDAPDB2.LDAP_ENTRY
LDAPDB2 LDAP_ENTRY
Table: LDAPDB2.OBJECTCLASS
LDAPDB2 OBJECTCLASS

6. Remember that after you do all your reorgs of both tables and/or indexes, you must run
the tune_runstats.sh again before you restart your LDAP. Example 8-1 shows a sample
/tmp/tune_runstats.log.
Chapter 8. REORG: When and how you should run this 61

Example 8-1 Sample tune_runstats.log

Table statistics:

F1: 100 * OVERFLOW / CARD < 5
F2: 100 * (Effective Space Utilization of Data Pages) > 70
F3: 100 * (Required Pages / Total Pages) > 80

SCHEMA NAME CARD OV NP FP ACTBLK TSIZE F1 F2 F3 REORG
--
...
Table: LDAPDB2.IFMIT
LDAPDB2 IFMIT 27 0 1 2 - 1269 0 31 50 -**
Table: LDAPDB2.IFMIURL
LDAPDB2 IFMIURL 17 0 2 3 - 4369 0 54 66 -**
Table: LDAPDB2.INSTALLDATE
LDAPDB2 INSTALLDATE 1 0 1 2 - 24 0 0 50 -**
Table: LDAPDB2.ITDSRDBMHISTORY
LDAPDB2 ITDSRDBMHISTORY 4 0 1 1 - 176 0 - 100 ---
Table: LDAPDB2.LAUNCHABLE
LDAPDB2 LAUNCHABLE 26226 0 118 128 - 472068 0 92 92 ---
...
--

Index statistics:

F4: CLUSTERRATIO or normalized CLUSTERFACTOR > 80
F5: 100 * (KEYS * (ISIZE + 9) + (CARD - KEYS) * 5) / ((NLEAF - NUM EMPTY LEAFS -1) *
(INDEXPAGESIZE - 96) > MIN (50, (100- PCTFREE))
F6: (100 - PCTFREE) * (FLOOR [(100 - min (10, pctfree)) / 100 * (indexPageSize - 96) / (ISIZE +
12)] ** (NLEVELS - 2)) * (indexPageSize - 96) / (KEYS * (ISIZE + 9) + (CARD - KEYS) * 5) < 100
F7: 100 * (NUMRIDS DELETED / (NUMRIDS DELETED + CARD)) < 20
F8: 100 * (NUM EMPTY LEAFS / NLEAF) < 20

SCHEMA NAME CARD LEAF ELEAF LVLS ISIZE NDEL KEYS F4 F5 F6 F7 F8 REORG
--
...
Table: LDAPDB2.TARGETSERVICE
LDAPDB2 RTARGETSERVICE 26226 233 0 3 21 3 26226 95 84 49 0 0 -----
LDAPDB2 TARGETSERVICE 26226 233 0 3 21 3 26226 95 84 49 0 0 -----
LDAPDB2 TARGETSERVICEI 26226 95 0 2 4 3 26226 100 90 1 0 0 -----
Table: LDAPDB2.TELEPHONENUMBER
LDAPDB2 RTELEPHONENUMBER 1 1 0 1 15 1 1 100 - - 50 0 ---*-
LDAPDB2 TELEPHONENUMBER 1 1 0 1 15 1 1 100 - - 50 0 ---*-
LDAPDB2 TELEPHONENUMBERI 1 1 0 1 4 8 1 100 - - 88 0 ---*-
...

CLUSTERRATIO or normalized CLUSTERFACTOR (F4) indicates REORG is necessary for
indexes that are not in the same sequence as the base table. When multiple indexes are
defined on a table, one or more indexes might be flagged as needing REORG. Specify the
most important index for REORG sequencing.

Tables defined using the ORGANIZE BY clause and the corresponding dimension indexes
have a '*' suffix to their names. The cardinality of a dimension index is equal to the active
blocks statistic of the table.
62 Performance Tuning for IBM Tivoli Directory Server

Chapter 9. LDAP searches and slow
operations

In this chapter, we discuss how to improve LDAP searches and also how to identify
operations that are slow.

9

© Copyright IBM Corp. 2007. All rights reserved. 63

9.1 Improving LDAP searches

Some LDAP searches are inherently slow and expensive. Consider:

ldapsearch -b o=everything cn=*smith*

DB2 does not do full text indexing. As a result, there is no way to resolve this search without
doing a table scan for the CN table, which is very slow. This is not true for single wildcards
such as cn=*smith or cn=smith*. Double wildcard searches are slow. Consider:

ldapsearch -b o=everything (&(!(cn=smith))(!(deleted=*)))

Searches with NOT clauses are slow. Recent fix packs for IBM Tivoli Directory Server include
a fix for many such searches by substituting an SQL NOT EXISTS clause for the SQL NOT
clause. However, it does not fix compound NOT statements such as the one above.
Consider:

ldapsearch -b o=everything objectclass=person

This search might retrieve millions of entries. Searches with very large result sets are always
slow.

Another search shows a related issue:

ldapsearch -b o=everything
(|(objectclass=widgets)(|(objectclass=gadgets)(objectclass=whozits)))

This search has the unfortunate characteristic that it references the object class table three
times. References to the object class table should be avoided whenever possible. Assume
that you can identify the same result set with the following search:

ldapsearch -b o=everything
(|(partType=widget)(|(partType=gadget)(partType=whozit)))

This search is much faster (provided that partType is indexed) because the partType table,
like the table for every attribute type, is much smaller than the object class table. The search
clause (objectclass=*) is free of cost. The directory recognizes that every entry satisfies this
filter, therefore it generates no SQL for this clause. The search clause (objectclass=top) is
expensive, although it returns the same result set. Tivoli Directory Server generates SQL for
this clause, which is expensive to evaluate.

Simple searches that contain few Boolean clauses are always faster than complex searches.
Therefore, it is always best to use the simplest search that provides a given result set.
However, there is no performance advantage to be gained by reordering the clauses in a
search filter. DB2 chooses the best order automatically.

Every attribute type that is used in a search filter should be indexed. If the table is not
indexed, the search will force a table scan, which is always bad in large directories.

In some cases, a complex and slow search can be replaced by a simple search that returns a
slightly larger result set. The extra entries can be filtered out on the application side. Consider
the search:

ldapsearch -b ou=verySmall, o=everything (&(!(deleted=*))(!(suspended=*)))

If very few entries have values for the deleted and suspended attributes, then it is much faster
to filter them out on the application side.
64 Performance Tuning for IBM Tivoli Directory Server

Tivoli Directory Server supports alias dereferencing so that entries in the directory might be
known by several names. Alias dereferencing is always slow. Aliases should not be used in
large directories, and alias dereferencing should be turned off in the directory.

9.2 Identifying slow operations

It can be helpful to recognize which operations are slow. In some cases, it might be possible
to change the applications or workload to reduce slow operations. In other cases, the
directory can be tuned to speed up these operations, for example, by indexing an attribute
type used in a search filter.

To identify slow operations, you should run the audit log, logging all operations. The audit log
records data for each operation, with timestamps for both the request and response. By
comparing the timestamps, you can identify the particular operations that are slow.
Example 9-1 shows a sample of audit log data with response times.

Example 9-1 Audit log data

AuditV2--2005-09-15-05:50:33.399-06:00DST--V3 Search--bindDN: cn=Directory
Manager--client: 10.33.20.33:21496--connectionID: 17--received:
2005-09-15-05:50:33.398-06:00DST--Success
base: o=acme
scope: singleLevel
derefAliases: derefAlways
typesOnly: false
filter: (objectclass=ERTENANT)

This search is almost instantaneous, at roughly a millisecond. However the following search,
shown in Example 9-2, takes almost 7 seconds.

Example 9-2 Audit log data

AuditV2--2005-09-15-07:21:55.052-06:00DST--V3 Search--bindDN: cn=Directory
Manager--client: 10.33.20.34:1411--connectionID: 2--received:
2005-09-15-07:21:48.135-06:00DST--Success
base: ou=acme, o=acme
scope: wholeSubtree
derefAliases: derefAlways
typesOnly: false
filter: (&(!(erisdeleted=Y))(namingcontexts=DC=HRLOAD)(objectclass=ERSERVICEITEM))

Any search taking over 100 milliseconds is a problem search and should be corrected. In
many cases, appropriate tuning, such as a change to the indexes, will correct the problem. In
a few cases, a change within the application might be required (the 7-second search above is
corrected by the latest IBM Tivoli Directory Server fix pack, which improves the SQL for
searches with NOT clauses).
Chapter 9. LDAP searches and slow operations 65

66 Performance Tuning for IBM Tivoli Directory Server

Chapter 10. Indexes and direct I/O

In this chapter, we provide an overview of indexes and direct I/O.

10
© Copyright IBM Corp. 2007. All rights reserved. 67

10.1 Indexes explained

Attributes within the directory can be indexed. In general, if an attribute is used frequently in a
search filter, it should be indexed. Some attributes, such as UID and object class, are always
indexed. Different kinds of indexes can be created, depending on how the attribute type is
used in the search:

myAttribute=* Index the attribute type for Equality

myAttribute=blue Index the attribute type for Equality

(!(myAttribute=blue)) Index the attribute type for Equality

myAttribute>=5 or

myAttribute<=5 Index the attribute type for Ordering

myAttribute=start* Index the attribute type for Substring

myAttribute=*end Index the attribute type for Reverse

myAttribute~=blew Index the attribute type for Approximate

The index that gets created for Approximate can be very large.
Approximate searches are very rarely used in Lightweight Directory
Access Protocol (LDAP), therefore this index is rarely needed.

For any attribute type, you can specify a combination of these indexes. Sometimes a sort
control is specified so that entries can be returned in sorted order. Each attribute that is used
in a sort control should be indexed for ordering. Binary attributes, such as jpeg photographs,
cannot be used in search filters and cannot be indexed.

Do not specify indexes for attributes unless those attributes are used in search filters or sort
controls. The additional indexes add to the size of the directory and slow adds, modifies, and
deletes for the corresponding entries. Instructions for creating or deleting indexes are
provided in the “Working with attributes” section of the IBM Tivoli Directory Server
Administration Guide Version 6.0, SC32-1674.

10.1.1 Optimizing indexes using DB2 commands

DB2 indexing for LDAP is evolving. We have learned several ways to improve the indexes
that are created. The LDAP directory automatically creates indexes as follows:

db2 CREATE INDEX "LDAPDB2 "."LDAP_DESC_AEID" ON "LDAPDB2 "."LDAP_DESC" ("DEID"
ASC,"AEID" ASC)

We have learned that it is better to create the indexes with ALLOW REVERSE SCANS and
MINPCTUSED 10 as follows:

db2 connect to ldapdb2
db2 drop INDEX "LDAPDB2 "."LDAP_DESC_DEID"
db2 commit
db2 CREATE INDEX "LDAPDB2 "."LDAP_DESC_DEID" ON "LDAPDB2 "."LDAP_DESC" ("AEID"
ASC,"DEID" ASC) MINPCTUSED 10 ALLOW REVERSE SCANS
db2 commit
68 Performance Tuning for IBM Tivoli Directory Server

The option ALLOW REVERSE SCANS can speed search times. The option
MINPCTUSED 10 dynamically reorganizes the index so that sparsely filled consecutive
pages are combined. This minimizes the need to do reorgs on the index and keeps
performance good, as directory updates progress. This optimization can be made for all the
LDAPDB2 indexes. You can list all of them by name using the statement:

db2 connect to ldapdb2
db2 select TABNAME,INDNAME,COLNAMES,UNIQUERULE where USER_DEFINED=1

For a few indexes, it might also make sense to set the uniqueness rule as follows:

CREATE UNIQUE INDEX LDAPDB2.LDAP_ENTRY_PEID2 ON LDAPDB2.LDAP_ENTRY (PEID ASC, EID
ASC) PCTFREE 10 MINPCTUSED 10 ALLOW REVERSE SCANS;

The uniqueness rule must be used with care. For example, if you want to find all entries with
a given attribute value and there are multiple entries with the same attribute value, this rule
must not be used, because the resulting index finds only one of the entries. Each entry has a
unique parent ID, however, therefore setting uniqueness on the parent ID index makes
sense.

Do not change these indexes, unless you know what you are doing.

10.1.2 Optimizing searches using DB2 explain

Assume that the audit log shows a long search time. Assume further that each of the
attributes referenced in the search filter is indexed. It might be difficult to determine why the
search is slow, but DB2 provides two useful facilities, the DB2 snapshot and the DB2 explain
commands.

To get a useful snapshot, you can use the following series of commands. Here it is assumed
that ldapdb2 is the name of the DB2 instance and database name. This snapshot must be
taken while the system is under a full test load, so as to catch the problems as they occur.

su - ldapdb2
db2 connect to ldapdb2
db2 update monitor switches using bufferpool on sort on table on
statement on uow on lock on
db2 reset monitor all
< wait 5 minutes >
db2 get snapshot for all on ldapdb2 > snap.out
db2 connect reset

Be aware that the resulting file can be large. In earlier sections, we have described some of
the trouble spots to look for, such as dirty page steal or sort buffer overflows. This report might
also identify particular troublesome statements. A sample output is shown in Example 10-1.

Example 10-1 DB2 monitor output

Number of executions = 163
Number of compilations = 1
Worst preparation time (ms) = 4
Best preparation time (ms) = 2
Internal rows deleted = 0
Internal rows inserted = 0

Note: By applying Tivoli Directory Server 6 Fix Pack 2 before you configure and load your
directory, the following options are added to all table and indexes that are created from that
time onwards: ALLOW REVERSE SCANS and MINPCTUSED 10.
Chapter 10. Indexes and direct I/O 69

Rows read = 0
Internal rows updated = 0
Rows written = 0
Statement sorts = 0
Statement sort overflows = 0
Total sort time = 0
Buffer pool data logical reads = 0
Buffer pool data physical reads = 0
Buffer pool temporary data logical reads = 0
Buffer pool temporary data physical reads = 0
Buffer pool index logical reads = 1660956145
Buffer pool index physical reads = 19
Buffer pool temporary index logical reads = 0
Buffer pool temporary index physical reads = 0
Total execution time (sec.ms) = 14703.064392
Total user cpu time (sec.ms) = 2673.319051
Total system cpu time (sec.ms) = 7.429755
Statement text = SELECT distinct D.DEID FROM LDAPDB2.LDAP_DESC AS D WHERE
D.AEID=? AND D.DEID IN (SELECT EID FROM LDAPDB2.UID) FOR FETCH ONLY

This search shows a total execution time of over 14000 seconds for a statement that is
executed only 163 times. The average execution time is 90 seconds for each search. This is
very high. Relatively few physical reads are occurring, but lots of buffer pool index logical
reads are occurring. DB2 is reading a lot of index data in memory, and this is causing high
CPU consumption and long search times. The snapshot shows the SQL for the troublesome
search, but we can figure out what the original LDAP search was.

We see that LDAP_DESC is used in the SQL. That means it is a subtree search. We see that
the only other table referenced in the search is the UID table. That means that UID is the only
attribute in the search filter. Therefore, the slow search is of the form:

ldapsearch -b <base DN> -s subtree uid=?

The snapshot does not show the specific values of base DN or UID used in the search. This
statement might have been executed many times with different base DN and UID values.
However, we can look in the audit log to see if there is a slow search of this form, and we
might see an example such as:

ldapsearch -b "o=Acme, c=us" -s subtree uid=FSKEY

You can try this search from the command line to duplicate the problem. We now use the
explain statement to understand what might be causing the problem. There are several steps.

1. We create the explain tables as follows.

su - ldapdb2
db2 connect to ldapdb2
db2 -tvf sqllib/misc/EXPLAIN.DDL

2. We create a file, db2sql.txt, with the troublesome SQL.

SELECT distinct D.DEID FROM DBLDP1Z.LDAP_DESC AS D WHERE D.AEID=? AND D.DEID IN
(SELECT EID FROM LDAPDB2.UID) FOR FETCH ONLY;

3. We get the explain data, and format the output in a file.

db2advis -d ldapdb2 -p -i db2sql.txt
db2exfmt -d <dbname> -o <outfile>
70 Performance Tuning for IBM Tivoli Directory Server

The resulting file might look similar to that shown in Example 10-2.

Example 10-2 DB2 example output

DB2 Universal Database Version 8.1, 5622-044 (c) Copyright IBM Corp. 1991, 2002
Licensed Material - Program Property of IBM
IBM DB2 Universal Database SQL Explain Tool

******************** DYNAMIC ***************************************

==================== STATEMENT ==

Isolation Level = Cursor Stability
Blocking = Block Unambiguous Cursors
Query Optimization Class = 5

Partition Parallel = No
Intra-Partition Parallel = No

SQL Path = "SYSIBM", "SYSFUN", "SYSPROC", "LDAPDB2"

SQL Statement:

 select distinct d.deid
 from dbldp1z.ldap_desc as d
 where d.aeid=133333 and d.deid in (
 select d.deid
 from ldapdb2.uid)
 for
 fetch only

Section Code Page = 1208

Estimated Cost = 2832063.750000
Estimated Cardinality = 1088279.000000

Access Table Name = LDAPDB2.LDAP_DESC ID = 3,4
| Index Scan: Name = LDADB2.LDAP_DESC_DEID ID = 2
| | Regular Index (Not Clustered)
| | Index Columns:
| | | 1: AEID (Ascending)
| | | 2: DEID (Ascending)
| #Columns = 1
| #Key Columns = 2
| | Start Key: Inclusive Value
| | | | 1: 133333
| | Stop Key: Exclusive Value
| | | | 1: 133333
| | | | 2: NULL
| Index-Only Access
| Index Prefetch: None
| Lock Intents
| | Table: Intent Share
| | Row : Next Key Share
Chapter 10. Indexes and direct I/O 71

Nested Loop Join
| Access Table Name = LDAPDB2.UID ID = 3,791
| | Index Scan: Name = LDAPDB2.UIDI ID = 1
| | | Regular Index (Not Clustered)
| | | Index Columns:
| | | | 1: EID (Ascending)
| | #Columns = 0
| | Single Record
| | #Key Columns = 0
| | | Start Key: Beginning of Index
| | | Stop Key: End of Index
| | Index-Only Access
| | Index Prefetch: Eligible 9942
| | Lock Intents
| | | Table: Intent Share
| | | Row : Next Key Share
Distinct Filter #Columns = 1
Return Data to Application
| #Columns = 1

End of section

Optimizer Plan:

RETURN
(1)
 |
UNIQUE
(2)
 |
NLJOIN
(3)

/-----/ \-----\
IXSCAN IXSCAN
(4) (3)
/ \ / \

 Index: Table: Index: Table:
 LDAPDB2 LDAPDB2 LDAPDB2 LDAPDB2
LDAP_DESC_DEID LDAP_DESC UIDI UID

When executing the query plan, DB2 starts at the bottom left. Therefore, it finds all
descendants of the given search base DN. Then it checks each one (NLJOIN stands for
nested loop join) to see if the UID matches. This is a very poor way to perform this search,
because there are many entries under the specified base DN. A much better way is to find the
matching UID first, and then to check the descendant table to make sure that the returned
entry is a descendant of the base DN. How do we make it do this? The first step is to run
runstats on both of the tables. This might correct the query plan, because the cardinality of
the UID table should be much smaller than the cardinality of the descendant table. We also
see a curiosity here: LDAP_DESC_DEID has been defined, but it has been defined with
columns AEID, DEID. It should be defined with columns DEID, AEID. Therefore, we fix the
index and run runstats once more. Then we check to see if the response time for this search
is fast, and we get the explain data again if it is not.
72 Performance Tuning for IBM Tivoli Directory Server

If these steps do not suffice to fix the query plan, we might want to set LDAP_MAXCARD ON.
This causes the query optimizer to defer referencing LDAP_DESC until the last step,
therefore it will definitely fix the query plan for this search. But LDAP_MAXCARD can have
side effects for other searches, therefore we have to test the effect on all searches to see if
the net effect on the given workload is positive.

10.2 Direct I/O

By default, on all operating systems for which Tivoli Directory Server is available, reads and
writes are buffered by the file system. An assumption of file system design is that, the same
block is often read several times in a given time interval so that file system caching reduces
the number of physical disk reads. However, file system buffering does not help DB2 reads
from the tablespaces. All DB2 reads and writes to tablespaces are handled as memory
mapped I/O within DB2, and are buffered in the DB2 buffer pools. This makes file system
buffering redundant, therefore it should be turned off. There are several ways to do this. If raw
database-managed storage (DMS) containers for the tablespaces are used, I/O is always
direct to disk. However, DMS containers should not be used for large directories because,
within a DMS container, no table can be over 64 GB. A directory with millions of entries might
have tables that are larger than this. System-managed storage (SMS) containers should
always be used for very large directories. Most of the advantages of DMS containers and
direct I/O can be realized by disabling file system buffering as follows.

db2 alter tablespace userspace1 NO FILE SYSTEM CACHING
db2 alter tablespace LDAPSPACE NO FILE SYSTEM CACHING

These commands should be executed before starting the server. The principal advantage is
that CPU consumed in reads is reduced by roughly 30%. There is little effect on write loads. If
file system caching was not turned off when the tablespace was created, you can do this by
running the db2_tunings.sh when pre-tuning the DB2 database, when installing the
Lightweight Directory Access Protocol (LDAP) instance. If you created your DB2 instances by
DMS and used different names for these tablespaces, you have to change the names so that
they match in this script also.

For some operating systems, an additional option is available to boost disk writes. AIX with
JFS2 supports concurrent I/O. When the NO FILE SYSTEM CACHING option is used on a
tablespace on an AIX JFS2 file system, concurrent I/O is enabled. Concurrent I/O can also be
enabled on the level of the file system using the -cio option on the mount command.

mount -o cio <file system name>

This option uses direct I/O implicitly.

On Linux®, if you are using the 2.6 kernel or later, you can enable asynchronous I/O as
follows:

1. Stop the directory.

2. Stop the database.

3. Issue this command.

db2set DB2NOLIOAIO=false

The database and directory can then be restarted. In general, this approach is more
complicated than using NO FILE SYSTEM CACHING, therefore NO FILE SYSTEM
CACHING is preferable.
Chapter 10. Indexes and direct I/O 73

74 Performance Tuning for IBM Tivoli Directory Server

Chapter 11. Disk striping and RAID

Using disk striping, the storage-array hardware can read and write to multiple disks
simultaneously and independently. By allowing several read/write heads to work on the same
task at once, disk striping can enhance performance. The amount of information read from or
written to each disk makes up the stripe element size. The stripe size is the stripe element
size multiplied by the number of disks in a group minus one. For example, assume that a
stripe element size of 64 sectors and each sector is 512 bytes. If the group has five disks, the
stripe size will be the element size, 64 sectors, times four disks, or 256 sectors, which equals
128 KB. The recommended disk striping configuration is shown in Figure 11-1.

Figure 11-1 Disk striping

11
© Copyright IBM Corp. 2007. All rights reserved. 75

11.1 Considerations for RAID arrays

Large directories are frequently constrained by I/O speeds. This constraint can be relieved by
spreading the I/O over multiple spindles, for example, in a Redundant Array of Independent
Disks (RAID) array. RAID arrays have other advantages in that they provide very high
availability and the ability to use volume snapshots and similar means for fast backup and
restore of the database.

The best practices for use of RAID are described in the section “Optimizing tablespace
performance when data is on RAID devices” in the “Planning” section of the IBM DB2
Universal Database Administration Guide: Planning Version 8, SC09-4822. Here are some
key points:

� The DB2 transaction log should be on a different physical disk than the tablespaces.

� Either RAID 1 or RAID 5 can be used for tablespaces. RAID 1 should be used for the
transaction log.

� A tablespace might span multiple physical disks, but it should be mounted as a single
virtual disk. The RAID system provides the required parallelism. Multiple virtual disks
(containers) for the tablespace slow the throughput by randomizing the I/O.
DB2_PARALLEL_IO should be enabled.

� Make the EXTENTSIZE of the tablespace equal to, or a multiple of, the RAID stripe size.
For LDAP, DB2 has a default extent size of 32 K.

� Ensure that the PREFETCHSIZE of the tablespace is:

– The RAID stripe size multiplied by the number of RAID parallel devices (or a whole
multiple of this product)

And

– A multiple of the EXTENTSIZE.

For LDAP, DB2 has a default prefetch size of 32 K.

� Do not put several highly active databases on the same set of physical disks. Each busy
database should have its own set of physical disks. For example, you should move the
transaction logs to another mount point so that they are not on the same disk as the
database. By default, they reside on the same disk space.

To give adequate performance and minimize disk access contention, it is often necessary to
allocate more physical disks than is required just to store the data. The extra space can be
used to store non-LDAP data that is less frequently accessed.
76 Performance Tuning for IBM Tivoli Directory Server

Chapter 12. Buffer pool settings and sort
buffer overflow

This chapter discusses buffer pool settings and sort heap threshold settings for very large
directories.

12
© Copyright IBM Corp. 2007. All rights reserved. 77

12.1 Adjusting the buffer pool and sort heap threshold settings

For large directories of a million entries or more, it might be necessary to adjust the DB2
buffer pool settings, the sort heap threshold settings, or both these settings. A database
snapshot gives the following information as shown in Table 12-1.

Table 12-1 Database snapshot information

Dirty page steal should be low in a Tivoli Directory Server deployment, by comparison with
other forms of buffer pool cleaning activity. This is very important. If dirty page steal is high,
that is, if more than 5% of the page cleaning triggers is for dirty page steal, then the buffer
pool settings are not large enough. A larger value often means that temporary table allocation
has spilled on to the disk, creating a lot of write activity, which is bad. Sort overflows are also
bad and should be very infrequent. If they occur in more than 0.1% of the sorts, the sort heap
threshold should be increased.

At the same time, it is important not to set these memory values too high. If the total memory
allocated is more than is available, DB2 will arbitrarily set a very low value for the size of the
buffer pools and bad performance will result due to not enough real memory to load the buffer
pools.

You can use the db2_tunings.sh, which is included in the attached scripts, to perform the
above steps. It takes 50% of your real memory and sets it up for DB2 buffer pools and auto
sets up your ioservers and iocleaners to make use of this increase of memory for buffer pools.
This script also sets up your sort heap size along with other important settings. See 3.2,
“db2_tunings.sh” on page 17, for more information. These settings can be raised or lowered
as needed.

Total sorts 1068692

Total sort time (ms) 1271408953

Sort overflows 15

LSN Gap cleaner triggers 11205

Dirty page steal cleaner triggers 99

Dirty page threshold cleaner triggers 0
78 Performance Tuning for IBM Tivoli Directory Server

Chapter 13. Replicas and partitions for
performance

Some Lightweight Directory Access Protocol (LDAP) directories have very high read and
write rates—so high, in fact, that all of this tuning advice will not suffice to give the required
level of throughput for a single database instance. The next step is to load balance read traffic
across multiple replicas. Every Tivoli Directory Server deployment should include multiple
replicas for high availability, so that if one fails, a backup can assume the load. If a single
instance does not suffice to support the required level of read traffic, the read load can be
balanced across multiple instances. Most Ethernet switches now contain a virtual IP function
that can either load balance traffic between servers or fail over traffic from one server to
another. The best policy is to load balance reads and fail over writes. You do not want to load
balance writes because:

� No performance advantage will result as each write must be replicated to every peer
master

� Load balancing writes creates the possibility of update conflicts, where a single entry is
changed on several peer masters concurrently.

13
© Copyright IBM Corp. 2007. All rights reserved. 79

13.1 Distinguishing between LDAP reads and writes

Switches do not include logic to distinguish LDAP reads from writes. There are several ways
to work around this problem. First, you can point all read-only applications to a load balancing
virtual IP address, and all read-write applications to a virtual IP address configured for failover
and not load balancing. Second, you can divide load so that the same entries are not written
on different servers concurrently. For example, you can point all read and write activity for
West Coast entries to one peer master, and all read and write activity for East Coast entries
to another peer, where each fail over to the other. Third, you can use the Tivoli Directory
Server directory proxy, which can distinguish between LDAP reads and writes and can load
balance reads while doing failover for writes.

With Tivoli Directory Server Version 6 and later, replication can now be multi-threaded for any
suffix except cn=ibmpolicies, which can only be single threaded. This is not an issue because
cn=ibmpolicies suffix is only used for schema and password policies updates and does not
have a high usage rate to warrant the need for multi-threading. Multi-threading can be turned
on or off for each suffix per server. By default, all suffix replication is single threaded. If you
find that one of your suffixes is taking too long to replicate and you have already looked at any
network bottlenecks, then turning on multi-threading for that suffix might be what you have to
do. Remember that each server in the replication agreement for that suffix has to be
configured to use multi-threading to get the best results from turning on multi-threading.

Replication gives good scaling for read traffic, but it does not help to scale writes. Every
replica contains all entries, therefore every write goes to each replica. A single instance can
support several hundred of writes a second. Your mileage varies depending on the size of the
write, the number of indexes, the amount of memory, the speed of the machine, and the
speed and type of access to the storage disk and last but not the least, the number of entries
in your database. The key to this is, if you are going to have high write rates along with high
tens of millions of entries in your database, you must partition the directory. A directory is
divided into two or more partitions, each holding a fraction of the data and handling a fraction
of the writes. The Tivoli Directory Server proxy is used to route traffic to the appropriate
partition. All writes and base searches can be routed to a single partition. Most subtree
searches span multiple partitions, but the proxy sends search requests to servers for each
partition and accumulates the results. One main requirement that goes with using partitions is
that, when you decide how many partitions to use and load the data into each partition, you
cannot just add another partition later on without dumping all the data and reloading it all
across all the partitions again. This is due to the fact that decisions on what data goes on
what partition is determined by a number of factors such as the number of partitions that will
be used and the hash process being used. A lot of planning has to be put in place to design
an enclave that will be using partitions.

A few applications, such as the Tivoli Identity Manager, require high data consistency. LDAP
has a loose consistency data model, which means that a write operation returns a completion
response to the calling application before the update has been replicated to all replicas. If an
entry is written and immediately read in a replicated environment with load balancing, the
read might go to a different server than the one where the write occurred, and the update
might not yet have been replicated to that server. Applications that require tight consistency
cannot use LDAP load balancing for scaling. However, you can use partitioning to scale
LDAP for these applications because the partitioned image retains tight consistency.
80 Performance Tuning for IBM Tivoli Directory Server

Chapter 14. LDAP replication information

In this chapter, we discuss several tips and hints on the topic of replication. Because
Lightweight Directory Access Protocol (LDAP) replication has become much more powerful in
the las few years, we take some time introducing the different replication terms used
throughout this chapter and paper. After that, we discuss more specific topics.

14
© Copyright IBM Corp. 2007. All rights reserved. 81

14.1 Defining replication terms

The following list describes some of the terms related to replication:

� Definition of replication

– Replication is a technique used by directory servers to improve performance,
availability, and reliability.

– The replication process keeps the data in multiple directory servers synchronized.

� Common reasons for replication

– Redundancy of information
– Replicas back up the content of their supplier servers
– Replicas can be used to maintain a failover capability

� Faster searches

– Search requests can be spread among several different servers instead of a single
server.

– Replica servers can reside in another geographic location, avoiding network delays.

� Security and content filtering

Replicas can contain subsets of the data in a supplier server.

� Relative Distinguished Name (RDN™)

The first component of the distinguished name (DN). For example, if the entry's DN is
cn=John Doe, ou=Test, o=IBM, c=US, the RDN is cn=John Doe.

� Distinguished Name (DN)

The name that uniquely identifies an entry in a directory. A distinguished name is made up
of attribute=value pairs, separated by commas. For example, the entry's DN is cn=John
Doe, ou=Test, o=IBM, c=US.

� Master

– A server that is writable (can be updated) for a given LDAP subtree.
– It is considered a supplier if it sends data to any replicas.

� Replica

– May or may not be writable
– Can also be a master
– Consumes data sent to it by one of more masters (suppliers)
– Contains all or a subset of its suppliers data

� Peer server

The term used for a master server when there are multiple masters for a given subtree. A
peer server does not replicate changes sent to it from another peer server; it only
replicates changes that are originally made on it.

� Forwarding server

A read-only server that replicates all changes sent to it. This contrasts with a peer/master
server in that it is read-only and it can have no peers.

� Gateway server

A server that forwards all replication traffic from the local replication site where it resides to
other gateway servers in the replicating network. Also receives replication traffic from
other gateway servers within the replication network, which it forwards to all servers on its
local replication site. Gateway servers must be masters (writable).
82 Performance Tuning for IBM Tivoli Directory Server

� Consumer

A server that receives changes through replication from another (supplier) server.

� Supplier

A server that sends changes to another (consumer) server.

� Replication context

– Identifies the root of a replicated subtree.

The ibm-replicationContext auxiliary object class can be added to an entry to mark it
as the root of a replicated area. The configuration information related to replication is
maintained in a set of entries created below the base of a replication context.

– Example LDAP Data Interchange Format (LDIF):

dn: o=IBM, c=US
objectclass: top
objectclass: organization
objectclass: ibm-replicationContext
o: IBM
ibm-replicareferralurl: ldap://localhost:389

� Replica group

– The first entry created under a replication context has object class ibm-replicaGroup
and represents a collection of servers participating in replication. It provides a
convenient location to set access control lists (ACLs) to protect the replication topology
information. The administration tools currently support one replica group under each
replication context, named ibm-replicaGroup=default.

– Example LDIF:

dn: ibm-replicaGroup=default, o=ibm, c=us
ibm-replicaGroup: default
objectclass: ibm-replicaGroup
objectclass: top

� Replica subentry

– Below a replica group entry, one or more entries with object class ibm-replicaSubentry
can be created; one for each server participating in replication as a supplier. The
replica subentry identifies the role the server plays in replication: master or read-only.
A read-only server might, in turn, have replication agreements to support cascading
replication. One procedure that we talk later in this document about is the changing of
the ibm-replicaServerId to a more friendly descriptive name to improve troubleshooting
of issues that might show up in replication. For example, use the short name of the
server and tag on -uid at the end (server20-uid). This replaces the 31 place unique hex
number.

– Example LDIF:

dn: cn=localhost:389, ibm-replicaGroup=default, o=ibm, c=us
objectclass: ibm-replicaSubentry
objectclass: top
ibm-replicaServerId: 4dbdc73a-2476-4039-8808-9655f95d917
ibm-replicationServerIsMaster: TRUE
cn: localhost:389
Chapter 14. LDAP replication information 83

� Replication agreement

– Information contained in the directory that defines the connection or replication path
between two servers. One server is called the supplier (the one that sends the
changes) and the other is the consumer (the one that receives the changes). The
agreement contains all the information required for making a connection from the
supplier to the consumer and scheduling replication.

– Example LDIF

dn: cn=ldapserv3,ibm-replicaServerId=ldapserv1-uid,
ibm-replicaGroup=default, O=IBM, C=US
objectclass: top
objectclass: ibm-replicationAgreement
cn: ldapserv3
ibm-replicaConsumerId: ldapserv3-uid
ibm-replicaUrl: ldap://ldapserv3:389
ibm-replicaCredentialsDN: cn= mycreds, cn=replication, cn=IBMpolicies
description: ldapserv1 (site1 peer master 1) to ldapserv3 (the site1
forwarder) agreement

� Replica credentials

– Identifies the method and required information that the supplier uses in binding to the
consumer. For simple binds, this includes the DN and password. The credentials are
stored in an entry, the DN of which is specified in the replica agreement.

– Example LDIF

dn: cn=mycreds, cn=replication, cn=IBMpolicies
replicacredentials: master
objectclass: ibm-replicationcredentials
objectclass: ibm-replicationcredentialssimple
objectclass: top
replicabinddn: cn=master
cn: mycreds

14.2 cn=ibmpolicies replication problem

The design of Tivoli Directory Server v6.0 is to have the ibm-replicationcontext,
ibm-replicagroup, and the ibm-replicasubentry set up automatically for the cn=ibmpolicies
subtree the first time that the LDAP server is started. In some circumstances, this has caused
problems. It is recommended that you remove these replication entries from all machines in
the topology before setting up the replication agreement for cn=ibmpolicies.

To remove the entries:

1. You have to search the LDAP servers to get the entries as shown in Example 14-1.

Example 14-1 Ldapsearch

==> ldapsearch -D cn=root -w secret -L -b cn=ibmpolicies
objectclass=ibm-replica*
dn: CN=IBMPOLICIES
cn: IBMpolicies
objectclass: container
objectclass: top
objectclass: ibm-replicationcontext
84 Performance Tuning for IBM Tivoli Directory Server

dn: ibm-replicagroup=default, cn=ibmpolicies
objectclass: top
objectclass: ibm-replicagroup
ibm-replicaGroup: default

dn: ibm-replicaserverid=ac1156c0-a214-1029-934c-cd9424fd6984,ibm-replicagroup=
default, cn=ibmpolicies
objectclass: top
objectclass: ibm-replicasubentry
ibm-replicationserverismaster: TRUE
cn: V6.0 Migration
ibm-replicaServerId: ac1156c0-a214-1029-934c-cd9424fd6984

2. Delete the ibm-replicasubentry.

ldapdelete -D cn=root -w ?
ibm-replicaserverid=ac1156c0-a214-1029-934c-cd9424fd6984,ibm-replicagroup=defau
lt,cn=ibmpolicies

3. Delete the ibm-replicagroup.

ldapdelete -D cn=root -w ?
ibm-replicagroup=default, cn=ibmpolicies

Now you should set up replication on the cn=ibmpolicies subtree just as you would any other
subtree. This is discussed later on in this chapter.

14.3 Conflict resolution

There are several reasons for conflict resolution in Tivoli Directory Server.

� Tivoli Directory Server 4.1 introduces peer to peer configuration:

– Originally used for a failover configuration
– Tivoli Directory Server 4.1 only had complete server replication
– Multiple masters can accept updates

� Tivoli Directory Server introduces subtree replication:

– Individual masters can be primary server for a subtree of data.
– Still used in failover configurations.

� Prior to Tivoli Directory Server 6.0, if multiple clients update the same data on different
peers, the data might become inconsistent. This was not detected until a data error
occurred or replication became blocked. A better solution was required.

Delete and rename operations
For delete and rename operations:

� No conflict resolution is provided yet.

� Example:

– Peer1 gets a rename operation on a directory entry.

– Peer2 gets a delete operation on the same directory entry.

Note: ac1156c0-a214-1029-934c-cd9424fd6984 is a randomly generated server-id;
yours will be different.
Chapter 14. LDAP replication information 85

– If Peer1's operation goes to Replica1 first, then Peer2's delete will be trying to delete
the object with the OLD name and fail.

– If Peer2's operation goes to Replica1 first, then Peer1's rename will fail because the
object will no longer exist.

� The administrator is required to rectify the data manually.

Add and modify operation
For add and modify operations:

� Conflicts are resolved at the consumer.

� Conflicts are resolved based on operation timestamp.

� It is very important to have all the servers’ clocks in sync.

� The most recent operation takes precedence.

� The replaced entry is logged in the Lost and Found log. See Example 14-2 for more
details.

Example 14-2 Lost and found log

version: 1
dn: cn=crypto, cn=localhost
cn: crypto
objectclass: ibm-cryptoConfig
objectclass: ibm-slapdConfigEntry
objectclass: top
ibm-slapdCryptoSync: YFILQ8p0KPsYBVmZ2gPe
ibm-slapdCryptoSalt: G]bpgi/vr[5:
ibm-entryuuid: b14b6ab4-669d-4e1d-b0ea-13d7978f0ea9

#Entry DN: ou=Austin, o=IBM, c=US
#Operation type:Add
#Corrective action:Replace
#Entry createTimestamp: 20051118164246.000000Z
#Entry modifyTimestamp: 20051205214351.000000Z
#Supplier address: 127.0.0.1
dn: ou=Austin, o=IBM, c=US
ou: Austin
objectclass: top
objectclass: organizationalUnit
seealso: cn=Linda Carlesberg, ou=Austin, o=IBM, c=US
description: changed on 389
ibm-entryuuid: 564fb7fe-404f-4c3a-8ba4-3d9218841679

With Tivoli Directory Server v6, replication now uses timestamps (new in Tivoli Directory
Server v6) to keep track of all changes made and the conflict resolution process tries and
resolves which change will take place. This process has overhead along with a number of
retries (10) before it discards a conflict.

Note: Regarding conflict resolution with more than two peer-to-peer servers or when you
have a forwarder replica: When two or more writes to the same LDAP dn at the same time
are executed, a conflict will occur.
86 Performance Tuning for IBM Tivoli Directory Server

When using Access Manager for e-business or any other application that directs all write
operations to only one master at any one time, or that is using a failover type load balancer
between the application and Tivoli Directory Server v6, you can turn this process off and save
a lot of overhead. If, for any reason, you use an application that sends the write operation to
two or more LDAP peer masters, then with this environment variable set, the server does not
try to compare the entries’ timestamps for replicated entries in an attempt to resolve conflicts
between the entries. What happens is, it executes each request one at a time and makes
changes in the order they were received.

With conflict resolution turned on and your Tivoli Directory Server v6 servers reporting high
CPU load and lots of entries in the lostandfound.log on each of the peer or forwarder servers,
it might be a good idea to review the technote Disabling replication conflict resolution at the
following location:

http://www.ibm.com/support/docview.wss?rs=767&context=SSVJJU&q1=conflict+resolutio
n&uid=swg21236775&loc=en_US&cs=utf-8&lang=en

When the IBMSLAPD_REPL_NO_CONFLICT_RESOLUTION environment variable is
defined, no conflict resolution takes place on a server. If the variable is defined before a
server is started, the server operates in a no replication conflict resolution mode. This
environment variable is checked during server startup, and therefore changing it while the
server is running does not have any effect on the server.

We recommend that you turn off conflict resolution in your LDAP environment when you have
more then two peers or forwarder replicas in your network and you are using Tivoli Access
Manager for e-business or any other product that only writes to one LDAP server and fail over
to the other peer master servers if one peer master server is not working.

To turn off conflict resolution, add the following to the cn=Front End, cn=Configuration section
of the ibmslapd.conf file along with any other ibm-slapdSetenv variable that might be there:

"ibm-slapdSetenv: IBMSLAPD_REPL_NO_CONFLICT_RESOLUTION=true"

This has to be done on each LDAP server in the enclave. A restart of the ibmslapd process
must be done to have this take affect. See Example 14-3 for details.

Example 14-3 ibmslapd.conf excerpt

dn: cn=Front End, cn=Configuration
cn: Front End
ibm-slapdACLCache: TRUE
ibm-slapdACLCacheSize: 25000
ibm-slapdEntryCacheSize: 25000
ibm-slapdFilterCacheBypassLimit: 100
ibm-slapdFilterCacheSize: 25000
ibm-slapdIdleTimeOut: 300
ibm-slapdSetenv: DB2CODEPAGE=1208
ibm-slapdSetenv: LDAP_MAXCARD=YES
ibm-slapdSetenv: IBMSLAPD_REPL_NO_CONFLICT_RESOLUTION=true
Chapter 14. LDAP replication information 87

http://www.ibm.com/support/docview.wss?rs=767&context=SSVJJU&q1=conflict+resolution&uid=swg21236775&loc=en_US&cs=utf-8&lang=en

14.4 Monitoring and managing replication

Tivoli Directory Server provides operational attributes and extended operations to aid in
monitoring, managing, and debugging replication.

14.4.1 Operational attributes

The following operational attributes can help administrators with monitoring for and
debugging replication problems. They are also extensively used by the Web administration
tool:

� ibm-replicationLastActivationTime

This is attribute shows the time that the last replication session started between this
supplier and consumer.

C:\>ldapsearch -D cn=root -w secret -b
cn=ldapserv3,ibm-replicaServerId=ldapserv1-uid, ibm-replicaGroup=default,
O=IBM, C=US objectclass=* ibm-replicationLastActivationTime
cn=ldapserv3,ibm-replicaServerId=ldapserv1-uid, ibm-replicaGroup=default,
O=IBM, C=US
ibm-replicationLastActivationTime=20051025182742Z

� ibm-replicationLastFinishTime

This attribute shows the time that the last replication session finished between this
supplier and consumer.

� ibm-replicationChangeId

This attribute shows the changeID of the last update sent to this consumer.

C:\>ldapsearch -D cn=root -w secret -b
cn=ldapserv3,ibm-replicaServerId=ldapserv1-uid, ibm-replicaGroup=default,
O=IBM, C=US objectclass=* ibm-replicationLastChangeId
cn=ldapserv3,ibm-replicaServerId=ldapserv1-uid, ibm-replicaGroup=default,
O=IBM, C=US
ibm-replicationLastChangeId=11

� ibm-replicationState:

This attribute is the current state of replication with this consumer.

Active Actively sending updates to consumer

Ready In immediate replication mode, ready to send updates as they occur

Waiting Waiting for next scheduled replication time

Binding In the process of binding to the consumer

Connecting In the process of connecting to the consumer

On Hold This replication agreement has been suspended

Error Log Full For a server configured to use multiple connections, replication is
suspended for this agreement. The receiver threads continue polling
for status from any updates that have been sent, but no more updates
are replicated.

Retrying If the server is configured to use a single connection, replication
attempts to send the same update after waiting for 60 seconds and
keeps trying until replication succeeds or the administrator skips the
update.
88 Performance Tuning for IBM Tivoli Directory Server

For the following examples, we have taken the replica cn=localhost:1389 offline, and
added the following entry to create a pending change in the queue:

C:\>ldapadd -D cn=root -w secret -p 389
dn: o=test1, o=ibm, c=us
objectclass: organization
adding new entry o=test1, o=ibm, c=us

� ibm-replicationLastResult

This attribute shows the results of the last attempted update to this consumer, in the form:

<time stamp> <change id> <result code> <operation> <entry DN>
C:\>ldapsearch -D cn=root -w secret -b
cn=ldapserv3,ibm-replicaServerId=ldapserv1-uid, ibm-replicaGroup=default,
O=IBM, C=US objectclass=* ibm-replicationlastresult
ibm-replicationlastresult=20051025215549Z 12 81 add o=test1, o=ibm, c=us

� ibm-replicationPendingChangeCount

This attribute shows the number of updates queued to be replicated to this consumer.

C:\>ldapsearch -D cn=root -w secret -b
cn=ldapserv3,ibm-replicaServerId=ldapserv1-uid, ibm-replicaGroup=default,
O=IBM, C=US objectclass=* ibm-replicationpendingchangecount
ibm-replicationpendingchangecount=1

� ibm-replicationPendingchanges

Each value of this attribute gives information about one of the pending changes in the
form:

<change id> <operation> <entry DN>

Requesting this attribute might return many values. Check the change count before
requesting this attribute.

C:\>ldapsearch -D cn=root -w secret -b
cn=ldapserv3,ibm-replicaServerId=ldapserv1-uid, ibm-replicaGroup=default,
O=IBM, C=US objectclass=* ibm-replicationpendingchanges

ibm-replicationpendingchanges=12 add o=test1, o=ibm, c=us

� ibm-replicationChangeLDIF

This attribute gives the full details of the last failing update in LDIF.

� ibm-replicationFailedChanges

This attribute lists the IDs, DNs, update types, result codes, timestamps, and number of
attempts for failures logged for a specified replication agreement. The number of failures
displayed are less than or equal to ibmslapdMaxPendingChangesDisplayed.

� ibm-replicationFailedChangeCount

This attribute returns a count of the failures logged for a specified replication agreement.

� ibm-replicationIsQuiesced

This attribute returns Boolean value that indicates if the subtree has been quiesced. Base
dn of search should be replicationContext.

Note: Single-threaded replication only.
Chapter 14. LDAP replication information 89

14.4.2 Extended operations

The following extended operations can be used to manage replication.

� cascrepl

This is the cascading control replication extended operation.

C:\>ldapexop -op cascrepl -help

The usage for cascaded replication operation is:

-op cascrepl -action actionValue -rc contextDn [options]

Where:

– actionValue:

• quiesce: Quiesce the context
• unquiesce: Unquiesce the context
• replnow: Start immediate replication
• wait: Wait for pending changes to be replicated

– contextDn: specifies the root of the subtree

– options

• timeout secs: Timeout period in seconds

For example:

idsldapexop -op cascrepl -action quiesce -rc "o=ibm, c=us"

� controlqueue

This is the control queue extended operation.

C:\>ldapexop -op controlque -help

The usage for control replication queue operation is:

-op controlqueue -skip skipValue -ra agreementDn

Where:

– skipValue

• all: Skip all pending changes for this agreement
• change-id: Skip the specified change

– agreementDn: DN of the replication agreement

For example:

idsldapexop -op controlque -skip all -ra
cn=ldapserv3,ibm-replicaServerId=ldapserv1-uid, ibm-replicaGroup=default,
O=IBM, C=US

� controlrepl

This is the control replication extended operation.

C:\>ldapexop -op controlrepl -help

The usage for control replication operation is:

-op controlrepl -action actionValue -ra agreementDn

Or

-op controlrepl -action actionValue -rc contextDn
90 Performance Tuning for IBM Tivoli Directory Server

Where:

– actionValue

• suspend: Suspend replication
• resume: Resume replication
• replnow: Start immediate replication

– contextDn: Specifies the root of the replication context

The action will be performed for all agreements for this context.

– agreementDn: Specifies the replication agreement

The action will be performed for the specified agreement.

For example:

idsldapexop -op controlrepl -action suspend -ra
"cn=ldapserv3,ibm-replicaServerId=ldapserv1-uid, ibm-replicaGroup=default,
O=IBM, C=US"

� controlreplerr

This is the control replication error extended operation.

C:\>ldapexop -op controlreplerr -help

The usage for controlreplerr operation is:

-op controlreplerr -show failure_ID -ra agreementDn

Where:

– failure_ID: Specifies the ID of the target replication update failure
– agreementDn: Specifies the DN of the replication agreement

-op controlreplerr -delete failure_ID -ra agreementDn
-op controlreplerr -retry failure_ID -ra agreementDn

Where:

– failure_ID: Specifies the ID of the target replication update failure or ‘0’ for all
– agreementDn: Specifies the DN of the replication agreement

For example:

idsldapexop -op controlreplerr -delete all -ra
"cn=ldapserv3,ibm-replicaServerId=ldapserv1-uid, ibm-replicaGroup=default,
O=IBM, C=US"

� repltopology

This is the replication topology extended operation. Replicates the replication topology
related entries under the specified context.

C:\>ldapexop -op repltopology -help

The usage for repltopology operation is:

-op repltopology -rc contextDn [options]

Where:

– contextDn: specifies the root of the subtree

Options:

– -timeout secs: Timeout period in seconds
– -ra agreementDn: Specifies the replication agreement.Entries will be propagating to

the specified agreement.
Chapter 14. LDAP replication information 91

For example:

idsldapexop -op repltopology -rc o=ibm, c=us -ra
"cn=ldapserv3,ibm-replicaServerId=ldapserv1-uid, ibm-replicaGroup=default,
O=IBM, C=US"

14.4.3 Troubleshooting replication problems

Let us look at some debugging practices.

� If multiple replication agreements are failing, it is best to get one supplier-consumer link
working properly and then move to the next failure.

� The ibmslapd.log file is the best point to start troubleshooting.

� Start with the supplier's log file.

– Check to make sure it can connect to the consumer.
– Check whether it is able to bind correctly.
– Check the reason why replication is failing.

Here are some examples of common replication errors.

� Oct 19 14:20:23 2005 GLPRPL036E Error Invalid credentials occurred for replica
'cn=ldapserv3,ibm-replicaServerId=ldapserv1-uid, ibm-replicaGroup=default,
O=IBM, C=US': bind failed using masterDn 'cn=master'

Credentials defined by the replication agreement do not match what is defined in the
consumer's ibmslapd.conf file.

� Nov 03 12:18:43 2005 GLPRPL036E Error Can't contact LDAP server occurred for
replica 'cn=ldapserv3,ibm-replicaServerId=ldapserv1-uid,
ibm-replicaGroup=default, O=IBM, C=US': bind failed using masterDn 'cn=master'.

Consumer LDAP server is not reachable from the master. Make sure that the consumer is
online. Try using the supplier's ldapsearch client to query the consumer.

� Nov 03 22:28:54 2005 GLPRPL032E Error No such object occurred for replica
'cn=ldapserv3,ibm-replicaServerId=ldapserv1-uid, ibm-replicaGroup=default,
O=IBM, C=US': add failed for entry 'cn=thomas, o=support employees, o=ibm, c=us'
change ID 7.

A parent entry does not exist on consumer. Check the consumer's ibmslapd.log for the
exact error. Servers can get out of sync for different reasons: never sync'd, updates sent
to more than one master, and so on. The problem can be corrected by adding the missing
entry to the consumer. You should bind as the replicabinddn.

14.5 Introduction to forwarders and gateways

Let use take a closer look at the forwarders and gateways in our LDAP environment.

14.5.1 Forwarders

A peer/master server replicates to a set of read-only (forwarding) servers that in turn replicate
to other replica servers. Cascading replication offloads replication work from the peer/master
server.
92 Performance Tuning for IBM Tivoli Directory Server

The supplier-consumer relationship for this scenario, depicted in Figure 14-1, is:

� The master is a supplier to the forwarder.

� The forwarder has two roles:

– A consumer of the master
– A supplier to the replica

� The replica is a consumer of the forwarder.

Figure 14-1 Overview of the forwarder functionality

Example 14-4 shows how to create replication credentials between the forwarder and its
replicas.

Example 14-4 Replication credentials between the forwarder and its replicas

dn: cn=ldaptiv3 BindCredentials, cn=replication, cn=IBMpolicies
objectclass: ibm-replicationCredentialsSimple
cn: ldaptiv3 BindCredentials
replicaBindDN: cn=any
replicaCredentials: secret
description: Bindmethod of ldaptiv2 (the forwarder) to ldaptiv3 (the replica)

dn: ibm-replicaServerId=ldaptiv1-serverid ibm-replicaGroup=default, o=ibm, c=us
objectclass: top
objectclass: ibm-replicaSubentry
ibm-replicaServerId: ldaptiv1-serverid
#true if master, false if forwarder
ibm-replicationServerIsMaster: true
Chapter 14. LDAP replication information 93

cn: server1 description: master ibm-replicaSubentry
dn: ibm-replicaServerId=ldaptiv2-serverid ibm-replicaGroup=default, o=ibm, c=us
objectclass: top
objectclass: ibm-replicaSubentry
ibm-replicaServerId: ldaptiv2-serverid
ibm-replicationServerIsMaster: false
cn: ldaptiv2
description: forwarder ibm-replicaSubentry

dn: cn=forwarder1,ibm-replicaServerId=ldaptiv1-serveridibm-replicaGroup=default,o=ibm,c=us
objectclass: top
objectclass: ibm-replicationAgreement
cn: ldaptiv2
ibm-replicaConsumerId: ldaptiv2-serverid
ibm-replicaUrl: ldap://ldaptiv2:389
ibm-replicaCredentialsDN: cn=ldaptiv2
BindCredentials, cn=replication, cn=IBMpolicies
description: ldaptiv1 (the master) to ldaptiv2 (the forwarder) agreement

dn: cn=ldaptiv3, ibm-replicaServerId=ldaptiv2-serverid ibm-replicaGroup=default, o=ibm, c=us
objectclass: top
objectclass: ibm-replicationAgreement
cn: ldaptiv3
ibm-replicaConsumerId: ldaptiv3-serverid-uid
ibm-replicaUrl: ldap://ldaptiv3:389
ibm-replicaCredentialsDN: cn=ldaptiv3
BindCredentials, cn=replication, cn=IBMpolicies
description: ldaptiv2 (the forwarder) to ldaptiv3 (the replica) agreement

14.5.2 Gateways

Gateway servers must be masters (writable). If you try and convert a read-only replica, you
will get an error message. You must have at least two gateway servers between a replicating
network. The primary benefit of a gateway replication is the reduction of network traffic.

Gateway replication updates from the peer/master servers in the replication site and sends
the updates to all the other gateway servers within the replicating network. The replication
process collects replication updates from other gateway servers in the replication network
and sends those updates to the peers/masters and replicas in the replication site where it
resides.

There are two methods for creating a gateway server. You can:

� Create a new gateway server
� Convert an existing peer server to a gateway server

See Figure 14-2 for more details.
94 Performance Tuning for IBM Tivoli Directory Server

Figure 14-2 Overview of the gateway functionality

The replica subentry must contain the ibm-replicaSubentry object class and
ibm-replicaGateway auxiliary object class along with ibm-replicationServerIsMaster: TRUE.
See Example 14-5.

Example 14-5 Replication credentials between the gateway and its replicas

dn: ibm-replicaServerId=ldaptiv1, ibm-replicagroup=default, o=ibm, c=us
objectclass: top
objectclass: ibm-replicaSubentry
objectclass: ibm-replicaGateway
ibm-replicaServerId: ldaptiv1- serverid-uid
ibm-replicationServerIsMaster: TRUE
cn: ldaptiv1
description: server1 (gateway server from replication site 1 to replication site 2)

dn: ibm-replicaServerId=ldaptiv2, ibm-replicagroup=default, o=ibm, c=us
objectclass: top
objectclass: ibm-replicaSubentry
objectclass: ibm-replicaGateway
ibm-replicaServerId:ldaptiv2- serverid-uid
ibm-replicationServerIsMaster: TRUE
cn: ldaptiv2
description: server1 (gateway server from replication site 2 to replication site 1)
dn: cn=ldaptiv1, ibm-replicaServerId=ldaptiv2- serverid-uid ,ibm-replicaGroup=default, o=ibm,
c=us
objectclass: top
objectclass: ibm-replicationAgreement cn: ldaptiv1
ibm-replicaConsumerId: ldaptiv1-serverid
ibm-replicaUrl: ldap://ldaptiv1:389
ibm-replicaCredentialsDN: cn=simple, cn=replication, cn=IBMpolicies
description: supplier agreement from replication site2 to replication site 1
Chapter 14. LDAP replication information 95

dn: cn=ldaptiv2,ibm-replicaServerId=ldaptiv1-serverid,ibm-replicaGroup=default,o=ibm,c=us
objectclass: top
objectclass: ibm-replicationAgreement cn: ldaptiv2
ibm-replicaConsumerId: ldaptiv2-serverid
ibm-replicaUrl: ldap://ldaptiv2:389
ibm-replicaCredentialsDN: cn=simple, cn=replication, cn=IBMpolicies
description: supplier agreement from replication site1 to replication site2

14.6 Migration considerations

In this section, we consider different migration scenarios for different software versions.

14.6.1 Tivoli Directory Server v3.2.2 to Tivoli Directory Server v6

The migration considerations for Tivoli Directory Server v3.2.2 to Tivoli Directory Server v6
are:

� With the availability of Tivoli Directory Server 5.1, replication agreements have been
rewritten from using replicaObject entries to ibm-replicationContext, ibm-replicaGroup,
and ibm-replicaSubentry entries that reside under the customer suffix and not in
cn=localhost.

� Use db2ldif to dump the Tivoli Directory Server 3.2.2 database when all replication
changes are completed. Check the DB2 change table, it will say “0” changes.

� Install new Tivoli Directory Server v6.

� Load with ldsldif2db or idsbulkload to load the data into Tivoli Directory Server v6.

� Make or add any new replication peers or replicas.

14.6.2 Tivoli Directory Server v4.1 to Tivoli Directory Server v6 (in place)

The migration considerations for Tivoli Directory Server v4.1 to Tivoli Directory Server v6 (in
place) are:

� The server updates the cn=Master Server entry in the ibmslapd.conf file.

� Auxiliary class ibm-slapdPendingMigration is added to the cn=Master Server entry to
indicate that replica migration should be done during the initial startup of the server.

� The value of the ibm-slapdMigrationInfo attribute indicates what type of server is being
migrated. The following are valid values for this attribute:

– 4.1 REPLICA Read-only replica
– 4.1 MASTER Read-write master
– 4.1 PEER Read-write peer replica

� For a read-only replica server, an ibm-replicationContext, ibm-replicaGroup, and
ibm-replicaSubentry are created for each suffix that is configured for the server, except for
the CN=SCHEMA, CN=LOCALHOST, and CN=PWDPOLICY suffixes.

� For a peer or master server, an ibm-replicationContext, ibm-replicaGroup, and
ibm-replicaSubentry are created only if the replicaObject entries exist under the
cn=localhost subtree.

� For peer and master servers, all replicaObject entries under the cn=localhost subtree are
migrated to ibm-replicationAgreement and ibm-replicationCredentials directory entries.
96 Performance Tuning for IBM Tivoli Directory Server

� For master and peer servers with replicaObject entries, convert currently outstanding
replication data and status in the CHANGE and PROGRESS tables to the newly defined
Tivoli Directory Server 6.0 REPLCHANGE, REPLSTATUS, and REPLCSTAT tables.

� When the replication is successful, the ibm-slapdPendingMigration auxiliary class is
removed from the cn=Master Server entry in the ibmslapd.conf file, and the obsolete
CHANGE and PROGRESS tables are deleted from the database.

14.6.3 Tivoli Directory Server v4.1 to Tivoli Directory Server v6 (new servers)

The migration considerations for Tivoli Directory Server v4.1 to Tivoli Directory Server v6
(new servers) are:

� Run db2ldif to create a data dump of the 4.1 server. Move this file over to the new Tivoli
Directory Server v6.

� Create a migrate directory and copy all the V3.* files and the slapd32.conf file from the 4.1
or run the migbkup bat or ksh file to gather these files. Move this directory to the new Tivoli
Directory Server v6.

� Run the idsimigr program to create a Tivoli Directory Server v6 instance using the
information from the 4.1 migrate directory.

� Run the idscfgdb to create the new database and then load the data back with
idsldif2db or idsbulkload tools.

� Create or add new peer or replica agreements.

14.6.4 Tivoli Directory Server v5.1 or v5.2 to Tivoli Directory Server v6

The migration considerations for Tivoli Directory Server v5.1 or v5.2 to Tivoli Directory Server
v6 are:

� If you are migrating from IBM Directory Server 5.1 or Tivoli Directory Server 5.2 in place,
no migration is required for replication.

� If you are migrating to new servers, you will have to follow the same steps as migrating
from Tivoli Directory Server 4.1 using new servers, except you will have an ibmslapd.conf
file instead of slapd32.conf file; other than that the process is the same.

14.7 Synchronizing two-way cryptography for server instances

If you want to use replication, use a distributed directory, or import and export LDIF data
between server instances, you must cryptographically synchronize the server instances to
obtain the best performance.

If you already have a server instance, and you have another server instance that you want to
cryptographically synchronize with the first server instance, use the idsgendirksf utility to
re-create the ibmslapddir.ksf file (the key stash file) from the first server instance. This file is
used to replace the second (or more) server instance’s original ibmslapddir.ksf file.

You have to perform this procedure (idsgendirksf) before you do any of the following:

� Start the second server instance.

� Run the idsbulkload command from the second server instance.

� Run the idsldif2db command from the second server instance.
Chapter 14. LDAP replication information 97

98 Performance Tuning for IBM Tivoli Directory Server

Chapter 15. Adding a new LDAP server to an
existing enclave

In this chapter, we discuss how to install and add a new Lightweight Directory Access
Protocol (LDAP) server into an existing environment including the proper replication
configuration and test.

15
© Copyright IBM Corp. 2007. All rights reserved. 99

15.1 Installing a new Tivoli Directory Server

Use the native installation procedures for the operating system (OS) that you are going to
use. Apply the current DB2 and Tivoli Directory Server fix packs before you configure the new
server. You have to build this new server the same way the other LDAP servers were built,
using the same paths, instance names, instance user IDs, and group names.

Usually, if you configure a Tivoli Directory Server, it generates an ibm-slapdServerId that
looks something like this: 4dbdc73a-2476-4039-8808-9655f95d917. This makes it very hard to
troubleshoot when you have a complex enclave with multiple peers, forwarders and/or
replicas. Also, when you are building your replication LDIFs for complex agreements, it is
better that you use a server ID that better describes the server you are working with. A better
way is to develop your own unique server ID.

Before you start the server, you can edit the /export/home/ldapdb2/idsslapd-ldapdb2
/etc/ibmslapd.conf file. Add the ibm-slapdServerId parameter with the appropriate server ID
and update the lines such as the ibm-slapdDbConnections as shown in Example 15-1.

Example 15-1 ibmslapd.conf file excerpt

ibm-slapdServerBackend: RDBM
ibm-slapdServerId: <shorthostname>-uid
ibm-slapdSizeLimit: 500
. . .
ibm-slapdIdleTimeOut: 300
ibm-slapdSetEnv: DB2CODEPAGE=1208
ibm-slapdSetEnv: LDAP_MAXCARD=YES
. . .
cn: Connection Management
#ibm-slapdAllowAnon: TRUE
ibm-slapdAllowAnon: FALSE
ibm-slapdAllReapingThreshold: 1200
. . .
ibm-slapdDbAlias: ldapdb2b
#ibm-slapdDbConnections: 15
ibm-slapdDbConnections: 30
ibm-slapdDbInstance: ldapdb2

Important: The server ID specified must match the server ID used in the replication
agreement. The recommended format for the server ID is <shorthostname>-uid. For
example, the short name of a server named new60ITDSserver_name.tivoli.com is
new60ITDSserver_name, therefore the server ID is new60ITDSserver_name-uid. Lines
represented in bold are to be added. Lines represented in italics are reference points.
100 Performance Tuning for IBM Tivoli Directory Server

15.2 Building new replication agreements

In order to build the proper replication agreements, we have to perform the following steps
described in the following sections.

15.2.1 Defining the role of the new Tivoli Directory Server v6

The steps in this section should be performed on each of the new LDAP servers.

1. Log on to the new Tivoli Directory Server v6 and switch to the root user:

$ su - root

Enter the password.

2. Set the umask.

umask 022

3. Edit the /opt/export/home/ldapdb2/idsslapd-ldapdb2/etc/ibmslapd.conf file and add the
contents of the appropriate replication ibmslapd file. Go to the end of the file and add the
contents of one of the five files below depending on what type of server you are installing.

– peer_lbmslapd.txt

dn: cn=Master Server, cn=configuration
cn: Master Server
ibm-slapdMasterDN: cn=peermaster
ibm-slapdMasterPW: <password>
objectclass: ibm-slapdConfigEntry
objectclass: ibm-slapdReplication
objectclass: top

– site1_forwarder_lbmslapd.txt

dn: cn=Master Server, cn=configuration
cn: Master Server
ibm-slapdMasterDN: cn=peermaster
ibm-slapdMasterPW: <password>
ibm-slapdMasterReferral: ldap://<master peer server host name>:389
objectclass: ibm-slapdConfigEntry
objectclass: ibm-slapdReplication
objectclass: top

– site1_replica_lbmslapd.txt

dn: cn=Master Server, cn=configuration
cn: Master Server
ibm-slapdMasterDN: cn=peermaster
ibm-slapdMasterPW: <password>
ibm-slapdMasterReferral: ldap://<forwarder server host name>:389
objectclass: ibm-slapdConfigEntry
objectclass: ibm-slapdReplication
objectclass: top

– site2_forwarder_lbmslapd.txt

dn: cn=Master Server, cn=configuration
cn: Master Server
ibm-slapdMasterDN: cn=peermaster
ibm-slapdMasterPW: <password>
ibm-slapdMasterReferral: ldap://<master peer server host name>:389
objectclass: ibm-slapdConfigEntry
Chapter 15. Adding a new LDAP server to an existing enclave 101

objectclass: ibm-slapdReplication
objectclass: top

– site2_replica_lbmslapd.txt

dn: cn=Master Server, cn=configuration
cn: Master Server
ibm-slapdMasterDN: cn=peermaster
ibm-slapdMasterPW: <password>
ibm-slapdMasterReferral: ldap://<forwarder server host name>:389
objectclass: ibm-slapdConfigEntry
objectclass: ibm-slapdReplication
objectclass: top

15.2.2 Creating the new replication agreement to add the new server

Add the replication agreement and credentials to the server. Because the replication
agreement can be replicated, a DN to a credentials object is used. Use of a separate object
also makes it easier to support various authentication methods; new object classes can be
created rather than trying to make sense of numerous optional attributes.

The examples that are included in this section are:

� Adding a new peer
� Adding a new forwarder
� Adding a new replica

Example 1: Adding a new peer agreement
Before you begin, you have to know what the other existing peer and forwarder LDAP
server's host names are. For our example, we use the existing LDAP server's host names,
which are peer1, peer2, forwarder1, and forwarder2. The new peer master’s host name is
peer3 and this is for a Tivoli Access Manager for e-business environment.

With this information at hand, we can build the new agreement to be added to the existing
enclave. Create a file called add_peer_input.txt, as shown in Example 15-2.

Example 15-2 add_peer_input.txt

#peer3 site1 peer master 3 subentry
#true if master, false if forwarder
dn: ibm-replicaServerId=peer3-uid, ibm-replicaGroup=default, c=us
objectclass: top
objectclass: ibm-replicaSubentry
ibm-replicaServerId: peer3-uid
ibm-replicationServerIsMaster: true
cn: peer3
description: site1 peer master 3 ibm-replicaSubentry

#peer3 site1 peer master to forwarder1 site1 forwarder agreement
dn: cn=forwarder, ibm-replicaServerId=peer3-uid, ibm-replicaGroup=default, c=us
objectclass: top
objectclass: ibm-replicationAgreement
cn: forwarder1
ibm-replicaConsumerId: forwarder1-uid
102 Performance Tuning for IBM Tivoli Directory Server

ibm-replicaUrl: ldap://forwarder1:389
ibm-replicaCredentialsDN: cn=ibmcred, cn=replication, cn=IBMpolicies
description: peer3 (site1 peer master 3) to forwarder1 (the site1 forwarder)
agreement

#peer3 site1 peer master 3 to forwarder2 site2 forwarder agreement
dn: cn=forwader2,ibm-replicaServerId=peer3-uid, ibm-replicaGroup=default, c=us
objectclass: top
objectclass: ibm-replicationAgreement
cn: forwarder2
ibm-replicaConsumerId: forwarder2-uid
ibm-replicaUrl: ldap://forwarder2:389
ibm-replicaCredentialsDN: cn= ibmcred, cn=replication, cn=IBMpolicies
description: peer3 (site1 peer master 3) to forwarder2 (the site2 forwarder)
agreement

#peer1 site1 peer master 1 to peer3 site1 peer master 3 agreement
dn: cn=peer3,ibm-replicaServerId=peer1-uid, ibm-replicaGroup=default, c=us
objectclass: top
objectclass: ibm-replicationAgreement
cn: peer3
ibm-replicaConsumerId: peer3-uid
ibm-replicaUrl: ldap://peer3:389
ibm-replicaCredentialsDN: cn= ibmcred, cn=replication, cn=IBMpolicies
description: peer1 (site1 peer master 1) to peer3 (site1 peer master 3) agreement

#peer2 site2 peer master 2 to peer3 site1 peer master 1 agreement
dn: cn=peer3,ibm-replicaServerId=peer2-uid, ibm-replicaGroup=default, c=us
objectclass: top
objectclass: ibm-replicationAgreement
cn: peer3
ibm-replicaConsumerId: peer3-uid
ibm-replicaUrl: ldap://peer3:389
ibm-replicaCredentialsDN: cn= ibmcred, cn=replication, cn=IBMpolicies
description: peer2 (site2 peer master 2) to peer3 (site1 peer master 3) agreement

#peer3 site1 peer master 3 subentry
#true if master, false if forwarder
dn: ibm-replicaServerId=peer3-uid,ibm-replicaGroup=default,cn=ibmpolicies
objectclass: top
objectclass: ibm-replicaSubentry
ibm-replicaServerId: peer3-uid
ibm-replicationServerIsMaster: true
cn: peer3
description: site1 peer master 3 ibm-replicaSubentry

#peer3 site1 peer master to forwarder1 site1 forwarder agreement
dn: cn=forwarder1, ibm-replicaServerId=peer3-uid, ibm-replicaGroup=default,
cn=ibmpolicies
objectclass: top
objectclass: ibm-replicationAgreement
cn: forwarder1
ibm-replicaConsumerId: forwarder1-uid
ibm-replicaUrl: ldap://forwarder1:389
ibm-replicaCredentialsDN: cn= ibmcred, cn=replication, cn=IBMpolicies
Chapter 15. Adding a new LDAP server to an existing enclave 103

description: peer3 (site1 peer master 3) to forwarder1 (the site1 forwarder)
agreement

#peer3 site1 peer master 3 to forwarder2 site2 forwarder agreement
dn: cn=forwader2,ibm-replicaServerId=peer3-uid, ibm-replicaGroup=default,
cn=ibmpolicies
objectclass: top
objectclass: ibm-replicationAgreement
cn: forwarder2
ibm-replicaConsumerId: forwarder2-uid
ibm-replicaUrl: ldap://forwarder2:389
ibm-replicaCredentialsDN: cn= ibmcred, cn=replication, cn=IBMpolicies
description: peer3 (site1 peer master 3) to forwarder2 (the site2 forwarder)
agreement

#peer1 site1 peer master 1 to peer3 site1 peer master 3 agreement
dn: cn=peer3,ibm-replicaServerId=peer1-uid, ibm-replicaGroup=default,
cn=ibmpolicies
objectclass: top
objectclass: ibm-replicationAgreement
cn: peer3
ibm-replicaConsumerId: peer3-uid
ibm-replicaUrl: ldap://peer3:389
ibm-replicaCredentialsDN: cn= ibmcred, cn=replication, cn=IBMpolicies
description: peer1 (site1 peer master 1) to peer3 (site1 peer master 3) agreement

#peer2 site2 peer master 2 to peer3 site1 peer master 1 agreement
dn: cn=peer3,ibm-replicaServerId=peer2-uid, ibm-replicaGroup=default,
cn=ibmpolicies
objectclass: top
objectclass: ibm-replicationAgreement
cn: peer3
ibm-replicaConsumerId: peer3-uid
ibm-replicaUrl: ldap://peer3:389
ibm-replicaCredentialsDN: cn= ibmcred, cn=replication, cn=IBMpolicies
description: peer2 (site2 peer master 2) to peer3 (site1 peer master 3) agreement

#peer3 site1 peer master 3 subentry
#true if master, false if forwarder
dn: ibm-replicaServerId=peer3-uid,ibm-replicaGroup=default,secauthority=default
objectclass: top
objectclass: ibm-replicaSubentry
ibm-replicaServerId: peer3-uid
ibm-replicationServerIsMaster: true
cn: peer3
description: site1 peer master 3 ibm-replicaSubentry

#peer3 site1 peer master to forwarder1 site1 forwarder agreement
dn: cn=forwarder1, ibm-replicaServerId=peer3-uid, ibm-replicaGroup=default,
secAuthority=default
objectclass: top
objectclass: ibm-replicationAgreement
cn: forwarder1
ibm-replicaConsumerId: forwarder1-uid
ibm-replicaUrl: ldap://forwarder1:389
104 Performance Tuning for IBM Tivoli Directory Server

ibm-replicaCredentialsDN: cn= ibmcred, cn=replication, cn=IBMpolicies
description: peer3 (site1 peer master 3) to forwarder1 (the site1 forwarder)
agreement

#peer3 site1 peer master 3 to forwarder2 site2 forwarder agreement
dn: cn=forwader2,ibm-replicaServerId=peer3-uid, ibm-replicaGroup=default,
secAuthority=default
objectclass: top
objectclass: ibm-replicationAgreement
cn: forwarder2
ibm-replicaConsumerId: forwarder2-uid
ibm-replicaUrl: ldap://forwarder2:389
ibm-replicaCredentialsDN: cn= ibmcred, cn=replication, cn=IBMpolicies
description: peer3 (site1 peer master 3) to forwarder2 (the site2 forwarder)
agreement

#peer1 site1 peer master 1 to peer3 site1 peer master 3 agreement
dn: cn=peer3,ibm-replicaServerId=peer1-uid, ibm-replicaGroup=default,
secAuthority=default
objectclass: top
objectclass: ibm-replicationAgreement
cn: peer3
ibm-replicaConsumerId: peer3-uid
ibm-replicaUrl: ldap://peer3:389
ibm-replicaCredentialsDN: cn= ibmcred, cn=replication, cn=IBMpolicies
description: peer1 (site1 peer master 1) to peer3 (site1 peer master 3) agreement

#peer2 site2 peer master 2 to peer3 site1 peer master 1 agreement
dn: cn=peer3,ibm-replicaServerId=peer2-uid, ibm-replicaGroup=default,
secAuthority=default
objectclass: top
objectclass: ibm-replicationAgreement
cn: peer3
ibm-replicaConsumerId: peer3-uid
ibm-replicaUrl: ldap://peer3:389
ibm-replicaCredentialsDN: cn= ibmcred, cn=replication, cn=IBMpolicies
description: peer2 (site2 peer master 2) to peer3 (site1 peer master 3) agreement

Example 2: Adding a new forwarder agreement
Before you begin, you have to know what the other existing peer and forwarder LDAP
server's host names are. For our example, we use the existing LDAP server's host names,
which are peer1, peer2, forwarder1, and forwarder2. The new forwarder host name is
forwarder3 (see “Example 3: Adding a new replica agreement” on page 107, for adding a new
replica to a forwarder) and this is for a Tivoli Access Manager for e-business environment.

With this information at hand, we can build the new agreement to be added to the existing
enclave. Create a file called add_forwarder_input.txt, as shown in Example 15-3.
Chapter 15. Adding a new LDAP server to an existing enclave 105

Example 15-3 add_forwarder_input.txt

#forwarder3 site1 forwarder subentry
#true if master, false if forwarder
dn: ibm-replicaServerId=forwarder3-uid, ibm-replicaGroup=default, c=us
objectclass: top
objectclass: ibm-replicaSubentry
ibm-replicaServerId: forwarder3-uid
ibm-replicationServerIsMaster: false
cn: forwarder3
description: site1 forwarder ibm-replicaSubentry

#peer1 site1 peer master to forwarder3 site1 forwarder 3 agreement
dn: cn=forwarder3, ibm-replicaServerId=peer1-uid, ibm-replicaGroup=default, c=us
objectclass: top
objectclass: ibm-replicationAgreement
cn: forwarder3
ibm-replicaConsumerId: forwarder3-uid
ibm-replicaUrl: ldap://forwarder3:389
ibm-replicaCredentialsDN: cn= ibmcred, cn=replication, cn=IBMpolicies
description: peer1 (site1 peer master 1) to forwarder3 (the site1 forwarder 3)
agreement

#peer2 site2 peer master 2 to forwarder3 site1 forwarder 3 agreement
dn: cn=forwarder3, ibm-replicaServerId=peer2-uid, ibm-replicaGroup=default, c=us
objectclass: top
objectclass: ibm-replicationAgreement
cn: forwarder3
ibm-replicaConsumerId: forwarder3-uid
ibm-replicaUrl: ldap://forwarder3:389
ibm-replicaCredentialsDN: cn= ibmcred, cn=replication, cn=IBMpolicies
description: peer2 (site2 peer master 2) to forwarder3 (the site1 forwarder 3)
agreement

#forwarder3 site1 forwarder subentry
#true if master, false if forwarder
dn: ibm-replicaServerId=forwarder3-uid,ibm-replicaGroup=default,cn=ibmpolicies
objectclass: top
objectclass: ibm-replicaSubentry
ibm-replicaServerId: forwarder3-uid
ibm-replicationServerIsMaster: false
cn: forwarder3
description: site1 forwarder ibm-replicaSubentry

#peer1 site1 peer master to forwarder3 site1 forwarder 3 agreement
dn: cn=forwarder3, ibm-replicaServerId=peer1-uid, ibm-replicaGroup=default,
cn=ibmpolicies
objectclass: top
objectclass: ibm-replicationAgreement
cn: forwarder3
ibm-replicaConsumerId: forwarder3-uid
ibm-replicaUrl: ldap://forwarder3:389
ibm-replicaCredentialsDN: cn= ibmcred, cn=replication, cn=IBMpolicies
description: peer1 (site1 peer master 1) to forwarder3 (the site1 forwarder 3)
agreement
106 Performance Tuning for IBM Tivoli Directory Server

#peer2 site2 peer master 2 to forwarder3 site1 forwarder 3 agreement
dn: cn=forwarder3, ibm-replicaServerId=peer2-uid, ibm-replicaGroup=default,
cn=ibmpolicies
objectclass: top
objectclass: ibm-replicationAgreement
cn: forwarder3
ibm-replicaConsumerId: forwarder3-uid
ibm-replicaUrl: ldap://forwarder3:389
ibm-replicaCredentialsDN: cn= ibmcred, cn=replication, cn=IBMpolicies
description: peer2 (site2 peer master 2) to forwarder3 (the site1 forwarder 3)
agreement

#forwarder3 site1 forwarder subentry
#true if master, false if forwarder
dn:
ibm-replicaServerId=forwarder3-uid,ibm-replicaGroup=default,secauthority=default
objectclass: top
objectclass: ibm-replicaSubentry
ibm-replicaServerId: forwarder3-uid
ibm-replicationServerIsMaster: false
cn: forwarder3
description: site1 forwarder ibm-replicaSubentry

#peer1 site1 peer master to forwarder3 site1 forwarder 3 agreement
dn: cn=forwarder3, ibm-replicaServerId=peer1-uid, ibm-replicaGroup=default,
secAuthority=default
objectclass: top
objectclass: ibm-replicationAgreement
cn: forwarder3
ibm-replicaConsumerId: forwarder3-uid
ibm-replicaUrl: ldap://forwarder3:389
ibm-replicaCredentialsDN: cn= ibmcred, cn=replication, cn=IBMpolicies
description: peer1 (site1 peer master 1) to forwarder3 (the site1 forwarder 3)
agreement

#peer2 site2 peer master 2 to forwarder3 site1 forwarder 3 agreement
dn: cn=forwarder3, ibm-replicaServerId=peer2-uid, ibm-replicaGroup=default,
secAuthority=default
objectclass: top
objectclass: ibm-replicationAgreement
cn: forwarder3
ibm-replicaConsumerId: forwarder3-uid
ibm-replicaUrl: ldap://forwarder3:389
ibm-replicaCredentialsDN: cn= ibmcred, cn=replication, cn=IBMpolicies
description: peer2 (site2 peer master 2) to forwarder3 (the site1 forwarder 3)
agreement

Example 3: Adding a new replica agreement
Before you begin, you have to know what the other existing forwarder LDAP server's host
name that you are adding this replica. For our example, we use the existing LDAP forwarder
server, which is forwarder1 with the other replicas configured. The new replica host name is
replica3 and this is for a Tivoli Access Manager for e-business environment.
Chapter 15. Adding a new LDAP server to an existing enclave 107

With this information at hand, we can build the new agreement to be added to the existing
enclave. Create a file called add_replica_input.txt as shown in Example 15-4.

Example 15-4 add_replica_input.txt

#forwarder1 site1 forwarder to replica3 site1 replica agreement
dn: cn=replica3, ibm-replicaServerId=forwarder1-uid, ibm-replicaGroup=default,
c=us
objectclass: top
objectclass: ibm-replicationAgreement
cn: replica3
ibm-replicaConsumerId: replica3-uid
ibm-replicaUrl: ldap://replica3:389
ibm-replicaCredentialsDN: cn=ibmcred, cn=replication, cn=IBMpolicies
description: forwarder1 (the site1 forwarder) to replica3 (the site1 replica 3)
agreement

#forwarder1 site1 forwarder to replica3 site1 replica agreement
dn: cn=replica3, ibm-replicaServerId=forwarder1-uid, ibm-replicaGroup=default,
cn=ibmpolicies
objectclass: top
objectclass: ibm-replicationAgreement
cn: replica3
ibm-replicaConsumerId: replica3-uid
ibm-replicaUrl: ldap://replica3:389
ibm-replicaCredentialsDN: cn=ibmcred, cn=replication, cn=IBMpolicies
description: forwarder1 (the site1 forwarder) to replica3 (the site1 replica 3)
agreement

#forwarder1 site1 forwarder to replica3 site1 replica agreement
dn: cn=replica3, ibm-replicaServerId=forwarder1-uid, ibm-replicaGroup=default,
secAuthority=default
objectclass: top
objectclass: ibm-replicationAgreement
cn: replica3
ibm-replicaConsumerId: replica3-uid
ibm-replicaUrl: ldap://replica3:389
ibm-replicaCredentialsDN: cn=ibmcred, cn=replication, cn=IBMpolicies
description: forwarder1 (the site1 forwarder) to replica3 (the site1 replica 3)
agreement

15.2.3 Loading the new agreement

In order to load the new agreement, perform the following steps:

1. Make sure that the existing LDAP enclave is up and running with no replication problems.

2. Log on to one of the peer master servers.

3. Enter the following command to load the new agreement into the existing enclave. (XXXX
= name of the replication agreement that you will be using).

ldapmodify -p 389 -D cn=root -w <password> -c -f /opt/tmp/XXXX_input.txt
108 Performance Tuning for IBM Tivoli Directory Server

4. Check to make sure that the new agreements have been replicated throughout the
enclave. You can use the ldapsearch command to look for the changes in all the existing
servers.

15.2.4 Backing up data from a Tivoli Directory Server v6 peer master server

To back up data from a Tivoli Directory Server v6 peer master server:

1. Log on to one of the Tivoli Directory Server v6 peer master servers and switch to the root
user:

$ su - root

Enter the password.

2. Set the umask.

umask 022

3. Switch to the ldapdb2 user.

su - ldapdb2

4. Run the tune_runstats.sh script (covered in 7.2, “How to use tune_runstats.sh” on
page 57) to update the statistics.

5. Stop the Tivoli Directory Server v6.

idsslapd -I ldapdb2 -k

The output should look similar to the following:

GLPSRV121I Stopped directory server instance: 'ldapdb2'

6. Create a directory to store the LDAP data.

mkdir /opt/tmp/dbback

7. Change the ownership and permissions on /opt/tmp/dbback. The ldapdb2 and dbsysadm
group require full access to the dbback directory.

chmod 770 /opt/tmp/dbback
chown ldapdb2:dbsysadm /opt/tmp/dbback

8. Back up the existing Tivoli Directory Server v6 directory.

idsdbback -I ldapdb2 -k /opt/tmp/dbback

Note: The XXXX_input.txt files are the sample files above that have to be customized
for each Tivoli Access Manager for e-business LDAP enclave.

Note: The “-I” is a capital letter “i”.

Note: The “-I” is a capital letter “i”.
Chapter 15. Adding a new LDAP server to an existing enclave 109

The output should look similar to the following:

You have chosen to perform the following actions:

GLPDBB029I The database and configuration files for directory server instance
'ldapdb2' will be backed up to '/opt/tmp/dbback'.

Do you want to....
(1) Continue with the above actions, or
(2) Exit without making any changes:

9. Enter 1 and press Enter.

The output looks similar to the output shown in Example 15-5.

Example 15-5 Output for data backup

GLPDBB008I Backing up directory server instance 'ldapdb2'.
GLPDBB015I Backing up the configuration file for the directory server instance
'ldapdb2'.
GLPDBB016I Backed up the configuration file for the directory server instance
'ldapdb2'.
GLPDBB018I Backing up the key stash files for the directory server instance
'ldapdb2'.
GLPDBB019I Backed up the key stash files for the directory server instance
'ldapdb2'.
GLPDBB021I Backing up the schema files for the directory server instance
'ldapdb2'.
GLPDBB022I Backed up the schema files for the directory server instance
'ldapdb2'.
GLPCTL008I Starting database manager for database instance: 'ldapdb2'.
GLPCTL009I Started database manager for database instance: 'ldapdb2'.
GLPCTL098I Backing up database ldapdb2.
GLPCTL099I Backed up database ldapdb2.
GLPDBB026I Saving backup information to a file.
GLPDBB027I Saved backup information to a file.
GLPDBB009I Backed up directory server instance 'ldapdb2'.

10.Tar the data from the Tivoli Directory Server v6 master server.

cd /opt/tmp
tar cvf /opt/tmp/ids60backup.tar dbback

11.Compress the tar file. The output file will be named /opt/tmp/ids60backup.tar.gz.

gzip /opt/tmp/ids60backup.tar

15.2.5 Restoring data to the replicas, peer masters, and forwarders

To restore data to the replicas, peer masters, and forwarders:

1. Log on to the new Tivoli Directory Server v6 peer, replica, or forwarder server and switch
to the root user:

$ su - root

Important: Do not start any of the Tivoli Directory Server 6.0 LDAP servers until the
following steps are completed on all servers.
110 Performance Tuning for IBM Tivoli Directory Server

Enter the password.

2. Set the umask.

umask 022

3. Transfer/FTP the ids60backup.tar.gz file from the Tivoli Directory Server v6 peer master
server /opt/tmp directory to the /opt/tmp directory on the new Tivoli Directory Server v6
peer, replica, or forwarder server.

4. Extract the Tivoli Directory Server v6 master server data from the compressed file.

cd /opt/tmp
gunzip /opt/tmp/ids60backup.tar.gz

5. Untar the /opt/tmp/ids60backup.tar file into the /opt/tmp directory.

tar xvf /opt/tmp/ids60backup.tar

6. Copy /opt/tmp/dbback/ibmslapddir.ksf /opt/export/home/ldapdb2/idsslapd-ldapdb2/etc.

cp /opt/tmp/seed/ibmslapddir.ksf /export/home/ldapdb2/idsslapd-ldapdb2/etc

7. Restore the data into the LDAP database. Using -r prevents the ibmslapd.conf file from
being overwritten by the ibmslapd.conf from the Tivoli Directory Server v6 master server.

idsdbrestore -I ldapdb2 -k /opt/tmp/dbback -r

The output is similar to the following:

You have chosen to perform the following actions:

GLPDBR026I The database and configuration files for directory server instance
'ldapdb2' will be restored from files in directory '/opt/tmp/dbback'. Note: The
data in the currently configured database will be overwritten and will be lost.
The schema files and directory key stash file currently configured will be
overwritten. Unless the -r option was specified the configuration file and
configuration key stash file will also be overwritten.

Do you want to....
(1) Continue with the above actions, or
(2) Exit without making any changes:

8. Enter 1 and press Enter.

The output is similar to the one shown in Example 15-6.

Example 15-6 Output for data restore

GLPDBR002I Restoring directory server instance 'ldapdb2'.
GLPDBR005I Loading backup information from a file.
GLPDBR006I Loaded backup information from a file.
GLPCTL008I Starting database manager for database instance: 'ldapdb2'.
GLPCTL009I Started database manager for database instance: 'ldapdb2'.
GLPCTL101I Restoring backup database ldapdb2 to configured database ldapdb2.
GLPCTL102I Restored backup database ldapdb2 to configured database ldapdb2.
GLPDBR015I Restoring the key stash files for the directory server instance
'ldapdb2'.
GLPDBR016I Restored the key stash files for the directory server instance
'ldapdb2'.

Note: The “-I” is a capital letter “i”.
Chapter 15. Adding a new LDAP server to an existing enclave 111

GLPDBR018I Restoring the schema files for the directory server instance
'ldapdb2'.
GLPDBR019I Restored the schema files for the directory server instance
'ldapdb2'.
GLPDBR003I Restored directory server instance 'ldapdb2'.

15.2.6 Starting all new LDAP servers and verifying replication queues

Repeat this section for each new peer master, forwarder, and replica in the enclave. Start the
servers in the following order:

1. New peer master servers
2. New forwarders
3. New replicas

Now perform the following steps:

1. Log on to the new Tivoli Directory Server v6 and switch to the root user:

$ su - root

Enter the password.

2. Set the umask.

umask 022

3. Start the Tivoli Directory Server v6.

idsslapd -I ldapdb2

The output is similar to the following:

GLPSRV041I Server starting.
GLPCOM024I The extended Operation plugin is successfully loaded from
libevent.so.
GLPCOM024I The extended Operation plugin is successfully loaded from
libtranext.so.
. . .
GLPSRV009I IBM Tivoli Directory (SSL), 6.0 Server started.

4. Verify that the LDAP server is running.

ldapsearch -p 389 -D cn=root -w ldap4u -s base objectclass=*

The beginning and the end of the output should look like the following:

namingcontexts=CN=SCHEMA
. . .
ibm-slapdisconfigurationmode=FALSE

5. Important: Verify that the last line, ibm-slapdisconfigurationmode, has the value of
FALSE. If it is TRUE, then the server is in configuration mode because there is a problem.
Fix any problems and restart the server before going to the next step.

6. Log on to the LDAP server using the Web administration tool console.

Important: Start the LDAP servers only after idsdbrestore has been run on all new peer
master, forwarder, and replica servers.

Note: The “-I” is a capital letter “i”.
112 Performance Tuning for IBM Tivoli Directory Server

7. Click Replication Management → Manage queues, as shown in Figure 15-1.

Figure 15-1 Manage replication queues

8. Verify that the state is Ready for each server and suffix combination. If you are logged into
a peer server, there should be queues for each of the other peer servers and the
forwarders. If you are logged into a forwarder, there should be queues for each of the
replicas under that forwarder. If you are logged into a replica, there should be no queues.

15.3 Testing replication

Replication is tested by creating test entries under c=US. Each peer master server should
perform at least one write action to test replication. The new entries are propagated to the
forwarder and then to the replicas. The entries are deleted when the test is complete (these
script files are located in the test folder).

1. Log on to the original Tivoli Directory Server v6 master server and switch to the root user:

$ su - root

Enter the password.

2. Set the umask.

umask 022

3. Add a test organization to c=US using a peer master server. The ldif entry for this
organization has been provided in /opt/tmp/myTestOrg1.ldif.

cd /opt/tmp/tools/replication/test
ldapadd -D cn=root -w <password> -h <peer_master1> -p 389 -f myTestOrg1.ldif

4. Search for the test organization on a replica server.

ldapsearch -D cn=root -w <password> -h <replica> -p 389 -b c=us o=myTestOrg1

The output is similar to the following:

o=myTestOrg1, c=us
o=myTestOrg1
objectclass=top
objectclass=organization
Chapter 15. Adding a new LDAP server to an existing enclave 113

5. Add a test user to o=myTestOrg1, c=US using a different peer master server. The ldif
entry for this organization has been provided in
/opt/tmp/tools/replication/myTestPerson<N>.ldif, where <N> is equal to 1, 2, 3, 4, or 5.
Use a different file for each master server.

cd /opt/tmp/tools/replication/test
ldapadd -D cn=root -w <password> -h <peer_masterN> -p 389 -f myTestPerson
<N>.ldif

6. Search a replica server for the test user created in the previous step. If an entry is not
returned, wait a few minutes and try again. If there is still no entry, then there is a problem
with the replication. Fix any problems before continuing.

ldapsearch -D cn=root -w <password> -h <replica> -p 389 -b c=us
cn=myTestPerson<N>

The output is similar to the following:

cn=myTestPerson1, o=myTestOrg1, c=us
cn=myTestPerson1
sn=myPersonSn1
objectclass=top
objectclass=person

7. Delete the test entries that were created.

cd /opt/tmp/tools/replication/test
ldapdelete -D cn=root -w <password> -h <peer_master> -p 389 -c -f
myTestDelete.ldif

If all five of the myTestPersons were added, the output will be blank. For each
myTestPerson that was not added, No such object will be reported. Assuming three peer
masters are used and one user was added to each peer master, the output is similar to the
following:

ldap_delete_s: No such object

ldap_delete_s: No such object

8. Verify that the test entries have been removed.

ldapsearch -D cn=root -w <password> -h <replica> -p 389 -b "o=myTestOrg1,
c=us" objectclass=*

There should be no output.

Note: Repeat the following steps (add/search) using a different number for each peer
master.

Note: myTestPerson<N> corresponds to the file used to create the entry, where <N> is
equal to 1, 2, 3, 4, or 5.
114 Performance Tuning for IBM Tivoli Directory Server

Appendix A. Special operating system tuning
for Tivoli Directory Server

In this appendix, we look into specific tuning for the HP-UX, Sun Solaris, and IBM AIX
operating systems (OS) as well as some other OS-related environment variables.

A

© Copyright IBM Corp. 2007. All rights reserved. 115

Sun Solaris and HP-UX operating system tuning
DB2 has a tool called db2osconf that can make recommendations for kernel parameter values
based on the size of a system. The recommended values are high enough for a given system
that they can accommodate most reasonable workloads. This command is currently available
only for DB2 on HP-UX on 64-bit instances and the Sun Solaris operating environment.

� On DB2 for HP-UX, no authorization is required. To make the changes recommended by
the db2osconf utility, you must have root access.

� On DB2 for the Sun Solaris operating environment, you must have root access or be a
member of the sys group.

Determining which system settings are required for DB2 and LDAP
To determine the system settings required for DB2 and LDAP:

1. Enter the following command:

/opt/IBM/db2/V8.1/bin/db2osconf -x

The results depend on the size of the server and will vary from one machine to another.
The output is similar to the following.

set msgsys:msginfo_msgmax = 65535
set msgsys:msginfo_msgmnb = 65535
set msgsys:msginfo_msgmni = 1792
set msgsys:msginfo_msgtql = 1792
set semsys:seminfo_semmni = 2048
set semsys:seminfo_semmns = 4300
set semsys:seminfo_semmnu = 2048
set semsys:seminfo_semume = 240
set shmsys:shminfo_shmmax = 933521817
set shmsys:shminfo_shmmni = 2048
set shmsys:shminfo_shmseg = 240

Total kernel space for IPC:
0.28MB (shm) + 1.41MB (sem) + 1.31MB (msg) == 3.01MB (total)
Do you want to accept the above recommended kernel parameters? (y/n)?

2. Enter y and press Enter.

The results depend on the size of the server and varies from one machine to another. The
output is similar to the following.

msgmax = 65535 (old: 2048)
msgmnb = 65535 (old: 4096)
msgtql = 1792 (old: 40)
msgmni = 1792 (old: 50)
semmni = 2048 (old: 10)
semmns = 4300 (old: 60)
semmnu = 2048 (old: 30)
semume = 240 (old: 10)
shmmax = 933521817 (old: 1048576)
shmmni = 2048 (old: 100)
shmseg = 240 (old: 6)

Total kernel space for IPC:
0.28MB (shm) + 1.41MB (sem) + 1.31MB (msg) == 3.01MB (total)
Do you want to change now to your new kernel parameters? (y/n)?
116 Performance Tuning for IBM Tivoli Directory Server

3. Enter y and press Enter.

The output is similar to the following:

Please backup /etc/system and then copy /tmp/DB2system to /etc/system, then
reboot before further installation.
Backup /etc/system.

cp /etc/system /etc/system.old

Replace /etc/system with the /tmp/DB2system file created by db2osconf.

cp /tmp/DB2system /etc/system

4. Reboot the server to activate the new system settings.

sync
sync
reboot

IBM AIX operating system tuning
This appendix discusses the following performance tuning tasks for the AIX operating
system:

� Enabling large files
� Setting MALLOCTYPE
� Setting other environment variables
� Viewing ibmslapd environment variables

Enabling large files
The underlying AIX operating system files that hold the contents of a large directory can grow
beyond the default size limits imposed by the AIX operating system. If the size limits are
reached, the directory ceases to function correctly. The following steps make it possible for
files to grow beyond default limits on an AIX operating system:

� When you create the file systems that are expected to hold the directory's underlying files,
you should create them as Enhanced Journaled File Systems or as Journaled File Systems
with Large File Enabled. The file system containing the DB2 instance's home directory,
and, if bulkload is used, the file system containing the bulkload temporary directory, are
file systems that can be created this way.

� Set the soft file size limit for the root, Lightweight Directory Access Protocol (LDAP), and
the DB2 instance owner users to -1. A soft file size limit of -1 for a user specifies the
maximum file size for that user as unlimited. The soft file size limit can be changed using
the smitty chuser command. Each user must log off and log back in for the new soft file
size limit to take effect. You must also restart DB2.

Setting MALLOCTYPE
Malloc buckets provides an optional buckets-based extension of the default allocator. It is
intended to improve malloc performance for applications that issue large numbers of small
allocation requests. When malloc buckets is enabled, allocation requests that fall within a

Note: The default path is <instance_home>/tmp.
Appendix A. Special operating system tuning for Tivoli Directory Server 117

predefined range of block sizes are processed by malloc buckets. All other requests are
processed in the usual manner by the default allocator.

A bucket consists of a block of memory that is subdivided into a predetermined number of
smaller blocks of uniform size, each of which is a unit of memory that can be allocated. Each
bucket is identified using a bucket number. The first bucket is bucket zero, the second bucket
is bucket one, and the third bucket is bucket two, and so on. The first bucket is the smallest
and each bucket after that is larger in size than the preceding bucket, using a formula
described later in this section. A maximum of 128 buckets is available per heap.

Set the MALLOCTYPE environment variable.

On all AIX 5.x versions, set MALLOCTYPE as follows:

export MALLOCTYPE=buckets

If you are using MALLOCTYPE buckets, you must set ulimits for the LDAP instance to the
following:

ulimit -m unlimited
ulimit -d unlimited

You can find more information about MALLOCTYPE in the AIX product documentation.

Setting other environment variables
You might experience better performance by tuning the following environment variables as
shown in the following sections. Check the AIX documentation to see if these settings might
be right for your installation.

AIXTHREAD_SCOPE
On AIX, when using multi-threaded applications, especially when running on machines with
multiple CPUs, we strongly recommend setting AIXTHREADSCOPE=S in the environment
before starting the application, for better performance and more solid scheduling.

Setting AIXTHREAD_SCOPE=S means that user threads created with default attributes are
placed into system-wide contention scope. If a user thread is created with system-wide
contention scope, it is bound to a kernel thread and it is scheduled by the kernel. The
underlying kernel thread is not shared with any other user thread. S signifies system-based
contention scope (1:1).

To set AIXTHREAD_SCOPE, use the following command:

export AIXTHREAD_SCOPE=S

Permanent change is made by adding the AIXTHREAD_SCOPE=S command to the
/etc/environment file.

NODISCLAIM
NODISCLAIM controls how calls to free() are being handled. When PSALLOC is set to early,
all free() calls result in a disclaim() system call. When NODISCLAIM is set to true, this does
not occur.

Note: If you want to use MALLOCTYPE buckets, you must use ML03 (contains the fix for
APAR IY50668) or later. You can get this from IBM Support at the following Web site:

http://www.ibm.com/support/us/
118 Performance Tuning for IBM Tivoli Directory Server

http://www.ibm.com/support/us/

To set NODISCLAIM, use the following command:

export NODISCLAIM=TRUE

Permanent change is made by adding the AIXTHREAD_SCOPE=S command to the
/etc/environment file.

Setting MINPERM and MAXPERM settings
On AIX servers, there is a default value for MINPERM and MAXPERM that is set as part of a
regular build. These values are not optimal for systems that host databases or LDAP
directories. The reason is that the default setting is to help cache file systems; DB2 also
caches data for performance. Therefore, using the default MINPERM and MAXPERM means
that we are double caching quite unnecessarily.

Recommended values
As a rule of thumb, the following values can be used for database servers that run on AIX.

� MINPERM - 10%
� MAXPERM - 20%
� MAXCLIENT - 20%

Values for MINPERM and MAXPERM parameters
The operating system takes advantage of the varying requirements for real memory by
leaving in memory pages of files that have been read or written. If the file pages are
requested again before their page frames are reassigned, this technique saves an I/O
operation. These file pages might be from local or remote (for example, NFS) file systems.

The ratio of page frames used for files versus those used for computational (working or
program text) segments is loosely controlled by the MINPERM and MAXPERM values:

� If percentage of RAM occupied by file pages rises above MAXPERM, page-replacement
steals only file pages.

� If percentage of RAM occupied by file pages falls below MINPERM, page-replacement
steals both file and computational pages.

� If percentage of RAM occupied by file pages is between MINPERM and MAXPERM,
page-replacement steals only file pages unless the number of file repages is higher than
the number of computational repages.

In a particular workload, it might be worthwhile to emphasize the avoidance of file I/O. In
another workload, keeping computational segment pages in memory might be more
important. To understand what the ratio is in the untuned state, use the vmstat command with
the -v option. For details, see Example A-1.

Example: A-1 vmstat -v output

vmstat -v
 1048576 memory pages
 1002054 lruable pages
 478136 free pages
 1 memory pools
 95342 pinned pages
 80.1 maxpin percentage
 20.0 minperm percentage
 80.0 maxperm percentage

Note: MAXPERM and MAXCLIENT have to be identical values.
Appendix A. Special operating system tuning for Tivoli Directory Server 119

 36.1 numperm percentage
 362570 file pages
 0.0 compressed percentage
 0 compressed pages
 35.0 numclient percentage
 80.0 maxclient percentage
 350782 client pages
 0 remote pageouts scheduled
 80 pending disk I/Os blocked with no pbuf
 0 paging space I/Os blocked with no psbuf
 3312 filesystem I/Os blocked with no fsbuf
 0 client filesystem I/Os blocked with no fsbuf
 474178 external pager filesystem I/Os blocked with no fsbuf

The numperm value gives the number of file pages in memory, 362570. This is 36.1% of real
memory.

If you notice that the system is paging out to paging space, it can be that the file repaging rate
is higher than the computational repaging rate because the number of file pages in memory is
below the MAXPERM value. Therefore, in this case we can prevent computational pages
from being paged out by lowering the MAXPERM value to something lower than the
numperm value. Because the numperm value is approximately 36%, we can lower the
MAXPERM value down to 30%. Therefore, the page replacement algorithm only steals file
pages. If the lru_file_repage parameter is set to zero, only file pages are stolen if the number
of file pages in memory is greater than the value of the MINPERM parameter.

Setting MINFREE and MAXFREE
There is a simple algorithm to calculate values for MINFREE and MAXFREE.

� Find the number of CPUs on the server (#cpus)

minfree = 120 * #cpus

� Find maxpgahead by using the following command:

ioo -a | grep maxpgahead

If maxpgahead <= 8 then maxfree = 128 * #cpus

If maxpgahead > 8 maxfree = new minfree + (#cpus * maxpgahead)

Values for MINFREE and MAXFREE parameters
The purpose of the free list is to keep track of real-memory page frames released by
terminating processes and to supply page frames to requestors immediately, without forcing
them to wait for page steals and the accompanying I/O to complete. The MINFREE limit
specifies the free-list size, below which, page stealing to replenish the free list is to be started.
The MAXFREE parameter is the size above which stealing ends. In the case of enabling strict
file cache limits, such as the strict_maxperm or strict_maxclient parameters, the MINFREE
value is used to start page stealing. When the number of persistent pages is equal to or less
than the difference between the values of the MAXPERM and MINFREE parameters, with the
strict_maxperm parameter enabled, or when the number of client pages is equal to or less
than the difference between the values of the maxclient and MINFREE parameters, with the
strict_maxclient parameter enabled, page stealing starts.
120 Performance Tuning for IBM Tivoli Directory Server

The objectives in tuning these limits are to ensure that:

� Any activity that has critical response-time objectives can always get the page frames it
needs from the free list.

� The system does not experience unnecessarily high levels of I/O because of premature
stealing of pages to expand the free list.

The default values of the MINFREE and MAXFREE parameters depend on the memory size
of the machine. The difference between the MINFREE and MAXFREE parameters should
always be equal to or greater than the value of the maxpgahead parameter, if you are using
Journaled File System (JFS). For Enhanced JFS, the difference between the MAXFREE and
MINFREE parameters should always be equal to or greater than the value of the
j2_maxPageReadAhead parameter. If you are using both JFS and Enhanced JFS, you
should set the value of the MINFREE parameter to a number that is greater than or equal to
the larger pageahead value of the two file systems.

The MINFREE and MAXFREE parameter values are different if there is more than one
memory pool. Memory pools were introduced in AIX 4.3.3 for MP systems with large amounts
of RAM. Each memory pool has its own MINFREE and MAXFREE values, but the MINFREE
and MAXFREE values shown by the vmo command is the sum of the MINFREE and
MAXFREE values for all memory pools.

A less precise but more comprehensive tool for investigating an appropriate size for
MINFREE is the vmstat command. Example A-2 shows a portion of vmstat command output
on a system where the MINFREE value is being reached.

Example: A-2 vmstat 1 output

vmstat 1
kthr memory page faults cpu
----- ----------- ------------------------ ------------ -----------
 r b avm fre re pi po fr sr cy in sy cs us sy id wa
 2 0 70668 414 0 0 0 0 0 0 178 7364 257 35 14 0 51
 1 0 70669 755 0 0 0 0 0 0 196 19119 272 40 20 0 41
 1 0 70704 707 0 0 0 0 0 0 190 8506 272 37 8 0 55
 1 0 70670 725 0 0 0 0 0 0 205 8821 313 41 10 0 49
 6 4 73362 123 0 5 36 313 1646 0 361 16256 863 47 53 0 0
 5 3 73547 126 0 6 26 152 614 0 324 18243 1248 39 61 0 0
 4 4 73591 124 0 3 11 90 372 0 307 19741 1287 39 61 0 0
 6 4 73540 127 0 4 30 122 358 0 340 20097 970 44 56 0 0
 8 3 73825 116 0 18 22 220 781 0 324 16012 934 51 49 0 0
 8 4 74309 26 0 45 62 291 1079 0 352 14674 972 44 56 0 0
 2 9 75322 0 0 41 87 283 943 0 403 16950 1071 44 56 0 0
 5 7 75020 74 0 23 119 410 1611 0 353 15908 854 49 51 0 0

In the output shown in Example A-2, you can see that the MINFREE value of 120 is
constantly being reached. Therefore, page replacement occurs and in this particular case, the
free list even reaches zero at one point. When that happens, threads needing free frames get
blocked and cannot run until page replacement frees up some pages. To prevent this
situation, you might consider increasing the MINFREE and MAXFREE values.

If you conclude that you should always have at least 1000 pages free, run the following
command:

vmo -o minfree=1000 -o maxfree=1008
Appendix A. Special operating system tuning for Tivoli Directory Server 121

To make this a permanent change, include the -p flag:

vmo -o minfree=1000 -o maxfree=1008 -p

Starting with AIX 5.3, the default value of the MINFREE parameter is increased to 960 per
memory pool and the default value of the MAXFREE parameter is increased to 1088 per
memory pool.

Setting maxuproc
Use the following command to set the maxuproc to a value of 4096 on AIX systems.

chdev -l sys0 -a maxuproc='4096'

To check the existing value, use the following command:

sattr -l sys0 -E | grep maxuproc

The default value set by AIX (500) has been found to be too low for some large scale
database environments, and causes DB2 to generate an SQL error message "SQL1402N -
Unable to authenticate user due to unexpected system error."

AIX asynchronous I/O (AIO) tuning for database servers
This is a setting that is best done with the help of an AIX system administrator. DB2 is a highly
disk-intensive application. To improve the performance of page cleaning and prefetching, set
the value of maxservers (usually the default is okay for minservers).

If an application does a synchronous I/O operation, it must wait for the I/O to complete. In
contrast, asynchronous I/O operations run in the background and do not block user
applications. This improves performance, because I/O operations and applications
processing can run simultaneously. Many applications, such as databases and file servers,
take advantage of the ability to overlap processing and I/O.

Applications can use the aio_read(), aio_write(), or lio_listio() subroutines (or their 64-bit
counterparts) to perform asynchronous disk I/O. Control returns to the application from the
subroutine as soon as the request has been queued. The application can then continue
processing while the disk operation is being performed.

To manage asynchronous I/O, each asynchronous I/O request has a corresponding control
block in the application's address space. This control block contains the control and status
information for the request. It can be used again when the I/O operation is completed.

After issuing an asynchronous I/O request, the user application can determine when and how
the I/O operation is completed. This information is provided in any of three ways:

� The application can poll the status of the I/O operation.
� The system can asynchronously notify the application when the I/O operation is done.
� The application can block until the I/O operation is complete.

Each I/O is handled by a single kproc, and typically the kproc cannot process any more
requests from the queue until that I/O has completed. The default minimum number of
servers configured when asynchronous I/O is enabled is one. This is the minservers attribute.
There is also a maximum number of asynchronous I/O servers that can get created and
which is controlled by the maxservers attribute, which has a default value of 10 per CPU. The
number of servers limits the number of asynchronous disk I/O operations that can be in
progress in the system simultaneously. The number of servers can be set with the SMITTY
command (smitty → Devices → Asynchronous I/O → Change/Show Characteristics of
Asynchronous I/O → {MINIMUM | MAXIMUM} number of servers or smitty aio) or with the
chdev command.
122 Performance Tuning for IBM Tivoli Directory Server

In systems that seldom run applications that use asynchronous I/O, the defaults are usually
adequate.

If the number of asynchronous I/O requests is high, then the recommendation is to increase
maxservers to approximately the number of simultaneous I/Os there might be. In most cases,
it is better to leave the minservers parameter at the default value because the AIO kernel
extension generates additional servers if needed.

By looking at the CPU utilization of the AIO servers, if the utilization is evenly divided among
all of them, this means that they are all being used, and you might want to try increasing them
in this case. To see the AIO servers by name, run the pstat -a command. Run the ps -k
command to see the AIO servers as the name kproc.

For environments in which the performance of asynchronous disk I/O is critical and the
volume of requests is high, but you do not have an approximate number of simultaneous I/Os,
it is recommended that maxservers be set to at least 10*(number of disks accessed
asynchronously).

This can be achieved for a system with three asynchronously accessed disks as follows:

chdev -l aio0 -a maxservers='30'

In addition, you can set the maximum number of asynchronous I/O REQUESTS outstanding,
and the server PRIORITY. If you have a system with a high volume of asynchronous I/O
applications, it might be appropriate to increase the REQUESTS number and lower the
PRIORITY number.

Viewing ibmslapd environment variables on AIX
To view the environment settings and variables for your ibmslapd process, run the following
command:

ps ewww PID | tr ' ' '\012' | grep = | sort

Where PID is the ibmslapd process ID.

See the output in Example A-3.

Example: A-3 Process information for ibmslapd

ACLCACHE=YES
ACLCACHESIZE=25000
AIXTHREAD_SCOPE=S
AUTHSTATE=compat
A__z=!
CLASSPATH=/home/ldapdb2/sqllib/java/db2java.zip:/home/ldapdb2/sqllib/java/

db2jcc.jar:/home/ldapdb2/sqllib/function:/home/ldapdb2/sqllib/java/
db2jcc_license_cisuz.jar:/home/ldapdb2/sqllib/java/db2jcc_license_cu.jar:.

DB2CODEPAGE=1208
DB2INSTANCE=ldapdb2
HOME=/
IDS_LDAP_HOME=/opt/IBM/ldap/V6.0
LANG=en_US
LC__FASTMSG=true

Note: AIO actions performed against a raw logical volume do not use kproc server
processes. The setting of maxservers and minservers have no effect in this case.
Appendix A. Special operating system tuning for Tivoli Directory Server 123

LD_LIBRARY_PATH=/home/ldapdb2/sqllib/lib
LIBPATH=/opt/IBM/ldap/V6.0/lib64:/usr/lib:/home/ldapdb2/idsslapd-ldapdb2/

db2instance/lib:/opt/IBM/ldap/V6.0/db2/lib64:/usr/lib:/lib:/home/ldapdb2/
sqllib/lib:.

LOCPATH=/usr/lib/nls/loc
LOGIN=root
LOGNAME=root
MAIL=/usr/spool/mail/root
MAILMSG=[YOU
MALLOCTYPE=buckets
NLSPATH=/opt/IBM/ldap/V6.0/nls/msg/%L/%N:/opt/IBM/ldap/V6.0/nls/msg/%L/%N.cat:/

usr/lib/nls/msg/%L/%N:/usr/lib/nls/msg/%L/%N.cat
NODISCLAIM=TRUE
ODBCCONN=15
ODMDIR=/etc/objrepos
PATH=/opt/IBM/ldap/V6.0/sbin:/opt/IBM/ldap/V6.0:/usr/bin:/etc:/usr/sbin:/usr/

ucb:/usr/bin/X11:/sbin:/usr/java14/jre/bin:/usr/java14/bin:/usr/java131/jre/
bin:/usr/java131/bin:/home/ldapdb2/sqllib/bin:/home/ldapdb2/sqllib/adm:/
home/ldapdb2/sqllib/misc

PWD=/home/ldapdb2/idsslapd-ldapdb2/workdir
RDBM_CACHE_BYPASS_LIMIT=100
RDBM_CACHE_SIZE=25000
RDBM_FCACHE_SIZE=25000
SHELL=/usr/bin/ksh
SSH_CLIENT=9.48.85.122
SSH_CONNECTION=9.48.85.122
SSH_TTY=/dev/pts/1
TERM=xterm
TISDIR=/opt/IBM/ldap/V6.0
TZ=CST6CDT
USER=root
VWSPATH=/home/ldapdb2/sqllib
_=/opt/IBM/ldap/V6.0/sbin/64/ibmslapd
instname=ldapdb2
location=/home/ldapdb2
124 Performance Tuning for IBM Tivoli Directory Server

Appendix B. How to apply DB2 fix packs to an
LDAP server

Tivoli Directory Server requires DB2 to be at its latest level (at least Fix Pack 9 or later of DB2
8.1) to take advantage of the performance fixes.

http://www.ibm.com/software/data/db2/udb/support/

The latest fix pack level at the time of writing this IBM Redpaper is Version 12.

B

© Copyright IBM Corp. 2007. All rights reserved. 125

http://www.ibm.com/software/data/db2/udb/support/

Prerequisites
To determine if the required prerequisites are installed, issue the appropriate command for
your operating system to display information about the currently installed version of DB2.

Consult the following Web sites for the latest software, hardware, operating system, and
product fix information:

� For operating system requirements, see:

http://www.ibm.com/software/data/db2/udb/sysreqs.html

� For a list of all fixed bugs (called APARs) and support news, see:

http://www.ibm.com/software/data/db2/udb/support.html

� For UNIX:

Table B-1 shows the commands for each Linux and UNIX operating system.

Table B-1 DB2 status calls

� For Windows:

Starting with DB2 Universal Database (UDB) Version 8 for Windows Fix Pack 3, IBM is
providing product-specific fix packs instead of one general fix pack. This change affects
only DB2 Version 8 products on Windows platforms.

This new delivery mechanism provides the following advantages:

– Less disk space is required on the operating system drive.

– The overall amount of disk space required for the installation is reduced.

– Easier installation for rollout scenarios at a fix pack or modification level later than
Version 8 general availability (GA) level.

If you have received special fixes from IBM support, you must contact IBM support before
you install DB2 UDB Version 8.2 Fix Pack 4 and later to check if you require an updated

Operating system Command Output to look for

IBM AIX lslpp -al “db2_08_01.client*” db2_08_01.client 8.1.0.0 or later (for AIX 4.3.3)
db2_08_01.client 8.1.1.0 or later (for AIX 5)
Sample outputs for DB2 for AIX 4.3.3:
� db2_08_01.client 8.1.0.0 COMMITTED ...
� 8.1.0.3 COMMITTED ...
� 8.1.0.8 COMMITTED ...
Check the largest installation signature that is returned
(8.1.0.x) to make sure it is smaller than the VRMF of the
current DB2 level.
For AIX 5, the signature looks like 8.1.1.y.

HP-UX swlist -l product “*DB2*” � DB2V8CAE 8.1.0.x [product name]
� PDB2... 8.1.0.x Product Patch

Where x must be smaller than the current
level (the fourth digit in VRMF).

Linux rpm -qa | grep db2 � db2cliv81-8.1.0-x
� db2cliv81-8.1.1-x on Linux/AMD64

Where x must be smaller than the current
level (the fourth digit in VRMF).

Sun Solaris
operating
environment

pkginfo -l db2cliv81 | grep
VERSION

� VERSION: 8.1.0.x
Where x must be smaller than the current
level (the fourth digit in VRMF).
126 Performance Tuning for IBM Tivoli Directory Server

http://www.ibm.com/software/data/db2/udb/sysreqs.html
http://www.ibm.com/software/data/db2/udb/support.html

version of the special fixes. This helps to ensure that your system is in a consistent state
and that no special fixes are lost.

You must have a DB2 product Version 8 installed at a lower VRMF (version, release,
modification/maintenance level, and fix) level than DB2 Version 8.2 Fix Pack 4 and later
before you install Version 8.2 Fix Pack 4 and later.

If you have a DB2 Version 8 product already installed, it must be at a lower service level
than DB2 Version 8.2 Fix Pack 4 and later. There are various methods to determine the
version and level of the currently installed DB2 product. You can:

– Enter the db2level command from a command prompt. The command displays the
informational tokens, for example “DB2 v8.1.5.xxx” indicates Fix Pack 5 is installed.

– Open the Control panel and select Add/Remove Programs. Look for entries starting
with DB2. These are the DB2 products installed on your computer. Click the support
information link to display the version installed. For example, Version 8.1.3 indicates
Fix Pack 3 is installed.

– Enter the regedit command from a command prompt and check the following values
under the registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\IBM\DB2\<product name>\CurrentVersion\Version
HKEY_LOCAL_MACHINE\SOFTWARE\IBM\DB2\<product name>\CurrentVersion\Release
HKEY_LOCAL_MACHINE\SOFTWARE\IBM\DB2\<product
name>\CurrentVersion\Modification

The following values should be displayed:

Version "8"
Release "1"
Modification "x"

Where x should be lower than the level of the DB2 Version 8.2 Fix Pack 4 and later.

The values for version, release, and modification correspond to the first three numbers
of the VRMF number. The value for modification in the registry for the currently
installed products must be less than the third number of the VRMF number for DB2
Version 8.2 Fix Pack 4 and later, which is 11.

Stopping all DB2 processes
We have to look at the UNIX and Windows platform separately.

� For UNIX:

Before starting the installation, ensure that all DB2 processes are stopped.

a. Switch to root authority by running the su - root command.

b. Run the following commands for each instance:

su - iname (Where iname represents the instance owner name)
. $HOME/sqllib/db2profile
db2 force applications all
db2 terminate
db2stop
db2licd -end # run at each physical node
exit
Appendix B. How to apply DB2 fix packs to an LDAP server 127

c. Run the following commands (for LDAP instance, you most likely will not have a DAS):

su - aname (Where aname represents the DAS owner name)
 . $HOME/das/dasprofile
 db2admin stop

 exit

d. On AIX, you should also run slibclean to unload unused shared libraries from memory
before installation.

/usr/sbin/slibclean

� For Windows:

To stop all instances and DB2 services, use the services control panel applet (Control
Panel → Administrative Tools → Services). If you have active database clients, you
might have to force these clients off while stopping the instance. To force clients, issue the
following command:

db2stop force

Unpacking fix pack to server
We have to look at the UNIX and Windows platform separately.

� For UNIX:

When you download and untar a fix pack or a modification level, make sure that there are
no spaces in the directory path where the file was located. If there are spaces in the
directory path, the installation will fail.

For example, make sure your directory path resembles the following:

/home/DB2FixPak/FP12/ ...

It should not resemble the following:

/home/DB2 FixPak/FP12/ ...

Ensure sufficient file system free space (IBM AIX 4.3.3, IBM AIX 5L™, Linux, and Solaris
operating environments).

In addition to the software disk requirements, you need to have a file system with 2 GB of
free space to contain the tar.Z file or tar.gz file, and the uncompressed installation image.

Some fix pack installation images on the FTP site or the fix pack CD are in compressed or
gzipped format. Before you can apply the DB2 fix pack from these formats, you have to
copy the image to a temporary directory and uncompress or gunzip the fix pack
installation image.

The compressed or gzipped images might have the file name FP11_$PTF.tar.Z or
FP12_$PTF.tar.gz, where FP12_$PTF represents the latest fix pack operating system
name and version.

To uncompress the fix pack installation images, perform the following steps:

a. Copy the compressed or gzipped image to a temporary file system containing at least
2 GB of free space.

Note: If you are a High-Availability Cluster Multi-Processing (HACMP™) user, you
must use the ha_db2stop command to stop DB2 instead of the db2stop command.
Otherwise, the db2stop command triggers a failure event.
128 Performance Tuning for IBM Tivoli Directory Server

b. Change to the directory where you copied the image by entering cd /TMP, where /TMP
represents the directory where you copied the compressed image.

c. If the product has the *.tar.Z extension, enter the following command:

zcat <filename>.tar.Z | tar -xvf -

Where <filename> is the DB2 Fix pack you are applying.

d. If the product has the *.tar.gz extension, enter the following command to uncompress:

gunzip -c <filename>.tar.gz | tar -xvf -

Where <filename> is the DB2 fix pack you are applying.

e. If the compressed fix pack installation images are on a fix pack CD, there might be
additional CDs with the file name extra.tar.Z or extra.tar.gz. Repeat these steps for
each CD.

� For Windows:

Before starting the installation, you must:

– Verify that you have enough space to install the fix pack or the modification level. You
need enough space to uncompress the self-extracting zip file.

– Ensure that your system has met all of the installation prerequisites including operating
system patches. This prevents technical problems that might occur after the installation
and configuration of DB2 products.

To uncompress the self-extracting image, double-click the self-extracting .exe file. For
example, if you have the DB2 Enterprise Server Edition product on Windows 32-bit double
click FP12_WR21365_ESE.exe. The WinZip Self Extractor window opens.

You can also uncompress the fix pack installation image using an unzip-compatible utility.
For example, to uncompress the DB2 Enterprise Server Edition product to a directory of
your choice, enter:

winzip32 FP12_WR21365_ESE.exe -e

Select the folder to extract the files. Click Unzip. All files are extracted to the specified
folder.

Installing fix pack
We have to look at the UNIX and Windows platform separately.

� For UNIX:

To install DB2 Version 8.2 Fix Pack 4 (DB2 Version 8.1 Fix Pack 12):

– You must be logged on as root.

– Change to the directory in which the installation image is located.

– To launch the installation, enter:

./installFixPak -y

Note: gunzip is part of the AIX 5L default installation setup. If you do not have
gunzip, install the rpm.rte fileset from the AIX 5L installation media. The rpm.rte
fileset contains gunzip. You can also download gzip for AIX5L from the following
Web site:

http://www.ibm.com/servers/aix/products/aixos/linux/rpmgroups.html
Appendix B. How to apply DB2 fix packs to an LDAP server 129

http://www.ibm.com/servers/aix/products/aixos/linux/rpmgroups.html

Where the -y option indicates your agreement to the license terms and conditions. The -y
option must be specified for installation to continue.

On AIX, if you do not want to commit the updates, you should issue the installFixPak
command with the -a option (for apply as opposed to commit) as follows:

./installFixPak -y -a

� For Windows:

To install the DB2 Version 8.2 Fix Pack 4 and later on a system with a single DB2 product
installed:

Change to the folder where the unzipped files are located. The setup command is located
under the folder with the product abbreviation. For example, DB2 Enterprise Server
Edition would be under ESE.

To start the DB2 Setup wizard, double-click the setup.exe file. The DB2 Setup wizard
graphical user interface (GUI) Launchpad opens.

Online help is available to guide you through the Setup wizard GUI. To invoke the online
help, click Help or press F1.

Post-installation
After installing DB2 Version 8.2 Fix Pack 4 or later, do the following:

1. Update instances to use the new level of DB2.

2. Update the system catalogs.

3. Restart the instances, and bind the bind files.

Updating instances to use the new level of DB2
We have to look at the UNIX and Windows platform separately.

� For UNIX:

– This task is mandatory. All instances must be updated after a new level of DB2 is
installed.

– Prerequisite: You have to be logged on as root to update the instances.

– For each instance, issue the command:

INSTHOME/instance/db2iupdt iname

Where iname represents the instance name and INSTHOME represents the
installation directory appropriate to your operating system.

� For Windows:

This task is strongly recommended if you want to use capabilities specific to the latest fix
pack. If you are not planning to use capabilities specific to the latest fix pack and might
possibly decide to return to an earlier fix pack, you should not use db2updv8.

Note: By default, the installFixPak command commits all of the updated filesets on AIX.
130 Performance Tuning for IBM Tivoli Directory Server

After installing DB2 UDB Version 8.2 Fix Pack 4 and later, run the db2updv8 command to
update the system catalogs to support the current level by enabling several built-in
routines. Running the db2updv8 command is not required, but some functionality in DB2
UDB Version 8.2 will not work if this command is not run.

After you have run the db2updv8 command to update the system catalogs to the current
Version 8 level, falling back to Version 8.1 is not supported.

For more information about the db2updv8 command, run this command with the -h option.
For technical information, search the Information Center for Update Database to Version 8
Current Level Command.

Steps to perform after applying the fix pack
We have to look at the UNIX and Windows platform separately.

� For UNIX:

Make sure that LDAP is down when you do the following:

cd /home/idsldap/sqllib/bnd
db2 connect to idsldap
db2 bind @db2ubind.lst BLOCKING ALL GRANT PUBLIC ACTION ADD
db2 bind @db2cli.lst BLOCKING ALL GRANT PUBLIC
db2 bind db2schema.bnd BLOCKING ALL GRANT PUBLIC sqlerror continue
db2 bind db2clipk.bnd collection NULLIDR1
db2 bind db2clipk.bnd collection NULLIDRA

We have a script that does the above commands for you on UNIX called db2perf.sh.

Usage: db2perf.sh [-db dbname]
Options:

-db dbname DB name to update with bind scripts (Default=ldapdb2)

Continue by editing the db2cli.ini and adding the REOPT=3 variable.

cd /home/idsldap/sqllib/cfg
vi db2cli.ini

Add to end of this file after a “blank” line and then put a blank line after this entry. The lines
should be as follows. The example we are using is [LDAPDB2B]. This is the db2 instance
alias name that you can get from the ibmslapd.conf file. Make sure that this name matches
the instance alias name:

[IDSLDAPB]
REOPT=3

� For Windows:

After applying fixes, you must issue one of the following command sequences for the DB2
command line:

db2 terminate
db2 CONNECT TO <dbname>
db2 BIND $DB2DIR\BND\@db2ubind.lst GRANT PUBLIC ACTION ADD
db2 bind $DB2DIR\BND\@db2cli.lst BLOCKING ALL GRANT PUBLIC
db2 bind $DB2DIR\BND\db2schema.bnd BLOCKING ALL GRANT PUBLIC sqlerror continue
db2 terminate

Note: This must be executed as the DB2 instance owner.
Appendix B. How to apply DB2 fix packs to an LDAP server 131

132 Performance Tuning for IBM Tivoli Directory Server

Appendix C. DB2 UDB concepts and
definitions

This appendix is a brief summary of some DB2 UDB concepts and terminology required to
understand the contents of this section. For a more in-depth discussion of these and other
DB2 UDB terms, refer to the DB2 UDB manuals available online.

The best place to go is the DB2 information center:

http://publib.boulder.ibm.com/infocenter/db2luw/v8//index.jsp

Instances
An instance, in DB2 UDB, is a logical database manager environment where you can create
and/or catalog databases and set various instance-wide configuration parameters. A
database manager instance can also be defined as being similar to an image of the actual
database manager environment. Furthermore, you can have several instances of the
database manager product on the same database server. You can use these instances to
separate the development environment from the production environment, tune the database
manager to a particular environment, and protect sensitive information from a particular group
of people. For a partitioned database environment, all database partitions will reside within a
single instance and will share a common set of configuration parameters at the instance level.

Databases
A database is created within an instance. A database presents logical data as a collection of
database objects (for example, tables and indexes). Each database includes a set of system
catalog tables that describe the logical and physical structure of the data, configuration files
containing the parameter values allocated for the database, and recovery logs. DB2 UDB
allows multiple databases to be defined within a single database instance. Configuration
parameters can also be set at the database level to tune various characteristics, such as
memory usage and logging.

C

© Copyright IBM Corp. 2007. All rights reserved. 133

http://publib.boulder.ibm.com/infocenter/db2luw/v8//index.jsp

Buffer pools
A buffer pool is the main memory allocated in the host processor to cache table and index
data pages as they are being read from disk, or being modified. The purpose of the buffer
pool is to improve the system performance. Data can be accessed much faster from memory
than from disk, therefore, the fewer times the database manager needs to read from or write
to disk (I/O), the better the performance. Buffer pools are created by database partitions and
each partition can have multiple buffer pools.

Tables
The primary database object is the table. A table is defined as a named data object consisting
of a specific number of columns and a various number of rows. Tables are uniquely identified
units of storage maintained within a DB2 tablespace. They consist of a series of logically
linked blocks of storage that have been given the same name. They also have a unique
structure for storing information that permits that information to be related to information in
other tables. When creating a table, you can choose to have certain objects, such as indexes,
stored separately from the rest of the table data. In order to do this, the table must be defined
to a data-managed space (DMS) tablespace.

Tablespaces
A database is logically organized into tablespaces. A tablespace is a place to store tables.
The tablespace is where the database is defined to use the disk storage subsystem. One
method to spread a tablespace over one or more physical storage devices is to simply specify
multiple containers. There are three main types of user tablespaces: regular, temporary, and
long. In addition to these user-defined tablespaces, DB2 also defines separate system and
catalog tablespaces. For partitioned database environments, the catalog tablespace resides
on the catalog database partition.

System-managed versus database-managed tablespaces
For partitioned databases, the tablespaces can reside in node groups. During the CREATE
TABLESPACE command, the containers themselves are assigned to a specific database
partition in the node group, thus maintaining the shared nothing character of DB2 UDB.
Tablespaces can be either system-managed space (SMS), or data-managed space (DMS).
For an SMS tablespace, each container is a directory in the file system, and the operating
system's file manager controls the storage space. For a DMS tablespace, each container is
either a fixed-size pre-allocated file or a physical volume, and the database manager controls
the storage space itself.

Containers
A container is an allocation of physical storage. It is a way to define the device that is made
available for storing database objects. Containers can be assigned to file systems by
specifying a directory. Such containers are identified as PATH containers and are used with
SMS tablespaces. Containers can also reference files that reside within a directory. These
are identified as FILE containers, and a specific size must be identified. FILE containers are
only used with DMS file tablespaces. Containers can also reference raw character devices.
These containers are used by DMS raw tablespaces and are identified as DEVICE
containers. Note that the device must already exist on the system before the container can be
used. In all cases, containers must be unique and can belong to only one tablespace.

Pages
Data is transferred to and from devices in discrete blocks called pages that are buffered in
memory. DB2 UDB supports various page sizes including 4 KB, 8 KB, 16 KB, and 32 KB.
When an application accesses data randomly, the page size determines the amount of data
transferred. In other words, it corresponds to the data transfer request size to the disk array.
134 Performance Tuning for IBM Tivoli Directory Server

Page size determines the maximum length of a row, and is associated with the maximum size
of a tablespace. These limits are shown in Table C-1. In all cases, DB2 UDB limits the number
of data rows on a single page to 255 rows.

Table C-1 Page size limits

Extents
An extent is the unit at which space is allocated within a container of a tablespace for a single
tablespace object. This allocation consists of multiple pages. The size of the extent is
specified when the tablespace is created. Note that when data is written to a tablespace with
multiple containers, the data is striped across all containers in extent-sized blocks.

Prefetch size
The number of pages that the database manager will prefetch can be defined for each
tablespace using the PREFETCHSIZE clause with either the CREATE TABLESPACE or
ALTER TABLESPACE statements. The value specified is maintained in the PREFETCHSIZE
column of the SYSCAT.TABLESPACES system catalog table.

Prefetching
Prefetching is a technique for anticipating data needs and reading ahead from storage in
large blocks. By transferring data in larger blocks, fewer system resources are expended and
less total time is required.

Sequential prefetches read consecutive pages into the buffer pool before they are required by
DB2. List prefetches are more complex. In this case, the DB2 optimizer optimizes the retrieval
of randomly located data. The amount of data being prefetched is part of what determines the
amount of parallel I/O activity.

Ordinarily, the database administrator should define a prefetch value large enough to allow
parallel use of all of the available containers and, therefore, all of the array's physical disks.
Consider the following example:

� A tablespace is defined with a page size of 16 KB using raw DMS.

� The tablespace is defined across four containers, and each container resides on a
separate logical disk, and each logical disk resides on a separate Redundant Array of
Independent Disks (RAID) array.

� The extent size is defined as 16 pages (or 256 KB).

� The prefetch value is specified as 64 pages (number of containers x extent size).

Page size Maximum tablespace size Maximum row length

4 KB 64 GB 4005 B

8 KB 128 GB 8101 B

16 KB 256 GB 16293 B

32 KB 512 GB 32677 B
Appendix C. DB2 UDB concepts and definitions 135

Assuming a user issued a query that results in a tablespace scan, which then results in DB2
performing a prefetch operation, the following happens:

� DB2 UDB recognizes that this prefetch request for 64 pages (a megabyte) evenly spans
four containers, and issues four parallel I/O requests, one against each of those
containers. The request size to each container is 16 pages, or 256 KB. The AIX Logical
Volume Manager divides the 256 KB request to each AIX logical volume into smaller units
(128 KB is the largest), and passes them on to the array as back-to-back requests against
each logical disk.

� An array receives a request for 128 KB; if the data is not in cache, four arrays operate in
parallel to retrieve the data.

After receiving several of these requests, the array recognizes that these DB2 UDB prefetch
requests are arriving as sequential accesses, causing the array sequential prefetch to take
effect.

Page cleaners
Page cleaners write dirty pages from the buffer pool to disk, reducing the chance that agents
looking for victim buffer pool slots in memory will have to incur the cost of writing dirty pages
to disk. For example, if you have updated a large amount of data in a table, many data pages
in the buffer pool might be updated but not written into disk storage (these pages are called
dirty pages). Because agents cannot place fetched data pages into the dirty pages in the
buffer pool, these dirty pages must be flushed to disk storage before their buffer pool memory
can be used for other data pages.
136 Performance Tuning for IBM Tivoli Directory Server

Appendix D. DB2 UDB quick reference guide

This appendix lists some of the more important and frequently used DB2 commands. More
information about IBM DB2 can be obtained from the following Web sites:

� DB2 Information Center site:

http://publib.boulder.ibm.com/infocenter/db2help/index.jsp

� DB2 DeveloperWorks site:

http://www.ibm.com/developerworks/db2/

� IBM Problem Support 1-800-IBM-SERV

http://www.ibm.com/software/support/probsub.html

� Fix pack download site:

http://www.ibm.com/software/data/db2/udb/support/downloadv8.html

D

© Copyright IBM Corp. 2007. All rights reserved. 137

http://publib.boulder.ibm.com/infocenter/db2help/index.jsp
http://www-130.ibm.com/developerworks/db2/
http://www.ibm.com/software/support/probsub.html
http://www-306.ibm.com/software/data/db2/udb/support/downloadv8.html

DB2 command line processor (CLP)
Let us take a look at some basic command line calls:

� OS Shell: db2 <command>

� Interactive: db2

� Batch: db2 -vtf <input-file>

For example: Input-file (file)
connect to sample;
create table test(c1 char(8);
insert into c1 values('abc');
select * from test;
update test set c1='123';
delete from test;
connect reset;

� Help:

db2 ?
db2 \?

� SQL Message: db2 ? <SQL Message>

For example:

db2 ? SQL0805

Instance configuration
For instance configuration, use the following:

� Create: db2icrt

� List: db2ilist

� Update: db2iuptd

� Drop: db2idrop

Instance configuration keywords
The instance configuration keywords are:

� Display: GET DBM CFG

� Update: UPDATE DBM CFG USING <keyword> <value>

For example, to update the instance IP listener configuration, issue:

UPDATE DBM CFG USING SVCENAME 50000
138 Performance Tuning for IBM Tivoli Directory Server

DB2 registry configuration
For DB2 registry configuration, use the following:

� Help: db2set -h

� Display: db2set -all

� Set: db2set <variable>=<value>

For example, to enable TCP/IP protocol issue:

db2set DB2COMM=TCPIP

Catalog remote database
Configuration Assistance GUI: db2ca

LIST DB DIRECTORY
LIST NODE DIRECTORY
CATALOG DB <dbname> AT NODE <node name>
CATALOG TCPIP NODE <node name> REMOTE <host ip> SERVER <ip socket port>
UNCATALOG DB <dbname> UNCATALOG NODE <node name>

DB2 instance start/stop
The DB2 instance start/stop commands are:

� DB2 Control Center GU: db2cc

� Start: db2start

� Stop:

– db2stop
– db2stop force
– db2_kill (UNIX/Linux only)

A complete DB2 shutdown procedure can be accomplished as follows:

LIST APPLICATION
FORCE APPLICATION ALL
db2stop

Database commands
The database commands are:

� CREATE DATABASE <dbname> on <file system path>
� DROP DATABASE <dbname>
� ACTIVATE DB <dbname>
� DEACTIVATE DB <dbname>

Hint: Issue TERMINATE to refresh the directory cache.
Appendix D. DB2 UDB quick reference guide 139

Database connection
For database connection, use:

CONNECT TO <dbname> [USER] <userid> [USING] <password>

� JDBC™ T4 String: jdbc:db2://host:port/<dbname>

� JDBC T2 String: jdbc:db2:<dbname>

Create DMS tablespace example:

CREATE TABLESPACE PAYROLL
MANAGED BY DATABASE USING
(DEVICE'/dev/rhdisk6' 10000,
DEVICE '/dev/rhdisk7' 10000,
DEVICE '/dev/rhdisk8' 10000)

Create SMS tablespace example:

CREATE TABLESPACE ACCOUNTING
MANAGED BY SYSTEM USING ('d:\acc_tbsp','e:\acc_tbsp', 'f:\acc_tbsp')
EXTENTSIZE 64 PREFETCHSIZE 32
CREATE TABLE SALARY.....
IN ACCOUNTING INDEX IN
ACCOUNT_IDX

Display database object
To display database object:

LIST TABLES [FOR {USER | ALL | SYSTEM | SCHEMA schema-name}] [SHOW DETAIL]
DESCRIBE {[OUTPUT] {SELECT-STATEMENT | CALL-STATEMENT}| {TABLE | INDEXES FOR
TABLE} TABLE-NAME [SHOW DETAIL]}
LIST TABLESPACES [SHOW DETAIL]
LIST TABLESPACE CONTAINERS FOR tablespace-id [SHOW DETAIL]

Database configuration
For database configuration, use the following:

� GET DB CFG FOR <dbname>

� UPDATE DB CFG FOR <dbname> USING <keyword> <value>

Granting database privilege
To grant database privileges:

� GRANT BINDADD| CONNECT| CREATETAB|DBADM ON DATABASE TO USER| GROUP| PUBLIC
authorization-name

� GRANT ALL INSERT| SELECT| UPDATE ON table-name TO USER| GROUP| PUBLIC
authorization-name

� GRANT ALTERIN| CREATEIN| DROPIN ON SCHEMA schema-name TO USER| GROUP| PUBLIC
authorization-name
140 Performance Tuning for IBM Tivoli Directory Server

Update database statistics
To update the database statistics:

RUNSTATS ON TABLE table-name [USER PROFILE| statistics-options]
db2rbind -d database-name -l logfile all
REORGCHK [{UPDATE | CURRENT} STATISTICS] [ON {TABLE {USER | SYSTEM | ALL |
table-name} | SCHEMA schema-name}]

DB2 monitoring commands
The DB2 monitoring commands are:

� LIST APPLICATION [SHOW DETAIL]

� LIST APPLICATION FOR DATABASE database-name [SHOW DETAIL]

� UPDATE MONITOR SWITCHES USING BUFFERPOOL on, LOCK on, SORT on, STATEMENT on,
TIMESTAMP on, TABLE on, UOW on

� GET SNAPSHOT FOR DBM

� GET DBM MONITOR SWITCHES

� GET SNAPSHOT FOR DATABASE ON database-name

� LIST ACTIVE DATABASES

� GET SNAPSHOT FOR APPLICATION ON database-name

� GET SNAPSHOT FOR TABLESPACE ON database-name

� GET SNAPSHOT FOR BUFFERPOOL on database-name

� GET SNAPSHOT FOR LOCKS ON database-name

� GET SNAPSHOT FOR DYNAMIC SQL ON database-name

Database recovery
Enabling point-in-time recovery: UPDATE DB CFG FOR <dbname> USING LOGRETAIN ON

BACKUP DATABASE database-name TO dir/dev
LIST HISTORY BACKUP ALL FOR DATABASE database-name
RESTORE DATABASE database-name
ROLLFORWARD DATABASE database-name

Troubleshooting
For troubleshooting, use the following:

� Display DB2 version and service level: db2level

� Display jdbc driver version: db2jcc -version

� Changing diagnostic level for error message log

UPDATE DBM CFG USING DIAGLEVEL 4

� Primary error message log file location: /INSTHOME/sqllib/db2dump/db2diag.log
Appendix D. DB2 UDB quick reference guide 141

142 Performance Tuning for IBM Tivoli Directory Server

Appendix E. Online backup of Tivoli Directory
Server

IBM Tivoli Directory Server uses the IBM DB2 relational database to store directory
information. While most Tivoli Directory Server administrators might not be interested in the
underlying DB2 database structure and how Tivoli Directory Server uses it, an experienced
DB2 administrator might be very interested, especially when determining an overall backup
and restore strategy. This appendix is intended to be sufficiently detailed to allow skilled DB2
database administrators to be able to design a backup and restore strategy for their own
Tivoli Directory Server environments. This strategy can include online backup support.

Online backup is a popular feature of DB2. This feature allows a backup of a database to be
made while that database is being accessed by other applications (for example, Tivoli
Directory Server). Before considering a backup and restore strategy that includes online
backup, be aware that performing an online backup consumes a significant amount of DB2
resources. The online procedures are intended only for users with DB2 experience.

In order for DB2 online backup to be fully supported with Tivoli Directory Server 6.0, several
columns defined in previous Tivoli Directory Server databases were reduced from a 2 GB to a
1 GB maximum. While this might seem like a reduction in functionality, it has been observed
that most customers have entries typically less than 24 K and only a few in the 100 K - 200 K
range. As a result of this feature, customers should be able to take a backup of their Tivoli
Directory Server databases without losing write capabilities.

Beginning with Tivoli Directory Server 6.0, newly created databases are defined with the
reduced 1 GB size columns so that they can be defined as BLOB (1G) LOGGED instead of
BLOB (2G) NOT LOGGED. This is because DB2 requires that you specify the NOT LOGGED
option to create a BLOB string greater than 1 GB. For columns defined to be NOT LOGGED,
DB2 does not log the BLOB column and during roll-forward recovery, the BLOB will be set to
NULL. In this case, a user might not notice that data is missing until the user restores the
database and discovers that the blob columns are NULL after roll-forward recovery.

In this appendix, we show how to set up the online backup capabilities in DB2 for use with
Tivoli Directory Server.

E

© Copyright IBM Corp. 2007. All rights reserved. 143

Additionally, for obtainable Tivoli Directory Server 5.2 databases that have been successfully
migrated to Tivoli Directory Server 6.0, this section documents DB2 commands that can be
used to help users evaluate and optionally migrate their existing tables for all entries that are
less than 1 GB. This migration is being done optionally because there is no easy way in DB2
to drop a column or reduce the size, therefore the data must be exported out of the old tables
and reloaded into the new tables.

This section starts with a description of the Tivoli Directory Server 6.0 database and
tablespace definitions. Individual sections describe alternative Tivoli Directory Server backup
and restore procedures including DB2 offline/online backup, DB2 offline restore, and
redirected restore. For customers migrating from Tivoli Directory Server V5.2 to 6.0, the last
section provides example documentation, which can be used to optionally evaluate and
migrate Tivoli Directory Server 5.2 customer databases so that online backup can be
supported.

DB2 information
DB2 backup and restore procedures are described in detail in the DB2 Administration Guides:

� IBM DB2 Universal Database Administration Guide: Planning Version 8, SC09-4822

� IBM DB2 Universal Database Administration Guide: Implementation Version 8,
SC09-4820

� IBM DB2 Universal Database Administration Guide: Performance Version 8, SC09-4821

The commands referenced by the procedures are documented in the IBM DB2 Universal
Database Command Reference Version 8, SC09-4828. The Administration Guide and the
Command Reference are part of the online library installed with DB2 and the Tivoli Directory
Server. They can also be obtained at the following Web site:

http://www.ibm.com/software/data/db2/library

Additional DB2 information can also be obtained using the following resource:

IBM Advanced DBA Certification Guide and Reference for DB2 Universal Database v8 for
Linux, UNIX, and Windows by Dwaine R. Snow and Thomas X. Phan

Directory schema and database definitions
Tivoli Directory Server V6.0 uses directory schema files to define the underlying DB2
directory database, which is used to store the data. Preparation for recovery of Tivoli
Directory Server requires backing up the files containing the Tivoli Directory Server directory
configuration and schema and the DB2 databases.

Tivoli Directory Server V6.0 directory schema
The Tivoli Directory Server maintains its schema files by default in the directory server
instance owner's home directory under the etc subdirectory. For example, for the ldapdb2
instance owner, the schema file location is: /home/ldapdb2/idsslapd-ldapdb2/etc.

You can also specify a different location for the schema files during instance creation.

Each time you start the server, it checks the schema files, validates them against the
underlying DB2 database, and checks that the database is correctly configured to support the
schema.
144 Performance Tuning for IBM Tivoli Directory Server

http://www.ibm.com/software/data/db2/library

A new Tivoli Directory Server can be configured to have the same schema by copying the
schema files to the new server instance owner's home/etc directory.

For example, to back up the schema files on AIX, where ldapdb2 is the Tivoli Directory Server
instance being used and /safeplace/etc is the location where the schema files are saved,
issue the following command:

cp /home/ldapdb2/idsslapd-ldapdb2/etc/* /safeplace/etc

To set up a new Tivoli Directory Server with the same schema, issue the following command:

cp /safeplace/etc/* /home/ldapdb2/idsslapd-ldapdb2/etc

Tivoli Directory Server V6.0 directory database definitions
Because DB2 backup and restore can be done at the database level, the tablespace level, or
both these levels, it is important to understand the underlying structure to determine which
backup and restore method might be best for different Tivoli Directory Server environments.
In general, it is strongly recommended that users do not do DB2 backup and restore at the
tablespace level for reasons detailed below.

In the examples in this paper, ldapdb2 is used as the database name. You can use the db2
list database directory and db2 list tablespace show detail commands to find the
database and tablespace information for your environment.

Tivoli Directory Server directory database and tablespaces
When Tivoli Directory Server creates a database for the directory, it uses the db2 create
database command to create the database. Tivoli Directory Server creates this database with
four system-managed space (SMS) tablespaces.

You can view the tablespaces by using the following DB2 commands run under the context of
the DB2 instance owner. In this paper, the ldapdb2 user is used:

db2 connect to <databaseName>
db2 list tablespaces

Example E-1 shows the tablespace output for the Tivoli Directory Server directory database
on an AIX, Linux, Solaris, or HP-UX system:

Example: E-1 Example tablespace output

Tablespaces for Current Database
Tablespace ID = 0
 Name = SYSCATSPACE
 Type = System managed space
 Contents = Any data
 State = 0x0000
 Detailed explanation:
 Normal

Tablespace ID = 1
 Name = TEMPSPACE1
 Type = System managed space
 Contents = Temporary data
 State = 0x0000
 Detailed explanation:
 Normal
Appendix E. Online backup of Tivoli Directory Server 145

Tablespace ID = 2
 Name = USERSPACE1
 Type = System managed space
 Contents = Any data
 State = 0x0000
 Detailed explanation:
 Normal

Tablespace ID = 3
 Name = LDAPSPACE
 Type = System managed space
 Contents = Any data
 State = 0x0000
 Detailed explanation:
 Normal

Tivoli Directory Server data is stored in two separate tablespaces: USERSPACE1 and
LDAPSPACE. By default, there is only one container or directory for each tablespace. To
view the details about the USERSPACE1 tablespace, enter a DB2 command similar to the
following:

db2 list tablespace containers for 2

Example output for the server instance ldapdb2
An example output for the server instance ldapdb2 is as follows:

Tablespace Containers for Tablespace 2
Container ID = 0
 Name = /home/ldapdb2/ldapdb2/NODE0000/SQL00001/SQLT0002.0
 Type = Path

The default container or directory that DB2 uses for tablespace 2 (USERSPACE1) is
/home/ldapdb2/ldapdb2/SQL00001/SQLT0002.0.

It contains all of the ldapdb2 database tables, which fit in a 4 K page size. This includes the
attribute tables that are used for fast DB2 lookups. Tablespace 3 (LDAPSPACE) contains the
remainder of the database tables, which require a 32 K page size. This includes the
ldap_entry table, which contains the majority of the Tivoli Directory Server directory data and
the replication tables. To view the tablespace container information for the LDAPSPACE
tablespace, enter a DB2 command similar to the following:

db2 list tablespace containers for 3

Example output is as follows:

Tablespace Containers for Tablespace 3
Container ID = 0
 Name = /home/ldapdb2/ldap32kcont_ldapdb2
 Type = Path

It is important to notice that the Tivoli Directory Server data is spread out between tablespace
2 and 3 and that both tablespaces have to be accessed for most single Tivoli Directory Server
operations. For a search, the attribute tables in tablespace 2 are used to find the entries that
match, but the entry information is actually returned from the ldap_entry table in tablespace 3.
For an update, the attribute tables in tablespace 2 must be updated, as well as the ldap_entry
(and possibly the replication tables) in tablespace 3. For this reason, it is recommended that
users do backup and restore only at the database level so that related sets of data are kept
146 Performance Tuning for IBM Tivoli Directory Server

together. If related sets of data are not kept together, recovering to a point in time where all of
the data is consistent is not likely.

Tivoli Directory Server change log database and tablespaces
Tivoli Directory Server 6.0 has a function called change log that causes all updates to the
directory to be recorded in a separate change log DB2 database (that is, a different database
from the one used to hold the Tivoli Directory Server directory information tree). The change
log database can be used by other applications to query and track LDAP updates. The
change log function is disabled by default. The change log function should be configured only
if needed, because it reduces update performance due to the additional logging overhead.

One way to check for existence of the change log function is to look for the suffix
CN=CHANGELOG. If it exists, the change log function is enabled.

When Tivoli Directory Server creates a database for the change log, it uses the db2 create
database command to create a database named ldapclog. IBM Tivoli Directory Server
creates this database with four system-managed space (SMS) tablespaces identical to the
ldapdb2 database described above.

You can view the tablespaces by using the following DB2 commands run under the context of
the DB2 instance owner (the ldapdb2 user in these examples):

db2 connect to ldapclog
db2 list tablespaces

It is important to notice that the Tivoli Directory Server Directory information is stored in a
different database (ldapdb2) from the change log database (ldapclog). In order to keep
related sets of data together, care must be taken to make sure that they are backed up and
restored in a consistent manner.

Distributing databases across multiple physical disks
In this section, we show how you can use DB2 offline backup and redirected restore to
distribute the Tivoli Directory Server database across multiple disks.

In some cases, the Tivoli Directory Server or DB2 administrator may have altered the Tivoli
Directory Server database layout by performing a redirected restore. In this case, the data
might already have been redistributed, and the database layout can be different. The
commands for backing up and restoring a DB2 database are the same whether or not the
database has been distributed across multiple physical disks.

As the database grows, it might become necessary and desirable to distribute the database
across multiple physical disk drives. You can achieve better performance by spreading
entries across multiple disks. In terms of performance, one 20 GB disk is not as good as two
10 GB disks. The following sections describe how to configure DB2 to distribute the ldapdb2
database across multiple disks. Similar instructions can be followed to distribute the change
log database across multiple disks. Replace the ldapdb2 database with the ldapclog
database in the examples shown below.
Appendix E. Online backup of Tivoli Directory Server 147

Creating file systems and directories on the target disks
The first step in distributing the DB2 database across multiple disk drives is to create and
format the file systems and directories on the physical disks that the database is to be
distributed among.

The guidelines are as follows:

� Because DB2 distributes the database equally across all directories, it is a good idea to
make all of the file systems, directories, or both, the same size.

� All directories to be used for the DB2 database must be completely empty. AIX and Solaris
systems create a lost+found directory at the root of any file system. Instead of deleting the
lost+found directory, create a subdirectory at the root of each file system to be used for
distributing the database. For example, create a subdirectory named diskn for each file
system where the DB2 database is to be stored (for example, disk1, disk2, disk3, and so
on).

� Create two additional directories under the diskn directory: One for holding tablespace 2
and the other for tablespace 3. For example, these directories might be named ts2 and
ts3. Then specify these directories on the set tablespace commands as discussed in
“Performing a redirected restore of the database” on page 149.

� The DB2 instance user must have write permission on the created directories. For AIX
and Solaris systems, the following command gives the proper permissions:

chown ldapdb2 directory_name

Platform-specific guidelines
The platform-specific guidelines are:

� For the AIX operating system, create the file system as an Enhanced Journaled File
System. If the file system is created as a Journaled File System, it must be defined with
the Large File Enabled option. This option can be found through the Add a Journaled File
System option of the smit menu.

� For AIX and Solaris systems, set the file size limit to unlimited or to a size large enough to
allow for the creation of a file as large as the file system. On AIX systems, the
/etc/security/limits file controls system limits and -1 means unlimited. On Solaris systems,
the ulimit command controls system limits.

Backing up the existing database
To back up the existing database, perform these steps:

1. Stop the IBM Directory server process (ibmslapd).

2. To close all DB2 connections, enter the following:

db2 force applications all
db2 list applications

A message similar to the following is displayed:

SQL1611W No data was returned by Database System Monitor.

3. To initiate the offline backup process, enter the following:

db2 backup db ldapdb2 to [file system | tape device]

When the database has been backed up successfully, a message similar to the following
is displayed:

Backup successful. The timestamp for this backup image is: 20000420204056
148 Performance Tuning for IBM Tivoli Directory Server

In the message above, the timestamp value is a unique identifier for each database backup
image and will be required when you perform a restore if you have more than one backup
image in a single folder. On AIX, Linux, Solaris, and HP-UX systems, the timestamp is
concatenated to the backup image file name:

DBNAME.type.instance.NODExxxx.CATNxxxx.yyyymmddhhmmss.seq

For example:

LDAPDB2.0.ldapdb2.NODE0000.CATN0000.20050404215244.001

On Windows systems, the backup image is stored in a 5 level directory tree, which also
contains the timestamp information:

"Dbname.type\db2instance\nodexxx\catnxxxx\yyyymmdd\hhmmss.seq"

[1] Buffers processed:
##
##
##
###
Image Verification Complete - successful.

Performing a redirected restore of the database
A DB2 redirected restore restores the specified database tablespace to multiple containers or
directories. In the following example, assume that the following directories for tablespace 2
were created, are empty, and have the correct permissions to allow write access by the DB2
instance owner (the ldapdb2 user in our examples):

� /disk1/ts2
� /disk2/ts2
� /disk3/ts2
� /disk4/ts2
� /disk5/ts2

In the following example, assume that the following directories for tablespace 3 were created:

� /disk1/ts3
� /disk2/ts3
� /disk3/ts3
� /disk4/ts3
� /disk5/ts3

Note: Ensure that the backup process was successful before proceeding. The next step
destroys the existing database in order to re-create it. If the backup was not successful, the
existing database is lost. You can verify the success of the backup by restoring to a
separate system. You can also use the db2ckbkp command to test the integrity of a backup
image and to determine whether the image can be restored. For example, using the
db2ckbkp command on the AIX, Linux, Solaris, or HP-UX backup image generated above:

db2ckbkp LDAPDB2.0.ldapdb2.NODE0000.CATN0000.20050404215244.001
Appendix E. Online backup of Tivoli Directory Server 149

Follow these steps for a redirected restore:

1. To start the DB2 restore process, enter the following:

db2 restore db ldapdb2 from location_of_backup replace existing redirect

Messages similar to the following are displayed:

SQL2539W Warning! Restoring to an existing database that is the same as

the backup image database. The database files will be deleted.

SQL1277N Restore has detected that one or more tablespace containers are

inAccessible, or has set their state to 'storage must be defined'.

DB20000I The RESTORE DATABASE command completed successfully.

The message SQL1277N indicates that storage must be defined for the tablespace
containers, which is illustrated in the following step.

2. To define the containers for tablespace 2 and for tablespace 3, enter the following:

db2 "set tablespace containers for 2 using (path \
'/disk1/ts2', path '/disk2/ts2', path '/disk3/ts2', \
path '/disk4/ts2', path '/disk5/ts2')"
db2 "set tablespace containers for 3 using (path \
'/disk1/ts3', path '/disk2/ts3', path '/disk3/ts3', \
path '/disk4/ts3', path '/disk5/ts3')"

After completion of the DB2 set tablespace containers command, a message similar to
the following is displayed:

DB20000I The SET TABLESPACE CONTAINERS command completed successfully.

If you receive the message SQL0298N Bad container path. SQLSTATE=428B2, it indicates
that one of the containers is not empty or that write permission is not enabled for the DB2
instance owner (the ldapdb2 user in these examples).

Note that the db2diag.log file contains some fairly low-level details that can be difficult to
interpret. In many cases, the information can be generally used to determine if and what
type of error occurred.

3. Continue the restore to new tablespace containers. This step, which restores the entire
database from its old containers to the new containers, takes the most time to complete.

Note: If many containers are defined, these commands can become so long that they
do not fit within the limits of a shell command. In this case, you can put the command in
a file and run within the current shell using the dot notation. For example, assume that
the commands are in a file named set_containers.sh. The following command runs the
set_containers.sh commands in the current shell:

. set_containers.sh

Note: A newly created file system on AIX and Solaris contains a directory named
lost+found. You should create a directory at the same level as lost+found to hold the
tablespace and then re-issue the set tablespace command. If you experience
problems, see the DB2 documentation. The following files might also be of interest:

� ldapdb2_home_dir /sqllib/Readme/en_US/Release.Notes
� ldapdb2_home_dir /sqllib/db2dump/db2diag.log
150 Performance Tuning for IBM Tivoli Directory Server

The time varies depending on the size of the directory. To continue the restore to the new
tablespace containers, enter the following:

db2 restore db ldapdb2 continue

If successful, the following message is displayed:

DB20000I The RESTORE DATABASE command completed successfully.

If problems occur with the redirected restore and you want to restart the restore process, it
might be necessary to enter the following command first:

db2 restore db ldapdb2 abort

If the redirected restore has been stopped, the redirected restore can be restarted,
beginning at step 1.

Overview of backup and restore procedures for LDAP
The fastest way to back up and restore the database is to use DB2 backup and restore
commands. Tivoli Directory Server alternatives, such as db2ldif and ldif2db, are generally
much slower in comparison. There are also the Tivoli Directory Server supported tools
idsdbback and idsdbrestore, which use the DB2 backup and restore commands and also
save additional Tivoli Directory Server configuration and schema information. However, it is
important to note that idsdbback does not support DB2 online backup in Tivoli Directory
Server 6.0. You can use idsbback only when the Tivoli Directory Server is not running.

A disadvantage of using the db2 backup and db2 restore commands is that the backed up
database cannot be restored across dissimilar hardware platforms. For example, you cannot
back up an AIX database and restore the database to a Solaris system. You also cannot back
up a database on one version of Tivoli Directory Server and then restore that database on
another version of Tivoli Directory Server. You should use the same version of DB2 for both
the db2 backup and db2 restore operations.

As an alternative to the db2 backup and db2 restore commands, you can use the LDAP Data
Interchange Format (LDIF) export and import commands: db2ldif (export) and ldif2db (import).
These commands work across dissimilar hardware platforms, but the process is slower.

An important advantage of using db2 backup and db2 restore commands or the dbback and
dbrestore commands is the preservation of DB2 configuration parameters and database
optimizations in the backed up database. The restored database has the same performance
tuning tasks as the backed up database. This is not the case with the Tivoli Directory Server
db2ldif and ldif2db commands.

Be aware that if you restore over an existing database, any performance tuning tasks on that
existing database are lost. Check all DB2 configuration parameters after performing a
restore. Also, if you do not know whether a db2 reorgchk was performed before the database
was backed up, run db2 reorgchk after the restore.

The DB2 commands to perform offline backup and restore operations for a directory
database named ldapdb2 are as follows:

db2 force applications all
db2 backup db ldapdb2 to directory_or_device
db2 restore db ldapdb2 from directory_or_device replace existing

Where directory_or_device is the name of a directory or device where the backup is stored.
Appendix E. Online backup of Tivoli Directory Server 151

The DB2 commands to perform offline backup and restore operations for the change log
database are as follows:

db2 force applications all
db2 backup db ldapclog to directory_or_device
db2 restore db ldapclog from directory_or_device replace existing

The most common error that occurs on a restore is a file permission error. Some reasons why
this error might occur are:

� The DB2 instance owner does not have permission to access the specified directory and
file. One way to solve this is to change directory and file ownership to the DB2 instance
owner. For example, enter the following:

chown ldapdb2 fil_or_dev

� The backed up database is distributed across multiple directories, and those directories
do not exist on the target system of the restore. Distributing the database across multiple
directories is accomplished with a redirected restore. To solve this problem, either create
the same directories on the target system or perform a redirected restore to specify the
proper directories on the new system. If creating the same directories, ensure that the
owner of the directories is the DB2 instance owner (the ldapdb2 user in these examples).
For more information about redirected restore, see “Distributing databases across multiple
physical disks” on page 147.

Replication considerations
Backup and restore operations can be used to initially synchronize a Tivoli Directory Server
consumer with a Tivoli Directory Server supplier or whenever the supplier and consumer get
out of sync. A consumer can get out of sync if it is not defined to the supplier. In this case, the
supplier does not know about the consumer and does not save updates on a propagation
queue for that consumer.

Overview of online backup and restore procedures for LDAP
When the Tivoli Directory Server database is first created, only circular logging is enabled for
it. This means that log files are reused (in a circular fashion), and are not saved or archived.
With circular logging, roll-forward recovery is not possible; only crash recovery is enabled.
The directory server must be stopped and offline when backups are taken.

When log archiving is configured for the database, roll-forward recovery is possible. This is
because the logs record changes to the database after the time that the backup was taken.
You perform log archiving by having the logretain database configuration parameter set to
RECOVERY. When this parameter is configured, the database is enabled for roll-forward
recovery.

After logretain is set to RECOVERY, a full offline backup of the database must be made for
the backup pending state to be satisfied so that the database can be used. To check if the
database is in backup pending state, look at the Backup pending value (YES or NO) returned
from the following DB2 command:

db2 get db config for ldapdb2

When the database is recoverable, the backups of the database can be completed online.
Roll-forward recovery reapplies the completed units of work recorded in the logs to the
restored database, tablespace, or tablespaces. You can specify that roll-forward recovery is
either to the end of the logs, or to a particular point in time.
152 Performance Tuning for IBM Tivoli Directory Server

A recovery history file is created with each database. The recovery history file is updated
automatically with summary information whenever you perform a backup or restore of a full
database or tablespace. This file can be a useful tracking mechanism for restore activity
within a database. This file is created in the same directory as the database configuration file.
It is automatically updated whenever there is one of the following activities:

� Backup of a database or tablespace
� Restore of a database or tablespace
� Roll-forward of a database or tablespace
� Alter of a tablespace
� Quiesce of a tablespace
� Rename of a tablespace
� Load of a table
� Drop of a table
� Reorganization of a table
� Update of table statistics

For information about previously backed up databases, enter the following DB2 command:

db2 list history backup all for db ldapdb2

The database configuration file contains the logretain and other parameters related to
roll-forward recovery. Because in some cases, the default parameter settings does not work
well, you might have to change some of these defaults for your setup. See the DB2
Administration Guide for detailed information about configuring these parameters in DB2.

� Primary logs (logprimary)

This parameter specifies the number of primary logs that are created.

� Secondary logs (logsecond)

This parameter specifies the number of secondary log files that are created and used for
recovery log files (only as needed).

� Log size (logfilsiz)

This parameter determines the number of pages for each of the configured logs. A page is
4 KB in size.

� Log Buffer (logbufsz)

This parameter enables you to specify the amount of database shared memory to use as
a buffer for log records before writing these records to disk.

� Number of Commits to Group (mincommit)

This parameter enables you to delay the writing of log records to disk until a minimum
number of commits have been performed.

� New log path (newlogpath)

You can change the location where active logs and future archive logs are placed by
changing the value for this configuration parameter to point to either a different directory or
a device.

� Log retain (logretain)

This parameter causes archived logs to be kept in the database log path directory.
Enabling it by setting it to RECOVERY enables the database manager to use the
roll-forward recovery method. After logretain is set to RECOVERY, you must make a full
backup of the database. This state is indicated by the backup_pending flag parameter.
Appendix E. Online backup of Tivoli Directory Server 153

� Track modified pages (trackmod)

When this parameter is set to Yes, the database manager tracks database modifications
so that the backup utility can detect which subsets of the database pages must be
examined by an incremental backup and potentially included in the backup image. After
setting this parameter to Yes, you must take a full database backup in order to have a
baseline against which incremental backups can be taken.

Basic examples for both offline and online backup of the database are described in the
following sections. Example E-2 is for the AIX operating system, and might have to be
modified for other operating systems.

Example DB2 list history information
In this section, we show a sample output for the DB2 backup history.

Example: E-2 Sample output for the DB2 backup history

db2 list history backup all for ldapdb2
 List History File for ldapdb2
Number of matching file entries = 6
Op Obj Timestamp+Sequence Type Dev Earliest Log Current Log Backup ID
 -- --- ------------------ ---- --- ------------ ------------ --------------
 B D 20050404215244001 F D S0000000.LOG S0000000.LOG
 --
 Contains 3 tablespace(s):
00001 SYSCATSPACE
 00002 USERSPACE1
 00003 LDAPSPACE
 --
 Comment: DB2 BACKUP LDAPDB2 OFFLINE
 Start Time: 20050404215244
 End Time: 20050404215324
 --
 00001 Location: /safeplace/sun-full-ldapdb2
Op Obj Timestamp+Sequence Type Dev Earliest Log Current Log Backup ID
 -- --- ------------------ ---- --- ------------ ------------ --------------
 B D 20050404215341001 N D S0000000.LOG S0000001.LOG
 --
 Contains 3 tablespace(s):
00001 SYSCATSPACE
 00002 USERSPACE1
 00003 LDAPSPACE
 --
 Comment: DB2 BACKUP LDAPDB2 ONLINE
 Start Time: 20050404215341
 End Time: 20050404215411
 --
 00002 Location: /safeplace/no-changes
Op Obj Timestamp+Sequence Type Dev Earliest Log Current Log Backup ID
 -- --- ------------------ ---- --- ------------ ------------ --------------
 B D 20050404221134001 N D S0000006.LOG S0000011.LOG
 --
 Contains 3 tablespace(s):
00001 SYSCATSPACE
154 Performance Tuning for IBM Tivoli Directory Server

 00002 USERSPACE1
 00003 LDAPSPACE
 --
 Comment: DB2 BACKUP LDAPDB2 ONLINE
 Start Time: 20050404221134
 End Time: 20050404221228
 --
 00004 Location: /safeplace/duringadd
Op Obj Timestamp+Sequence Type Dev Earliest Log Current Log Backup ID
 -- --- ------------------ ---- --- ------------ ------------ --------------
 B D 20050404222613001 N D S0000055.LOG S0000057.LOG
 --
 Contains 3 tablespace(s):
00001 SYSCATSPACE
 00002 USERSPACE1
 00003 LDAPSPACE
 --
 Comment: DB2 BACKUP LDAPDB2 ONLINE
 Start Time: 20050404222613
 End Time: 20050404222706
 --
 00005 Location: /safeplace/addsdone
Op Obj Timestamp+Sequence Type Dev Earliest Log Current Log Backup ID
 -- --- ------------------ ---- --- ------------ ------------ --------------
 B D 20050405170536001 N D S0000058.LOG S0000059.LOG
 --
 Contains 3 tablespace(s):
00001 SYSCATSPACE
 00002 USERSPACE1
 00003 LDAPSPACE
 --
 Comment: DB2 BACKUP LDAPDB2 ONLINE
 Start Time: 20050405170536
 End Time: 20050405170635
 --
 00006 Location: /safeplace/no-changes-since-yest

Example offline backup and restore procedures
The first set of four steps explains the backup procedure.

1. Determine a secure location to store the files to be used for backup and recovery: a
backup machine, separate media, and so on. /safeplace is used for the examples below.
(The DB2 instance owner must have write permission for the /safeplace directory.)

2. Save the Tivoli Directory Server configuration and schema files in a secure location.
These files have to be updated only if you change the topology, change your configuration
parameters, or change your schema. (ldapdb2 is used as the directory server instance
name.)

cp /home/ldapdb2/idsslapd-ldapdb2/etc/* /safeplace/etc

3. Make sure that ibmslapd is not running:

ibmslapd -I ldapdb2 -k
Appendix E. Online backup of Tivoli Directory Server 155

4. Create a full database offline backup on Sunday. (Be sure to run all DB2 commands as
the DB2 instance owner.)

db2 force applications all
db2 backup db ldapdb2 to /safeplace/sun-full-ldapdb2

The second set of five steps restores the directory database on a different machine.

1. If necessary, install Tivoli Directory Server.

2. Configure a new database, using the same information that was specified on the backup
machine.

3. Copy or FTP the configuration, schema, and backup image files from the backup machine
to /safeplace on this machine.

4. Copy the backed up configuration and schema files to this machine:

cp /safeplace/etc/* /home/ldapdb2/idsslapd-ldapdb2/etc

5. Restore the directory database from Sunday:

db2 restore db ldapdb2 from /safeplace/sun-full-ldapdb2 replace existing

Example online backup for the directory database
The first set of seven steps describes how full online backups are used for recovery.

1. Determine a secure location to store files to be used for backup and recovery: a backup
machine, separate media, and so on. /safeplace is used for the examples below. (The
DB2 instance owner must have write permission for the /safeplace directory.)

2. Save the Tivoli Directory Server configuration and schema files in a secure location.
These files have to be updated only if you change the topology, change your configuration
parameters, or change your schema. (ldapdb2 is used as the Tivoli Directory Server
instance name.)

cp /home/ldapdb2/idsslapd-ldapdb2/etc/* /safeplace/etc

3. Make sure that ibmslapd is not running:

ibmslapd -I ldapdb2 -k

4. For recovery purposes, log files should be kept on a different physical drive from the
database. For this example, /safeplace/db2logs-ldapdb2 is the secure location. (You must
run all DB2 commands as the DB2 instance owner.)

db2 update db config for ldapdb2 using newlogpath /safeplace/db2logs-ldapdb2

5. Update the Directory Server database for online backup support (logretain on):

db2 update db config for ldapdb2 using logretain recovery
db2 force applications all
db2stop
db2start

After logretain is set to recovery, you must make a full offline backup.

Note: In some versions and cases, DB2 supports cross-platform backup and restore
operations and mixed version backup and restore operations. From a Tivoli Directory
Server perspective, you cannot back up a database on one version of Tivoli Directory
Server and then restore that database on another version of Tivoli Directory Server. It is
recommended that you use the same version of db2 backup and db2 restore for both DB2
operations.
156 Performance Tuning for IBM Tivoli Directory Server

6. Create a full database offline backup on Sunday:

db2 backup db ldapdb2 to /safeplace/sun-full-ldapdb2

7. Start the directory server instance:

ibmslapd -I ldapdb2

The second set of two steps shows you how to create nightly full online backups for the
directory database.

1. On a nightly basis (or more frequently, if determined necessary), create full backups and
copy log files from the log file path. Run the same commands on Tuesday, Wednesday,
Thursday, Friday, and Saturday.

2. Verify the log path. (DB2 appends the node to the path specified.)

db2 get db config for ldapdb2 | grep "Path to log files"

The following is an example of the information returned:

Path to log files = /safeplace/db2logs-ldapdb2/NODE0000/

Restoring the directory database
Assume that a disk drive failed on Wednesday morning on the machine being used in the
above example. Because /safeplace that was used to back up the files and logs was not
affected, it can be used for restore.

If a different machine is being used to restore the database, the /safeplace directories on the
backed up machine must be set up on the new machine to a local /safeplace directory. This
must include all backup directories being used, as well as the log files in the
/safeplace/db2log-ldapdb2/NODE0000 directory.

1. If necessary, install Tivoli Directory Server.

2. Configure a new database using the same information that was specified previously.

3. Copy (or tar) the configuration and schema files backed up previously:

cp /safeplace/etc/* /home/ldapdb2/idsslapd-ldapdb2/etc

4. Restore the directory database from Tuesday night:

db2 restore db ldapdb2 from /safeplace/tues-ldapdb2 taken at
timestamp_of_backup

If you are restoring on a new machine, you will see the following warning message:

SQL2523W Warning! Restoring to an existing database that is different from the
database on the backup image, but have matching names. The target database will
be overwritten by the backup version. The Roll-forward recovery logs associated
with the target database will be deleted.

Important: You can use an online backup image for recovery only if you have the logs
that span the time during which the backup operation was running:

db2 backup db ldapdb2 online to /safeplace/mon-ldapdb2

Note: The timestamp_of_backup clause is only required if there is more than one
backup image in the specified directory path.
Appendix E. Online backup of Tivoli Directory Server 157

Do you want to continue ? (y/n) y

DB20000I The RESTORE DATABASE command completed successfully.

5. Set the new database's log path to the same path originally used for the log files. If you are
restoring on a new machine, you must copy the log files from the old system to the new:

db2 update db config for ldapdb2 using newlogpath /safeplace/db2logs-ldapdb2

6. Roll forward all logs located in the log directory, which include changes since the Tuesday
night backup:

db2 rollforward db ldapdb2 to end of logs and stop

Incremental directory and change log database online backup
For incremental directory and change log database online backup:

1. Determine a secure location to store files to be used for backup and recovery: a backup
machine, separate media and so on. /safeplace is used for the examples below. (If the
change log is not configured, all commands containing ldapclog can be ignored.)

2. Save the Tivoli Directory Server configuration and schema files in a secure location.
These files have to be updated only if you change the topology, change your configuration
parameters, or change your schema. ldapdb2 is used as the Tivoli Directory Server
instance.

cp /home/ldapdb2/idsslapd-ldapdb2/etc/* /safeplace/etc

3. Make sure that ibmslapd is not running:

ibmslapd -I ldapdb2 -k

4. Update the directory server database and change log database for online backup support
(logretain on) and incremental backup (trackmod on).

db2 update db cfg for ldapdb2 using logretain recovery trackmod on
db2 update db config for ldapclog using logretain recovery trackmod on
db2 force applications all
db2stop
db2start

Note: In this case, recovery requires only the last full backup image and the logs
spanning the time since the backup was made.

Note: In this example, the path to the log files has not been modified from the default
locations. This is to illustrate the default log path locations when both directory and
change log databases are used. For recovery purposes, log files should be kept on a
different physical drive than the databases.

Note: Setting trackmod on for incremental backup support can have an impact on the
runtime performance for operations that update or insert data.
158 Performance Tuning for IBM Tivoli Directory Server

Creating full offline backups for directory and change log databases
To create full offline backups for directory and change log databases:

1. Create full database offline backups for both databases on Sunday.

db2 backup db ldapdb2 to /safeplace/sun-full-ldapdb2
db2 backup db ldapclog to /safeplace/sun-full-ldapclog

2. Start the directory server instance:

ibmslapd -I ldapdb2

Creating incremental online backups for directory and change log databases
To create incremental online backups for directory and change log databases:

1. On a nightly basis (or more frequently, if determined necessary), create incremental
backups. Run the same commands on Tuesday, Wednesday, Thursday, Friday, and
Saturday.

db2 backup db ldapdb2 online incremental to /safeplace/mon-ldapdb2

2. Verify the path to the log files for the directory database:

db2 get db config for ldapdb2 | grep "Path to log files"

The following is an example of the information returned:

Path to log files = /home/ldapdb2/ldapdb2/NODE0000/SQL00001/SQLOGDIR/
cp /home/ldapdb2/ldapdb2/NODE0000/SQL00001/SQLOGDIR/*/safeplace/db2logs-ldapdb2
db2 backup db ldapclog online incremental to /safeplace/mon-ldapclog

3. Verify the path to the log files for the change log database:

db2 get db config for ldapclog | grep "Path to log files"

The following is an example of the information returned:

Path to log files = /home/ldapdb2/ldapdb2/NODE0000/SQL00002/SQLOGDIR/
cp /home/ldapdb2/ldapdb2/NODE0000/SQL00002/SQLOGDIR/*
/safeplace/db2logs-ldapclog

Restoring both directory and change log databases
Assume a disk drive failed on Wednesday morning on the machine being used in the above
example. Because the /safeplace directory used to back up the files was not affected, it can
be used for restore.

If a different machine is being used to restore the database, the /safeplace directories on the
backed up machine must be set up on the new machine to a local /safeplace directory. This
must include all backup directories being used, as well as the log files in the
/safeplace/db2log-ldapdb2/NODE0000 and the /safeplace/db2log-ldapclog/NODE0000
directories.

Important: You can only use an online backup image for recovery if you have the logs
that span the time during which the backup operation was running.

(Note that the directory and change log database logs are kept in different paths with
identical names (for example, S0000000.LOG, S0000001.LOG, and so on), therefore
they have to be saved in different directories if the change log is configured.)
Appendix E. Online backup of Tivoli Directory Server 159

1. If necessary, install Tivoli Directory Server.

2. Configure a new database, using the same information that was specified previously.

3. Copy the configuration and schema files backed up previously:

cp /safeplace/etc/* /home/ldapdb2/idsslapd-ldapdb2/etc

4. Make sure that ibmslapd is not running:

ibmslapd -I ldapdb2 -k

5. Restore the directory database. The last backup image to be restored is called the target
image. The target image must be restored twice, once at the start of the restore procedure
and again at the end. Therefore, in order to restore Tuesday's incremental backup:

db2 restore db ldapdb2 incremental from /safeplace/tues-ldapdb2
db2 restore db ldapdb2 incremental from /safeplace/sun-full-ldapdb2
db2 restore db ldapdb2 incremental from /safeplace/tues-ldapdb2

6. Copy the log files backed up previously to the default log path locations:

cp /safeplace/db2logs-ldapdb2/*/home/ldapdb2/ldapdb2/NODE0000/SQL00001/SQLOGDIR
db2 rollforward db ldapdb2 to end of logs and stop

7. Restore the change log database:

db2 restore db ldapclog incremental from /safeplace/tues-ldapclog
db2 restore db ldapclog incremental from /safeplace/sun-full-ldapclog
db2 restore db ldapclog incremental from /safeplace/tues-ldapclog

8. Copy the log files backed up previously to the default log path locations:

cp /safeplace/db2logs-ldapclog/*
/home/ldapdb2/ldapdb2/NODE0000/SQL00002/SQLOGDIR
db2 rollforward db ldapclog to end of logs and stop

Using incremental delta backups
In the examples above using incremental backup, the incremental backup increases in size
until the next full backup. This is because the backup contains accumulated changes over
time, therefore there are many more changes saved for Saturday than there were for
Monday. DB2 also allows delta backups, which saves only changes made since the last
backup of any kind. These delta backups are much smaller and finish more quickly; however,
when used to restore, you will require all deltas since the last full or incremental backup.

The commands to perform nightly online delta backups for the ldapdb2 database above are:

db2 backup db ldapdb2 online incremental delta to /safeplace/mon-delta-ldapdb2
db2 backup db ldapdb2 online incremental delta to /safeplace/tues-delta-ldapdb2
db2 backup db ldapdb2 online incremental delta to /safeplace/wed-delta-ldapdb2
db2 backup db ldapdb2 online incremental delta to /safeplace/thurs-delta-ldapdb2
db2 backup db ldapdb2 online incremental delta to /safeplace/fri-delta-ldapdb2
db2 backup db ldapdb2 online incremental delta to /safeplace/sat-delta-ldapdb2

As shown in the previous examples, the log files for the database must be kept in a secure
place also when using delta backups. If you are using the default log paths, you must copy
them to a /safeplace/db2logs-ldapdb2 directory, or modify the database configuration to save
them directly in the /safeplace/db2logs-ldapdb2 location.

Note: In this case, recovery requires a full backup image, and the LAST incremental
backup. Note that the Monday incremental backup is not needed to restore up through
Tuesday.
160 Performance Tuning for IBM Tivoli Directory Server

Restoring from incremental delta backups
As shown in the previous examples, the log files for the database from the backup machine
must be available on the machine being used for restoring the delta backups. If you are using
the default log paths, you must copy them from the /safeplace/db2logs-ldapdb2/NODE0000
directory on the backup machine to the default log path on the machine being restored, or
modify the database configuration newlogpath on the new machine and copy them directly to
the /safeplace/db2logs-ldapdb2/NODE000 location.

When restoring from delta backups, you must have all deltas since the last full or incremental
backup.

The commands to restore online delta backups for the ldapdb2 database above are:

db2 restore db ldapdb2 incremental from /safeplace/sat-delta-ldapdb2
db2 restore db ldapdb2 incremental from /safeplace/sun-full-ldapdb2
db2 restore db ldapdb2 incremental from /safeplace/mon-delta-ldapdb2
db2 restore db ldapdb2 incremental from /safeplace/tues-delta-ldapdb2
db2 restore db ldapdb2 incremental from /safeplace/wed-delta-ldapdb2
db2 restore db ldapdb2 incremental from /safeplace/thurs-delta-ldapdb2
db2 restore db ldapdb2 incremental from /safeplace/fri-delta-ldapdb2
db2 restore db ldapdb2 incremental from /safeplace/sat-delta-ldapdb2

Pros and cons of different recovery strategies
If a database has high write activity, an online full backup might be more efficient. Although
minimal, the tracking of updates to the database can have an impact on the runtime
performance of transactions that update or insert data.

Incremental backup is a good way to protect a database that is mostly read-only, but has
some write activity, which makes it important to be recoverable. An incremental backup
image is a copy of all database data that has changed since the most recent, successful, full
backup operation. This is also known as a cumulative backup image, and the predecessor of
an incremental backup image is always the most recent successful full backup of the same
object.

An incremental delta backup image is a copy of all database data that has changed since the
last successful backup (full, incremental, or incremental delta). This is also known as a
differential or non-cumulative backup image. While delta backups are smaller, all deltas
since the last full or incremental backup are required to restore the database.

Note: As in the previous example, the target image must be restored twice, at the
beginning and again as the last restore.Copy the logs and do the roll forward as before:

cp /safeplace/db2logs-ldapdb2/*
/home/ldapdb2/ldapdb2/NODE0000/SQL0001/SQLOGDIR/
db2 rollforward db ldapdb2 to end of logs and stop
Appendix E. Online backup of Tivoli Directory Server 161

Other backup, restore, and roll-forward command options
Use the following command in a situation where you want to restore a database to a specific
point in time, and not roll forward any changes made after that point in time; the without
rolling forward prevents DB2 from putting the restored database in roll-forward pending
state:

db2 restore db ldapdb2 from /safeplace taken at 20040405154705 without rolling
forward

To restore a database from a path where there is only one backup database image stored
and without prompting:

db2 restore db ldapclog from /safeplace/full-backup-ldapclog without rolling
forward without prompting

For offline roll-forward database to a point in time:

db2 "rollforward database ldapdb2 to 2004-04-22-14.54.21.253422 and stop

This command rolls forward all logs located in the log folder specified in the database
configuration file up to and including the above stated point in time. The and stop key phrase
completes the roll-forward recovery process by rolling back incomplete transactions and
tuning off the roll-forward pending state of the database.

Common problems for backup, restore, and roll-forward
commands

ldapdb2 is used as the database name in the examples below. For change log, the change
log database (ldapclog) can be used.

� Example: Trying to update database configuration for online backup parameters while
ibmslapd is running.

db2 update db cfg for ldapdb2 using logretain recovery trackmod on
DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.

SQL1363W One or more of the parameters submitted for immediate modification
were not changed dynamically. For these configuration parameters, all
applications must disconnect from this database before the changes become
effective.

If you receive this message, you must stop and restart ibmslapd for the changes to take
effect:

ibmslapd -I ldapdb2 -k
ibmslapd -I ldapdb2

� Example: Trying to perform online backup without setting logretain.

db2 "backup database ldapdb2 online to /safeplace

SQL2413N Online backup is not allowed because either logretain or userexit for
roll-forward is not activated, or a backup pending condition is in effect for
the database.

To set the logretain parameters to enable roll-forward recovery for database ldapdb2, the
following DB2 command must be run:

db2 update db config for ldapdb2 using logretain recovery
162 Performance Tuning for IBM Tivoli Directory Server

After logretain is set to recovery, the user must make a full backup of the database. This
state is indicated by the backup_pending flag parameter. If a full backup has not been
made, the following message is displayed when the user connects to the database:

db2 connect to ldapdb2

SQL1116N A connection to or activation of database <ldapdb2> cannot be made
because of a BACKUP PENDING.

The database is in backup pending state until an offline backup is performed. This means
the Tivoli Directory Server fails when it connects to the database, and it starts in
configuration mode only.

To do a full backup:

db2 backup database ldapdb2 to /safeplace

If the backup is successful, a message such as the following is displayed:

Backup successful.

The timestamp for this backup image is: 20040308170601

� Example: Trying to restore a database when ibmslapd is running, the following message is
displayed:

SQL1035N The database is currently in use.

� Example: If roll forward must be done following a restore:

db2 connect to ldapdb2

SQL1117N A connection to or activation of database "LDAPDB2" cannot be made
because of ROLL-FORWARD PENDING. SQLSTATE=57019

The database is in roll-forward pending state until a roll-forward command is performed.
This means the Tivoli Directory Server fails when it connects to the database, and it starts
in configuration mode only.

Optional migration for Tivoli Directory Server V5.2 to V6.0 to
support online backup

This section provides example documentation that can be optionally used to migrate Tivoli
Directory Server 5.2 databases so that online backup can be used. Because there is no easy
way in DB2 to drop a column or reduce the size, the data must be exported out of the old
tables and reloaded into the new table definitions. For large databases, this can take a
considerable amount of time and resource, which might not be necessary if a customer does
not require online backup and point in time recovery support.

These examples are intended to be used by an experienced DB2 database administrator.
The commands must be run as the DB2 instance owner (default ldapdb2). We use the
example database names ldapdb2 and ldapclog.
Appendix E. Online backup of Tivoli Directory Server 163

In Tivoli Directory Server 5.2 databases, there are four columns defined as BLOB (2G) NOT
LOGGED NOT COMPACT as shown in Table E-1.

Table E-1 Tivoli Directory Server v5.2 BLOB (2G) NOT LOGGED NOT COMPACT columns

For directory data that is small enough to not use the blob columns (for example, fit into the
varchar column), the varchar columns are logged; however, there is no warning or error
issued if that entry is modified and needs to be moved to the not logged blob column. For this
reason, online backup should not be used unless all the blob columns are reduced to 1 GB.

Evaluating BLOB columns on Tivoli Directory Server 5.2 and 6.0
blobinfo is an example script, shown in Example E-3, which can be used to analyze Tivoli
Directory Server tables and determine information for the columns containing blob definitions
for a specific user's directory information. It provides detailed information for the number of
entries contained in each type of column. It also provides the current column size definition
for the blob columns, the number of entries that are less than or equal to 1 GB, and the
number of entries that are greater than 1 GB. For entries greater than 1 GB, it provides a list
of entry DNs and entry sizes for those entries, which cannot be migrated by the
blobmigrate1G script. Those entries must be modified to be less than 1 GB or removed
before the blobmigrate1G example script can be successfully run.

Example: E-3 blobinfo script

#!/usr/bin/ksh

###
blobinfo
#
This script is provided as an example approach of how to
analyze affected TDS 5.2 tables and determine counts for
blobs which are:
- entries <= 1G (number of entries which can be migrated)
- list of dn's and entrysizes for entries > 1GB
(entries which can NOT be migrated)

The blobmigrate1G script can be used as an example approach
of how to optionally migrate existing 5.2 tables for all
entries which are <= 1G.
#
This script should be used by an experienced database
administrator running as the ldap instance owner.
This script may need to be modified for different environments.

Database Table Column Used if

ldapdb2 ldap_entry ENTRYBLOB entry_size exceeds 24002

ldapdb2 *replchange DATA_BLOB data_size exceeds 12002

ldapdb2 *replchange CONTROL_BLOB control_size exceeds 12002

ldapclog ldap_entry ENTRYBLOB entry_size exceeds 24004

Note: In Tivoli Directory Server 6.0, the replchange table is replaced by several
context-related tables and the new tables are created with 1 GB columns by default.
164 Performance Tuning for IBM Tivoli Directory Server

This is NOT an officially supported script by IBM or the
TDS team.
###

Modify variables below for your environment
###
Define Instance, Directory, and Change Log Database
ldapinst=ldapdb2
ldapdb2=LDAPDB2
ldapclog=LDAPCLOG

Default output directory, if not specified as parameter.
The ldapinst must have write permission to this directory.
outdir=.

###
Usage
numparam=$#
if [$numparam -ne 1]
then
 print "usage: blobinfo <output directory>"
 print "NOTES: If an output directory is NOT specified,"
 print " the current directory will be used."
else
 outdir=$1
fi

###
This script should be run as the ldap instance owner
amildapdb2inst=`whoami | grep $ldapinst`
if ["X$amildapdb2inst" = "X"]
then
 print "blobinfo needs to be run as the ldapdb2 instance owner"
 print "which is currently defined to be $ldapinst"
 exit
fi

###

Define db2 instance db2profile
. /home/$ldapinst/sqllib/db2profile
###

Indicate what logretain is set to
logretainon=`db2 connect to $ldapdb2 >/dev/null;db2 "get db cfg for $ldapdb2" |
grep LOGRETAIN | grep RECOVERY;db2 disconnect $ldapdb2 >/dev/null`
if ["X$logretainon" != "X"]
then
 print "LOGRETAIN is currently set to RECOVERY" >> $outdir/blobinfo.rpt
else
 print "LOGRETAIN is NOT set to recovery">> $outdir/blobinfo.rpt
fi

##
Appendix E. Online backup of Tivoli Directory Server 165

LDAPDB2 database
Example - SQL commands (LDAPDB2-LDAP_ENTRY table)
db2 connect to $ldapdb2 >/dev/null
db2 "describe table ldap_entry show detail" >
$outdir/$ldapdb2.ldapentry.beforedescribe
db2 "select count(eid) as total_entries, count(entrydata) as varchar_24004 from
ldap_entry" > $outdir/$ldapdb2.ldapentry.beforecounts
db2 "select count(*) as entryblob_less_1G from ldap_entry where
(entrysize<1073741824 and entrysize>24004)" >>
$outdir/$ldapdb2.ldapentry.beforecounts
db2 "select count(*) as entryblob_greater_1G from ldap_entry where
(entrysize>1073741824)" >> $outdir/$ldapdb2.ldapentry.beforecounts

Example - Summary Report (blobinfo.rpt)
print "$outdir/blobinfo.rpt" > $outdir/blobinfo.rpt
date >> $outdir/blobinfo.rpt
Example - Summary Report (LDAPDB2-LDAP_ENTRY table)
print "\n$ldapdb2 Database\n" >> $outdir/blobinfo.rpt
print "Table\t\tTotal#\tTotal#\tBlob\t\tBlob\tTotal#\tTotal#" >>
$outdir/blobinfo.rpt
print " \t\tEntries\tVarChar\tName\t\tDefn*\tBLOB\tBLOB" >>
$outdir/blobinfo.rpt
print " \t\t_______\t_______\t___________\t_______\t_<1G___\t_>1G**__" >>
$outdir/blobinfo.rpt
#
lbeforedesc=`cat $outdir/$ldapdb2.ldapentry.beforedescribe | grep ENTRYBLOB | awk
'{print $4}' | awk '{if ($1==2147483647) {print "2G*"} else if ($1==1073741824)
{print "1G"}}'`
totcount=`cat $outdir/$ldapdb2.ldapentry.beforecounts | awk '{if (NR==4) print
$1}'`
totvarchar=`cat $outdir/$ldapdb2.ldapentry.beforecounts | awk '{if (NR==4) print
$2}'`
totblobsmall=`cat $outdir/$ldapdb2.ldapentry.beforecounts | awk '{if (NR==11)
print $1}'`
ltotblobbig=`cat $outdir/$ldapdb2.ldapentry.beforecounts | awk '{if (NR==18) print
$1}'`
print
"LDAP_ENTRY\t"$totcount"\t"$totvarchar"\tENTRYBLOB\t"$lbeforedesc"\t"$totblobsmall
"\t"$ltotblobbig >> $outdir/blobinfo.rpt
Need to list blobs > 1G if they exist in $ldapdb2 Database
 if [$ltotblobbig != "0"]
 then
 print "** Blobs greater than 1G can NOT be supported with online backup">>
$outdir/blobinfo.rpt
 print "** Entries listed below need to be modified or deleted so they" >>
$outdir/blobinfo.rpt
 print "** will fit in a reduced 1G column" >> $outdir/blobinfo.rpt
 db2 "select substr(dn_trunc,1,50) as dn_trunc, entrysize as entrysize from
ldap_entry where (entrysize>=1073741824)" >> $outdir/blobinfo.rpt
 else
 print "\n ** There are NO BLOBs > 1G in the $ldapdb2 Database" >>
$outdir/blobinfo.rpt
fi
db2 disconnect $ldapdb2 >/dev/null
###
166 Performance Tuning for IBM Tivoli Directory Server

The following section is for the Change Log IF it is configured.
Example - SQL commands
cbeforedesc=notdefined
chglog=`db2 list db directory | grep $ldapclog`
if ["X$chglog" != "X"]
then
 db2 "connect to $ldapclog" >/dev/null
 db2 "describe table ldap_entry show detail" >
$outdir/$ldapclog.ldapentry.beforedescribe
 db2 "select count(eid) as total_entries, count(entrydata) as varchar_24004 from
ldap_entry" > $outdir/$ldapclog.ldapentry.beforecounts
 db2 "select count(*) as entryblob_less_1G from ldap_entry where
(entrysize<1073741824 and entrysize>24004)" >>
$outdir/$ldapclog.ldapentry.beforecounts
 db2 "select count(*) as entryblob_greater_1G from ldap_entry where
(entrysize>1073741824)" >> $outdir/$ldapclog.ldapentry.beforecounts
 db2 disconnect $ldapclog >/dev/null

 # Example - Summary Report (LDAPCLOG-LDAP_ENTRY table)
 print "\n$ldapclog Database" >> $outdir/blobinfo.rpt
 print "Table\t\tTotal#\tTotal#\tBlob\t\tBlob\tTotal#\tTotal#" >>
$outdir/blobinfo.rpt
 print " \t\tEntries\tVarChar\tName\t\tDefn*\tBLOB\tBLOB" >>
$outdir/blobinfo.rpt
 print " \t\t_______\t_______\t___________\t_______\t_<1G___\t_>1G**__" >>
$outdir/blobinfo.rpt
 cbeforedesc=`cat $outdir/$ldapclog.ldapentry.beforedescribe | grep ENTRYBLOB |
awk '{print $4}' | awk '{if ($1==2147483647) {print "2G*"} else if
($1==1073741824) {print "1G"}}'`
 totcount=`cat $outdir/$ldapclog.ldapentry.beforecounts | awk '{if (NR==4) print
$1}'`
 totvarchar=`cat $outdir/$ldapclog.ldapentry.beforecounts | awk '{if (NR==4)
print $2}'`
 totblobsmall=`cat $outdir/$ldapclog.ldapentry.beforecounts | awk '{if (NR==11)
print $1}'`
 ctotblobbig=`cat $outdir/$ldapclog.ldapentry.beforecounts | awk '{if (NR==18)
print $1}'`
 print
"LDAP_ENTRY\t"$totcount"\t"$totvarchar"\tENTRYBLOB\t"$cbeforedesc"\t"$totblobsmall
"\t"$ctotblobbig >> $outdir/blobinfo.rpt
 # Need to list blobs > 1G if they exist in $ldapclog Database
 if [$ctotblobbig != "0"]
 then
 print "** Blobs greater than 1G can NOT be supported with online
backup">> $outdir/blobinfo.rpt
 print "** Entries listed below need to be modified or deleted so they" >>
$outdir/blobinfo.rpt
 print "** will fit in a reduced 1G column" >> $outdir/blobinfo.rpt
 db2 "select substr(dn_trunc,1,50) as dn_trunc, entrysize as entrysize
from ldap_entry where (entrysize>=1073741824)" >> $outdir/blobinfo.rpt
 else
 print "\n ** There are NO BLOBs > 1G in the $ldapclog Database" >>
$outdir/blobinfo.rpt
 fi
fi
Appendix E. Online backup of Tivoli Directory Server 167

###
print "\nNotes:" >> $outdir/blobinfo.rpt
If any column Definition is 2G need to run blobmigrate1G to reduce to 1G
if [$lbeforedesc = "2G*"] || [$cbeforedesc = "2G*"]
 then
 print " * There is a 1G maximum Blob Definition for Online Backup to be
supported." >> $outdir/blobinfo.rpt
 print " * If you want to have Online Backup supported, you MUST run the
blobmigrate1G" >> $outdir/blobinfo.rpt
 print " * script (see information in the TDS V6.0 Online Backup using" >>
$outdir/blobinfo.rpt
 print " * DB2 Technical White Paper) to migrate them to 1G." >>
$outdir/blobinfo.rpt
fi
print " - LDAP_ENTRY ENTRYBLOB column is used if entry > 24004 " >>
$outdir/blobinfo.rpt
cat $outdir/blobinfo.rpt

Example blobinfo.rpt output
The blobinfo script produces an output report named blobinfo.rpt. Let us take a look at some
output examples, as shown in Example E-4, Example E-5, and Example E-6.

Example: E-4 Directory database containing no entries with blob greater than 1 GB

Thu Jan 20 11:56:47 GMT 2005
LDAPDB2 Database
Table Total# Total# Blob Blob Total# Total#
 Entries VarChar Name Defn* BLOB BLOB
 _______ _______ ___________ _______ _<1G___ _>1G**__
LDAP_ENTRY 1000015 1000015 ENTRYBLOB 2G* 0 0

 ** There are NO BLOBs > 1G in the LDAPDB2 Database

Example: E-5 For directory database containing one entry with blob greater than 1 GB

Thu Jan 20 12:56:47 GMT 2005
ldapdb2 Database
Table Total# Total# Blob Blob Total# Total#
 Entries VarChar Name Defn* BLOB BLOB
 _______ _______ ___________ _______ _<1G___ _>1G**__
LDAP_ENTRY 1008 1006 ENTRYBLOB 2G* 1 1

** Blobs greater than 1G can NOT be supported with online backup
** Entries listed below need to be modified or deleted so they
** will fit in a reduced 1G column
DN_TRUNC ENTRYSIZE
-- -----------
CN=BIGENTRY, O=BIGENTRIES 1073741829

 1 record(s) selected.
168 Performance Tuning for IBM Tivoli Directory Server

Notes:
 * There is a 1G maximum Blob Definition for Online Backup to be supported.
 * If you want to have Online Backup supported, you MUST run the blobmigrate1G
 * script (see information in the Tivoli Directory Server V6.0 Online Backup using
 * DB2 Technical White Paper) to migrate them to 1G.
 - LDAP_ENTRY ENTRYBLOB column is used if entry > 24004

Example: E-6 For directory and change log database containing no entries with blob greater than 1 GB

Sun Jun 27 20:55:03 CDT 2004
LDAPDB2 Database
Table Total# Total# Blob Blob Total# Total#
 Entries VarChar Name Defn* BLOB BLOB
 _______ _______ ___________ _______ _<1G___ _>1G**__
LDAP_ENTRY 1000015 1000015 ENTRYBLOB 2G* 0 0

 ** There are NO BLOBs > 1G in the LDAPDB2 Database

LDAPCLOG Database
Table Total# Total# Blob Blob Total# Total#
 Entries VarChar Name Defn* BLOB BLOB
 _______ _______ ___________ _______ _<1G___ _>1G**__
LDAP_ENTRY 2 2 ENTRYBLOB 2G* 0 0

 ** There are NO BLOBs > 1G in the LDAPCLOG Database

Example blobinfo.rpt notes
In the blobinfo.rpt output, note that:

� In Example E-4, the blobmigrate1G (described in the following section) script can be run
because there are no entries with blobs greater than 1 GB.

� In Example E-5, the entry with a blob greater than 1 GB must be deleted before the
blobmigrate1G script can be run.

� In Example E-6, the blobmigrate1G script can be run because there are no entries with
blobs greater than 1 GB.

blobmigrate1G script
blobmigrate1G is an example script that can be used to optionally migrate migrated 5.2
tables for all entries that are less than or equal to 1 GB in size. This migration is being done
optionally because there is no easy way to drop a column or reduce the size, therefore the
data must be exported out of the old tables and reloaded into the new tables. A full backup of
the database is strongly suggested as an error recovery strategy.

Large file support on AIX for JFS and/or use JFS2
The standard file system on some older versions of AIX has a 2 GB file size limit, regardless
of the ulimit setting. One way to enable files larger than the 2 GB limit is to create the file
system with the Large File Enabled option. This option can be found through the Add a
Journaled File System option of the smit menu.

Newer versions of AIX support Enhanced Journaled File Systems (JFS2), which by default
support files larger than 2 GB. This option should be chosen when the file system is created.

Refer to the AIX documentation for additional information and file system options.
Appendix E. Online backup of Tivoli Directory Server 169

Example E-7 shows an example of our blobmigrate1G script.

Example: E-7 blobmigrate1G script

#!/usr/bin/ksh

blobmigrate1G
#
This script is provided as an example approach of how to
"optionally" migrate existing 5.2 tables for all entries
which are <= 1GB.
#
This script must be run AFTER V6.0 migration has been
successfully completed.
#
This migration is being done optionally because there is
no easy way to drop a column or reduce the size, so the
data will need to be exported out of the old tables and
reloaded into the new tables.
#
A full backup of the database(s) will be made as an error
recovery strategy
#
This script should be used by an experienced database
administrator running as the ldapdb2 instance owner.
It may need to be modified for different environments.

This script is NOT an officially supported script by IBM
or the TDS team.

Modify variables below for your environment

Define Instance, Directory, and Change Log Database
ldapinst=ldapdb2
ldapdb2=LDAPDB2
ldapclog=LDAPCLOG
#
Define Config and schema file location - Make backup copy?
V6.0
LDAPconfig=/home/$ldapinst/idsslapd-ldapdb2/etc/ibmslapd.conf
LDAPschemaloc=/home/ldapdb2/idsslapd-ldapdb2/etc
V5.2
#LDAPconfig=/etc/ibmslapd.conf
#LDAPschemaloc=/etc/ldapschema
#
Directory to use to store backups and working space
The ldapinst must have write permission to this directory
outdir=$1

numparam=$#
if [$numparam -ne 1]
then
 print "usage: blobmigrate1G <output directory>"
 print "NOTES: 1) Script must be run as ldap instance owner"
170 Performance Tuning for IBM Tivoli Directory Server

 print " 2) TDS V6.0 Migration must by DONE"
 print " 3) ibmslapd must NOT be running"
 print " 4) logretain should be turned OFF"
 print " 5) blobs > 1G can NOT be migrated"
 print " 6) databases ldapdb2 and ldapclog must NOT be in use"
 print ""
 print " The summary report is <output directory> blobmigrate1G.rpt"
 exit
fi

. /home/$ldapinst/sqllib/db2profile

#
#1 - This script must be run as the ldap instance owner
amildapdb2inst=`whoami | grep $ldapinst`
if ["X$amildapdb2inst" = "X"]
then
 print "blobmigrate1G needs to be run as the ldapdb2 instance owner"
 print "which is currently defined to be $ldapinst"
 exit
fi

#2 - Need to exit if TDS V6.0 Migration is NOT Done
itdsrdbmhistory table does not exist prior to TDS V6.0
#v6migdone=`db2 connect to $ldapdb2 >/dev/null;db2 "select count(*) from
itdsrdbmhistory where (release='6.0' and feature='MIGRATION_DONE')" | awk '{if (NR
== 4) print $1}';db2 disconnect $ldapdb2 >/dev/null`
#if [$v6migdone != "0"]
#then
print "TDS V6.0 Migration must be DONE prior to doing blobmigrate1G."
print "Make sure the TDS server starts successfully prior to doing
blobmigrate."
exit
#fi

#3 - Need to exit if ibmslapd is running
ibmslapdup=`ps -ef | grep -i ibmslapd | grep -v grep`
if ["X$ibmslapdup" != "X"]
then
 echo "ibmslapd must NOT be running for blobmigrate1G to work"
 exit
fi

#4 - Need to exit if logretain is ON for either database
logretainon=`db2 connect to $ldapdb2 >/dev/null;db2 "get db cfg for $ldapdb2" |
grep LOGRETAIN | egrep "ON|RECOVERY";db2 disconnect $ldapdb2 >/dev/null`
clogretainon=`db2 connect to $ldapclog >/dev/null;db2 "get db cfg for $ldapclog" |
grep LOGRETAIN | egrep "ON|RECOVERY";db2 disconnect $ldapclog >/dev/null`
if ["X$logretainon" != "X"] || ["X$clogretainon" != "X"]
then
 print "LOGRETAIN should NOT be ON when doing blobmigrate1G"
 print "Need to do: db2 update db cfg for $ldapdb2 using logretain off "
Appendix E. Online backup of Tivoli Directory Server 171

 exit
fi

#5 - Need to exit if blobs > 1G exist
numbigblobs=`db2 connect to $ldapdb2 >/dev/null;db2 "select count(*) as
entryblob_greater_1G from ldap_entry where (entrysize>1073741824)" | awk '{if (NR
== 4) print $1}';db2 disconnect $ldapdb2 >/dev/null`
if [$numbigblobs != "0"]
then
 print "blobmigrate1G CAN NOT migrate blobs greater than 1G"
 print "Use blobinfo to identify the entries which are > 1G"
 print "Modify or delete them so they will fit in a reduced 1G column"
 exit
fi

#6 - If ldapdb2 or ldapclog are in use - force will disconnect
db2 force applications all >/dev/null

May want to Backup Config and Schema Files
Need to have permission to copy files
cp $LDAPconfig $outdir
cp -r $LDAPschemaloc/* $outdir

blobmigrate1G output files in $outdir
#
Summary Report:
blobmigrate1G.rpt
#
Servicability and Debug Files:

ldapdb2
ldapdb2.before.describe & ldapdb2.after.describe
ldapdb2.before.counts & ldapdb2.after.counts
newLDAPentry - exported data for new ldapdb2 ldap_entry table
LDAPDB2.load.msg - db2 load messages
LDAPDB2.reorgchk.done - reorgchk after successful completion
#
ldapclog
ldapclog.before.describe & ldapclog.after.describe
ldapclog.before.counts & ldapclog.after.counts
newldapclogLDAPentry - exported data for new ldapclog ldap_entry table
LDAPCLOG.load.msg - db2 load messages
LDAPCLOG.reorgchk.done - reorgchk after successful completion

overall
blobmigrate1G.sql - sql command output
blobmigrate1G.diff - diff command output

172 Performance Tuning for IBM Tivoli Directory Server

Backup ldapdb2 database
print "********************************" > $outdir/blobmigrate1G.rpt
print "$outdir/blobmigrate1G.rpt" >> $outdir/blobmigrate1G.rpt
print "\nBegin backup database $ldapdb2 to $outdir at: " >>
$outdir/blobmigrate1G.rpt
date >> $outdir/blobmigrate1G.rpt
db2 backup database $ldapdb2 to $outdir >> $outdir/blobmigrate1G.rpt
print "End backup database $ldapdb2 to $outdir at: " >> $outdir/blobmigrate1G.rpt
date >> $outdir/blobmigrate1G.rpt

Collect ldapdb2 BEFORE info
db2 connect to $ldapdb2 > $outdir/blobmigrate1G.sql
db2 "describe table ldap_entry show detail" >
$outdir/$ldapdb2.ldapentry.beforedescribe
db2 "select count(eid) as total_entries, count(entrydata) as varchar_24004 from
ldap_entry" > $outdir/$ldapdb2.ldapentry.beforecounts
db2 "select count(*) as entryblob_less_1G from ldap_entry where
(entrysize<1073741824 and entrysize>24004)" >>
$outdir/$ldapdb2.ldapentry.beforecounts
db2 "select count(*) as entryblob_greater_1G from ldap_entry where
(entrysize>1073741824)" >> $outdir/$ldapdb2.ldapentry.beforecounts
Export ldapdb2 data for ldap_entry table
db2 "export to $outdir/newLDAPentry of del lobs to $outdir/ modified by lobsinfile
messages $outdir/$ldapdb2.export.msg select eid, peid, dn_trunc, dn, creator,
modifier, modify_timestamp, create_timestamp, entrydata, entryblob, entrysize from
ldap_entry" >> $outdir/blobmigrate1G.sql
Rename table and indexes
db2 "rename table ldap_entry to ldap_entry_old" >> $outdir/blobmigrate1G.sql
db2 "rename index ldap_entry_peid to ldap_entry_peido" >>
$outdir/blobmigrate1G.sql
db2 "rename index ldap_entry_peid2 to ldap_entry_peid2o" >>
$outdir/blobmigrate1G.sql
db2 "rename index ldap_entry_trunc to ldap_entry_trunco" >>
$outdir/blobmigrate1G.sql
Create new table and indexes
db2 "create table ldap_entry(eid integer not null,peid integer,dn_trunc
varchar(240),dn varchar(1000),creator varchar(1000),modifier
varchar(1000),modify_timestamp timestamp,create_timestamp timestamp,entrydata
varchar(24004),entryblob blob(1g) logged not compact,entrysize integer) in
ldapspace" >> $outdir/blobmigrate1G.sql
db2 "create index ldap_entry_peid on $ldapdb2.ldap_entry (eid asc, peid asc)" >>
$outdir/blobmigrate1G.sql
db2 "create index ldap_entry_peid2 on $ldapdb2.ldap_entry (peid asc)" >>
$outdir/blobmigrate1G.sql
db2 "create index ldap_entry_trunc on $ldapdb2.ldap_entry (dn_trunc asc)" >>
$outdir/blobmigrate1G.sql
db2 "alter table ldap_entry add primary key (eid)" >> $outdir/blobmigrate1G.sql
Load Data from exported file
db2 "load from $outdir/newLDAPentry of del lobs from $outdir/ modified by
lobsinfile delprioritychar fastparse savecount 100000 warningcount 1 messages
$outdir/$ldapdb2.load.msg insert into $ldapdb2.ldap_entry(eid, peid, dn_trunc, dn,
creator, modifier, modify_timestamp, create_timestamp, entrydata, entryblob,
entrysize)" >> $outdir/blobmigrate1G.sql
Collect ldapdb2 AFTER info
Appendix E. Online backup of Tivoli Directory Server 173

db2 "describe table ldap_entry show detail" >
$outdir/$ldapdb2.ldapentry.afterdescribe
db2 "select count(eid) as total_entries, count(entrydata) as varchar_24004 from
ldap_entry" > $outdir/$ldapdb2.ldapentry.aftercounts
db2 "select count(*) as entryblob_less_1G from ldap_entry where
(entrysize<1073741824 and entrysize>24004)" >>
$outdir/$ldapdb2.ldapentry.aftercounts
db2 "select count(*) as entryblob_greater_1G from ldap_entry where
(entrysize>1073741824)" >> $outdir/$ldapdb2.ldapentry.aftercounts
Summary
print "\nStatistics for blobmigrate1G from OLD to NEW:" >>
$outdir/blobmigrate1G.rpt
print "\n$ldapdb2 Database\n" >> $outdir/blobmigrate1G.rpt
print "State\tTable\t\tTotal#\tTotal#\tBlob\tTotal#\tTotal#" >>
$outdir/blobmigrate1G.rpt
print " \t \t\tEntries\tVarChar\tDefn\tBLOB<1G\tBLOB>1G" >>
$outdir/blobmigrate1G.rpt
print " \t \t\t_______\t_______\t____\t_______\t_______" >>
$outdir/blobmigrate1G.rpt
#
lbeforedesc=`cat $outdir/$ldapdb2.ldapentry.beforedescribe | grep ENTRYBLOB | awk
'{print $4}' | awk '{if ($1==2147483647) {print "2G"} else if ($1==1073741824)
{print "1G"}}'`
totcount=`cat $outdir/$ldapdb2.ldapentry.beforecounts | awk '{if (NR==4) print
$1}'`
totvarchar=`cat $outdir/$ldapdb2.ldapentry.beforecounts | awk '{if (NR==4) print
$2}'`
totblobsmall=`cat $outdir/$ldapdb2.ldapentry.beforecounts | awk '{if (NR==11)
print $1}'`
totblobbig=`cat $outdir/$ldapdb2.ldapentry.beforecounts | awk '{if (NR==18) print
$1}'`
print
"OLD\tLDAP_ENTRY\t"$totcount"\t"$totvarchar"\t"$lbeforedesc"\t"$totblobsmall"\t"$t
otblobbig >> $outdir/blobmigrate1G.rpt
lafterdesc=`cat $outdir/$ldapdb2.ldapentry.afterdescribe | grep ENTRYBLOB | awk
'{print $4}' | awk '{if ($1==2147483647) {print "2G"} else if ($1==1073741824)
{print "1G"}}'`
totcount=`cat $outdir/$ldapdb2.ldapentry.aftercounts | awk '{if (NR==4) print
$1}'`
totvarchar=`cat $outdir/$ldapdb2.ldapentry.aftercounts | awk '{if (NR==4) print
$2}'`
totblobsmall=`cat $outdir/$ldapdb2.ldapentry.aftercounts | awk '{if (NR==11) print
$1}'`
totblobbig=`cat $outdir/$ldapdb2.ldapentry.aftercounts | awk '{if (NR==18) print
$1}'`
print
"NEW\tLDAP_ENTRY\t"$totcount"\t"$totvarchar"\t"$lafterdesc"\t"$totblobsmall"\t"$to
tblobbig >> $outdir/blobmigrate1G.rpt
db2 disconnect $ldapdb2 >> $outdir/blobmigrate1G.sql

The following section is for the Change Log IF it is configured.
chglog=`db2 list db directory | grep $ldapclog`
if ["X$chglog" != "X"]
then
 # Backup ldapclog database
174 Performance Tuning for IBM Tivoli Directory Server

 print "\nBegin backup database $ldapclog to $outdir at " >>
$outdir/blobmigrate1G.rpt
 date >> $outdir/blobmigrate1G.rpt
 db2 backup database $ldapclog to $outdir >> $outdir/blobmigrate1G.rpt
 print "End backup database $ldapclog to $outdir at " >>
$outdir/blobmigrate1G.rpt
 date >> $outdir/blobmigrate1G.rpt

 # Collect ldapclog BEFORE info
 db2 connect to $ldapclog >> $outdir/blobmigrate1G.sql
 db2 "describe table ldap_entry show detail" >
$outdir/$ldapclog.ldapentry.beforedescribe
 db2 "select count(eid) as total_entries, count(entrydata) as varchar_24004 from
ldap_entry" > $outdir/$ldapclog.ldapentry.beforecounts
 db2 "select count(*) as entryblob_less_1G from ldap_entry where
(entrysize<1073741824 and entrysize>24004)" >>
$outdir/$ldapclog.ldapentry.beforecounts
 db2 "select count(*) as entryblob_greater_1G from ldap_entry where
(entrysize>1073741824)" >> $outdir/$ldapclog.ldapentry.beforecounts
 # Export ldapclog data for ldap_entry table
 db2 "export to $outdir/newldapclogLDAPentry of del lobs to $outdir/ modified by
lobsinfile messages $outdir/$ldapclog.export.msg select eid, peid, dn_trunc, dn,
creator, modifier, modify_timestamp, create_timestamp, entrydata, entryblob,
entrysize from ldap_entry" >> $outdir/blobmigrate1G.sql
 # Rename tables and indexes
 db2 "rename table ldap_entry to ldap_entry_old" >> $outdir/blobmigrate1G.sql
 db2 "rename index ldap_entry_peid to ldap_entry_peido" >>
$outdir/blobmigrate1G.sql
 db2 "rename index ldap_entry_peid2 to ldap_entry_peid2o" >>
$outdir/blobmigrate1G.sql
 db2 "rename index ldap_entry_trunc to ldap_entry_trunco" >>
$outdir/blobmigrate1G.sql
 # Create new table and indexes
 db2 "create table ldap_entry(eid integer not null,peid integer,dn_trunc
varchar(240),dn varchar(1000),creator varchar(1000),modifier
varchar(1000),modify_timestamp timestamp,create_timestamp timestamp,entrydata
varchar(24004),entryblob blob(1g) logged not compact,entrysize integer) in
ldapspace" >> $outdir/blobmigrate1G.sql
 db2 "create index ldap_entry_peid on $ldapdb2.ldap_entry (eid asc, peid asc)"
>> $outdir/blobmigrate1G.sql
 db2 "create index ldap_entry_peid2 on $ldapdb2.ldap_entry (peid asc)" >>
$outdir/blobmigrate1G.sql
 db2 "create index ldap_entry_trunc on $ldapdb2.ldap_entry (dn_trunc asc)" >>
$outdir/blobmigrate1G.sql
 db2 "alter table ldap_entry add primary key (eid)" >> $outdir/blobmigrate1G.sql
 # Load data from exported file
 db2 "load from $outdir/newldapclogLDAPentry of del lobs from $outdir/ modified
by lobsinfile delprioritychar fastparse savecount 100000 warningcount 1 messages
$outdir/$ldapclog.load.msg insert into $ldapdb2.ldap_entry(eid, peid, dn_trunc,
dn, creator, modifier, modify_timestamp, create_timestamp, entrydata, entryblob,
entrysize)" >> $outdir/blobmigrate1G.sql
 db2 "describe table ldap_entry show detail" >
$outdir/$ldapclog.ldapentry.afterdescribe
 # Collect ldapclog AFTER info
Appendix E. Online backup of Tivoli Directory Server 175

 db2 "select count(eid) as total_entries, count(entrydata) as varchar_24004 from
ldap_entry" > $outdir/$ldapclog.ldapentry.aftercounts
 db2 "select count(*) as entryblob_less_1G from ldap_entry where
(entrysize<1073741824 and entrysize>24004)" >>
$outdir/$ldapclog.ldapentry.aftercounts
 db2 "select count(*) as entryblob_greater_1G from ldap_entry where
(entrysize>1073741824)" >> $outdir/$ldapclog.ldapentry.aftercounts
 db2 disconnect $ldapclog >> $outdir/blobmigrate1G.sql
 # Summary
 print "\n$ldapclog Database" >> $outdir/blobmigrate1G.rpt
 print "State\tTable\t\tTotal#\tTotal#\tBlob\tTotal#\tTotal#" >>
$outdir/blobmigrate1G.rpt
 print " \t \t\tEntries\tVarChar\tDefn\tBLOB<1G\tBLOB>1G" >>
$outdir/blobmigrate1G.rpt
 print " \t \t\t_______\t_______\t____\t_______\t_______" >>
$outdir/blobmigrate1G.rpt
 cbeforedesc=`cat $outdir/$ldapclog.ldapentry.beforedescribe | grep ENTRYBLOB |
awk '{print $4}' | awk '{if ($1==2147483647) {print "2G"} else if ($1==1073741824)
{print "1G"}}'`
 totcount=`cat $outdir/$ldapclog.ldapentry.beforecounts | awk '{if (NR==4) print
$1}'`
 totvarchar=`cat $outdir/$ldapclog.ldapentry.beforecounts | awk '{if (NR==4)
print $2}'`
 totblobsmall=`cat $outdir/$ldapclog.ldapentry.beforecounts | awk '{if (NR==11)
print $1}'`
 totblobbig=`cat $outdir/$ldapclog.ldapentry.beforecounts | awk '{if (NR==18)
print $1}'`
 print
"OLD\tLDAP_ENTRY\t"$totcount"\t"$totvarchar"\t"$cbeforedesc"\t"$totblobsmall"\t"$t
otblobbig >> $outdir/blobmigrate1G.rpt
 cafterdesc=`cat $outdir/$ldapclog.ldapentry.afterdescribe | grep ENTRYBLOB |
awk '{print $4}' | awk '{if ($1==2147483647) {print "2G"} else if ($1==1073741824)
{print "1G"}}'`
 totcount=`cat $outdir/$ldapclog.ldapentry.aftercounts | awk '{if (NR==4) print
$1}'`
 totvarchar=`cat $outdir/$ldapclog.ldapentry.aftercounts | awk '{if (NR==4)
print $2}'`
 totblobsmall=`cat $outdir/$ldapclog.ldapentry.aftercounts | awk '{if (NR==11)
print $1}'`
 totblobbig=`cat $outdir/$ldapclog.ldapentry.aftercounts | awk '{if (NR==18)
print $1}'`
 print
"NEW\tLDAP_ENTRY\t"$totcount"\t"$totvarchar"\t"$cafterdesc"\t"$totblobsmall"\t"$to
tblobbig >> $outdir/blobmigrate1G.rpt
fi
print "\nNote:" >> $outdir/blobmigrate1G.rpt
print "LDAP_ENTRY has 1 BLOB column which is used if entry > 24004\t" >>
$outdir/blobmigrate1G.rpt
###
Determine if successful by looking at difference between output files.
Only differences should be 2G vs 1G column size from describe files.
Both ldapdb2 and ldapclog (if configured) entry counts must be the same
before and after to be successful. See blobmigrate1G.diff for differences.
If NOT successful, "db2 restore db $ldapdb2 from $outdir" and/or
"db2 restore db $ldapclog from $outdir"
176 Performance Tuning for IBM Tivoli Directory Server

print "\n\n****************************" >> $outdir/blobmigrate1G.rpt
print "*** Overall results are: ***" >> $outdir/blobmigrate1G.rpt
print "****************************" >> $outdir/blobmigrate1G.rpt
ldapdb2
print "Diff between $ldapdb2.ldapentry.beforedescribe and
$ldapdb2.ldapentry.afterdescribe\n" > $outdir/blobmigrate1G.diff
diff $outdir/$ldapdb2.ldapentry.beforedescribe
$outdir/$ldapdb2.ldapentry.afterdescribe >> $outdir/blobmigrate1G.diff
print "$ldapdb2 LDAP_ENTRY - ENTRYBLOB changed from $lbeforedesc to $lafterdesc"
>> $outdir/blobmigrate1G.rpt
print "Diff between $ldapdb2.ldapentry.beforecounts and
$ldapdb2.ldapentry.aftercounts\n" >> $outdir/blobmigrate1G.diff
diffentry=`diff $outdir/$ldapdb2.ldapentry.beforecounts
$outdir/$ldapdb2.ldapentry.aftercounts`
if ["X$diffentry" != "X"]
then
 print "**Differences found for $ldapdb2 ldapentry counts" >>
$outdir/blobmigrate1G.rpt
 print "**blobmigrate1G was NOT successful\n\n" >> $outdir/blobmigrate1G.rpt
 exit
else
 print "$ldapdb2 LDAP_ENTRY - All Entry Counts OK \n" >>
$outdir/blobmigrate1G.rpt
fi
diffclog=""
if ["X$chglog" != "X"]
then
 print "Diff between $ldapclog.ldapentry.beforedescribe and
$ldapclog.ldapentry.afterdescribe" >> $outdir/blobmigrate1G.diff
 diff $outdir/$ldapclog.ldapentry.beforedescribe
$outdir/$ldapclog.ldapentry.afterdescribe >> $outdir/blobmigrate1G.diff
 print "$ldapclog LDAP_ENTRY - ENTRYBLOB changed from $lbeforedesc to
$lafterdesc" >> $outdir/blobmigrate1G.rpt
 print "Diff between $ldapclog.ldapentry.beforecounts and
$ldapclog.ldapentry.aftercounts" >> $outdir/blobmigrate1G.diff
 diffclog=`diff $outdir/$ldapclog.ldapentry.beforecounts
$outdir/$ldapclog.ldapentry.aftercounts`
 if ["X$diffclog" != "X"]
 then
 print "**Differences found for $ldapclog ldapentry counts" >>
$outdir/blobmigrate1G.rpt
 print "**blobmigrate1G was NOT successful\n\n" >> $outdir/blobmigrate1G.rpt
 exit
else
 print "$ldapclog LDAP_ENTRY - All Entry Counts OK \n" >>
$outdir/blobmigrate1G.rpt
 fi
else
 print "$ldapclog is NOT configured" >> $outdir/blobmigrate1G.rpt
fi
IF everything goes successfully, need to update itdsrdbmhistory table
and drop renamed old tables
if ["X$diffentry" = "X"] && ["X$diffclog" = "X"]
then
 db2 connect to $ldapdb2 >> $outdir/blobmigrate1G.sql
Appendix E. Online backup of Tivoli Directory Server 177

 # The following table is new for TDS V6.0
 db2 "insert into itdsrdbmhistory values ('6.0','BLOBMIGRATE1G_DONE','')" >>
$outdir/blobmigrate1G.sql
 db2 drop table ldap_entry_old >> $outdir/blobmigrate1G.sql
 db2 reorgchk update statistics on table all > $outdir/$ldapdb2.reorgchk.done
 db2 disconnect $ldapdb2
 if ["X$chglog" != "X"]
 then
 db2 connect to $ldapclog >> $outdir/blobmigrate1G.sql
 db2 drop table ldap_entry_old >> $outdir/blobmigrate1G.sql
 db2 reorgchk update statistics on table all > $outdir/$ldapdb2.reorgchk.done
 db2 disconnect $ldapclog >> $outdir/blobmigrate1G.sql
 fi
 print "\n*** blobmigrate1G was SUCCESSFUL! ***" >> $outdir/blobmigrate1G.rpt
 print "*** After verifying everything works correctly with TDS" >>
$outdir/blobmigrate1G.rpt
 print "*** you may remove the directory $outdir\n" >> $outdir/blobmigrate1G.rpt
else
 print "\n*** blobmigrate1G was NOT successful. ***\n" >>
$outdir/blobmigrate1G.rpt
 print "*** Everything has been saved in directory $outdir\n" >>
$outdir/blobmigrate1G.rpt
 print "*** including database backups and informational files.\n" >>
$outdir/blobmigrate1G.rpt
fi
cat $outdir/blobmigrate1G.rpt

Example E-8 shows an example blobmigrate1G.rpt output.

Example: E-8 Directory database containing no entries with blob greater than 1 GB

./blobmigrate1G /outdir
Begin backup database ldapdb2 to /outdir at:
Thu Jan 20 13:11:11 GMT 2005
Backup successful. The timestamp for this backup image is: 20050120131111
End backup database ldapdb2 to /outdir at:
Thu Jan 20 13:11:48 GMT 2005
Statistics for blobmigrate1G from OLD to NEW:
ldapdb2 Database
State Table Total# Total# Blob Total# Total#
 Entries VarChar Defn BLOB<1G BLOB>1G
 _______ _______ ____ _______ _______
OLD LDAP_ENTRY 1010 1009 2G 1 0
NEW LDAP_ENTRY 1010 1009 1G 1 0
Note:
LDAP_ENTRY has 1 BLOB column which is used if entry > 24004

*** Overall results are: ***

ldapdb2 LDAP_ENTRY - ENTRYBLOB changed from 2G to 1G
ldapdb2 LDAP_ENTRY - All Entry Counts OK
LDAPCLOG is NOT configured
*** blobmigrate1G was SUCCESSFUL! ***
*** After verifying everything works correctly with TDS
*** you may remove the directory /outdir
178 Performance Tuning for IBM Tivoli Directory Server

Appendix F. Checklist

In this appendix, we provide you with several checklists covering maintenance, monitoring,
and other Lightweight Directory Access Protocol (LDAP) utilities.

F

© Copyright IBM Corp. 2007. All rights reserved. 179

Maintenance checklist
We recommend the following Tivoli Directory Server maintenance steps:

� Directory server backup daily.

Refer to Appendix E, “Online backup of Tivoli Directory Server” on page 143 for details.

– Database backup
– Tivoli Directory Server important files backup
– Backup of the current day's changes files

� Rotate and examine Tivoli Directory Server log files. You can write a script to do the file
name rotation.

– audit.log
– ibmslapd.log
– db2diag.log file

You might have to check other log files if there is any error, but might not have to rotate
the other log files.

For details in problem determination, refer to IBM Tivoli Directory Server Problem
Determination Guide Version 6.0, SC32-1679.

� Check if the hard disk has enough space for log files and database to grow.

� Performance check every month. Tune the directory server if needed.

� Monitor Tivoli Directory Server status using either Web administration tool or command
line utilities.

� Prepare directory server failover procedure.

� Prepare directory server backup and restore procedure.

� Check the latest Tivoli Directory Server fix pack or upgrade.

IBM Tivoli Directory Server support tool
The support tool collects relevant data such as logs, directory listings, schema files, and core
files about the directory server. The support tool then packages the information into a
compressed file archive that you can send to IBM Software Support for help in diagnosing
your problem. The IBM Tivoli Directory Server Problem Determination Guide Version 6.0,
SC32-1679, describes the information collected by the support tool, and contains instructions
for generating the idssupport file.

Monitoring Tivoli Directory Server checklist
Monitoring Tivoli Directory Server for problems can be broken down into several different
categories:

� Monitoring for outages or performance degradations:

Tivoli Directory Server consist of two primary processes that must be active and
consuming resources for Tivoli Directory Server to be healthy:

– The LDAP server process (a unique name reflecting the instance name of Tivoli
Directory Server)

– UDB/DB2
180 Performance Tuning for IBM Tivoli Directory Server

� Monitoring for performance:

– auditmonit.jar
– ldapsearch utility

� Monitor Tivoli Directory Server status using either Web administration tool or command
line utilities such as ldapsearch or Tivoli Directory Integrator monitoring utility.

� Analyze the Tivoli Directory Server log files to check the status of directory server
periodically.

� Monitoring Tivoli Directory Server performance.

� Optional:

You can also set up Tivoli Directory Integrator AssemblyLines to monitor Tivoli Directory
Server status and send an automated e-mail to the system administrator when Tivoli
Directory Server fails, but this requires additional effort to build such function in Tivoli
Directory Integrator.

� Optional:

You can also use other IBM Tivoli professional monitoring products; this requires
additional effort to set up such service.

Like any application, the ability of an administrator to understand what the current state of the
application at any given time is critical.

The monitoring of the directory is important from the following perspectives:

� Security issues

To track unauthorized access and take corrective measures. Let us take some example
where we want to prevent unauthorized access to the directory. Monitoring the server
helps to overcome issues such as these and consequently secure our server.

� Performance issues

To obtain reasons for slow or poor performance.

Performance of the directory server might be low owing to many reasons:

– The DB2 buffer pools might not be tuned as per the directory requirements, though
there are resources available.

– The Directory Server caches might not be tuned to the optimum.

– There might be some important indexes missing.

– There might be a database reorganization required and many more.

From the above list, some of the problems might be caught or prevented using the monitoring
tools. Monitoring tools help us in deriving the optimal values for a set of directory parameters
after statistical analysis of the existing workload and resources.

� Throughput measurement: To derive statistics such as how many searches have been
completed in a given time frame, how many additions have been completed, how many
binds have occurred to the server, how many operations have been completed. Keeping
track of such figures helps us to calculate the throughput of the server. This throughput
might be quite influential for the dependent products that are going to use the directory
server.
Appendix F. Checklist 181

The Tivoli Directory Server is provided with a set of tools that can be used to monitor the
directory server against any anomalies. The Tivoli Directory Server monitoring can be
accomplished in many ways as listed below:

� Searching against the base cn=monitor
� Searching through the change log database
� Analyzing log files

Let us now begin to look into some of the details of monitoring Tivoli Directory Server.

Monitoring for outages and performance degradations
Tivoli Directory Server consist of two primary processes that must be active and consuming
resources for Tivoli Directory Server to be healthy:

� The LDAP server process (a unique name reflecting the instance name of Tivoli Directory
Server)

� UDB/DB2

Monitoring the LDAP server process
Monitoring the LDAP server process can be broken down into five distinct areas:

� The LDAP server process (instance name is chosen at instance creation) must be active
and in memory. If this process dies, the monitoring tool chosen should attempt at least one
iteration of an automated restart and log the event.

� Monitoring log files:

Tivoli Directory Server's critical log files must be monitored for operational issues.

– <Instance Name Log>

This log file must be monitored for:

• Correct startup (for example, not in configuration mode)
• Replication queues active and remote login successful
• UDB/DB2 started and accepting connections

– Audit.log:

This log file (instance specific) should be configured (errors only) and monitored for
error conditions such as:

• Excessive failures of root account binds.
• Abandoned connections (usually due to client, network, or Tivoli Directory Server

not responding in time).

� Query of Tivoli Directory Server’s cn=monitor object:

The cn=monitor object should be read on a regular basis (for example, once a minute) to
determine possible error conditions such as:

– Emergency thread active

– Depth of work queue

– Opscompleted is incrementing (when client applications are not in maintenance/failure
mode)

� Synthetic transactions:

Synthetic transactions (representative queries of a random nature) should be applied to
the directory to ensure that it is meeting established service-level agreements (SLAs).
182 Performance Tuning for IBM Tivoli Directory Server

� Monitoring file space:

Critical files spaces (used to store log, configuration, and databases) must be monitored to
ensure that excessive growth is captured before a file system full condition causes an
outage.

Monitoring the UDB/DB2 process
Monitoring the UDB/DB2 process can be broken down into three distinct areas:

� The UDB/DB2 server process must be active and in memory. If this process dies, it should
be automatically restarted as it is normally configured in the inittab. The monitoring tool
chosen should at least log the event, and send an alert if the process is not restarted
within 30 seconds.

� Monitoring log files:

DB2’s critical log files must be monitored for operational issues.

– Idsldap.nfy:

A shortened version of the db2diag.log file that only contains errors.

• Correct startup
• Error conditions such as out of space and so on

– Db2diag.log:

This log file should be monitored to ensure that standard processes (reorg or tuning
operations are completing successfully)

� Monitoring file space:

Critical files spaces (used to store log, configuration and databases) must be monitored to
ensure that excessive growth is captured before a file system full condition causes an
outage.

Monitoring for performance and SLA conformance
The best method (and only recommended method for large directories) to determine the
average performance of operations is through the use of synthetic transactions. Using a
pseudo-random set of LDAP operations (binds, unbinds, adds, deletes, modifies, and
searches) allows you to capture and log the performance of the directory over a period of
time. The only critical factors in the development of these synthetic transactions is:

� They should be run on the same server as the directory (or proxy) to ensure that network
latency is not an issue.

� They should be random in nature to ensure that caches do not skew the data.

� They are of a lightweight nature (both the operations and the initiating application) such
that they do not impact the production performance of the directory.

Monitoring Tivoli Directory Server status
Monitoring of the Tivoli Directory Server status can be done by using either Web
administration tool or command line utilities such as the ldapsearch utility.

Note: These queries should be as random as possible to ensure that cached results
are not being returned.
Appendix F. Checklist 183

Operating system command line to monitor Tivoli Directory Server
Command line utility to view information about the running ibmslapd process:

ps -eaf | grep -i ibmslapd

The above command helps us to get to know two things:

� Firstly, if ibmslapd is still running.

� Secondly, how much the process size has grown till date and if it is within permissible
limits or going to click the limits soon.

Web administration tool
You can use the Web administration tool to:

� View server status

You have to log in to the Web administration tool in order to view the server status as
shown in Figure F-1.

Figure F-1 Viewing the server status

� View the worker thread status

The state of a worker thread includes many details such as thread number, information
about the client it is serving, the type of work request received, and so on. Performing this
activity suspends all the server activity until it is completed. see Figure F-2 and Figure F-3.

Figure F-2 Viewing the worker thread status
184 Performance Tuning for IBM Tivoli Directory Server

Figure F-3 Viewing the worker thread status (continued)

� View connections

See Figure F-4.

Figure F-4 View connections

� View other server status

a. Connect to the required directory server, using the Web administration tool.
b. Click View server status. This panel has nine tabs.

Command line
You can use the command line to:

� View server status

The following command returns the state of the server:

ibmdirctl-D <adminDN> -w <adminPW> status

The above command does not say whether the server is running in safe mode or not. We
have to confirm it by running a rootDSE search after this command and check for the
attribute ibm-slapdisconfigurationmode, which should be false for a normal mode.

On UNIX:

ldapsearch -D <adminDN> -w <adminPW> -s base objectclass=* | grep config

� View worker thread status

View worker thread status using the following command lines.
Appendix F. Checklist 185

In order to retrieve all information related to worker threads that are currently active, issue
the following command:

ldapsearch -D <adminDN> -w <adminPW> -s base -b cn=workers, cn=monitor
objectclass=*

You can see an output similar to the one shown in Example F-1.

Example: F-1 Viewing worker thread status

cn=workers, cn=monitor
cn=workers
objectclass=container
cn=thread2428, cn=workers, cn=monitor
thread=2428
ldapversion=V2
binddn=cn=root
clientip=127.0.0.1
clientport=2058
connectionid=1412
received=2004-02-19 08:07:41 GMT
workrequest=search
base=cn=workers, cn=monitor
scope=baseObject
derefaliases=neverDerefAliases
typesonly=false
filter=(objectclass=*)
attributes=all

� View connections

We can run a search with the searchbase “cn=connections, cn=monitor” to get information
about server connections:

ldapsearch -D <adminDN> -w <adminPW> -s base -b cn=connections, cn=monitor
objectclass=*

This command returns information in the following format:

cn=connections, cn=monitor
connection=3 : 127.0.0.1 : 2004-02-22 06:08:10 GMT : 1 : 1 : CN=ROOT : :

To end server connections, issue one of the following commands:

– To disconnect a specific DN:

ldapexop -D<adminDN> -w <adminPW> -op unbind -dn cn=john

– To disconnect a specific IP address:

ldapexop -D <adminDN> -w <adminPW> -op unbind -ip 9.182.173.43

– To disconnect a specific DN over a specific IP address:

ldapexop -D <adminDN> -w <adminPW> -op unbind -dn cn=john -ip 9.182.173.43

– To disconnect all connections:

ldapexop -D <adminDN> -w <adminPW> -op unbind -all

� View other server information

Using a ldapsearch against base cn=monitor. The command for doing a monitor search is:

ldapsearch -D <adminDN> -w <adminPW> -s base -b cn=monitor objectclass=*
186 Performance Tuning for IBM Tivoli Directory Server

Analyzing log files
The simplest way to get to a problem is to know the time when it has occurred. The log files
are time stamped. Therefore, you just compare the different log files simultaneously for the
activities at a given instant of time and you are very close to the problem cause. If multiple
LDAP servers are involved (for example, debugging a replication issue), keeping them time
synchronized is handy (only, of course, if time synchronization is feasible).

The following sections explains some typical steps for monitoring Tivoli Directory Server
status and troubleshooting the problems if any.

Web administration tool
In the Web administration tool, the logfiles field in the task title bar accesses the Web
administration console log files.

ibmslapd.log
When a problem occurs that appears to be related to the IBM Directory Server, you should
first check the following files for error messages.

The default location is /var/ldap for both Solaris and AIX.

� ibmslapd.log
� db2cli.log

You can change the location of both of these files by modifying the ibm-slapdErrorLog and
ibm-slapdCLIErrors parameters in the ibmslapd.conf.

To view the error log, issue the following command (on UNIX):

more /var/ldap/ibmslapd.log

Where /var/ldap/ibmslapd.log is the default path for the ibmslapd error log.

To view and clear the error log dynamically:

ldapexop -D <adminDN> -w <adminPW> -op readlog -log slapd -lines all
ldapexop -D <adminDN> -w <adminPW> -op clearlog -log slapd

Notes:

� Turning on any sort of logging or using a database to log the changes hampers the
directory performance. The obvious reason is that such activities make the directory do
more things than it liked to. For example, the directory server might have to write to four
places rather than one. Hence, it is strictly advised that such options be turned on only
in the event that the directory server is doing badly and it needs to be tuned. Disable
these options, when you are done with your problem analysis.

� Enabling the change log is seen as a performance bottleneck, because the directory
server has to write to the LDAP database as well as log the relevant information in the
change log database. Therefore, it is advisable to have the change log enabled only in
the event that a problem is being debugged or if another application in your
organization (that is, a meta-directory tool) required it to be on.

� Increasing the amount of diagnostic output can result in both performance degradation
and insufficient storage conditions in your database instance file system. This
procedure should only be used when troubleshooting problems requires the additional
diagnostics.
Appendix F. Checklist 187

ibmslapd trace
An ibmslapd trace provides a list of the SQL commands issued to the DB2 database. These
commands can help you identify operations that are taking a long time to complete. This
information can in turn lead you to missing indexes or unusual directory topology. To turn the
ibmslapd trace on, run the following commands:

ldtrc on
ibmslapd -h 4096

After you have turned the trace on, run the commands that you think might be giving you
trouble. Running a trace on several operations can slow the performance, therefore
remember to turn the trace off when you finish using it:

ldtrc off

Change the diagnostic level for error message log files.

DB2 error log
On AIX systems or Solaris operating environments, the db2diag.log file is located, by default,
in the /INSTHOME/sqllib/db2dump directory, where INSTHOME is the home directory of the
instance owner.

To view the DB2 error log, issue the following command (on UNIX):

more /var/ldap/db2cli.log

Where var/ldap/db2cli.log is the default path for the DB2 error log.

To view and clear the DB2 error log dynamically:

ldapexop -D <adminDN> -w <adminPW> -op readlog -log cli -lines all
ldapexop -D <adminDN> -w <adminPW> -op clearlog -log cli

adminAudit.log
/var/ldap/adminAudit.log is the default administration daemon audit log for UNIX systems.

audit.log
/var/ldap/audit.log is the default administration audit log for UNIX systems. The audit.log is
disabled by default. You have to enable it either using Web administration tool or command
line.

To view the audit log through the command line, issue the following command

(for UNIX):

more /var/ldap/audit.log

Where /var/ldap/audit.log is the default path for the audit log.

To view and clear the audit log dynamically:

ldapexop -D <adminDN> -w <adminPW> -op readlog -log audit -lines all
ldapexop -D <adminDN> -w <adminPW> -op clearlog -log audit

Monitoring Tivoli Directory Server performance
Understanding what the directory is doing (and how well it is doing it) is necessary before,
during, and after any tuning exercise. Understanding the transaction types, their distribution,
188 Performance Tuning for IBM Tivoli Directory Server

and an understanding of the current performance of the directory is necessary to determine
what (if any) tuning might be necessary.

The ITDSAUDIT.JAR (covered in 6.1, “ITDSAUDIT.JAR” on page 40) provides a snapshot
look at the directory and the operations executed against it by parsing and reporting the
transactions as seen by the directory audit log.

Using the ldapsearch utility for monitoring
The ldapsearch command can be used to monitor performance, as shown in the following
sections.

A number of upgrades to the cn=monitor command allows it to pull out more data to better
monitor how the LDAP is doing. The monitor search returns some of the following attributes of
the server:

cn=monitor

version: IBM Tivoli Directory, Version 5.2

total connections: The total number of connections since the server was started

current connections: The number of active connections

maxconnections: The maximum number of active connections allowed

writewaiters: The number of threads sending data back to the client

readwaiters: The number of threads reading data from the client

opsinitiated: The number of initiated requests since the server was started

livethreads: The number of worker threads being used by the server

opscompleted: The number of completed requests since the server was
started

entriessent: The number of entries sent by the server since the server was
started

searchesrequested: The number of initiated searches since the server was started

searchescompleted: The number of completed searches since the server was
started

filter_cache_size: The maximum number of filters allowed in the cache

filter_cache_current: The number of filters currently in the cache

filter_cache_click: The number of filters retrieved from the cache rather than
being resolved in DB2

filter_cache_miss: The number of filters that were not found in the cache that then
needed to be resolved by DB2

filter_cache_bypass_limit: Search filters that return more entries than this limit are not
cached

entry_cache_size: The maximum number of entries allowed in the cache

entry_cache_current: The number of entries currently in the cache

entry_cache_click: The number of entries that were retrieved from the cache

entry_cache_miss: The number of entries that were not found in the cache that
then needed to be retrieved from DB2

acl_cache: A Boolean value indicating that the ACL cache is active
(TRUE) or inactive (FALSE)
Appendix F. Checklist 189

acl_cache_size: The maximum number of entries in the ACL cache

currenttime: The current time on the server. The current time is in the
format: year month day hour:minutes:seconds GMT.

starttime: The time the server was started. The start time is in the format:
year month day hour:minutes:seconds GMT.

en_currentregs: The current number of client registrations for event notification

en_notificationssent: The total number of event notifications sent to clients since the
server was started

The following attributes are used for operation counts:

bindsrequested: The number of bind operations requested since the server was
started

bindscompleted: The number of bind operations completed since the server was
started

unbindsrequested: The number of unbind operations requested since the server
was started

unbindscompleted: The number of unbind operations completed since the server
was started.

addsrequested: The number of add operations requested since the server was
started

addscompleted: The number of add operations completed since the server was
started

deletesrequested: The number of delete operations requested since the server
was started

deletescompleted: The number of delete operations completed since the server
was started

modrdnsrequested: The number of modify RDN operations requested since the
server was started

modrdnscompleted: The number of modify RDN operations completed since the
server was started

modifiesrequested: The number of modify operations requested since the server
was started

modifiescompleted: The number of modify operations completed since the server
was started

comparesrequested: The number of compare operations requested since the server
was started

comparescompleted: The number of compare operations completed since the server
was started

abandonsrequested: The number of abandon operations requested since the server
was started

abandonscompleted: The number of abandon operations completed since the server
was started

extopsrequested: The number of extended operations requested since the server
was started

extopscompleted: The number of extended operations completed since the
server was started
190 Performance Tuning for IBM Tivoli Directory Server

unknownopsrequested: The number of unknown operations requested since the server
was started

unknownopscompleted: The number of unknown operations completed since the server
was started

The following attributes are used for server logging counts:

slapderrorlog_messages: The number of server error messages recorded since the
server was started or since a reset was performed

slapdclierrors_messages: The number of DB2 error messages recorded since the
server was started or since a reset was performed

auditlog_messages: The number of audit messages recorded since the server
was started or since a reset was performed

auditlog_failedop_messages: The number of failed operation messages recorded since
the server was started or since a reset was performed

The following attributes are used for connection type counts:

total_ssl_connections: The total number of Secure Sockets Layer (SSL) connections
since the server was started

total_tls_connections: The total number of Transport Layer Security (TLS)
connections since the server was started

The following attributes are used for tracing:

trace_enabled: The current trace value for the server. TRUE, if collecting trace
data; FALSE, if not collecting trace data

trace_message_level: The current ldap_debug value for the server. The value is in
hexadecimal form, for example:

- 0x0=0
- 0xffff=65535

trace_message_log: The current LDAP_DEBUG_FILE environment variable setting
for the server

The following attributes are used for denial of service prevention:

available_workers: The number of worker threads available for work

current_workqueue_size: The current depth of the work queue.
largest_workqueue_size: The largest size that the
work queue has ever reached.

idle_connections_closed: The number of idle connections closed by the
Automatic Connection Cleaner

auto_connection_cleaner_run: The number of times that the Automatic Connection
Cleaner has run

emergency_thread_running: The indicator of whether the emergency thread is
running

totaltimes_emergency_thread_run: The number of times the emergency thread has been
activated

lasttime_emergency_thread_run: The last time the emergency thread was activated
Appendix F. Checklist 191

The following attribute has been added for alias dereference processing:

bypass_deref_aliases: The server runtime value that indicates if alias processing can
be bypassed. It displays TRUE if no alias object exists in the
directory, and FALSE if at least one alias object exists in the
directory.

The following attributes are used for the attribute cache:

cached_attribute_total_size: The amount of memory used by the directory attribute
cache, in KB. This number includes additional memory
used to manage the cache that is not charged to the
individual attribute caches.

Consequently, this total is larger than the sum of the
memory used by all the individual attribute caches.

cached_attribute_configured_size: The maximum amount of memory, in KB, assigned to
the directory attribute cache

cached_attribute_click: The number of times the attribute has been used in a
filter that could be processed by the attribute cache.
The value is reported as follows:
cached_attribute_click=attrname:#####

cached_attribute_size: The amount of memory used for this attribute in the
attribute cache. This value is reported in KB as follows:
cached_attribute_size=attrname:######

cached_attribute_candidate_click: A list of up to ten most frequently used noncached
attributes that have been used in a filter that could
have been processed by the directory attribute cache if
all of the attributes used in the filter had been cached.
The value is reported as follows:
cached_attribute_candidate_click=attrname:#####
192 Performance Tuning for IBM Tivoli Directory Server

Appendix G. Additional material

This IBM Redpaper refers to additional material that can be downloaded from the Internet as
described below.

Locating the Web material
The Web material associated with this IBM Redpaper is available in softcopy on the Internet
from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/REDP4258

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with the
IBM Redpaper form number, REDP4258.

Using the Web material
The additional Web material that accompanies this IBM Redpaper includes the following files:

Tools_Sample_Data_and_Outputs.tar

This tar file contains a lot of scripts, LDAP Data Interchange Format (LDIF) files,
spreadsheets, and other documents that are used and referenced throughout the
IBM Redpaper.

How to use the Web material
Create a subdirectory (folder) on your workstation, and untar the contents of the Web material
zip file into this folder.

G

© Copyright IBM Corp. 2007. All rights reserved. 193

ftp://www.redbooks.ibm.com/redbooks/REDP4258
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

194 Performance Tuning for IBM Tivoli Directory Server

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this IBM Redpaper.

IBM Redbooks
For information about ordering these publications, see “How to get IBM Redbooks” on
page 196. Note that some of the documents referenced here may be available in softcopy
only.

� Understanding LDAP - Design and Implementation, SG24-4986

Other publications
These publications are also relevant as further information sources:

� IBM Tivoli Directory Server Administration Guide Version 6.0, SC32-1674

� IBM Tivoli Directory Server Problem Determination Guide Version 6.0, SC32-1679

� IBM DB2 Universal Database Administration Guide: Implementation Version 8,
SC09-4820

� IBM DB2 Universal Database Administration Guide: Performance Version 8, SC09-4821

� IBM DB2 Universal Database Administration Guide: Planning Version 8, SC09-4822

� IBM DB2 Universal Database Command Reference Version 8, SC09-4828

� IBM Advanced DBA Certification Guide and Reference for DB2 Universal Database v8 for
Linux, UNIX, and Windows by Dwaine R. Snow and Thomas X. Phan

Online resources
These Web sites are also relevant as further information sources:

� IBM Tivoli Directory Server online resource for product manuals

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?toc=/com.ibm.I
BMDS.doc/toc.xml

� DB2 9 for Linux UNIX and Windows

http://www.ibm.com/software/data/db2/udb/support/

� IBM DB2/UDB v8 online resource for product manuals

http://www.ibm.com/software/data/db2/udb/support/manualsv8.html

� DB2 Information Center site:

http://publib.boulder.ibm.com/infocenter/db2help/index.jsp

� DB2 DeveloperWorks site:

http://www.ibm.com/developerworks/db2/
© Copyright IBM Corp. 2007. All rights reserved. 195

http://www.ibm.com/software/data/db2/udb/support/manualsv8.html
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?toc=/com.ibm.IBMDS.doc/toc.xml
http://www.ibm.com/software/data/db2/udb/support/
http://publib.boulder.ibm.com/infocenter/db2help/index.jsp
http://www-130.ibm.com/developerworks/db2/

� DB2 library

http://www.ibm.com/software/data/db2/library

� IBM Problem Support 1-800-IBM-SERV

http://www.ibm.com/software/support/probsub.html

� Fix pack download site:

http://www.ibm.com/software/data/db2/udb/support/downloadv8.html

� AIX Toolbox for Linux Applications

http://www.ibm.com/servers/aix/products/aixos/linux/rpmgroups.html

� Disabling replication conflict resolution

http://www.ibm.com/support/docview.wss?rs=767&context=SSVJJU&q1=conflict+resolu
tion&uid=swg21236775&loc=en_US&cs=utf-8&lang=en

How to get IBM Redbooks
You can search for, view, or download IBM Redbooks, Redpapers, Hints and Tips, draft
publications and Additional materials, as well as order hardcopy IBM Redbooks or CD-ROMs,
at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
196 Performance Tuning for IBM Tivoli Directory Server

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www.ibm.com/support/docview.wss?rs=767&context=SSVJJU&q1=conflict+resolution&uid=swg21236775&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=767&context=SSVJJU&q1=conflict+resolution&uid=swg21236775&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/servers/aix/products/aixos/linux/rpmgroups.html
http://www.ibm.com/software/support/probsub.html
http://www-306.ibm.com/software/data/db2/udb/support/downloadv8.html
http://www.ibm.com/software/data/db2/library

Index

A
add time

SLA measurement 2
adjusting table cardinality 34
adminAudit.log 188
administration 6
AIX

environment variables 118
MALLOCTYPE 117
maxservers 122
maxuproc 122
tuning 117

alias dereferencing 65
analyzing

logs and configurations 12
APPLHEAPSZ 26
application heap size 26
asynchronous I/O 122
asynchronous page cleaners 27
audit

analysis 50
log 40

audit.log 188

B
backup 143

procedures for LDAP 151
process 6

benchmarking 12
bind time

SLA measurement 2
buffer pool 18, 78, 134
bulkload 37

C
cache

settings 7
size 28

cardinality 33, 72
reset by runstats 35

catalog cache size 24
CATALOGCACHE_SZ 24
change log database 147
CHNGPGS_THREASH 27
circular logging 29
configuration files 7
conflict resolution 85
container 134
cryptography 97

D
data
© Copyright IBM Corp. 2007. All rights reserved.
organization 55
database 133

analysis 52
connections 7
distribution 147
heap 24

Database Managed Storage container 73
data-managed space 134
DB2

AIX large files 117
APPLHEAPSZ 26
application heap size 26
backup 143
buffer pool 17–18, 73, 78, 134
cardinality 72
catalog cache size 24
CATALOGCACHE_SZ 24
CHNGPGS_THREASH 27
commands 137
concepts 133
configuration information 8
container 134
data organization 55
database connections 7
database heap 24
Database Managed Storage container 73
DB2_PARALLEL_IO 31
DBHEAP 24
default extent size 30
default prefetch size 30
DFT_EXTENT_SZ 30
DFT_PREFETCH_SZ 30
error log 7, 188
extent 135
EXTENTSIZE 76

RAID tuning 31
index reorganization 61
indexing 68
instance 133
lock

escalation 25
list 26
timeout 25

LOGFILSIZ 29
LOGPRIMARY 29
LOGSECOND 30
MAXAPPLS 28
MAXFILOP 28
MAXLOCKS 25
memory mapped IO 73
MINCOMMIT 26
monitoring 183
monitors 11, 48
NEWLOGPATH 30
NUM_IOCLEANERS 27
 197

NUM_IOSERVERS 28
optimization 56
optimizer 34
package cache size 28
performance

improvement 56, 59
PKGCACHESZ 28
prefetch size 135
PREFETCHSIZE 76

RAID tuning 31
query logic 34
reorg 55, 59
runstats 9, 72
search optimizer 36
SHEAPTHRES 24
snapshot 69
sort 24

buffer overflow 77
heap size 25
heap threshold 24

SORTHEAP 25
STAT_HEAP_SZ 27
statistics 57
statistics heap size 27
table 134

monitor 49
tablespace 134
terminology 133
transaction log 76
tuning 13, 17

... for RAID 31
memory size 18
spreadsheet 14

uniqueness rule 69
utility heap size 26
without rolling forward 162

DB2 explain 69
db2_tunings.sh 16–17
db2cli.log 8
db2diag.log 8
db2osconf 116
DBHEAP 24
default extent size 30
default prefetch size 30
delete time

SLA measurement 3
delta backup 160–161
DFT_EXTENT_SZ 30
DFT_MON_TABLE monitor switch 11
DFT_PREFETCH_SZ 30
directory

database 145
schema 144

dirty page steal 78
disk striping 75
dynamic SQL

analysis 51

E
error logs 7

extent 135
EXTENTSIZE 76

RAID tuning 31

F
failover process 6
file handles 28
file space

monitoring 183
file system buffering 73
forwarder 93

agreement 105

G
gateway 94

server 82

H
health check 5
high availability 79
High-Availability Cluster Multi-Processing (HACMP) 128
HP-UX tuning 116

I
ibmslapd

environment 123
trace 188

ibmslapd.conf 8
ibmslapd.log 187
identifying slow operations 65
idsldap.nfy 8
incremental backup 158, 161
index

analysis 49
LDAP_DESC 37
reorganization 61

indexing 68
installation

LDAP server 99
instance 133
ITDSAUDIT.JAR 40

L
LDAP

alias dereferencing 65
audit log 40
backup 143
cache settings 7
change log database 147
configuration information 10
cryptography 97
directory database 145
directory schema 144
forwarder 93
gateway 94
high availability 79
improving searches 64
198 Performance Tuning for IBM Tivoli Directory Server

indexing 68
LDAP_MAXCARD 35–36
migration scenarios 96
monitoring 180
namespace 34
OBJECTCLASS table 34
operational attributes 88
partitioning 80
replica 79
replication 82

context 83
debugging 92
monitoring 88

server
installation 99
status monitoring 183

SHEAPTHRES 24
specific SLA 2
tablespaces 147

LDAP_DESC
index 37
table 36

LDAP_MAXCARD 35–36
bulkload 37

ldapsearch 189
location

configuration files 7
error logs 7
log file 6

lock
escalation 25
list 26
timeout 25

log
path 30
record 26
retention 29

log file 6
analysis 187
monitoring 182
size 29

LOGFILSIZ 29
logging 40
logical layout 6
LOGPRIMARY 29
LOGSECOND 30
lostandfound.log 8

M
MALLOCTYPE 117
MAXAPPLS 28
MAXFILOP 28
MAXLOCKS 25
measurable

SLA 2
memory mapped IO 73
memory size 18
migration scenarios 96
MINCOMMIT 26
modify time

SLA measurement 2
monitoring 180

DB2 183
LDAP server status 183
ldapsearch 189
performance 182, 188

N
NEWLOGPATH 30
NUM_IOCLEANERS 27
NUM_IOSERVERS 28

O
OBJECTCLASS

table 34
online backup 143

procedures for LDAP 152
online full backup 161
online restore

procedures for LDAP 152
operational attributes 88
operational measurement 1
optimizer 36
outages 182
out-of-sync conditions 26

P
package cache size 28
page

cleaner 27
cleaning 122

peer agreement 102
peer server 82
peer-to-peer master 6
performance

analysis 49
degradation 182
improvement 56
improvements 59
monitoring 188
objective 1
tuning 5, 33, 40, 79

... for RAID 31
perftune_enablemonitor.sh 14
physical layout 6
PKGCACHESZ 28
prefetch size 30, 135
PREFETCHSIZE 76

RAID tuning 31
primary log files 29
problem determination 7

R
RAID

DB2 tuning 31
disk array 76
disks 6

reasonable SLA 2
 Index 199

recovery log files 29
Redbooks Web site 196

Contact us xiii
Redundant Array of Independent Disks

see RAID
reorg 59
reorganization

DB2 index 61
replica 6

agreement 107
group 83

replication
agreements 101
conflicts 8
context 83
debugging 92
definition 82
monitoring 88

restore
directory database 157
procedures for LDAP 151

runstats 9, 72
cardinality reset 35

S
SAN drives 6
schema

problems 7
scripts

... to gather information 8
search

filter 36
optimizer 36

search time
SLA measurement 3

secondary log files 30
Service Level Agreement

see SLA
Service Level Objective 1
SHEAPTHRES 24
SLA 1

conformance monitoring 183
guiding principles 2
LDAP specific 2

slapd32.conf 7
sort

buffer overflow 77
heap size 25
heap threshold 24
overflow 78

SORTHEAP 25
spreadsheet

DB2 tuning 14
SQL

analysis 51
STAT_HEAP_SZ 27
statistics heap size 27
subtree

search 36
Sun Solaris tuning 116

Support Tool 180
synchronization

cryptography 97
synchronous I/O 122
synthetic transactions 182
system managed space 134, 145
system monitor

DB2 11

T
table 134

analysis 53
cardinality 33
monitor 49

tablespace 134, 147
transaction log 40
tune_runstats.sh 55
tuning 13, 17

AIX 117
HP-UX 116
memory size 18
Sun Solaris 116
understanding 40

U
unbind time

SLA measurement 2
uniqueness rule 69
utility heap size 26
200 Performance Tuning for IBM Tivoli Directory Server

®

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

Redpaper

Performance Tuning
for IBM Tivoli
Directory Server
Performance tuning
for Tivoli Directory
Server for very large
user environments

Complete coverage
from operating
system to database
tuning

Extensive scripts and
checklists

In today's highly connected world, directory servers are the IT
cornerstone of many businesses. These components of the corporate
infrastructure are the foundation of authentication systems for internal,
and more commonly, external user populations. Managing a directory
server with several hundred internal users is not all that difficult.
However, when managing a directory server with several million
external users in all 24 time zones throughout the world is a much
more daunting task.

IBM Tivoli Directory Server is capable of handling millions of entries
given the right architecture, configuration, and performance
tuning—tunings that can differ greatly from that of a smaller server
with only a few hundred thousand entries. Managing and tuning a
directory server of this size requires a change in mindset: No longer
can tuning be done after the fact. Tuning and performance must be a
focus before the hardware is even ordered. A proactive role must be
taken after installation as well, including pre-tuning steps to better
interface with other products to make installations and migrations
more successful, and regular maintenance to keep the directory well
tuned and running smoothly.

This IBM Redpaper is the cumulation of lessons learned in many
different real-world environments, including a 24-server fault tolerant
configuration with over 300 million entries. The authors have pooled
their collective knowledge and resources to provide the most
comprehensive performance view possible, from hardware to
software, sort heaps to buffer pools, and table cardinalities to explain
plans. In large directory server deployments, use this document as an
outline on how to get the right fit for your environment.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this IBM Redpaper
	Become a published author
	Comments welcome

	Chapter 1. Service level objectives and agreements
	1.1 Common service level agreements and objectives
	1.1.1 SLA and SLO guiding principles
	1.1.2 Lightweight Directory Access Protocol specific SLAs

	Chapter 2. Does your directory have a cold? Time to do a health check
	2.1 Questions to ask
	2.2 Diagrams and layouts of the system
	2.3 Configurations, logs, and outputs
	2.4 Scripts to help gather information
	2.4.1 perfcheck_database.sh
	2.4.2 perfcheck_runstats.sh
	2.4.3 perfcheck_system.sh
	2.4.4 perfcheck_ldap.sh

	2.5 IBM DB2 monitors
	2.6 Analyzing the gathered information

	Chapter 3. Tools to help you assist with your DB2 tuning
	3.1 DB2-Config-calc-tool-template Excel sheet
	3.2 db2_tunings.sh
	3.2.1 Using the script

	Chapter 4. DB2 settings related to LDAP
	4.1 SHEAPTHRES: Sort heap threshold
	4.2 DBHEAP: Database heap
	4.3 CATALOGCACHE_SZ: Catalog cache size
	4.4 SORTHEAP: Sort heap size
	4.5 MAXLOCKS: Maximum percentage of lock list before escalation
	4.6 LOCKTIMEOUT: Lock timeout
	4.7 LOCKLIST: Maximum storage for lock list
	4.8 MINCOMMIT: Number of commits to group
	4.9 UTIL_HEAP_SZ: Utility heap size
	4.10 APPLHEAPSZ: Application heap size
	4.11 STAT_HEAP_SZ: Statistics heap size
	4.12 CHNGPGS_THREASH: Changed pages threshold
	4.13 NUM_IOCLEANERS: Number of async page cleaners
	4.14 NUM_IOSERVERS: Number of I/O servers
	4.15 MAXFILOP: Maximum database files open per application
	4.16 MAXAPPLS: Maximum number of active applications
	4.17 PKGCACHESZ: Package cache size
	4.18 LOGFILSIZ: Size of log files
	4.19 LOGPRIMARY: Number of primary log files
	4.20 LOGSECOND: Number of secondary log files
	4.21 DFT_PREFETCH_SZ: Default prefetch size
	4.22 DFT_EXTENT_SZ: Default extent size of tablespaces
	4.23 NEWLOGPATH: Change the database log path
	4.24 DB2SET commands
	4.24.1 DB2_PARALLEL_IO
	4.24.2 DB2_HASH_JOIN

	Chapter 5. Table cardinality and LDAP_MAXCARD setting
	5.1 Adjusting table cardinality for performance
	5.2 LDAP_MAXCARD setting

	Chapter 6. Tools and scripts
	6.1 ITDSAUDIT.JAR
	6.1.1 Theory of operation
	6.1.2 Prerequisites
	6.1.3 Invoking itdsaudit.jar
	6.1.4 itdsaudit.jar error messages
	6.1.5 itdsaudit.jar stdout output
	6.1.6 itdsaudit.jar PDF output

	6.2 tune_enablemonitor.sh
	6.3 perftune_enablemonitor_all.sh
	6.4 tune_disablemonitor.sh
	6.5 perfanalyze_indexes.pl
	6.5.1 Usage
	6.5.2 Examples

	6.6 perfanalyze_audit.pl
	6.6.1 Usage
	6.6.2 Examples

	6.7 perfanalyze_dynamicsql.pl
	6.7.1 Usage
	6.7.2 Examples

	6.8 perfanalyze_database.pl
	6.8.1 Usage
	6.8.2 Examples

	6.9 perfanalyze_tables.pl
	6.9.1 Usage
	6.9.2 Examples

	Chapter 7. RUNSTATS: Why you have to run this
	7.1 Optimization
	7.2 How to use tune_runstats.sh

	Chapter 8. REORG: When and how you should run this
	8.1 Performing a reorg as required
	8.1.1 Reorg a table
	8.1.2 Reorg an index

	Chapter 9. LDAP searches and slow operations
	9.1 Improving LDAP searches
	9.2 Identifying slow operations

	Chapter 10. Indexes and direct I/O
	10.1 Indexes explained
	10.1.1 Optimizing indexes using DB2 commands
	10.1.2 Optimizing searches using DB2 explain

	10.2 Direct I/O

	Chapter 11. Disk striping and RAID
	11.1 Considerations for RAID arrays

	Chapter 12. Buffer pool settings and sort buffer overflow
	12.1 Adjusting the buffer pool and sort heap threshold settings

	Chapter 13. Replicas and partitions for performance
	13.1 Distinguishing between LDAP reads and writes

	Chapter 14. LDAP replication information
	14.1 Defining replication terms
	14.2 cn=ibmpolicies replication problem
	14.3 Conflict resolution
	14.4 Monitoring and managing replication
	14.4.1 Operational attributes
	14.4.2 Extended operations
	14.4.3 Troubleshooting replication problems

	14.5 Introduction to forwarders and gateways
	14.5.1 Forwarders
	14.5.2 Gateways

	14.6 Migration considerations
	14.6.1 Tivoli Directory Server v3.2.2 to Tivoli Directory Server v6
	14.6.2 Tivoli Directory Server v4.1 to Tivoli Directory Server v6 (in place)
	14.6.3 Tivoli Directory Server v4.1 to Tivoli Directory Server v6 (new servers)
	14.6.4 Tivoli Directory Server v5.1 or v5.2 to Tivoli Directory Server v6

	14.7 Synchronizing two-way cryptography for server instances

	Chapter 15. Adding a new LDAP server to an existing enclave
	15.1 Installing a new Tivoli Directory Server
	15.2 Building new replication agreements
	15.2.1 Defining the role of the new Tivoli Directory Server v6
	15.2.2 Creating the new replication agreement to add the new server
	15.2.3 Loading the new agreement
	15.2.4 Backing up data from a Tivoli Directory Server v6 peer master server
	15.2.5 Restoring data to the replicas, peer masters, and forwarders
	15.2.6 Starting all new LDAP servers and verifying replication queues

	15.3 Testing replication

	Appendix A. Special operating system tuning for Tivoli Directory Server
	Sun Solaris and HP-UX operating system tuning
	Determining which system settings are required for DB2 and LDAP

	IBM AIX operating system tuning
	Enabling large files
	Setting MALLOCTYPE
	Setting other environment variables
	Viewing ibmslapd environment variables on AIX

	Appendix B. How to apply DB2 fix packs to an LDAP server
	Prerequisites
	Stopping all DB2 processes
	Unpacking fix pack to server
	Installing fix pack
	Post-installation
	Updating instances to use the new level of DB2
	Steps to perform after applying the fix pack

	Appendix C. DB2 UDB concepts and definitions
	Appendix D. DB2 UDB quick reference guide
	DB2 command line processor (CLP)
	Instance configuration
	Instance configuration keywords
	DB2 registry configuration
	Catalog remote database
	DB2 instance start/stop
	Database commands
	Database connection
	Display database object
	Database configuration
	Granting database privilege
	Update database statistics
	DB2 monitoring commands
	Database recovery
	Troubleshooting

	Appendix E. Online backup of Tivoli Directory Server
	DB2 information
	Directory schema and database definitions
	Tivoli Directory Server V6.0 directory schema
	Tivoli Directory Server V6.0 directory database definitions
	Tivoli Directory Server directory database and tablespaces

	Tivoli Directory Server change log database and tablespaces
	Distributing databases across multiple physical disks
	Creating file systems and directories on the target disks
	Backing up the existing database
	Performing a redirected restore of the database

	Overview of backup and restore procedures for LDAP
	Replication considerations

	Overview of online backup and restore procedures for LDAP
	Example DB2 list history information
	Example offline backup and restore procedures
	Example online backup for the directory database
	Restoring the directory database
	Incremental directory and change log database online backup
	Creating full offline backups for directory and change log databases
	Creating incremental online backups for directory and change log databases

	Restoring both directory and change log databases
	Using incremental delta backups
	Restoring from incremental delta backups
	Pros and cons of different recovery strategies
	Other backup, restore, and roll-forward command options
	Common problems for backup, restore, and roll-forward commands
	Optional migration for Tivoli Directory Server V5.2 to V6.0 to support online backup
	Evaluating BLOB columns on Tivoli Directory Server 5.2 and 6.0
	blobmigrate1G script

	Appendix F. Checklist
	Maintenance checklist
	IBM Tivoli Directory Server support tool

	Monitoring Tivoli Directory Server checklist
	Monitoring for outages and performance degradations
	Monitoring for performance and SLA conformance
	Monitoring Tivoli Directory Server status
	Analyzing log files
	Monitoring Tivoli Directory Server performance
	Using the ldapsearch utility for monitoring

	Appendix G. Additional material
	Locating the Web material
	Using the Web material
	How to use the Web material

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

